WorldWideScience

Sample records for activity increases p53

  1. Increased Arf/p53 activity in stem cells, aging and cancer.

    Science.gov (United States)

    Carrasco-Garcia, Estefania; Moreno, Manuel; Moreno-Cugnon, Leire; Matheu, Ander

    2017-04-01

    Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti-aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age-associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin

    DEFF Research Database (Denmark)

    Ehrnhoefer, Dagmar E; Skotte, Niels H; Ladha, Safia

    2014-01-01

    a role in the peripheral phenotypes, such as muscle wasting observed in HD. We assessed skeletal muscle tissue from HD patients and well-characterized mouse models of HD. Cleavage of the caspase-6 specific substrate lamin A is significantly increased in skeletal muscle obtained from HD patients as well...... as in muscle tissues from two different HD mouse models. p53, a transcriptional activator of caspase-6, is upregulated in neuronal cells and tissues expressing mutant huntingtin. Activation of p53 leads to a dramatic increase in levels of caspase-6 mRNA, caspase-6 activity and cleavage of lamin A. Using mouse......-6 expression and activation is exacerbated in cells and tissues of both neuronal and peripheral origin expressing mutant huntingtin (Htt). These findings suggest that the presence of the mutant Htt protein enhances p53 activity and lowers the apoptotic threshold, which activates caspase-6...

  3. Inhibition of SIRT1 Catalytic Activity Increases p53 Acetylation but Does Not Alter Cell Survival following DNA Damage

    Science.gov (United States)

    Solomon, Jonathan M.; Pasupuleti, Rao; Xu, Lei; McDonagh, Thomas; Curtis, Rory; DiStefano, Peter S.; Huber, L. Julie

    2006-01-01

    Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines. Significantly, inhibition of SIRT1 catalytic activity by EX-527 had no effect on cell growth, viability, or p53-controlled gene expression in cells treated with etoposide. Acetyl-p53 was also increased by the histone deacetylase (HDAC) class I/II inhibitor trichostatin A (TSA). EX-527 and TSA acted synergistically to increase acetyl-p53 levels, confirming that p53 acetylation is regulated by both SIRT1 and HDACs. While TSA alone reduced cell survival after DNA damage, the combination of EX-527 and TSA had no further effect on cell viability and growth. These results show that, although SIRT1 deacetylates p53, this does not play a role in cell survival following DNA damage in certain cell lines and primary human mammary epithelial cells. PMID:16354677

  4. The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells.

    Science.gov (United States)

    Raza, Shaneabbas; Ohm, Joyce E; Dhasarathy, Archana; Schommer, Jared; Roche, Conor; Hammer, Kimberly D P; Ghribi, Othman

    2015-12-01

    Estrogen is synthesized from cholesterol and high cholesterol levels are suggested to be associated with increased risk of estrogen receptor(ER)-positive breast cancer. The cholesterol metabolite 27-hydroxycholesterol (27-OHC) was recently identified as a selective estrogen receptor modulator (SERM) and may therefore impact breast cancer progression. However, the mechanisms by which 27-OHC may contribute to breast cancer are not all known. We determined the extent to which 27-OHC regulates cell proliferation in MCF7 ER-positive breast cancer cell line involving the tumor suppressor protein p53. We found that treatment of MCF7 cells with 27-OHC resulted reduced p53 transcriptional activity. Conversely, treatment of the ER-negative MDA-MB 231 cells with 27-OHC induced no significant change in p53 activity. Exposure of MCF7 cells to 27-OHC was also associated with increased protein levels of the E3 ubiquitin protein ligase MDM2 and decreased levels of p53. Moreover, 27-OHC also enhanced physical interaction between p53 and MDM2. Furthermore, 27-OHC-induced proliferation was attenuated using either the p53 activator Tenovin-1 or the MDM2 inhibitor Nutlin-3 and Mdm2 siRNA. Taken together, our results indicate that 27-OHC may contribute to ER-positive breast cancer progression by disrupting constitutive p53 signaling in an MDM2-dependent manner.

  5. SUMOylation of p53 mediates interferon activities

    Science.gov (United States)

    Marcos-Villar, Laura; Pérez-Girón, José V; Vilas, Jéssica M; Soto, Atenea; de la Cruz-Hererra, Carlos F; Lang, Valerie; Collado, Manuel; Vidal, Anxo; Rodríguez, Manuel S; Muñoz-Fontela, César; Rivas, Carmen

    2013-01-01

    There is growing evidence that many host proteins involved in innate and intrinsic immunity are regulated by SUMOylation, and that SUMO contributes to the regulatory process that governs the initiation of the type I interferon (IFN) response. The tumor suppressor p53 is a modulator of the IFN response that plays a role in virus-induced apoptosis and in IFN-induced senescence. Here we demonstrate that IFN treatment increases the levels of SUMOylated p53 and induces cellular senescence through a process that is partially dependent upon SUMOylation of p53. Similarly, we show that vesicular stomatitis virus (VSV) infection induces p53 SUMOylation, and that this modification favors the control of VSV replication. Thus, our study provides evidence that IFN signaling induces p53 SUMOylation, which results in the activation of a cellular senescence program and contributes to the antiviral functions of interferon. PMID:23966171

  6. Physical exercise regulates p53 activity targeting SCO2 and increases mitochondrial COX biogenesis in cardiac muscle with age.

    Directory of Open Access Journals (Sweden)

    Zhengtang Qi

    Full Text Available The purpose of this study was to outline the timelines of mitochondrial function, oxidative stress and cytochrome c oxidase complex (COX biogenesis in cardiac muscle with age, and to evaluate whether and how these age-related changes were attenuated by exercise. ICR/CD-1 mice were treated with pifithrin-μ (PFTμ, sacrificed and studied at different ages; ICR/CD-1 mice at younger or older ages were randomized to endurance treadmill running and sedentary conditions. The results showed that mRNA expression of p53 and its protein levels in mitochondria increased with age in cardiac muscle, accompanied by increased mitochondrial oxidative stress, reduced expression of COX subunits and assembly proteins, and decreased expression of most markers in mitochondrial biogenesis. Most of these age-related changes including p53 activity targeting cytochrome oxidase deficient homolog 2 (SCO2, p53 translocation to mitochondria and COX biogenesis were attenuated by exercise in older mice. PFTμ, an inhibitor blocking p53 translocation to mitochondria, increased COX biogenesis in older mice, but not in young mice. Our data suggest that physical exercise attenuates age-related changes in mitochondrial COX biogenesis and p53 activity targeting SCO2 and mitochondria, and thereby induces antisenescent and protective effects in cardiac muscle.

  7. Mdm2 RING mutation enhances p53 transcriptional activity and p53-p300 interaction.

    Directory of Open Access Journals (Sweden)

    Hilary V Clegg

    Full Text Available The p53 transcription factor and tumor suppressor is regulated primarily by the E3 ubiquitin ligase Mdm2, which ubiquitinates p53 to target it for proteasomal degradation. Aside from its ubiquitin ligase function, Mdm2 has been believed to be capable of suppressing p53's transcriptional activity by binding with and masking the transactivation domain of p53. The ability of Mdm2 to restrain p53 activity by binding alone, without ubiquitination, was challenged by a 2007 study using a knockin mouse harboring a single cysteine-to-alanine point mutation (C462A in Mdm2's RING domain. Mouse embryonic fibroblasts with this mutation, which abrogates Mdm2's E3 ubiquitin ligase activity without affecting its ability to bind with p53, were unable to suppress p53 activity. In this study, we utilized the Mdm2(C462A mouse model to characterize in further detail the role of Mdm2's RING domain in the control of p53. Here, we show in vivo that the Mdm2(C462A protein not only fails to suppress p53, but compared to the complete absence of Mdm2, Mdm2(C462A actually enhances p53 transcriptional activity toward p53 target genes p21/CDKN1A, MDM2, BAX, NOXA, and 14-3-3σ. In addition, we found that Mdm2(C462A facilitates the interaction between p53 and the acetyltransferase CBP/p300, and it fails to heterodimerize with its homolog and sister regulator of p53, Mdmx, suggesting that a fully intact RING domain is required for Mdm2's inhibition of the p300-p53 interaction and for its interaction with Mdmx. These findings help us to better understand the complex regulation of the Mdm2-p53 pathway and have important implications for chemotherapeutic agents targeting Mdm2, as they suggest that inhibition of Mdm2's E3 ubiquitin ligase activity may be sufficient for increasing p53 activity in vivo, without the need to block Mdm2-p53 binding.

  8. Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity

    Directory of Open Access Journals (Sweden)

    Price Brendan D

    2001-07-01

    Full Text Available Abstract Background The p53 protein is activated by genotoxic stress, oncogene expression and during senescence, p53 transcriptionally activates genes involved in growth arrest and apoptosis. p53 activation is regulated by post-translational modification, including phosphorylation of the N-terminal transactivation domain. Here, we have examined how Glycogen Synthase Kinase (GSK3, a protein kinase involved in tumorigenesis, differentiation and apoptosis, phosphorylates and regulates p53. Results The 2 isoforms of GSK3, GSK3α and GSK3β, phosphorylate the sequence Ser-X-X-X-Ser(P when the C-terminal serine residue is already phosphorylated. Several p53 kinases were examined for their ability to create GSK3 phosphorylation sites on the p53 protein. Our results demonstrate that phosphorylation of serine 37 of p53 by DNA-PK creates a site for GSK3β phosphorylation at serine 33 in vitro. GSK3α did not phosphorylate p53 under any condition. GSK3β increased the transcriptional activity of the p53 protein in vivo. Mutation of either serine 33 or serine 37 of p53 to alanine blocked the ability of GSK3β to regulate p53 transcriptional activity. GSK3β is therefore able to regulate p53 function in vivo. p53's transcriptional activity is commonly increased by DNA damage. However, GSK3β kinase activity was inhibited in response to DNA damage, suggesting that GSK3β regulation of p53 is not involved in the p53-DNA damage response. Conclusions GSK3β can regulate p53's transcriptional activity by phosphorylating serine 33. However, GSK3β does not appear to be part of the p53-DNA damage response pathway. Instead, GSK3β may provide the link between p53 and non-DNA damage mechanisms for p53 activation.

  9. Nitration of the tumor suppressor protein, p53, at tyrosine 327 promotes p53 oligomerization and activation

    Science.gov (United States)

    Yakovlev, Vasily A.; Bayden, Alexander S.; Graves, Paul R.; Kellogg, Glen E.; Mikkelsen, Ross B.

    2010-01-01

    Previous studies demonstrate that nitric oxide (NO) promotes p53 transcriptional activity by a classical DNA-damage-responsive mechanism involving activation of ATM/ATR and phosphorylation of p53. These studies intentionally used high doses of NO-donors to achieve the maximum DNA-damage. However, lower concentrations of NO donors also stimulate rapid and unequivocal nuclear retention of p53, but apparently do not require ATM/ATR-dependent p53 phosphorylation or total p53 protein accumulation. To identify possible mechanisms for p53 activation at low NO levels, the role of Tyr nitration in p53 activation was evaluated. Low concentrations of the NO donor, DETA NONOate (nitrate Tyr327 within the tetramerization domain promoting p53 oligomerization, nuclear accumulation and increased DNA-binding activity without p53 Ser15 phosphorylation. Molecular modeling indicates that nitration of one Tyr327 stabilizes the dimer by about 2.67 kcal mol−1. Significant quantitative and qualitative differences in the patterns of p53-target gene modulation by low (50μM), non DNA-damaging and high (500μM), DNA-damaging NO donor concentrations was shown. These results demonstrate a new post-translational mechanism for modulating p53 transcriptional activity responsive to low NO concentrations and independent of DNA damage signaling. PMID:20499882

  10. Mutant p53: multiple mechanisms define biologic activity in cancer

    Directory of Open Access Journals (Sweden)

    Michael Paul Kim

    2015-11-01

    Full Text Available The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of p53 alterations involve missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may acquire novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in multiple model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 are reviewed and their limitations discussed.

  11. Transcriptional activation of p21(WAF¹/CIP¹) is mediated by increased DNA binding activity and increased interaction between p53 and Sp1 via phosphorylation during replicative senescence of human embryonic fibroblasts.

    Science.gov (United States)

    Kim, Hyun-Seok; Heo, Jee-In; Park, Seong-Hoon; Shin, Jong-Yeon; Kang, Hong-Jun; Kim, Min-Ju; Kim, Sung Chan; Kim, Jaebong; Park, Jae-Bong; Lee, Jae-Yong

    2014-01-01

    Although p21(WAF1/CIP1) is known to be elevated during replicative senescence of human embryonic fibroblasts (HEFs), the mechanism for p21 up-regulation has not been elucidated clearly. In order to explore the mechanism, we analyzed expression of p21 mRNA and protein and luciferase activity of full-length p21 promoter. The result demonstrated that p21 up-regulation was accomplished largely at transcription level. The promoter assay using serially-deleted p21 promoter constructs revealed that p53 binding site was the most important site and Sp1 binding sites were necessary but not sufficient for transcriptional activation of p21. In addition, p53 protein was shown to interact with Sp1 protein. The interaction was increased in aged fibroblasts and was regulated by phosphorylation of p53 and Sp1. DNA binding activity of p53 was significantly elevated in aged fibroblasts but that of Sp1 was not. DNA binding activities of p53 and Sp1 were also regulated by phosphorylation. Phosphorylation of p53 at serine-15 and of Sp1 at serines appears to be involved. Taken together, the result demonstrated that p21 transcription during replicative senescence of HEFs is up-regulated by increase in DNA binding activity and interaction between p53 and Sp1 via phosphorylation.

  12. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cappadone, C., E-mail: concettina.cappadone@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Stefanelli, C. [Department for Life Quality Studies, University of Bologna, Rimini Campus, Rimini (Italy); Malucelli, E. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Zini, M. [Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy); Onofrillo, C. [Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna (Italy); Locatelli, A.; Rambaldi, M.; Sargenti, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Merolle, L. [ELETTRA–Sincrotrone Trieste S.C.p.A., Trieste (Italy); Farruggia, G. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); National Institute of Biostructures and Biosystems, Roma (Italy); Graziadio, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Montanaro, L. [Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna (Italy); Iotti, S. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); National Institute of Biostructures and Biosystems, Roma (Italy)

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of the cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.

  13. Activation of Adenosine Receptor A2A Increases HSC Proliferation and Inhibits Death and Senescence by Down-regulation of p53 and Rb

    Directory of Open Access Journals (Sweden)

    Md. Kaimul eAhsan

    2014-04-01

    Full Text Available Background & Aims: During fibrosis hepatic stellate cells (HSC undergo activation, proliferation and senescence but the regulation of these important processes is poorly understood. The adenosine A2A receptor (A2A is known to be present on HSC, and its activation results in liver fibrosis. In this study, we tested if A2A has a role in the regulation of HSC proliferation, apoptosis, senescence, and the relevant molecular mechanism.Methods: The ability of adenosine to regulate p53 and Rb protein levels, proliferation, apoptosis and senescence was tested in the human HSC cell line LX-2 and rat primary HSC.Results: Adenosine receptor activation down-regulates p53 and Rb protein levels, increases BrdU incorporation and increases cell survival in LX-2 cells and in primary rat HSC. These effects of NECA were reproduced by an adenosine A2A receptor specific agonist (CGS21680 and blocked by a specific antagonist (ZM241385. By day twenty-one of culture primary rat HSC entered senescence and expressed -gal which was significantly inhibited by NECA. Furthermore, NECA induced down regulation of p53 and Rb and Rac1, and decreased phosphorylation of p44-42 MAP Kinase in LX-2 cells and primary rat HSC. These effects were reproduced by the cAMP analog 8-Bromo-cAMP, and the adenylyl cyclase activator forskolin, and were blocked by PKA inhibitors.Conclusions: These results demonstrate that A2A receptor regulates a number of HSC fate decisions and induces greater HSC proliferation, reduces apoptosis and senescence by decreasing p53 and Rb through cAMP-PKA/Rac1/p38 MAPK pathway. This provides a mechanism for adenosine induced HSC regulation and liver fibrosis.

  14. SCH529074, a small molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53.

    Science.gov (United States)

    Demma, Mark; Maxwell, Eugene; Ramos, Robert; Liang, Lianzhu; Li, Cheng; Hesk, David; Rossman, Randall; Mallams, Alan; Doll, Ronald; Liu, Ming; Seidel-Dugan, Cynthia; Bishop, W Robert; Dasmahapatra, Bimalendu

    2010-04-02

    Abrogation of p53 function occurs in almost all human cancers, with more than 50% of cancers harboring inactivating mutations in p53 itself. Mutation of p53 is indicative of highly aggressive cancers and poor prognosis. The vast majority of mutations in p53 occur in its core DNA binding domain (DBD) and result in inactivation of p53 by reducing its thermodynamic stability at physiological temperature. Here, we report a small molecule, SCH529074, that binds specifically to the p53 DBD in a saturable manner with an affinity of 1-2 microm. Binding restores wild type function to many oncogenic mutant forms of p53. This small molecule reactivates mutant p53 by acting as a chaperone, in a manner similar to that previously reported for the peptide CDB3. Binding of SCH529074 to the p53 DBD is specifically displaced by an oligonucleotide with a sequence derived from the p53-response element. In addition to reactivating mutant p53, SCH529074 binding inhibits ubiquitination of p53 by HDM2. We have also developed a novel variant of p53 by changing a single amino acid in the core domain of p53 (N268R), which abolishes binding of SCH529074. This amino acid change also inhibits HDM2-mediated ubiquitination of p53. Our novel findings indicate that through its interaction with p53 DBD, SCH529074 restores DNA binding activity to mutant p53 and inhibits HDM2-mediated ubiquitination.

  15. Benzyl Isothiocyanate potentiates p53 signaling and antitumor effects against breast cancer through activation of p53-LKB1 and p73-LKB1 axes

    Science.gov (United States)

    Xie, Bei; Nagalingam, Arumugam; Kuppusamy, Panjamurthy; Muniraj, Nethaji; Langford, Peter; Győrffy, Balázs; Saxena, Neeraj K.; Sharma, Dipali

    2017-01-01

    Functional reactivation of p53 pathway, although arduous, can potentially provide a broad-based strategy for cancer therapy owing to frequent p53 inactivation in human cancer. Using a phosphoprotein-screening array, we found that Benzyl Isothiocynate, (BITC) increases p53 phosphorylation in breast cancer cells and reveal an important role of ERK and PRAS40/MDM2 in BITC-mediated p53 activation. We show that BITC rescues and activates p53-signaling network and inhibits growth of p53-mutant cells. Mechanistically, BITC induces p73 expression in p53-mutant cells, disrupts the interaction of p73 and mutant-p53, thereby releasing p73 from sequestration and allowing it to be transcriptionally active. Furthermore, BITC-induced p53 and p73 axes converge on tumor-suppressor LKB1 which is transcriptionally upregulated by p53 and p73 in p53-wild-type and p53-mutant cells respectively; and in a feed-forward mechanism, LKB1 tethers with p53 and p73 to get recruited to p53-responsive promoters. Analyses of BITC-treated xenografts using LKB1-null cells corroborate in vitro mechanistic findings and establish LKB1 as the key node whereby BITC potentiates as well as rescues p53-pathway in p53-wild-type as well as p53-mutant cells. These data provide first in vitro and in vivo evidence of the integral role of previously unrecognized crosstalk between BITC, p53/LKB1 and p73/LKB1 axes in breast tumor growth-inhibition. PMID:28071670

  16. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway.

    Science.gov (United States)

    Bailly, A; Perrin, A; Bou Malhab, L J; Pion, E; Larance, M; Nagala, M; Smith, P; O'Donohue, M-F; Gleizes, P-E; Zomerdijk, J; Lamond, A I; Xirodimas, D P

    2016-01-28

    The ubiquitin-like molecule NEDD8 is essential for viability, growth and development, and is a potential target for therapeutic intervention. We found that the small molecule inhibitor of NEDDylation, MLN4924, alters the morphology and increases the surface size of the nucleolus in human and germline cells of Caenorhabditis elegans in the absence of nucleolar fragmentation. SILAC proteomics and monitoring of rRNA production, processing and ribosome profiling shows that MLN4924 changes the composition of the nucleolar proteome but does not inhibit RNA Pol I transcription. Further analysis demonstrates that MLN4924 activates the p53 tumour suppressor through the RPL11/RPL5-Mdm2 pathway, with characteristics of nucleolar stress. The study identifies the nucleolus as a target of inhibitors of NEDDylation and provides a mechanism for p53 activation upon NEDD8 inhibition. It also indicates that targeting the nucleolar proteome without affecting nucleolar transcription initiates the required signalling events for the control of cell cycle regulators.

  17. Salmonella typhimurium infection increases p53 acetylation in intestinal epithelial cells.

    Science.gov (United States)

    Wu, Shaoping; Ye, Zhongde; Liu, Xingyin; Zhao, Yun; Xia, Yinglin; Steiner, Andrew; Petrof, Elaine O; Claud, Erika C; Sun, Jun

    2010-05-01

    The ability of Salmonella typhimurium to enter intestinal epithelial cells constitutes a crucial step in pathogenesis. Salmonella invasion of the intestinal epithelium requires bacterial type three secretion system. Type three secretion system is a transport device that injects virulence proteins, called effectors, to paralyze or reprogram the eukaryotic cells. Avirulence factor for Salmonella (AvrA) is a Salmonella effector that inhibits the host's inflammatory responses. The mechanism by which AvrA modulates host cell signaling is not entirely clear. p53 is situated at the crossroads of a network of signaling pathways that are essential for genotoxic and nongenotoxic stress responses. We hypothesized that Salmonella infection activates the p53 pathway. We demonstrated that Salmonella infection increased p53 acetylation. Cells infected with AvrA-sufficient Salmonella have increased p53 acetylation, whereas cells infected with AvrA-deficient Salmonella have less p53 acetylation. In a cell-free system, AvrA possessed acetyltransferase activity and used p53 as a substrate. AvrA expression increased p53 transcriptional activity and induced cell cycle arrest. HCT116 p53-/- cells had less inflammatory responses. In a mouse model of Salmonella infection, intestinal epithelial p53 acetylation was increased by AvrA expression. Our studies provide novel mechanistic evidence that Salmonella modulates the p53 pathway during intestinal inflammation and infection.

  18. TBP-like Protein (TLP) Disrupts the p53-MDM2 Interaction and Induces Long-lasting p53 Activation.

    Science.gov (United States)

    Maeda, Ryo; Tamashiro, Hiroyuki; Takano, Kazunori; Takahashi, Hiro; Suzuki, Hidefumi; Saito, Shinta; Kojima, Waka; Adachi, Noritaka; Ura, Kiyoe; Endo, Takeshi; Tamura, Taka-Aki

    2017-02-24

    Stress-induced activation of p53 is an essential cellular response to prevent aberrant cell proliferation and cancer development. The ubiquitin ligase MDM2 promotes p53 degradation and limits the duration of p53 activation. It remains unclear, however, how p53 persistently escapes MDM2-mediated negative control for making appropriate cell fate decisions. Here we report that TBP-like protein (TLP), a member of the TBP family, is a new regulatory factor for the p53-MDM2 interplay and thus for p53 activation. We found that TLP acts to stabilize p53 protein to ensure long-lasting p53 activation, leading to potentiation of p53-induced apoptosis and senescence after genotoxic stress. Mechanistically, TLP interferes with MDM2 binding and ubiquitination of p53. Moreover, single cell imaging analysis shows that TLP depletion accelerates MDM2-mediated nuclear export of p53. We further show that a cervical cancer-derived TLP mutant has less p53 binding ability and lacks a proliferation-repressive function. Our findings uncover a role of TLP as a competitive MDM2 blocker, proposing a novel mechanism by which p53 escapes the p53-MDM2 negative feedback loop to modulate cell fate decisions.

  19. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage

    Directory of Open Access Journals (Sweden)

    Rolletschek Alexandra

    2009-06-01

    Full Text Available Abstract Background P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. Results In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. Conclusion In embryonic stem cells where (anti-proliferative p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  20. Suppression of p53 activity through the cooperative action of Ski and histone deacetylase SIRT1.

    Science.gov (United States)

    Inoue, Yasumichi; Iemura, Shun-ichiro; Natsume, Tohru; Miyazawa, Keiji; Imamura, Takeshi

    2011-02-25

    Ski was originally identified as an oncogene based on the fact that Ski overexpression transformed chicken and quail embryo fibroblasts. Consistent with these proposed oncogenic roles, Ski is overexpressed in various human tumors. However, whether and how Ski functions in mammalian tumorigenesis has not been fully investigated. Here, we show that Ski interacts with p53 and attenuates the biological functions of p53. Ski overexpression attenuated p53-dependent transactivation, whereas Ski knockdown enhanced the transcriptional activity of p53. Interestingly, Ski bound to the histone deacetylase SIRT1 and stabilized p53-SIRT1 interaction to promote p53 deacetylation, which subsequently decreased the DNA binding activity of p53. Consistent with the ability of Ski to inactivate p53, overexpressing Ski desensitized cells to genotoxic drugs and Nutlin-3, a small-molecule antagonist of Mdm2 that stabilizes p53 and activates the p53 pathway, whereas knocking down Ski increased the cellular sensitivity to these agents. These results indicate that Ski negatively regulates p53 and suggest that the p53-Ski-SIRT1 axis is an attractive target for cancer therapy.

  1. The Proteasome Activator PA28γ, a Negative Regulator of p53, Is Transcriptionally Up-Regulated by p53

    Directory of Open Access Journals (Sweden)

    Zhen-Xing Wan

    2014-02-01

    Full Text Available PA28γ (also called REGγ, 11Sγ or PSME3 negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence −193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells.

  2. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function.

    Science.gov (United States)

    Chen, D; Zhang, Z; Li, M; Wang, W; Li, Y; Rayburn, E R; Hill, D L; Wang, H; Zhang, R

    2007-08-01

    As a major negative regulator of p53, the MDM2 oncogene plays an important role in carcinogenesis and tumor progression. MDM2 promotes p53 proteasomal degradation and negatively regulates p53 function. The mechanisms by which the MDM2-p53 interaction is regulated are not fully understood, although several MDM2-interacting molecules have recently been identified. To search for novel MDM2-binding partners, we screened a human prostate cDNA library by the yeast two-hybrid assay using full-length MDM2 protein as the bait. Among the candidate proteins, ribosomal protein S7 was identified and confirmed as a novel MDM2-interacting protein. Herein, we demonstrate that S7 binds to MDM2, in vitro and in vivo, and that the interaction between MDM2 and S7 leads to modulation of MDM2-p53 binding by forming a ternary complex among MDM2, p53 and S7. This results in the stabilization of p53 protein through abrogation of MDM2-mediated p53 ubiquitination. Consequently, S7 overexpression increases p53 transactivational activities, induces apoptosis, and inhibits cell proliferation. The identification of S7 as a novel MDM2-interacting partner contributes to elucidation of the complex regulation of the MDM2-p53 interaction and has implications in cancer prevention and therapy.

  3. p53 Small Molecule Inhibitor Enhances Temozolomide Cytotoxic Activity against Intracranial Glioblastoma Xenografts

    Science.gov (United States)

    Dinca, Eduard B.; Lu, Kan V.; Sarkaria, Jann N.; Pieper, Russell O.; Prados, Michael D.; Haas-Kogan, Daphne A.; VandenBerg, Scott R.; Berger, Mitchel S.; James, C. David

    2010-01-01

    In this study we investigated corresponding precursor and active forms of a p53 small molecule inhibitor for effect on temozolomide (TMZ) anti-tumor activity against glioblastoma (GBM), using both in vitro and in vivo experimental approaches. Results from in vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased when GBMs with wild-type p53 were co-treated with the active form of p53 inhibitor, and this heightened cytotoxic response was accompanied by increased PARP cleavage as well as elevated cellular phospho-H2AX. Analysis of the same series of GBMs, as intracranial xenografts in athymic mice, and administering corresponding p53 inhibitor precursor, that is converted to the active compound in vivo, yielded results consistent with the in vitro analyses: i.e., TMZ + p53 inhibitor precursor co-treatment, of three distinct wild-type p53 GBM xenografts, resulted in significant enhancement of TMZ anti-tumor effect relative to treatment with TMZ alone, as indicated by serial bioluminescence monitoring as well as survival analysis (p < 0.001 for co-treatment survival benefit in each case). Mice receiving intracranial injection with p53 null GBM showed similar survival benefit from TMZ treatment regardless of the presence or absence of p53 inhibitor precursor. In total, our results indicate that the p53 active and precursor inhibitor pair enhance TMZ cytotoxicity in vitro and in vivo, respectively, and do so in a p53-dependent manner. PMID:19074867

  4. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein.

    Science.gov (United States)

    Brázda, Václav; Čechová, Jana; Battistin, Michele; Coufal, Jan; Jagelská, Eva B; Raimondi, Ivan; Inga, Alberto

    2017-01-29

    The TP53 gene is the most frequently mutated gene in human cancer and p53 protein plays a crucial role in gene expression and cancer protection. Its role is manifested by interactions with other proteins and DNA. p53 is a transcription factor that binds to DNA response elements (REs). Due to the palindromic nature of the consensus binding site, several p53-REs have the potential to form cruciform structures. However, the influence of cruciform formation on the activity of p53-REs has not been evaluated. Therefore, we prepared sets of p53-REs with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures, for in vitro and in vivo analyses. Then we evaluated the presence of cruciform structures when inserted into plasmid DNA and employed a yeast-based assay to measure transactivation potential of these p53-REs cloned at a chromosomal locus in isogenic strains. We show that transactivation in vivo correlated more with relative propensity of an RE to form cruciforms than to its predicted in vitro DNA binding affinity for wild type p53. Structural features of p53-REs could therefore be an important determinant of p53 transactivation function.

  5. Modulation of p53 activity by IκBα: Evidence suggesting a common phylogeny between NF-κB and p53 transcription factors

    Directory of Open Access Journals (Sweden)

    Gelfand Erwin W

    2005-06-01

    Full Text Available Abstract Background In this work we present evidence that the p53 tumor suppressor protein and NF-κB transcription factors could be related through common descent from a family of ancestral transcription factors regulating cellular proliferation and apoptosis. P53 is a homotetrameric transcription factor known to interact with the ankyrin protein 53BP2 (a fragment of the ASPP2 protein. NF-κB is also regulated by ankyrin proteins, the prototype of which is the IκB family. The DNA binding sequences of the two transcription factors are similar, sharing 8 out of 10 nucleotides. Interactions between the two proteins, both direct and indirect, have been noted previously and the two proteins play central roles in the control of proliferation and apoptosis. Results Using previously published structure data, we noted a significant degree of structural alignment between p53 and NF-κB p65. We also determined that IκBα and p53 bind in vitro through a specific interaction in part involving the DNA binding region of p53, or a region proximal to it, and the amino terminus of IκBα independently or cooperatively with the ankyrin 3 domain of IκBα In cotransfection experiments, κBα could significantly inhibit the transcriptional activity of p53. Inhibition of p53-mediated transcription was increased by deletion of the ankyrin 2, 4, or 5 domains of IκBα Co-precipitation experiments using the stably transfected ankyrin 5 deletion mutant of κBα and endogenous wild-type p53 further support the hypothesis that p53 and IκBα can physically interact in vivo. Conclusion The aggregate results obtained using bacterially produced IκBα and p53 as well as reticulocyte lysate produced proteins suggest a correlation between in vitro co-precipitation in at least one of the systems and in vivo p53 inhibitory activity. These observations argue for a mechanism involving direct binding of IκBα to p53 in the inhibition of p53 transcriptional activity, analogous to

  6. 15-Lipoxygenase-1 Activates Tumor Suppressor p53 Independent of Enzymatic Activity

    Science.gov (United States)

    Zhu, Hong; Glasgow, Wayne; George, Margaret D.; Chrysovergis, Kali; Olden, Kenneth; Roberts, John D.; Eling, Thomas

    2008-01-01

    15-LOX-1 and its metabolites are involved in colorectal cancer. Recently, we reported that 15-LOX-1 overexpression in HCT-116 human colorectal cancer cells inhibited cell growth by induction of p53 phosphorylation (4). To determine whether the 15-LOX-1 protein or its metabolites are responsible for phosphorylation of p53 in HCT-116 cells, we used HCT-116 cells that expressed a mutant 15-LOX-1. The mutant 15-LOX-1 enzyme, with a substitution of Leu at residue His361, was devoid of enzymatic activity. HCT-116 cells transiently transfected with either native or mutant 15-LOX-1 showed an increase in p53 phosphorylation and an increase in the expression of downstream genes. Thus 15-LOX-1 induces p53 phosphorylation independent of enzymatic activity. Treatment of A549 human lung carcinoma cells with IL-4 increased the expression of 15-LOX-1 and also increased the expression of downstream targets of p53. This confirmed that the activation of p53 was also observed in wild type cells expressing physiological 15-LOX-1. Immunoprecipitation experiments revealed that 15-LOX-1 interacts with, and binds to, DNA-dependent protein kinase (DNA-PK). The binding of 15-LOX-1 to DNA-PK caused an approximate 3.0 fold enhancement in kinase activity, resulting in increased p53 phosphorylation at Ser15. Knockdown of DNA-PK by small interfering RNA (siRNA) significantly reduced p53 phosphorylation. Furthermore, confocal microscopy demonstrated a co-localization of 15-LOX and DNA-PK in the cells. We propose that the 15-LOX-1 protein binds to DNA-PK, increasing its kinase activity, and results in downstream activation of the tumor suppressor p53, thus revealing a new mechanism by which lipoxygenases may influence the phenotype of tumor cells. PMID:18785202

  7. Yes-associated protein (YAP) increases chemosensitivity of hepatocellular carcinoma cells by modulation of p53.

    Science.gov (United States)

    Bai, Nan; Zhang, Chunyan; Liang, Ning; Zhang, Zhuhong; Chang, Antao; Yin, Jing; Li, Zongjin; Luo, Na; Tan, Xiaoyue; Luo, Na; Luo, Yunping; Xiang, Rong; Li, Xiru; Reisfeld, Ralph A; Stupack, Dwayne; Lv, Dan; Liu, Chenghu

    2013-06-01

    The yes-associated protein (YAP) transcription co-activator has been reported either as an oncogene candidate or a tumor suppressor. Liver tissue chips revealed that about 51.4% human hepatocellular carcinoma (HCC) samples express YAP and 32.9% HCC samples express phosphorylated YAP. In this study, we found that chemotherapy increased YAP protein expression and nuclear translocation in HepG2 cells, as well as p53 protein expression and nuclear translocation. However, little is known about YAP functions during chemotherapy. Our results show that overexpression of YAP increases chemosensitivity of HepG2 cells during chemotherapy. Dominant negative transfection of Flag-S94A (TEAD binding domain mutant) or Flag-W1W2 (WW domain mutant) to HepG2 cells decreases p53 expression/ nuclear translocation and chemosensitivity when compared with control HepG2 cells. Furthermore, rescue transfection of Flag-5SA-S94A or Flag-5SA-W1W2, respectively to HepG2 cells regains p53 expression/nuclear translocation and chemosensitivity. These results indicate that YAP promotes chemosensitivity by modulating p53 during chemotherapy and both TEAD and WW binding domains are required for YAP-mediated p53 function. ChIP assay results also indicated that YAP binds directly to the p53 promoter to improve its expression. In addition, p53 could positively feedback YAP expression through binding to the YAP promoter. Taken together, our current data indicate that YAP functions as a tumor suppressor that enhances apoptosis by modulating p53 during chemotherapy.

  8. Suppressing activity of tributyrin on hepatocarcinogenesis is associated with inhibiting the p53-CRM1 interaction and changing the cellular compartmentalization of p53 protein.

    Science.gov (United States)

    Ortega, Juliana F; de Conti, Aline; Tryndyak, Volodymyr; Furtado, Kelly S; Heidor, Renato; Horst, Maria Aderuza; Fernandes, Laura Helena Gasparini; Tavares, Paulo Eduardo Latorre Martins; Pogribna, Marta; Shpyleva, Svitlana; Beland, Frederick A; Pogribny, Igor P; Moreno, Fernando Salvador

    2016-04-26

    Hepatocellular carcinoma (HCC), an aggressive and the fastest growing life-threatening cancer worldwide, is often diagnosed at intermediate or advanced stages of the disease, which substantially limits therapeutic approaches for its successful treatment. This indicates that the prevention of hepatocarcinogenesis is probably the most promising approach to reduce both the HCC incidence and cancer-related mortality. In previous studies, we demonstrated a potent chemopreventive effect of tributyrin, a butyric acid prodrug, on experimental hepatocarcinogenesis. The cancer-inhibitory effect of tributyrin was linked to the suppression of sustained cell proliferation and induction of apoptotic cell death driven by an activation of the p53 apoptotic signaling pathway. The goal of the present study was to investigate the underlying molecular mechanisms linked to tributyrin-mediated p53 activation. Using in vivo and in vitro models of liver cancer, we demonstrate that an increase in the level of p53 protein in nuclei, a decrease in the level of cytoplasmic p53, and, consequently, an increase in the ratio of nuclear/cytoplasmic p53 in rat preneoplastic livers and in rat and human HCC cell lines caused by tributyrin or sodium butyrate treatments was associated with a marked increase in the level of nuclear chromosome region maintenance 1 (CRM1) protein. Mechanistically, the increase in the level of nuclear p53 protein was associated with a substantially reduced binding interaction between CRM1 and p53. The results demonstrate that the cancer-inhibitory activity of sodium butyrate and its derivatives on liver carcinogenesis may be attributed to retention of p53 and CRM1 proteins in the nucleus, an event that may trigger activation of p53-mediated apoptotic cell death in neoplastic cells.

  9. Driving p53 Response to Bax Activation Greatly Enhances Sensitivity to Taxol by Inducing Massive Apoptosis

    Directory of Open Access Journals (Sweden)

    Paola De Feudis

    2000-05-01

    Full Text Available The proapoptotic gene bax is one of the downstream effectors of p53. The p53 binding site in the bax promoter is less responsive to p53 than the one in the growth arrest mediating gene p21. We introduced the bax gene under the control of 13 copies of a strong p53 responsive element into two ovarian cancer cell lines. The clones expressing bax under the control of p53 obtained from the wild-type (wt p53-expressing cell line A2780 were much more sensitive (500- to 1000-fold to the anticancer agent taxol than the parent cell line, with a higher percentage of cells undergoing apoptosis after drug treatment that was clearly p53-dependent and bax-mediated. Xenografts established in nude mice from one selected clone (A2780/C3 were more responsive to taxol than the parental line and the apoptotic response of A2780/C3 tumors was also increased after treatment. Introduction of the same plasmid into the p53 null SKOV3 cell line did not alter the sensitivity to taxol or the induction of apoptosis. In conclusion, driving the p53 response (after taxol treatment by activating the bax gene rather than the p21 gene results in induction of massive apoptosis, in vitro and in vivo, and greatly enhances sensitivity to the drug.

  10. Transcriptional activation of APAF1 by KAISO (ZBTB33) and p53 is attenuated by RelA/p65.

    Science.gov (United States)

    Koh, Dong-In; An, Haemin; Kim, Min-Young; Jeon, Bu-Nam; Choi, Seo-Hyun; Hur, Sujin Susanne; Hur, Man-Wook

    2015-09-01

    KAISO, a member of the POK protein family, is induced by DNA-damaging agents to enhance apoptosis in a p53-dependent manner. Previously, we found that p53 interacts with KAISO, and acetylation of p53 lysine residues by p300 is modulated by KAISO. APAF1, the core molecule of the apoptosome, is transcriptionally activated by KAISO only in cells expressing p53, which binds to APAF1 promoter p53-response elements (p53REs). APAF1 transcriptional upregulation is further enhanced by KAISO augmentation of p53 binding to the APAF1 promoter distal p53RE#1 (bp, -765 to -739). Interestingly, a NF-κB response element, located close to the p53RE#1, mediates APAF1 transcriptional repression by affecting interaction between KAISO and p53. Ectopic RelA/p65 expression led to depletion of nuclear KAISO, with KAISO being mainly detected in the cytoplasm. RelA/p65 cytoplasmic sequestration of KAISO prevents its nuclear interaction with p53, decreasing APAF1 transcriptional activation by a p53-KAISO-p300 complex in cells exposed to genotoxic stresses. While KAISO enhances p53-dependent apoptosis by increasing APAF1 gene expression, RelA/p65 decreases apoptosis by blocking interaction between KAISO and p53. These findings have relevance to the phenomenon of cancer cells' diminished apoptotic capacity and the onset of chemotherapy resistance.

  11. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    Directory of Open Access Journals (Sweden)

    Dana Austin

    Full Text Available Rift Valley fever virus (RVFV is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  12. FATS is a transcriptional target of p53 and associated with antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhang Xifeng

    2010-09-01

    Full Text Available Abstract Frequent mutations of p53 in human cancers exemplify its crucial role as a tumor suppressor transcription factor, and p21, a transcriptional target of p53, plays a central role in surveillance of cell-cycle checkpoints. Our previous study has shown that FATS stabilize p21 to preserve genome integrity. In this study we identified a novel transcript variant of FATS (GenBank: GQ499374 through screening a cDNA library from mouse testis, which uncovered the promoter region of mouse FATS. Mouse FATS was highly expressed in testis. The p53-responsive elements existed in proximal region of both mouse and human FATS promoters. Functional study indicated that the transcription of FATS gene was activated by p53, whereas such effect was abolished by site-directed mutagenesis in the p53-RE of FATS promoter. Furthermore, the expression of FATS increased upon DNA damage in a p53-dependent manner. FATS expression was silent or downregulated in human cancers, and overexpression of FATS suppressed tumorigenicity in vivo independently of p53. Our results reveal FATS as a p53-regulated gene to monitor genomic stability.

  13. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents

    NARCIS (Netherlands)

    Michaelis, M.; Rothweiler, F.; Agha, B.; Barth, S.; Voges, Y.; Loeschmann, N.; von Deimling, A.; Breitling, R.; Doerr, H. Wilhelm; Roedel, F.; Speidel, D.; Cinatl, J.; Cinatl Jr., J.; Stephanou, A.

    2012-01-01

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3,

  14. Activation of p53 by spermine mediates induction of autophagy in HT1080 cells.

    Science.gov (United States)

    Chae, Yong-Byung; Kim, Moon-Moo

    2014-02-01

    The recent evidences indicate that autophagy is associated with a number of pathological processes including cancer, muscular disorder and neurodegeneration in addition to longevity. The efficacy of spermine was investigated on induction of autophagy through histone deacetylation and p53 activation in human fibrosarcoma cell line, HT1080. In this study, it was discovered that spermine increases the activity of HAT and autophagy. It was also identified that the transcriptional activation of p53 and the activation of p21 promoter by spermine are related to the induction of autophagy in reporter gene assay. Furthermore, western blot analyses demonstrated that spermine modulates the expression of proteins related to autophagy and apoptosis. The expression levels of Ac-histone H3, HDAC1, HAT1, p300 and SIRT1 were increased in HT1080 cells treated with spermine. In addition, the expression levels of protein such as acetyl-p53, p-p53, Bcl-2 and caspase-9 inducing apoptosis were increased in the presence of spermine. Moreover, the levels of Mdm2 and caspase-3 expression were reduced in the cells exposed to spermine compared to blank group. These results suggest that activation of HAT in the presence of spermine promotes the induction of autophagy in HT1080 cells through the enhanced activity of p-p53 and acetyl p53. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program

    Directory of Open Access Journals (Sweden)

    Weindruch Richard

    2007-03-01

    Full Text Available Abstract Background Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. Results We identified 712 transcripts that are differentially expressed in young (5 month old and old (25-month old mouse skeletal muscle. Caloric restriction (CR completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P +/- and GPX4+/- mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. Conclusion These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets.

  16. Inhibition of NAMPT pathway by FK866 activates the function of p53 in HEK293T cells

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Basant Kumar, E-mail: thakur.basant@mh-hannover.de [Department of Pediatrics, Hematology and Oncology, Hannover Medical School, Carl Neuberg Str-1, 30625 Hannover (Germany); Department of Molecular Hematopoiesis, Hannover Medical School, Carl Neuberg Str-1, 30625 Hannover (Germany); Dittrich, Tino [Department of Pediatrics, Hematology and Oncology, Hannover Medical School, Carl Neuberg Str-1, 30625 Hannover (Germany); Department of Molecular Hematopoiesis, Hannover Medical School, Carl Neuberg Str-1, 30625 Hannover (Germany); Chandra, Prakash [Frankfurt University Medical School, Molecular Biology, Building 57, Theodor-Stern-Kai-7, 60590 Frankfurt (Germany); Becker, Annette [Department of Biology, Technical University of Darmstadt, 64287 Darmstadt (Germany); Lippka, Yannick [Department of Molecular Hematopoiesis, Hannover Medical School, Carl Neuberg Str-1, 30625 Hannover (Germany); Selvakumar, Divakarvel [Department of Molecular Hematopoiesis, Hannover Medical School, Carl Neuberg Str-1, 30625 Hannover (Germany); Rutgers, The State University of New Jersey, NJ 08901 (United States); Klusmann, Jan-Henning; Reinhardt, Dirk [Department of Pediatrics, Hematology and Oncology, Hannover Medical School, Carl Neuberg Str-1, 30625 Hannover (Germany); Welte, Karl, E-mail: Welte.Karl.H@mh-hannover.de [Department of Molecular Hematopoiesis, Hannover Medical School, Carl Neuberg Str-1, 30625 Hannover (Germany)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer In 293T cells, p53 is considered to be inactive due to its interaction with the large T-antigen. Black-Right-Pointing-Pointer Acetylation of p53 at lysine 382 is important for its functional activation. Black-Right-Pointing-Pointer First evidence to document the presence of a functional p53 in 293T cells. Black-Right-Pointing-Pointer Inhibition of NAMPT/SIRT pathway by FK866 in 293T cells increases the functional activity of p53. Black-Right-Pointing-Pointer This activation of p53 involves reversible acetylation of p53 at lysine 382. -- Abstract: Inactivation of p53 protein by endogenous and exogenous carcinogens is involved in the pathogenesis of different human malignancies. In cancer associated with SV-40 DNA tumor virus, p53 is considered to be non-functional mainly due to its interaction with the large T-antigen. Using the 293T cell line (HEK293 cells transformed with large T antigen) as a model, we provide evidence that p53 is one of the critical downstream targets involved in FK866-mediated killing of 293T cells. A reduced rate of apoptosis and an increased number of cells in S-phase was accompanied after knockdown of p53 in these cells. Inhibition of NAMPT by FK866, or inhibition of SIRT by nicotinamide decreased proliferation and triggered death of 293T cells involving the p53 acetylation pathway. Additionally, knockdown of p53 attenuated the effect of FK866 on cell proliferation, apoptosis, and cell cycle arrest. The data presented here shed light on two important facts: (1) that p53 in 293T cells is active in the presence of FK866, an inhibitor of NAMPT pathway; (2) the apoptosis induced by FK866 in 293T cells is associated with increased acetylation of p53 at Lys382, which is required for the functional activity of p53.

  17. Substrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression

    Directory of Open Access Journals (Sweden)

    Takahiro Ebata

    2017-01-01

    Full Text Available The physical properties of the extracellular matrix (ECM, such as stiffness, are involved in the determination of the characteristics of cancer cells, including chemotherapy sensitivity. Resistance to chemotherapy is often linked to dysfunction of tumor suppressor p53; however, it remains elusive whether the ECM microenvironment interferes with p53 activation in cancer cells. Here, we show that, in MCF-7 breast cancer cells, extracellular stiffness influences p53 activation induced by the antitumor drug doxorubicin. Cell growth inhibition by doxorubicin was increased in response to ECM rigidity in a p53-dependent manner. The expression of Rho-associated coiled coil-containing protein kinase (ROCK 2, which induces the activation of myosin II, was significantly higher when cells were cultured on stiffer ECM substrates. Knockdown of ROCK2 expression or pharmacological inhibition of ROCK decreased doxorubicin-induced p53 activation. Our results suggest that a soft ECM causes downregulation of ROCK2 expression, which drives resistance to chemotherapy by repressing p53 activation.

  18. The Increased Level of Serum p53 in Hepatitis B-Associated Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Parisa Shahnazari

    2014-09-01

    Full Text Available Background: The ability of tumour suppressor protein p53 (P53 to regulate cell cycle processes can be modulated by hepatitis B virus (HBV. While preliminary evidences indicates the involvement of protein-x of HBV (HBx in altering p53 DNA binding, no further data have been accumulated for the significance of serum p53 in chronic hepatitis B virus infected patients. Methods: 72 non-cirrhotic and 19 cirrhotic patients infected by HBV were enrolled for the analysis in this study. Enzyme linked immunosorbent assay (ELISA was performed to study the concentrations of serum p53 protein. The tertiary structures of HBx and P53 were docked by Z-dock and Hex servers for in-silico protein-protein interaction analysis. Results: There was a significant association between the serum p53 and cirrhosis (OR=1.81 95% CI: 1.017-3.2, P=0.044. Cirrhotic patients had higher level of serum p53 compare with chronic infection of HBV (1.98±1.22 vs. 1.29±0.72 U/ml, P=0.05. No evidence of correlation was seen between the different variables such as age, gender, log viral load, serum alkaline phosphatase (ALP and alanine aminotransferase (ALT with serum p53. Tertiary model shows that the amino acid residues from Arg110 to Lys132 of the N-terminal of P53 which is critical for ubiquitination, are bonded to a region in N- terminal of HBx amino acid residues from Arg19 to Ser33. Conclusion: There is an increase in serum p53 in HBV-related cirrhosis patients. In this case, HBx might be responsible for such higher concentration of p53 through HBx-p53 protein-protein interaction, as is shown by molecular modeling approach.

  19. Sulforaphane increases the efficacy of doxorubicin in mouse fibroblasts characterized by p53 mutations

    Energy Technology Data Exchange (ETDEWEB)

    Fimognari, Carmela [Department of Pharmacology, University of Bologna, Bologna (Italy)]. E-mail: carmela.fimognari@unibo.it; Nuesse, Michael [GSF-Flow Cytometry Group, Neuherberg (Germany); Lenzi, Monia [Department of Pharmacology, University of Bologna, Bologna (Italy); Sciuscio, Davide [Department of Pharmacology, University of Bologna, Bologna (Italy); Cantelli-Forti, Giorgio [Department of Pharmacology, University of Bologna, Bologna (Italy); Hrelia, Patrizia [Department of Pharmacology, University of Bologna, Bologna (Italy)

    2006-10-10

    One novel strategy for increasing cancer chemotherapy efficacy and reversing chemoresistance involves co-administration of natural chemopreventive compounds alongside standard chemotherapeutic protocols. Sulforaphane is a particularly promising chemopreventive agent, which has been shown to exert proapoptotic effects on tumor cells containing p53 mutations. The p53{sup Ser220} mutation has been implicated in reduced efficacy and drug resistance in the context of osteosarcomas and breast tumors treated with doxorubicin-based protocols. We investigated the effects of a combination of doxorubicin and sulforaphane on cell viability and apoptosis induction in fibroblasts characterized by different p53 status (p53 wild-type, p53 knock-out, and p53{sup Ser220} mutation), and identified some of the molecular pathways triggered by the drug combination. Very high concentrations of doxorubicin were necessary to decrease the viability of p53{sup Ser220} and p53 knock-out (but not wild-type) cells. Treatment of p53{sup Ser220} and p53 knock-out cells with doxorubicin did not induce apoptosis, also at very high concentrations (10 {mu}M). Sulforaphane restored chemosensitivity and induced apoptosis in doxorubicin-resistant p53{sup Ser220} and p53 knock-out cells, irrespective of p53 status. The induction of apoptosis was caspase-3 dependent and caspase-8 independent. Bongkrekic acid, a mitochondrial membrane stabilizer, partially prevented the effects of doxorubicin plus sulforaphane on mitochondrial permeability but was unable to prevent the induction of apoptosis. N-acetyl-cysteine, a glutathione precursor, blocked the induction of apoptosis by doxorubicin plus sulforaphane. Considering the negligible safety profile of sulforaphane, our findings could prompt innovative clinical studies designed to investigate whether its coadministration can enhance the efficacy of doxorubicin-based regimens.

  20. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages.

    Science.gov (United States)

    Jiang, Dadi; Brady, Colleen A; Johnson, Thomas M; Lee, Eunice Y; Park, Eunice J; Scott, Matthew P; Attardi, Laura D

    2011-10-11

    Over half of all human cancers, of a wide variety of types, sustain mutations in the p53 tumor suppressor gene. Although p53 limits tumorigenesis through the induction of apoptosis or cell cycle arrest, its molecular mechanism of action in tumor suppression has been elusive. The best-characterized p53 activity in vitro is as a transcriptional activator, but the identification of numerous additional p53 biochemical activities in vitro has made it unclear which mechanism accounts for tumor suppression. Here, we assess the importance of transcriptional activation for p53 tumor suppression function in vivo in several tissues, using a knock-in mouse strain expressing a p53 mutant compromised for transcriptional activation, p53(25,26). p53(25,26) is severely impaired for the transactivation of numerous classical p53 target genes, including p21, Noxa, and Puma, but it retains the ability to activate a small subset of p53 target genes, including Bax. Surprisingly, p53(25,26) can nonetheless suppress tumor growth in cancers derived from the epithelial, mesenchymal, central nervous system, and lymphoid lineages. Therefore, full transactivation of most p53 target genes is dispensable for p53 tumor suppressor function in a range of tissue types. In contrast, a transcriptional activation mutant that is completely defective for transactivation, p53(25,26,53,54), fails to suppress tumor development. These findings demonstrate that transcriptional activation is indeed broadly critical for p53 tumor suppressor function, although this requirement reflects the limited transcriptional activity observed with p53(25,26) rather than robust transactivation of a full complement of p53 target genes.

  1. Small-Molecule NSC59984 Restores p53 Pathway Signaling and Antitumor Effects against Colorectal Cancer via p73 Activation and Degradation of Mutant p53.

    Science.gov (United States)

    Zhang, Shengliang; Zhou, Lanlan; Hong, Bo; van den Heuvel, A Pieter J; Prabhu, Varun V; Warfel, Noel A; Kline, Christina Leah B; Dicker, David T; Kopelovich, Levy; El-Deiry, Wafik S

    2015-09-15

    The tumor-suppressor p53 prevents cancer development via initiating cell-cycle arrest, cell death, repair, or antiangiogenesis processes. Over 50% of human cancers harbor cancer-causing mutant p53. p53 mutations not only abrogate its tumor-suppressor function, but also endow mutant p53 with a gain of function (GOF), creating a proto-oncogene that contributes to tumorigenesis, tumor progression, and chemo- or radiotherapy resistance. Thus, targeting mutant p53 to restore a wild-type p53 signaling pathway provides an attractive strategy for cancer therapy. We demonstrate that small-molecule NSC59984 not only restores wild-type p53 signaling, but also depletes mutant p53 GOF. NSC59984 induces mutant p53 protein degradation via MDM2 and the ubiquitin-proteasome pathway. NSC59984 restores wild-type p53 signaling via p73 activation, specifically in mutant p53-expressing colorectal cancer cells. At therapeutic doses, NSC59984 induces p73-dependent cell death in cancer cells with minimal genotoxicity and without evident toxicity toward normal cells. NSC59984 synergizes with CPT11 to induce cell death in mutant p53-expressing colorectal cancer cells and inhibits mutant p53-associated colon tumor xenograft growth in a p73-dependent manner in vivo. We hypothesize that specific targeting of mutant p53 may be essential for anticancer strategies that involve the stimulation of p73 in order to efficiently restore tumor suppression. Taken together, our data identify NSC59984 as a promising lead compound for anticancer therapy that acts by targeting GOF-mutant p53 and stimulates p73 to restore the p53 pathway signaling.

  2. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage

    OpenAIRE

    Chen, Lihong; Gilkes, Daniele M.; Pan, Yu; Lane, William S; Chen, Jiandong

    2005-01-01

    The p53 tumor suppressor is activated after DNA damage to maintain genomic stability and prevent transformation. Rapid activation of p53 by ionizing radiation is dependent on signaling by the ATM kinase. MDM2 and MDMX are important p53 regulators and logical targets for stress signals. We found that DNA damage induces ATM-dependent phosphorylation and degradation of MDMX. Phosphorylated MDMX is selectively bound and degraded by MDM2 preceding p53 accumulation and activation. Reduction of MDMX...

  3. Increasing drug resistance in human lung cancer cells by mutant-type p53 gene mediated by retrovirus

    Institute of Scientific and Technical Information of China (English)

    高振强; 高志萍; 刘喜富; 张涛

    1997-01-01

    Human mutant-type (mt) p53 cDNA was synthesized and cloned from human lung cancer cell line GL containing mt-p53 gene by using polymerase chain reaction (PCR). It was confirmed that the mt-p53 cDNA con-tained the complete coding sequence of p53 gene but mutated at codon 245 (G→T) and resulted in glycine to cysteine by sequencing analysis. The retroviral vector pD53M of the mt-p53 was constructed and introduced into the drug-sen-sitive human lung cancer cells GAO in which p53 gene did not mutate. The transfected GAO cells strongly expressed mutant-type p53 protein by immunohistochemistry, showing that pD53M vector could steadily express in GAO cells. The drug resistance to several anticancer agents of GAO cells infected by pD53M increased in varying degrees, with the highest increase of 4-fold, in vitro and in vivo. By quantitative PCR and flow cytometry (FCM) analyses, the expression of MDR1 gene and the activity of P-glycoprotein (Pgp) did not increase, the expression of MRP gene and the activity of m

  4. GFP tracking transcriptional activity endogenous p53: vector construction and application in genotoxicity detection

    Institute of Scientific and Technical Information of China (English)

    ZENG Wei-sen; LUO Chen; XIE Wei-bing; CHEN Han-yuan

    2001-01-01

    To establish a sensitive.and specific system for genotoxicity detection in vivo. Methods: Endogenous p53 tracer vector p53RE was constructed by using green fluorescent protein (GFP) as a reporter to trace p53 transcriptional activity under the control of base SV40 early promoter. The tracer cells 3T3-REG were established by transfecting NIH3T3 cells with tracer vector and treated with ultraviolet, H202 and adriamycin to induce DNA damage and the subsequent endogenous p53 expression. The GFP expression and its green fluorescence in the tracer cells were observed and measured with fluorescent microscope and FACS. Results: The GFP expression increased rapidly after various treatment and reached the maximum 1 h later, and decreased gradually afterwards. FACS analysis showed that GFP expression in 3T3-REG tracer cells was consistent with the concentration of H202, while that in 3T3-SVG cells, which were transfected with control vector pSV-GFP, hardly increased in response to the treatment. Conclusion: GFP tracing p53 transcriptional activity is a sensitive and specific method for genotoxicity detection.

  5. Exploiting tyrosinase expression and activity in melanocytic tumors: quercetin and the central role of p53.

    Science.gov (United States)

    Vargas, Ashley J; Sittadjody, Sivanandane; Thangasamy, Thilakavathy; Mendoza, Erin E; Limesand, Kirsten H; Burd, Randy

    2011-12-01

    Melanoma is an aggressive tumor that expresses the pigmentation enzyme tyrosinase. Tyrosinase expression increases during tumorigenesis, which could allow for selective treatment of this tumor type by strategies that use tyrosinase activity. Approaches targeting tyrosinase would involve gene transcription or signal transduction pathways mediated by p53 in a direct or indirect manner. Two pathways are proposed for exploiting tyrosinase expression: (a) a p53-dependent pathway leading to apoptosis or arrest and (b) a reactive oxygen species-mediated induction of endoplasmic reticulum stress in p53 mutant tumors. Both strategies could use tyrosinase-mediated activation of quercetin, a dietary polyphenol that induces the expression of p53 and modulates reactive oxygen species. In addition to antitumor signaling properties, activation of quercetin could complement conventional cancer therapy by the induction of phase II detoxification enzymes resulting in p53 stabilization and transduction of its downstream targets. In conclusion, recent advances in tyrosinase enzymology, prodrug chemistry, and modern chemotherapeutics present an intriguing and selective multitherapy targeting system where dietary bioflavonoids could be used to complement conventional cancer treatments.

  6. Constitutively activated ERK sensitizes cancer cells to doxorubicin: Involvement of p53-EGFR-ERK pathway

    Indian Academy of Sciences (India)

    RATNA KUMARI; SURBHI CHOUHAN; SNAHLATA SINGH; RISHI RAJ CHHIPA; AMRENDRA KUMAR AJAY; MANOJ KUMAR BHAT

    2017-03-01

    The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxicstress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. Weinvestigated the involvement of activation of ERK signalling as a consequence of non-functional p53, in sensitivity ofcells to doxorubicin. We performed cell survival assays in cancer cell lines with varying p53 status: MCF-7 (wild-typep53, WTp53), MDA MB-468 (mutant p53, MUTp53), H1299 (absence of p53, NULLp53) and an isogenic cell lineMCF-7As (WTp53 abrogated). Our results indicate that enhanced chemosensitivity of cells lacking wild-type p53function is because of elevated levels of EGFR which activates ERK. Additionally, we noted that independent of p53status, pERK contributes to doxorubicin-induced cell death.

  7. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression.

    Science.gov (United States)

    Lazo, Pedro A

    2017-05-01

    The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.

  8. p53 controls colorectal cancer cell invasion by inhibiting the NF-κB-mediated activation of Fascin.

    Science.gov (United States)

    Sui, Xinbing; Zhu, Jing; Tang, Haimei; Wang, Chan; Zhou, Jichun; Han, Weidong; Wang, Xian; Fang, Yong; Xu, Yinghua; Li, Da; Chen, Rui; Ma, Junhong; Jing, Zhao; Gu, Xidong; Pan, Hongming; He, Chao

    2015-09-08

    p53 mutation is known to contribute to cancer progression. Fascin is an actin-bundling protein and has been recently identified to promote cancer cell migration and invasion through its role in formation of cellular protrusions such as filopodia and invadopodia. However, the relationship between p53 and Fascin is not understood. Here, we have found a new link between them. In colorectal adenocarcinomas, p53 mutation correlated with high NF-κB, Fascin and low E-cadherin expression. Moreover, this expression profile was shown to contribute to poor overall survival in patients with colorectal cancer. Wild-type p53 could inhibit NF-κB activity that repressed the expression of Fascin and cancer cell invasiveness. In contrast, in p53-deficient primary cultured cells, NF-κB activity was enhanced and then activation of NF-κB increased the expression of Fascin. In further analysis, we showed that NF-κB was a key determinant for p53 deletion-stimulated Fascin expression. Inhibition of NF-κB/p65 expression by pharmacological compound or p65 siRNA suppressed Fascin activity in p53-deficient cells. Moreover, restoration of p53 expression decreased the activation of Fascin through suppression of the NF-κB pathway. Taken together, these data suggest that a negative-feedback loop exists, whereby p53 can suppress colorectal cancer cell invasion by inhibiting the NF-κB-mediated activation of Fascin.

  9. Double-Stranded-RNA-Activated Protein Kinase PKR Enhances Transcriptional Activation by Tumor Suppressor p53

    OpenAIRE

    1999-01-01

    The tumor suppressor p53 plays a key role in inducing G1 arrest and apoptosis following DNA damage. The double-stranded-RNA-activated protein PKR is a serine/threonine interferon (IFN)-inducible kinase which plays an important role in regulation of gene expression at both transcriptional and translational levels. Since a cross talk between IFN-inducible proteins and p53 had already been established, we investigated whether and how p53 function was modulated by PKR. We analyzed p53 function in...

  10. p53 Downregulates Its Activating Vaccinia-Related Kinase 1, Forming a New Autoregulatory Loop

    OpenAIRE

    2006-01-01

    The stable accumulation of p53 is detrimental to the cell because it blocks cell growth and division. Therefore, increases in p53 levels are tightly regulated, mainly by its transcriptional target, mdm2, that downregulates p53. Elucidation of new signaling pathways requires the characterization of the members and the nature of their connection. Vaccinia-related kinase 1 (VRK1) contributes to p53 stabilization by partly interfering with its mdm2-mediated degradation, among other mechanisms; th...

  11. Smooth muscle hyperplasia due to loss of smooth muscle α-actin is driven by activation of focal adhesion kinase, altered p53 localization and increased levels of platelet-derived growth factor receptor-β.

    Science.gov (United States)

    Papke, Christina L; Cao, Jiumei; Kwartler, Callie S; Villamizar, Carlos; Byanova, Katerina L; Lim, Soon-Mi; Sreenivasappa, Harini; Fischer, Grant; Pham, John; Rees, Meredith; Wang, Miranda; Chaponnier, Christine; Gabbiani, Giulio; Khakoo, Aarif Y; Chandra, Joya; Trache, Andreea; Zimmer, Warren; Milewicz, Dianna M

    2013-08-01

    Mutations in ACTA2, encoding the smooth muscle cell (SMC)-specific isoform of α-actin (α-SMA), cause thoracic aortic aneurysms and dissections and occlusive vascular diseases, including early onset coronary artery disease and stroke. We have shown that occlusive arterial lesions in patients with heterozygous ACTA2 missense mutations show increased numbers of medial or neointimal SMCs. The contribution of SMC hyperplasia to these vascular diseases and the pathways responsible for linking disruption of α-SMA filaments to hyperplasia are unknown. Here, we show that the loss of Acta2 in mice recapitulates the SMC hyperplasia observed in ACTA2 mutant SMCs and determine the cellular pathways responsible for SMC hyperplasia. Acta2(-/-) mice showed increased neointimal formation following vascular injury in vivo, and SMCs explanted from these mice demonstrated increased proliferation and migration. Loss of α-SMA induced hyperplasia through focal adhesion (FA) rearrangement, FA kinase activation, re-localization of p53 from the nucleus to the cytoplasm and increased expression and ligand-independent activation of platelet-derived growth factor receptor beta (Pdgfr-β). Disruption of α-SMA in wild-type SMCs also induced similar cellular changes. Imatinib mesylate inhibited Pdgfr-β activation and Acta2(-/-) SMC proliferation in vitro and neointimal formation with vascular injury in vivo. Loss of α-SMA leads to SMC hyperplasia in vivo and in vitro through a mechanism involving FAK, p53 and Pdgfr-β, supporting the hypothesis that SMC hyperplasia contributes to occlusive lesions in patients with ACTA2 missense mutations.

  12. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2

    OpenAIRE

    2001-01-01

    The tumor suppressor p53 is activated in response to many types of cellular and environmental insults via mechanisms involving post-translational modification. Here we demonstrate that, unlike phosphorylation, p53 invariably undergoes acetylation in cells exposed to a variety of stress-inducing agents including hypoxia, anti-metabolites, nuclear export inhibitor and actinomycin D treatment. In vivo, p53 acetylation is mediated by the p300 and CBP acetyltransferases. Overexpression of either p...

  13. MicroRNA-24 increases hepatocellular carcinoma cell metastasis and invasion by targeting p53: miR-24 targeted p53.

    Science.gov (United States)

    Chen, Li; Luo, Liang; Chen, Wei; Xu, Hong-Xu; Chen, Fan; Chen, Lian-Zhou; Zeng, Wen-Tao; Chen, Jing-Song; Huang, Xiao-Hui

    2016-12-01

    MicroRNA-24 (miR-24), a member of the miRNA family, functions as an oncogene in various types of human cancer. However, the underlying mechanisms of miR-24 involvement in the development and progression of hepatocellular carcinoma (HCC) remain poorly understood. The present study revealed that miRNA-24 down-regulates p53 through binding to the 3'-UTR of p53 mRNA based on a luciferase reporter assay, and that the expression level of miR-24 could affect the invasion of HCC lines via p53. Down-regulation of p53 significantly attenuated the inhibitory effects of miR-24 knockdown on the invasion of HCC cells, suggesting that miR-24 could be a potential target for HCC treatment. Moreover, our results revealed that miR-24 expression was significantly increased in HCC metastatic tumor tissues compared with matched non-metastatic tumor tissues, and that the up-regulation of miR-24 was significantly associated with down-regulation of p53 in the HCC tissues. In conclusion, this study demonstrates that miR-24 functions as an oncogene in HCC, at least partly by promoting cell invasion through down-regulation of p53. Therefore, miR-24 may be a potential therapeutic target for treatment of HCC.

  14. The incidence of p53 mutations increases with progression of head and neck cancer.

    Science.gov (United States)

    Boyle, J O; Hakim, J; Koch, W; van der Riet, P; Hruban, R H; Roa, R A; Correo, R; Eby, Y J; Ruppert, J M; Sidransky, D

    1993-10-01

    To establish a genetic model of the progression of head and neck squamous carcinoma we have defined the incidence and timing of p53 mutations in this type of cancer. We sequenced the conserved regions of the p53 gene in 102 head and neck squamous carcinoma lesions. These included 65 primary invasive carcinomas and 37 noninvasive archival specimens consisting of 13 severe dysplasias and 24 carcinoma in situ lesions. The incidence of p53 mutations in noninvasive lesions was 19% (7/37) and increased to 43% (28/65) in invasive carcinomas. These data suggest that p53 mutations can precede invasion in primary head and neck cancer. Furthermore, the spectrum of codon hotspots is similar to that seen in squamous carcinoma of the lung and 64% of mutations are at G nucleotides, implicating carcinogens from tobacco smoke in the etiology of head and neck squamous carcinoma.

  15. Attenuation of BPDE-induced p53 accumulation by TPA is associated with a decrease in stability and phosphorylation of p53 and down-regulation of NF-κB activation: Role of p38 MAP kinase

    Science.gov (United States)

    Mukherjee, Jagat J.; Sikka, Harish C.

    2005-01-01

    DNA damage caused by benzo[a]pyrene (BP) or other PAHs induce p53 protein as a protective measure to eliminate the possibility of mutagenic fixation of the DNA damage. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits p53 response induced by BP and other DNA-damaging agents and may cause tumor promotion. The molecular mechanism of attenuation of BP-induced p53 response by TPA is not known. We investigated the effect of TPA on p53 response in BPDE-treated mouse epidermal JB6(P+) Cl 41 cells. BPDE treatment induced p53 accumulation which was attenuated significantly by TPA. Cells treated with BPDE and TPA showed increased ratio of Mdm2 to p53 proteins in p53 immunoprecipitate and decreased p53 life span compared to BPDE-treated cells indicating p53 destabilization by TPA. TPA also inhibited BPDE-induced p53 phosphorylation at serine15. Activation of both ERKs and p38 MAPK by BPDE and attenuation of BPDE-induced p53 accumulation by U0126 or SB202190, specific inhibitor of MEK1/2 or p38 MAPK, indicate the role of ERKs and p38 MAPK in p53 accumulation. Interestingly, TPA potentiated BPDE-induced activation of ERKs whereas p38 MAPK activation was significantly inhibited by TPA, suggesting that inhibition of p38 MAPK is involved in p53 attenuation by TPA. Furthermore SB202190 treatment caused decreased p53 stability and inhibition of phosphorylation of p53 at serine 15 in BPDE-treated cells. We also observed that TPA or SB202190 attenuated BPDE-induced NF-κB activation in JB6 (Cl 41) cells harboring NF-κB reporter plasmid. To our knowledge this is the first report that TPA inhibits chemical carcinogen-induced NF-κB activation. Interference of TPA with BPDE-induced NF-κB activation implicates abrogation of p53 function which has been discussed. Overall our data suggest that abrogation of BPDE-induced p53 response and of NF-κB activation by TPA is mediated by impairment of signaling pathway involving p38 MAPK. PMID:16244358

  16. ID4 regulates transcriptional activity of wild type and mutant p53 via K373 acetylation.

    Science.gov (United States)

    Morton, Derrick J; Patel, Divya; Joshi, Jugal; Hunt, Aisha; Knowell, Ashley E; Chaudhary, Jaideep

    2017-01-10

    Given that mutated p53 (50% of all human cancers) is over-expressed in many cancers, restoration of mutant p53 to its wild type biological function has been sought after as cancer therapy. The conformational flexibility has allowed to restore the normal biological function of mutant p53 by short peptides and small molecule compounds. Recently, studies have focused on physiological mechanisms such as acetylation of lysine residues to rescue the wild type activity of mutant p53. Using p53 null prostate cancer cell line we show that ID4 dependent acetylation promotes mutant p53 DNA-binding capabilities to its wild type consensus sequence, thus regulating p53-dependent target genes leading to subsequent cell cycle arrest and apoptosis. Specifically, by using wild type, mutant (P223L, V274F, R175H, R273H), acetylation mimics (K320Q and K373Q) and non-acetylation mimics (K320R and K373R) of p53, we identify that ID4 promotes acetylation of K373 and to a lesser extent K320, in turn restoring p53-dependent biological activities. Together, our data provides a molecular understanding of ID4 dependent acetylation that suggests a strategy of enhancing p53 acetylation at sites K373 and K320 that may serve as a viable mechanism of physiological restoration of mutant p53 to its wild type biological function.

  17. Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Celine J. Granier

    2014-08-01

    Full Text Available PDCD2 (programmed cell death domain 2 is a highly conserved, zinc finger MYND domain-containing protein essential for normal development in the fly, zebrafish and mouse. The molecular functions and cellular activities of PDCD2 remain unclear. In order to better understand the functions of PDCD2 in mammalian development, we have examined PDCD2 activity in mouse blastocyst embryos, as well as in mouse embryonic stem cells (ESCs and embryonic fibroblasts (MEFs. We have studied mice bearing a targeted PDCD2 locus functioning as a null allele through a splicing gene trap, or as a conditional knockout, by deletion of exon2 containing the MYND domain. Tamoxifen-induced knockout of PDCD2 in MEFs, as well as in ESCs, leads to defects in progression from the G1 to the S phase of cell cycle, associated with increased levels of p53 protein and p53 target genes. G1 prolongation in ESCs was not associated with induction of differentiation. Loss of entry into S phase of the cell cycle and marked induction of nuclear p53 were also observed in PDCD2 knockout blastocysts. These results demonstrate a unique role for PDCD2 in regulating the cell cycle and p53 activation during early embryonic development of the mouse.

  18. Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis.

    Science.gov (United States)

    Follis, Ariele Viacava; Llambi, Fabien; Merritt, Parker; Chipuk, Jerry E; Green, Douglas R; Kriwacki, Richard W

    2015-08-20

    The cytosolic fraction of the tumor suppressor p53 activates the apoptotic effector protein BAX to trigger apoptosis. Here we report that p53 activates BAX through a mechanism different from that associated with activation by BH3 only proteins (BIM and BID). We observed that cis-trans isomerization of proline 47 (Pro47) within p53, an inherently rare molecular event, was required for BAX activation. The prolyl isomerase Pin1 enhanced p53-dependent BAX activation by catalyzing cis-trans interconversion of p53 Pro47. Our results reveal a signaling mechanism whereby proline cis-trans isomerization in one protein triggers conformational and functional changes in a downstream signaling partner. Activation of BAX through the concerted action of cytosolic p53 and Pin1 may integrate cell stress signals to induce a direct apoptotic response. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression.

    Science.gov (United States)

    Farrell, Geoffrey C; Larter, Claire Z; Hou, Jing Yun; Zhang, Rena H; Yeh, Matthew M; Williams, Jacqueline; dela Pena, Aileen; Francisco, Rona; Osvath, Sarah R; Brooling, John; Teoh, Narcissus; Sedger, Lisa M

    2009-03-01

    We examined extrinsic and intrinsic (endogenous) mitochondrial apoptosis pathways in experimental non-alcoholic steatohepatitis (NASH). To assess extrinsic pathways, we measured hepatic expression of death-inducing cytokine receptors (tumor necrosis factor-alpha-receptor (TNF-R)1, TNF-R2, Fas, and TNFalpha-related apoptosis-inducing ligand-receptor (TRAIL-R) mRNA, TUNEL, caspase 3 activation, liver injury and liver pathology in mice fed a methionine and choline deficient (MCD) diet. For endogenous stress pathways, we determined serum insulin-like growth factor-1 (IGF-1), hepatic p53, Bcl-XL, tBid and p21 expression. Methionine and choline deficient feeding increased alanine aminotransferase (ALT) and apoptosis from day 10, without increases in TNF-R1, TNF-R2, and Fas. However, murine TRAIL receptors, particularly decoyTRAIL-R1/TNFRSFH23 and Killer/DR5 mRNA increased. MCD feeding enhanced hepatic p53 expression, corresponding to approximately 50% fall in serum IGF-1, decreased Bcl-XL, enhanced Bid cleavage to tBid, and up-regulation of p21. Nutritional restitution experiments showed that correcting either methionine or choline deficiency suppressed liver inflammation (extrinsic pathway), but failed to correct apoptosis, IGF-1 or p53. Methionine and choline deficiency lower IGF-1 to de-repress p53 during induction of steatohepatitis. The p53 induced by nutritional stress is biologically active in mediating mitochondrial cell death pathways, but may also be responsible for TRAIL receptor expression, thereby linking intrinsic and exogenous apoptosis pathways in NASH.

  20. Activation of p53 in Human and Murine Cells by DNA-Damaging Agents Differentially Regulates Aryl Hydrocarbon Receptor Levels.

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Choubey, Divaker

    2015-01-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates multiple cellular processes. The anticancer drug doxorubicin (DOX) can activate AhR-mediated transcription of target genes. Because DOX in cells activates a DNA damage response involving ataxia telangiectasia-mutated (ATM)-mediated activation of p53, we investigated whether the activation of the p53 in cells by DNA-damaging agents such as DOX or bleomycin could regulate the AhR levels. Here we report that activation of p53 by DNA-damaging agents in human cells increased levels of AhR through a posttranscriptional mechanism. Accordingly, fibroblasts from ATM patients, which are defective in p53 activation, expressed reduced constitutive levels of AhR and treatment of cells with bleomycin did not appreciably increase the AhR levels. Further, activation of p53 in cells stimulated the expression of AhR target genes. In murine cells, activation of p53 reduced the levels of AhR messenger RNA and protein and reduced the expression of AhR target genes. Our observations revealed that activation of p53 in human and murine cells differentially regulates AhR levels.

  1. Ensemble-based computational approach discriminates functional activity of p53 cancer and rescue mutants.

    Directory of Open Access Journals (Sweden)

    Özlem Demir

    2011-10-01

    Full Text Available The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain ("cancer mutants". Activity can be restored by second-site suppressor mutations ("rescue mutants". This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD, without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC metric was strongly correlated (r(2 = 0.77 with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i p53 cancer mutants were more flexible than wild-type protein, (ii second-site rescue mutations decreased the flexibility of cancer mutants, and (iii negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants.

  2. DN-R175H p53 mutation is more effective than p53 interference in inducing epithelial disorganization and activation of proliferation signals in human carcinoma cells: role of E-cadherin.

    Science.gov (United States)

    Rieber, Manuel; Strasberg Rieber, Mary

    2009-10-01

    One of the hallmarks of carcinomas is epithelial disorganization, linked to overexpression of matrix metalloproteases (MMP) like MMP-9, loss of intercellular E-cadherin and activation of epidermal growth receptor (EGFR/erbB1). Since the p53 tumor suppressor pathway is inactivated in most human cancers due to gene mutations or defective wt p53 signaling, we now investigated in human wt p53 breast carcinoma MCF-7 cells, whether single treatment with the p53 transactivation pharmacological inhibitor pifithrin-alpha, transient p53 siRNA interference or stable insertion of a dominant-negative (DN) R175H p53 mutant increase: (i) EGFR/erbB1 activation, (ii) MMP-9 expression and (iii) loss of surface E-cadherin. Transient abrogation of wt p53 function increased phosphorylation of EGFR/erbB1 and MMP-9 expression. However, all these effects were much more pronounced in cells stably transduced with the dominant negative-Arg-175His mutant p53 (DN-R175H mutant p53), which also showed loss of epithelial cytoarchitecture and extensive E-cadherin downregulation. Collectively, these results support the notion that the DN-R175H mutant p53 exerts a gain of oncogenic function by promoting disruption of E-cadherin intercellular contacts and activation of proliferation signals. Our data suggests that epithelial shape and growth control are unequally affected depending on how wt p53 function is impaired and whether partial or full tumor suppressor activity is lost.

  3. The common germline Arg72Pro polymorphism of p53 and increased longevity in humans

    DEFF Research Database (Denmark)

    Bojesen, S.E.; Nordestgaard, Børge

    2008-01-01

    substitution in the p53 protein has important influence on cell death via increased apoptosis. Thus, the increased longevity may be due to a generally increased robustness after a diagnosis of any life-threatening disease. In contrast to widespread skepticism on the importance of SNPs in humans, this gain...

  4. Nickel accumulation in lung tissues is associated with increased risk of p53 mutation in lung cancer patients.

    Science.gov (United States)

    Chiou, Yu-Hu; Wong, Ruey-Hong; Chao, Mu-Rong; Chen, Chih-Yi; Liou, Saou-Hsing; Lee, Huei

    2014-10-01

    Occupational exposure to nickel compounds has been associated with lung cancer. The correlation between high nickel levels and increased risk of lung cancer has been previously reported in a case-control study. This study assessed whether nickel exposure increased the occurrence of p53 mutations due to DNA repair inhibition by nickel. A total of 189 lung cancer patients were enrolled to determine nickel levels in tumor-adjacent normal lung tissues and p53 mutation status in lung tumors through atomic absorption spectrometry and direct sequencing, respectively. Nickel levels in p53 mutant patients were significantly higher than those in p53 wild-type patients. When patients were divided into high- and low-nickel subgroups by median nickel level, the high-nickel subgroup of patients had an odds ratio (OR) of 3.25 for p53 mutation risk relative to the low-nickel subgroup patients. The OR for p53 mutation risk of lifetime non-smokers, particularly females, in the high-nickel subgroup was greater than that in the low-nickel subgroup. To determine whether nickel affected DNA repair capacity, we conducted the host cell reactivation assay in A549 and H1975 lung cancer cells and showed that the DNA repair activity was reduced by nickel chloride in a dose-dependent manner. This was associated with elevated production of hydrogen peroxide-induced 8-oxo-deoxyguanosine. Therefore, increased risk of p53 mutation due to defective DNA repair caused by high nickel levels in lung tissues may be one mechanism by which nickel exposure contributes to lung cancer development, especially in lifetime female non-smokers.

  5. Pharmacological activation of wild-type p53 in the therapy of leukemia.

    Science.gov (United States)

    Kojima, Kensuke; Ishizawa, Jo; Andreeff, Michael

    2016-09-01

    The tumor suppressor p53 is inactivated by mutations in the majority of human solid tumors. Conversely, p53 mutations are rare in leukemias and are only observed in a small fraction of the patient population, predominately in patients with complex karyotype acute myeloid leukemia or hypodiploid acute lymphoblastic leukemia. However, the loss of p53 function in leukemic cells is often caused by abnormalities in p53-regulatory proteins, including overexpression of MDM2/MDMX, deletion of CDKN2A/ARF, and alterations in ATM. For example, MDM2 inhibits p53-mediated transcription, promotes its nuclear export, and induces proteasome-dependent degradation. The MDM2 homolog MDMX is another direct regulator of p53 that inhibits p53-mediated transcription. Several small-molecule inhibitors and stapled peptides targeting MDM2 and MDMX have been developed and have recently entered clinical trials. The clinical trial results of the first clinically used MDM2 inhibitor, RG7112, illustrated promising p53 activation and apoptosis induction in leukemia cells as proof of concept. Side effects of RG7112 were most prominent in suppression of thrombopoiesis and gastrointestinal symptoms in leukemia patients. Predictive biomarkers for response to MDM2 inhibitors have been proposed, but they require further validation both in vitro and in vivo so that the accumulated knowledge concerning pathological p53 dysregulation in leukemia and novel molecular-targeted strategies to overcome this dysregulation can be translated safely and efficiently into novel clinical therapeutics.

  6. hSSB1 regulates both the stability and the transcriptional activity of p53

    Institute of Scientific and Technical Information of China (English)

    Shuangbing Xu; Yuanzhong Wu; Qiong Chen; Jingying Cao; Kaishun Hu; Jianjun Tang; Yi Sang

    2013-01-01

    The tumor suppressor p53 is essential for several cellular processes that are involved in the response to diverse genotoxic stress,including cell cycle arrest,DNA repair,apoptosis and senescence.Studies of the regulation of p53 have mostly focused on its stability and transactivation; however,new regulatory molecules for p53 have also been frequently identified.Here,we report that human ssDNA binding protein SSB1 (hSSB1),a novel DNA damageassociated protein,can interact with p53 and protect p53 from ubiquitin-mediated degradation.Furthermore,hSSB1 also associates with the acetyltransferase p300 and is required for efficient transcriptional activation of the p53 target gene p21 by affecting the acetylation of p53 at lysine382.Functionally,the hSSB1 knockdown-induced abrogation of the G2/M checkpoint is partially dependent on p53 or p300.Collectively,our results indicate that hSSB1 may regulate DNA damage checkpoints by positively modulating p53 and its downstream target p21.

  7. Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.

    Science.gov (United States)

    Yan, Ping; Gong, Hui; Zhai, Xiaoyan; Feng, Yi; Wu, Jun; He, Sheng; Guo, Jian; Wang, Xiaoxia; Guo, Rui; Xie, Jun; Li, Ren-Ke

    2016-04-01

    Neovascularization drives tumor development, and angiogenic factors are important neovascularization initiators. We recently identified the secreted angiogenic factor CNPY2, but its involvement in cancer has not been explored. Herein, we investigate CNPY2's role in human colorectal cancer (CRC) development. Tumor samples were obtained from CRC patients undergoing surgery. Canopy 2 (CNPY2) expression was analyzed in tumor and adjacent normal tissue. Stable lines of human HCT116 cells expressing CNPY2 shRNA or control shRNA were established. To determine CNPY2's effects on tumor xenografts in vivo, human CNPY2 shRNA HCT116 cells and controls were injected into nude mice, separately. Cellular apoptosis, growth, and angiogenesis in the xenografts were evaluated. CNPY2 expression was significantly higher in CRC tissues. CNPY2 knockdown in HCT116 cells inhibited growth and migration and promoted apoptosis. In xenografts, CNPY2 knockdown prevented tumor growth and angiogenesis and promoted apoptosis. Knockdown of CNPY2 in the HCT116 CRC cell line reversibly increased p53 activity. The p53 activation increased cyclin-dependent kinase inhibitor p21 and decreased cyclin-dependent kinase 2, thereby inhibiting tumor cell growth, inducing cell apoptosis, and reducing angiogenesis both in vitro and in vivo. CNPY2 may play a critical role in CRC development by enhancing cell proliferation, migration, and angiogenesis and by inhibiting apoptosis through negative regulation of the p53 pathway. Therefore, CNPY2 may represent a novel CRC therapeutic target and prognostic indicator.

  8. A novel anticancer therapy that simultaneously targets aberrant p53 and Notch activities in tumors.

    Directory of Open Access Journals (Sweden)

    Yuting Yao

    Full Text Available Notch signaling pathway plays an important role in tumorigenesis by maintaining the activity of self-renewal of cancer stem cells, and therefore, it is hypothesized that interference of Notch signaling may inhibit tumor formation and progression. H101 is a recombinant oncolytic adenovirus that is cytolytic in cells lacking intact p53, but it is unable to eradicate caner stem cells. In this study, we tested a new strategy of tumor gene therapy by combining a Notch1-siRNA with H101 oncolytic adenovirus. In HeLa-S3 tumor cells, the combined therapy blocked the Notch pathway and induced apoptosis in tumors that are p53-inactive. In nude mice bearing xenograft tumors derived from HeLa-S3 cells, the combination of H101/Notch1-siRNA therapies inhibited tumor growth. Moreover, Notch1-siRNA increased Hexon gene expression at both the transcriptional and the translational levels, and promoted H101 replication in tumors, thereby enhancing the oncolytic activity of H101. These data demonstrate the feasibility to combine H101 p53-targted oncolysis and anti-Notch siRNA activities as a novel anti-cancer therapy.

  9. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism

    Science.gov (United States)

    Pereira, Diane M.; Simões, André E. S.; Gomes, Sofia E.; Castro, Rui E.; Carvalho, Tânia; Rodrigues, Cecília M. P.; Borralho, Pedro M.

    2016-01-01

    The MEK5/ERK5 signaling pathway is emerging as an important contributor to colon cancer onset, progression and metastasis; however, its relevance to chemotherapy resistance remains unknown. Here, we evaluated the impact of the MEK5/ERK5 cascade in colon cancer cell sensitivity to 5-fluorouracil (5-FU). Increased ERK5 expression was correlated with poor overall survival in colon cancer patients. In colon cancer cells, 5-FU exposure impaired endogenous KRAS/MEK5/ERK5 expression and/or activation. In turn, MEK5 constitutive activation reduced 5-FU-induced cytotoxicity. Using genetic and pharmacological approaches, we showed that ERK5 inhibition increased caspase-3/7 activity and apoptosis following 5-FU exposure. Mechanistically, this was further associated with increased p53 transcriptional activation of p21 and PUMA. In addition, ERK5 inhibition increased the response of HCT116 p53+/+ cells to 5-FU, but failed to sensitize HCT116 p53−/− cells to the cytotoxic effects of this chemotherapeutic agent, suggesting a p53-dependent axis mediating 5-FU sensitization. Finally, ERK5 inhibition using XMD8-92 was shown to increase the antitumor effects of 5-FU in a murine subcutaneous xenograft model, enhancing apoptosis while markedly reducing tumor growth. Collectively, our results suggest that ERK5-targeted in hibition provides a promising therapeutic approach to overcome resistance to 5-FU-based chemotherapy and improve colon cancer treatment. PMID:27144434

  10. The CXXC finger 5 protein is required for DNA damage-induced p53 activation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The tumor suppressor p53 is a critical component of the DNA damage response pathway that induces a set of genes responsible for cell cycle arrest,senescence,apoptosis,and DNA repair.The ataxia te-langiectasia mutated protein kinase(ATM) responds to DNA-damage stimuli and signals p53 stabiliza-tion and activation,thereby facilitating transactivation of p53 inducible genes and maintainence of genome integrity.In this study,we identified a CXXC zinc finger domain containing protein termed CF5 as a critical component in the DNA damage signaling pathway.CF5 induces p53 transcriptional activity and apoptosis in cells expressing wild type p53 but not in p53-deficient cells.Knockdown of CF5 in-hibits DNA damage-induced p53 activation as well as cell cycle arrest.Furthermore,CF5 physically interacts with ATM and is required for DNA damage-induced ATM phosphorylation but not its recruitment to chromatin.These findings suggest that CF5 plays a crucial role in ATM-p53 signaling in response to DNA damage.

  11. Transient p53 Suppression Increases Reprogramming of Human Fibroblasts without Affecting Apoptosis and DNA Damage

    Directory of Open Access Journals (Sweden)

    Mikkel A. Rasmussen

    2014-09-01

    Full Text Available The discovery of human-induced pluripotent stem cells (iPSCs has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53 gene was reported to facilitate reprogramming but unfortunately also led to genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion, transient p53 suppression increases reprogramming efficiency without affecting genomic stability, rendering the method suitable for in vitro mechanistic studies with the possibility for future clinical translation.

  12. Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation.

    Science.gov (United States)

    Shukla, Sanjeev; Gupta, Sanjay

    2008-05-15

    Apigenin, a plant flavone, potentially activates wild-type p53 and induces apoptosis in cancer cells. We conducted detailed studies to understand its mechanism of action. Exposure of human prostate cancer 22Rv1 cells, harboring wild-type p53, to growth-suppressive concentrations (10-80 microM) of apigenin resulted in the stabilization of p53 by phosphorylation on critical serine sites, p14ARF-mediated downregulation of MDM2 protein, inhibition of NF-kappaB/p65 transcriptional activity, and induction of p21/WAF-1 in a dose- and time-dependent manner. Apigenin at these doses resulted in ROS generation, which was accompanied by rapid glutathione depletion, disruption of mitochondrial membrane potential, cytosolic release of cytochrome c, and apoptosis. Interestingly, we observed accumulation of a p53 fraction to the mitochondria, which was rapid and occurred between 1 and 3 h after apigenin treatment. All these effects were significantly blocked by pretreatment of cells with the antioxidant N-acetylcysteine, p53 inhibitor pifithrin-alpha, and enzyme catalase. Apigenin-mediated p53 activation and apoptosis were further attenuated by p53 antisense oligonucleotide treatment. Exposure of cells to apigenin led to a decrease in the levels of Bcl-XL and Bcl-2 and increase in Bax, triggering caspase activation. Treatment with the caspase inhibitors Z-VAD-FMK and DEVD-CHO partially rescued these cells from apigenin-induced apoptosis. In vivo, apigenin administration demonstrated p53-mediated induction of apoptosis in 22Rv1 tumors. These results indicate that apigenin-induced apoptosis in 22Rv1 cells is initiated by a ROS-dependent disruption of the mitochondrial membrane potential through transcriptional-dependent and -independent p53 pathways.

  13. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean.

    Science.gov (United States)

    Hollmann, Gabriela; Linden, Rafael; Giangrande, Angela; Allodi, Silvana

    2016-04-01

    Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while the number of mitotic cells in the same groups decreased. In conclusion, environmental doses of UV can cause apoptosis by increasing p53 and decreasing p21, revealing an UV-damage pathway for U. cordatus. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Stathmin regulates mutant p53 stability and transcriptional activity in ovarian cancer.

    Science.gov (United States)

    Sonego, Maura; Schiappacassi, Monica; Lovisa, Sara; Dall'Acqua, Alessandra; Bagnoli, Marina; Lovat, Francesca; Libra, Massimo; D'Andrea, Sara; Canzonieri, Vincenzo; Militello, Loredana; Napoli, Marco; Giorda, Giorgio; Pivetta, Barbara; Mezzanzanica, Delia; Barbareschi, Mattia; Valeri, Barbara; Canevari, Silvana; Colombatti, Alfonso; Belletti, Barbara; Del Sal, Giannino; Baldassarre, Gustavo

    2013-05-01

    Stathmin is a p53-target gene, frequently overexpressed in late stages of human cancer progression. Type II High Grade Epithelial Ovarian Carcinomas (HG-EOC) represents the only clear exception to this observation. Here, we show that stathmin expression is necessary for the survival of HG-EOC cells carrying a p53 mutant (p53(MUT) ) gene. At molecular level, stathmin favours the binding and the phosphorylation of p53(MUT) by DNA-PKCS , eventually modulating p53(MUT) stability and transcriptional activity. Inhibition of stathmin or DNA-PKCS impaired p53(MUT) -dependent transcription of several M phase regulators, resulting in M phase failure and EOC cell death, both in vitro and in vivo. In primary human EOC a strong correlation exists between stathmin, DNA-PKCS , p53(MUT) overexpression and its transcriptional targets, further strengthening the relevance of the new pathway here described. Overall our data support the hypothesis that the expression of stathmin and p53 could be useful for the identification of high risk patients that will benefit from a therapy specifically acting on mitotic cancer cells.

  15. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage.

    Science.gov (United States)

    Chen, Lihong; Gilkes, Daniele M; Pan, Yu; Lane, William S; Chen, Jiandong

    2005-10-05

    The p53 tumor suppressor is activated after DNA damage to maintain genomic stability and prevent transformation. Rapid activation of p53 by ionizing radiation is dependent on signaling by the ATM kinase. MDM2 and MDMX are important p53 regulators and logical targets for stress signals. We found that DNA damage induces ATM-dependent phosphorylation and degradation of MDMX. Phosphorylated MDMX is selectively bound and degraded by MDM2 preceding p53 accumulation and activation. Reduction of MDMX level by RNAi enhances p53 response to DNA damage. Loss of ATM prevents MDMX degradation and p53 stabilization after DNA damage. Phosphorylation of MDMX on S342, S367, and S403 were detected by mass spectrometric analysis, with the first two sites confirmed by phosphopeptide-specific antibodies. Mutation of MDMX on S342, S367, and S403 each confers partial resistance to MDM2-mediated ubiquitination and degradation. Phosphorylation of S342 and S367 in vivo require the Chk2 kinase. Chk2 also stimulates MDMX ubiquitination and degradation by MDM2. Therefore, the E3 ligase activity of MDM2 is redirected to MDMX after DNA damage and contributes to p53 activation.

  16. CRIF1 enhances p53 activity via the chromatin remodeler SNF5 in the HCT116 colon cancer cell lines.

    Science.gov (United States)

    Yan, Hai-Xia; Zhang, Yan-Jun; Zhang, Yuan; Ren, Xue; Shen, Yu-Fei; Cheng, Mo-Bin; Zhang, Ye

    2017-02-21

    CR6-interacting factor 1 (CRIF1) is ubiquitously expressed in human tissues. CRIF1 was first identified as a Gadd45γ (also known as CR6)-interacting protein, and it was also identified in a human colon cancer cell line stably transformed with p53. These results suggested that CRIF1 functions in the nucleus with p53 and Gadd45 family proteins in the suppression of cell growth and tumor development. Here, we found that CRIF1 could be recruited to a specific region in the promoter of the p53 gene, eliciting an increase in the mRNA and protein levels of p53 as well as p53 functional target genes. These functions required CRIF1 to interact with SNF5. CRIF1 was further recruited to the upstream promoter region of the p53 gene to suppress cell cycle progression in HCT116 cells. To our knowledge, this is the first evidence indicating that SNF5 is indispensable for CRIF1-enhanced p53 activity and its function in the suppression of cell cycle arrest in human cancer cells.

  17. Altered p53 and NOX1 activity cause bioenergetic defects in a SCA7 polyglutamine disease model.

    Science.gov (United States)

    Ajayi, Abiodun; Yu, Xin; Wahlo-Svedin, Carolina; Tsirigotaki, Galateia; Karlström, Victor; Ström, Anna-Lena

    2015-01-01

    Spinocerebellar ataxia type 7 (SCA7) is one of the nine neurodegenerative disorders caused by expanded polyglutamine (polyQ) domains. Common pathogenic mechanisms, including bioenergetics defects, have been suggested for these so called polyQ diseases. However, the exact molecular mechanism(s) behind the metabolic dysfunction is still unclear. In this study we identified a previously unreported mechanism, involving disruption of p53 and NADPH oxidase 1 (NOX1) activity, by which the expanded SCA7 disease protein ATXN7 causes metabolic dysregulation. The NOX1 protein is known to promote glycolytic activity, whereas the transcription factor p53 inhibits this process and instead promotes mitochondrial respiration. In a stable inducible PC12 model of SCA7, p53 and mutant ATXN7 co-aggregated and the transcriptional activity of p53 was reduced, resulting in a 50% decrease of key p53 target proteins, like AIF and TIGAR. In contrast, the expression of NOX1 was increased approximately 2 times in SCA7 cells. Together these alterations resulted in a decreased respiratory capacity, an increased reliance on glycolysis for energy production and a subsequent 20% reduction of ATP in SCA7 cells. Restoring p53 function, or suppressing NOX1 activity, both reversed the metabolic dysfunction and ameliorated mutant ATXN7 toxicity. These results hence not only enhance the understanding of the mechanisms causing metabolic dysfunction in SCA7 disease, but also identify NOX1 as a novel potential therapeutic target in SCA7 and possibly other polyQ diseases.

  18. Aberrant anaplastic lymphoma kinase activity induces a p53 and Rb-dependent senescence-like arrest in the absence of detectable p53 stabilization.

    Directory of Open Access Journals (Sweden)

    Fiona Kate Elizabeth McDuff

    Full Text Available Anaplastic Lymphoma Kinase (ALK is a receptor tyrosine kinase aberrantly expressed in a variety of tumor types, most notably in Anaplastic Large Cell Lymphoma (ALCL where a chromosomal translocation generates the oncogenic fusion protein, Nucleophosmin-ALK (NPM-ALK. Whilst much is known regarding the mechanism of transformation by NPM-ALK, the existence of cellular defence pathways to prevent this pathological process has not been investigated. Employing the highly tractable primary murine embryonic fibroblast (MEF system we show that cellular transformation is not an inevitable consequence of NPM-ALK activity but is combated by p53 and Rb. Activation of p53 and/or Rb by NPM-ALK triggers a potent proliferative block with features reminiscent of senescence. While loss of p53 alone is sufficient to circumvent NPM-ALK-induced senescence and permit cellular transformation, sole loss of Rb permits continued proliferation but not transformation due to p53-imposed restraints. Furthermore, NPM-ALK attenuates p53 activity in an Rb and MDM2 dependent manner but this activity is not sufficient to bypass senescence. These data indicate that senescence may constitute an effective barrier to ALK-induced malignancies that ultimately must be overcome for tumor development.

  19. Prima-1 induces apoptosis in bladder cancer cell lines by activating p53

    Directory of Open Access Journals (Sweden)

    Camila B. Piantino

    2013-01-01

    Full Text Available OBJECTIVES: Bladder cancer represents 3% of all carcinomas in the Brazilian population and ranks second in incidence among urological tumors, after prostate cancer. The loss of p53 function is the main genetic alteration related to the development of high-grade muscle-invasive disease. Prima-1 is a small molecule that restores tumor suppressor function to mutant p53 and induces cancer cell death in various cancer types. Our aim was to investigate the ability of Prima-1 to induce apoptosis after DNA damage in bladder cancer cell lines. METHOD: The therapeutic effect of Prima-1 was studied in two bladder cancer cell lines: T24, which is characterized by a p53 mutation, and RT4, which is the wild-type for the p53 gene. Morphological features of apoptosis induced by p53, including mitochondrial membrane potential changes and the expression of thirteen genes involved in apoptosis, were assessed by microscopic observation and quantitative real-time PCR (qRT-PCR. RESULTS: Prima-1 was able to reactivate p53 function in the T24 (p53 mt bladder cancer cell line and promote apoptosis via the induction of Bax and Puma expression, activation of the caspase cascade and disruption of the mitochondrial membrane in a BAK-independent manner. CONCLUSION: Prima-1 is able to restore the transcriptional activity of p53. Experimental studies in vivo may be conducted to test this molecule as a new therapeutic agent for urothelial carcinomas of the bladder, which characteristically harbor p53 mutations.

  20. Nonpeptidomimetic farnesyltransferase inhibitor RPR-115135 increases cytotoxicity of 5-fluorouracil: role of p53.

    Science.gov (United States)

    Russo, Patrizia; Ottoboni, Cristina; Malacarne, Davide; Crippa, Alessandra; Riou, Jean-Francois; O'Connor, Patrick M

    2002-01-01

    A new nonpeptidic farnesyltransferase inhibitor, RPR-115135, in combination with 5-fluorouracil (5-FU) was studied in an isogenic cell line model system consisting of human colon cancer HCT-116 cells. HCT-116 cells were transfected with an empty control pCMV vector and with a dominant-negative mutated p53 transgene (248R/W). We found that, relative to control transfectants, there was a slight tendency for the p53 inactivated cells to be less sensitive to 5-FU after 6 days of continuous treatment. Simultaneous administration of RPR-115135 and 5-FU, at equitoxic concentrations, resulted in an enhancement of 5-FU cytotoxicity, especially in the CMV-2 clone. Growth inhibition could be accounted for on the basis of a specific cell cycle arrest phenotype (G(2)-M arrest in CMV-2 and S arrest in mutated clones), as assayed by flow cytometry. The combination RPR-115135 + 5-FU increases apoptotic events only in the CMV-2 clone.

  1. Defects in 18 S or 28 S rRNA processing activate the p53 pathway.

    Science.gov (United States)

    Hölzel, Michael; Orban, Mathias; Hochstatter, Julia; Rohrmoser, Michaela; Harasim, Thomas; Malamoussi, Anastassia; Kremmer, Elisabeth; Längst, Gernot; Eick, Dirk

    2010-02-26

    The p53 tumor suppressor pathway is activated by defective ribosome synthesis. Ribosomal proteins are released from the nucleolus and block human double minute-2 (Hdm2) that targets p53 for degradation. However, it remained elusive how abrogation of individual rRNA processing pathways contributes to p53 stabilization. Here, we show that selective inhibition of 18 S rRNA processing provokes accumulation of p53 as efficiently as abrogated 28 S rRNA maturation. We describe hUTP18 as a novel mammalian rRNA processing factor that is specifically involved in 18 S rRNA production. hUTP18 was essential for the cleavage of the 5'-external transcribed spacer leader sequence from the primary polymerase I transcript, but was dispensable for rRNA transcription. Because maturation of the 28 S rRNA was unaffected in hUTP18-depleted cells, our results suggest that the integrity of both the 18 S and 28 S rRNA synthesis pathways can be monitored independently by the p53 pathway. Interestingly, accumulation of p53 after hUTP18 knock down required the ribosomal protein L11. Therefore, cells survey the maturation of the small and large ribosomal subunits by separate molecular routes, which may merge in an L11-dependent signaling pathway for p53 stabilization.

  2. The DNA Binding Activity of p53 Displays Reaction-Diffusion Kinetics

    Science.gov (United States)

    Hinow, Peter; Rogers, Carl E.; Barbieri, Christopher E.; Pietenpol, Jennifer A.; Kenworthy, Anne K.; DiBenedetto, Emmanuele

    2006-01-01

    The tumor suppressor protein p53 plays a key role in maintaining the genomic stability of mammalian cells and preventing malignant transformation. In this study, we investigated the intracellular diffusion of a p53-GFP fusion protein using confocal fluorescence recovery after photobleaching. We show that the diffusion of p53-GFP within the nucleus is well described by a mathematical model for diffusion of particles that bind temporarily to a spatially homogeneous immobile structure with binding and release rates k1 and k2, respectively. The diffusion constant of p53-GFP was estimated to be Dp53-GFP = 15.4 μm2 s−1, significantly slower than that of GFP alone, DGFP = 41.6 μm2 s−1. The reaction rates of the binding and unbinding of p53-GFP were estimated as k1 = 0.3 s−1 and k2 = 0.4 s−1, respectively, values suggestive of nonspecific binding. Consistent with this finding, the diffusional mobilities of tumor-derived sequence-specific DNA binding mutants of p53 were indistinguishable from that of the wild-type protein. These data are consistent with a model in which, under steady-state conditions, p53 is latent and continuously scans DNA, requiring activation for sequence-specific DNA binding. PMID:16603489

  3. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, Gabriela, E-mail: gabrielahollmann@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Linden, Rafael, E-mail: rlinden@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Giangrande, Angela, E-mail: angela.giangrande@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire-IGBMC, INSERM, Strasbourg (France); Allodi, Silvana, E-mail: sallodi@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil)

    2016-04-15

    Highlights: • The paper characterizes molecular pathways of cell responses to environmental doses of UV in brain tissue of a crab species. • The UV radiation changes levels of proteins which trigger apoptotic or cell cycle arrest pathways and also it changes neurotrophins which lead to apoptosis of neural cell in the central nervous system (CNS) of the crab Ucides cordatus. • The UVB wavelengths in the solar simulator damaged the DNA, either directly or indirectly, by increasing ROS, and induced the increase of p53 and AKT, which blocked p21 and increased the expression of activated caspase-3, triggering apoptosis. The signs of death increased the expression of neurotrophins (BDNF and GDNF), which continued to stimulate the apoptosis signaling mediated by caspase-3. • In the brain of the crab U. cordatus, p53/p21 relationship in response to UV radiation is different from that of most mammals. - Abstract: Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while

  4. Blocking NF-kB nuclear translocation leads to p53-related autophagy activation and cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Bao-Song Zhu; Chun-Gen Xing; Fang Lin; Xiao-Qing Fan; Kui Zhao; Zheng-Hong Qin

    2011-01-01

    AIM: To investigate the anti-tumor effects of nuclear factor-κB (NF-κB) inhibitor SN50 and related mechanisms of SGC7901 human gastric carcinoma cells. METHODS: MTT assay was used to determine the cytotoxic effects of SN50 in gastric cancer cell line SGC7901. Hoechst 33258 staining was used to detect apoptosis morphological changes after SN50 treatment. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after SN50 treatment.Immunofluorescence staining was used to detect the expression of light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. Western blotting analysis were used to determine the expression of proteins involved in apoptosis and autophagy including p53, p53 upregulated modulator of apoptosis (PUMA), damage-regulated autophagy modulator (DRAM), LC3 and Beclin 1. We detected the effects of p53-mediated autophagy activation on the apoptosis of SGC7901 cells with the p53 inhibitor pifithrin-α. RESULTS: The viability of SGC7901 cells was inhibited after SN50 treatment. Inductions in the expression of apoptotic protein p53 and PUMA as well as autophagic protein DRAM, LC3 and Beclin 1 were detected with Western blotting analysis. SN50-treated cells exhibited punctuate microtubule-associated protein 1 LC3 in immunoreactivity and MDC-labeled vesicles increased after treatment of SN50 by MDC staining. Collapse of mitochondrial membrane potential Δψ were detected for 6 to 24 h after SN50 treatment. SN50-induced increases in PUMA, DRAM, LC3 and Beclin 1 and cell death were blocked by the p53 specific inhibitor pifithrin-α. CONCLUSION: The anti-tumor activity of NF-κB inhibitors is associated with p53-mediated activation of autophagy.

  5. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China); Chiu, Chien-Chih [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Su, Chun-Li [Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan (China); Chen, Kwun-Min [Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan (China); Fang, Kang, E-mail: kangfang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China)

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  6. p53 activates G₁ checkpoint following DNA damage by doxorubicin during transient mitotic arrest.

    Science.gov (United States)

    Hyun, Sun-Yi; Jang, Young-Joo

    2015-03-10

    Recovery from DNA damage is critical for cell survival. The serious damage is not able to be repaired during checkpoint and finally induces cell death to prevent abnormal cell growth. In this study, we demonstrated that 8N-DNA contents are accumulated via re-replication during prolonged recovery period containing serious DNA damage in mitotic cells. During the incubation for recovery, a mitotic delay and initiation of an abnormal interphase without cytokinesis were detected. Whereas a failure of cytokinesis occurred in cells with no relation with p53/p21, re-replication is an anomalous phenomenon in the mitotic DNA damage response in p53/p21 negative cells. Cells with wild-type p53 are accumulated just prior to the initiation of DNA replication through a G₁ checkpoint after mitotic DNA damage, even though p53 does not interrupt pre-RC assembly. Finally, these cells undergo cell death by apoptosis. These data suggest that p53 activates G₁ checkpoint in response to mitotic DNA damage. Without p53, cells with mitotic DNA damage undergo re-replication leading to accumulation of damage.

  7. Long-term administration of the fungus toxin, sterigmatocystin, induces intestinal metaplasia and increases the proliferative activity of PCNA, p53, and MDM2 in the gastric mucosa of aged Mongolian gerbils.

    Science.gov (United States)

    Kusunoki, Masahiro; Misumi, Junichi; Shimada, Tatsuo; Aoki, Kazuo; Matsuo, Noritaka; Sumiyoshi, Hideaki; Yamaguchi, Takeshi; Yoshioka, Hidekatsu

    2011-07-01

    The causal agents of gastric cancer could include fungus toxins. Sterigmatocystin (ST), a fungus toxin, is a risk factor of gastric cancer. We investigated the effects of ST on the stomach tissues of Mongolian gerbils. Seventy-five-week-old male Mongolian gerbils received ST ad libitum at a concentration of 0 ppb (non-treated, n = 11), 100 ppb (n = 7), or 1000 ppb (n = 13) dissolved in drinking water for a period of 24 weeks. After administration, we tested the histopathological changes and immunostaining for proliferating cell nuclear antigen (PCNA), p53, and MDM2 expression. We investigated the histopathological changes and determined the incidence of histopathological changes in animals with various gastric diseases after ST administration at a dose of 0 ppb (non-treated control), 100, or 1,000 ppb as follows: firstly, indices for gastritis were 18.2, 100, and 100%, those for erosion events were 9.1, 100, and 92.3%, and those for polyps were 0, 71.4, and 61.5%, respectively. These incidences in the ST-administered groups (100 or 1000 ppb) showed significant increases compared with those in the non-treated control group. And, lastly, indices for intestinal metaplasia were 0, 100, and 15.4%, respectively. Furthermore, immunostaining for PCNA, p53, and MDM2 expression showed significantly greater rates in the ST-administered groups (100 or 1000 ppb) than in the non-treated control group. The histopathological and immunohistopathological findings of this study indicate that ST exerts a marked influence on gastric mucus and gland cells, showing dominant gastritis, erosion events, polyps, and intestinal metaplasia in these animals.

  8. Wild type p53 increased chemosensitivity of drug-resistant human hepatocellular carcinoma Be17402 / 5-FU cells

    Institute of Scientific and Technical Information of China (English)

    Yu-xiuLI; Zhi-binLIN; Huan-ranTAN

    2004-01-01

    AIM: To study the effect of wild type (wt) p53 gene transfection on drug resistant human hepatocellular carcinoma(HCC) cells induced by 5-Fluorouracil (5-FU). METHODS: The cytotoxicity of anticancer drugs on Be17402 and Be17402/5-FU cells was assessed using SRB assay, p53 expression was detected at its mRNA level by RT-PCR assay and at its protein level Western blot or immunocytochemistry assay in Be17402/5-FU cells transfected with either control vector or wt p53. AnnexinV-FITC/PI double labeled assay was performed to detect apoptosis. The chemosensitivity of Be17402/5-FU cells transfected with wt p53 was assessed using SRB assay. RESULTS: Be17402/5-FU cells exhibited cross-resistance to vincristine, doxorubicin, paclitaxel, and so on. wt p53 gene transfection upregulated the expression of p53 in Be17402/5-FU cells, wt p53 was able to greatly inhibit cell proliferation and significantly induce apoptosis in Be17402/5-FU cells. Moreover, wt p53 gene transfection increased the chemosensitivity of Be17402/5-FU cells to some anticancer drugs. CONCLUSION: These results indicated that the wt p53 gene transfection not only induced suppression of cell growth, but also increased the sensitivity of Be17402/5-FU cells to 5-FU, vincristine, and doxorubicin.

  9. Resistance for Genotoxic Damage in Mesenchymal Stromal Cells Is Increased by Hypoxia but Not Generally Dependent on p53-Regulated Cell Cycle Arrest

    Science.gov (United States)

    Wieduwild, Elisabeth; Nerger, Katrin; Lambrecht, Nina; Schmoll, Hans-Joachim; Müller-Tidow, Carsten; Müller, Lutz Peter

    2017-01-01

    Adult stem cells including multipotent mesenchymal stromal cells (MSC) acquire a high amount of DNA-damage due to their prolonged lifespan. MSC may exert specific mechanisms of resistance to avoid loss of functional activity. We have previously shown that resistance of MSC is associated with an induction of p53 and proliferation arrest upon genotoxic damage. Hypoxia may also contribute to resistance in MSC due to the low oxygen tension in the niche. In this study we characterized the role of p53 and contribution of hypoxia in resistance of MSC to genotoxic damage. MSC exhibited increased resistance to cisplatin induced DNA-damage. This resistance was associated with a temporary G2/M cell cycle arrest, induction of p53- and p21-expression and reduced cyclin B / cdk1-levels upon subapoptotic damage. Resistance of MSC to cisplatin was increased at hypoxic conditions i. e. oxygen <0.5%. However, upon hypoxia the cisplatin-induced cell cycle arrest and expression of p53 and p21 were abrogated. MSC with shRNA-mediated p53 knock-down showed a reduced cell cycle arrest and increased cyclin B / cdk1 expression. However, this functional p53 knock down did not alter the resistance to cisplatin. In contrast to cisplatin, functional p53-knock-down increased the resistance of MSC to etoposide. We conclude that resistance of MSC to genotoxic damage is influenced by oxygen tension but is not generally dependent on p53. Thus, p53-dependent and p53-independent mechanisms of resistance are likely to contribute to the life-long functional activity of MSC in vivo. These findings indicate that hypoxia and different resistance pathways contribute to the phenotype that enables the prolonged lifespan of MSC. PMID:28081228

  10. Isoflurane suppresses the self-renewal of normal mouse neural stem cells in a p53-dependent manner by activating the Lkb1-p53-p21 signalling pathway.

    Science.gov (United States)

    Hou, Lengchen; Liu, Te; Wang, Jian

    2015-11-01

    Isoflurane is widely used in anaesthesia for surgical operations. However, whether it elicits unwanted side effects, particularly in neuronal cells, remains to be fully elucidated. The Lkb1-p53-p21 signalling pathway is able to modulate neuronal self‑renewal and proliferation. Furthermore, the suppression of Lkb1‑dependent p21 induction leads to apoptosis. In the present study, whether Lkb1‑p53‑p21 signalling is involved in the response to isoflurane was investigated. A comparison of mouse primary, wild‑type neural stem cells (WT NSCs) with the p53‑/‑ NSC cell line, NE‑4C, revealed that isoflurane inhibited proliferation in a dose‑, a time‑ and a p53‑dependent manner. However, flow cytometric analysis revealed that the concentration of isoflurane which caused 50% inhibition (the IC50 value) induced cell cycle arrest in WT NSCs. Furthermore, the protein expression levels of LKB1, p53 and p21 were increased, although those of nestin and survivin decreased, following treatment of WT NSCs with isoflurane. On the other hand, isoflurane induced the phosphorylation of Ser15 in p53 in WT NSCs, which was associated with p53 binding to the p21 promoter, and consequentially, the transcriptional activation of p21. All these events were abrogated in NE‑4C cells. Taken together, the present study has demonstrated that isoflurane suppresses the self-renewal of normal mouse NSCs by activating the Lkb1-p53-p21 signalling pathway.

  11. Rotenone affects p53 transcriptional activity and apoptosis via targeting SIRT1 and H3K9 acetylation in SH-SY5Y cells.

    Science.gov (United States)

    Feng, Ya; Liu, Te; Dong, Su-Yan; Guo, Yan-Jie; Jankovic, Joseph; Xu, Huaxi; Wu, Yun-Cheng

    2015-08-01

    The protein deacetylase SIRT1 has been recognized to exert its protective effect by directly deacetylasing histone and many other transcriptional factors including p53. However, the effect of SIRT1 on p53 expression at the transcriptional level still remains to be elucidated. In this study, we found that rotenone treatment decreased cell viability, induced apoptosis, reduced SIRT1 level, and promoted p53 expression. Pre-treatment with resveratrol, a SIRT1 activator, could attenuate rotenone-induced cell injury and p53 expression, whereas down-regulation of SIRT1 directly increased p53 expression. Moreover, chromatin immunoprecipitation experiments showed that SIRT1 bound to H3K9 within the p53 promoter region, and this binding resulted in decreased H3K9 acetylation and increased H3K9 tri-methylation, thereby inhibiting p53 gene transcription. In conclusion, our data indicate that rotenone promotes p53 transcription and apoptosis through targeting SIRT1 and H3K9. This leads to nigrostriatal degeneration, the main pathogenic mechanism of motor features of Parkinson's disease. SIRT1, a deacetylase enzyme, has neuroprotective effects for Parkinson's disease via targeting various factors. Resveratrol activated SIRT1 can target H3K9 and regulate p53 gene expression at the transcriptional level, thus inhibiting p53 transcription to enhance neuroprotection, alleviating rotenone induced dopaminergic neurodegeneration. We think these findings should provide a new strategy for the treatment of Parkinson's disease.

  12. Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells.

    Science.gov (United States)

    Vitale, Ilio; Senovilla, Laura; Galluzzi, Lorenzo; Criollo, Alfredo; Vivet, Sonia; Castedo, Maria; Kroemer, Guido

    2008-07-01

    We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the alpha isoform of p38 MAPK (p38alpha MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38alpha MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.

  13. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    Science.gov (United States)

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  14. Regulation of p53 by activated protein kinase C-delta during nitric oxide-induced dopaminergic cell death.

    Science.gov (United States)

    Lee, Sung-Jin; Kim, Dong-Chan; Choi, Bo-Hwa; Ha, Hyunjung; Kim, Kyong-Tai

    2006-01-27

    Selective cell death of dopaminergic neurons in the substantia nigra is the major cause of Parkinson disease. Current evidence suggests that this cell death could be mediated by nitric oxide by-products such as nitrate and peroxynitrite. Because protein kinase C (PKC)-delta is implicated in apoptosis of various cell types, we studied its roles and activation mechanisms in nitric oxide (NO)-induced apoptosis of SN4741 dopaminergic cells. When cells were treated with sodium nitroprusside (SNP), a NO donor, endogenous PKC-delta was nitrated and activated. Immunoprecipitation revealed that p53 co-immunoprecipitated with PKC-delta and was phosphorylated at the 15th serine residue in SNP-treated cells. An in vitro kinase assay revealed that p53 was directly phosphorylated by SNP-activated PKC-delta. The p53 Ser-15 phosphorylation was suppressed in SNP-treated cells when the NO-mediated activation of PKC-delta was inhibited by rottlerin or (-)-epigallocatechin gallate. Within 3 h of p53 phosphorylation, its protein levels increased because of decreased ubiquitin-dependent proteosomal proteolysis, whereas the protein levels of MDM2, ubiquitin-protein isopeptide ligase, were down-regulated in a p53 phosphorylation-dependent fashion. Taken together, these results demonstrate that nitration-mediated activation of PKC-delta induces the phosphorylation of the Ser-15 residue in p53, which increases its protein stability, thereby contributing to the nitric oxide-mediated apoptosis-like cell death pathway. These findings may be expanded to provide new insight into the cellular mechanisms of Parkinson disease.

  15. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells.

    Science.gov (United States)

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, M L B; Mishra, Durga Prasad

    2015-12-22

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer.

  16. Perturbation of Ribosome Biogenesis Drives Cells into Senescence through 5S RNP-Mediated p53 Activation

    Directory of Open Access Journals (Sweden)

    Kazuho Nishimura

    2015-03-01

    Full Text Available The 5S ribonucleoprotein particle (RNP complex, consisting of RPL11, RPL5, and 5S rRNA, is implicated in p53 regulation under ribotoxic stress. Here, we show that the 5S RNP contributes to p53 activation and promotes cellular senescence in response to oncogenic or replicative stress. Oncogenic stress accelerates rRNA transcription and replicative stress delays rRNA processing, resulting in RPL11 and RPL5 accumulation in the ribosome-free fraction, where they bind MDM2. Experimental upregulation of rRNA transcription or downregulation of rRNA processing, mimicking the nucleolus under oncogenic or replicative stress, respectively, also induces RPL11-mediated p53 activation and cellular senescence. We demonstrate that exogenous expression of certain rRNA-processing factors rescues the processing defect, attenuates p53 accumulation, and increases replicative lifespan. To summarize, the nucleolar-5S RNP-p53 pathway functions as a senescence inducer in response to oncogenic and replicative stresses.

  17. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation.

    Science.gov (United States)

    Nishimura, Kazuho; Kumazawa, Takuya; Kuroda, Takao; Katagiri, Naohiro; Tsuchiya, Mai; Goto, Natsuka; Furumai, Ryohei; Murayama, Akiko; Yanagisawa, Junn; Kimura, Keiji

    2015-03-03

    The 5S ribonucleoprotein particle (RNP) complex, consisting of RPL11, RPL5, and 5S rRNA, is implicated in p53 regulation under ribotoxic stress. Here, we show that the 5S RNP contributes to p53 activation and promotes cellular senescence in response to oncogenic or replicative stress. Oncogenic stress accelerates rRNA transcription and replicative stress delays rRNA processing, resulting in RPL11 and RPL5 accumulation in the ribosome-free fraction, where they bind MDM2. Experimental upregulation of rRNA transcription or downregulation of rRNA processing, mimicking the nucleolus under oncogenic or replicative stress, respectively, also induces RPL11-mediated p53 activation and cellular senescence. We demonstrate that exogenous expression of certain rRNA-processing factors rescues the processing defect, attenuates p53 accumulation, and increases replicative lifespan. To summarize, the nucleolar-5S RNP-p53 pathway functions as a senescence inducer in response to oncogenic and replicative stresses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Immunocytochemical assessment of p53 protein to detect malignancy in increased cell-yield brush cytology from the biliopancreatic tree.

    Science.gov (United States)

    Villanacci, Vincenzo; Cestari, Renzo; Giulini, Stefano; Cengia, Paolo; Missale, Guido; Berenzi, Angiola; Rossi, Elisa; Bonardi, Massimo; Baiocchi, Luca; Bassotti, Gabrio

    2009-04-01

    Malignancies arising from the biliopancreatic tree are often diagnostic challenges for the gastroenterologist and the pathologist, especially when strictures without masses are present. To evaluate the diagnostic yield of p53 immunocytology for the detection of malignancies in material obtained by biliopancreatic tree brushing by means of an increased cell-yield procedure. Cytologic specimens obtained from biliary and pancreatic tree brushing in 24 patients with biliary strictures suspected for malignancy were assessed by conventional Papanicolau staining and p53 immunocytochemistry. Papanicolau staining detected 67% and p53 87% of the malignancies in the study group. p53 immunocytology displayed excellent sensitivity, specificity, and diagnostic accuracy. p53 immunocytology may represent a useful diagnostic tool in the detection of malignancies from biliary and pancreatic tree brushing, especially when using an increasing cell-yield procedure.

  19. TATA-binding protein (TBP)-like protein is required for p53-dependent transcriptional activation of upstream promoter of p21Waf1/Cip1 gene.

    Science.gov (United States)

    Suzuki, Hidefumi; Ito, Ryo; Ikeda, Kaori; Tamura, Taka-Aki

    2012-06-01

    TATA-binding protein-like protein (TLP) is involved in development, checkpoint, and apoptosis through potentiation of gene expression. TLP-overexpressing human cells, especially p53-containing cells, exhibited a decreased growth rate and increased proportion of G(1) phase cells. TLP stimulated expression of several growth-related genes including p21 (p21(Waf1/Cip1)). TLP-mediated activation of the p21 upstream promoter in cells was shown by a promoter-luciferase reporter assay. The p53-binding sequence located in the p21 upstream promoter and p53 itself are required for TLP-mediated transcriptional activation. TLP and p53 bound to each other and synergistically enhanced activity of the upstream promoter. TLP specifically activated transcription from the endogenous upstream promoter, and p53 was required for this activation. Etoposide treatment also resulted in activation of the upstream promoter as well as nuclear accumulation of TLP and p53. Moreover, the upstream promoter was associated with endogenous p53 and TLP, and the p53 recruitment was enhanced by TLP. The results of the present study suggest that TLP mediates p53-governed transcriptional activation of the p21 upstream promoter.

  20. Anticancer Activity of Marine Sponge Hyrtios sp. Extract in Human Colorectal Carcinoma RKO Cells with Different p53 Status

    Directory of Open Access Journals (Sweden)

    Hyun Kyung Lim

    2014-01-01

    Full Text Available Drug development using marine bioresources is limited even though the ocean occupies about 70% of the earth and contains a large number of biological materials. From the screening test of the marine sponge extracts, we found Hyrtios sp. sponge collected from Chuuk island, Micronesia. In this study, the Hyrtios sp. extract was examined for anticancer activity against human colorectal carcinoma RKO cells that are wildtype for p53 and RKO-E6 that are p53 defective. The Hyrtios sp. extract dose-dependently inhibited viability in both cell lines. Multinucleation as an indication of mitotic catastrophe was also observed. Cytotoxicity tests gave significantly different results for RKO and RKO-E6 cells after 48 h exposure to Hyrtios sp. extract. In RKO cells treated with Hyrtios sp. extract, cell death occurred by induction of p53 and p21 proteins. In p53-defective RKO-E6 cells, Hyrtios sp. extract decreased expression of JNK protein and increased p21 protein. These results indicate that Hyrtios sp. extract induced apoptosis via different pathways depending on p53 status and could be a good natural product for developing new anticancer drugs.

  1. p53 activation by Ni(II) is a HIF-1α independent response causing caspases 9/3-mediated apoptosis in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Victor C.; Morse, Jessica L.; Zhitkovich, Anatoly, E-mail: anatoly_zhitkovich@brown.edu

    2013-06-15

    Hypoxia mimic nickel(II) is a human respiratory carcinogen with a suspected epigenetic mode of action. We examined whether Ni(II) elicits a toxicologically significant activation of the tumor suppressor p53, which is typically associated with genotoxic responses. We found that treatments of H460 human lung epithelial cells with NiCl{sub 2} caused activating phosphorylation at p53-Ser15, accumulation of p53 protein and depletion of its inhibitor MDM4 (HDMX). Confirming the activation of p53, its knockdown suppressed the ability of Ni(II) to upregulate MDM2 and p21 (CDKN1A). Unlike DNA damage, induction of GADD45A by Ni(II) was p53-independent. Ni(II) also increased p53-Ser15 phosphorylation and p21 expression in normal human lung fibroblasts. Although Ni(II)-induced stabilization of HIF-1α occurred earlier, it had no effect on p53 accumulation and Ser15 phosphorylation. Ni(II)-treated H460 cells showed no evidence of necrosis and their apoptosis and clonogenic death were suppressed by p53 knockdown. The apoptotic role of p53 involved a transcription-dependent program triggering the initiator caspase 9 and its downstream executioner caspase 3. Two most prominently upregulated proapoptotic genes by Ni(II) were PUMA and NOXA but only PUMA induction required p53. Knockdown of p53 also led to derepression of antiapoptotic MCL1 in Ni(II)-treated cells. Overall, our results indicate that p53 plays a major role in apoptotic death of human lung cells by Ni(II). Chronic exposure to Ni(II) may promote selection of resistant cells with inactivated p53, providing an explanation for the origin of p53 mutations by this epigenetic carcinogen. - Highlights: • Ni(II) is a strong activator of the transcription factor p53. • Apoptosis is a principal form of death by Ni(II) in human lung epithelial cells. • Ni(II)-activated p53 triggers caspases 9/3-mediated apoptotic program. • NOXA and PUMA are two main proapoptotic genes induced by Ni(II). • HIF-1α and p53 are independent

  2. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa.

    Science.gov (United States)

    Zeng, Huawei; Yan, Lin; Cheng, Wen-Hsing; Uthus, Eric O

    2011-08-01

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. This study was to investigate whether selenium (Se) affects the methylation of globe genomic DNA and the exon-specific p53 gene. Three groups of rats (n = 6-7/group) were fed the AIN-93G basal diet supplemented with 0 [Se deficient (D)], 0.15 [Se adequate (A)], or 4 mg [Se supranutritional (S)] (Se as l-selenomethionine)/kg diet for 104 d, respectively. Rats fed the A or S diet had greater plasma and liver glutathione peroxidase activity, liver thioredoxin reductase activity, and plasma homocysteine concentration than those fed the D diet. However, compared with the A diet, rats fed the S diet did not further increase these Se-dependent enzyme activities or homocysteine concentration. In contrast, Se concentrations in kidney, liver, gastrocnemius muscle, and plasma were increased in a Se-dose-dependent manner. Interestingly, rats fed the S diet had significantly less global liver genomic DNA methylation than those fed the D diet. However, the S diet significantly increased the methylation of the p53 gene (exons 5-8) but not the β-actin gene (exons 2-3) DNA in liver and colon mucosa compared with those fed the D diet. Taken together, long-term Se consumption not only affects selenoprotein enzyme activities, homocysteine, tissue Se concentrations, and global genomic DNA methylation but also increases exon-specific DNA methylation of the p53 gene in a Se-dose-dependent manner in rat liver and colon mucosa.

  3. A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation.

    Science.gov (United States)

    Chen, Xishan; Tai, Lingyu; Gao, Jie; Qian, Jianchang; Zhang, Mingfei; Li, Beibei; Xie, Cao; Lu, Linwei; Lu, Wuyuan; Lu, Weiyue

    2015-11-28

    Antagonizing MDM2 and MDMX to activate the tumor suppressor protein p53 is an attractive therapeutic paradigm for the treatment of glioblastoma multiforme (GBM). However, challenges remain with respect to the poor ability of p53 activators to efficiently cross the blood-brain barrier and/or blood-brain tumor barrier and to specifically target tumor cells. To circumvent these problems, we developed a cyclic RGD peptide-conjugated poly(ethylene glycol)-co-poly(lactic acid) polymeric micelle (RGD-M) that carried a stapled peptide antagonist of both MDM2 and MDMX (sPMI). The peptide-carrying micelle RGD-M/sPMI was prepared via film-hydration method with high encapsulation efficiency and loading capacity as well as ideal size distribution. Micelle encapsulation dramatically increased the solubility of sPMI, thus alleviating its serum sequestration. In vitro studies showed that RGD-M/sPMI efficiently inhibited the proliferation of glioma cells in the presence of serum by activating the p53 signaling pathway. Further, RGD-M/sPMI exerted potent tumor growth inhibitory activity against human glioblastoma in nude mouse xenograft models. Importantly, the combination of RGD-M/sPMI and temozolomide--a standard chemotherapy drug for GBM increased antitumor efficacy against glioblastoma in experimental animals. Our results validate a combination therapy using p53 activators with temozolomide as a more effective treatment for GBM.

  4. Interaction between transactivation domain of p53 and middle part of TBP-like protein (TLP is involved in TLP-stimulated and p53-activated transcription from the p21 upstream promoter.

    Directory of Open Access Journals (Sweden)

    Ryo Maeda

    Full Text Available TBP-like protein (TLP is involved in transcriptional activation of an upstream promoter of the human p21 gene. TLP binds to p53 and facilitates p53-activated transcription from the upstream promoter. In this study, we clarified that in vitro affinity between TLP and p53 is about one-third of that between TBP and p53. Extensive mutation analyses revealed that the TLP-stimulated function resides in transcription activating domain 1 (TAD1 in the N-terminus of p53. Among the mutants, #22.23, which has two amino acid substitutions in TAD1, exhibited a typical mutant phenotype. Moreover, #22.23 exhibited the strongest mutant phenotype for TLP-binding ability. It is thus thought that TLP-stimulated and p53-dependent transcriptional activation is involved in TAD1 binding of TLP. #22.23 had a decreased transcriptional activation function, especially for the upstream promoter of the endogenous p21 gene, compared with wild-type p53. This mutant did not facilitate p53-dependent growth repression and etoposide-mediated cell-death as wild-type p53 does. Moreover, mutation analysis revealed that middle part of TLP, which is requited for p53 binding, is involved in TLP-stimulated and p53-dependent promoter activation and cell growth repression. These results suggest that activation of the p21 upstream promoter is mediated by interaction between specific regions of TLP and p53.

  5. Activation of p53 in Down Syndrome and in the Ts65Dn Mouse Brain is Associated with a Pro-Apoptotic Phenotype.

    Science.gov (United States)

    Tramutola, Antonella; Pupo, Gilda; Di Domenico, Fabio; Barone, Eugenio; Arena, Andrea; Lanzillotta, Chiara; Broekaart, Diede; Blarzino, Carla; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia

    2016-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability, resulting from trisomy of chromosome 21. The main feature of DS neuropathology includes early onset of Alzheimer's disease (AD), with deposition of senile plaques and tangles. We hypothesized that apoptosis may be activated in the presence of AD neuropathology in DS, thus we measured proteins associated with upstream and downstream pathways of p53 in the frontal cortex from DS cases with and without AD pathology and from Ts65Dn mice, at different ages. We observed increased acetylation and phosphorylation of p53, coupled to reduced MDM2/p53 complex level and lower levels of SIRT1. Activation of p53 was associated with a number of targets (BAX, PARP1, caspase-3, p21, heat shock proteins, and PGC1α) that were modulated in both DS and DS/AD compared with age-matched controls. In particular, the most relevant changes (increased p-p53 and acetyl-p53 and reduced formation of MDM2/p53 complex) were found to be modified only in the presence of AD pathology in DS. In addition, a similar pattern of alterations in the p53 pathway was found in Ts65Dn mice. These results suggest that p53 may integrate different signals, which can result in a pro-apoptotic-phenotype contributing to AD neuropathology in people with DS.

  6. Rewiring drug-activated p53-regulatory network from suppressing to promoting tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Wei Song; Jiguang Wang; Ying Yang; Naihe Jing; Xiangsun Zhang; Luonan Chen; Jiarui Wu

    2012-01-01

    Many of oncogenes and tumor suppressor genes have been found to exert variable and even opposing roles in different kinds of tumors or at different stages of cancer development.Here we showed that tumorigenic potential of mouse embryonic carcinoma P19 cells cultured in adherent plates (attached-P19-cells) was suppressed by a chemotherapeutic agent,5-aza-2'-deoxycytidine (ZdCyd),whereas the higher pro-tumorigenicity of P19 cells growing in suspension (detached-P19-cells) was generated by the ZdCyd treatment.Surprisingly,p53 activity was highly up-regulated by ZdCyd in both growing conditions.By our developed computational approaches,we revealed that there was a significant enrichment of apoptotic pathways in the ZdCyd-induced p53-dominant gene-regulatory network in attached P19 cells,whereas the pro-survival genes were significantly enriched in the ZdCyd-induced p53 network in detached P19 cells.The protein-protein interaction network of the ZdCyd-treated detached P19 cells was significantly different from that of ZdCyd-treated attached P19 cells.On the other hand,inhibition of pS3 expression by siRNA suppressed the ZdCyd-induced tumorigenesis of detached P19 cells,suggesting that the ZdCyd-activated p53 plays oncogenic function in detached P19 cells.Taken together,these results indicate a context-dependent role for the ZdCyd-activated p53-dominant network in tumorigenesis.

  7. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  8. Cyclooxygenase-2 suppresses hypoxia-induced apoptosis via a combination of direct and indirect inhibition of p53 activity in a human prostate cancer cell line.

    Science.gov (United States)

    Liu, Xin-Hua; Kirschenbaum, Alexander; Yu, Kang; Yao, Shen; Levine, Alice C

    2005-02-04

    Although p53-inactivating mutations have been described in the majority of human cancers, their role in prostate cancer is controversial as mutations are uncommon, particularly in early lesions. p53 is activated by hypoxia and other stressors and is primarily regulated by the Mdm2 protein. Cyclooxygenase (COX)-2, an inducible enzyme that catalyzes the conversion of arachidonic acid to prostaglandins and other eicosanoids, is also induced by hypoxia. COX-2 and resultant prostaglandins increase tumor cell proliferation, resistance to apoptosis, and angiogenesis. Previous reports indicate a complex, reciprocal relationship between p53 and COX-2. To elucidate the effects of COX-2 on p53 in response to hypoxia, we transfected the COX-2 gene into the p53-positive, COX-2-negative MDA-PCa-2b human prostate cancer cell line. The expression of functional p53 and Mdm2 was compared in COX-2+ versus COX-2- cells under normoxic and hypoxic conditions. Our results demonstrated that hypoxia increases both COX-2 protein levels and p53 transcriptional activity in these cells. Forced expression of COX-2 increased tumor cell viability and decreased apoptosis in response to hypoxia. COX-2+ cells had increased Mdm2 phosphorylation in either normoxic or hypoxic conditions. Overexpression of COX-2 abrogated hypoxia-induced p53 phosphorylation and promoted the binding of p53 to Mdm2 protein in hypoxic cells. In addition, COX-2-expressing cells exhibited decreased hypoxia-induced nuclear accumulation of p53 protein. Finally, forced expression of COX-2 suppressed both basal and hypoxia-induced p53 transcriptional activity, and this effect was mimicked by the addition of PGE2 to wild-type cells. These results demonstrated a role for COX-2 in the suppression of hypoxia-induced p53 activity via both direct effects and indirect modulation of Mdm2 activity. These data imply that COX-2-positive prostate cancer cells can have impaired p53 function even in the presence of wild-type p53 and that p53

  9. MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.

    Science.gov (United States)

    Lagunas-Martínez, Alfredo; García-Villa, Enrique; Arellano-Gaytán, Magaly; Contreras-Ochoa, Carla O; Dimas-González, Jisela; López-Arellano, María E; Madrid-Marina, Vicente; Gariglio, Patricio

    2017-01-01

    The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

  10. The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells.

    Science.gov (United States)

    Read, Martin L; Seed, Robert I; Fong, Jim C W; Modasia, Bhavika; Ryan, Gavin A; Watkins, Rachel J; Gagliano, Teresa; Smith, Vicki E; Stratford, Anna L; Kwan, Perkin K; Sharma, Neil; Dixon, Olivia M; Watkinson, John C; Boelaert, Kristien; Franklyn, Jayne A; Turnell, Andrew S; McCabe, Christopher J

    2014-04-01

    The PTTG1-binding factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a protooncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity-ligation assays, we show that PBF binds specifically to p53 in thyroid cells and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF overexpression (transgenic PBF mice), which had significantly increased genetic instability as indicated by fluorescent inter simple sequence repeat-PCR analysis. Consistent with this, approximately 40% of all DNA repair genes examined were repressed in transgenic PBF primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51, and Xrcc3. Our data also revealed that PBF induction resulted in up-regulation of the E2 enzyme Rad6 in murine thyrocytes and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the protooncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, in which PBF is generally overexpressed and p53 mutations are rare compared with other tumor types.

  11. Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumors

    NARCIS (Netherlands)

    Dummer, R; Bergh, J; Karlsson, Y; Horovitz, JA; Mulder, NH; Huinin, DT; Burg, G; Hofbauer, G; Osanto, S

    2000-01-01

    p53 mutations are common genetic alterations in human cancer. Gene transfer of a wild-type (wt) p53 gene reverses the loss of normal p53 function in vitro and in vivo. A phase I dose escalation study of single intratumoral (i.t.) injection of a replication-defective adenoviral expression vector cont

  12. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Duanmin [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Su, Cunjin [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Jiang, Min [Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Yating [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shi, Aiming; Zhao, Fenglun [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Chen, Ruidong [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Zhu [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Bao, Junjie, E-mail: baojjsdfey@sina.com [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Tang, Wen, E-mail: sztangwen@163.com [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China)

    2016-03-04

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  13. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells.

    Science.gov (United States)

    de Queiroz, Rafaela Muniz; Madan, Rashna; Chien, Jeremy; Dias, Wagner Barbosa; Slawson, Chad

    2016-09-02

    O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked β-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma.

  14. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy

    DEFF Research Database (Denmark)

    Kranz, Dominique; Dobbelstein, Matthias

    2006-01-01

    Mutations in the tumor suppressor gene TP53 represent the most frequent genetic difference between tumor cells and normal cells. Here, we have attempted to turn this difference into an advantage for normal cells during therapy. Using the Mdm2 antagonist nutlin-3, we first activated p53 in U2OS an...... a killer to a protector of cells, with the potential to reduce unwanted side effects of chemotherapy....

  15. Olaquindox induces DNA damage via the lysosomal and mitochondrial pathway involving ROS production and p53 activation in HEK293 cells.

    Science.gov (United States)

    Yang, Yang; Jiang, Liping; She, Yan; Chen, Min; Li, Qiujuan; Yang, Guang; Geng, Chengyan; Tang, Liyun; Zhong, Laifu; Jiang, Lijie; Liu, Xiaofang

    2015-11-01

    Olaquindox (OLA) is a potent antibacterial agent used as a feed additive and growth promoter. In this study, the genotoxic potential of OLA was investigated in the human embryonic kidney cell line 293 (HEK293). Results showed that OLA caused significant increases of DNA migration. Lysosomal membrane permeability and mitochondrial membrane potential were reduced after treatment with OLA. OLA was shown to induce ROS production and GSH depletion. The expression of p53 protein is increased in cells incubated with OLA. The activation of p53 and ATM gene was assessed by exposure to OLA. Furthermore, NAC reduced DNA migration, ROS formation, GSH depletion and the expression of the p53 protein and gene. And desipramine significantly decreased AO fluorescence intensity and the expression of the p53 protein and gene. These results support the assumption that OLA exerted genotoxic effects and induced DNA strand breaks in HEK293 cells, possibly through lysosomal-mitochondrial pathway involving ROS production and p53 activation.

  16. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Science.gov (United States)

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  17. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Holst, Bjørn; Tümer, Zeynep;

    2014-01-01

    The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led...... and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion...

  18. Bax/Bak activation in the absence of Bid, Bim, Puma, and p53.

    Science.gov (United States)

    Zhang, J; Huang, K; O'Neill, K L; Pang, X; Luo, X

    2016-06-16

    How BH3-only proteins activate Bax/Bak, the two gateway proteins of the mitochondria-dependent apoptotic pathway, remains incompletely understood. Although all pro-apoptotic BH3-only proteins are known to bind/neutralize the anti-apoptotic Bcl-2 proteins, the three most potent ones, Bid (tBid), Bim, and Puma, possess an additional activity of directly activating Bax/Bak in vitro. This latter activity has been proposed to be responsible for triggering Bax/Bak activation following apoptotic stimulation. To test this hypothesis, we generated Bid(-/)(-)Bim(-/)(-)Puma(-/)(-) (TKO), TKO/Bax(-/)(-)/Bak(-/)(-) (PentaKO), and PentaKO/Mcl-1(-/-) (HexaKO) HCT116 cells through gene editing. Surprisingly, although the TKO cells were resistant to several apoptotic stimuli, robust apoptosis was induced upon the simultaneous inactivation of Bcl-xL and Mcl-1, two anti-apoptotic Bcl-2 proteins known to suppress Bax/Bak activation and activity. Importantly, such apoptotic activity was completely abolished in the PentaKO cells. In addition, ABT-737, a BH3 mimetic that inhibits Bcl-xL/Bcl-w/Bcl-2, induced Bax activation in HexaKO cells reconstituted with endogenous level of GFP-Bax. Further, by generating TKO/p53(-/-) (QKO) cells, we demonstrated that p53, a tumor suppressor postulated to directly activate Bax, is not required for Bid/Bim/Puma-independent Bax/Bak activation. Together, these results strongly suggest that the direct activation activities of Bid (tBid), Bim, Puma, and p53 are not essential for activating Bax/Bak once the anti-apoptotic Bcl-2 proteins are neutralized.

  19. Haploinsufficiency of Def activates p53-dependent TGFβ signalling and causes scar formation after partial hepatectomy.

    Directory of Open Access Journals (Sweden)

    Zhihui Zhu

    Full Text Available The metazoan liver exhibits a remarkable capacity to regenerate lost liver mass without leaving a scar following partial hepatectomy (PH. Whilst previous studies have identified components of several different signaling pathways that are essential for activation of hepatocyte proliferation during liver regeneration, the mechanisms that enable such regeneration to occur without accompanying scar formation remain poorly understood. Here we use the adult zebrafish liver, which can regenerate within two weeks following PH, as a new genetic model to address this important question. We focus on the role of Digestive-organ-expansion-factor (Def, a nucleolar protein which has recently been shown to complex with calpain3 (Capn3 to mediate p53 degradation specifically in the nucleolus, in liver regeneration. Firstly, we show that Def expression is up-regulated in the wild-type liver following amputation, and that the defhi429/+ heteroozygous mutant (def+/- suffers from haploinsufficiency of Def in the liver. We then show that the expression of pro-inflammatory cytokines is up-regulated in the def+/- liver, which leads to distortion of the migration and the clearance of leukocytes after PH. Transforming growth factor β (TGFβ signalling is thus activated in the wound epidermis in def+/- due to a prolonged inflammatory response, which leads to fibrosis at the amputation site. Fibrotic scar formation in def+/- is blocked by the over-expression of Def, by the loss-of-function of p53, and by treatment with anti-inflammation drug dexamethasone or TGFβ-signalling inhibitor SB431542. We finally show that the Def- p53 pathway suppresses fibrotic scar formation, at least in part, through the regulation of the expression of the pro-inflammatory factor, high-mobility group box 1. We conclude that the novel Def- p53 nucleolar pathway functions specifically to prevent a scar formation at the amputation site in a normal amputated liver.

  20. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Holst, Bjørn; Tümer, Zeynep

    2014-01-01

    and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion...

  1. HCV NS5A abrogates p53 protein function by interfering with p53-DNA binding

    Institute of Scientific and Technical Information of China (English)

    Guo-Zhong Gong; Yong-Fang Jiang; Yan He; Li-Ying Lai; Ying-Hua Zhu; Xian-Shi Su

    2004-01-01

    AIM: To evaluate the inhibition effect of HCV NS5A on p53 transactivation on p21 promoter and explore its possible mechanism for influencing p53 function.METHODS: p53 function of transactivation on p21 promoter was studied with a luciferase reporter system in which the luciferase gene is driven by p21 promoter, and the p53-DNA binding ability was observed with the use of electrophoretic mobility-shift assay (EMSA). Lipofectin mediated p53 or HCV NS5A expression vectors were used to transfect hepatoma cell lines to observe whether HCV NS5A could abrogate the binding ability of p53 to its specific DNA sequence and p53 transactivation on p21 promoter.Western blot experiment was used for detection of HCV NS5A and p53 proteins expression.RESULTS: Relative luciferase activity driven by p21 promoter increased significantly in the presence of endogenous p53 protein. Compared to the control group, exogenous p53 protein also stimulated p21 promoter driven luciferase gene expression in a dose-dependent way. HCV NS5A protein gradually inhibited both endogenous and exogenous p53 transactivation on p21 promoter with increase of the dose of HCV NS5A expression plasmid. By the experiment of EMSA, we could find p53 binding to its specific DNA sequence and, when co-transfected with increased dose of HCV NS5A expression vector, the p53 binding affinity to its DNA gradually decreased and finally disappeared. Between the Huh 7 cells transfected with p53 expression vector alone or co-transfected with HCV NS5A expression vector, there was no difference in the p53 protein expression.CONCLUSION: HCV NS5A inhibits p53 transactivation on p21 promoter through abrogating p53 binding affinity to its specific DNA sequence. It does not affect p53 protein expression.

  2. RPR-115135, a farnesyltransferase inhibitor, increases 5-FU- cytotoxicity in ten human colon cancer cell lines: role of p53.

    Science.gov (United States)

    Russo, Patrizia; Malacarne, Davide; Falugi, Carla; Trombino, Sonya; O'Connor, Patrick M

    2002-07-20

    A new non peptidic farnesyltransferase inhibitor, RPR-115135, in combination with 5-FU was studied in 10 human colon cancer cell lines (HCT-116, RKO, DLD-1, Colo-320, LoVo, SW-620, HT-29, HCT-15, Colo-205 and KM-12) carrying several mutations but well characterized for p53 and Ras status. We found that there was a slight tendency (not statistically significant) for the p53 inactivated cells to be less sensitive to 5-FU after 6 days continuous treatment. Simultaneous administration of RPR-115135 and 5-FU, at subtoxic concentrations, resulted in a synergistic enhancement of 5-FU cytotoxicity in the p53 wildtype cells (HCT-116, RKO, DLD-1, Colo-320, LoVo). In the p53 mutated cells (SW-620, HT-29, HCT-15, Colo-205, KM-12) the effect was very complicated. In HCT-15 the combination resulted in antagonism, in KM-12 in antagonism or in synergy (at different concentrations) and in SW-620, HT-29 and Colo-205 cells in synergy but only when 5-FU was administered at high concentrations. Growth inhibition could be accounted for on the basis of a specific cell cycle arrest phenotype (G2-M arrest), as assayed by flow cytometry, only in the p53 functioning cell lines. The combination RPR-115135 + 5-FU increases apoptotic events only in these cell lines. In the mutated cell lines no major alterations on cell cycle arrest phenotype and no induction of apoptosis was observed. Although RPR-115135 can potentiate the effect of 5-FU in cells in which p53 function is disrupted, these data suggest strongly that RPR-115135 significantly enhances the efficacy of 5-FU only when p53 is functioning.

  3. Induction of apoptosis in Ehrlich ascites tumour cells via p53 activation by a novel small-molecule MDM2 inhibitor - LQFM030.

    Science.gov (United States)

    da Mota, Mariana F; Cortez, Alane P; Benfica, Polyana L; Rodrigues, Bruna Dos S; Castro, Thalyta F; Macedo, Larissa M; Castro, Carlos H; Lião, Luciano M; de Carvalho, Flávio S; Romeiro, Luiz A S; Menegatti, Ricardo; Verli, Hugo; Villavicencio, Bianca; Valadares, Marize C

    2016-09-01

    The activation of the p53 pathway through the inhibition of MDM2 has been proposed as a novel therapeutic strategy against tumours. A series of cis-imidazoline analogues, termed nutlins, were reported to displace the recombinant p53 protein from its complex with MDM2 by binding to MDM2 in the p53 pocket, and exhibited an antitumour activity both in vitro and in vivo. Thus, the purpose of this study was to evaluate the antitumour properties of LQFM030 (2), a nutlin analogue created by employing the strategy of molecular simplification. LQFM030 (2) cytotoxicity was evaluated in Ehrlich ascites tumour (EAT) cells, p53 wild type, by the trypan blue exclusion test, and the mechanisms involved in EAT cell death were investigated by light and fluorescence microscopy, flow cytometry, real-time PCR and Western blotting. Our results demonstrate that LQFM030 has dose-dependent antiproliferative activity and cytotoxic activity on EAT cells, induces the accumulation of p53 protein and promotes cell cycle arrest and apoptosis. p53 gene transcription was unaffected by LQFM030 (2); however, MDM2 mRNA increased and MDM2 protein decreased. These results suggest that the small-molecule p53 activator LQFM030 (2) has the potential for further development as a novel cancer therapeutic agent. © 2016 Royal Pharmaceutical Society.

  4. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells.

    Science.gov (United States)

    Xie, Shan-Bu; He, Xing-Xing; Yao, Shu-Kun

    2015-08-01

    Matrine, one of the main extract components of Sophora flavescens, has been shown to exhibit inhibitory effects on some tumors through autophagy. However, the mechanism underlying the effect of matrine remains unclear. The cultured human hepatocellular carcinoma cell line HepG2 and SMMC‑7721 were treated with matrine. Signal transduction and gene expression profile were determined. Matrine stimulated autophagy in SMMC‑7721 cells in a mammalian target of rapamycin (mTOR)-dependent manner, but in an mTOR-independent manner in HepG2 cells. Next, in HepG2 cells, autophagy induced by matrine was regulated by p53 inactivation through AMP-activated protein kinase (AMPK) signaling transduction, then AMPK suppression switched autophagy to apoptosis. Furthermore, the interferon (IFN)-inducible genes, including interferon α-inducible protein 27 (IFI27) and interferon induced transmembrane protein 1 (IFITM1), which are downstream effector of p53, might be modulated by matrine-induced autophagy. In addition, we found that the p53 protein isoforms, p53β, p53γ, ∆133p53, and ∆133p53γ, due to alternative splicing of intron 9, might be regulated by the p53-mediated autophagy. These results show that matrine induces autophagy in human hepatoma cells through a novel mechanism, which is p53/AMPK signaling pathway involvement in matrine-promoted autophagy.

  5. Caspase Activation and Aberrant Cell Growth in a p53+/+ Cell Line from a Li-Fraumeni Syndrome Family

    Directory of Open Access Journals (Sweden)

    Zaki A. Sherif

    2015-01-01

    Full Text Available Wild-type p53 is well known to induce cell cycle arrest and apoptosis to block aberrant cell growth. However, p53’s unique role in apoptosis and cell proliferation in Li-Fraumeni Syndrome (LFS has not been well elucidated. The aim of this study is to characterize the activity of wild-type p53 protein in LFS family dominated by a germline negative mutant p53. As expected, etoposide-treated wild-type p53-containing cell lines, LFS 2852 and control Jurkat, showed a greater rate of caspase- and annexin V-induced apoptotic cell death compared to the p53-mutant LFS 2673 cell line although mitochondrial and nuclear assays could not detect apoptosis in these organelles. The most intriguing part of the observation was the abnormal proliferation rate of the wild-type p53-containing cell line, which grew twice as fast as 2673 and Jurkat cells. This is important because apoptosis inducers acting through the mitochondrial death pathway are emerging as promising drugs against tumors where the role of p53 is not only to target gene regulation but also to block cell proliferation. This study casts a long shadow on the possible dysregulation of p53 mediators that enable cell proliferation. The deregulation of proliferation pathways represents an important anticancer therapeutic strategy for patients with the LFS phenotype.

  6. Transcription factor p53 can regulate proliferation, apoptosis and secretory activity of luteinizing porcine ovarian granulosa cell cultured with and without ghrelin and FSH.

    Science.gov (United States)

    Sirotkin, A V; Benco, A; Tandlmajerova, A; Vasícek, D; Kotwica, J; Darlak, K; Valenzuela, F

    2008-11-01

    The aim of our in vitro experiments was to examine the role of transcription factor p53 in controlling the basic functions of ovarian cells and their response to hormonal treatments. Porcine ovarian granulosa cells, transfected and non-transfected with a gene construct encoding p53, were cultured with ghrelin and FSH (all at concentrations of 0, 1, 10, or 100 ng/ml). Accumulation of p53, of apoptosis-related (MAP3K5) and proliferation-related (cyclin B1) substances was evaluated by immunocytochemistry. The secretion of progesterone (P(4)), oxytocin (OT), prostaglandin F (PGF), and E (PGE) was measured by RIA. Transfection with the p53 gene construct promoted accumulation of this transcription factor within cells. It also stimulated the expression of a marker of apoptosis (MAP3K5). Over-expression of p53 resulted in reduced accumulation of a marker of proliferation (cyclin B1), P(4), and PGF secretion and increased OT and PGE secretion. Ghrelin, when added alone, did not affect p53 or P(4), but reduced MAP3K5 and increased PGF and PGE secretion. Over-expression of p53 reversed the effect of ghrelin on OT, caused it to be inhibitory to P(4) secretion, but did not modify its action on MAP3K5, PGF, or PGE. FSH promoted the accumulation of p53, MAP3K5, and cyclin B1; these effects were unaffected by p53 transfection. These multiple effects of the p53 gene construct on luteinizing granulosa cells, cultured with and without hormones 1) demonstrate the effects of ghrelin and FSH on porcine ovarian cell apoptosis and secretory activity, 2) confirm the involvement of p53 in promoting apoptosis and inhibiting P(4) secretion in these cells, 3) provide the first evidence that p53 suppress proliferation of ovarian cells, 4) provide the first evidence that p53 is involved in the control of ovarian peptide hormone (OT) and prostaglandin (PGF and PGE) secretion, and 5) suggest that p53 can modulate, but probably not mediate, the effects of ghrelin and FSH on the ovary.

  7. Polydatin Protecting Kidneys against Hemorrhagic Shock-Induced Mitochondrial Dysfunction via SIRT1 Activation and p53 Deacetylation

    Directory of Open Access Journals (Sweden)

    Zhenhua Zeng

    2016-01-01

    Full Text Available Objectives. To ascertain if mitochondrial dysfunction (MD of kidney cells is present in severe hemorrhagic shock and to investigate whether polydatin (PD can attenuate MD and its protective mechanisms. Research Design and Methods. Renal tubular epithelial cells (RTECs from rat kidneys experiencing HS and a cell line (HK-2 under hypoxia/reoxygenation (H/R treatment were used. Morphology and function of mitochondria in isolated RTECs or cultured HK-2 cells were evaluated, accompanied by mitochondrial apoptosis pathway-related proteins. Result. Severe MD was found in rat kidneys, especially in RTECs, as evidenced by swollen mitochondria and poorly defined cristae, decreased mitochondrial membrane potential (ΔΨm, and reduced ATP content. PD treatment attenuated MD partially and inhibited expression of proapoptotic proteins. PD treatment increased SIRT1 activity and decreased acetylated-p53 levels. Beneficial effect of PD was abolished partially when the SIRT1 inhibitor Ex527 was added. Similar phenomena were shown in the H/R cell model; when pifithrin-α (p53 inhibitor was added to the PD/Ex527 group, considerable therapeutic effects were regained compared with the PD group apart from increased SIRT1 activity. Conclusions. MD is present in severe HS, and PD can attenuate MD of RTECs via the SIRT1-p53 pathway. PD might be a promising therapeutic drug for acute renal injury.

  8. CMV promoter is repressed by p53 and activated by JNK pathway.

    Science.gov (United States)

    Rodova, Marianna; Jayini, Renuka; Singasani, Reddy; Chipps, Elizabeth; Islam, M Rafiq

    2013-05-01

    Viral promoters are widely utilized in commercial and customized vectors to drive expression of genes of interest including reporter, effector and transfection control, because of their high transcription efficiency in a variety of primary and transformed cell lines. However, we observed altered rate of transcription for these promoters under conditions such as presence of an effector protein. These variations in viral promoter driven expressions can potentially lead to incorrect conclusion, especially in comparative and quantitative experiments. We found significantly reduced viral promoter activity in cells overexpressing tumor suppressor protein p53, whereas markedly induced transcription in cells overexpressing MAP/ERK kinase kinase 1 (Mekk 1). Using deletion constructs generated from the CMV promoter, we found the transcription reduction by p53 is possibly mediated through the TATA motif present in proximal CMV promoter. The activation of the CMV promoter by Mekk 1, on the other hand, is attributed to the proximal CRE binding site in the promoter. These findings may be of interest to investigators who use CMV (or other viral) promoter driven vectors for either comparative or quantitative gene expression, or effect on promoter activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. MiRNA-621 sensitizes breast cancer to chemotherapy by suppressing FBXO11 and enhancing p53 activity.

    Science.gov (United States)

    Xue, J; Chi, Y; Chen, Y; Huang, S; Ye, X; Niu, J; Wang, W; Pfeffer, L M; Shao, Z-M; Wu, Z-H; Wu, J

    2016-01-28

    MicroRNAs (miRNAs) have been demonstrated to have critical roles in regulating cancer cell proliferation, survival and sensitivity to chemotherapy. The potential application of using miRNAs to predict therapeutic response to cancer treatment holds high promise, but miRNAs with predictive value remain to be identified and underlying mechanisms have not been completely understood. Here, we show a strong correlation between miR-621 expression and chemosensitivity to paclitaxel plus carboplatin (PTX/CBP) regimen, an effective neoadjuvant chemotherapy for breast cancer patients. High level of miR-621 predicts better response to PTX/CBP regimen neoadjuvant chemotherapy in breast cancer patients, who also tend to achieve pathological complete response. Ectopic overexpression of miR-621 promoted apoptosis and increased chemosensitivity to PTX and CBP both in cultured breast cancer cells and in xenograft tumor model. We further show that FBXO11 is a direct functional target of miR-621 and miR-621 level is negatively correlated with FBXO11 expression in breast cancer patients. Ectopic expression of FBXO11 attenuated increased apoptosis in breast cancer cells overexpressing miR-621 upon PTX or CBP treatment. Consistently, high FBXO11 expression significantly correlated with poor survival in breast cancer patients. Mechanistically, we found in breast cancer cells FBXO11 interacts with p53 and promotes its neddylation, which suppressed the p53 transactivity. Accordingly, miR-621-dependent FBXO11 suppression enhanced p53 activity and increased apoptosis in breast cancer cells exposed to chemotherapeutics. Taken together, our data suggest that miR-621 enhances chemosensitivity of breast cancer cells to PTX/CBP chemotherapy by suppressing FBXO11-dependent inhibition of p53. miR-621 may serve as a predictive biomarker and a potential therapeutic target in breast cancer treatment.

  10. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity.

    Science.gov (United States)

    Varela, Aimilia; Piperi, Christina; Sigala, Fragiska; Agrogiannis, George; Davos, Constantinos H; Andri, Maria-Anastasia; Manopoulos, Christos; Tsangaris, Sokrates; Basdra, Efthimia K; Papavassiliou, Athanasios G

    2015-08-19

    Atherosclerotic plaque formation is associated with irregular distribution of wall shear stress (WSS) that modulates endothelial function and integrity. Polycystins (PC)-1/-2 constitute a flow-sensing protein complex in endothelial cells, able to respond to WSS and induce cell-proliferation changes leading to atherosclerosis. An endothelial cell-culture system of measurable WSS was established to detect alterations in PCs expression under conditions of low- and high-oscillatory shear stress in vitro. PCs expression and p53 activation as a regulator of cell proliferation were further evaluated in vivo and in 69 advanced human carotid atherosclerotic plaques (AAPs). Increased PC-1/PC-2 expression was observed at 30-60 min of low shear stress (LSS) in endothelial cells. Elevated PC-1 expression at LSS was followed by p53 potentiation. PCs immunoreactivity localizes in areas with macrophage infiltration and neovascularization. PC-1 mRNA and protein levels were significantly higher than PC-2 in stable fibroatherotic (V) and unstable/complicated (VI) AAPs. Elevated PC-1 immunostaining was detected in AAPs from patients with diabetes mellitus, dyslipidemia, hypertension and carotid stenosis, at both arteries (50%) or in one artery (90%). PCs seem to participate in plaque formation and progression. Since PC-1 upregulation coincides with p38 and p53 activation, a potential interplay of these molecules in atherosclerosis induction is posed.

  11. Class I phosphatidylinositol 3-kinase inhibitor LY294002 activates autophagy and induces apoptosis through p53 pathway in gastric cancer cell line SGC7901

    Institute of Scientific and Technical Information of China (English)

    Chungen Xing; Baosong Zhu; Huihui Liu; Huihua Yao; Lifeng Zhang

    2008-01-01

    We aimed to study the effects of LY294002, an inhibitor of classIphosphatidylinositol 3-kinase (PDK), on proliferation,apoptosis, and autophagy in gastric cancer cell line SGC7901.In this study, we showed that LY294002 inhibited the viability of gastric cancer SGC7901 cells.We also showed that LY294002 increased the expression of microtubule-associated protein 1 light chain 3(LC3),and increased monodansylcadaverine(MDC)-labeled vesicles.LY294002 activated autophagy by activating p53 and caspase-3,and induced apoptosis by up-regulating p53 and p53-up-regulated modulator of apoptosis(PUMA).Therefore,LY294002 might induce cytotoxicity in SGC7901 cells through activation of p53 and the downstream point PUMA.These findings suggest that inhibition of the class I PI3K signaling pathway is a potential strategy for managing gastric cancers.

  12. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3.

    Science.gov (United States)

    Hu, Duanmin; Su, Cunjin; Jiang, Min; Shen, Yating; Shi, Aiming; Zhao, Fenglun; Chen, Ruidong; Shen, Zhu; Bao, Junjie; Tang, Wen

    2016-03-04

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3.

  13. p53 induces miR199a-3p to suppress SOCS7 for STAT3 activation and renal fibrosis in UUO

    Science.gov (United States)

    Yang, Ruhao; Xu, Xuan; Li, Huiling; Chen, Jinwen; Xiang, Xudong; Dong, Zheng; Zhang, Dongshan

    2017-01-01

    The role of p53 in renal fibrosis has recently been suggested, however, its function remains controversial and the underlying mechanism is unclear. Here, we show that pharmacological and genetic blockade of p53 attenuated renal interstitial fibrosis, apoptosis, and inflammation in mice with unilateral urethral obstruction (UUO). Interestingly, p53 blockade was associated with the suppression of miR-215-5p, miR-199a-5p&3p, and STAT3. In cultured human kidney tubular epithelial cells (HK-2), TGF-β1 treatment induced fibrotic changes, including collagen I and vimentin expression, being associated with p53 accumulation, p53 Ser15 phosphorylation, and miR-199a-3p expression. Inhibition of p53 by pifithrin-α blocked STAT3 activation and the expression of miR-199a-3p, collagen I, and vimentin during TGF-β1 treatment. Over-expression of miR-199a-3p increased TGFβ1-induced collagen I and vimentin expression and restored SOCS7 expression. Furthermore, SOCS7 was identified as a target gene of miR-199a-3p, and silencing of SOCS7 promoted STAT3 activation. ChIp analyses indicated the binding of p53 to the promoter region of miR-199a-3p. Consistently, kidney biopsies from patients with IgA nephropathy and diabetic nephropathy exhibited substantial activation of p53 and STAT3, decreased expression of SOCS7, and increase in profibrotic proteins and miR-199a-3p. Together, these results demonstrate the novel p53/miR-199a-3p/SOCS7/STAT3 pathway in renal interstitial fibrosis. PMID:28240316

  14. Infection with E1B-mutant adenovirus stabilizes p53 but blocks p53 acetylation and activity through E1A

    DEFF Research Database (Denmark)

    Savelyeva, I.; Dobbelstein, M.

    2011-01-01

    Wild-type adenovirus type 5 eliminates p53 through the E1B-55 kDa and E4-34 kDa gene products. Deletion or mutation of E1B-55 kDa has long been thought to confer p53-selective replication of oncolytic viruses. We show here that infection with E1B-defective adenovirus mutants induces massive...... accumulation of p53, without obvious defects in p53 localization, phosphorylation, conformation and oligomerization. Nonetheless, p53 completely failed to induce its target genes in this scenario, for example, p21/CDKN1A, Mdm2 and PUMA. Two regions of the E1A gene products independently contributed...... acetylation in infected cells. Mutating either of these E1A regions, in addition to E1B, partially restored p21 mRNA levels. Our findings argue that adenovirus attenuates p53-mediated p21 induction, through at least two E1B-independent mechanisms. Other virus species and cancer cells may employ analogous...

  15. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway.

    Science.gov (United States)

    Drosten, Matthias; Sum, Eleanor Y M; Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; García-Medina, Raquel; Huang, Sidong; Beijersbergen, Roderick L; Bernards, Rene; Barbacid, Mariano

    2014-10-21

    The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21Cip1, or Rb restores proliferative properties in cells arrested by ablation of the three Ras loci, H-, N- and K-Ras. Ras signaling selectively inactivates p53-mediated induction of p21Cip1 expression by inhibiting acetylation of specific lysine residues in the p53 DNA binding domain. Proliferation of cells lacking both Ras proteins and p53 can be prevented by reexpression of the human p53 ortholog, provided that it retains an active DNA binding domain and an intact lysine residue at position 164. These results unveil a previously unidentified role for p53 in preventing cell proliferation under unfavorable mitogenic conditions. Moreover, we provide evidence that cells lacking Ras and p53 proteins owe their proliferative properties to the unexpected retroactivation of the Raf/Mek/Erk cascade by a Ras-independent mechanism.

  16. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation.

    Directory of Open Access Journals (Sweden)

    Mikael S Lindström

    Full Text Available BACKGROUND: Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9. METHODOLOGY/PRINCIPAL FINDINGS: Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis. CONCLUSIONS: p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.

  17. 5-Aza-2'-deoxycytidine Activates the p53/p21waf1/Cip1 Pathway to Inhibit Cell Proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei-GuoZhu; TheresaHileman; YangKe; PeichangWang; ShaoliLu; WenruiDuan; ZunyanDai; TanjunTong; MiguelA.Villalona-Calero; ChristophPlass; GregoryA.Otterson

    2005-01-01

    In addition to its demethylating function, 5-aza-2'-de- oxycytidine (5-aza-CdR) also plays an important role in inducing cell cycle arrest, differentiation, and cell death. However, the mechanism by which 5-aza-CdR in. duces antineoplastic activity is not clear. In this study, we found that 5-aza-CdR at limited concentrations(0.01-5μM) induces inhibition of cell proliferation as well as increased p53/p21waf1/Cip1 expression in A549 cells (wild-type p53) but not in H1299 (p53-null) and H719 cells (p53 mutant). The p53-dependent p21wafa/Cip1 expression induced by 5-aza-CdR was not seen in A549 cells transfected with the wild-type human papilloma virus type-16 E6 gene that induces p53 degradation. Furthermore, deletion analysis and site-directed mutagenesis of the p21 promoter reveals that 5-aza-CdR induces p21wafa/Cip1 expression through two p53 binding sites in the p21 promoter. Finally, 5-aza-CdR-induced p21waf1/cip1 expression was dependent on DNA damage but not on DNA demethylation as demonstrated by comet assay and bisulfite sequencing, respectively. Our data provide useful clues for judging the therapeutic efficacy of 5-aza-CdR in the treatment of human cancer cells.

  18. SIGNALING TO THE P53 TUMOR SUPPRESSOR THROUGH PATHWAYS ACTIVATED BY GENOTOXIC AND NON-GENOTOXIC STRESSES.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2002-07-01

    The p53 tumor suppressor is a tetrameric transcription factor that is post-translational modified at {approx}18 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review the posttranslational modifications to p53 and the pathways that produce them in response to both genotoxic and non-genotoxic stresses.

  19. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells.

    Science.gov (United States)

    Itahana, Yoko; Zhang, Jinqiu; Göke, Jonathan; Vardy, Leah A; Han, Rachel; Iwamoto, Kozue; Cukuroglu, Engin; Robson, Paul; Pouladi, Mahmoud A; Colman, Alan; Itahana, Koji

    2016-06-27

    The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs.

  20. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Na [Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Oh, Sang Cheul; Kim, Jun Suk [Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Yoo, Young A., E-mail: ydanbi@korea.ac.kr [Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of)

    2012-03-10

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)-Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh-Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3-p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expression of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2-p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.

  1. OTUD5 regulates p53 stability by deubiquitinating p53.

    Directory of Open Access Journals (Sweden)

    Judong Luo

    Full Text Available BACKGROUND: The p53 tumour suppressor protein is a transcription factor that prevents oncogenic progression by activating the expression of apoptosis and cell-cycle arrest genes in stressed cells. The stability of p53 is tightly regulated by ubiquitin-dependent degradation, driven mainly by its negative regulators ubiquitin ligase MDM2. PRINCIPAL FINDINGS: In this study, we have identified OTUD5 as a DUB that interacts with and deubiquitinates p53. OTUD5 forms a direct complex with p53 and controls level of ubiquitination. The function of OTUD5 is required to allow the rapid activation of p53-dependent transcription and a p53-dependent apoptosis in response to DNA damage stress. CONCLUSIONS: As a novel deubiquitinating enzyme for p53, OTUD5 is required for the stabilization and the activation of a p53 response.

  2. p53 isoforms change p53 paradigm

    OpenAIRE

    2014-01-01

    Although p53 defines cellular responses to cancer treatment it is not clear how p53 can be used to control cell fate outcome. Data demonstrate that so-called p53 does not exist as a single protein, but is in fact a group of p53 protein isoforms whose expression can be manipulated to control the cellular response to treatment.

  3. Terpenoids from Zingiber officinale (Ginger induce apoptosis in endometrial cancer cells through the activation of p53.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Novel strategies are necessary to improve chemotherapy response in advanced and recurrent endometrial cancer. Here, we demonstrate that terpenoids present in the Steam Distilled Extract of Ginger (SDGE are potent inhibitors of proliferation of endometrial cancer cells. SDGE, isolated from six different batches of ginger rhizomes, consistently inhibited proliferation of the endometrial cancer cell lines Ishikawa and ECC-1 at IC(50 of 1.25 µg/ml. SDGE also enhanced the anti-proliferative effect of radiation and cisplatin. Decreased proliferation of Ishikawa and ECC-1 cells was a direct result of SDGE-induced apoptosis as demonstrated by FITC-Annexin V staining and expression of cleaved caspase 3. GC/MS analysis identified a total of 22 different terpenoid compounds in SDGE, with the isomers neral and geranial constituting 30-40%. Citral, a mixture of neral and geranial inhibited the proliferation of Ishikawa and ECC-1 cells at an IC(50 10 µM (2.3 µg/ml. Phenolic compounds such as gingerol and shogaol were not detected in SDGE and 6-gingerol was a weaker inhibitor of the proliferation of the endometrial cancer cells. SDGE was more effective in inducing cancer cell death than citral, suggesting that other terpenes present in SDGE were also contributing to endometrial cancer cell death. SDGE treatment resulted in a rapid and strong increase in intracellular calcium and a 20-40% decrease in the mitochondrial membrane potential. Ser-15 of p53 was phosphorylated after 15 min treatment of the cancer cells with SDGE. This increase in p53 was associated with 90% decrease in Bcl2 whereas no effect was observed on Bax. Inhibitor of p53, pifithrin-α, attenuated the anti-cancer effects of SDGE and apoptosis was also not observed in the p53(neg SKOV-3 cells. Our studies demonstrate that terpenoids from SDGE mediate apoptosis by activating p53 and should be therefore be investigated as agents for the treatment of endometrial cancer.

  4. Terpenoids from Zingiber officinale (Ginger) induce apoptosis in endometrial cancer cells through the activation of p53.

    Science.gov (United States)

    Liu, Yang; Whelan, Rebecca J; Pattnaik, Bikash R; Ludwig, Kai; Subudhi, Enkateswar; Rowland, Helen; Claussen, Nick; Zucker, Noah; Uppal, Shitanshu; Kushner, David M; Felder, Mildred; Patankar, Manish S; Kapur, Arvinder

    2012-01-01

    Novel strategies are necessary to improve chemotherapy response in advanced and recurrent endometrial cancer. Here, we demonstrate that terpenoids present in the Steam Distilled Extract of Ginger (SDGE) are potent inhibitors of proliferation of endometrial cancer cells. SDGE, isolated from six different batches of ginger rhizomes, consistently inhibited proliferation of the endometrial cancer cell lines Ishikawa and ECC-1 at IC(50) of 1.25 µg/ml. SDGE also enhanced the anti-proliferative effect of radiation and cisplatin. Decreased proliferation of Ishikawa and ECC-1 cells was a direct result of SDGE-induced apoptosis as demonstrated by FITC-Annexin V staining and expression of cleaved caspase 3. GC/MS analysis identified a total of 22 different terpenoid compounds in SDGE, with the isomers neral and geranial constituting 30-40%. Citral, a mixture of neral and geranial inhibited the proliferation of Ishikawa and ECC-1 cells at an IC(50) 10 µM (2.3 µg/ml). Phenolic compounds such as gingerol and shogaol were not detected in SDGE and 6-gingerol was a weaker inhibitor of the proliferation of the endometrial cancer cells. SDGE was more effective in inducing cancer cell death than citral, suggesting that other terpenes present in SDGE were also contributing to endometrial cancer cell death. SDGE treatment resulted in a rapid and strong increase in intracellular calcium and a 20-40% decrease in the mitochondrial membrane potential. Ser-15 of p53 was phosphorylated after 15 min treatment of the cancer cells with SDGE. This increase in p53 was associated with 90% decrease in Bcl2 whereas no effect was observed on Bax. Inhibitor of p53, pifithrin-α, attenuated the anti-cancer effects of SDGE and apoptosis was also not observed in the p53(neg) SKOV-3 cells. Our studies demonstrate that terpenoids from SDGE mediate apoptosis by activating p53 and should be therefore be investigated as agents for the treatment of endometrial cancer.

  5. KR-POK interacts with p53 and represses its ability to activate transcription of p21WAF1/CDKN1A.

    Science.gov (United States)

    Jeon, Bu-Nam; Kim, Min-Kyeong; Choi, Won-Il; Koh, Dong-In; Hong, Sung-Yi; Kim, Kyung-Sup; Kim, Minjung; Yun, Chae-Ok; Yoon, Juyong; Choi, Kang-Yell; Lee, Kyung-Ryul; Nephew, Kenneth P; Hur, Man-Wook

    2012-03-01

    Transcriptional regulation by p53 is thought to play a role in its ability to suppress tumorigenesis. However, there remain gaps in understanding about how p53 regulates transcription and how disrupting this function may promote cancer. Here we report a role in these processes for the kidney cancer-related gene KR-POK (ZBTB7C), a POZ domain and Krüppel-like zinc finger transcription factor that we found to physically interact with p53. Murine embryonic fibroblasts isolated from genetically deficient mice (Kr-pok(-/-) MEFs) exhibited a proliferative defect relative to wild-type mouse embryonic fibroblasts (MEF). The zinc finger domain of Kr-pok interacted directly with the DNA binding and oligomerization domains of p53. This interaction was essential for Kr-pok to bind the distal promoter region of the CDKN1A gene, an important p53 target gene encoding the cell-cycle regulator p21WAF1, and to inhibit p53-mediated transcriptional activation of CDKN1A. Kr-pok also interacted with the transcriptional corepressors NCoR and BCoR, acting to repress histone H3 and H4 deacetylation at the proximal promoter region of the CDKN1A gene. Importantly, Kr-pok(-/-) MEFs displayed an enhancement in CDKN1A transactivation by p53 during the DNA damage response, without any parallel changes in transcription of either the p53 or Kr-pok genes themselves. Furthermore, Kr-pok promoted cell proliferation in vitro and in vivo, and its expression was increased in more than 50% of the malignant human kidney cancer cases analyzed. Together, our findings define KR-POK as a transcriptional repressor with a pro-oncogenic role that relies upon binding to p53 and inhibition of its transactivation function.

  6. Cisplatin induced apoptosis of ovarian cancer A2780s cells by activation of ERK/p53/PUMA signals.

    Science.gov (United States)

    Song, Hao; Wei, Mei; Liu, Wenfen; Shen, Shulin; Li, Jiaqun; Wang, Liming

    2017-03-13

    Cisplatin (CDDP) is one of the most effective anticancer agents widely used in the treatment of solid tumors, including ovarian cancer. It is generally considered as a cytotoxic drug which kills cancer cells by causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, the underlying mechanisms leading to cell apoptosis remain obscure. In this study, the signaling pathways involved in CDDP -induced apoptosis were examined using CDDP-sensitive ovarian cancer A2780s cells. A2780s cells were treated with CDDP (1.5-3 μg/ml) for 6 h, 12 h and 24 h. Using siRNA targeting P53 and PUMA, and a selective MEK inhibitor, PD98059 to examine the relation between ERK1/2 activation, p53 and PUMA expression after exposure to CDDP, and the effect on CDDP-induced apoptosis. The results shown that treatment of A2780s cells with CDDP (3 μg/ml) for 6-24 h induced apoptosis, resulting in the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and accumulation of p53 and PUMA (p53 upregulated modulator of apoptosis) protein. Knockdown of P53 or PUMA by siRNA transfection blocked CDDP-induced apoptosis. Inhibition of ERK1/2 using PD98059, a selective MEK inhibitor, blocked the apoptotic cell death but prevented CDDP-induced accumulation of p53 and PUMA. Knockdown of P53 by siRNA transfection also blocked CDDP-induced accumulation of PUMA. We therefore concluded that CDDP activated ERK1/2 and induced-p53-dependent PUMA upregulation, resulting in triggering apoptosis in A2780s cells. Our study clearly demonstrates that the ERK1/2/p53/PUMA axis is related to CDDP-induced cell death in A2780s cells.

  7. Prediction of P53 mutants (multiple sites transcriptional activity based on structural (2D&3D properties.

    Directory of Open Access Journals (Sweden)

    R Geetha Ramani

    Full Text Available Prediction of secondary site mutations that reinstate mutated p53 to normalcy has been the focus of intense research in the recent past owing to the fact that p53 mutants have been implicated in more than half of all human cancers and restoration of p53 causes tumor regression. However laboratory investigations are more often laborious and resource intensive but computational techniques could well surmount these drawbacks. In view of this, we formulated a novel approach utilizing computational techniques to predict the transcriptional activity of multiple site (one-site to five-site p53 mutants. The optimal MCC obtained by the proposed approach on prediction of one-site, two-site, three-site, four-site and five-site mutants were 0.775,0.341,0.784,0.916 and 0.655 respectively, the highest reported thus far in literature. We have also demonstrated that 2D and 3D features generate higher prediction accuracy of p53 activity and our findings revealed the optimal results for prediction of p53 status, reported till date. We believe detection of the secondary site mutations that suppress tumor growth may facilitate better understanding of the relationship between p53 structure and function and further knowledge on the molecular mechanisms and biological activity of p53, a targeted source for cancer therapy. We expect that our prediction methods and reported results may provide useful insights on p53 functional mechanisms and generate more avenues for utilizing computational techniques in biological data analysis.

  8. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn

    2015-01-09

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection.

  9. APE1/Ref-1 enhances DNA binding activity of mutant p53 in a redox-dependent manner.

    Science.gov (United States)

    Cun, Yanping; Dai, Nan; Li, Mengxia; Xiong, Chengjie; Zhang, Qinhong; Sui, Jiangdong; Qian, Chengyuan; Wang, Dong

    2014-02-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual function protein; in addition to its DNA repair activity, it can stimulate DNA binding activity of numerous transcription factors as a reduction-oxidation (redox) factor. APE1/Ref-1 has been found to be a potent activator of wild-type p53 (wtp53) DNA binding in vitro and in vivo. Although p53 is mutated in most types of human cancer including hepatocellular carcinoma (HCC), little is known about whether APE1/Ref-1 can regulate mutant p53 (mutp53). Herein, we reported the increased APE1/Ref-1 protein and accumulation of mutp53 in HCC by immunohistochemistry. Of note, it was observed that APE1/Ref-1 high-expression and mutp53 expression were associated with carcinogenesis and progression of HCC. To determine whether APE1/Ref-1 regulates DNA binding of mutp53, we performed electromobility shift assays (EMSAs) and quantitative chromatin immunoprecipitation (ChIP) assays in HCC cell lines. In contrast to sequence-specific and DNA structure-dependent binding of wtp53, reduced mutp53 efficiently bound to nonlinear DNA, but not to linear DNA. Notably, overexpression of APE1/Ref-1 resulted in increased DNA binding activity of mutp53, while downregulation of APE1/Ref-1 caused a marked decrease of mutp53 DNA binding. In addition, APE1/Ref-1 could not potentiate the accumulation of p21 mRNA and protein in mutp53 cells. These data indicate that APE1/Ref-1 can stimulate mutp53 DNA binding in a redox-dependent manner.

  10. Immediate-early gene product ICP22 inhibits the trans-transcription activating function of P53-mdm-2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As a product of HSVI immediate-early gene, ICP22 is capable of interacting with various cellular tran-scriptive and regulatory molecules during viral infection so as to impact the normal cellular molecular mechanism. ICP22 expressed in transfected cells can push the cells’ entering into S phase with binding to mdm-1 promoter region and impact its trans-transcription activating effect by P53. Consequently, the MDM-2 binds to P53, and the degradation effects by the ubiquitous pathway are decreased, improving indirectly the P53 levels in cells and making the cells progress into the S phase.

  11. Immediate-early gene product ICP22 inhibits the trans-transcription activating function of P53-mdm-2

    Institute of Scientific and Technical Information of China (English)

    GUO HongXiong; CUN Wei; LIU LongDing; WANG LiChun; ZHAO HongLing; DONG ChengHong; LI QiHan

    2007-01-01

    As a product of HSVI immediate-early gene, ICP22 is capable of interacting with various cellular transcriptive and regulatory molecules during viral infection so as to impact the normal cellular molecular mechanism. ICP22 expressed in transfected cells can push the cells' entering into S phase with binding to mdm-1 promoter region and impact its trans-transcription activating effect by P53. Consequently, the MDM-2 binds to P53, and the degradation effects by the ubiquitous pathway are decreased, improving indirectly the P53 levels in cells and making the cells progress into the S phase.

  12. Quercetin Enhances the Antitumor Activity of Trichostatin A through Upregulation of p53 Protein Expression In Vitro and In Vivo

    Science.gov (United States)

    Chan, Shu-Ting; Yang, Nae-Cherng; Huang, Chin-Shiu; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2013-01-01

    This study investigated the effects of quercetin on the anti-tumor effect of trichostatin A (TSA), a novel anticancer drug, in vitro and in vivo and the possible mechanisms of these effects in human lung cancer cells. We first showed that quercetin (5 µM) significantly increased the growth arrest and apoptosis in A549 cells (expressing wild-type p53) induced by 25 ng/mL of (82.5 nM) TSA at 48 h by about 25% and 101%, respectively. However, such enhancing effects of quercetin (5 µM) were not significant in TSA-exposed H1299 cells (a p53 null mutant) or were much lower than in A549 cells. In addition, quercetin significantly increased TSA-induced p53 expression in A549 cells. Transfection of p53 siRNA into A549 cells significantly but not completely diminished the enhancing effects of quercetin on TSA-induced apoptosis. Furthermore, we demonstrated that quercetin enhanced TSA-induced apoptosis through the mitochondrial pathway. Transfection of p53 siRNA abolished such enhancing effects of quercetin. However, quercetin increased the acetylation of histones H3 and H4 induced by TSA in A549 cells, even with p53 siRNA transfection as well as in H1299 cells. In a xenograft mouse model of lung cancer, quercetin enhanced the antitumor effect of TSA. Tumors from mice treated with TSA in combination with quercetin had higher p53 and apoptosis levels than did those from control and TSA-treated mice. These data indicate that regulation of the expression of p53 by quercetin plays an important role in enhancing TSA-induced apoptosis in A549 cells. However, p53-independent mechanisms may also contribute to the enhancing effect of quercetin. PMID:23342112

  13. p53 increases intra-cellular calcium release by transcriptional regulation of calcium channel TRPC6 in GaQ3-treated cancer cells.

    Directory of Open Access Journals (Sweden)

    Esha Madan

    Full Text Available p53 and calcium signaling are inter-dependent and are known to show both synergistic and antagonistic effects on each other in the cellular environment. However, no molecular mechanism or cellular pathway is known which shows direct regulation between these important cellular signaling molecules. Here we have shown that in cancer cells treated with anti-neoplastic drug GaQ3, p53, there is an increase in intracellular calcium levels by transcriptional regulation of a novel calcium channel gene TRPC6. p53 directly binds to a 22 bp response element in the TRPC6 gene promoter and increase its mRNA and protein expression. Over-expression of TRPC6 results in calcium-dependent apoptotic death and activation of apoptotic genes in a variety of cancer cells. This research work shows that p53 and its transcriptional activity is critical in regulation of calcium signaling and an increase in the intracellular calcium level might be one of the anti-cancer strategies to induce apoptosis in cancer cells.

  14. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner.

    Science.gov (United States)

    Kim, Guen Tae; Lee, Se Hee; Kim, Jong Il; Kim, Young Min

    2014-04-01

    The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5' AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2.

  15. TGF-β induces p53/Smads complex formation in the PAI-1 promoter to activate transcription

    Science.gov (United States)

    Kawarada, Yuki; Inoue, Yasumichi; Kawasaki, Fumihiro; Fukuura, Keishi; Sato, Koichi; Tanaka, Takahito; Itoh, Yuka; Hayashi, Hidetoshi

    2016-01-01

    Transforming growth factor β (TGF-β) signaling facilitates tumor development during the advanced stages of tumorigenesis, but induces cell-cycle arrest for tumor suppression during the early stages. However, the mechanism of functional switching of TGF-β is still unknown, and it is unclear whether inhibition of TGF-β signaling results amelioration or exacerbation of cancers. Here we show that the tumor suppressor p53 cooperates with Smad proteins, which are TGF-β signal transducers, to selectively activate plasminogen activator inhibitor type-1 (PAI-1) transcription. p53 forms a complex with Smad2/3 in the PAI-1 promoter to recruit histone acetyltransferase CREB-binding protein (CBP) and enhance histone H3 acetylation, resulting in transcriptional activation of the PAI-1 gene. Importantly, p53 is required for TGF-β-induced cytostasis and PAI-1 is involved in the cytostatic activity of TGF-β in several cell lines. Our results suggest that p53 enhances TGF-β-induced cytostatic effects by activating PAI-1 transcription, and the functional switching of TGF-β is partially caused by p53 mutation or p53 inactivation during cancer progression. It is expected that these findings will contribute to optimization of TGF-β-targeting therapies for cancer. PMID:27759037

  16. Activated p53 with Histone Deacetylase Inhibitor Enhances L-Fucose-Mediated Drug Delivery through Induction of Fucosyltransferase 8 Expression in Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Arihara, Yohei; Kikuchi, Shohei; Osuga, Takahiro; Nakamura, Hajime; Kamihara, Yusuke; Hayasaka, Naotaka; Usami, Makoto; Murase, Kazuyuki; Miyanishi, Koji; Kobune, Masayoshi; Kato, Junji

    2016-01-01

    Background The prognosis of advanced hepatocellular carcinoma (HCC) is dismal, underscoring the need for novel effective treatments. The α1,6-fucosyltransferase (fucosyltransferase 8, FUT8) has been reported to accelerate malignant potential in HCC. Our study aimed to investigate the regulation of FUT8 expression by p53 and develop a novel therapeutic strategy for targeting HCC cells using L-fucose-mediated drug delivery. Methods Binding sites for p53 were searched for within the FUT8 promoter region. FUT8 expression was assessed by immunoblotting. Chromatin immunoprecipitation (ChIP) assays were performed to analyze p53 binding to the FUT8 promoter. The delivery of Cy5.5-encapsulated L-fucose-liposomes (Fuc-Lip-Cy5.5) to a Lens Culinaris agglutinin-reactive fraction of α-fetoprotein (AFP-L3)-expressing HCC cells was analyzed by flow cytometry. The induction of FUT8 by histone deacetylase inhibitor (HDACi) -inducing acetylated -p53 was evaluated by immunoblotting. Flow cytometric analysis was performed to assess whether the activation of p53 by HDACi affected the uptake of Fuc-Lip-Cy5.5 by HCC cells. The cytotoxicity of an L-fucose-bound liposome carrying sorafenib (Fuc-Lip-sorafenib) with HDACi was assessed in vivo and in vitro. Results The knock down of p53 with siRNA led to decreased FUT8 expression. ChIP assays revealed p53 binds to the FUT8 promoter region. Flow cytometric analyses demonstrated the specific uptake of Fuc-Lip-Cy5.5 into AFP-L3-expressing HCC cells in a p53- and FUT8-dependent manner. HDACi upregulated the uptake of Fuc-Lip-Cy5.5 by HCC cells by increasing FUT8 via acetylated -p53. The addition of a HDACi increased apoptosis induced by Fuc-Lip-sorafenib in HCC cells. Conclusions Our findings reveal that FUT8 is a p53 target gene and suggest that p53 activated by HDACi induces Fuc-Lip-sorafenib uptake by HCC cells, highlighting this pathway as a promising therapeutic intervention for HCC. PMID:27977808

  17. Loss of Sparc in p53-null Astrocytes Promotes Macrophage Activation and Phagocytosis Resulting in Decreased Tumor Size and Tumor Cell Survival.

    Science.gov (United States)

    Thomas, Stacey L; Schultz, Chad R; Mouzon, Ezekiell; Golembieski, William A; El Naili, Reima; Radakrishnan, Archanna; Lemke, Nancy; Poisson, Laila M; Gutiérrez, Jorge A; Cottingham, Sandra; Rempel, Sandra A

    2015-07-01

    Both the induction of SPARC expression and the loss of the p53 tumor suppressor gene are changes that occur early in glioma development. Both SPARC and p53 regulate glioma cell survival by inverse effects on apoptotic signaling. Therefore, during glioma formation, the upregulation of SPARC may cooperate with the loss of p53 to enhance cell survival. This study determined whether the loss of Sparc in astrocytes that are null for p53 would result in reduced cell survival and tumor formation and increased tumor immunogenicity in an in vivo xenograft brain tumor model. In vitro, the loss of Sparc in p53-null astrocytes resulted in an increase in cell proliferation, but a loss of tumorigenicity. At 7 days after intracranial implantation, Sparc-null tumors had decreased tumor cell survival, proliferation and reduced tumor size. The loss of Sparc promoted microglia/macrophage activation and phagocytosis of tumor cells. Our results indicate that the loss of p53 by deletion/mutation in the early stages of glioma formation may cooperate with the induction of SPARC to potentiate cancer cell survival and escape from immune surveillance.

  18. Sirt 1 activator inhibits the AGE-induced apoptosis and p53 acetylation in human vascular endothelial cells.

    Science.gov (United States)

    Li, Peng; Zhang, Lina; Zhou, Changyong; Lin, Nan; Liu, Aiguo

    2015-01-01

    Advanced glycation end products (AGEs) by nonenzymatic glycation reactions are extremely accumulated in the diabetic vascular cells, neurons, and glia, and are confirmed to play important role in the pathogenesis of diabetes mellitus -induced cardiovascular complications. Sirt 1, known as mammalian sirtuin, has been recognized to regulate insulin secretion and protect cells against oxidative stress, which is promoted by the accumulated AGEs in cardiovascular cells. In the present study, we treated human endothelial Eahy926 cells with AGEs, and determined the apoptosis induction, caspase activation, the Sirt 1 activity, the expression and acetylation of p53. Then we manipulated Sirt 1 activity with a Sirt 1 activator, Resveratrol (RSV), and a Sirt 1 inhibitor, sirtinol, in the AGE-BSA-treated Eahy926 cells, and then re-evaluated the apoptosis induction, caspase activation, the expression and acetylation of p53. Results demonstrated that AGEs induced apoptosis in the human endothelial Eahy926 cells, by promoting the cytochrome c release, activation of caspase 9/3. Also, the AGE-BSA treatment promoted the total p53 level and acetylated (Ac) p53, but reduced the Sirt 1 level and activity. On the other hand, the Sirt 1 inhibitor/activator not only deteriorated/ameliorated the promotion to p53 level and Ac p53, but also aggravated/inhibited the AGE-induced apoptosis and the promotion to apoptosis-associated signaling molecules. In conclusion, the present study confirmed the apoptosis promotion by AGEs in endothelial Eahy926 cells, by regulating the Sirt 1 activity and p53 signaling, it also implies the protective role of Sirt 1 activator against the AGE-induced apoptosis.

  19. Regulation of Human p53 Activity and Cell Localization by Alternative Splicing

    OpenAIRE

    2004-01-01

    The development of cancer is a multistep process involving mutations in proto-oncogenes, tumor suppressor genes, and other genes which control cell proliferation, telomere stability, angiogenesis, and other complex traits. Despite this complexity, the cellular pathways controlled by the p53 tumor suppressor protein are compromised in most, if not all, cancers. In normal cells, p53 controls cell proliferation, senescence, and/or mediates apoptosis in response to stress, cell damage, or ectopic...

  20. MARVELD1 inhibited cell proliferation and enhance chemosensitivity via increasing expression of p53 and p16 in hepatocellular carcinoma.

    Science.gov (United States)

    Yu, Youtao; Zhang, Yubao; Hu, Jianran; Zhang, Hao; Wang, Shan; Han, Fang; Yue, Lei; Qu, Youpeng; Zhang, Yao; Liang, Hongjian; Nie, Huan; Li, Yu

    2012-04-01

    We have previously found that expression of MARVELD1 was remarkably downregulated in multiple tumor tissues, but unclear in hepatocellular carcinoma (HCC) and its function has not been explored yet. In the present study, to uncover the underlying mechanism of MARVELD1 in the pathogenesis and development of HCC, we investigated the expression pattern of MARVELD1 and its effect on tumor proliferation in HCC. The results indicated the frequent downregulation of MARVELD1 in clinic samples and cell lines of HCC resulted from promoter methylation, as well as genetic deletion. Furthermore, treatment of MARVELD1 unexpressing Hep3B2.1-7 and PLC/PRF/5 cells with the demethylating agent 5-aza-2' deoxycytidine restored its expression. Overexpression of MARVELD1 suppressed the proliferation of HCC cells in vitro and in vivo, whereas downregulation of endogenous MARVELD1 by shRNAs significantly enhanced these characters. MARVELD1 overexpression could enhance chemosensitivity of HCC cells to epirubicin and 10-hydroxycamptothecin. Corresponding to these results, the expression of p-ERK1/2 and cyclin D1 were decreased, whereas p16 and p53 were increased in MARVELD1-transfected cells. We also demonstrated that knockdown of MARVELD1 resulted in upregulation of p-ERK1/2 and cyclin D1, and downregulation of p16 and p53. Moreover, the effect of the decreased cell growth rate was significantly reversed when MARVELD1-overexpressing cells were trasfected with p53 or p16 siRNA. Our findings suggest that MARVELD1 is a tumor suppressor by negatively regulating proliferation, tumor growth and chemosensitivity of HCC cells via increasing p53 and p16 in vitro and in vivo. MARVELD1 may be a potential target for HCC therapy. © 2012 Japanese Cancer Association.

  1. Mutant p53 attenuates the anti-tumorigenic activity of fibroblasts-secreted interferon beta.

    Directory of Open Access Journals (Sweden)

    Shalom Madar

    Full Text Available Mutations in the p53 tumor suppressor protein are highly frequent in tumors and often endow cells with tumorigenic capacities. We sought to examine a possible role for mutant p53 in the cross-talk between cancer cells and their surrounding stroma, which is a crucial factor affecting tumor outcome. Here we present a novel model which enables individual monitoring of the response of cancer cells and stromal cells (fibroblasts to co-culturing. We found that fibroblasts elicit the interferon beta (IFNβ pathway when in contact with cancer cells, thereby inhibiting their migration. Mutant p53 in the tumor was able to alleviate this response via SOCS1 mediated inhibition of STAT1 phosphorylation. IFNβ on the other hand, reduced mutant p53 RNA levels by restricting its RNA stabilizer, WIG1. These data underscore mutant p53 oncogenic properties in the context of the tumor microenvironment and suggest that mutant p53 positive cancer patients might benefit from IFNβ treatment.

  2. Natural Products Induce a G Protein-Mediated Calcium Pathway Activating p53 in Cancer Cells

    Science.gov (United States)

    van Ginkel, Paul R.; Yan, Michael B.; Bhattacharya, Saswati; Polans, Arthur S.; Kenealey, Jason D.

    2015-01-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. PMID:26341291

  3. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells.

    Science.gov (United States)

    van Ginkel, Paul R; Yan, Michael B; Bhattacharya, Saswati; Polans, Arthur S; Kenealey, Jason D

    2015-11-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death.

  4. SET1 and p300 Act Synergistically, through Coupled Histone Modifications, in Transcriptional Activation by p53

    Science.gov (United States)

    Tang, Zhanyun; Chen, Wei-Yi; Shimada, Miho; Nguyen, Uyen T.T.; Kim, Jaehoon; Sun, Xiao-Jian; Sengoku, Toru; McGinty, Robert K.; Fernandez, Joseph P.; Muir, Tom W.; Roeder, Robert G.

    2014-01-01

    SUMMARY The H3K4me3 mark in chromatin is closely correlated with actively transcribed genes, although the mechanisms involved in its generation and function are not fully understood. In vitro studies with recombinant chromatin and purified human factors demonstrate a robust SET1 complex (SET1C)-mediated H3K4 trimethylation that is dependent upon p53- and p300-mediated H3 acetylation, a corresponding SET1C-mediated enhancement of p53- and p300-dependent transcription that reflects a primary effect of SET1C through H3K4 trimethylation, and direct SET1C-p53 and SET1C-p300 interactions indicative of a targeted recruitment mechanism. Complementary cell-based assays demonstrate a DNA-damage-induced p53-SET1C interaction, a corresponding enrichment of SET1C and H3K4me3 on a p53 target gene (p21/WAF1), and a corresponding codependency of H3K4 trimethylation and transcription upon p300 and SET1C. These results establish a mechanism in which SET1C and p300 act cooperatively, through direct interactions and coupled histone modifications, to facilitate the function of p53. PMID:23870121

  5. CONVERGENCE OF P53 AND TGFβ SIGNALING ON ACTIVATING EXPRESSION OF THE TUMOR SUPPRESSOR GENE MASPIN IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Wang, Shizhen Emily; Narasanna, Archana; Whitell, Corbin W.; Wu, Frederick Y.; Friedman, David B.; Arteaga, Carlos L.

    2014-01-01

    Using two-dimensional difference gel electrophoresis, we identified the tumor suppressor gene maspin as a TGFβ target gene in human mammary epithelial cells. TGFβ upregulates maspin expression both at the RNA and protein levels. This upregulation required Smad2/3 function and intact p53 binding elements in the maspin promoter. DNA affinity immunoblot and chromatin immunoprecipitation (ChIP) revealed the presence of both Smads and p53 at the maspin promoter in TGFβ-treated cells, suggesting that both transcription factors cooperate to induce maspin transcription. TGFβ did not activate maspin-luciferase reporter in p53-mutant MDA-MB-231 breast cancer cells, which exhibit methylation of the endogenous maspin promoter. Expression of ectopic p53, however, restored ligand-induced association of Smad2/3 with a transfected maspin promoter. Stable transfection of maspin inhibited basal and TGFβ-stimulated MDA-MB-231 cell motility. Finally, knockdown of endogenous maspin in p53 wild-type MCF10A/HER2 cells enhanced basal and TGFβ-stimulated motility. Taken together, these data support cooperation between the p53 and TGFβ tumor suppressor pathways in the induction of maspin expression, thus leading to inhibition of cell migration. PMID:17204482

  6. Up-regulation of Siah1 by ethanol triggers apoptosis in neural crest cells through p38 MAPK-mediated activation of p53 signaling pathway.

    Science.gov (United States)

    Yuan, Fuqiang; Chen, Xiaopan; Liu, Jie; Feng, Wenke; Wu, Xiaoyang; Chen, Shao-Yu

    2017-02-01

    Seven in absentia homolog 1 (Siah1) is one of the E3 ubiquitin ligases and plays a key role in regulating target protein degradation. This study was designed to test the hypothesis that Siah1 mediates ethanol-induced apoptosis in NCCs through p38 MAPK-mediated activation of the p53 signaling pathway. We found that exposure of NCCs to ethanol resulted in the increases in the total protein levels of p53 and the phosphorylation of p53 at serine 15. Ethanol exposure also resulted in a significant increase in the phosphorylation of p38 MAPK. Knock-down of Siah1 dramatically reduced the ethanol-induced increase in the phosphorylation of p38 MAPK. Knock-down of Siah1 by siRNA or down-regulation of p38 MAPK by either siRNA or inhibitor significantly diminished ethanol-induced accumulations of p53 and the phosphorylation of p53. In addition, ethanol exposure resulted in a significant increase in the expression of p53 downstream targets and apoptosis in NCCs, which can be significantly diminished by down-regulation of Siah1 with siRNA. Knock-down of p38 MAPK by siRNA also dramatically reduced the ethanol-induced apoptosis. These results demonstrate that Siah1 plays a crucial role in ethanol-induced apoptosis in NCCs, and that the up-regulation of Siah1 by ethanol can trigger apoptosis through p38 MAPK-mediated activation of the p53 signaling pathway.

  7. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  8. FATS is a transcriptional target of p53 and associated with antitumor activity

    OpenAIRE

    2010-01-01

    Abstract Frequent mutations of p53 in human cancers exemplify its crucial role as a tumor suppressor transcription factor, and p21, a transcriptional target of p53, plays a central role in surveillance of cell-cycle checkpoints. Our previous study has shown that FATS stabilize p21 to preserve genome integrity. In this study we identified a novel transcript variant of FATS (GenBank: GQ499374) through screening a cDNA library from mouse testis, which uncovered the promoter region of mouse FATS....

  9. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Huan; Zuo, Dai-Ying; Bai, Zhao-Shi; Xu, Jing-Wen; Li, Zeng-Qiang [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang (China); Shen, Qi-Rong; Wang, Zhi-Wei [Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang (China); Zhang, Wei-Ge, E-mail: zhangweige2000@sina.com [Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang (China); Wu, Ying-Liang, E-mail: yingliang_1016@163.com [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang (China)

    2014-12-12

    Highlights: • COH-203 exhibits anti-hepatoma effects in vitro and in vivo with low toxicity. • COH-203 inhibits tubulin polymerization. • COH-203 induces mitotic arrest followed by mitotic slippage in BEL-7402 cells. • COH-203 induces p53-dependent senescence in BEL-7402 cells. - Abstract: 5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-3H-1, 2-dithiol-3-one (COH-203) is a novel synthesized analogue of combretastatin A-4 that can be classified as a microtubule inhibitor. In this study, we evaluated the anti-hepatoma effect of COH-203 in vitro and in vivo and explored the underlying molecular mechanisms. COH-203 was shown to be more effective in inhibiting the proliferation of liver cancer cells compared with normal liver cells. COH-203 also displayed potent anti-tumor activity in a hepatocellular carcinoma xenograft model without significant toxicity. Mechanistic studies demonstrated that treatment with COH-203 induced mitotic arrest by inhibiting tubulin polymerization in BEL-7402 liver cancer cells. Long-term COH-203 treatment in BEL-7402 cells led to mitotic slippage followed by senescence via the p14{sup Arf}–p53–p21 and p16{sup INK4α}–Rb pathways. Furthermore, suppression of p53 via pifithrin-α (p53 inhibitor) and p53-siRNA attenuated COH-203-induced senescence in BEL-7402 cells, suggesting that COH-203 induced senescence p53-dependently. In conclusion, we report for the first time that COH-203, one compound in the combretastatin family, promotes anti-proliferative activity through the induction of p-53 dependent senescence. Our findings will provide a molecular rationale for the development of COH-203 as a promising anti-tumor agent.

  10. p53 protein aggregation promotes platinum resistance in ovarian cancer.

    Science.gov (United States)

    Yang-Hartwich, Y; Soteras, M G; Lin, Z P; Holmberg, J; Sumi, N; Craveiro, V; Liang, M; Romanoff, E; Bingham, J; Garofalo, F; Alvero, A; Mor, G

    2015-07-01

    High-grade serous ovarian carcinoma (HGSOC), the most lethal gynecological cancer, often leads to chemoresistant diseases. The p53 protein is a key transcriptional factor regulating cellular homeostasis. A majority of HGSOCs have inactive p53 because of genetic mutations. However, genetic mutation is not the only cause of p53 inactivation. The aggregation of p53 protein has been discovered in different types of cancers and may be responsible for impairing the normal transcriptional activation and pro-apoptotic functions of p53. We demonstrated that in a unique population of HGSOC cancer cells with cancer stem cell properties, p53 protein aggregation is associated with p53 inactivation and platinum resistance. When these cancer stem cells differentiated into their chemosensitive progeny, they lost tumor-initiating capacity and p53 aggregates. In addition to the association of p53 aggregation and chemoresistance in HGSOC cells, we further demonstrated that the overexpression of a p53-positive regulator, p14ARF, inhibited MDM2-mediated p53 degradation and led to the imbalance of p53 turnover that promoted the formation of p53 aggregates. With in vitro and in vivo models, we demonstrated that the inhibition of p14ARF could suppress p53 aggregation and sensitize cancer cells to platinum treatment. Moreover, by two-dimensional gel electrophoresis and mass spectrometry we discovered that the aggregated p53 may function uniquely by interacting with proteins that are critical for cancer cell survival and tumor progression. Our findings help us understand the poor chemoresponse of a subset of HGSOC patients and suggest p53 aggregation as a new marker for chemoresistance. Our findings also suggest that inhibiting p53 aggregation can reactivate p53 pro-apoptotic function. Therefore, p53 aggregation is a potential therapeutic target for reversing chemoresistance. This is paramount for improving ovarian cancer patients' responses to chemotherapy, and thus increasing their

  11. Oligomeric peroxiredoxin-I is an essential intermediate for p53 to activate MST1 kinase and apoptosis.

    Science.gov (United States)

    Morinaka, A; Funato, Y; Uesugi, K; Miki, H

    2011-10-01

    Mammalian Ste20-like kinase-1 (MST1) kinase mediates H₂O₂-induced cell death by anticancer drugs such as cisplatin in a p53-dependent manner. However, the mechanism underlying MST1 activation by H₂O₂ remains unknown. Here we show that peroxiredoxin-I (PRX-I) is an essential intermediate in H₂O₂-induced MST1 activation and cisplatin-induced cell death through p53. Cell stimulation with H₂O₂ resulted in PRX-I oxidation to form homo-oligomers and interaction with MST1, leading to MST1 autophosphorylation and augmentation of kinase activity. In addition, RNA interference knockdown experiments indicated that endogenous PRX-I is required for H₂O₂-induced MST1 activation. Live-cell imaging showed H₂O₂ generation by cisplatin treatment, which likewise caused PRX-I oligomer formation, MST1 activation and cell death. Cisplatin-induced PRX-I oligomer formation was not observed in embryonic fibroblasts obtained from p53-knockout mice, confirming the importance of p53. Indeed, ectopic expression of p53 induced PRX-I oligomer formation and cell death, both of which were cancelled by the antioxidant NAC. Moreover, we succeeded in reconstituting H₂O₂-induced MST1 activation in vitro, using purified PRX-I and MST1 proteins. Collectively, our results show a novel PRX-I function to cause cell death in response to high levels of oxidative stress by activating MST1, which underlies the p53-dependent cytotoxicity caused by anticancer agents.

  12. p53 modulation of TFIIH-associated nucleotide excision repair activity

    NARCIS (Netherlands)

    X.W. Wang (Xin Wei); H. Yeh; L. Schaeffer; R. Roy (R.); V. Moncollin; J-M. Egly (Jean-Marc); Z. Wang (Z.); E.C. Friedberg (Errol); M.K. Evans; B.G. Taffe; V.A. Bohr; G. Weeda (Geert); J.H.J. Hoeijmakers (Jan); K. Forrester; C.C. Harris

    1995-01-01

    textabstractp53 has pleiotropic functions including control of genomic plasticity and integrity. Here we report that p53 can bind to several transcription factor IIH−associated factors, including transcription−repair factors, XPD (Rad3) and XPB, as well as CSB involved in strand−specific DNA repair,

  13. Upregulating of Fas, integrin beta4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli

    2005-10-24

    Previously, we found that safrole oxide could trigger vascular endothelial cell (VEC) apoptosis. In this study, to investigate its mechanism to induce apoptosis in VECs, the activities of nitric oxide synthetase and phosphatidylcholine specific phospholipase C, the level of reactive oxygen species and the expressions of Fas, integrin beta4 and P53 were analyzed. The data showed that safrole oxide induced apoptosis by increasing the expressions of Fas, integrin beta4 and P53, and depressing the activity of Ca(2+)-independent phosphatidylcholine-specific phospholipase C and intracellular reactive oxygen species levels in VECs.

  14. p53基因启动子转录活性检测细胞模型的建立%Establishment of Cell Model for Determining Transcriptive Activity of p53 Gene Promoter

    Institute of Scientific and Technical Information of China (English)

    秦红芳; 曾玲; 陈静; 白晔; 李菲; 黄开远; 温泉; 赖宝玲; 陈东风

    2013-01-01

    [目的]构建p53基因启动子靶控报告基因细胞模型,为高通量筛选出以p53为靶标的中药提供新的细胞模型.[方法]采用瞬时转染报告基因测定法,确定最佳转染方案及p53基因启动子转录活性细胞模型的建立和验证,观察p53抑制剂PFT-a、血清饥饿、过氧化氢、自噬激活剂雷帕霉素对p53基因启动子转录活性PC12细胞模型的量效和时效关系.[结果]PFI-α诱导3h,对p53基因启动子转录活性抑制率达50%左右;血清饥饿诱导12、24、36 h,p53基因启动子转录活性是对照组的1.6倍;过氧化氢300μmol/L诱导9h,p53基因启动子转录活性是对照组的1.3倍;雷帕霉素在浓度为0.1、1 nmol/L可上调p53基因启动子转录活性,呈浓度依赖性,而5 nmol/L及更高浓度可下调p53基因启动子转录活性.[结论]成功建立采用p53基因启动子报告基因检测p53基因启动子转录活性的特异性细胞模型,血清饥饿、过氧化氢、雷帕霉素可诱导p53基因启动子的转录活性.%Objective PC12 cell model with p53 gene promoter target-controlled reporter gene was constructed for the establishment of cell model to screen p53-targeted Chinese herbal medicine. Methods By transient transfection of p53 promoter reporter gene, we optimized the transfection procedure, and established the PC 12 cell model for determining the transcriptive activity of p53 gene promoter. After establishing the cell model, we investigated the dose-effect and time-effect relationship of transcriptive activity of p53 with p53 inhibitor PFT-a, serum starvation, hydrogen peroxide, and autophagic activator rapamycin. Results Compared with the control group, the inhibition ratio of transcriptional activity of p53 gene promoter was about 50% after induction with PFT-a for 3 hours. After serum starvation for 12, 24 and 36 hours, the transcriptional activity was 1. 6 times as much as that of the control group, but the transcriptional activity was

  15. MDM2 Inhibitor, Nutlin 3a, Induces p53 Dependent Autophagy in Acute Leukemia by AMP Kinase Activation.

    Directory of Open Access Journals (Sweden)

    Gautam Borthakur

    Full Text Available MDM2 (mouse double minute 2 inhibitors that activate p53 and induce apoptosis in a non-genotoxic manner are in clinical development for treatment of leukemias. P53 can modulate other programmed cell death pathways including autophagy both transcriptionally and non-transcriptionally. We investigated autophagy induction in acute leukemia by Nutlin 3a, a first-in-class MDM2 inhibitor. Nutlin 3a induced autophagy in a p53 dependent manner and transcriptional activation of AMP kinase (AMPK is critical, as this effect is abrogated in AMPK -/- mouse embryonic fibroblasts. Nutlin 3a induced autophagy appears to be pro-apoptotic as pharmacological (bafilomycin or genetic inhibition (BECLIN1 knockdown of autophagy impairs apoptosis induced by Nutlin 3a.

  16. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hong Shik; Hong, Eun-Hee [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Baek, Jeong-Hwa [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Lee, Chang-Woo [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Yim, Ji-Hye; Um, Hong-Duck [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Hwang, Sang-Gu, E-mail: sgh63@kcch.re.kr [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

  17. p300 and p53 levels determine activation of HIF-1 downstream targets in invasive breast cancer

    NARCIS (Netherlands)

    Vleugel, M.M.; Shvarts, D.; Wall, E. van der; Diest, P.J. van

    2006-01-01

    In previous studies, we noted that overexpression of hypoxia-inducible factor (HIF)–1a in breast cancer, especially the diffuse form, does not always lead to functional activation of its downstream genes. Transcriptional activity of HIF-1 may be repressed by p53 through competition for transcription

  18. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53{sup Ser-15} phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Shahin, Allen [Department of Medical Microbiology, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Patel, Mahendra [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Galadari, Sehamuddin, E-mail: sehamuddin@uaeu.ac.ae [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates)

    2009-06-12

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser{sup 15}. Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not prevent Dubca cell apoptosis, suggesting that p53{sup Ser-15} phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.

  19. Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53.

    Directory of Open Access Journals (Sweden)

    Jasmine George

    Full Text Available Cancer chemoprevention by natural dietary agents has received considerable importance because of their cost-effectiveness and wide safety margin. However, single agent intervention has failed to bring the expected outcome in clinical trials; therefore, combinations of chemopreventive agents are gaining increasing popularity. The present study aims to evaluate the combinatorial chemopreventive effects of resveratrol and black tea polyphenol (BTP in suppressing two-stage mouse skin carcinogenesis induced by DMBA and TPA. Resveratrol/BTP alone treatment decreased tumor incidence by ∼67% and ∼75%, while combination of both at low doses synergistically decreased tumor incidence even more significantly by ∼89% (p<0.01. This combination also significantly regressed tumor volume and number (p<0.01. Mechanistic studies revealed that this combinatorial inhibition was associated with decreased expression of phosphorylated mitogen-activated protein kinase family proteins: extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, p38 and increased in total p53 and phospho p53 (Ser 15 in skin tissue/tumor. Treatment with combinations of resveratrol and BTP also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, our results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemoprevention using dietary agents will be more beneficial against cancer. This promising combination should be examined in therapeutic trials of skin and possibly other cancers.

  20. Immunohistochemical Estimates of Angiogenesis, Proliferative Activity, p53 Expression, and Multiple Drug Resistance Have No Prognostic Impact in Osteosarcoma: A Comparative Clinicopathological Investigation

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Jensen, Kenneth; Vaeth, Michael;

    2008-01-01

    regarding angiogenesis (CD34), proliferative activity (MIB-1), and the expression of p53 and MDR (P-glycoprotein (Pgp); clones JSB-1, C494, and MRK16). Quantitative and semiquantitative scores of immunoreactive cells were analyzed statistically along with retrospectively obtained clinicopathologic variables...... (P = .64) and p53 (P > .32), whereas the MIB-1 index was reduced in the post-chemotherapy specimens (P = .02). The overall, disease-specific survival was 47%, increasing to 54% in patients receiving pre-operative chemotherapy. Statistical analyses showed prognostic impact exclusively by patient age...... and type of osteosarcoma. Discussion. The studied series of patients documented already prior to the chemotherapy era, a rather excellent survival and estimates of angiogenesis, proliferation, p53, and Pgp expressions, did not demonstrate sufficient power to serve as predictors of treatment response...

  1. An MDM2 antagonist (MI-319 restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals

    Directory of Open Access Journals (Sweden)

    Yang Dajun

    2009-12-01

    Full Text Available Abstract Background MI-319 is a synthetic small molecule designed to target the MDM2-P53 interaction. It is closely related to MDM2 antagonists MI-219 and Nutlin-3 in terms of the expected working mechanisms. The purpose of this study was to evaluate anti-lymphoma activity of MI-319 in WSU-FSCCL, a B-cell follicular lymphoma line. For comparison purpose, MI-319, MI-219 and Nutlin-3 were assessed side by side against FSCCL and three other B-cell hematological tumor cell lines in growth inhibition and gene expression profiling experiments. Results MI-319 was shown to bind to MDM2 protein with an affinity slightly higher than that of MI-219 and Nutlin-3. Nevertheless, cell growth inhibition and gene expression profiling experiments revealed that the three compounds have quite similar potency against the tumor cell lines tested in this study. In vitro, MI-319 exhibited the strongest anti-proliferation activity against FSCCL and four patient cells, which all have wild-type p53. Data obtained from Western blotting, cell cycle and apoptosis analysis experiments indicated that FSCCL exhibited strong cell cycle arrest and significant apoptotic cell death; cells with mutant p53 did not show significant apoptotic cell death with drug concentrations up to 10 μM, but displayed weaker and differential cell cycle responses. In our systemic mouse model for FSCCL, MI-319 was tolerated well by the animals, displayed effectiveness against FSCCL-lymphoma cells in blood, brain and bone marrow, and achieved significant therapeutic impact (p 28% (%ILS, 14.4 days increase in median survival days. Conclusion Overall, MI-319 probably has an anti-lymphoma potency equal to that of MI-219 and Nutlin-3. It is a potent agent against FSCCL in vitro and in vivo and holds the promises to be developed further for the treatment of follicular lymphoma that retains wild-type p53.

  2. IFI16 induction by glucose restriction in human fibroblasts contributes to autophagy through activation of the ATM/AMPK/p53 pathway.

    Directory of Open Access Journals (Sweden)

    Xin Duan

    Full Text Available BACKGROUND: Glucose restriction in cells increases the AMP/ATP ratio (energetic stress, which activates the AMPK/p53 pathway. Depending upon the energetic stress levels, cells undergo either autophagy or cell death. Given that the activated p53 induces the expression of IFI16 protein, we investigated the potential role of the IFI16 protein in glucose restriction-induced responses. METHODOLOGY/PRINCIPAL FINDINGS: We found that glucose restriction or treatment of human diploid fibroblasts (HDFs with the activators of the AMPK/p53 pathway induced the expression of IFI16 protein. The induced levels of IFI16 protein were associated with the induction of autophagy and reduced cell survival. Moreover, the increase in the IFI16 protein levels was dependent upon the expression of the functional ATM protein kinase. Importantly, the knockdown of the IFI16 expression in HDFs inhibited the activation of the ATM/AMPK/p53 pathway in response to glucose restriction and also increased the survival of HDFs. CONCLUSIONS/SIGNIFICANCE: Our observations demonstrate a role for the IFI16 protein in the energetic stress-induced regulation of autophagy and cell survival. Additionally, our findings also indicate that the loss of IFI16 expression, as found in certain cancers, may provide a survival advantage to cancer cells in microenvironments with low glucose levels.

  3. DNA damage in stem cells activates p21, inhibits p53, and induces symmetric self-renewing divisions.

    Science.gov (United States)

    Insinga, Alessandra; Cicalese, Angelo; Faretta, Mario; Gallo, Barbara; Albano, Luisa; Ronzoni, Simona; Furia, Laura; Viale, Andrea; Pelicci, Pier Giuseppe

    2013-03-01

    DNA damage leads to a halt in proliferation owing to apoptosis or senescence, which prevents transmission of DNA alterations. This cellular response depends on the tumor suppressor p53 and functions as a powerful barrier to tumor development. Adult stem cells are resistant to DNA damage-induced apoptosis or senescence, however, and how they execute this response and suppress tumorigenesis is unknown. We show that irradiation of hematopoietic and mammary stem cells up-regulates the cell cycle inhibitor p21, a known target of p53, which prevents p53 activation and inhibits p53 basal activity, impeding apoptosis and leading to cell cycle entry and symmetric self-renewing divisions. p21 also activates DNA repair, limiting DNA damage accumulation and self-renewal exhaustion. Stem cells with moderate DNA damage and diminished self-renewal persist after irradiation, however. These findings suggest that stem cells have evolved a unique, p21-dependent response to DNA damage that leads to their immediate expansion and limits their long-term survival.

  4. The p53 pathway in breast cancer

    OpenAIRE

    Gasco, Milena; Shami, Shukri; Crook, Tim

    2002-01-01

    p53 mutation remains the most common genetic change identified in human neoplasia. In breast cancer, p53 mutation is associated with more aggressive disease and worse overall survival. The frequency of mutation in p53 is, however, lower in breast cancer than in other solid tumours. Changes, both genetic and epigenetic, have been identified in regulators of p53 activity and in some downstream transcriptional targets of p53 in breast cancers that express wild-type p53. Molecular pathological an...

  5. Modulation of p53 by mitogen-activated protein kinase pathways and protein kinase C delta during avian reovirus S1133-induced apoptosis.

    Science.gov (United States)

    Lin, Ping-Yuan; Lee, Jeng-Woei; Liao, Ming-Huei; Hsu, Hsue-Yin; Chiu, Shu-Jun; Liu, Hung-Jen; Shih, Wen-Ling

    2009-03-15

    ARV S1133 infection caused apoptosis in vivo and in vitro; however, the intracellular signaling pathways have not been fully delineated. We have previously demonstrated that ARV S1133 activates proapoptotic signaling from Src to p53, and further investigated how ARV S1133 modulates p53. We found that ARV S1133 forms syncytia and induces apoptosis in CEF, DF1 and Vero cells with different kinetics. Enhancement of p53 phosphorylation and DNA-binding capacity to bax and bad promoters was found in this study to increase bax and bad expression in ARV S1133-infected cells. ARV S1133 activates PKC delta and p38 and JNK/SAPK pathways, and inhibition of Ras, p38, JNK/SAPK and PKC delta works efficiently against apoptosis. Suppression of p38, JNK/SAPK and PKC delta selectively abolished ARV S1133-mediated p53 phosphorylation; moreover, inhibition of Src did not affect ARV S1133-induced p38 and JNK/SAPK activation, whereas blocking of Ras resulted in a reduction in the activities of p38 and JNK/SAPK.

  6. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents.

    Science.gov (United States)

    Do, Minh Truong; Kim, Hyung Gyun; Choi, Jae Ho; Jeong, Hye Gwang

    2014-09-01

    Sirtuin 1 (Sirt1) plays an important role in cellular redox balance and resistance to oxidative stress. Sirt1 exhibits oncogenic properties in wild-type p53 cancer cells, whereas it acts as a tumor suppressor in p53-mutated cancer cells. Here, we investigated the effects of metformin on Sirt1 expression in several cancer cell lines. Using human cancer cell lines that exhibit differential expression of p53, we found that metformin reduced Sirt1 protein levels in cancer cells bearing wild-type p53, but did not affect Sirt1 protein levels in cancer cell lines harboring mutant forms of p53. Metformin-induced p53 protein levels in wild-type p53 cancer cells resulted in upregulation of microRNA (miR)-34a. The use of a miR-34a inhibitor confirmed that metformin-induced miR-34a was required for Sirt1 downregulation. Metformin suppressed peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (Pgc-1α) expression and its downstream target Nrf2 in MCF-7 cells. Genetic tools demonstrated that the reduction of Sirt1 and Pgc-1α by metformin caused Nrf2 downregulation via suppression of PPARγ transcriptional activity. Metformin reduced heme oxygenase-1 and superoxide dismutase 2 but upregulated catalase expression in MCF-7 cells. Metformin-treated MCF-7 cells had no increase in basal levels of reactive oxygen species but were more susceptible to oxidative stress. Furthermore, upregulation of death receptor 5 by metformin-mediated Sirt1 downregulation enhanced the sensitivity of wild-type p53 cancer cells to TRAIL-induced apoptosis. Our results demonstrated that metformin induces miR-34a to suppress the Sirt1/Pgc-1α/Nrf2 pathway and increases susceptibility of wild-type p53 cancer cells to oxidative stress and TRAIL-induced apoptosis.

  7. Increased acetylation of lysine 317/320 of p53 caused by BCR-ABL protects from cytoplasmic translocation of p53 and mitochondria-dependent apoptosis in response to DNA damage

    NARCIS (Netherlands)

    Kusio-Kobialka, Monika; Wolanin, Kamila; Podszywalow-Bartnicka, Paulina; Sikora, Ewa; Skowronek, Krzysztof; McKenna, Sharon L.; Ghizzoni, Massimo; Dekker, Frank J.; Piwocka, Katarzyna

    2012-01-01

    Chronic myeloid leukemia (CML) is a disorder of hematopoietic stem cells caused by the expression of BCR-ABL. Loss of p53 has not been implicated as important for the development of CML. Mutations in p53 protein are infrequent, however they correlate with the disease progression. The absence of p53

  8. 贲门癌端粒酶活性表达及与p53基因突变关系的研究%Relationship of telomerase activity and p53 gene mutation in cardiac cancer

    Institute of Scientific and Technical Information of China (English)

    Jingruo li; Mengquan li; Jiangtao Li; Juntao Bao; Yunhang Zhang

    2007-01-01

    Objective: To study the relationship of the telomerase activity and the p53 gene mutation in cardiac cancer.Methods: Telomerase activity and the p53 gene mutation were detected in 46 case of cardiac cancer, peri-cancerous and 30 case of normal mucosa by TRAP-ELISA and PCR-SSCP. Results: The rate of expression of telomerase activity in cardiac cancer, peri-cancerous and normal mucosa were 82.61% (38/46), 43.48% (20/46) and 13.33% (4/30) respectively. The rate of Exon5→8 of p53 gene mutation were 39.13% (18/46), 4.35% (2/46) and 0.00% respectively. There was significant differ ence between group cancer and without cancer (P < 0.01). Mean of (A) value of telomerase is 1.89 ± 0.41 in cancer group and were 1.49 ± 0.43, 0.54 ± 0.45 respectively in peri-canvcerous and normal mucosa, there were significant differences in cancer group and group of without cancer (P < 0.05). The rate of p53 gene mutations in group of expression of telomerase activity was 44.74% (17/38), and 12.50% (1/8) in without expression of telomerase activity. There were significant differences between the two groups. Conclusion: The rate of expression of telomerase activity and mean of (A) value of telomerase in cardiac cancer were obviously higher than without cancer, which indicating telomerase activity was closely related with the occurrence of cardiac cancer. P53 gene mutation in cardiac cancer were higher than the tissue of without cancer, and the rate of p53 gene mutation in telomerase activity were obviously higher than the group of without cancer. This shows the p53 gene mutation can loss of function of suppressing cancer and prompt telomerase activity and cause the cardiac cancer.

  9. Arenobufagin activates p53 to trigger esophageal squamous cell carcinoma cell apoptosis in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Lv J

    2017-02-01

    Full Text Available Junhong Lv,1 Shaohuan Lin,1 Panli Peng,2 Changqing Cai,2 Jianming Deng,1 Mingzhi Wang,1 Xuejun Li,1 Rongsheng Lin,3 Yu Lin,4 Ailing Fang,5 Qiling Li5 1Thoracic Surgeons Department, 2Oncology No 2 Department, Guangdong No 2 Provincial People’s Hospital, Guangzhou, 3Department of Oncology, Shunde Longjiang Hospital, Foshan, 4Department of Gastroenterology, Puning Overseas Chinese Hospital, 5Galactophore Department, Puning Maternity and Child Care Hospital, Puning, People’s Republic of China Abstract: Esophageal squamous cell carcinoma (ESCC is often diagnosed at late incurable stage and lacks effective treatment strategy. Bufadienolides are cardiotonic steroids isolated from the skin and parotid venom glands of the toad Bufo bufo gargarizans Cantor with novel anticancer activity. However, there is little information about the effects and action mechanisms of bufadienolides on ESCC cells. In this study, the in vitro and in vivo anti-ESCC activities of bufadienolides, including bufalin (Bu and arenobufagin (ArBu, were examined and the underlying molecular mechanisms were elucidated. The results showed that ArBu exhibited higher anticancer efficacy than Bu against a panel of five ESCC cells, with IC50 values ranging from 0.8 µM to 3.6 µM. However, ArBu showed lower toxicity toward Het-1A human normal esophageal squamous cells, indicating its great selectivity between cancer and normal cells. Moreover, ArBu effectively induced ESCC cell apoptosis mainly by triggering caspase activation through intrinsic and extrinsic pathways. Treatment of ESCC cells also significantly activated p53 signaling by enhancing its phosphorylation. Interestingly, transfection of cells with p53 small interfering RNA significantly inhibited the ArBu-induced p53 phosphorylation and the overall apoptotic cell death. Furthermore, ArBu also demonstrated novel in vivo anticancer efficacy by inhibiting the tumor growth through activation of p53 pathway. Taken together

  10. A novel cell-penetrating peptide derived from WT1 enhances p53 activity, induces cell senescence and displays antimelanoma activity in xeno- and syngeneic systems

    Directory of Open Access Journals (Sweden)

    Mariana H. Massaoka

    2014-01-01

    Full Text Available The Wilms tumor protein 1 (WT1 transcription factor has been associated in malignant melanoma with cell survival and metastasis, thus emerging as a candidate for targeted therapy. A lysine–arginine rich peptide, WT1-pTj, derived from the ZF domain of WT1 was evaluated as an antitumor agent against A2058 human melanoma cells and B16F10-Nex2 syngeneic murine melanoma. Peptide WT1-pTj quickly penetrated human melanoma cells and induced senescence, recognized by increased SA-β-galactosidase activity, enhanced transcriptional activity of p53, and induction of the cell cycle inhibitors p21 and p27. Moreover, the peptide bound to p53 and competed with WT1 protein for binding to p53. WT1-pTj treatment led to sustained cell growth suppression, abrogation of clonogenicity and G2/M cell cycle arrest. Notably, in vivo studies showed that WT1-pTj inhibited both the metastases and subcutaneous growth of murine melanoma in syngeneic mice, and prolonged the survival of nude mice challenged with human melanoma cells. The 27-amino acid cell-penetrating WT1-derived peptide, depends on C3 and H16 for effective antimelanoma activity, inhibits proliferation of WT1-expressing human tumor cell lines, and may have an effective role in the treatment of WT1-expressing malignancies.

  11. Benzene activates caspase-4 and -12 at the transcription level, without an association with apoptosis, in mouse bone marrow cells lacking the p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jung-Yeon; Han, Jeong-Hee; Yoon, Byung-Il [Kangwon National University, School of Veterinary Medicine, Chuncheon, Gangwon (Korea); Hirabayashi, Yoko; Kodama, Yukio; Kanno, Jun [National Institute of Health Sciences, Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, Tokyo (Japan); Choi, Yang-Kyu [Konkuk University, College of Veterinary Medicine, Seoul (Korea); Inoue, Tohru [National Institute of Health Sciences, Biological Safety and Research Center, Tokyo (Japan)

    2009-08-15

    Benzene is a well-known environmental pollutant that can induce hematotoxicity, aplastic anemia, acute myelogenous leukemia, and lymphoma. However, although benzene metabolites are known to induce oxidative stress and disrupt the cell cycle, the mechanism underlying lympho/leukemogenicity is not fully understood. Caspase-4 (alias caspase-11) and -12 are inflammatory caspases implicated in inflammation and endoplasmic reticulum stress-induced apoptosis. The objectives of this study were to investigate the altered expression of caspase-4 and -12 in mouse bone marrow after benzene exposure and to determine whether their alterations are associated with benzene-induced bone marrow toxicity, especially cellular apoptosis. In addition, we evaluated whether the p53 gene is involved in regulating the mechanism, using both wild-type (WT) mice and mice lacking the p53 gene. For this study, 8-week-old C57BL/6 mice [WT and p53 knockout (KO)] were administered a benzene solution (150 mg/kg diluted in corn oil) via oral gavage once daily, 5 days/week, for 1 or 2 weeks. Blood and bone marrow cells were collected and cell counts were measured using a Coulter counter. Total mRNA and protein extracts were prepared from the harvested bone marrow cells. Then qRT-PCR and Western blotting were performed to detect changes in the caspases at the mRNA and protein level, respectively. A DNA fragmentation assay and Annexin-V staining were carried out on the bone marrow cells to detect apoptosis. Results indicated that when compared to the control, leukocyte number and bone marrow cellularity decreased significantly in WT mice. The expression of caspase-4 and -12 mRNA increased significantly after 12 days of benzene treatment in the bone marrow cells of benzene-exposed p53KO mice. However, apoptosis detection assays indicated no evidence of apoptosis in p53KO or WT mice. In addition, no changes of other apoptosis-related caspases, such as caspase-3 and -9, were found in WT or p53KO mice at the

  12. Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yu [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Zhan, Qian [The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Xu, Hongying [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Li, Lili; Li, Chen [Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute (Hong Kong); Xiao, Qian; Xiang, Shili; Hui, Tianli [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Xiang, Tingxiu, E-mail: larissaxiang@163.com [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Ren, Guosheng, E-mail: rengs726@126.com [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2016-06-10

    The KRAB–zinc-finger protein ZNF545 was recently identified as a potential suppressor gene in several tumors. However, the regulatory mechanisms of ZNF545 in tumorigenesis remain unclear. In this study, we investigated the expression and roles of ZNF545 in multiple myeloma (MM). ZNF545 was frequently downregulated in MM tissues compared with non-tumor bone marrow tissues. ZNF545 expression was silenced by promoter methylation in MM cell lines, and could be restored by demethylation treatment. ZNF545 methylation was detected in 28.3% of MM tissues, compared with 4.3% of normal bone marrow tissues. ZNF545 transcriptionally activated the p53 signaling pathway but had no effect on Akt in MM, whereas ectopic expression of ZNF545 in silenced cells suppressed their proliferation and induced apoptosis. We therefore identified ZNF545 as a novel tumor suppressor inhibiting tumor growth through activation of the p53 pathway in MM. Moreover, tumor-specific methylation of ZNF545 may represent an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. -- Highlights: •Downregulated ZNF545 in MM tissues and cell lines and ectopic expression of ZNF545 suppresses tumor growth. •Tumor-specific methylation of ZNF545 represents an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. •ZNF545 exerts its tumor suppressive effects via transcriptional activating p53 pathway.

  13. Cellular adaptation to hypoxia and p53 transcription regulation

    Institute of Scientific and Technical Information of China (English)

    Yang ZHAO; Xue-qun CHEN; Ji-zeng DU

    2009-01-01

    Tumor suppressor p53 is the most frequently mutated gene in human tumors. Meanwhile, under stress conditions, p53 also acts as a transcription factor, regulating the expression of a series of target genes to maintain the integrity of genome. The target genes of p53 can be classified into genes regulating cell cycle arrest, genes involved in apoptosis, and genes inhibiting angiogenesis. p53 protein contains a transactivation domain, a sequence-specific DNA binding domain, a tetramerization domain, a non-specific DNA binding domain that recognizes damaged DNA, and a later identified proline-rich domain. Under stress, p53 proteins accumulate and are activated through two mechanisms. One, involving ataxia telangiectasia-mutated protein (ATM), is that the interaction between p53 and its down-regulation factor murine double minute 2 (MDM2) decreases, leading to p53 phosphorylation on Ser15, as determined by the post-translational mechanism; the other holds that p53 increases and is activated through the binding of ribosomal protein L26 (RPL26) or nucleolin to p53 mRNA 5' untranslated region (UTR), regulating p53 translation. Under hypoxia, p53 decreases transactivation and increases transrepression. The mutations outside the DNA binding domain of p53 also contribute to tumor progress, so further studies on p53 should also be focused on this direction. The subterranean blind mole rat Spalax in Israel is a good model for hypoxia-adaptation. The p53 of Spalax mutated in residue 172 and residue 207 from arginine to lysine, conferring it the ability to survive hypoxic conditions. This model indicates that p53 acts as a master gene of diversity formation during evolution.

  14. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment.

    Science.gov (United States)

    Siebring-van Olst, Ellen; Blijlevens, Maxime; de Menezes, Renee X; van der Meulen-Muileman, Ida H; Smit, Egbert F; van Beusechem, Victor W

    2017-03-13

    Reinstating wild-type tumor suppressor p53 activity could be a valuable option for the treatment of cancer. To contribute to development of new treatment options for non-small cell lung cancer (NSCLC), we performed genome-wide siRNA screens for determinants of p53 activity in NSCLC cells. We identified many genes not previously known to be involved in regulating p53 activity. Silencing p53 pathway inhibitor genes was associated with loss of cell viability. The largest functional gene cluster influencing p53 activity was mRNA splicing. Prominent p53 activation was observed upon silencing of specific spliceosome components, rather than by general inhibition of the spliceosome. Ten genes were validated as inhibitors of p53 activity in multiple NSCLC cell lines: genes encoding the Ras-pathway activator SOS1, the zinc finger protein TSHZ3, the mitochondrial membrane protein COX16 and the spliceosome components SNRPD3, SF3A3, SF3B1, SF3B6, XAB2, CWC22 and HNRNPL. Silencing these genes generally increased p53 levels, with distinct effects on CDKN1A expression, induction of cell cycle arrest and cell death. Silencing spliceosome components was associated with alternative splicing of MDM4 mRNA, which could contribute to activation of p53. In addition, silencing splice factors was particularly effective in killing NSCLC cells, albeit in a p53-independent manner. Interestingly, silencing SNRPD3 and SF3A3 exerted much stronger cytotoxicity to NSCLC cells than to lung fibroblasts, suggesting that these genes could represent useful therapeutic targets. This article is protected by copyright. All rights reserved.

  15. p53 in stem cells

    Institute of Scientific and Technical Information of China (English)

    Valeriya; Solozobova; Christine; Blattner

    2011-01-01

    p53 is well known as a "guardian of the genome" for differentiated cells,in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability.In addition to this tumor suppressor function for differentiated cells,p53 also plays an important role in stem cells.In this cell type,p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation.Additionally,p53 provides an effective barrier for the generation of pluripotent stem celllike cells from terminally differentiated cells.In this review,we summarize our current knowledge about p53 activities in embryonic,adult and induced pluripotent stem cells.

  16. Ribavirin enhances the action of interferon-α against hepatitis C virus by promoting the p53 activity through the ERK1/2 pathway.

    Directory of Open Access Journals (Sweden)

    Wei-Liang Liu

    Full Text Available BACKGROUND/AIMS: Ribavirin significantly enhances the antiviral response of interferon-α (IFN-α against Hepatitis C virus (HCV, but the underlying mechanisms remain poorly understood. Recently, p53 has been identified as an important factor involving the suppression of HCV replication in hepatocytes. We, therefore, decided to investigate whether and how ribavirin inhibits the replication of HCV by promoting the activity of p53. METHODS: HepG2 and HCV replicons (JFH1/HepG2 were utilized to study the relationship between ribavirin and p53. The effect of ribavirin on cell cycles was analyzed by flow cytometry. The activation of p53 and the signaling pathways were determined using immunoblotting. By knocking down ERK1/ERK2 and p53 utilizing RNA interference strategy, we further assessed the role of ERK1/2 and p53 in the suppression of HCV replication by ribavirin in a HCV replicon system. RESULTS: Using HepG2 and HCV replicons, we demonstrated that ribavirin caused the cell cycle arrest at G1 phase and stabilized and activated p53, which was associated with the antiviral activity of ribavirin. Compared to either ribavirin or IFN-α alone, ribavirin plus IFN-α resulted in greater p53 activation and HCV suppression. We further identified ERK1/2 that linked ribavirin signals to p53 activation. More importantly, knockdown of ERK1/2 and p53 partially mitigated the inhibitory effects of ribavirin on the HCV replication, indicating that ERK1/2-p53 pathway was involved in the anti-HCV effects of ribavirin. CONCLUSION: Ribavirin stimulates ERK1/2 and subsequently promotes p53 activity which at least partly contributes to the enhanced antiviral response of IFN-α plus ribavirin against HCV.

  17. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish

    Directory of Open Access Journals (Sweden)

    Zhou T

    2016-12-01

    well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG-b-PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG-b-PCL nano-micelles, indicating that PEG-b-PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG-b-PCL nano-micelle could pose potential hazards to cardiovascular development. Keywords: nanoparticles, PEG-b-PCL, cardiovascular diseases, angiogenesis, zebrafish, apoptosis

  18. Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells.

    Science.gov (United States)

    Yang, Hua; He, Lili; Kruk, Patricia; Nicosia, Santo V; Cheng, Jin Q

    2006-11-15

    Aurora-A is frequently altered in epithelial malignancies. Overexpressing Aurora-A induces centrosome amplification and G2/M cell cycle progression. We have previously shown elevated level of Aurora-A in ovarian cancer and activation of telomerase by Aurora-A in human mammary and ovarian epithelia. Here we report that Aurora-A protects ovarian cancer cells from apoptosis induced by chemotherapeutic agent and activates Akt pathway in a p53-dependent manner. Ectopic expression of Aurora-A renders cells resistant to cisplatin (CDDP), etoposide and paclitaxel-induced apoptosis and stimulates Akt1 and Akt2 activity in wild-type p53 but not p53-null ovarian cancer cells. Aurora-A inhibits cytochrome C release and Bax conformational change induced by CDDP. Knockdown of Aurora-A by RNAi sensitizes cells to CDDP-induced apoptosis and decreases phospho-Akt level in wild-type p53 cells. Reintroduction of p53 decreases Akt1 and Akt2 activation and restores CDDP sensitivity in p53-null but not p53-null-Aurora-A cells. Inhibition of Akt by small molecule inhibitor, API-2, overcomes the effects of Aurora-A-on cell survival and Bax mitochondrial translocation. Taken collectively, these data indicate that Aurora-A activates Akt and induces chemoresistance in a p53-dependent manner and that inhibition of Akt may be an effective means of overcoming Aurora-A-associated chemoresistance in ovarian cancer cells expressing wild-type p53.

  19. The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans

    OpenAIRE

    Pant, Vinod; Quintás-Cardama, Alfonso; Lozano, Guillermina

    2012-01-01

    Aberrations in the p53 tumor suppressor pathway are associated with hematologic malignancies. p53-dependent cell cycle control, senescence, and apoptosis functions are actively involved in maintaining hematopoietic homeostasis under normal and stress conditions. Whereas loss of p53 function promotes leukemia and lymphoma development in humans and mice, increased p53 activity inhibits hematopoietic stem cell function and results in myelodysplasia. Thus, exquisite regulation of p53 activity is ...

  20. Activation of anaphase-promoting complex by p53 induces a state of dormancy in cancer cells against chemotherapeutic stress

    Science.gov (United States)

    Dai, Yafei; Wang, Lujuan; Tang, Jingqun; Cao, Pengfei; Luo, Zhaohui; Sun, Jun; Kiflu, Abraha; Sai, Buqing; Zhang, Meili; Wang, Fan; Li, Guiyuan; Xiang, Juanjuan

    2016-01-01

    Cancer dormancy is a stage in tumor progression in which residual disease remains occult and asymptomatic for a prolonged period. Cancer cell dormancy is the main cause of cancer recurrence and failure of therapy. However, cancer dormancy is poorly characterized and the mechanisms of how cancer cells develop dormancy and relapse remain elusive. In this study, 5- fluorouracil (5-FU) was used to induce cancer cell dormancy. We found that cancer cells escape the cytotoxicity of 5-FU by becoming “dormant”. After exposure to 5-FU, residual non-small cell lung cancer (NSCLC) cells underwent epithelial-mesenchymal transition (EMT), followed by mesenchymal-epithelial transition (MET). These EMT-transformed NSCLC cells were in the state of cell quiescence where cells were not dividing and were arrested in the cell cycle in G0-G1. The dormant cells underwent an EMT showed characteristics of cancer stem cells. P53 is strongly accumulated in response to 5-FU-induced dormant cells through the activation of ubiquitin ligase anaphase-promoting complex (APC/C) and TGF-β/Smad signaling. In contrast to the EMT-transformed cells, MET-transformed cells showed an increased ability to proliferate, suggesting that dormant EMT cells were reactivated in the MET process. During the EMT-MET process, DNA repair including nonhomologous end joining (NHEJ) and homologous recombination (HR) is critical to dormant cell reactivation. Our findings provide a mechanism to unravel cancer cell dormancy and reactivation of the cancer cell population. PMID:27009858

  1. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  2. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    NARCIS (Netherlands)

    Simeonova, I.; Jaber, S.; Draskovic, I.; Bardot, B.; Fang, M.; Bouarich-Bourimi, R.; Lejour, V.; Charbonnier, L.; Soudais, C.; Bourdon, J.C.; Huerre, M.; Londono-Vallejo, A.; Toledo, F.

    2013-01-01

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53(Delta31), a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis,

  3. Study of the expressions of p53 and bcl-2 genes, the telomerase activity and apoptosis in GIST patients

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; You-Wei Kou

    2007-01-01

    AIM: To explore the relationship between clinicobiological behavior and the expression levels of telomerase activity,apoptosis, p53 gene and bcl-2 gene in gastrointestinal stromal tumors (GISTs).METHODS: The intensity of telomerase activity,apoptosis, p53 and bcl-2 expression in GISTs were detected by telomeric repeat amplification protocol, in situ end-labeling technique, and immunohistochemistry,respectively.RESULTS: The positive rates of telomerase activity of malignant GIST, potential malignant GIST and benign GIST were 85% (17/20), 22.8% (2/9) and 0 (0/9),respectively. The apoptosis indices of malignant GIST,potential malignant GIST, and benign GIST were 11.7 ± 5.4, 30.2 ± 5.6 and 45.2 ± 7.2, respectively. The intensity of telomerase activity and apoptosis were related to the biological characteristics of GISTs (85% vs 22.8%, 0, 0; P < 0.01 or 11.7±5.4 vs 30.2 ± 5.6, 45.2 ± 7.2, 72.1 ± 9.3; P < 0.05). The intensity of telomerase activity was negatively correlated with cellular apoptosis (22.9 ± 8.4 vs 9.5 ± 5.7, P < 0.01). The intensity of telomerase activity was positively correlated with p53,bcl-2 expression (40.0% vs 78.9%, 40.0% vs 84.2%;P < 0.05).CONCLUSION: The detection of telomerase activity,apoptosis and its control genes in GIST will be helpful for the discrimination of the malignant and benign GIST and evaluation of the prognosis.

  4. Exposure to chronic hyperglycemic conditions results in Ras-related C3 botulinum toxin substrate 1 (Rac1)-mediated activation of p53 and ATM kinase in pancreatic β-cells.

    Science.gov (United States)

    Sidarala, Vaibhav; Kowluru, Anjaneyulu

    2017-02-21

    Chronic hyperglycemia (HG) promotes pancreatic islet dysfunction which leads to the onset of T2DM. This study is aimed at defining regulatory roles of Rac1, a small G-protein, in the activation of p53 and ATM kinase in pancreatic β-cells, under the duress of HG conditions. We report significant stimulatory effects of HG (20 mM; 24 h) on p53 activation in INS-1 832/13 cells, normal rodent and human islets. Pharmacological inhibition of Rac1 (EHT1864 or NSC23766) significantly suppressed HG-induced p53 activation in INS-1 832/13 cells and rat islets, suggesting novel roles for this small G-protein in the activation of p53. Inhibition of Rac1 geranylgeranylation with simvastatin or GGTI-2147, significantly attenuated HG-induced p53 activation, suggesting requisite roles for this signaling step in HG-mediated effects on β-cells. HG-induced p53 activation was also suppressed by SB203580, a known inhibitor of p38MAPK. Additionally, we observed increased activation of ATM kinase under HG conditions, which was blocked in presence of EHT1864. Furthermore, pharmacological inhibition of ATM kinase (KU55933) reduced activation of ATM kinase, but not p53, suggesting that HG-mediated activation of p53 and ATM could represent independent pro-apoptotic events. In conclusion, these data indicate that sustained activation of Rac1-p38MAPK signaling axis leads to activation of p53 leading to β-cell dysfunction under the duress of chronic hyperglycemic conditions.

  5. Identification and design of p53-derived HLA-A2-binding peptides with increased CTL immunogenicity

    DEFF Research Database (Denmark)

    Petersen, T R; Buus, S; Brunak, S;

    2001-01-01

    of peptide binding to HLA-A2 molecules, we identified three p53 protein-derived nonamer peptides with intermediate binding owing to suboptimal amino acids in the P2 anchor position. These peptides were synthesized along with the corresponding analogs, where the natural P2 residue had been replaced...

  6. Effect of p53 activation on cell growth, thymidine kinase-1 activity, and 3'-deoxy-3'fluorothymidine uptake

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Jeffrey L. E-mail: jschwart@u.washington.edu; Tamura, Yasuko; Jordan, Robert; Grierson, John R.; Krohn, Kenneth A

    2004-05-01

    The use of thymidine (TdR) and thymidine analogs such as 3'-deoxy-3'-fluorothymidine (FLT) as positron emission tomography (PET)-based tracers of tumor proliferation rate is based on the hypothesis that measurement of uptake of these nucleosides, a function primarily of thymidine kinase-1 (TK{sub 1}) activity, provides an accurate measure of cell proliferation in tumors. Tumor growth is influenced by many factors including the oxygen concentration within tumors and whether tumor cells have been exposed to cytotoxic therapies. The p53 gene plays an important role in regulating growth under both of these conditions. The goal of this study was to investigate the influence of p53 activation on cell growth, TK{sub 1} activity, and FLT uptake. To accomplish this, TK{sub 1} activity, S phase fraction, and the uptake of FLT were determined in plateau-phase and exponentially growing cultures of an isogenic pair of human tumor cell lines in which p53 expression was normal or inactivated by human papilloma virus type 16 E6 expression. Ionizing radiation exposure was used to stimulate p53 activity and to induce alterations in cell cycle progression. We found that exposure of cells to ionizing radiation induced dose-dependent changes in cell cycle progression in both cell lines. The relationship between S phase percentage, TK{sub 1} activity, and FLT uptake were essentially unchanged in the p53-normal cell line. In contrast, TK{sub 1} activity and FLT uptake remained high in the p53-deficient variant even when S phase percentage was low due to a p53-dependent G2 arrest. We conclude that a functional p53 response is required to maintain the normal relationship between TK1 activity and S phase percentage following radiation exposure.

  7. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells.

    Science.gov (United States)

    Yang, Lina; Zhou, Yunjiao; Li, Yinghua; Zhou, Juan; Wu, Yougen; Cui, Yunqing; Yang, Gong; Hong, Yang

    2015-02-28

    Although mutations of p53 and KRAS and activation of NF-κB signaling have been highly associated with chemoresistance and tumorigenesis of lung cancer, the interactive mechanisms between two of p53, KRAS, and NF-κB are elusive. In the present study, we first observed that blocking of NF-κB function in KRAS mutant A549 cell line with an IκBα mutant (IκBαM) inhibited cell cycle progression, anti-apoptosis, chemoresistance, and tumorigenesis. Silencing of p53 or KRAS in A549 or H358 cells either enhanced or attenuated the resistance of cells to cisplatin and taxol through promotion or suppression of the NF-κB p65 nuclear translocation. Introduction of a wild type p53 into p53 null lung cancer cell lines H1299 and H358 inhibited NF-κB activity, leading to the enhanced response to chemotherapeutic drugs. Delivery of a mutant p53 or KRAS-V12 into A549/IκBαM or H1299/p53Wt cells increased cell cycle progression, anti-apoptosis, chemoresistance, and tumorigenesis due to the accumulated nuclear localization of NF-κB p65, while treatment of H1299/p53Wt/KRAS-V12 with NF-κB inhibitor PS1145 diminished these effects. Thus, we conclude that p53 deficiency and KRAS mutation activate the NF-κB signaling to control chemoresistance and tumorigenesis, and that the status of p53 and KRAS may be considered for the targeted therapy against NF-κB in lung cancer patients.

  8. The APE1 Asp/Asp genotype and the combination of APE1 Asp/Asp and hOGG1-Cys variants are associated with increased p53 mutation in non-small cell lung cancer.

    Science.gov (United States)

    Lin, Chun-Hsuan; Chen, Po-Ming; Cheng, Ya-Wen; Chen, Chih-Yi; Yuan, Chiun-Jye; Lee, Huei

    2012-01-01

    The hOGG1 Ser326Cys polymorphism is associated with lung cancer risk, but there are limited data regarding an association between the APE1 Asp148Glu polymorphism and lung cancer. Biological evidence shows that the hOGG1-Cys allele results in less DNA repair activity; however, this is not associated with p53 mutation in lung cancer. Therefore, we investigated whether an interaction between hOGG1 and APE1 is associated with the frequency of p53 mutation in lung cancer. We studied 217 Taiwanese adults with primary lung cancer. DNA polymorphisms of hOGG1 and APE1 were determined by polymerase chain reaction (PCR)-based restriction fragment length polymorphism. Mutations in p53 exons 5-8 were detected by direct sequencing. Multiple logistic regression was used to estimate odds ratios (ORs) and 95% CIs for the risk of p53 mutation associated with polymorphisms of hOGG1 and APE1 in lung cancer. As expected, no association between hOGG1 polymorphism and p53 mutation was observed in this population. However, a higher risk of p53 mutation was found in participants with the APE1 Asp/Asp genotype than in those with the APE1-Glu allele (OR, 2.15; 95% CI, 1.19-3.87; P = 0.011). The risk of p53 mutation was also higher in participants with APE1 Asp/Asp plus hOGG1-Cys than in those with APE1-Glu plus hOGG1 Ser/Ser (OR, 3.72; 95% CI, 1.33-10.40; P = 0.012). These results suggest that the APE1 Asp/Asp genotype and the combination of the APE1 Asp/Asp and hOGG1-Cys variants are associated with increased risk of p53 mutation in non-small cell lung cancer.

  9. Activation of the miR-34a/SIRT1/p53 Signaling Pathway Contributes to the Progress of Liver Fibrosis via Inducing Apoptosis in Hepatocytes but Not in HSCs.

    Directory of Open Access Journals (Sweden)

    Xiao-Feng Tian

    Full Text Available Liver fibrosis results from a sustained wound healing response to chronic liver injury, and the activation of nonparenchymal hepatic stellate cells (HSCs is the pivotal process. MicroRNA-34a (miR-34a is the direct target gene of p53 and activates p53 through sirtuin 1 (SIRT1 simultaneously. The miR-34a/SIRT1/p53 signaling pathway thus forms a positive feedback loop wherein p53 induces miR-34a and miR-34a activates p53 by inhibiting SIRT1, playing an important role in cell proliferation and apoptosis. miR-34a expression has been found to be increased in animal models or in human patients with different liver diseases, including liver fibrosis. However, the exact role of this classical miR-34a/SIRT1/p53 signaling pathway in liver fibrosis remains unclear. In the present study, using a CCl4-induced rat liver fibrosis model, we found that the miR-34a/SIRT1/p53 signaling pathway was activated and could be inhibited by SIRT1 activator SRT1720. Further studies showed that the miR-34a/SIRT1/p53 signaling pathway was activated in hepatocytes but not in HSCs. The activation of this pathway in hepatocytes resulted in the apoptosis of hepatocytes and thus activated HSCs. Our data indicate that the miR-34a/SIRT1/p53 signaling pathway might be a promising therapeutic target for liver fibrosis.

  10. Targeting RING domains of Mdm2-MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells.

    Science.gov (United States)

    Wu, W; Xu, C; Ling, X; Fan, C; Buckley, B P; Chernov, M V; Ellis, L; Li, F; Muñoz, I G; Wang, X

    2015-12-31

    Reactivation of tumor-suppressor p53 for targeted cancer therapy is an attractive strategy for cancers bearing wild-type (WT) p53. Targeting the Mdm2-p53 interface or MdmX ((MDM4), mouse double minute 4)-p53 interface or both has been a focus in the field. However, targeting the E3 ligase activity of Mdm2-MdmX really interesting new gene (RING)-RING interaction as a novel anticancer strategy has never been explored. In this report, we describe the identification and characterization of small molecule inhibitors targeting Mdm2-MdmX RING-RING interaction as a new class of E3 ligase inhibitors. With a fluorescence resonance energy transfer-based E3 activity assay in high-throughput screening of a chemical library, we identified inhibitors (designated as MMRis (Mdm2-MdmX RING domain inhibitors)) that specifically inhibit Mdm2-MdmX E3 ligase activity toward Mdm2 and p53 substrates. MMRi6 and its analog MMRi64 are capable of disrupting Mdm2-MdmX interactions in vitro and activating p53 in cells. In leukemia cells, MMRi64 potently induces downregulation of Mdm2 and MdmX. In contrast to Nutlin3a, MMRi64 only induces the expression of pro-apoptotic gene PUMA (p53 upregulated modulator of apoptosis) with minimal induction of growth-arresting gene p21. Consequently, MMRi64 selectively induces the apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Owing to the distinct mechanisms of action of MMRi64 and Nutlin3a, their combination synergistically induces p53 and apoptosis. Taken together, this study reveals that Mdm2-MdmX has a critical role in apoptotic response of the p53 pathway and MMRi64 may serve as a new pharmacological tool for p53 studies and a platform for cancer drug development.

  11. Downregulation of wild-type p53 protein by HER-2/neu mediated PI3K pathway activation in human breast cancer cells:its effect on cell proliferation and implication for therapy

    Institute of Scientific and Technical Information of China (English)

    Li ZHENG; Jia Qiang REN; Hua LI; Zhao Lu KONG; Hong Guang ZHU

    2004-01-01

    Overexpression and activation of HER-2/neu (also known as c-erbB-2), a proto-oncogene, was found in about 30%of human breast cancers, promoting cancer growth and making cancer cells resistant to chemo- and radio-therapy.Wild-type p53 is crucial in regulating cell growth and apoptosis and is found to be mutated or deleted in 60-70% of human cancers. And some cancers with a wild-type p53 do not have normal p53 function, suggesting that it is implicated in a complex process regulated by many factors. In the present study, we showed that the overexpression of HER-2/neu could decrease the amount of wild-type p53 protein via activating PI3K pathway, as well as inducing MDM2 nuclear translocation in MCF7 human breast cancer ceils. Blockage of PI3K pathway with its specific inhibitor LY294002 caused G1-S phase arrest, decreased cell growth rate and increased chemo- and radio-therapeutic sensitivity in MCF7 cells expressing wild-type p53. However, it did not increase the sensitivity to adriamycin in MDA-MB-453 breast cancer cells containing mutant p53. Our study indicates that blocking PI3K pathway activation mediated by HER-2/neu overexpression may be useful in the treatment of breast tumors with HER-2/neu overexpression and wild-type p53.

  12. Ligation of cancer cell surface GRP78 with antibodies directed against its COOH-terminal domain up-regulates p53 activity and promotes apoptosis.

    Science.gov (United States)

    Misra, Uma Kant; Mowery, Yvonne; Kaczowka, Steven; Pizzo, Salvatore Vincent

    2009-05-01

    Binding of activated α(2)-macroglobulin to GRP78 on the surface of human prostate cancer cells promotes proliferation by activating signaling cascades. Autoantibodies directed against the activated α(2)-macroglobulin binding site in the NH(2)-terminal domain of GRP78 are receptor agonists, and their presence in the sera of cancer patients is a poor prognostic indicator. We now show that antibodies directed against the GRP78 COOH-terminal domain inhibit [(3)H]thymidine uptake and cellular proliferation while promoting apoptosis as measured by DNA fragmentation, Annexin V assay, and clonogenic assay. These antibodies are receptor antagonists blocking autophosphorylation and activation of GRP78. Using 1-LN and DU145 prostate cancer cell lines and A375 melanoma cells, which express GRP78 on their cell surface, we show that antibodies directed against the COOH-terminal domain of GRP78 up-regulate the tumor suppressor protein p53. By contrast, antibody directed against the NH(2)-terminal domain of GRP78 shows negligible effects on p53 expression. PC-3 prostate cancer cells, which do not express GRP78 on their cell surface, are refractory to the effects of anti-GRP78 antibodies directed against either the COOH- or NH(2)-terminal domains. However, overexpression of GRP78 in PC-3 cells causes translocation of GRP78 to the cell surface and promotes apoptosis when these cells are treated with antibody directed against its COOH-terminal domain. Silencing GRP78 or p53 expression by RNA interference significantly blocked the increase in p53 induced by antibodies. Antibodies directed against the COOH-terminal domain may play a therapeutic role in cancer patients whose tumors trigger the production of autoantibodies directed against the NH(2)-terminal domain of GRP78.

  13. RGS6 is an essential tumor suppressor that prevents bladder carcinogenesis by promoting p53 activation and DNMT1 downregulation.

    Science.gov (United States)

    Yang, Jianqi; Platt, Lance T; Maity, Biswanath; Ahlers, Katelin E; Luo, Zili; Lin, Zhibo; Chakravarti, Bandana; Ibeawuchi, Stella-Rita; Askeland, Ryan W; Bondaruk, Jolanta; Czerniak, Bogdan A; Fisher, Rory A

    2016-10-25

    Urinary bladder cancer (UBC) is largely caused by exposure to toxic chemicals including those in cigarette smoke (i.e. BBN). An activating SNP in RGS6 is associated with a pronounced reduction in UBC risk, especially among smokers. However, the mechanism underlying this reduction remains unknown. Here we demonstrate that RGS6 is robustly expressed in human urothelium, where urothelial cell carcinoma originates, and is downregulated in human UBC. Utilizing RGS6-/- mice we interrogated a possible role for RGS6 as a tumor suppressor using the BBN-induced bladder carcinogenesis model that closely recapitulates human disease. As in humans, RGS6 is robustly expressed in mouse urothelium. RGS6 loss dramatically accelerates BBN-induced bladder carcinogenesis, with RGS6-/- mice consistently displaying more advanced pathological lesions than RGS6+/+ mice. Furthermore, BBN treatment promotes urothelial RGS6 mRNA and protein downregulation. RGS6 loss impairs p53 activation and promotes aberrant accumulation of oncogenic protein DNMT1 in urothelium. Tumor suppressor RASSF1A, a DNMT1-regulated gene, is also silenced, likely via methylation of its promoter during BBN exposure. We hypothesize that this BBN-induced RGS6 loss represents a critical hit in UBC as it irrevocably impairs the anti-proliferative actions of the ATM/p53 and RASSF1A pathways. Consistent with these findings, RGS6-/- mice treated with CP-31398, a p53-stablizing agent, and/or 5-Aza, a DNMT1 inhibitor, are protected from BBN-induced tumorigenesis. Together, our data identify RGS6 as a master tumor suppressor modulating two critical signaling pathways that are often dysregulated in UBC; therefore, RGS6 represents a potential novel biomarker for UBC diagnosis/prognosis and an appealing new target in its treatment.

  14. NAD+ Modulates p53 DNA Binding Specificity and Function

    Science.gov (United States)

    McLure, Kevin G.; Takagi, Masatoshi; Kastan, Michael B.

    2004-01-01

    DNA damage induces p53 DNA binding activity, which affects tumorigenesis, tumor responses to therapies, and the toxicities of cancer therapies (B. Vogelstein, D. Lane, and A. J. Levine, Nature 408:307-310, 2000; K. H. Vousden and X. Lu, Nat. Rev. Cancer 2:594-604, 2002). Both transcriptional and transcription-independent activities of p53 contribute to DNA damage-induced cell cycle arrest, apoptosis, and aneuploidy prevention (M. B. Kastan et al., Cell 71:587-597, 1992; K. H. Vousden and X. Lu, Nat. Rev. Cancer 2:594-604, 2002). Small-molecule manipulation of p53 DNA binding activity has been an elusive goal, but here we show that NAD+ binds to p53 tetramers, induces a conformational change, and modulates p53 DNA binding specificity in vitro. Niacinamide (vitamin B3) increases the rate of intracellular NAD+ synthesis, alters radiation-induced p53 DNA binding specificity, and modulates activation of a subset of p53 transcriptional targets. These effects are likely due to a direct effect of NAD+ on p53, as a molecule structurally related to part of NAD+, TDP, also inhibits p53 DNA binding, and the TDP precursor, thiamine (vitamin B1), inhibits intracellular p53 activity. Niacinamide and thiamine affect two p53-regulated cellular responses to ionizing radiation: rereplication and apoptosis. Thus, niacinamide and thiamine form a novel basis for the development of small molecules that affect p53 function in vivo, and these results suggest that changes in cellular energy metabolism may regulate p53. PMID:15509798

  15. Prediction of dual agents as an activator of mutant p53 and inhibitor of Hsp90 by docking, molecular dynamic simulation and virtual screening.

    Science.gov (United States)

    Abbasi, Maryam; Sadeghi-Aliabadi, Hojjat; Hassanzadeh, Farshid; Amanlou, Massoud

    2015-09-01

    Heat shock protein90s (Hsp90s) play a crucial role in the development of cancer, and their inhibitors are a main target for tumor suppression. P53 also is a tumor suppressor, but in cancer cells, mutations in the p53 gene lead to the inactivation and accumulation of protein. For instance, the ninth p53 cancer mutation, Y220C, destabilizes the p53 core domain. Small molecules have been assumed to bind to Y220C DNA-binding domain and reactivate cellular mutant p53 functions. In this study, one of the mutant p53 activators is suggested as an Hsp90 inhibitor according to a pyrazole scaffold. To confirm a new ligand as a dual agent, molecular docking and molecular dynamic simulations were performed on both proteins (p53 and Hsp90). Molecular dynamic simulations were also conducted to evaluate the obtained results on the other two pyrazole structures, one known as Hsp90 inhibitor and the other as the reported mutant p53 activator. The findings indicate that the new ligand was stable in the active site of both proteins. Finally, a virtual screening was performed on ZINC database, and a set of new dual agents was proposed according to the new ligand scaffold. Copyright © 2015. Published by Elsevier Inc.

  16. Induction of Cullin 7 by DNA damage attenuates p53 function

    OpenAIRE

    2007-01-01

    The p53 tumor suppressor gene encodes a transcription factor, which is translationally and posttranslationally activated after DNA damage. In a proteomic screen for p53 interactors, we found that the cullin protein Cul7 efficiently associates with p53. After DNA damage, the level of Cul7 protein increased in a caffeine-sensitive, but p53-independent, manner. Down-regulation of Cul7 by conditional microRNA expression augmented p53-mediated inhibition of cell cycle progression. Ectopic expressi...

  17. Inositol hexaphosphate induces apoptosis by coordinative modulation of P53, Bcl-2 and sequential activation of caspases in 7,12 dimethylbenz[a]anthracene exposed mouse epidermis.

    Science.gov (United States)

    Singh, Jaya; Gupta, Krishna P

    2008-01-01

    Inositol hexaphosphate (IP6) is a major constituent of most cereals, legumes, nuts, oil seeds, and soybean. Anticancer effects of IP6 have been demonstrated in different experimental models. Besides reducing cell proliferation, IP6 increases differentiation of malignant cells, often resulting in restoring the normal phenotype. Exogenously administered IP6 is rapidly taken into the cells and dephosphorylated to lower-phosphate, inositol phosphates, which further interfere with signal transduction pathways and cell cycle arrest. Enhanced immunity and antioxidant properties could also contribute to tumor cell destruction. However, the molecular mechanisms underlying this anticancer action are not fully understood. The present study deals with the effect of topical application of IP6 on some of the selective and critical events of apoptosis in DMBA exposed mouse epidermis. IP6 showed an inhibition of DMBA-induced mutant (mt) p53 expression. Similarly, DMBA induced over expression of Bcl-2 was also reversed by topical treatment of IP6. In addition to the modulation of mt p53 and Bcl-2 expressions, IP6 brought the DMBA-inhibited activity of caspases back to the normal or induced it above the normal levels. The effects of IP6 appeared to be the function of its dose and the duration of its exposure. These results suggested that topically applied IP6 directly induces apoptotic machinery by modulating the expression of mt p53, Bcl-2, and caspase activity.

  18. MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism

    DEFF Research Database (Denmark)

    Akita, Hirofumi; Marquardt, Jens U; Durkin, Marian E;

    2014-01-01

    Activation of c-MYC is an oncogenic hallmark of many cancers including liver cancer, and is associated with a variety of adverse prognostic characteristics. Despite a causative role during malignant transformation and progression in hepatocarcinogenesis, consequences of c-MYC activation for the b...

  19. Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line.

    Science.gov (United States)

    Ye, Yiyi; Liu, Jianwen; Xu, Jianhe; Sun, Lijuan; Chen, Mingcang; Lan, Minbo

    2010-04-01

    Nanoparticles such as nano-SiO(2) are increasingly used in food, cosmetics, diagnosis, imaging and drug delivery. However, toxicological data of nano-SiO(2) on hepatic cells in vitro and their detailed molecular mechanisms still remain unclear. In order to assess toxicity of nano-SiO(2), L-02 cells were exposed to 0.2, 0.4 and 0.6 mg/ml of SiO(2) colloids (21, 48 and 86 nm) for 12, 24, 36 and 48h. Lactate dehydrogenase released from damaged cells were quantified, cellular ultrastructural organization was observed, and the levels of reactive oxygen species (ROS), lipid peroxidation and glutathione were measured. Apoptosis induced by 21 nm SiO(2) was characterized by annexin V-FITC/PI staining and DNA ladder assay. Furthermore, apoptosis related proteins such as p53, Bax and Bcl-2 were analyzed by using western blot analysis. Our data indicated that nano-SiO(2) caused cytotoxicity in size, dose and time dependent manners. Oxidative stress and apoptosis were induced by exposure to 21 nm SiO(2). Moreover, the expression of p53 and Bax was increased in time and dose dependent patterns, whereas the expression of Bcl-2 was not significantly changed. In conclusion, ROS-mediated oxidative stress, the activation of p53 and up-regulation of Bax/Bcl-2 ratio are involved in mechanistic pathways of 21 nm SiO(2) induced apoptosis in L-02 cells.

  20. MicroRNA Control of p53.

    Science.gov (United States)

    Liu, Juan; Zhang, Cen; Zhao, Yuhan; Feng, Zhaohui

    2017-01-01

    Tumor suppressor p53 plays a central role in tumor suppression. As a transcription factor, p53 mainly exerts its tumor suppressive function through transcriptional regulation of many target genes. To maintain the proper function of p53, p53 protein level and activity are exquisitely controlled by a group of positive and negative regulators in cells. Thus, p53, its regulators, and regulated genes form a complicated p53 signaling network. microRNAs (miRNAs) are a group of endogenous small non-coding RNA molecules. miRNAs play an important role in regulation of gene expression by blocking translational protein synthesis and/or degrading target mRNAs. Recent studies have demonstrated that p53 and its network are regulated by miRNAs at multiple levels. Some miRNAs regulate the level and function of p53 through directly targeting p53, whereas some other miRNAs target regulators of p53, such as MDM2 and MDM4, to indirectly regulate the activity and function of p53. On the other hand, p53 also regulates the transcriptional expression and the biogenesis of a group of miRNAs, which contributes to the tumor suppressive function of p53. p53 is the most frequently mutated gene in human cancer. Many tumor-associated mutant p53, which have "gain-of-function" activities in tumorigenesis independently of wild type p53, can regulate the expression of different miRNAs and modulate the biogenesis of specific miRNAs to promote tumorigenesis. These findings have demonstrated that miRNAs are important regulators and mediators of p53 and its signaling pathway, which highlights a pivotal role of miRNAs in the p53 network and cancer. J. Cell. Biochem. 118: 7-14, 2017. © 2016 Wiley Periodicals, Inc.

  1. Mdm2 ligase dead mutants did not act in a dominant negative manner to re-activate p53, but promoted tumor cell growth.

    Science.gov (United States)

    Swaroop, Manju; Sun, Yi

    2003-01-01

    Mdm2 (murine double minute 2) is an oncogene, first identified in BALB/c 3T3 cells. Over-expression and gene amplification of Mdm2 were found in a variety of human cancers. Recently, Mdm2 was found to be an E3 ubiquitin ligase that promotes degradation of p53, which contributes significantly to its oncogenic activity. In this study, we test a hypothesis that Mdm2 ligase dead mutants, which retained p53 binding activity but lost degradation activity, would act in a dominant negative manner to re-activate p53, especially upon stressed conditions. Five Mdm2 constructs expressing wild-type and E3 ligase-dead Mdm2 proteins were generated in a Tet-Off system and transfected into MCF-7 breast cancer cells (p53+/+ with Mdm2 overexpression) as well as MCF10A immortalized breast cells (p53+/+ without Mdm2 overexpression) as a normal control. We found that expression of Mdm2 mutants were tightly regulated by doxycycline. Withdrawal of doxycycline in culture medium triggered overexpression of Mdm2 mutants. However, expression of ligase dead mutants in MCF7 and MCF10A cells did not reactivate p53 as shown by a luciferase-reporter transcription assay and Western blot of p53 and its downstream target p21 under either unstressed condition or after exposure to DNA damaging agents. Biologically, over-expression of Mdm2 mutants had no effect on p53-induced apoptosis following DNA damage. Interestingly, over-expression of Mdm2 mutants promoted growth of MCF7 tumor cells probably via a p53-independent mechanism. Over-expression of Mdm2 mutants, however, had no effect on the growth of normal MCF10A cells and did not cause their transformation. Thus, ligase dead mutants of Mdm2 did not act in a dominant negative manner to reactivate p53 and they are not oncogenes in MCF10A cells.

  2. Assessment of p21, p53 expression, and Ki-67 proliferative activities in the gastric mucosa of children with Helicobacter pylori gastritis.

    Science.gov (United States)

    Saf, Coskun; Gulcan, Enver Mahir; Ozkan, Ferda; Cobanoglu Saf, Seyhan Perihan; Vitrinel, Ayca

    2015-02-01

    Helicobacter pylori that is generally acquired in childhood and infects the gastric mucosa is considered to be responsible for many pathobiological changes that are linked to the pathogenesis of gastric cancer. Although the majority of studies on the subject have been carried out in adults, there are a limited number of studies on children that reflect the early period of infection and may be of greater significance. We aimed to determine the role of H. pylori infection and/or gastritis in several histopathological changes, p53, p21, and cell proliferation-associated Ki-67 antigen expression in the gastric mucosa. We studied 60 patients with a mean age of 7.5 ± 4.5 years at referral. On the basis of endoscopic appearance and the evaluation of the gastric antral specimens, the patients were divided into three groups: patients without gastritis, patients with H. pylori-positive gastritis, and patients with H. pylori-negative gastritis. To determine the expression of p53, Ki-67, and p21 in gastric biopsy specimens, immunohistochemical stains were performed. The incidence of neutrophil activity, which was one of our histopathologic parameters, was significantly higher in the H. pylori-positive gastritis group than the other two groups. The presence of lymphoid aggregate was more frequent in H. pylori ± gastritis groups than the nongastritis group. p53 expression was found to be significantly higher in the H. pylori-positive gastritis group than the nongastritis group. Ki-67 and p21 expressions were significantly more frequent in the H. pylori-positive gastritis group than the other two groups. When we evaluated the density of H. pylori, as the density of bacteria increases, we found that the expressions of p53, p21, and Ki-67 increased significantly. Expression of the studied precancerous markers in significant amounts indicates the importance of childhood H. pylori infection in the constitution of gastric cancer in adulthood.

  3. Flavonoids in Ginkgo biloba fallen leaves induce apoptosis through modulation of p53 activation in melanoma cells.

    Science.gov (United States)

    Park, Hye-Jung; Kim, Moon-Moo

    2015-01-01

    The aim of the present study was to examine the apoptotic effect of flavonoids in methanol extracts of Ginkgo biloba fallen leaves (MEGFL) on melanoma cells. Ginkgo biloba is a deciduous castle chaplain and its leaves include various types of flavonoids such as flavonol-O-glycosides. Ginkgo biloba is known to have therapeutic properties against a number of diseases such as cerebrovascular diseases, blood circulation disease and hypertension. In the present study MEGFL exhibited a higher cytotoxic effect on melanoma cells than Ginkgo biloba leaves (MEGL). It was also found that MEGFL induced apoptotic cell death which was characterized by DNA fragmentation. During the cell death process following treatment with MEGFL, the expression of a variety of death-associated proteins including p53, caspase-3, caspase-9, cytochrome c and Bax were analyzed in the cytosol of melanoma cells. MEGFL significantly increased the expression levels of caspase-3, caspase-9 and p53 in a dose-dependent manner. Our results indicate that MEGFL induced apoptotic cell death by increasing the expression of cell death-associated proteins in melanoma cells.

  4. p53 Acetylation: Regulation and Consequences

    Directory of Open Access Journals (Sweden)

    Sara M. Reed

    2014-12-01

    Full Text Available Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  5. p53 Acetylation: Regulation and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  6. Aryl hydrocarbon receptor nuclear translocator (ARNT) isoforms control lymphoid cancer cell proliferation through differentially regulating tumor suppressor p53 activity.

    Science.gov (United States)

    Gardella, Kacie A; Muro, Israel; Fang, Gloria; Sarkar, Krishnakali; Mendez, Omayra; Wright, Casey W

    2016-03-01

    The aryl hydrocarbon receptor nuclear translocator (ARNT) is involved in xenobiotic and hypoxic responses, and we previously showed that ARNT also regulates nuclear factor-κB (NF-κB) signaling by altering the DNA binding activity of the RelB subunit. However, our initial study of ARNT-mediated RelB modulation was based on simultaneous suppression of the two ARNT isoforms, isoform 1 and 3, and precluded the examination of their individual functions. We find here that while normal lymphocytes harbor equal levels of isoform 1 and 3, lymphoid malignancies exhibit a shift to higher levels of ARNT isoform 1. These elevated levels of ARNT isoform 1 are critical to the proliferation of these cancerous cells, as suppression of isoform 1 in a human multiple myeloma (MM) cell line, and an anaplastic large cell lymphoma (ALCL) cell line, triggered S-phase cell cycle arrest, spontaneous apoptosis, and sensitized cells to doxorubicin treatment. Furthermore, co-suppression of RelB or p53 with ARNT isoform 1 prevented cell cycle arrest and blocked doxorubicin induced apoptosis. Together our findings reveal that certain blood cancers rely on ARNT isoform 1 to potentiate proliferation by antagonizing RelB and p53-dependent cell cycle arrest and apoptosis. Significantly, our results identify ARNT isoform 1 as a potential target for anticancer therapies.

  7. HDAC6 deacetylates p53 at lysines 381/382 and differentially coordinates p53-induced apoptosis.

    Science.gov (United States)

    Ryu, Hyun-Wook; Shin, Dong-Hee; Lee, Dong Hoon; Choi, Junjeong; Han, Gyoonhee; Lee, Kang Young; Kwon, So Hee

    2017-04-10

    HDAC6-selective inhibitors represent promising new cancer therapeutic agents, but their precise mechanisms of action are not well understood. In particular, p53's role in HDAC6 inhibitor-induced effects has not been fully elucidated. In this study, we show that an HDAC6-selective inhibitor, A452, increased wild-type p53 levels by destabilizing MDM2, but decreased mutant p53 by inducing MDM2 and inhibiting Hsp90-mutant p53 complex formation. Interestingly, HDAC6 levels inversely correlated with p53 acetylation at lysines 381/382 associated with p53 functional activation. A452 blocked HDAC6 nuclear localization, resulting in increased levels of acetylated p53 at Lys381/382. HDAC6 bound to the C-terminal region of p53 via its deacetylase domain. A452 disrupted the HDAC6-Hsp90 chaperone machinery via Hsp90 acetylation and degradation. Furthermore, it chemosensitized cancer cells to the Hsp90 inhibitor 17-AAG. Overall, silencing of HDAC6 showed similar effects. These findings suggest that the anticancer action of HDAC6 inhibitors requires p53 and Hsp90 and targeting of HDAC6 may represent a new therapeutic strategy for cancers regardless of p53's mutation status.

  8. p53 isoform profiling in glioblastoma and injured brain.

    Science.gov (United States)

    Takahashi, R; Giannini, C; Sarkaria, J N; Schroeder, M; Rogers, J; Mastroeni, D; Scrable, H

    2013-06-27

    The tumor suppressor p53 has been found to be the most commonly mutated gene in human cancers; however, the frequency of p53 mutations varies from 10 to 70% across different cancer types. This variability can partly be explained by inactivating mechanisms aside from direct genomic polymorphisms. The p53 gene encodes 12 isoforms, some of which can modulate full-length p53 activity in cancer. In this study, we characterized p53 isoform expression patterns in glioblastoma, gliosis, non-tumor brain and neural progenitor cells by SDS-PAGE, immunoblot, mass spectrometry and reverse transcription-PCR. We found that the most consistently expressed isoform in glioblastoma, Δ40p53, was uniquely expressed in regenerative processes, such as those involving neural progenitor cells and gliosis compared with tumor samples. Isoform profiling of glioblastoma tissues revealed the presence of both Δ40p53 and full-length p53, neither of which were detected in non-tumor cerebral cortex. Upon xenograft propagation of tumors, p53 levels increased. The variability of overall p53 expression and relative levels of isoforms suggest fluctuations in subpopulations of cells with greater or lesser capacity for proliferation, which can change as the tumor evolves under different growth conditions.

  9. Epicatechin gallate induces cell death via p53 activation and stimulation of p38 and JNK in human colon cancer SW480 cells.

    Science.gov (United States)

    Cordero-Herrera, Isabel; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2013-01-01

    The tea flavonoid epicatechin gallate (ECG) exhibits a wide range of biological activities. In this study, the in vitro anticancer effects of ECG on SW480 colon cancer cell line was investigated by analyzing the cell cycle, apoptosis, key proteins involved in cellular survival/proliferation, namely AKT/phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinases (MAPKs), and the role of p53 in these processes. ECG induced cell cycle arrest at the G0/G1-S phase border associated with the stimulation of p21, p-p53, and p53 and the suppression of cyclins D1 and B1. Exposure of SW480 cells to ECG also led to apoptosis as determined by time-dependent changes in caspase-3 activity, MAPKs [extracellular regulated kinase (ERK), p38, and c-jun amino-terminal kinase (JNK)], p21 and p53 activation, and AKT inhibition. The presence of pifithrin, an inhibitor of p53 function, blocked ECG-induced apoptosis as was manifested by restored cell viability and caspase-3 activity to control values and reestablished the balance among Bcl-2 anti- and proapoptotic protein levels. Interestingly, ECG also inhibited p53 protein and RNA degradation, contributing to the stabilization of p53. In addition, JNK and p38 have been identified as necessary for ECG-induced apoptosis, upon activation by p53. The results suggest that the activation of the p53-p38/JNK cascade is required for ECG-induced cell death in SW480 cells.

  10. p53 Acetylation: Regulation and Consequences

    OpenAIRE

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo ev...

  11. Expression of a constitutively active prolactin receptor causes histone trimethylation of the p53 gene in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Tan Dunyong; Tang Peizhi; Huang Jianjun; Zhang Jie; Zhou Weihua; Ameae M.Walker

    2014-01-01

    Background Prolactin (PRL) is a pituitary polypeptide hormone characterized by multiple biological actions including stimulation of growth in the prostate and formation of secretory alveoli and stimulation of milk protein gene expression in the mammary gland.PRL exerts its effect by dimerizing its receptor (PRLR) on the plasma membrane and regulating gene expression through the JAK-Stat signal pathway.We have previously described a natural variant of the PRLR in which the S2 subdomain of the extracellular domain is missing (Delta S2).Delta S2 PRLRs are dimerized in the absence of PRL and have constitutive activity in the promotion of breast cancer cell growth.Enhancer of zeste homolog 2 (EZH2),as one of the histone-modifying enzymes,is a key factor regulating gene expression by epigenetic modification.We hypothesized that these constitutive activated Delta S2 PRLRs played a pathogenic role in breast cancer in part through alterations in the expression of EZH2 and the trimethylation of histone 3 on lysine 27 (H3K27Me3).Methods In order to verify the clinical significance and to establish the link between Delta S2 PRLR expression and epigenetic change,EZH2,H3K27Me3,and Delta S2 PRLR were detected in both normal and cancerous human breast tissues.Also,overexpression of Delta S2 PRLR in breast epithelial cells was achieved by infection with adenovirus carrying the cDNA.Western blotting and chromatin immunoprecipitation (ChIP assay) and acid histone extraction were applied to detect the expression of EZH2 and the trimethylation of histone 3,respectively.Results In breast tissue,higher EZH2 expression and higher H3K27Me3 were found associated with higher Delta S2 expression in breast cancer samples.In breast epithelial cells,overexpression of Delta S2 PRLR increased EZH2 methyltransferase mRNA and protein,induced EZH2 methyltransferase recruitment to chromatin,increased the trimethylation of H3K27Me3,and decreased the expression of p53 gene.Conclusions Delta S2 PRLR

  12. LZAP Inhibits p38 MAPK (p38) Phosphorylation and Activity by Facilitating p38 Association with the Wild-Type p53 Induced Phosphatase 1 (WIP1)

    OpenAIRE

    Hanbing An; Xinyuan Lu; Dan Liu; Wendell G Yarbrough

    2011-01-01

    LZAP (Cdk5rap3, C53) is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its p...

  13. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  14. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53’s transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin [West Biostatistics and Cost-effectiveness Research Center, Medical Insurance Office, West China Hospital of Sichuan University, 610041, Sichuan (China); Li, Yu [Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Sichuan (China); Yang, Bangxiang, E-mail: b19933009@qq.coom [Department of Pain Management, West China Hospital of Sichuan University, 610041, Sichuan (China)

    2016-09-09

    Long non-coding RNAs (lncRNAs) was found to play critical roles in tumorigenesis, hence, screen of tumor-related lncRNAs, identification of their biological roles is important for understanding the processes of tumorigenesis. In this study, we identified the expressing difference of several tumor-related lncRNAs in breast cancer samples and found that, MEG3, which is downregulated in non-small cell lung cancer (NSCLC) tumor tissues, is also downregulated in breast cancer samples compared with adjacent tissues. For figuring out the effect of MEG3 in breast cancer cells MCF7 and MB231, we overexpressed MEG3 in these cells, and found that it resulted the inhibition of proliferation, colony formation, migration and invasion capacities by enhancing p53’s transcriptional activity on its target genes, including p21, Maspin and KAI1. MEG3 presented similar effects in MB157, which is a p53-null breast cancer cell line, when functional p53 but not p53R273H mutant, which lacks transcriptional activity, was introduced. Surprisingly, overexpression of MEG3 activates p53’s transcriptional activity by decreasing MDM2’s transcription level, and thus stabilizes and accumulates P53. Taken together, our findings indicate that MEG3 is downregulated in breast cancer tissues and affects breast cancer cells’ malignant behaviors, which indicate MEG3 a potential therapeutic target for breast cancer. - Highlights: • MEG3 RNA is widely downregulated in breast tumor tissue. • MEG3 regulates P53 indirectly through transcriptional regulation of MDM2. • Under unstressed condition, MEG3-related P53 accumulation transcriptionally activates p53’s target genes. • MEG3 expression level tightly regulates proliferation, colony formation, migration and invasion in breast tumor cells.

  15. Stimulation of DDX3 expression by ginsenoside Rg3 through the Akt/p53 pathway activates the innate immune response via TBK1/IKKε/IRF3 signalling.

    Science.gov (United States)

    Choi, Yeo-Jin; Kang, Li-Jung; Lee, Seong-Gene

    2014-01-01

    DEAD-box RNA helicase DDX3 is a well-known host factor that inhibits hepatitis B viral proliferation and boosts innate immune responses via TANK-binding kinase 1 (TBK1)/IKKε-mediated and/or interferon (IFN)-β promoter stimulator-1 (IPS-1)-mediated IFN-β induction. Previously, we demonstrated the anti-hepatitis B activity of Rg3 via stimulation of TRAF6/TAK1 degradation and inhibition of JNK/AP-1 signaling. To determine the effects of Rg3 on innate immunity, an IFN-β promoter assay was performed. Rg3 ameliorated IFN-β expression via upregulation of both the TBK1/IKKε pathway and DDX3 expression. In addition, Rg3 induced the phosphorylation of IRF3 and its translocation into nucleus, which is a key molecule to induction of IFN-β expression. To evaluate the molecular mechanism of Rg3 on DDX3 expression, the DDX3 promoter (-1406/+105) was subjected to luciferase assay and ChIP analysis. p53 phosphorylation resulted in upregulation of DDX3 expression, which enhanced DDX3 promoter transactivation activity. Transient transfection with wild-type p53 increased DDX3 promoter activity in Hep3B cells which have null mutant of p53, whereas knockdown p53 by si-p53 reduced DDX3 promoter activity in HepG2.2.15 and HepG2 cells, respectively. Rg3- mediated phosphorylation of p53 resulted in inhibition of Akt phosphorylation, which in turn reduced MDM2-mediated p53 degradation. An Akt inhibitor augmented DDX3 promoter activity and reduced the secretion of hepatitis B surface antigen. Our data indicate that Rg3 enhances innate immunity by inducing IFN-β expression through upregulation of DDX3 promoter activity via p53-mediated transactivation and activation of the TBK1/IKKε/IRF3 pathway.

  16. Wild type p53 increased chemosensitivity of drug-resistant human hepatocellular carcinoma Be17402 / 5-FU cells%野生型p53增强药物耐药的人肝癌细胞Bel7402/5-FU的化疗敏感性

    Institute of Scientific and Technical Information of China (English)

    李玉秀; 林志彬; 谭焕然

    2004-01-01

    AIM: To study the effect of wild type (wt) p53 gene transfection on drug resistant human hepatocellular carcinoma (HCC) cells induced by 5-Fluorouracil (5-FU). METHODS: The cytotoxicity of anticancer drugs on Be17402 and Be17402/5-FU cells was assessed using SRB assay. p53 expression was detected at its mRNA level by RT-PCR assay and at its protein level Western blot or immunocytochemistry assay in Be17402/5-FU cells transfected with either control vector or wt p53. AnnexinV-FITC/PI double labeled assay was performed to detect apoptosis. The chemosensitivity of Be17402/5-FU cells transfected with wt p53 was assessed using SRB assay. RESULTS: Be17402/5-FU cells exhibited cross-resistance to vincristine, doxorubicin, paclitaxel, and so on. wt p53 gene transfection upregulated the expression of p53 in Be17402/5-FU cells. wt p53 was able to greatly inhibit cell proliferation and significantly induce apoptosis in Bel7402/5-FU cells. Moreover, wt p53 gene transfection increased the chemosensitivity of Be17402/5-FU cells to some anticancer drugs. CONCLUSION: These results indicated that the wt p53 gene transfection not only induced suppression of cell growth, but also increased the sensitivity of Be17402/5-FU cells to 5-FU, vincristine, and doxorubicin.

  17. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity

    DEFF Research Database (Denmark)

    Danovi, Davide; Meulmeester, Erik; Pasini, Diego

    2004-01-01

    Human tumors are believed to harbor a disabled p53 tumor suppressor pathway, either through direct mutation of the p53 gene or through aberrant expression of proteins acting in the p53 pathway, such as p14(ARF) or Mdm2. A role for Mdmx (or Mdm4) as a key negative regulator of p53 function in vivo...... has been established. However, a direct contribution of Mdmx to tumor formation remains to be demonstrated. Here we show that retrovirus-mediated Mdmx overexpression allows primary mouse embryonic fibroblast immortalization and leads to neoplastic transformation in combination with HRas(V12......). Furthermore, the human Mdmx ortholog, Hdmx, was found to be overexpressed in a significant percentage of various human tumors and amplified in 5% of primary breast tumors, all of which retained wild-type p53. Hdmx was also amplified and highly expressed in MCF-7, a breast cancer cell line harboring wild...

  18. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Wei-Ru Huang

    Full Text Available Avian reovirus (ARV protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128 of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  19. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Science.gov (United States)

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  20. Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-κB target genes in human breast cancer

    Science.gov (United States)

    Dalmases, Alba; González, Irene; Menendez, Silvia; Arpí, Oriol; Corominas, Josep Maria; Servitja, Sonia; Tusquets, Ignasi; Chamizo, Cristina; Rincón, Raúl; Espinosa, Lluis; Bigas, Anna; Eroles, Pilar; Furriol, Jessica; Lluch, Anna; Rovira, Ana; Albanell, Joan; Rojo, Federico

    2014-01-01

    NF-κB has been linked to doxorubicin resistance in breast cancer patients. NF-κB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined; however its functional relevance at transcriptional level on NF-κB -dependent genes and the biological consequences are unclear. We studied NF-κB -dependent gene expression induced by doxorubicin in breast cancer cells and fresh human cancer specimens with different genetic backgrounds focusing on their p53 status. NF-κB -dependent signature of doxorubicin was identified by gene expression microarrays in breast cancer cells treated with doxorubicin and the IKKβ-inhibitor MLN120B, and confirmed ex vivo in human cancer samples. The association with p53 was functionally validated. Finally, NF-κB activation and p53 status was determined in a cohort of breast cancer patients treated with adjuvant doxorubicin-based chemotherapy. Doxorubicin treatment in the p53-mutated MDA-MB-231 cells resulted in NF NF-κB driven-gene transcription signature. Modulation of genes related with invasion, metastasis and chemoresistance (ICAM-1, CXCL1, TNFAIP3, IL8) were confirmed in additional doxorubicin-treated cell lines and fresh primary human breast tumors. In both systems, p53-defcient background correlated with the activation of the NF-κB -dependent signature. Furthermore, restoration of p53WT in the mutant p53 MDA-MB-231 cells impaired NF-κB driven transcription induced by doxorubicin. Moreover, a p53 deficient background and nuclear NF-κB /p65 in breast cancer patients correlated with reduced disease free-survival. This study supports that p53 deficiency is necessary for a doxorubicin driven NF-κB -response that limits doxorubicin cytotoxicity in breast cancer and is linked to an aggressive clinical behavior. PMID:24344116

  1. Ganoderma lucidum Polysaccharides Induce Macrophage-Like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation

    Directory of Open Access Journals (Sweden)

    Jia-Wei Hsu

    2011-01-01

    Full Text Available Differentiation therapy by induction of tumor cells is an important method in the treatment of hematological cancers such as leukemia. Tumor cell differentiation ends cancer cells' immortality, thus stopping cell growth and proliferation. In our previous study, we found that fucose-containing polysaccharide fraction F3 extracted from Ganoderma lucidum can bring about cytokine secretion and cell death in human leukemia THP-1 cells. This prompted us to further investigate on how F3 induces the differentiation in human leukemia cells. We integrated time-course microarray analysis and network modeling to study the F3-induced effects on THP-1 cells. In addition, we determined the differentiation effect using Liu's staining, nitroblue tetrazolium (NBT reduction assay, flow cytometer, western blotting and Q-PCR. We also examined the modulation and regulation by F3 during the differentiation process. Dynamic gene expression profiles showed that cell differentiation was induced in F3-treated THP-1 cells. Furthermore, F3-treated THP-1 cells exhibited enhanced macrophage differentiation, as demonstrated by changes in cell adherence, cell cycle arrest, NBT reduction and expression of differentiation markers including CD11b, CD14, CD68, matrix metalloproteinase-9 and myeloperoxidase. In addition, caspase cleavage and p53 activation were found to be significantly enhanced in F3-treated THP-1 cells. We unraveled the role of caspases and p53 in F3-induced THP-1 cells differentiation into macrophages. Our results provide a molecular explanation for the differentiation effect of F3 on human leukemia THP-1 cells and offer a prospect for a potential leukemia differentiation therapy.

  2. Structural visualization of the p53/RNA polymerase II assembly.

    Science.gov (United States)

    Singh, Sameer K; Qiao, Zhen; Song, Lihua; Jani, Vijay; Rice, William; Eng, Edward; Coleman, Robert A; Liu, Wei-Li

    2016-11-15

    The master tumor suppressor p53 activates transcription in response to various cellular stresses in part by facilitating recruitment of the transcription machinery to DNA. Recent studies have documented a direct yet poorly characterized interaction between p53 and RNA polymerase II (Pol II). Therefore, we dissected the human p53/Pol II interaction via single-particle cryo-electron microscopy, structural docking, and biochemical analyses. This study reveals that p53 binds Pol II via the Rpb1 and Rpb2 subunits, bridging the DNA-binding cleft of Pol II proximal to the upstream DNA entry site. In addition, the key DNA-binding surface of p53, frequently disrupted in various cancers, remains exposed within the assembly. Furthermore, the p53/Pol II cocomplex displays a closed conformation as defined by the position of the Pol II clamp domain. Notably, the interaction of p53 and Pol II leads to increased Pol II elongation activity. These findings indicate that p53 may structurally regulate DNA-binding functions of Pol II via the clamp domain, thereby providing insights into p53-regulated Pol II transcription.

  3. Recognition of Local DNA Structures by p53 Protein.

    Science.gov (United States)

    Brázda, Václav; Coufal, Jan

    2017-02-10

    p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.

  4. Targeting cancer stem cells with p53 modulators

    Science.gov (United States)

    Hayashi, Ryo; Appella, Ettore; Kopelovich, Levy; DeLeo, Albert B.

    2016-01-01

    Cancer stem cells (CSC) typically over-express aldehyde dehydrogenase (ALDH). Thus, ALDHbright tumor cells represent targets for developing novel cancer prevention/treatment interventions. Loss of p53 function is a common genetic event during cancer development wherein small molecular weight compounds (SMWC) that restore p53 function and reverse tumor growth have been identified. Here, we focused on two widely studied p53 SMWC, CP-31398 and PRIMA-1, to target ALDHbright CSC in human breast, endometrial and pancreas carcinoma cell lines expressing mutant or wild type (WT) p53. CP-31398 and PRIMA-1 significantly reduced CSC content and sphere formation by these cell lines in vitro. In addition, these agents were more effective in vitro against CSC compared to cisplatin and gemcitabine, two often-used chemotherapeutic agents. We also tested a combinatorial treatment in methylcholantrene (MCA)-treated mice consisting of p53 SMWC and p53-based vaccines. Yet using survival end-point analysis, no increased efficacy in the presence of either p53 SMWC alone or with vaccine compared to vaccine alone was observed. These results may be due, in part, to the presence of immune cells, such as activated lymphocytes expressing WT p53 at levels comparable to some tumor cells, wherein further increase of p53 expression by p53 SMWC may alter survival of these immune cells and negatively impact an effective immune response. Continuous exposure of mice to MCA may have also interfered with the action of these p53 SMWC, including potential direct interaction with MCA. Nonetheless, the effect of p53 SMWC on CSC and cancer treatment remains of great interest. PMID:27074569

  5. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyu An

    Full Text Available Anticancer properties and mechanisms of mimulone (MML, C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3 puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA, pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.

  6. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    Science.gov (United States)

    Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  7. Activities of wildtype and mutant p53 in suppression of homologous recombination as measured by a retroviral vector system

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiongbin; Lozano, Guillermina; Donehower, Lawrence A

    2003-01-28

    DNA repair of double strand breaks, interstrand DNA cross-links, and other types of DNA damage utilizes the processes of homologous recombination and non-homologous end joining to repair the damage. Aberrant homologous recombination is likely to be responsible for a significant fraction of chromosomal deletions, duplications, and translocations that are observed in cancer cells. To facilitate measurement of homologous recombination frequencies in normal cells, mutant cells, and cancer cells, we have developed a high titer retroviral vector containing tandem repeats of mutant versions of a GFP-Zeocin resistance fusion gene and an intact neomycin resistance marker. Recombination between the tandem repeats regenerates a functional GFP-Zeo{sup R} marker that can be easily scored. This retroviral vector was used to assess homologous recombination frequencies in human cancer cells and rodent fibroblasts with differing dosages of wild type or mutant p53. Absence of wild type p53 stimulated spontaneous and ionizing radiation-induced homologous recombination, confirming previous studies. Moreover, p53{sup +/-} mouse fibroblasts show elevated levels of homologous recombination compared to their p53{sup +/+} counterparts following retroviral vector infection, indicating that p53 is haploinsufficient for suppression of homologous recombination. Transfection of vector-containing p53 null Saos-2 cells with various human cancer-associated p53 mutants revealed that these altered p53 proteins retain some recombination suppression function despite being totally inactive for transcriptional transactivation. The retroviral vector utilized in these studies may be useful in performing recombination assays on a wide array of cell types, including those not readily transfected by normal vectors.

  8. Activities of wildtype and mutant p53 in suppression of homologous recombination as measured by a retroviral vector system.

    Science.gov (United States)

    Lu, Xiongbin; Lozano, Guillermina; Donehower, Lawrence A

    2003-01-28

    DNA repair of double strand breaks, interstrand DNA cross-links, and other types of DNA damage utilizes the processes of homologous recombination and non-homologous end joining to repair the damage. Aberrant homologous recombination is likely to be responsible for a significant fraction of chromosomal deletions, duplications, and translocations that are observed in cancer cells. To facilitate measurement of homologous recombination frequencies in normal cells, mutant cells, and cancer cells, we have developed a high titer retroviral vector containing tandem repeats of mutant versions of a GFP-Zeocin resistance fusion gene and an intact neomycin resistance marker. Recombination between the tandem repeats regenerates a functional GFP-Zeo(R) marker that can be easily scored. This retroviral vector was used to assess homologous recombination frequencies in human cancer cells and rodent fibroblasts with differing dosages of wild type or mutant p53. Absence of wild type p53 stimulated spontaneous and ionizing radiation-induced homologous recombination, confirming previous studies. Moreover, p53(+/-) mouse fibroblasts show elevated levels of homologous recombination compared to their p53(+/+) counterparts following retroviral vector infection, indicating that p53 is haploinsufficient for suppression of homologous recombination. Transfection of vector-containing p53 null Saos-2 cells with various human cancer-associated p53 mutants revealed that these altered p53 proteins retain some recombination suppression function despite being totally inactive for transcriptional transactivation. The retroviral vector utilized in these studies may be useful in performing recombination assays on a wide array of cell types, including those not readily transfected by normal vectors.

  9. A p53-independent apoptotic mechanism of adenoviral mutant E1A was involved in its selective antitumor activity for human cancer

    Science.gov (United States)

    Fang, Lin; Cheng, Qian; Zhao, Jingjing; Ge, Yan; Zhu, Qi; Zhao, Min; Zhang, Jie; Zhang, Qi; Li, Liantao; Liu, Junjie; Zheng, Junnian

    2016-01-01

    The conserved regions (CR) of adenoviral E1A had been shown to be necessary for disruption of pRb-E2F transcription factor complexes and induction of the S phase. Here we constructed a mutant adenoviral E1A with Rb-binding ability absent (E1A 30-60aa and 120-127aa deletion, mE1A) and investigated its antitumor capacities in vitro and in vivo. The mE1A suppressed the viability of tumor cells as efficiently as the wild type E1A, and there was no cytotoxic effect on normal cells. Although the mE1A arrested tumor cell cycle with the same manner as E1A, the former played a different role on cell cycle regulation compared with E1A in normal cells, which might contribute to its selective antitumor activity. E1A and mE1A had accumulated inactive p53, decreased the expression of mdm2, Cdkn1a (also named p21), increased p21's nuclear distribution and induced tumor cell apoptosis in a p53-indenpent manner. Further, E1A or mE1A significantly suppressed tumor growth in subcutaneous hepatocellular carcinoma xenograft models. Especially, tumor-bearing mice treated with mE1A had higher survival rate than those treated with E1A. Our data demonstrated that mutant adenoviral E1A significantly induced tumor cell apoptosis in a p53-indenpednt manner and had selective tumor suppressing ability. The observations of adenoviral E1A mutant had provided a novel mechanism for E1A's complex activities during infection. PMID:27340782

  10. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin; Winnischofer, Sheila Maria Brochado, E-mail: sheilambw@ufpr.br

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 and p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.

  11. p53 downregulates the Fanconi anaemia DNA repair pathway.

    Science.gov (United States)

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-04-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.

  12. Cross-regulation of protein stability by p53 and nuclear receptor SHP.

    Directory of Open Access Journals (Sweden)

    Zhihong Yang

    Full Text Available We report here a novel interplay between tumor suppressor p53 and nuclear receptor SHP that controls p53 and SHP stability. Overexpression of p53 causes rapid SHP protein degradation, which does not require the presence of Mdm2 and is mediated by the proteosome pathway. Overexpressing SHP alone does not affect p53 stability. However, SHP destabilizes p53 by augmentation of Mdm2 ubiquitin ligase activity toward p53. The single amino acid substitution in the SHP protein SHPK170R increases SHP binding to p53 relative to SHP wild-type, whereas SHPG171A variant shows a diminished p53 binding. As a result of the cross-regulation, the tumor suppressor function of p53 and SHP in inhibition of colon cancer growth is compromised. Our findings reveal a unique scenario for a cross-inhibition between two tumor suppressors to keep their expression and function in check.

  13. Gene p53 mutations, protein p53, and anti-p53 antibodies as biomarkers of cancer process.

    Science.gov (United States)

    Lutz, Waldemar; Nowakowska-Swirta, Ewa

    2002-01-01

    The finding that gene mutations and changes in their expression form the basis of cancer processes, has prompted molecular epidemiologists to use biomarkers for detecting damaged genes or proteins synthesized under their control in easily available cellular material or systemic liquids. Mutations in the suppressor gen p53 are thought to be essential for cancer development. This gen is one of the most important regulators of transcription, cellular cycle, DNA repair and apoptosis detected till now. Inactivation of gene p53 leads to uncontrolled cell divisions, and further to transformation of normal cells into the carcinous ones. Observations that mutations in gene p53 appear under conditions of occupational and environmental exposures to chemical and physical carcinogens, such as vinyl chloride, radon, or aflatoxin B1, have proved to be of enormous importance for the occupational and environmental health. Changes in expression of gene p53, and also its mutations, cause variations of cellular protein p53 concentration. Higher cellular protein p53 levels are associated with increased protein transfer to the extracellular liquid and to blood. It has been observed that increased blood serum protein p53 concentrations may have a prognostic value in early diagnosis of lung cancer. The results of a number of studies confirm that accumulation of a mutated form of protein p53, and presumably also large quantities of wild forms of that protein in the cells, may be a factor that triggers the production of anti-p53 antibodies. Statistical analysis showed that anti-p53 antibodies can be regarded as a specific biomarker of cancer process. The prevalence of anti-p53 antibodies correlated with the degree of cancer malignancy. The increased incidence of anti-p53 antibodies was also associated with higher frequency of mutations in gene p53. There are some reports confirming that anti-p53 antibodies emerging in blood serum in the subclinical phase of cancer development may be

  14. Metabolic regulation by p53 family members.

    Science.gov (United States)

    Berkers, Celia R; Maddocks, Oliver D K; Cheung, Eric C; Mor, Inbal; Vousden, Karen H

    2013-11-05

    The function of p53 is best understood in response to genotoxic stress, but increasing evidence suggests that p53 also plays a key role in the regulation of metabolic homeostasis. p53 and its family members directly influence various metabolic pathways, enabling cells to respond to metabolic stress. These functions are likely to be important for restraining the development of cancer but could also have a profound effect on the development of metabolic diseases, including diabetes. A better understanding of the metabolic functions of p53 family members may aid in the identification of therapeutic targets and reveal novel uses for p53-modulating drugs.

  15. Dominant effects of Δ40p53 on p53 function and melanoma cell fate

    OpenAIRE

    2013-01-01

    The p53 gene encodes 12 distinct isoforms some of which can alter p53 activity in the absence of genomic alteration. Endogenous p53 isoforms have been identified in cancers; however, the function of these isoforms remains unclear. In melanoma, the frequency of p53 mutations is relatively low compared to other cancers suggesting that these isoforms may play a larger role in regulating p53 activity. We hypothesized that p53 function and therefore cell fate might be altered by the presence of Δ4...

  16. Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner.

    Science.gov (United States)

    Guo, W; Zhang, Y; Ling, Z; Liu, X; Zhao, X; Yuan, Z; Nie, C; Wei, Y

    2015-10-15

    Chemoresistance in cancer has previously been attributed to gene mutations or deficiencies. Bax or p53 deficiency can lead to resistance to cancer drugs. We aimed to find an agent to overcome chemoresistance induced by Bax or p53 deficiency. Here, we used immunoblot, flow-cytometry analysis, gene interference, etc. to show that genistein, a major component of isoflavone that is known to have anti-tumor activities in a variety of models, induces Bax/p53-independent cell death in HCT116 Bax knockout (KO), HCT116 p53 KO, DU145 Bax KO, or DU145 p53 KO cells that express wild-type (WT) Bak. Bak knockdown (KD) only partially attenuated genistein-induced apoptosis. Further results indicated that the release of AIF and endoG also contributes to genistein-induced cell death, which is independent of Bak activation. Conversely, AIF and endoG knockdown had little effect on Bak activation. Knockdown of either AIF or endoG alone could not efficiently inhibit apoptosis in cells treated with genistein, whereas an AIF, endoG, and Bak triple knockdown almost completely attenuated apoptosis. Next, we found that the Akt-Bid pathway mediates Bak-induced caspase-dependent and AIF- and endoG-induced caspase-independent cell death. Moreover, downstream caspase-3 could enhance the release of AIF and endoG as well as Bak activation via a positive feedback loop. Taken together, our data elaborate the detailed mechanisms of genistein in Bax/p53-independent apoptosis and indicate that caspase-3-enhanced Bid activation initiates the cell death pathway. Our results also suggest that genistein may be an effective agent for overcoming chemoresistance in cancers with dysfunctional Bax and p53.

  17. Activation of cAMP Signaling Interferes with Stress-Induced p53 Accumulation in ALL-Derived Cells by Promoting the Interaction between p53 and HDM212

    OpenAIRE

    2011-01-01

    The tumor suppressor p53 provides an important barrier to the initiation and maintenance of cancers. As a consequence, p53 function must be inactivated for a tumor to develop. This is achieved by mutation in approximately 50% of cases and probably by functional inactivation in the remaining cases. We have previously shown that the second messenger cAMP can inhibit DNA damage-induced wild-type p53 accumulation in acute lymphoblastic leukemia cells, leading to a profound reduction of their apop...

  18. Benzo(a)pyrene-7,8-diol-9,10-epoxide induced p53-independent necrosis via the mitochondria-associated pathway involving Bax and Bak activation.

    Science.gov (United States)

    Zhang, W; Liu, N; Wang, X; Jin, X; Du, H; Peng, G; Xue, J

    2015-02-01

    Benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) is a highly reactive DNA damage agent and can induce cell death through both p53-independent and -dependent pathways. However, little is known about the molecular mechanisms of p53-independent pathways in BPDE-induced cell death. To understand the p53-independent mechanisms, we have now examined BPDE-induced cytotoxicity in p53-deficient baby mouse kidney (BMK) cells. The results showed that BPDE could induce Bax and Bak activation, cytochrome c release, caspases activation, and necrotic cell death in the BMK cells. Bax and Bak, two key molecules of mitochondrial permeability transition pore, were interdependently activated by BPDE, with Bax and Bak translocation to and Bax/Bak homo-oligomerization in mitochondria, release of cytochrome c was induced. Importantly, cytochrome c release and necrotic cell death were diminished in BMK cells (Bax(-/-)), BMK cells (Bak(-/-)), and BMK cells (Bax(-/-)/Bak(-/-)). Furthermore, overexpression of Bcl-2 could ameliorate BPDE-induced cytochrome c release and necrosis. Together the findings suggested that BPDE-induced necrosis was modulated by the p53-independent pathway, which was related to the translocation of Bax and Bak to mitochondria, release of cytochrome c, and activation of caspases. © The Author(s) 2015.

  19. Regulation of autophagy by cytoplasmic p53.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2008-06-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.

  20. Propofol induces proliferation partially via downregulation of p53 protein and promotes migration via activation of the Nrf2 pathway in human breast cancer cell line MDA-MB-231.

    Science.gov (United States)

    Meng, Chao; Song, Linlin; Wang, Juan; Li, Di; Liu, Yanhong; Cui, Xiaoguang

    2017-02-01

    Antioxidants induce the proliferation of cancers by decreasing the expression of p53. Propofol, one of the most extensively used intravenous anesthetics, provides its antioxidative activity via activation of the nuclear factor E2-related factor-2 (Nrf2) pathway, but the mechanisms involved in the effects remain unknown. Thus, we aimed to investigate the function of p53 and Nrf2 in the human breast cancer cell line MDA-MB-231 following treatment with propofol. The cells were treated with propofol (2, 5 and 10 µg/ml) for 1, 4 and 12 h, and MTT assay was used to evaluate cell proliferation, and a wound healing assay was used to evaluate cell migration. Cell apoptosis, caspase-3 activity, and western blot analysis for p53 and Nrf2 protein were also assessed. Finally, PIK-75, a potent Nrf2 inhibitor, was used to confirm the effects of Nrf2 after treatment with propofol. Treatment of MDA-MB‑231 cells with propofol resulted in increased proliferation and migration in a dose- and time-dependent manner. After treatment with propofol for 12 h, the Nrf2 protein expression was increased, while the percentage of apoptotic cells, caspase-3 activity, and expression of p53 were significantly decreased. Additionally, treatment with the Nrf2 inhibitor increased the percentage of apoptotic cells, inhibited the migration almost completely, and decreased the degree of proliferation, while the expression of p53 was not affected. In conclusion, propofol increased the proliferation of human breast cancer MDA-MB‑231 cells, which was at least partially associated with the inhibition of the expression of p53, and induced cell migration, which was involved in the activation of the Nrf2 pathway.

  1. Identification and Characterization of a Potent Activator of p53-Independent Cellular Senescence via a Small-Molecule Screen for Modifiers of the Integrated Stress Response

    Science.gov (United States)

    Sayers, Carly M.; Papandreou, Ioanna; Guttmann, David M.; Maas, Nancy L.; Diehl, J. Alan; Witze, Eric S.; Koong, Albert C.

    2013-01-01

    The Integrated Stress Response (ISR) is a signaling program that enables cellular adaptation to stressful conditions like hypoxia and nutrient deprivation in the tumor microenvironment. An important effector of the ISR is activating transcription factor 4 (ATF4), a transcription factor that regulates genes involved in redox homeostasis and amino acid metabolism and transport. Because both inhibition and overactivation of the ISR can induce tumor cell death, modulators of ATF4 expression could prove to be clinically useful. In this study, chemical libraries were screened for modulators of ATF4 expression. We identified one compound, E235 (N-(1-benzyl-piperidin-4-yl)-2-(4-fluoro-phenyl)-benzo[d]imidazo[2,1-b]thiazole-7-carboxamide), that activated the ISR and dose-dependently increased levels of ATF4 in transformed cells. A dose-dependent decrease in viability was observed in several mouse and human tumor cell lines, and knockdown of ATF4 significantly increased the antiproliferative effects of E235. Interestingly, low μM doses of E235 induced senescence in many cell types, including HT1080 human fibrosarcoma and B16F10 mouse melanoma cells. E235-mediated induction of senescence was not dependent on p21 or p53; however, p21 conferred protection against the growth inhibitory effects of E235. Treatment with E235 resulted in an increase in cells arrested at the G2/M phase with a concurrent decrease in S-phase cells. E235 also activated DNA damage response signaling, resulting in increased levels of Ser15-phosphorylated p53, γ-H2AX, and phosphorylated checkpoint kinase 2 (Chk2), although E235 does not appear to cause physical DNA damage. Induction of γ-H2AX was abrogated in ATF4 knockdown cells. Together, these results suggest that modulation of the ISR pathway with the small molecule E235 could be a promising antitumor strategy. PMID:23229510

  2. Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells.

    Science.gov (United States)

    Valente, Liz J; Aubrey, Brandon J; Herold, Marco J; Kelly, Gemma L; Happo, Lina; Scott, Clare L; Newbold, Andrea; Johnstone, Ricky W; Huang, David C S; Vassilev, Lyubomir T; Strasser, Andreas

    2016-03-01

    Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.

  3. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    Energy Technology Data Exchange (ETDEWEB)

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.; Nakao, Aki; Guan, Yinghui; Long, Sydney B.T.; Vonguyen, Lien; Chen, David J.; Gray, Joe W; Chen, Fanqing

    2009-09-07

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expression levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.

  4. Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Liz J. Valente

    2016-03-01

    Full Text Available Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.

  5. High nuclear grade, frequent mitotic activity, cyclin D1 and p53 overexpression are associated with stromal invasion in mammary intracystic papillary carcinoma.

    Science.gov (United States)

    Zhang, Cunxian; Zhang, Peng; Hao, Jie; Quddus, M Ruhul; Steinhoff, Margaret M; Sung, C James

    2005-01-01

    Stromal invasion is identified with difficulty in routine hematoxylin-eosin-stained sections of core needle biopsy specimens from mammary intracystic papillary carcinomas. The goal of this study was to determine if nuclear grade, mitotic activity, and immunohistochemical stains for p53 and cyclin D1 would assist in differentiating intracystic papillary carcinomas without stromal invasion (ICPC) from tumors with stromal invasion (ICPC-INVA). Eight cases of ICPC and 12 cases of ICPC-INVA were reviewed. Hematoxylin-eosin slides were examined to determine the histologic features. Immunohistochemistry was performed using monoclonal antibodies to human p53 and cyclin D1. Fisher's exact test was used to compare the nuclear grade, mitotic activity, and immunoreactivity between ICPC and ICPC-INVA. High nuclear grade was more often associated with ICPC-INVA than with ICPC, although the difference was not statistically significant (p = 0.069). Frequent mitotic activity was associated with ICPC-INVA more than with ICPC (p = 0.0198). All cases of ICPC were negative for either p53 or cyclin D1, whereas 7 of 12 cases (58.3%) of ICPC-INVA were positive for either cyclin D1 alone (3 cases), p53 alone (3 cases), or both cyclin D1 and p53 (1 case) (p = 0.0147). Identical nuclear grade, mitotic activity, and immunostaining patterns were seen in the intracystic and the invasive components, and in the core biopsy and the excision of the same tumor. When any one of the positive indicators (high nuclear grade, frequent mitotic activity, or positive immunostains for cyclin D1 and/or p53) was present, the positive predictive value for stromal invasion was 91.7%. When none of the positive indicators was present, the negative predictive value was 87.5%.

  6. Effects of prostaglandin E2 on p53 mRNA transcription and p53 mutagenesis during T-cell-independent human B-cell clonal expansion

    Science.gov (United States)

    Haque, Shabirul; Yan, Xiao Jie; Rosen, Lisa; McCormick, Steven; Chiorazzi, Nicholas; Mongini, Patricia K. A.

    2014-01-01

    Within T-cell-dependent germinal centers, p53 gene transcription is repressed by Bcl-6 and is thus less vulnerable to mutation. Malignant lymphomas within inflamed extranodal sites exhibit a relatively high incidence of p53 mutations. The latter might originate from normal B-cell clones manifesting activation-induced cytosine deaminase (AID) and up-regulated p53 following T-cell-independent (TI) stimulation. We here examine p53 gene transcription in such TI clones, with a focus on modulatory effects of prostaglandin E2 (PGE2), and evaluate progeny for p53 mutations. Resting IgM+IgD+CD27− B cells from human tonsils were labeled with CFSE and stimulated in vitro with complement-coated antigen surrogate, IL-4, and BAFF ± exogenous PGE2 (50 nM) or an analog specific for the EP2 PGE2 receptor. We use flow cytometry to measure p53 and AID protein within variably divided blasts, qRT-PCR of p53 mRNA from cultures with or without actinomycin D to monitor mRNA transcription/stability, and single-cell p53 RT-PCR/sequencing to assess progeny for p53 mutations. We report that EP2 signaling triggers increased p53 gene transcriptional activity in AID+ cycling blasts (P<0.01). Progeny exhibit p53 mutations at a frequency (8.5×10−4) greater than the baseline error rate (<0.8×10−4). We conclude that, devoid of the repressive influences of Bcl-6, dividing B lymphoblasts in inflamed tissues should display heightened p53 transcription and increased risk of p53 mutagenesis.—Haque, S., Yan, X. J., Rosen, L., McCormick, S., Chiorazzi, N., Mongini, P. K. A. Effects of prostaglandin E2 on p53 mRNA transcription and p53 mutagenesis during T-cell-independent human B-cell clonal expansion. PMID:24145719

  7. Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma.

    Science.gov (United States)

    Veschi, Veronica; Liu, Zhihui; Voss, Ty C; Ozbun, Laurent; Gryder, Berkley; Yan, Chunhua; Hu, Ying; Ma, Anqi; Jin, Jian; Mazur, Sharlyn J; Lam, Norris; Souza, Barbara K; Giannini, Giuseppe; Hager, Gordon L; Arrowsmith, Cheryl H; Khan, Javed; Appella, Ettore; Thiele, Carol J

    2017-01-09

    Given the paucity of druggable mutations in high-risk neuroblastoma (NB), we undertook chromatin-focused small interfering RNA and chemical screens to uncover epigenetic regulators critical for the differentiation block in high-risk NB. High-content Opera imaging identified 53 genes whose loss of expression led to a decrease in NB cell proliferation and 16 also induced differentiation. From these, the secondary chemical screen identified SETD8, the H4(K20me1) methyltransferase, as a druggable NB target. Functional studies revealed that SETD8 ablation rescued the pro-apoptotic and cell-cycle arrest functions of p53 by decreasing p53(K382me1), leading to activation of the p53 canonical pathway. In pre-clinical xenograft NB models, genetic or pharmacological (UNC0379) SETD8 inhibition conferred a significant survival advantage, providing evidence for SETD8 as a therapeutic target in NB. Published by Elsevier Inc.

  8. Modulation of Janus kinase 2 by p53 in ovarian cancer cells.

    Science.gov (United States)

    Reid, Thomas; Jin, Xiaohong; Song, Hui; Tang, Huai-Jing; Reynolds, R Kevin; Lin, Jiayuh

    2004-08-20

    The constitutive activation of the Janus kinase 2 (JAK2) and mutation of the p53 tumor suppressor are both detected in human cancer. We examined the potential regulation of JAK2 phosphorylation by wild-type (wt) p53 in human ovarian cancer cell lines, Caov-3 and MDAH2774, which harbor mutant form of p53 tumor suppressor gene and high levels of phosphorylated JAK2. The wt p53 gene was re-introduced into the cells using an adenovirus vector. In addition to wt p53, mutant p53 22/23, mutant p53-175, and NCV (negative control virus) were introduced into the cells in the control groups. Expression of wt p53, but not that of p53-175 mutant, diminished JAK2 tyrosine phosphorylation in MDAH2774 and Caov-3 cell lines. Expression of wt p53 or p53 22/23 mutant did not cause a reduction in the phosphorylation of unrelated protein kinases, ERK1 and ERK2 (ERK1/2). The inhibition of JAK2 tyrosine phosphorylation can be reversed by tyrosine phosphatase inhibitor, sodium orthovanadate. Protein tyrosine phosphatase 1-B levels increased with introduction of wt p53 and may be involved in the dephosphorylation of JAK2. These findings present a possible p53-dependent cellular process of modulating JAK2 tyrosine phosphorylation in ovarian cancer cell lines.

  9. The tumor suppressor Caliban regulates DNA damage-induced apoptosis through p53-dependent and -independent activity.

    Science.gov (United States)

    Wang, Y; Wang, Z; Joshi, B H; Puri, R K; Stultz, B; Yuan, Q; Bai, Y; Zhou, P; Yuan, Z; Hursh, D A; Bi, X

    2013-08-15

    We previously identified Caliban (Clbn) as the Drosophila homolog of human Serologically defined colon cancer antigen 1 gene and demonstrated that it could function as a tumor suppressor in human non-small-cell lung cancer (NSCLC) cells, although its mode of action was unknown. Herein, we identify roles for Clbn in DNA damage response. We generate clbn knockout flies using homologous recombination and demonstrate that they have a heightened sensitivity to irradiation. We show that normal Clbn function facilitates both p53-dependent and -independent DNA damage-induced apoptosis. Clbn coordinates different apoptosis pathways, showing a two-stage upregulation following DNA damage. Clbn has proapoptotic functions, working with both caspase and the proapoptotic gene Hid. Finally, ecotopic expression of clbn(+) in NSCLC cells suppresses tumor formation in athymic nude mice. We conclude that Caliban is a regulator of DNA damage-induced apoptosis, functioning as a tumor suppressor in both p53-dependent and -independent pathways.

  10. The p53 co-activator Zac1 neither induces cell cycle arrest nor apoptosis in chicken Lim1 horizontal progenitor cells.

    Science.gov (United States)

    Fard, S Shirazi; Blixt, Mke; Hallböök, F

    2015-01-01

    Chicken horizontal progenitor cells are able to enter their final mitosis even in the presence of DNA damage despite having a functional p53-p21 system. This suggests that they are resistant to DNA damage and that the regulation of the final cell cycle of horizontal progenitor cells is independent of the p53-p21 system. The activity of p53 is regulated by positive and negative modulators, including the zinc finger containing transcription factor Zac1 (zinc finger protein that regulates apoptosis and cell cycle arrest). Zac1 interacts with and enhances the activity of p53, thereby inducing cell cycle arrest and apoptosis. In this work, we use a gain-of-function assay in which mouse Zac1 (mZac1) is overexpressed in chicken retinal progenitor cells to study the effect on the final cell cycle of horizontal progenitor cells. The results showed that overexpression of mZac1 induced expression of p21 in a p53-dependent way and arrested the cell cycle as well as triggered apoptosis in chicken non-horizontal retinal progenitor cells. The negative regulation of the cell cycle by mZac1 is consistent with its proposed role as a tumour-suppressor gene. However, the horizontal cells were not affected by mZac1 overexpression. They progressed into S- and late G2/M-phase despite overexpression of mZac1. The inability of mZac1 to arrest the cell cycle in horizontal progenitor cells support the notion that the horizontal cells are less sensitive to events that triggers the p53 system during their terminal and neurogenic cell cycle, compared with other retinal cells. These properties are associated with a cell that has a propensity to become neoplastic and thus with a cell that may develop retinoblastoma.

  11. 11R-P53 and GM-CSF Expressing Oncolytic Adenovirus Target Cancer Stem Cells with Enhanced Synergistic Activity

    Science.gov (United States)

    Lv, Sai-qun; Ye, Zhen-long; Liu, Pin-yi; Huang, Yao; Li, Lin-fang; Liu, Hui; Zhu, Hai-li; Jin, Hua-jun; Qian, Qi-jun

    2017-01-01

    Targeting cancer stem cells with oncolytic virus (OV) holds great potential for thorough elimination of cancer cells. Based on our previous studies, we here established 11R-P53 and mGM-CSF carrying oncolytic adenovirus (OAV) SG655-mGMP and investigated its therapeutic effect on hepatocellular carcinoma stem cells Hep3B-C and teratoma stem cells ECCG5. Firstly, the augmenting effect of 11R in our construct was tested and confirmed by examining the expression of EGFP with Fluorescence and FCM assays after transfecting Hep3B-C and ECCG5 cells with OVA SG7605-EGFP and SG7605-11R-EGFP. Secondly, the expressions of 11R-P53 and GM-CSF in Hep3B-C and ECCG5 cells after transfection with OAV SG655-mGMP were detected by Western blot and Elisa assays, respectively. Thirdly, the enhanced growth inhibitory and augmented apoptosis inducing effects of OAV SG655-mGMP on Hep3B-C and ECCG5 cells were tested with FCM assays by comparing with the control, wild type 5 adenovirus, 11R-P53 carrying OVA in vitro. Lastly, the in vivo therapeutic effect of OAV SG655-mGMP toward ECCG5 cell-formed xenografts was studied by measuring tumor volumes post different treatments with PBS, OAV SG655-11R-P53, OAV SG655-mGM-CSF and OAV SG655-mGMP. Treatment with OAV SG655-mGMP induced significant xenograft growth inhibition, inflammation factor AIF1 expression and immune cells infiltration. Therefore, our OAV SG655-mGMP provides a novel platform to arm OVs to target cancer stem cells.

  12. Transcriptional upregulation of restin by p53

    Institute of Scientific and Technical Information of China (English)

    WANG RuiHua; LU Fan; FU HaiYan; WU YouSheng; YANG GuoDong; ZHAO WenMing; Zhao ZhongLiang

    2007-01-01

    Restin, belonging to the melanoma-associated antigen superfamily, was firstly cloned from the differentiated HL-60 cells when induced by all-trans retinoic acid ( ATRA ) in our lab. Our previous results showed that restin might be correlated to cell cycle arrest. Due to the importance of p53 in the regulation of cell growth and the relationship between p53 and ATRA, we tried to test the relationship between p53 and restin. Firstly, transfection results showed that p53 was able to upregulate the expression of restin at the transcriptional level when p53 was transfected into eukaryotic cells. Secondly, the bioinformatics analysis revealed that the upstream sequence (about 2 kb) from the first ATG of the ORF of restin gene contained a p53 binding site. In order to confirm that p53 was involved in the transcriptional regulation of restin, we cloned the upstream sequence of restin and constructed the promoter luciferase reporter system. From the luciferase activity, we demonstrated that the promoter of restin gene could be induced by ATRA. Then, another two luciferase reporter plasmids driven by the reporter of restin with no (RP△p53-luc) or mutant (mRP-luc) p53 binding site were constructed to see the regulation of restin by p53. Results showed that the transcriptional upregulation of restin gene was not due to the putative p53 binding site on the upstream of restin gene. We proposed that p53 upregulated restin transcription through an indirect way rather than direct interaction with the cis-activating element of the restin promoter.

  13. Transcriptional upregulation of restin by p53

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Restin, belonging to the melanoma-associated antigen superfamily, was firstly cloned from the differentiated HL-60 cells when induced by all-trans retinoic acid ( ATRA ) in our lab. Our previous results showed that restin might be correlated to cell cycle arrest. Due to the importance of p53 in the regulation of cell growth and the relationship between p53 and ATRA, we tried to test the relationship between p53 and restin. Firstly, transfection results showed that p53 was able to upregulate the expression of restin at the transcriptional level when p53 was transfected into eukaryotic cells. Secondly, the bioinformatics analysis revealed that the upstream sequence (about 2 kb) from the first ATG of the ORF of restin gene contained a p53 binding site. In order to confirm that p53 was involved in the transcriptional regulation of restin, we cloned the upstream sequence of restin and constructed the promoter luciferase reporter system. From the luciferase activity, we demonstrated that the promoter of restin gene could be induced by ATRA. Then, another two luciferase reporter plasmids driven by the reporter of restin with no (RP?p53-luc) or mutant (mRP-luc) p53 binding site were constructed to see the regulation of restin by p53. Results showed that the transcriptional upregulation of restin gene was not due to the putative p53 binding site on the upstream of restin gene. We proposed that p53 upregulated restin transcription through an indirect way rather than direct interaction with the cis-activating element of the restin promoter.

  14. Arginine methylation regulates the p53 response

    DEFF Research Database (Denmark)

    Jansson, Martin; Durant, Stephen T; Cho, Er-Chieh;

    2008-01-01

    Activation of the p53 tumour suppressor protein in response to DNA damage leads to apoptosis or cell-cycle arrest. Enzymatic modifications are widely believed to affect and regulate p53 activity. We describe here a level of post-translational control that has an important functional consequence o...

  15. Anti-cancer activity of trans-chalcone in osteosarcoma: Involvement of Sp1 and p53.

    Science.gov (United States)

    Silva, Gabriel; Marins, Mozart; Fachin, Ana Lúcia; Lee, Seong-Ho; Baek, Seung Joon

    2016-10-01

    Osteosarcoma is the most common bone cancer. Although the emergence of multidrug therapies has improved available treatments for osteosarcoma, approximately 30% of patients will still develop metastasis. Currently, much anticancer therapy uses drugs that affect oncogenes/tumor suppressor genes, such as p53 (up-regulation) and Sp1 (down-regulation). Chalcones are secondary metabolites of plants and have been demonstrated to induce apoptosis in human cancer cells. Building on this knowledge, we evaluated the ability of trans-chalcone to reduce viability, to induce apoptosis, and to alter gene expression of p53 and Sp1 in human osteosarcoma cell lines. We found that treatment of trans-chalcone inhibited growth of osteosarcoma cells in a dose- and time-dependent manner, with significant inhibition at 10 μM after 48 h; apoptosis was also induced in a dose-dependent manner, with 1.9- and 3.6-fold induction at 10 μM and 50 μM, respectively, compared to non-treated cells. Further experiments suggest that trans-chalcone affected Sp1 down-regulation at the transcriptional level, whereas trans-chalcone up-regulated p53 expression at the post-translational level. trans-chalcone and its derivatives could be important in the development of future clinical trials in osteosarcoma. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1 and Caspase-9/-3 activation

    DEFF Research Database (Denmark)

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna;

    2016-01-01

    ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21(Waf1/Cip1), Bax, Noxa, MDM2, and activation of caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter...

  17. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1 and Caspase-9/-3 activation

    DEFF Research Database (Denmark)

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna

    2016-01-01

    ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21(Waf1/Cip1), Bax, Noxa, MDM2, and activation of caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter...

  18. Metabolic activation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine and DNA adduct formation depends on p53: Studies in Trp53(+/+),Trp53(+/-) and Trp53(-/-) mice.

    Science.gov (United States)

    Krais, Annette M; Speksnijder, Ewoud N; Melis, Joost P M; Singh, Rajinder; Caldwell, Anna; Gamboa da Costa, Gonçalo; Luijten, Mirjam; Phillips, David H; Arlt, Volker M

    2016-02-15

    The expression of the tumor suppressor p53 can influence the bioactivation of, and DNA damage induced by, the environmental carcinogen benzo[a]pyrene, indicating a role for p53 in its cytochrome P450 (CYP)-mediated biotransformation. The carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), which is formed during the cooking of food, is also metabolically activated by CYP enzymes, particularly CYP1A2. We investigated the potential role of p53 in PhIP metabolism in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with a single oral dose of 50 mg/kg body weight PhIP. N-(Deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP-C8-dG) levels in DNA, measured by liquid chromatography-tandem mass spectrometry, were significantly lower in liver, colon, forestomach and glandular stomach of Trp53(-/-) mice compared to Trp53(+/+) mice. Lower PhIP-DNA adduct levels in the livers of Trp53(-/-) mice correlated with lower Cyp1a2 enzyme activity (measured by methoxyresorufin-O-demethylase activity) in these animals. Interestingly, PhIP-DNA adduct levels were significantly higher in kidney and bladder of Trp53(-/-) mice compared to Trp53(+/+) mice, which was accompanied by higher sulfotransferase (Sult) 1a1 protein levels and increased Sult1a1 enzyme activity (measured by 2-naphthylsulfate formation from 2-naphthol) in kidneys of these animals. Our study demonstrates a role for p53 in the metabolism of PhIP in vivo, extending previous results on a novel role for p53 in xenobiotic metabolism. Our results also indicate that the impact of p53 on PhIP biotransformation is tissue-dependent and that in addition to Cyp1a enzymes, Sult1a1 can contribute to PhIP-DNA adduct formation.

  19. Delayed cell cycle progression in selenoprotein W depleted cells is regulated by a mitogen-activated protein kinase kinase 4–p38–p53 pathway

    Science.gov (United States)

    Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a p53- and p21Cip1-dependent G1-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser33 in p53, which is associated with decreased p53...

  20. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity

    Science.gov (United States)

    Mdm2 is an E3 ubiquitin ligase that targets p53 for degradation. p53(515C) (encoding p53R172P) is a hypomorphic allele of p53 that rescues the embryonic lethality of Mdm2(-/-) mice. Mdm2(-/-) p53(515C/515C) mice, however, die by postnatal day 13 resulting from hematopoietic failure. Hematopoietic st...

  1. Rational Design of Ruthenium Complexes Containing 2,6-Bis(benzimidazolyl)pyridine Derivatives with Radiosensitization Activity by Enhancing p53 Activation.

    Science.gov (United States)

    Deng, Zhiqin; Yu, Lianling; Cao, Wenqiang; Zheng, Wenjie; Chen, Tianfeng

    2015-06-01

    The rational design of metal-based complexes is an effective strategy for the discovery of potent sensitizers for use in cancer radiotherapy. In this study, we synthesized three ruthenium complexes containing bis-benzimidazole derivatives: Ru(bbp)Cl3 (1), [Ru(bbp)2 ]Cl2 (2 a) (in which bbp=2,6-bis(benzimidazol-1-yl)pyridine), and [Ru(bbp)2]Cl2 (2 b) (where bbp=2,6-bis-(6-nitrobenzimidazol-2-yl)pyridine). We evaluated their radiosensitization capacities in vitro and mechanisms of action. Complex 2 b was found to be particularly effective in sensitizing human melanoma A375 cells toward radiation, with a sensitivity enhancement ratio of 2.4. Along with this potency, complex 2 b exhibited a high degree of selectivity between human cancer and normal cells. Mechanistic studies revealed that 2 b promotes radiation-induced accumulation of intracellular reactive oxygen species (ROS) by reacting with cellular glutathione (GSH) and then causing DNA stand breaks. The subsequent DNA damage induces phosphorylation of p53 (p-p53) and upregulates the expression levels of p21, which inhibits the expression of cyclin-B, leading to G2M arrest. Moreover, p-p53 activates caspases-3 and -8, triggers cleavage of poly(ADP-ribose) polymerase (PARP), finally resulting in apoptosis. Taken together, the results of this study provide a strategy for the design of ruthenium-based radiosensitizers for use in cancer therapy.

  2. Highly pathogenic Alzheimer's disease presenilin 1 P117R mutation causes a specific increase in p53 and p21 protein levels and cell cycle dysregulation in human lymphocytes.

    Science.gov (United States)

    Bialopiotrowicz, Emilia; Szybinska, Aleksandra; Kuzniewska, Bozena; Buizza, Laura; Uberti, Daniela; Kuznicki, Jacek; Wojda, Urszula

    2012-01-01

    Cell cycle (CC) reentry in neurons precedes the formation of amyloid-β (Aβ) plaques in Alzheimer's disease (AD). CC alterations were also detected in lymphocytes from sporadic AD patients. In the present study, we investigated the influence of nine presenilin 1 (PS1) mutations (P117R, M139V, L153V, H163R, S170F, F177L, I213F, L226F, E318G) on CC and Aβ production in immortalized B-lymphocytes from familial AD (FAD) patients and in stably transfected human embryonic kidney cells. In both cell types, only the P117R mutation increased levels of key G1/S phase regulatory proteins, p53, and its effector p21, causing G1 phase prolongation with simultaneous S phase shortening, and lowering basal apoptosis. The CC changes were rescued by inhibition of p53, but not of γ-secretase. Moreover, the investigated PS1 mutants showed differences in the increased levels of secreted Aβ40 and Aβ42 and in Aβ42/Aβ40 ratios, but these differences did not correlate with CC patterns. Altogether, we found that both CC regulation and Aβ production differentiate PS1 mutations, and that CC PS1 activity is mediated by p53/p21 signaling but not by γ-secretase activity. The identified CC dysregulation linked with increased p53 and p21 protein levels distinguishes the highly pathogenic PS1 P117R mutation and may contribute to the specific severity of the clinical progression of FAD associated with the mutation in the PS1 117 site. These findings suggest that impairment in lymphocyte CC might play a pathogenic function in AD and are relevant to the development of new diagnostic approaches and personalized therapeutic strategies.

  3. LZAP inhibits p38 MAPK (p38 phosphorylation and activity by facilitating p38 association with the wild-type p53 induced phosphatase 1 (WIP1.

    Directory of Open Access Journals (Sweden)

    Hanbing An

    Full Text Available LZAP (Cdk5rap3, C53 is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its protein-protein interactions. To gain further insight into LZAP activities, we searched for LZAP-associated proteins (LAPs. Here we show that the LZAP binds p38, alters p38 cellular localization, and inhibits basal and cytokine-stimulated p38 activity. Expression of LZAP inhibits p38 phosphorylation in a dose-dependent fashion while loss of LZAP enhances phosphorylation and activation with resultant phosphorylation of p38 downstream targets. Mechanistically, the ability of LZAP to alter p38 phosphorylation depended, at least partially, on the p38 phosphatase, Wip1. Expression of LZAP increased both LZAP and Wip1 binding to p38. Taken together, these data suggest that LZAP activity includes inhibition of p38 phosphorylation and activation.

  4. LZAP inhibits p38 MAPK (p38) phosphorylation and activity by facilitating p38 association with the wild-type p53 induced phosphatase 1 (WIP1).

    Science.gov (United States)

    An, Hanbing; Lu, Xinyuan; Liu, Dan; Yarbrough, Wendell G

    2011-01-24

    LZAP (Cdk5rap3, C53) is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its protein-protein interactions. To gain further insight into LZAP activities, we searched for LZAP-associated proteins (LAPs). Here we show that the LZAP binds p38, alters p38 cellular localization, and inhibits basal and cytokine-stimulated p38 activity. Expression of LZAP inhibits p38 phosphorylation in a dose-dependent fashion while loss of LZAP enhances phosphorylation and activation with resultant phosphorylation of p38 downstream targets. Mechanistically, the ability of LZAP to alter p38 phosphorylation depended, at least partially, on the p38 phosphatase, Wip1. Expression of LZAP increased both LZAP and Wip1 binding to p38. Taken together, these data suggest that LZAP activity includes inhibition of p38 phosphorylation and activation.

  5. Ovarian tumor domain-containing protein 1 deubiquitinates and stabilizes p53.

    Science.gov (United States)

    Piao, Shudong; Pei, Han Zhong; Huang, Bin; Baek, Suk-Hwan

    2017-05-01

    Ubiquitination and deubiquitination pathways play important roles in the regulation of p53 stability and activity. p53 is ubiquitinated and destabilized by E3 ubiquitin ligases and is deubiquitinated and stabilized by deubiquitinases (DUBs). We screened ovarian tumor (OTU) subfamily proteins to identify novel DUBs that stabilized p53. OTU domain-containing protein 1 (OTUD1) is a DUB belonging to the OTU family; however, its substrates and its role in cells are unknown. Here, we used an overexpression and knockdown system to show that OTUD1 is a novel regulator of p53 stability. OTUD1 overexpression increased p53 stability, whereas OTUD1 knockdown decreased p53 stability. Moreover, we observed that OTUD1 directly interacted with p53. Our results showed that OTUD1 deubiquitinated p53 and that functional OTUD1 was required for p53 stabilization. The deubiquitination activity of OTUD1 was necessary for p53 stabilization, as confirmed using an inactive OTUD1 mutant (C320S OTUD1 mutant). We also found that wild-type OTUD1 upregulated p21 and Mdm2 expression but inactive OTUD1 mutant did not. Furthermore, OTUD1 significantly suppressed colony formation. Next, we confirmed that OTUD1 overexpression increased the cleavage of caspase-3 and PARP and subsequently increased apoptosis. Together, these results suggest that OTUD1 is a novel regulator of p53 stability and activity.

  6. Status quo of p53 in the treatment of tumors.

    Science.gov (United States)

    Guan, Yong-Song; He, Qing; Zou, Qing

    2016-10-01

    The p53 gene is pivotal for oncogenesis in a combination of mutations in oncogenes and antioncogenes. The ubiquitous loss of the p53 pathway in human cancers has generated considerable interest in developing p53-targeted cancer therapies, but current ideas and approaches targeting p53 are conflicting. Current researches focus on cancer-selective drugs with therapeutic strategies that both activate and inhibit p53. As p53 is ubiquitously lost in human cancers, the strategy of exogenous p53 addition is reasonable. However, p53 acts not equally in all cell types; thus, individualized p53 therapy is the direction of future research. To clarify the controversies on p53 for improvement of future antitumor studies, the review focuses on the available technological protocols, including their advantages and limitations in terms of future therapeutic use of p53 in the management of tumors.

  7. Diosmin-induced senescence, apoptosis and autophagy in breast cancer cells of different p53 status and ERK activity.

    Science.gov (United States)

    Lewinska, Anna; Adamczyk-Grochala, Jagoda; Kwasniewicz, Ewa; Deregowska, Anna; Wnuk, Maciej

    2017-01-04

    Relatively low bioavailability of plant-derived nutraceuticals with anticancer properties may limit their usefulness for prevention and therapy of cancer. In the present study, we have screened for nutraceuticals (n=30) that would act at low micromolar range against phenotypically distinct breast cancer cell lines, namely MCF-7 (ER(+), PR(+/-), HER2(-)), MDA-MB-231 (ER(-), PR(-), HER2(-)) and SK-BR-3 (ER(-), PR(-), HER2(+)), and diosmin, a citrus fruit flavonoid belonging to a flavone subclass, was selected. MCF-7 cell line was found to be the most sensitive to diosmin treatment. Diosmin caused G2/M cell cycle arrest, elevation in p53, p21 and p27 levels and stress-induced premature senescence when used at lower concentrations (5 and 10μM). Diosmin (20μM) also promoted apoptosis that was not observed in normal human mammary epithelial cells (HMEC). Diosmin stimulated oxidative and nitrosative stress, DNA damage and changes in global DNA methylation patterns. The status of p53 (wild type versus mutant) and the levels of phosphorylated ERK1/2 in a steady state, and diosmin-induced autophagy may reflect diverse response to diosmin treatment in MCF-7, MDA-MB-231 and SK-BR-3 cells, which in turn results in different cell fates. Taken together, diosmin that acts at low micromolar range against breast cancer cells may be considered as a promising candidate for anticancer therapy.

  8. Interaction of hepatitis B virus with tumor suppressor gene p53: its significance and biological function

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mechanism of the interaction of hepatitis B virus (HBV) with tumor suppressor p53 and its role in the hepatocarcinogenesis have been studied by PCR-directed sequencing, gel shift assays and in situ ultraviolet cross-linking assay. The biological function of the interaction of HBV with p53 gene was investigated by co-transfection of chloramphenicol acetyltransferase (CAT) reporter gene, p53 and HBV DNA, and quantitative PCR. Among the 16 primary hepatocellular carcinoma (PHC) samples, 13 were HBV-DNA positive,10 HBxAg positive and 9 p53 protein positive. The p53 gene point mutation was found in 5 samples, one of which had a G to T substitution located at codon 249. After analyzing the HBV genome by a computer program, a p53 response element binding sequence was found in HBV genome at upstream of enhancer I, from 1047 to 1059 nucleotides. This sequence could specifically bind to p53 protein, increase p53 protein accumulation in the PHC cells and stimulate the transactivating activity of p53 and HBV replication .The results also revealed that HBxAg could combine with p53 protein to form a complex in the cells and enhance CAT expression. Immunocytochemical staining showed that p53 protein complex was located in the cytoplasm and the process of p53 entry to nuclei was, in part, blocked. From our results, we conclude that the mutation of p53 gene at codon 249 is infrequent in HBV-associated PHC, the DNA-protein binding between HBV and p53, and the protein-protein binding between HBxAg and p53 might lead to the reduction or inactivation of p53 protein, which in turn resulting in HBV-associated hepatocarcinogenesis.

  9. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family.

    Science.gov (United States)

    Danilova, Nadia; Sakamoto, Kathleen M; Lin, Shuo

    2008-12-15

    Mutations in several ribosomal proteins (RPs) lead to Diamond-Blackfan anemia (DBA), a syndrome characterized by defective erythropoiesis, congenital anomalies, and increased frequency of cancer. RPS19 is the most frequently mutated RP in DBA. RPS19 deficiency impairs ribosomal biogenesis, but how this leads to DBA or cancer remains unknown. We have found that rps19 deficiency in ze-brafish results in hematopoietic and developmental abnormalities resembling DBA. Our data suggest that the rps19-deficient phenotype is mediated by dysregulation of deltaNp63 and p53. During gastrulation, deltaNp63 is required for specification of nonneural ectoderm and its up-regulation suppresses neural differentiation, thus contributing to brain/craniofacial defects. In rps19-deficient embryos, deltaNp63 is induced in erythroid progenitors and may contribute to blood defects. We have shown that suppression of p53 and deltaNp63 alleviates the rps19-deficient phenotypes. Mutations in other ribosomal proteins, such as S8, S11, and S18, also lead to up-regulation of p53 pathway, suggesting it is a common response to ribosomal protein deficiency. Our finding provides new insights into pathogenesis of DBA. Ribosomal stress syndromes represent a broader spectrum of human congenital diseases caused by genotoxic stress; therefore, imbalance of p53 family members may become a new target for therapeutics.

  10. IKKαregulates ultraviolet radiation-induced activation of p53 in a p38K-dependent manner%IKKα通过激活p38 K介导紫外线诱导的p53活化反应

    Institute of Scientific and Technical Information of China (English)

    王红丽; 胡永亮; 胡美茹; 宋伦; 马远方

    2015-01-01

    Objective To explore the signal transduction mechanism of inhibitor kappa B kinase α( IKKα) , one of the catalytic subunits of IKK complex , for regulating p53 transactivation in the cellular ultraviolet radiation ( UVB) repsonse. Methods The transactivation of p53 was determined by dual-luciferase reporter gene analysis system while the expression and activation of IKKα, IKKβ, p53 and p38K was detected by Western blotting assay .Results UVB exposure induced activation and transactivation of p 53 in the wild type mouse fibroblasts ,but the effect was blocked by IKKa deficiency and recovered by reconstitution of IKKαexpression.Under the same conditions , IKKαregulated p38K activation, while inhibi-ting p38K activation down-regulated p53 transactivation under UVB exposure .Conclusion IKKαregulates UVB-induced phosphorylation and activation of p 53 in a p38K-dependent manner .%目的:探讨IκB激酶(IκB kinase,IKK)催化亚基α(IKKα)在紫外线(ultraviolet radiation, UV)诱导的细胞反应中介导p53活化的信号转导机制。方法采用双荧光素酶报告基因分析系统检测在UVB诱导细胞反应中p53的转录激活活性。 Western印迹检测IKKα、p53、p38K蛋白表达水平和诱导活化状态。结果 UVB在野生型小鼠成纤维细胞中能显著诱导p53发生磷酸化修饰反应;同时转录激活活性显著提高,IKKα基因敲除后,以上活化反应受到显著抑制,而恢复IKKα表达水平后这种活化反应得以恢复。同样条件下IKKα也能调节p38K的诱导活化,抑制p38K活性显著下调p53的诱导活化水平。结论 IKKα能通过调控p38K活化进而介导UVB诱导p53磷酸化修饰反应。

  11. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer.

    Science.gov (United States)

    Ye, Mingxiang; Zhang, Jin; Zhang, Jiän; Miao, Qing; Yao, Libo; Zhang, Jian

    2015-02-01

    Curcumin has attracted increasing interest as an anti-cancer drug for decades. The mechanisms of action involve multiple cancer-related signaling pathways. Recent studies highlighted curcumin has epigenetic regulatory effects on miRNA in cancers. In the present study, we demonstrated the proapoptotic effects of curcumin in vitro and in vivo. miRNA microarray and qPCR indicated that miR-192-5p and miR-215 were the most responsive miRNAs upon curcumin treatment in H460 and A427 cells. Functional studies showed miR-192-5p/215 were putative tumor suppressors in non-small cell lung cancer. Curcumin also promoted miR-192-5p/215 expressions in A549 cells (p53 wild type) but not in H1299 cells (p53-null). Conditional knockdown of p53 by tetracycline inducible expression system significantly abrogated curcumin-induced miR-192-5p/215 upregulation in the p53 wild-type H460, A427 and A549 cells. Conversely, ectopic expression of exogenous wild-type but not R273H mutant p53 in the p53-null H1299 cells enabled miR-192-5p/215 response to curcumin treatment. The proapoptotic effects of curcumin also depended on miR-192-5p/215 induction, and antagonizing miR-192-5p/215 expression attenuated curcumin-induced apoptosis in H460, A427 and A549 cells, but not in H1299 cells. Finally, X-linked inhibitor of apoptosis (XIAP) is proved to be a novel transcriptional target of miR-192-5p/215. Taken together, this study highlights that the proapoptotic effects of curcumin depend on miR-192-5p/215 induction and the p53-miR-192-5p/215-XIAP pathway is an important therapeutic target for non-small cell lung cancer.

  12. Microbial Regulation of p53 Tumor Suppressor.

    Directory of Open Access Journals (Sweden)

    Alexander I Zaika

    2015-09-01

    Full Text Available p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40. Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host-bacteria interactions and tumorigenesis associated with bacterial infections.

  13. Activation of EVI1 transcription by the LEF1/β-catenin complex with p53-alteration in myeloid blast crisis of chronic myeloid leukemia.

    Science.gov (United States)

    Manachai, Nawin; Saito, Yusuke; Nakahata, Shingo; Bahirvani, Avinash Govind; Osato, Motomi; Morishita, Kazuhiro

    2017-01-22

    The presence of a BCR-ABL1 fusion gene is necessary for the pathogenesis of chronic myeloid leukemia (CML) through t(9;22)(q34;q11) translocation. Imatinib, an ABL tyrosine kinase inhibitor, is dramatically effective in CML patients; however, 30% of CML patients will need further treatment due to progression of CML to blast crisis (BC). Aberrant high expression of ecotropic viral integration site 1 (EVI1) is frequently observed in CML during myeloid-BC as a potent driver with a CML stem cell signature; however, the precise molecular mechanism of EVI1 transcriptional regulation during CML progression is poorly defined. Here, we demonstrate the transcriptional activity of EVI1 is dependent on activation of lymphoid enhancer-binding factor 1 (LEF1)/β-catenin complex by BCR-ABL with loss of p53 function during CML-BC. The activation of β-catenin is partly dependent on BCR-ABL expression through enhanced GSK3β phosphorylation, and EVI1 expression is directly enhanced by the LEF1/β-catenin complex bound to the EVI1 promoter region. Moreover, the loss of p53 expression is inversely correlated with high expression of EVI1 in CML leukemia cells with an aggressive phase of CML, and a portion of the activation mechanism of EVI1 expression is dependent on β-catenin activation through GSK3β phosphorylation by loss of p53. Therefore, we found that the EVI1 activation in CML-BC is dependent on LEF1/β-catenin activation by BCR-ABL expression with loss of p53 function, representing a novel selective therapeutic approach targeting myeloid blast crisis progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Constitutive CCND1/CDK2 activity substitutes for p53 loss, or MYC or oncogenic RAS expression in the transformation of human mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Damian J Junk

    Full Text Available Cancer develops following the accumulation of genetic and epigenetic alterations that inactivate tumor suppressor genes and activate proto-oncogenes. Dysregulated cyclin-dependent kinase (CDK activity has oncogenic potential in breast cancer due to its ability to inactivate key tumor suppressor networks and drive aberrant proliferation. Accumulation or over-expression of cyclin D1 (CCND1 occurs in a majority of breast cancers and over-expression of CCND1 leads to accumulation of activated CCND1/CDK2 complexes in breast cancer cells. We describe here the role of constitutively active CCND1/CDK2 complexes in human mammary epithelial cell (HMEC transformation. A genetically-defined, stepwise HMEC transformation model was generated by inhibiting p16 and p53 with shRNA, and expressing exogenous MYC and mutant RAS. By replacing components of this model, we demonstrate that constitutive CCND1/CDK2 activity effectively confers anchorage independent growth by inhibiting p53 or replacing MYC or oncogenic RAS expression. These findings are consistent with several clinical observations of luminal breast cancer sub-types that show elevated CCND1 typically occurs in specimens that retain wild-type p53, do not amplify MYC, and contain no RAS mutations. Taken together, these data suggest that targeted inhibition of constitutive CCND1/CDK2 activity may enhance the effectiveness of current treatments for luminal breast cancer.

  15. Shifting p53-induced senescence to cell death by TIS21(/BTG2/Pc3) gene through posttranslational modification of p53 protein.

    Science.gov (United States)

    Choi, Ok Ran; Ryu, Min Sook; Lim, In Kyoung

    2016-09-01

    Cellular senescence and apoptosis can be regulated by p53 activity, although the underlying mechanism of the switch between the two events remains largely unknown. Cells exposed to cancer chemotherapy can escape to senescence phenotype rather than undergoing apoptosis. By employing adenoviral transduction of p53 or TIS21 genes, we observed shifting of p53 induced-senescence to apoptosis in EJ bladder cancer cells, which express H-RasV12 and mutant p53; transduction of p53 increased H-RasV12 expression along with senescence phenotypes, whereas coexpression with TIS21 (p53+TIS21) induced cell death rather than senescence. The TIS21-mediated switch of senescence to apoptosis was accompanied by nuclear translocation of p53 protein and its modifications on Ser-15 and Ser-46 phosphorylation and acetylations on Lys-120, -320, -373 and -382 residues. Mechanistically, TIS21(/BTG2) regulated posttranslational modification of p53 via enhancing miR34a and Bax expressions as opposed to inhibiting SIRT1 and Bcl2 expression. At the same time, TIS21 increased APAF-1 and p53AIP1 expressions, but inhibited the interaction of p53 with iASPP. In vitro tumorigenicity was significantly reduced in the p53+TIS21 expresser through inhibiting micro-colony proliferation by TIS21. Effect of TIS21 on the regulation of p53 activity was confirmed by knockdown of TIS21 expression by RNA interference. Therefore, we suggest TIS21 expression as an endogenous cell death inducer at the downstream of p53 gene, which might be useful for intractable cancer chemotherapy.

  16. B1, a novel naphthalimide-based DNA intercalator, induces cell cycle arrest and apoptosis in HeLa cells via p53 activation.

    Science.gov (United States)

    Liang, Xin; Wu, Aibin; Xu, Yufang; Xu, Ke; Liu, Jianwen; Qian, Xuhong

    2011-08-01

    In the course of screening for novel anticancer compounds, B1 (N-(2-(Dimethylamino)ethyl)-2-aminothiazonaphthalimide), a novel naphthalimide-based DNA intercalator, was generated as a new anticancer candidate. For the first time, our investigation demonstrates that B1 inhibited the growth of HeLa cells by the induction of cell cycle arrest and apoptosis. Analysis of flow cytometry and western blots of HeLa cells treated with B1 revealed an appreciable cell cycle arrest and apoptotic induction in dose and time-dependent manner via the p53-dependent pathway. Furthermore, the release of cytochrome c from mitochondria was detected using confocal microscopy in HeLa cells treated with B1. Accordingly, these data demonstrate that the anticancer activity of B1 is associated with the activation of p53 and the release of cytochrome c, which suggest that B1 might have therapeutic potential against cervix carcinoma as an effective lead compound.

  17. Avian reovirus nonstructural protein p17-induced G(2)/M cell cycle arrest and host cellular protein translation shutoff involve activation of p53-dependent pathways.

    Science.gov (United States)

    Chulu, Julius L C; Huang, Wei R; Wang, L; Shih, Wen L; Liu, Hung J

    2010-08-01

    The effects of avian reovirus (ARV) p17 protein on cell cycle progression and host cellular protein translation were studied. ARV infection and ARV p17 transfection resulted in the accumulation of infected and/or transfected cells in the G(2)/M phase of the cell cycle. The accumulation of cells in the G(2)/M phase was accompanied by upregulation and phosphorylation of the G(2)/M-phase proteins ATM, p53, p21(cip1/waf1), Cdc2, cyclin B1, Chk1, Chk2, and Cdc25C, suggesting that p17 induces a G(2)/M cell cycle arrest through activation of the ATM/p53/p21(cip1/waf1)/Cdc2/cyclin B1 and ATM/Chk1/Chk2/Cdc25C pathways. The G(2)/M cell cycle arrest resulted in increased virus replication. In the present study, we also provide evidence demonstrating that p17 protein is responsible for ARV-induced host cellular protein translation shutoff. Increased phosphorylation levels of the eukaryotic translation elongation factor 2 (eEF2) and initiation factor eIF2alpha and reduced phosphorylation levels of the eukaryotic translation initiation factors eIF4E, eIF4B, and eIF4G, as well as 4E-BP1 and Mnk-1 in p17-transfected cells, demonstrated that ARV p17 suppresses translation initiation factors and translation elongation factors to induce host cellular protein translation shutoff. Inhibition of mTOR by rapamycin resulted in a decrease in the levels of phosphorylated 4E-BP1, eIF4B, and eIF4G and an increase in the levels eEF2 but did not affect ARV replication, suggesting that ARV replication was not hindered by inhibition of cap-dependent translation. Taken together, our data indicate that ARV p17-induced G(2)/M arrest and host cellular translation shutoff resulted in increased ARV replication.

  18. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway.

    Science.gov (United States)

    Binet, Romuald; Ythier, Damien; Robles, Ana I; Collado, Manuel; Larrieu, Delphine; Fonti, Claire; Brambilla, Elisabeth; Brambilla, Christian; Serrano, Manuel; Harris, Curtis C; Pedeux, Rémy

    2009-12-15

    Senescence is a tumor suppression mechanism that is induced by several stimuli, including oncogenic signaling and telomere shortening, and controlled by the p53/p21(WAF1) signaling pathway. Recently, a critical role for secreted factors has emerged, suggesting that extracellular signals are necessary for the onset and maintenance of senescence. Conversely, factors secreted by senescent cells may promote tumor growth. By using expression profiling techniques, we searched for secreted factors that were overexpressed in fibroblasts undergoing replicative senescence. We identified WNT16B, a member of the WNT family of secreted proteins. We found that WNT16B is overexpressed in cells undergoing stress-induced premature senescence and oncogene-induced senescence in both MRC5 cell line and the in vivo murine model of K-Ras(V12)-induced senescence. By small interfering RNA experiments, we observed that both p53 and WNT16B are necessary for the onset of replicative senescence. WNT16B expression is required for the full transcriptional activation of p21(WAF1). Moreover, WNT16B regulates activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Overall, we identified WNT16B as a new marker of senescence that regulates p53 activity and the PI3K/AKT pathway and is necessary for the onset of replicative senescence.

  19. An Integrative Analysis Reveals a Central Role of P53 Activation via MDM2 in Zika Virus Infection Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Yue Teng

    2017-07-01

    Full Text Available Zika virus (ZIKV infection is an emerging global threat that is suspected to be associated with fetal microcephaly. However, the molecular mechanisms underlying ZIKV disease pathogenesis in humans remain elusive. Here, we investigated the human protein interaction network associated with ZIKV infection using a systemic virology approach, and reconstructed the transcriptional regulatory network to analyze the mechanisms underlying ZIKV-elicited microcephaly pathogenesis. The bioinformatics findings in this study show that P53 is the hub of the genetic regulatory network for ZIKV-related and microcephaly-associated proteins. Importantly, these results imply that the ZIKV capsid protein interacts with mouse double-minute-2 homolog (MDM2, which is involved in the P53-mediated apoptosis pathway, activating the death of infected neural cells. We also found that synthetic mimics of the ZIKV capsid protein induced cell death in vitro and in vivo. This study provides important insight into the relationship between ZIKV infection and brain diseases.

  20. Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

    Science.gov (United States)

    Zhang, Xiaolin; Yu, Hao

    2016-01-01

    The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tumor cells. Western blot analysis of p53, Bax, cleaved caspase-3 and myosin light chain kinase (MLCK) revealed that matrine induced tumor cell apoptosis by controlling anoikis. It activated p53, Bax-dependent caspase-3 and blocked the ECM-integrin mediated cell survival pathway through down-regulating MLCK over-expression in the liver of rats with diethyl nitrosamine (DENA)-induced HCC. Our results suggest that matrine can inhibit the proliferation of HCC cells through inducing tumor cell apoptosis via activation of the p53 pathway and inhibition of MLCK overexpression. Matrine may thus be used as a potentially promising reagent to inhibit HCC cell proliferation and MLCK may be a novel target for the treatment of HCC. PMID:27642320

  1. Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression.

    Science.gov (United States)

    Zhang, Xiaolin; Yu, Hao

    2016-01-01

    The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tumor cells. Western blot analysis of p53, Bax, cleaved caspase-3 and myosin light chain kinase (MLCK) revealed that matrine induced tumor cell apoptosis by controlling anoikis. It activated p53, Bax-dependent caspase-3 and blocked the ECM-integrin mediated cell survival pathway through down-regulating MLCK over-expression in the liver of rats with diethyl nitrosamine (DENA)-induced HCC. Our results suggest that matrine can inhibit the proliferation of HCC cells through inducing tumor cell apoptosis via activation of the p53 pathway and inhibition of MLCK overexpression. Matrine may thus be used as a potentially promising reagent to inhibit HCC cell proliferation and MLCK may be a novel target for the treatment of HCC.

  2. Cordyceps militaris (L. Link Fruiting Body Reduces the Growth of a Non-Small Cell Lung Cancer Cell Line by Increasing Cellular Levels of p53 and p21

    Directory of Open Access Journals (Sweden)

    Ana Bizarro

    2015-07-01

    Full Text Available Cordyceps militaris (L. Link, an edible entomopathogenic fungus widely used in traditional Chinese medicine, has numerous potential medicinal properties including antitumor activity. The methanolic extract of C. militaris fruiting body was recently shown to have tumor cell growth inhibitory activity in several human tumor cell lines. Nonetheless, the mechanism of action involved is still not known. This work aimed at further studying the effect of the methanolic extract of C. militaris regarding its antitumor mechanism of action, using the non-small cell lung cancer cell line (NCI-H460 as a model. Results showed that treatment with the extract decreased cellular proliferation, induced cell cycle arrest at G0/G1 and increased apoptosis. In addition, the extract increased the levels of p53 and p21. Moreover, an increase in p-H2A.X and 53BP1 levels, together with an increase in the number of 53BP1 foci/cell (all indicative of DNA damage, were also observed after treatment with the extract. This work suggests that this extract affected NCI-H460 cellular viability through a mechanism involving DNA damage and p53 activation. This further supports the potential of this extract as a source of bioactive compounds, which may be used in anticancer strategies.

  3. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer

    Directory of Open Access Journals (Sweden)

    Villiard Éric

    2007-09-01

    Full Text Available Abstract Background Urodele amphibians like the axolotl are unique among vertebrates in their ability to regenerate and their resistance to develop cancers. It is unknown whether these traits are linked at the molecular level. Results Blocking p53 signaling in axolotls using the p53 inhibitor, pifithrin-α, inhibited limb regeneration and the expression of p53 target genes such as Mdm2 and Gadd45, suggesting a link between tumor suppression and regeneration. To understand this relationship we cloned the p53 gene from axolotl. When comparing its sequence with p53 from other organisms, and more specifically human we observed multiple amino acids changes found in human tumors. Phylogenetic analysis of p53 protein sequences from various species is in general agreement with standard vertebrate phylogeny; however, both mice-like rodents and teleost fishes are fast evolving. This leads to long branch attraction resulting in an artefactual basal emergence of these groups in the phylogenetic tree. It is tempting to assume a correlation between certain life style traits (e.g. lifespan and the evolutionary rate of the corresponding p53 sequences. Functional assays of the axolotl p53 in human or axolotl cells using p53 promoter reporters demonstrated a temperature sensitivity (ts, which was further confirmed by performing colony assays at 37°C. In addition, axolotl p53 was capable of efficient transactivation at the Hmd2 promoter but has moderate activity at the p21 promoter. Endogenous axolotl p53 was activated following UV irradiation (100 j/m2 or treatment with an alkylating agent as measured using serine 15 phosphorylation and the expression of the endogenous p53 target Gadd45. Conclusion Urodele p53 may play a role in regeneration and has evolved to contain multiple amino acid changes predicted to render the human protein defective in tumor suppression. Some of these mutations were probably selected to maintain p53 activity at low temperature. However

  4. Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos

    Science.gov (United States)

    Hu, Zhilian; Holzschuh, Jochen; Driever, Wolfgang

    2015-01-01

    DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes

  5. Lupeol induces p53 and cyclin-B-mediated G2/M arrest and targets apoptosis through activation of caspase in mouse skin.

    Science.gov (United States)

    Nigam, Nidhi; Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer

    2009-04-03

    Lupeol, present in fruits and medicinal plants, is a biologically active compound that has been shown to have various pharmacological properties in experimental studies. In the present study, we demonstrated the modulatory effect of lupeol on 7,12-dimethylbenz[a]anthracene (DMBA)-induced alterations on cell proliferation in the skin of Swiss albino mice. Lupeol treatment showed significant (p < 0.05) preventive effects with marked inhibition at 48, 72, and 96 h against DMBA-mediated neoplastic events. Cell-cycle analysis showed that lupeol-induced G2/M-phase arrest (16-37%) until 72 h, and these inhibitory effects were mediated through inhibition of the cyclin-B-regulated signaling pathway involving p53, p21/WAF1, cdc25C, cdc2, and cyclin-B gene expression. Further lupeol-induced apoptosis was observed, as shown by an increased sub-G1 peak (28%) at 96 h, with upregulation of bax and caspase-3 genes and downregulation of anti-apoptotic bcl-2 and survivin genes. Thus, our results indicate that lupeol has novel anti-proliferative and apoptotic potential that may be helpful in designing strategies to fight skin cancer.

  6. Synergistic interaction of Rnf8 and p53 in the protection against genomic instability and tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    Full Text Available Rnf8 is an E3 ubiquitin ligase that plays a key role in the DNA damage response as well as in the maintenance of telomeres and chromatin remodeling. Rnf8(-/- mice exhibit developmental defects and increased susceptibility to tumorigenesis. We observed that levels of p53, a central regulator of the cellular response to DNA damage, increased in Rnf8(-/- mice in a tissue- and cell type-specific manner. To investigate the role of the p53-pathway inactivation on the phenotype observed in Rnf8(-/- mice, we have generated Rnf8(-/-p53(-/- mice. Double-knockout mice showed similar growth retardation defects and impaired class switch recombination compared to Rnf8(-/- mice. In contrast, loss of p53 fully rescued the increased apoptosis and reduced number of thymocytes and splenocytes in Rnf8(-/- mice. Similarly, the senescence phenotype of Rnf8(-/- mouse embryonic fibroblasts was rescued in p53 null background. Rnf8(-/-p53(-/- cells displayed defective cell cycle checkpoints and DNA double-strand break repair. In addition, Rnf8(-/-p53(-/- mice had increased levels of genomic instability and a remarkably elevated tumor incidence compared to either Rnf8(-/- or p53(-/- mice. Altogether, the data in this study highlight the importance of p53-pathway activation upon loss of Rnf8, suggesting that Rnf8 and p53 functionally interact to protect against genomic instability and tumorigenesis.

  7. Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and the Tumor Microenvironment.

    Science.gov (United States)

    Cui, Yan; Guo, Gang

    2016-11-19

    The tumor suppressor p53 is the most frequently mutated gene in human cancers. Most of the mutations are missense leading to loss of p53 function in inducing apoptosis and senescence. In addition to these autonomous effects of p53 inactivation/dysfunction on tumorigenesis, compelling evidence suggests that p53 mutation/inactivation also leads to gain-of-function or activation of non-autonomous pathways, which either directly or indirectly promote tumorigenesis. Experimental and clinical results suggest that p53 dysfunction fuels pro-tumor inflammation and serves as an immunological gain-of-function driver of tumorigenesis via skewing immune landscape of the tumor microenvironment (TME). It is now increasingly appreciated that p53 dysfunction in various cellular compartments of the TME leads to immunosuppression and immune evasion. Although our understanding of the cellular and molecular processes that link p53 activity to host immune regulation is still incomplete, it is clear that activating/reactivating the p53 pathway in the TME also represents a compelling immunological strategy to reverse immunosuppression and enhance antitumor immunity. Here, we review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and discuss how targeting the p53 pathway can be exploited to alter the immunological landscape of tumors for maximizing therapeutic outcome.

  8. Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Yan Cui

    2016-11-01

    Full Text Available The tumor suppressor p53 is the most frequently mutated gene in human cancers. Most of the mutations are missense leading to loss of p53 function in inducing apoptosis and senescence. In addition to these autonomous effects of p53 inactivation/dysfunction on tumorigenesis, compelling evidence suggests that p53 mutation/inactivation also leads to gain-of-function or activation of non-autonomous pathways, which either directly or indirectly promote tumorigenesis. Experimental and clinical results suggest that p53 dysfunction fuels pro-tumor inflammation and serves as an immunological gain-of-function driver of tumorigenesis via skewing immune landscape of the tumor microenvironment (TME. It is now increasingly appreciated that p53 dysfunction in various cellular compartments of the TME leads to immunosuppression and immune evasion. Although our understanding of the cellular and molecular processes that link p53 activity to host immune regulation is still incomplete, it is clear that activating/reactivating the p53 pathway in the TME also represents a compelling immunological strategy to reverse immunosuppression and enhance antitumor immunity. Here, we review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and discuss how targeting the p53 pathway can be exploited to alter the immunological landscape of tumors for maximizing therapeutic outcome.

  9. Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and the Tumor Microenvironment

    Science.gov (United States)

    Cui, Yan; Guo, Gang

    2016-01-01

    The tumor suppressor p53 is the most frequently mutated gene in human cancers. Most of the mutations are missense leading to loss of p53 function in inducing apoptosis and senescence. In addition to these autonomous effects of p53 inactivation/dysfunction on tumorigenesis, compelling evidence suggests that p53 mutation/inactivation also leads to gain-of-function or activation of non-autonomous pathways, which either directly or indirectly promote tumorigenesis. Experimental and clinical results suggest that p53 dysfunction fuels pro-tumor inflammation and serves as an immunological gain-of-function driver of tumorigenesis via skewing immune landscape of the tumor microenvironment (TME). It is now increasingly appreciated that p53 dysfunction in various cellular compartments of the TME leads to immunosuppression and immune evasion. Although our understanding of the cellular and molecular processes that link p53 activity to host immune regulation is still incomplete, it is clear that activating/reactivating the p53 pathway in the TME also represents a compelling immunological strategy to reverse immunosuppression and enhance antitumor immunity. Here, we review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and discuss how targeting the p53 pathway can be exploited to alter the immunological landscape of tumors for maximizing therapeutic outcome. PMID:27869779

  10. P53 Mdm2 Inhibitors

    NARCIS (Netherlands)

    Khoury, Kareem; Doemling, Alex

    2012-01-01

    The protein-protein interaction (PPI) between p53 and its negative regulator MDM2 comprises one of the most important and intensely studied PPI's involved in preventing the initiation of cancer. The interaction between p53 and MDM2 is conformation-based and is tightly regulated on multiple levels. D

  11. USP11通过去泛素化p53调控p53稳定性%USP11 regulates p53 stability by deubiquitinating p53

    Institute of Scientific and Technical Information of China (English)

    Jia-ying KE; Cong-jie DAI; Wen-lin WU; Jin-hua GAO; Ai-juan XIA; Guang-ping LIU; Kao-sheng LV; Chun-lin WU

    2014-01-01

    The p53 tumor suppressor protein coordinates the celular responses to a broad range of celular stresses, leading to DNA repair, cel cycle arrest or apoptosis. The stability of p53 is essential for its tumor suppressor function, which is tightly controlled by ubiquitin-dependent degradation primarily through its negative regulator murine double minute 2 (Mdm2). To better understand the regulation of p53, we tested the interaction between p53 and USP11 using co-immunoprecipitation. The results show that USP11, an ubiquitin-specific protease, forms specific complexes with p53 and stabilizes p53 by deubiquitinating it. Moreover, down-regulation of USP11 dramaticaly attenuated p53 in-duction in response to DNA damage stress. These findings reveal that USP11 is a novel regulator of p53, which is required for p53 activation in response to DNA damage.

  12. Deconstructing p53 transcriptional networks in tumor suppression.

    Science.gov (United States)

    Bieging, Kathryn T; Attardi, Laura D

    2012-02-01

    p53 is a pivotal tumor suppressor that induces apoptosis, cell-cycle arrest and senescence in response to stress signals. Although p53 transcriptional activation is important for these responses, the mechanisms underlying tumor suppression have been elusive. To date, no single or compound mouse knockout of specific p53 target genes has recapitulated the dramatic tumor predisposition that characterizes p53-null mice. Recently, however, analysis of knock-in mice expressing p53 transactivation domain mutants has revealed a group of primarily novel direct p53 target genes that may mediate tumor suppression in vivo. We present here an overview of well-known p53 target genes and the tumor phenotypes of the cognate knockout mice, and address the recent identification of new p53 transcriptional targets and how they enhance our understanding of p53 transcriptional networks central for tumor suppression.

  13. Mutant mice lacking the p53 C-terminal domain model telomere syndromes.

    Science.gov (United States)

    Simeonova, Iva; Jaber, Sara; Draskovic, Irena; Bardot, Boris; Fang, Ming; Bouarich-Bourimi, Rachida; Lejour, Vincent; Charbonnier, Laure; Soudais, Claire; Bourdon, Jean-Christophe; Huerre, Michel; Londono-Vallejo, Arturo; Toledo, Franck

    2013-06-27

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.

  14. Mdm2 Splice isoforms regulate the p53/Mdm2/Mdm4 regulatory circuit via RING domain-mediated ubiquitination of p53 and Mdm4.

    Science.gov (United States)

    Fan, Chuandong; Wang, Xinjiang

    2017-02-06

    p53 is regulated by heterodimer E3 ligase Mdm2-Mdm4 via RING domain interaction. Mdm2 transcripts undergo alternative splicing, and Mdm2 splice isoforms are increased in cancer and induced by DNA damage. Although two major Mdm2 splice isoforms that do not bind to p53 were reported to impact the p53 pathway, the underlying biochemical mechanisms were not understood. Here, we show that these Mdm2 splice isoforms ubiquitinate Mdm2 and Mdm4 in vitro and regulate the activity of Mdm2-Mdm4 E3 complex in cells. The Mdm2 isoforms are capable of promoting p53 ubiquitination in the absence of Mdm2 or Mdm4. The two isoforms stimulate Mdm2 or Mdm4 activity for p53 ubiquitination in vitro and promote degradation of p53 and Mdm4 in cells. However, the Mdm2 isoforms have opposing effects on the steady-state p53 levels depending on the stoichiometric ratios of Mdm2, Mdm4 and the isoforms, causing either decreased or increased p53 levels in cells. Our data indicate that the Mdm2 splice isoforms can act as independent E3 ligases for p53 when Mdm2 and Mdm4 are absent, form potent heterodimer E3 ligases with either Mdm2 or Mdm4 for targeting p53 degradation, or act as inhibitory regulators of Mdm2-Mdm4 E3 ligase activity by downregulating Mdm4. These findings suggest that Mdm2 splice isoforms may play critical roles in the regulatory loop of p53/Mdm2-Mdm4 via a RING domain-mediated biochemical mechanism.

  15. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2014-01-01

    Full Text Available Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxybenzoic acid (TMPBA and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP kinases, 5' adenosine monophosphate-activated protein kinase (AMPK, and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.

  16. MicroRNA-125b Prevents Cardiac Dysfunction in Polymicrobial Sepsis by Targeting TRAF6-Mediated Nuclear Factor κB Activation and p53-Mediated Apoptotic Signaling.

    Science.gov (United States)

    Ma, He; Wang, Xiaohui; Ha, Tuanzhu; Gao, Ming; Liu, Li; Wang, Ruitao; Yu, Kaijiang; Kalbfleisch, John H; Kao, Race L; Williams, David L; Li, Chuanfu

    2016-12-01

     This study examined the effect of microRNA-125b (miR-125b) on sepsis-induced cardiac dysfunction.  Mouse hearts were transfected with lentivirus expressing miR-125b (LmiR-125b) 7 days before cecal ligation and puncture (CLP)-induced sepsis. Cardiac function was examined by echocardiography before and 6 hours after CLP (n = 6/group). Survival was monitored following CLP-induced sepsis (n = 12/group).  LmiR-125b transfection significantly attenuated cardiac dysfunction due to CLP-induced sepsis. Fractional shortening and ejection fraction values were significantly (P sepsis. Transfection of LmiR-125b into the heart significantly suppressed the expression of ICAM-1 and VCAM-1, decreased the accumulation of macrophages and neutrophils in the myocardium, and decreased serum levels of tumor necrosis factor α and interleukin 1β by targeting tumor necrosis factor receptor-associated factor 6 (TRAF6)-mediated nuclear factor κB (NF-κB) activation. In addition, sepsis-induced myocardial apoptosis was markedly attenuated by LmiR-125b transfection through suppression of p53, Bax, and Bak1 expression. In vitro transfection of endothelial cells with miR-125b mimics attenuate LPS-induced ICAM-1 and VCAM-1 expression by suppressing TRAF6 and NF-κB activation.  Increased myocardial miR-125b expression attenuates sepsis-induced cardiac dysfunction and improves survival. miR-125b may be a target for septic cardiomyopathy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. The p53 target Wig-1 regulates p53 mRNA stability through an AU-rich element

    DEFF Research Database (Denmark)

    Vilborg, Anna; Glahder, Jacob-Andreas Harald; Wilhelm, Margareta T

    2009-01-01

    The p53 target gene Wig-1 encodes a double-stranded-RNA-binding zinc finger protein. We show here that Wig-1 binds to p53 mRNA and stabilizes it through an AU-rich element (ARE) in the 3' UTR of the p53 mRNA. This effect is mirrored by enhanced p53 protein levels in both unstressed cells and cells...... exposed to p53-activating stress agents. Thus, the p53 target Wig-1 is a previously undescribed ARE-regulating protein that acts as a positive feedback regulator of p53, with implications both for the steady-state levels of p53 and for the p53 stress response. Our data reveal a previously undescribed link...

  18. Grape seed extract induces anoikis and caspase-mediated apoptosis in human prostate carcinoma LNCaP cells: possible role of ataxia telangiectasia mutated-p53 activation.

    Science.gov (United States)

    Kaur, Manjinder; Agarwal, Rajesh; Agarwal, Chapla

    2006-05-01

    Prostate cancer is the second leading cancer diagnosed in elderly males in the Western world. Epidemiologic studies suggest that dietary modifications could be an effective approach in reducing various cancers, including prostate cancer, and accordingly cancer-preventive efficacy of dietary nutrients has gained increased attention in recent years. We have recently shown that grape seed extract (GSE) inhibits growth and induces apoptotic death of advanced human prostate cancer DU145 cells in culture and xenograft. Because prostate cancer is initially an androgen-dependent malignancy, here we used LNCaP human prostate cancer cells as a model to assess GSE efficacy and associated mechanisms. GSE treatment of cells led to their detachment within 12 hours, as occurs in anoikis, and caused a significant decrease in live cells mostly due to their apoptotic death. GSE-induced anoikis and apoptosis were accompanied by a strong decrease in focal adhesion kinase levels, but an increase in caspase-3, caspase-9, and poly(ADP-ribose) polymerase cleavage; however, GSE caused both caspase-dependent and caspase-independent apoptosis as evidenced by cytochrome c and apoptosis-inducing factor release into cytosol. Additional studies revealed that GSE causes DNA damage-induced activation of ataxia telangiectasia mutated kinase and Chk2, as well as p53 Ser(15) phosphorylation and its translocation to mitochondria, suggesting this to be an additional mechanism for apoptosis induction. GSE-induced apoptosis, cell growth inhibition, and cell death were attenuated by pretreatment with N-acetylcysteine and involved reactive oxygen species generation. Together, these results show GSE effects in LNCaP cells and suggest additional in vivo efficacy studies in prostate cancer animal models.

  19. Regulation of p53 is critical for vertebrate limb regeneration.

    Science.gov (United States)

    Yun, Maximina H; Gates, Phillip B; Brockes, Jeremy P

    2013-10-22

    Extensive regeneration of the vertebrate body plan is found in salamander and fish species. In these organisms, regeneration takes place through reprogramming of differentiated cells, proliferation, and subsequent redifferentiation of adult tissues. Such plasticity is rarely found in adult mammalian tissues, and this has been proposed as the basis of their inability to regenerate complex structures. Despite their importance, the mechanisms underlying the regulation of the differentiated state during regeneration remain unclear. Here, we analyzed the role of the tumor-suppressor p53 during salamander limb regeneration. The activity of p53 initially decreases and then returns to baseline. Its down-regulation is required for formation of the blastema, and its up-regulation is necessary for the redifferentiation phase. Importantly, we show that a decrease in the level of p53 activity is critical for cell cycle reentry of postmitotic, differentiated cells, whereas an increase is required for muscle differentiation. In addition, we have uncovered a potential mechanism for the regulation of p53 during limb regeneration, based on its competitive inhibition by ΔNp73. Our results suggest that the regulation of p53 activity is a pivotal mechanism that controls the plasticity of the differentiated state during regeneration.

  20. Expression of TP53 isoforms p53β or p53γ enhances chemosensitivity in TP53(null cell lines.

    Directory of Open Access Journals (Sweden)

    Elisabeth Silden

    Full Text Available The carboxy-terminal truncated p53 alternative spliced isoforms, p53β and p53γ, are expressed at disparate levels in cancer and are suggested to influence treatment response and therapy outcome. However, their functional role in cancer remains to be elucidated. We investigated their individual functionality in the p53(null background of cell lines H1299 and SAOS-2 by stable retroviral transduction or transient transfection. Expression status of p53β and p53γ protein was found to correlate with increased response to camptothecin and doxorubicin chemotherapy. Decreased DNA synthesis and clonogenicity in p53β and p53γ congenic H1299 was accompanied by increased p21((CIP1/WAF1, Bax and Mdm2 proteins. Chemotherapy induced p53 isoform degradation, most prominent for p53γ. The proteasome inhibitor bortezomib substantially increased basal p53γ protein level, while the level of p53β protein was unaffected. Treatment with dicoumarol, a putative blocker of the proteasome-related NAD(PH quinone oxidoreductase NQO1, effectively attenuated basal p53γ protein level in spite of bortezomib treatment. Although in vitro proliferation and clonogenicity assays indicated a weak suppressive effect by p53β and p53γ expression, studies of in vivo subcutaneous H1299 tumor growth demonstrated a significantly increased growth by expression of either p53 isoforms. This study suggests that p53β and p53γ share functionality in chemosensitizing and tumor growth enhancement but comprise distinct regulation at the protein level.

  1. Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Smith-Schneider Sallie

    2005-03-01

    Full Text Available Abstract Background A full-term pregnancy has been associated with reduced risk for developing breast cancer. In rodent models, the protective effect of pregnancy can be mimicked with a defined regimen of estrogen and progesterone combination (E/P. However, the effects of pregnancy levels of E/P in humans and their underlying mechanisms are not fully understood. In this report, we investigated the growth inhibitory effects of pregnancy levels of E/P and both natural and synthetic retinoids in an immortalized human mammary epithelial cell line, 76N TERT cell line. Results We observed that cell growth was modestly inhibited by E/P, 9-cis-retinoic acid (9-cis RA or all-trans-retinoic acid (ATRA, and strongly inhibited by N-(4-hydroxyphenyl retinamide (HPR. The growth inhibitory effects of retinoids were further increased in the presence of E/P, suggesting their effects are additive. In addition, our results showed that both E/P and retinoid treatments resulted in increased RARE and p53 gene activity. We further demonstrated that p53 and p21 protein expression were induced following the E/P and retinoid treatments. Furthermore, we demonstrated that while the telomerase activity was moderately inhibited by E/P, 9-cis RA and ATRA, it was almost completely abolished by HPR treatment. These inhibitions on telomerase activity by retinoids were potentiated by co-treatment with E/P, and correlated well with their observed growth inhibitory effects. Finally, this study provides the first evidence that estrogen receptor beta is up-regulated in response to E/P and retinoid treatments. Conclusion Taken together, our studies show that part of the anti-growth effects of E/P and retinoids is p53 dependent, and involve activation of p53 and subsequent induction of p21 expression. Inhibition of telomerase activity and up-regulation of estrogen receptor beta are also associated with the E/P- and retinoid-mediated growth inhibition. Our studies also demonstrate that

  2. IL-6 Induces Pancreatic β Cell Apoptosis via Down-regulation of Sirt1 and Activation of p53/caspase-3 Pathway%IL-6通过Sirt1/p53/caspase-3通路介导胰岛β细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    刘波; 林雅军; 黎健

    2011-01-01

    目的 探讨炎性因子IL-6是否通过Sirt1/p53/caspase-3通路介导胰岛β细胞凋亡.方法 Western 印迹检测Sirt1在小鼠各组织器官和胰岛β细胞系NIT-1细胞中的表达,免疫荧光法检测Sirt1在细胞中的定位.IL-6(10 ng/ml)处理NIT-1细胞48 h,Hoechst3334染色及流式细胞仪检测细胞凋亡,Western印迹检测细胞内Sirt1、P53、乙酰化P53(acety-P53)、caspase-3和cleaved caspase-3的水平变化.结果 Sirt1在小鼠各组织器官和胰岛β细胞中均有表达,主要定位于细胞核.IL-6处理NIT-1细胞后,伴随Sirt1表达的显著减少,acety-P53明显上调,p53/caspase-3通路活化,NIT-1细胞凋亡增加.结论 IL-6通过下调Sirt1进而激活p53/caspase-3信号通路引起胰岛β细胞凋亡.%Objective To investigate whether IL-6 induces pancreatic β cell apoptosis through down-regulation of Sirt1 and activation of p53/caspase-3 pathway. Methods Sirt1 expression in diverse mouse organs and pancreatic β cell line NIT-1 was detected by Western blot. The location of Sirtl in NIT-1 cells was observed by immunofluorescence. After treated with 1Ong/ml IL-6 for 48 h,apoptosis of NIT-1 cells was detected by Hoechst3334 staining and flow cytometry. Western blot was used to analyze the levels of Sirt1, p53, acety-p53, caspase-3 and cleaved caspase-3, respectively. Results Sirt1 was expressed in diverse mouse organs and pancreatic β cell line NIT-1. and mainly located in the nucleus. Treatment of NIT-1 cells with 1Ong/ml IL-6 for 48 h induced apoptosis, accompanied with decreased Sirt1 level. enhanced acety-p53 and activation of p53/caspase3. Conclusion IL-6 induces NIT-1 cell apoptosis via down-regulation of Sirt1 and activation of p53/caspase -3 pathway.

  3. p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells.

    Science.gov (United States)

    Aneja, Ritu; Ghaleb, Amr M; Zhou, Jun; Yang, Vincent W; Joshi, Harish C

    2007-04-15

    We have previously discovered the naturally occurring antitussive alkaloid noscapine as a tubulin-binding agent that attenuates microtubule dynamics and arrests mammalian cells at mitosis via activation of the c-Jun NH(2)-terminal kinase pathway. It is well established that the p53 protein plays a crucial role in the control of tumor cell response to chemotherapeutic agents and DNA-damaging agents; however, the relationship between p53-driven genes and drug sensitivity remains controversial. In this study, we compared chemosensitivity, cell cycle distribution, and apoptosis on noscapine treatment in four cell lines derived from the colorectal carcinoma HCT116 cells: p53(+/+) (p53-wt), p53(-/-) (p53-null), p21(-/-) (p21-null), and BAX(-/-) (BAX-null). Using these isogenic variants, we investigated the roles of p53, BAX, and p21 in the cellular response to treatment with noscapine. Our results show that noscapine treatment increases the expression of p53 over time in cells with wild-type p53 status. This increase in p53 is associated with an increased apoptotic BAX/Bcl-2 ratio consistent with increased sensitivity of these cells to apoptotic stimuli. Conversely, loss of p53 and p21 alleles had a counter effect on both BAX and Bcl-2 expression and the p53-null and p21-null cells were significantly resistant to the antiproliferative and apoptotic effects of noscapine. All but the p53-null cells displayed p53 protein accumulation in a time-dependent manner on noscapine treatment. Interestingly, despite increased levels of p53, p21-null cells were resistant to apoptosis, suggesting a proapoptotic role of p21 and implying that p53 is a necessary but not sufficient condition for noscapine-mediated apoptosis.

  4. PLGA-Loaded Gold-Nanoparticles Precipitated with Quercetin Downregulate HDAC-Akt Activities Controlling Proliferation and Activate p53-ROS Crosstalk to Induce Apoptosis in Hepatocarcinoma Cells.

    Science.gov (United States)

    Bishayee, Kausik; Khuda-Bukhsh, Anisur Rahman; Huh, Sung-Oh

    2015-06-01

    Controlled release of medications remains the most convenient way to deliver drugs. In this study, we precipitated gold nanoparticles with quercetin. We loaded gold-quercetin into poly(DL-lactide-co-glycolide) nanoparticles (NQ) and tested the biological activity of NQ on HepG2 hepatocarcinoma cells to acquire the sustained release property. We determined by circular dichroism spectroscopy that NQ effectively caused conformational changes in DNA and modulated different proteins related to epigenetic modifications and cell cycle control. The mitochondrial membrane potential (MMP), reactive oxygen species (ROS), cell cycle, apoptosis, DNA damage, and caspase 3 activity were analyzed by flow cytometry, and the expression profiles of different anti- and pro-apoptotic as well as epigenetic signals were studied by immunoblotting. A cytotoxicity assay indicated that NQ preferentially killed cancer cells, compared to normal cells. NQ interacted with HepG2 cell DNA and reduced histone deacetylases to control cell proliferation and arrest the cell cycle at the sub-G stage. Activities of cell cycle-related proteins, such as p21(WAF), cdk1, and pAkt, were modulated. NQ induced apoptosis in HepG2 cells by activating p53-ROS crosstalk and induces epigenetic modifications leading to inhibited proliferation and cell cycle arrest.

  5. Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    2015-01-01

    Full Text Available Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES that is located at the 5′-untranslated region (UTR of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80 has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.

  6. The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways.

    Directory of Open Access Journals (Sweden)

    Fang Cheng Wong

    Full Text Available Breast cancer is currently the leading cause of cancer-related deaths among women globally. Notably, medicinal plant extracts may be a potential source for treatments of breast cancer. Vernonia amygdalina (VA is a woody shrub reported to have not only diverse therapeutic effects but also anti-cancer properties. However, current research about the mechanisms of the anti-cancer potential of VA has been limited. This study aimed to investigate the mechanisms of action of VA that underlie its anti-cancer effects in human breast cancer cell lines (MCF-7 and MDA-MB-231 cells. Results from MTT assay revealed that VA inhibits the proliferation of MCF-7 and MDA-MB-231, in a time- and dose-dependent manner. The underlying mechanism of this growth inhibition involved the stimulation of cell-type specific G1/S phase cell cycle arrest in only MCF-7 cells, and not in MDA-MB-231 cells. While the growth arrest was associated with increased levels of p53 and p21, and a concomitant decrease in the levels of cyclin D1 and cyclin E, it was shown that VA causes cell cycle arrest through a p53-independent pathway as tested by the wild type p53 inhibitor, pifithrin-α. Furthermore, this study revealed that VA induces apoptosis in the two cell lines, as indicated by the increase in Annexin V-positive cells and sub-G1 population, and that this VA-induced apoptosis occurred through both extrinsic and intrinsic apoptotic pathways. The apoptosis in MCF-7 cells was also likely to be caspase-dependent and not p53 transcriptional-dependent. Given that approximately 70% of diagnosed breast cancers express ER-α, a crucial finding was that VA inhibits the expression of ER-α and its downstream player, Akt, highlighting the potential clinical significance of VA. Moreover, VA exhibits synergism when combined with doxorubicin, suggesting that it can complement current chemotherapy. Overall, this study demonstrates the potential applications of VA as an anti-cancer drug for breast

  7. Activations of Both Extrinsic and Intrinsic Pathways in HCT 116 Human Colorectal Cancer Cells Contribute to Apoptosis through p53-Mediated ATM/Fas Signaling by Emilia sonchifolia Extract, a Folklore Medicinal Plant.

    Science.gov (United States)

    Lan, Yu-Hsuan; Chiang, Jo-Hua; Huang, Wen-Wen; Lu, Chi-Cheng; Chung, Jing-Gung; Wu, Tian-Shung; Jhan, Jia-Hua; Lin, Kuei-Li; Pai, Shu-Jen; Chiu, Yu-Jen; Tsuzuki, Minoru; Yang, Jai-Sing

    2012-01-01

    Emilia sonchifolia (L.) DC (Compositae), an herbaceous plant found in Taiwan and India, is used as folk medicine. The clinical applications include inflammation, rheumatism, cough, cuts fever, dysentery, analgesic, and antibacteria. The activities of Emilia sonchifolia extract (ESE) on colorectal cancer cell death have not been fully investigated. The purpose of this study explored the induction of apoptosis and its molecular mechanisms in ESE-treated HCT 116 human colorectal cancer cells in vitro. The methanolic ESE was characterized, and γ-humulene was formed as the major constituent (63.86%). ESE induced cell growth inhibition in a concentration- and time-dependent response by MTT assay. Apoptotic cells (DNA fragmentation, an apoptotic catachrestic) were found after ESE treatment by TUNEL assay and DNA gel electrophoresis. Alternatively, ESE stimulated the activities of caspase-3, -8, and -9 and their specific caspase inhibitors protected against ESE-induced cytotoxicity. ESE promoted the mitochondria-dependent and death-receptor-associated protein levels. Also, ESE increased ROS production and upregulated the levels of ATM, p53, and Fas in HCT 116 cells. Strikingly, p53 siRNA reversed ESE-reduced viability involved in p53-mediated ATM/Fas signaling in HCT 116 cells. In summary, our result is the first report suggesting that ESE may be potentially efficacious in the treatment of colorectal cancer.

  8. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy.

    Science.gov (United States)

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-09-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6 , heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy.

  9. SIRT1 regulates in vitro apoptosis of chondrocytes via p53/bax and NF-κB/peroxisome proliferator-activated receptor-γ coactivator-1α pathways%SIRT1经p53和NF-κB的相关蛋白途径调控软骨细胞凋亡的体外研究

    Institute of Scientific and Technical Information of China (English)

    刘弼; 肖德明; 雷鸣; 王大平; 熊建义; 马经野; 许蕴; 史敦云; 张晓丽

    2012-01-01

    Objective To investigate the role and mechanism of SIRT1 in regulating the apoptosis of chondrocytes in vitro. Methods The articular chondrocytes from New Zealand rabbits were routinely cultured and divided into 3 even groups( n =10):SIRT1 activator (resveratrol) group,control group and SIRT1 inhibitor (nicotinamide) group.The apoptosis of chondrocytes was induced by sodium nitroprusside (SNP).MTT assay was used to detect the activity of cartilage cells in each group.DAPI staining and flow cytometry were applied to detect the apoptosis of chondrocytes.Western Blot was used to detect the expressions of SIRT1,p53,NF-κB,bax,PGC-1α in the cells in each group.RT-PCR method was applied to detect the mRNA expressions of SIRT1,type Ⅱ collagen and aggrecan in the cells in each group. Results The average OD value was 0.139 ±0.016 in the SIRT1 activator group,0.098 ±0.006 in the control group and 0.079 ± 0.002 in the SIRT1 inhibitor group.There was a significant difference among the 3 groups ( F =51.273,P =0.000) and between groups as well ( P < 0.05).In terms of cellular apoptosis,the SIRT1 inhibitor group is the highest,the control group lower and the SIRT1 activator group the lowest.Compared with the control group,the expressions of SIRT1 and PGC-1α were increased in the SIRT1 activator group but decreased in the SIRT1 inhibitor group.The expressions of p53,NF-κB and bax were lower in the SIRT1 activator group than in the control group while those were higher in the SIRT1 inhibitor group.The mRNA expressions of SIRT1,type Ⅱ collagen and aggrecan were the highest in the SIRT1 activator group,lower in the control group and the lowest in the SIRT1 inhibitor group. Conclusion SIRT1 may regulate the apoptosis of chondrocytes by regulating the expressions of p53 and NF-κB which in turn changes the expressions of downstream bax and PGC-1α.%目的 探讨SIRT1经p53/bax和NF-κB/过氧化物酶体增殖物受体γ共激活因子-1α(PGC-1α)途径调控软

  10. Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53

    National Research Council Canada - National Science Library

    George, Jasmine; Singh, Madhulika; Srivastava, Amit Kumar; Bhui, Kulpreet; Roy, Preeti; Chaturvedi, Pranav Kumar; Shukla, Yogeshwer

    2011-01-01

    ...; therefore, combinations of chemopreventive agents are gaining increasing popularity. The present study aims to evaluate the combinatorial chemopreventive effects of resveratrol and black tea polyphenol (BTP...

  11. p53 Cellular Localization and Function in Neuroblastoma

    Science.gov (United States)

    Tweddle, Deborah A.; Malcolm, Archie J.; Cole, Michael; Pearson, Andrew D.J.; Lunec, John

    2001-01-01

    This study investigated the hypothesis that p53 accumulation in neuroblastoma, in the absence of mutation, is associated with functional inactivation, which interferes with downstream mediators of p53 function. To test this hypothesis, p53 expression, location, and functional integrity was examined in neuroblastoma by irradiating 6 neuroblastoma cell lines and studying the effects on p53 transcriptional function, cell cycle arrest, and induction of apoptosis, together with the transcriptional function of p53 after irradiation in three ex vivo primary, untreated neuroblastoma tumors. p53 sequencing showed five neuroblastoma cell lines, two of which were MYCN-amplified, and that all of the tumors were wild-type for p53. p53 was found to be predominantly nuclear before and after irradiation and to up-regulate the p53 responsive genes WAF1 and MDM2 in wild-type p53 cell lines and a poorly-differentiated neuroblastoma, but not a differentiating neuroblastoma or the ganglioneuroblastoma part of a nodular ganglioneuroblastoma in short term culture. This suggests intact p53 transcriptional activity in proliferating neuroblastoma. Irradiation of wild-type p53 neuroblastoma cell lines led to G1 cell cycle arrest in cell lines without MYCN amplification, but not in those with MYCN amplification, despite induction of WAF1. This suggests MYCN amplification may alter downstream mediators of p53 function in neuroblastoma. PMID:11395384

  12. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    Science.gov (United States)

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  13. Modulation of p53's transcriptional function by small molecules

    OpenAIRE

    2011-01-01

    p53 tumour suppressor is a transcriptional factor which induces apoptosis or growth arrest in response to stress thus eliminating damaged cells. p53 function is frequently abrogated in tumours either via inactivation mutations in the TP53 gene or by elevated activity of p53 negative regulators HDM2 and HDMX. Therefore application of small molecules that reactivate p53 function is a promising strategy for anti-cancer therapy. In addition, small molecules can serve as valuable research tool to ...

  14. Aciculatin induces p53-dependent apoptosis via MDM2 depletion in human cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Chin-Yu Lai

    Full Text Available Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (-/- (p53-KO HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+. The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity.

  15. Peran p53 Sebagai Jalur Kritis pada Mekanisme Kontrol Siklus Sel Sebagai Pencegah Terjadinya Kanker Mulut

    Directory of Open Access Journals (Sweden)

    Herlia Nur Istindiah

    2015-09-01

    Full Text Available In cell cycle control, p53 acts as an emergency brake, where its important checkpoint function is to maintain the genome integrity by preventing the formation and proliferation of mutant cells. P53 activity is increased by DNA damage occurs caused by agents (such as radioation, UV light or drugs or oncogenes. Mdm2 protein can inhibit the p53 activation, but oncogenes can inhibit Mdm2 or activate p53. If DNA damage occurs, then p53 prevents the cells from replicating their DNA by arresting the cell cycle, so that the cells can repair the damage. Alternatively, p53 instructs the cells to undergo apoptosis by inducing bax gene expression, so that irregular cell growth, and cancer can be avoided. Cancer, including oral cancer, oftenthuolved cells with altered p53. Exogenous factors, such as tobacco and alcohol, presumably plays a role in triggering p53 mutations. Several techniques, such as immunohistochemistry and PCR can be used to investigation their etiology and development of oral cancer. The results hopefully be applied clinically in early detection, prevention and prediction of cancer. This paper discusses the role on p53 in preventing the occurrence and proliferation of mutated cells that lead to cancer, including oral cancer.

  16. P53 MUTATIONS IN HUMAN LUNG-TUMORS

    NARCIS (Netherlands)

    MILLER, CW; ASLO, A; KOK, K; YOKOTA, J; BUYS, CHCM; TERADA, M; KOEFFLER, HP; Simon, K.

    1992-01-01

    Mutation of one p53 allele and loss of the normal p53 allele [loss of heterozygosity (LOH)] occur in many tumors including lung cancers. These alterations apparently contribute to development of cancer by interfering with the tumor suppressor activity of p53. We directly sequenced amplified DNA in t

  17. p53 specific (auto)immunity in mice

    NARCIS (Netherlands)

    Lauwen, Marjolein Monique

    2008-01-01

    Self-tolerance to p53 is a major potential limitation for the activation of the endogenous T-cell repertoire. So far, p53 specific CD8+ and CD4+ T-cell immunity has been described in cancer patients and healthy individuals. However, the restrictions of tolerance on the recruitment of p53 specific T

  18. E6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway

    Science.gov (United States)

    Zhang, Rong; Lu, Huan; Lyu, Yuan-yuan; Yang, Xiao-mei; Zhu, Lin-yan; Yang, Guang-dong; Jiang, Peng-cheng; Re, Yuan; Song, Wei-wei; Wang, Jin-hao; Zhang, Can-can; Gu, Fei; Luo, Tian-jiao; Wu, Zhi-yong; Xu, Cong-jian

    2017-01-01

    Cervical cancer is an infectious cancer and the most common gynecologic cancer worldwide. E6/E7, the early genes of the high-risk mucosal human papillomavirus type, play key roles in the carcinogenic process of cervical cancer. However, little was known about its roles in modulating tumor microenvironment, particular extracellular matrix (ECM). In this study, we found that E6/E7 could regulate multiple ECM proteins, especially collagen triple helix repeat containing 1 (CTHRC1). CTHRC1 is highly expressed in cervical cancer tissue and serum and closely correlated with clinicopathological parameters. CTHRC1 promotes cervical cancer cell migration and invasion in vitro and metastasis in vivo. E6/E7 regulates the expression of CTHRC1 in cervical cancer by E6/E7-p53-POU2F1 (POU class 2 homeobox 1) axis. Futhermore, CTHRC1 activates Wnt/PCP signaling pathway. Take together, E6/E7-p53-POU2F1-CTHRC1 axis promotes cervical cancer cell invasion and metastasis and may act as a potential therapeutic target for interventions against cervical cancer invasion and metastasis. PMID:28303973

  19. The expanding regulatory universe of p53 in gastrointestinal cancer.

    Science.gov (United States)

    Fesler, Andrew; Zhang, Ning; Ju, Jingfang

    2016-01-01

    Tumor suppresser gene TP53 is one of the most frequently deleted or mutated genes in gastrointestinal cancers. As a transcription factor, p53 regulates a number of important protein coding genes to control cell cycle, cell death, DNA damage/repair, stemness, differentiation and other key cellular functions. In addition, p53 is also able to activate the expression of a number of small non-coding microRNAs (miRNAs) through direct binding to the promoter region of these miRNAs.  Many miRNAs have been identified to be potential tumor suppressors by regulating key effecter target mRNAs. Our understanding of the regulatory network of p53 has recently expanded to include long non-coding RNAs (lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer biology.  With our increased understanding of the important functions of these non-coding RNAs and their relationship with p53, we are gaining exciting new insights into the biology and function of cells in response to various growth environment changes. In this review we summarize the current understanding of the ever expanding involvement of non-coding RNAs in the p53 regulatory network and its implications for our understanding of gastrointestinal cancer.

  20. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodeling by p53 aggregation.

    Science.gov (United States)

    De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Blanco, Javier Delgado; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2016-12-30

    Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nuclear inclusion body formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines for which nIB formation correlated to the loss of p53s transcriptional activity. Importantly, protein aggregation also fueled the dysregulation of the proteostasis network in the tumour cell by inducing a hyper-activated, oncogenic heat-shock response to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients exhibiting tumours with p53-positive nIBs suffered from a poor clinical outcome similar to loss-of-p53-expression, and tumour biopsies displayed a differential proteostatic expression profile associated to p53-nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (i) the functional inactivation of p53 through mutation and/or aggregation and (ii) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration.

  1. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models

    Directory of Open Access Journals (Sweden)

    Christian Lehmann

    2016-06-01

    Full Text Available Abstract Background Venetoclax, a small molecule BH3 mimetic which inhibits the anti-apoptotic protein Bcl-2, and idasanutlin, a selective MDM2 antagonist, have both shown activity as single-agent treatments in pre-clinical and clinical studies in acute myeloid leukemia (AML. In this study, we deliver the rationale and molecular basis for the combination of idasanutlin and venetoclax for treatment of p53 wild-type AML. Methods The effect of idasanutlin and venetoclax combination on cell viability, apoptosis, and cell cycle progression was investigated in vitro using established AML cell lines. In vivo efficacy was demonstrated in subcutaneous and orthotopic xenograft models generated in female nude or non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice. Mode-of-action analyses were performed by means of cell cycle kinetic studies, RNA sequencing as well as western blotting experiments. Results Combination treatment with venetoclax and idasanutlin results in synergistic anti-tumor activity compared with the respective single-agent treatments in vitro, in p53 wild-type AML cell lines, and leads to strongly superior efficacy in vivo, in subcutaneous and orthotopic AML models. The inhibitory effects of idasanutlin were cell-cycle dependent, with cells arresting in G1 in consecutive cycles and the induction of apoptosis only evident after cells had gone through at least two cell cycles. Combination treatment with venetoclax removed this dependency, resulting in an acceleration of cell death kinetics. As expected, gene expression studies using RNA sequencing showed significant alterations to pathways associated with p53 signaling and cell cycle arrest (CCND1 pathway in response to idasanutlin treatment. Only few gene expression changes were observed for venetoclax treatment and combination treatment, indicating that their effects are mediated mainly at the post-transcriptional level. Protein expression studies demonstrated that

  2. Knockin mice expressing a chimeric p53 protein reveal mechanistic differences in how p53 triggers apoptosis and senescence

    OpenAIRE

    2008-01-01

    The contribution of transcriptional activation to the p53 effector functions critical for tumor suppression, apoptosis and cellular senescence, remains unclear because of p53's ability to regulate diverse cellular processes in a transactivation-independent manner. Dissociating the importance of transactivation from other p53 functions, including regulating transcriptional repression, DNA replication, homologous recombination, centrosome duplication, and mitochondrial function, has been diffic...

  3. Malignant Trigeminal Nerve Sheath Tumor and Anaplastic Astrocytoma Collision Tumor with High Proliferative Activity and Tumor Suppressor P53 Expression

    Directory of Open Access Journals (Sweden)

    Maher Kurdi

    2014-01-01

    Full Text Available Background. The synchronous development of two primary brain tumors of distinct cell of origin in close proximity or in contact with each other is extremely rare. We present the first case of collision tumor with two histological distinct tumors. Case Presentation. A 54-year-old woman presented with progressive atypical left facial pain and numbness for 8 months. MRI of the brain showed left middle cranial fossa heterogeneous mass extending into the infratemporal fossa. At surgery, a distinct but intermingled intra- and extradural tumor was demonstrated which was completely removed through left orbitozygomatic-temporal craniotomy. Histopathological examination showed that the tumor had two distinct components: malignant nerve sheath tumor of the trigeminal nerve and temporal lobe anaplastic astrocytoma. Proliferative activity and expressed tumor protein 53 (TP53 gene mutations were demonstrated in both tumors. Conclusions. We describe the first case of malignant trigeminal nerve sheath tumor (MTNST and anaplastic astrocytoma in collision and discuss the possible hypothesis of this rare occurrence. We propose that MTNST, with TP53 mutation, have participated in the formation of anaplastic astrocytoma, or vice versa.

  4. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53.

    Directory of Open Access Journals (Sweden)

    Jennifer J Jordan

    2008-06-01

    Full Text Available Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0-13 nucleotides (nt, originally defined by the consensus RRRCWWGYYY (n = 0-13 RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs by wild type (WT and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi-in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical (1/2-(a single decamer and (3/4-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of (1/2- and (3/4-site REs greatly expands the p53 master regulatory network.

  5. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53.

    Directory of Open Access Journals (Sweden)

    Jennifer J Jordan

    2008-06-01

    Full Text Available Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0-13 nucleotides (nt, originally defined by the consensus RRRCWWGYYY (n = 0-13 RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs by wild type (WT and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi-in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical (1/2-(a single decamer and (3/4-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of (1/2- and (3/4-site REs greatly expands the p53 master regulatory network.

  6. Noncanonical DNA Motifs as Transactivation Targets by Wild Type and Mutant p53

    Science.gov (United States)

    Jordan, Jennifer J.; Menendez, Daniel; Inga, Alberto; Nourredine, Maher; Bell, Douglas; Resnick, Michael A.

    2008-01-01

    Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0–13 nucleotides (nt), originally defined by the consensus RRRCWWGYYY (n = 0–13) RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs) by wild type (WT) and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi–in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical ½-(a single decamer) and ¾-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of ½- and ¾-site REs greatly expands the p53 master regulatory network. PMID:18714371

  7. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  8. The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential

    Directory of Open Access Journals (Sweden)

    Nikola Arsic

    2015-04-01

    Full Text Available Cancer stem cells (CSC are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform.

  9. The Role of the p53 Protein in Stem-Cell Biology and Epigenetic Regulation.

    Science.gov (United States)

    Levine, Arnold J; Puzio-Kuter, Anna M; Chan, Chang S; Hainaut, Pierre

    2016-09-01

    The p53 protein plays a passive and an active role in stem cells. The transcriptional activities of p53 for cell-cycle arrest and DNA repair are largely turned off in stem cells, but there is some indication that long-term stem-cell viability may require other p53-regulated functions. When p53 is activated in stem cells, it stops cell division and promotes the commitment to a differentiation pathway and the formation of progenitor cells. In the absence of any p53 activity, stem-cell replication continues and mistakes in the normal epigenetic pathway occur at a higher probability. In the presence of a functionally active p53 protein, epigenetic stability is enforced and stem-cell replication is regulated by commitment to differentiation. Over a lifetime of an organism, stem-cell clones compete in a tissue niche for Darwinian replicative advantages and in doing so accumulate mutations that permit stem-cell replication. Mutations in the p53 gene give stem cells this advantage, increase the clonal stem-cell population, and lower the age at which cancers can occur. Li-Fraumeni patients that inherit p53 mutations develop tumors in a tissue-type-specific fashion at younger ages. Throughout the life of a Li-Fraumeni patient, the tumor types that arise occur in tissues where stem cells are active and cell division is most rapid. Thus, p53 mutations that are inherited or occur during developmental life act in stem cells of the mesenchymal and epithelial lineages, whereas p53 mutations that occur in progenitor or differentiated (somatic) cells later in life function in tissues of endodermal origins, indicating that p53 may function differently in different developmental lineages.

  10. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang, E-mail: songyangwenrong@hotmail.com

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  11. The p53-MDM2 network: from oscillations to apoptosis

    Indian Academy of Sciences (India)

    Indrani Bose; Bhaswar Ghosh

    2007-08-01

    The p53 protein is well-known for its tumour suppressor function. The p53-MDM2 negative feedback loop constitutes the core module of a network of regulatory interactions activated under cellular stress. In normal cells, the level of p53 proteins is kept low by MDM2, i.e. MDM2 negatively regulates the activity of p53. In the case of DNA damage, the p53-mediated pathways are activated leading to cell cycle arrest and repair of the DNA. If repair is not possible due to excessive damage, the p53-mediated apoptotic pathway is activated bringing about cell death. In this paper, we give an overview of our studies on the p53-MDM2 module and the associated pathways from a systems biology perspective. We discuss a number of key predictions, related to some specific aspects of cell cycle arrest and cell death, which could be tested in experiments.

  12. p53 suppresses tetraploid development in mice.

    Science.gov (United States)

    Horii, Takuro; Yamamoto, Masamichi; Morita, Sumiyo; Kimura, Mika; Nagao, Yasumitsu; Hatada, Izuho

    2015-03-10

    Mammalian tetraploid embryos die in early development because of defects in the epiblast. Experiments with diploid/tetraploid chimeric mice, obtained via the aggregation of embryonic stem cells, clarified that while tetraploid cells are excluded from epiblast derivatives, diploid embryos with tetraploid extraembryonic tissues can develop to term. Today, this method, known as tetraploid complementation, is usually used for rescuing extraembryonic defects or for obtaining completely embryonic stem (ES) cell-derived pups. However, it is still unknown why defects occur in the epiblast during mammalian development. Here, we demonstrated that downregulation of p53, a tumour suppressor protein, rescued tetraploid development in the mammalian epiblast. Tetraploidy in differentiating epiblast cells triggered p53-dependent cell-cycle arrest and apoptosis, suggesting the activation of a tetraploidy checkpoint during early development. Finally, we found that p53 downregulation rescued tetraploid embryos later in gestation.

  13. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  14. A novel P53/POMC/Gαs/SASH1 autoregulatory feedback loop activates mutated SASH1 to cause pathologic hyperpigmentation.

    Science.gov (United States)

    Zhou, Ding'an; Wei, Zhiyun; Kuang, Zhongshu; Luo, Huangchao; Ma, Jiangshu; Zeng, Xing; Wang, Ke; Liu, Beizhong; Gong, Fang; Wang, Jing; Lei, Shanchuan; Wang, Dongsheng; Zeng, Jiawei; Wang, Teng; He, Yong; Yuan, Yongqiang; Dai, Hongying; He, Lin; Xing, Qinghe

    2017-04-01

    p53-Transcriptional-regulated proteins interact with a large number of other signal transduction pathways in the cell, and a number of positive and negative autoregulatory feedback loops act upon the p53 response. P53 directly controls the POMC/α-MSH productions induced by ultraviolet (UV) and is associated with UV-independent pathological pigmentation. When identifying the causative gene of dyschromatosis universalis hereditaria (DUH), we found three mutations encoding amino acid substitutions in the gene SAM and SH3 domain containing 1 (SASH1), and SASH1 was associated with guanine nucleotide-binding protein subunit-alpha isoforms short (Gαs). However, the pathological gene and pathological mechanism of DUH remain unknown for about 90 years. We demonstrate that SASH1 is physiologically induced by p53 upon UV stimulation and SASH and p53 is reciprocally induced at physiological and pathophysiological conditions. SASH1 is regulated by a novel p53/POMC/α-MSH/Gαs/SASH1 cascade to mediate melanogenesis. A novel p53/POMC/Gαs/SASH1 autoregulatory positive feedback loop is regulated by SASH1 mutations to induce pathological hyperpigmentation phenotype. Our study demonstrates that a novel p53/POMC/Gαs/SASH1 autoregulatory positive feedback loop is regulated by SASH1 mutations to induce pathological hyperpigmentation phenotype.

  15. Adenovirus-mediated Transfer of p53 and p16 Inhibiting Proliferating Activity of Human Bladder Cancer Cell EJ in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    朱朝辉; 邢诗安; 林晨; 曾甫清; 鲁功成; 付明; 张雪艳; 梁萧; 吴旻

    2002-01-01

    Summary: To evaluate the effects of adenovirus (Ad)-mediated transfer of p53 and p16 on humanbladder cancer cells EJ, EJ were transfected with Ad-p53 and Ad-p16. Cell growth, morphologi-cal change, cell cycle, apoptosis were measured using MTT assay, flow gytometry, cloning forma-tion, immunocytochemical assays. Ad-p16 or Ad-p53 alone could inhibit the proliferating activityof EJ cells in vitro. Ad-p53 could induce apoptosis of partial EJ cells. G1 arrest was observed 72 hafter infection with Ad-p16, but apoptosis was not obvious. The transfer of Ad-p16 and Ad-p53could significantly inhibit the growth of EJ cells, decrease the cloning formation rate and induceapoptosis of large number of EJ cells. The occurrence time of subcutaneous tumor was delayed andthe tumor volume in 4 weeks was diminished by using Ad-p53 combined with Ad-p16 and the dif-ference was significant compared with using Ad-p53 or Ad-p16 alone. It was suggested that thetransfer of wild-type p53 and p16 could significantly inhibit the growth of human bladder cancer invitro and in vivo.

  16. Class I histone deacetylases regulate p53/NF-κB crosstalk in cancer cells.

    Science.gov (United States)

    Schäfer, Claudia; Göder, Anja; Beyer, Mandy; Kiweler, Nicole; Mahendrarajah, Nisintha; Rauch, Anke; Nikolova, Teodora; Stojanovic, Natasa; Wieczorek, Martin; Reich, Thomas R; Tomicic, Maja T; Linnebacher, Michael; Sonnemann, Jürgen; Dietrich, Sascha; Sellmer, Andreas; Mahboobi, Siavosh; Heinzel, Thorsten; Schneider, Günter; Krämer, Oliver H

    2017-01-01

    The transcription factors NF-κB and p53 as well as their crosstalk determine the fate of tumor cells upon therapeutic interventions. Replicative stress and cytokines promote signaling cascades that lead to the co-regulation of p53 and NF-κB. Consequently, nuclear p53/NF-κB signaling complexes activate NF-κB-dependent survival genes. The 18 histone deacetylases (HDACs) are epigenetic modulators that fall into four classes (I-IV). Inhibitors of histone deacetylases (HDACi) become increasingly appreciated as anti-cancer agents. Based on their effects on p53 and NF-κB, we addressed whether clinically relevant HDACi affect the NF-κB/p53 crosstalk. The chemotherapeutics hydroxyurea, etoposide, and fludarabine halt cell cycle progression, induce DNA damage, and lead to DNA fragmentation. These agents co-induce p53 and NF-κB-dependent gene expression in cell lines from breast and colon cancer and in primary chronic lymphatic leukemia (CLL) cells. Using specific HDACi, we find that the class I subgroup of HDACs, but not the class IIb deacetylase HDAC6, are required for the hydroxyurea-induced crosstalk between p53 and NF-κB. HDACi decrease the basal and stress-induced expression of p53 and block NF-κB-regulated gene expression. We further show that class I HDACi induce senescence in pancreatic cancer cells with mutant p53.

  17. p53 mediates the suppression of cancer cell invasion by inducing LIMA1/EPLIN.

    Science.gov (United States)

    Ohashi, Tomoko; Idogawa, Masashi; Sasaki, Yasushi; Tokino, Takashi

    2017-04-01

    The tumor suppressor gene p53 is frequently mutated in human cancer. p53 executes various functions, such as apoptosis induction and cell cycle arrest, by modulating transcriptional regulation. In this study, LIM domain and Actin-binding protein 1 (LIMA1) was identified as a target of the p53 family using a cDNA microarray. We also evaluated genome-wide occupancy of the p53 protein by performing chromatin immunoprecipitation-sequencing (ChIP-seq) and identified two p53 response elements in the LIMA1 gene. LIMA1 protein levels were increased by treatment with nutlin-3a, a small molecule that activates endogenous p53. In addition, LIMA1 expression was significantly downregulated in cancers compared with normal tissues. Knockdown of LIMA1 significantly enhanced cancer cell invasion and partially inhibited p53-induced suppression of cell invasion. Furthermore, low expression of LIMA1 in cancer patients correlated with decreased survival and poor prognosis. Thus, p53-induced LIMA1 inhibits cell invasion, and the downregulation of LIMA1 caused by p53 mutation results in decreased survival in cancer patients. Collectively, this study reveals the molecular mechanism of LIMA1 downregulation in various cancers and suggests that LIMA1 may be a novel prognostic predictor and a therapeutic target for cancer.

  18. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2015-01-01

    Full Text Available Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD of heat shock 70 kDa protein (PDB: 1HJO with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD simulation. Human DNA binding domain of p53 motif (SCMGGMNR retrieved from UniProt (UniProtKB: P04637 was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  19. BRCA1 Expression is an Important Biomarker for Chemosensitivity: Suppression of BRCA1 Increases the Apoptosis via Up-regulation of p53 and p21 During Cisplatin Treatment in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ikuo Konishi

    2006-01-01

    Full Text Available BRCA1 is a tumor suppressor which plays a crucial role in the repair of DNA double-strand breaks, and its abnormality is responsible for hereditary ovarian cancer syndrome. It has recently been reported that reduced expression of BRCA1 is also common in sporadic ovarian carcinoma via its promoter hypermethylation, and that ovarian carcinoma patients negative for BRCA1 expression showed favorable prognosis. To address if BRCA1 expression plays a role in the chemotherapeutic response, we analyzed the effect of BRCA1 suppression on the sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Specific siRNA for BRCA1 gene was transfected into 3 ovarian cancer cell lines with various p53 status. Reduced expression of BRCA1 by transfection of BRCA1-siRNA resulted in a 5.3-fold increase in sensitivity to cisplatin in p53-wild A2780 cells, but not in p53-mutated A2780/CDDP and p53-deleted SKOV3 cells. Regarding the sensitivity to paclitaxel, BRCA1 suppression caused no significant changes in all the 3 cell lines. For ionizing radiation sensitivity, BRCA1 suppression also showed a significant higher sensitivity in A2780 cells. Growth curve and cell cycle analyses showed no signifi cant differences between BRCA1-siRNA-transfected A2780 cells and control cells. However, cisplatin treatment under suppression of BRCA1 showed a significantly increased apoptosis along with up-regulation of p53 and p21 in A2780 cells. Accordingly, reduced expression of BRCA1 enhances the cisplatin sensitivity and apoptosis via up-regulation of p53 and p21, but does not affect the paclitaxel sensitivity. Expression of BRCA1 might be an important biomarker for cisplatin resistance in ovarian carcinoma.

  20. Identification of the core promoter of STK11 gene and its transcriptional regulation by p53

    Institute of Scientific and Technical Information of China (English)

    Maojin Yao; Chenjie Li; Yi Chu; Fei Wang; Xiaoliu Shi; Yongjun Wang; Hongwei Shen; Wenfeng Ning; Jianguang Tang; Xiangping Wang; Jie Li; Shiquang Zhou; Xin Yi

    2008-01-01

    Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease characterized by mucocutaneous pigmentation and hamartomatous polyps. Most cases of PJS involve the inactivation of germline mutations in the serine/threonine kinase gene STK11 which is also known as LKB1. The function of STK11 was previously linked to the tumor suppressor p53 and was shown to activate the p53 target p21/ WAF1. Recently, STK11 was reported to be interacting with p53 physically in the nucleus and it can directly or indirectly phosphorylate p53. Here we characterized the 5'-flanking region of human STK11 gene and identified a 161-bp fragment with promoter activity. Sequence analysis, mutagenesis and gel shift studies revealed a binding site of Spl and p53, which affects the promoter activity. Mutation analyses showed that this fragment was required for p53-mediated transcriptional activation. This transcriptional activation was further confirmed by real-time quantitative RT-PCR and Western blot analysis. Transient transfection of p53 expression plasmid into fetal liver cell lines increased STK11 mRNA and protein levels. In conclusion, our results reveal a new role for p53 in elevating STK11 gene expression via a positive feedback pattern.

  1. The multiple levels of regulation by p53 ubiquitination

    OpenAIRE

    Lee, JT; Gu, W

    2010-01-01

    p53 is a central integrator of a plethora of signals and outputs these signals in the form of tumor suppression. It is well accepted that ubiquitination plays a major part in p53 regulation. Nonetheless, the molecular mechanisms by which p53 activity is controlled by ubiquitination are complex. Mdm2, a RING oncoprotein, was once thought to be the sole E3 ubiquitin ligase for p53, however recent studies have shown that p53 is stabilized but still degraded in the cells of Mdm2-null mice. Althou...

  2. p53 dysfunction precedes the activation of nuclear factor-κB during disease progression in mice expressing Tax, a human T-cell leukemia virus type 1 oncoprotein.

    Science.gov (United States)

    Ohsugi, Takeo; Ishida, Takaomi; Shimasaki, Tatsuya; Okada, Seiji; Umezawa, Kazuo

    2013-09-01

    Transgenic (Tg) mice expressing Tax, a human T-cell leukemia virus type 1 (HTLV-1) oncoprotein, develop mature T-cell leukemia/lymphoma. The leukemic cells in Tg mice expressing Tax show p53 dysfunction and nuclear factor-κB (NF-κB) activation, similar to that seen in adult T-cell leukemia/lymphoma (ATLL) cells from patients infected with HTLV-1. However, it is unclear when these effects occur in HTLV-1 carriers during the development of ATLL. Here, we examined p53 function and NF-κB activity before the onset of leukemia in Tax-expressing Tg (Tax-Tg) mice between 4 and 25 months of age. At 4-10 months of age, 71% of mice showed p53 inactivation, without evidence for NF-κB activation, even though tax expression was consistent from 4 to 25 months of age. The decline in p53 function resulted from decreased p53 accumulation after DNA damage. From 11 months of age onward, 75% of mice showed p53 dysfunction and 37.5% showed constitutive NF-κB activation with the components of p50 and RelB. An NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced NF-κB activity (i.e. p50/RelB) but did not restore p53 function. In vivo, treatment with DHMEQ until 24 months of age prevented the onset of T-cell leukemia in Tax-Tg mice. These results suggest that the Tax-induced decline in p53 function, which is independent of NF-κB activation in the early stage, might be the first stage in the onset of ATLL. NF-κB activity is involved in the later stages of ATLL onset.

  3. Conformational altered p53 as an early marker of oxidative stress in Alzheimer's disease.

    Science.gov (United States)

    Buizza, Laura; Cenini, Giovanna; Lanni, Cristina; Ferrari-Toninelli, Giulia; Prandelli, Chiara; Govoni, Stefano; Buoso, Erica; Racchi, Marco; Barcikowska, Maria; Styczynska, Maria; Szybinska, Aleksandra; Butterfield, David Allan; Memo, Maurizio; Uberti, Daniela

    2012-01-01

    In order to study oxidative stress in peripheral cells of Alzheimer's disease (AD) patients, immortalized lymphocytes derived from two peculiar cohorts of patients, referring to early onset AD (EOSAD) and subjects harboured AD related mutation (ADmut), were used. Oxidative stress was evaluated measuring i) the typical oxidative markers, such as HNE Michel adducts, 3 Nitro-Tyrosine residues and protein carbonyl on protein extracts, ii) and the antioxidant capacity, following the enzymatic kinetic of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRD). We found that the signs of oxidative stress, measured as oxidative marker levels, were evident only in ADmut but not in EOSAD patients. However, oxidative imbalance in EOSAD as well as ADmut lymphocytes was underlined by a reduced SOD activity and GRD activity in both pathological groups in comparison with cells derived from healthy subjects. Furthermore, a redox modulated p53 protein was found conformational altered in both EOSAD and ADmut B lymphocytes in comparison with control cells. This conformational altered p53 isoform, named "unfolded p53", was recognized by the use of two specific conformational anti-p53 antibodies. Immunoprecipitation experiments, performed with the monoclonal antibodies PAb1620 (that recognizes p53wt) and PAb240 (that is direct towards unfolded p53), and followed by the immunoblotting with anti-4-hydroxynonenal (HNE) and anti- 3-nitrotyrosine (3NT) antibodies, showed a preferential increase of nitrated tyrosine residues in unfolded p53 isoform comparing to p53 wt protein, in both ADmut and EOSAD. In addition, a correlation between unfolded p53 and SOD activity was further found. Thus this study suggests that ROS/RNS contributed to change of p53 tertiary structure and that unfolded p53 can be considered as an early marker of oxidative imbalance in these patients.

  4. Conformational altered p53 as an early marker of oxidative stress in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Laura Buizza

    Full Text Available In order to study oxidative stress in peripheral cells of Alzheimer's disease (AD patients, immortalized lymphocytes derived from two peculiar cohorts of patients, referring to early onset AD (EOSAD and subjects harboured AD related mutation (ADmut, were used. Oxidative stress was evaluated measuring i the typical oxidative markers, such as HNE Michel adducts, 3 Nitro-Tyrosine residues and protein carbonyl on protein extracts, ii and the antioxidant capacity, following the enzymatic kinetic of superoxide dismutase (SOD, glutathione peroxidase (GPx and glutathione reductase (GRD. We found that the signs of oxidative stress, measured as oxidative marker levels, were evident only in ADmut but not in EOSAD patients. However, oxidative imbalance in EOSAD as well as ADmut lymphocytes was underlined by a reduced SOD activity and GRD activity in both pathological groups in comparison with cells derived from healthy subjects. Furthermore, a redox modulated p53 protein was found conformational altered in both EOSAD and ADmut B lymphocytes in comparison with control cells. This conformational altered p53 isoform, named "unfolded p53", was recognized by the use of two specific conformational anti-p53 antibodies. Immunoprecipitation experiments, performed with the monoclonal antibodies PAb1620 (that recognizes p53wt and PAb240 (that is direct towards unfolded p53, and followed by the immunoblotting with anti-4-hydroxynonenal (HNE and anti- 3-nitrotyrosine (3NT antibodies, showed a preferential increase of nitrated tyrosine residues in unfolded p53 isoform comparing to p53 wt protein, in both ADmut and EOSAD. In addition, a correlation between unfolded p53 and SOD activity was further found. Thus this study suggests that ROS/RNS contributed to change of p53 tertiary structure and that unfolded p53 can be considered as an early marker of oxidative imbalance in these patients.

  5. Differential Sensitivity of Cells to Radiation Mediated by p53 Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Kang, Mi Young; Kawala, Remigius A.; Ryu, Tae Ho; Kim, Jin-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Exposure of cells to ionizing radiation activates protein genes related cell cycle arrest and cell death (apoptosis or autophagy). The tumor suppressor p53 participates not only in regulation of apoptosis, but also in autophagy mechanism. Apoptosis (type I cell death) is characterized by the activation of caspases and the formation of apoptotic bodies, and plays essential roles in all multicellular organisms. On the other hand, autophagy (type II cell death) is characterized by the presence of cytoplasmic engulfing vesicles, alias autophagosomes, and is a major intracellular pathway for degradation and recycling of proteins, ribosomes and entire organelles. The purpose of this study was to determine whether ionizing radiation treatment induces autophagy depending on the p53 expression levels. RKO (wild-type p53) and RKO E6 (null-type p53) cells were used to evaluate the effects of p53 on the sensitivity of cells to ionizing radiation. In the RKO E6 cells, the function of p53 was disabled with human papillomavirus E6 oncoprotein. These results indicated that p53 and p21 were required to block apoptosis and induce autophagy in RKO cells. The expression of p21 by a p53-dependent mechanism is required to develop autophagic properties after DNA damage. Results in this study suggest that the radioresistance of the RKO cells was associated with the increased p21 expression, resulting in autophagy induction. The tumor suppressor p53 could regulate radiosensitivity by inhibiting autophagy and activating apoptosis; the ionizing radiation-induced expression of p53 in the RKO cells regulated autophagy, suggesting the significance of the level of p53 in determining the radiosensitivity by regulating autophagy and apoptosis.

  6. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents

    Institute of Scientific and Technical Information of China (English)

    Shanshan Song; Guichun Xing; Lin Yuan; Jian Wang; Shan Wang; Yuxin Yin; Chunyan Tian; Fuchu He; Lingqiang Zhang

    2012-01-01

    Alkylating agents induce genome-wide base damage,which is repaired mainly by N-methylpurine DNA glycosylase (MPG).An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks.However,the determinant of drug sensitivity or insensitivity still remains unclear.Here,we report that the p53 status coordinates with MPG to play a pivotal role in such process.MPG expression is positive in breast,lung and colon cancers (38.7%,43.4% and 25.3%,respectively) but negative in all adjacent normal tissues.MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells.The overexpression of MPG reduced,whereas depletion of MPG increased,the expression levels of pro-arrest gene downstream of p53 including p21,14-3-3σ and Gadd45 but not pro-apoptotic ones.The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53.Upon DNA alkylation stress,in p53 wild-type tumor cells,p53 dissociated from MPG and induced cell growth arrest.Then,AP sites were repaired efficiently,which led to insensitivity to alkylating agents.By contrast,in p53-mutated cells,the AP sites were repaired with low efficacy.To our knowledge,this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53,and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.

  7. Necdin, a p53-target gene, is an inhibitor of p53-mediated growth arrest.

    Directory of Open Access Journals (Sweden)

    Julie Lafontaine

    Full Text Available In vitro, cellular immortalization and transformation define a model for multistep carcinogenesis and current ongoing challenges include the identification of specific molecular events associated with steps along this oncogenic pathway. Here, using NIH3T3 cells, we identified transcriptionally related events associated with the expression of Polyomavirus Large-T antigen (PyLT, a potent viral oncogene. We propose that a subset of these alterations in gene expression may be related to the early events that contribute to carcinogenesis. The proposed tumor suppressor Necdin, known to be regulated by p53, was within a group of genes that was consistently upregulated in the presence of PyLT. While Necdin is induced following p53 activation with different genotoxic stresses, Necdin induction by PyLT did not involve p53 activation or the Rb-binding site of PyLT. Necdin depletion by shRNA conferred a proliferative advantage to NIH3T3 and PyLT-expressing NIH3T3 (NIHLT cells. In contrast, our results demonstrate that although overexpression of Necdin induced a growth arrest in NIH3T3 and NIHLT cells, a growing population rapidly emerged from these arrested cells. This population no longer showed significant proliferation defects despite high Necdin expression. Moreover, we established that Necdin is a negative regulator of p53-mediated growth arrest induced by nutlin-3, suggesting that Necdin upregulation could contribute to the bypass of a p53-response in p53 wild type tumors. To support this, we characterized Necdin expression in low malignant potential ovarian cancer (LMP where p53 mutations rarely occur. Elevated levels of Necdin expression were observed in LMP when compared to aggressive serous ovarian cancers. We propose that in some contexts, the constitutive expression of Necdin could contribute to cancer promotion by delaying appropriate p53 responses and potentially promote genomic instability.

  8. Oncogenic intra-p53 family member interactions in human cancers

    Directory of Open Access Journals (Sweden)

    Maria eFerraiuolo

    2016-03-01

    Full Text Available The p53 gene family members p53, p73 and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologues but hold peculiar functional properties. p53, p73 and p63 are tumor suppressor genes that promote differentiation, senescence and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic gain of function (GOF activities correlated with the induction of proliferation, invasion, chemoresistance and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53 with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor (VDR, Ets-1, NF-kB and YAP or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response (DDR, DNA double-strand breaks (DSBs response, enhanced invasion and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild type p53 (wt-p53 protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73 and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers.

  9. Mdm2’s Dilemma: To Degrade or To Translate p53?

    OpenAIRE

    2012-01-01

    In this issue of Cancer Cell, Gajjar et al. provide insight into how Mdm2 can both inhibit and enhance p53 activity. In the basal setting, Mdm2 binds p53 and promotes p53 degradation. Under stress conditions, ATM-dependent phosphorylation of Mdm2 results in its recruitment to p53 mRNA, thereby stimulating p53 translation.

  10. Long-term omeprazole and esomeprazole treatment does not significantly increase gastric epithelial cell proliferation and epithelial growth factor receptor expression and has no effect on apoptosis and p53 expression

    Institute of Scientific and Technical Information of China (English)

    Istvan Hritz; Laszlo Herszenyi; Bela Molnar; Zsolt Tulassay; Laszlo Pronai

    2005-01-01

    AIM: To study the effect of proton pump inhibitor (PPI)treatment on patients with reflux esophagitis and its in vivo effect on apoptosis, p53- and epidermal growth factor receptor (EGFR) expression.METHODS: After informed consent was obtained, gastric biopsies of the antrum were taken from patients with reflux oesophagitis prior to and after 6 mo of 20 mg omeprazole (n = 14) or 40 mg esomeprazole (n = 12) therapy.Patients did not take any other medications known to affect the gastric mucosa. All patients were Helicobacter pylori negative as confirmed by rapid urease test and histology,respectively. Cell proliferation, apoptosis, EGFR, and p53expression were measured by immunohistochemical techniques. At least 600 glandular epithelial cells were encountered and results were expressed as percentage of total cells counted. Was considered statistically significant.RESULTS: Although there was a trend towards increase of cell proliferation and EGFR expression both in omeprazole and esomeprazole treated group, the difference was not statistically significant. Neither apoptosis nor p53 expression was affected.CONCLUSION: Long-term PPI treatment does not significantly increase gastric epithelial cell proliferation and EGFR expression and has no effect on apoptosis and p53 expression.

  11. Dual regulation of energy metabolism by p53 in human cervix and breast cancer cells.

    Science.gov (United States)

    Hernández-Reséndiz, Ileana; Román-Rosales, Alejandra; García-Villa, Enríque; López-Macay, Ambar; Pineda, Erika; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Alvarez-Ríos, Elizabeth; Gariglio, Patricio; Moreno-Sánchez, Rafael; Rodríguez-Enríquez, Sara

    2015-12-01

    The role of p53 as modulator of OxPhos and glycolysis was analyzed in HeLa-L (cells containing negligible p53 protein levels) and HeLa-H (p53-overexpressing) human cervix cancer cells under normoxia and hypoxia. In normoxia, functional p53, mitochondrial enzyme contents, mitochondrial electrical potential (ΔΨm) and OxPhos flux increased in HeLa-H vs. HeLa-L cells; whereas their glycolytic enzyme contents and glycolysis flux were unchanged. OxPhos provided more than 70% of the cellular ATP and proliferation was abolished by anti-mitochondrial drugs in HeLa-H cells. In hypoxia, both cell proliferations were suppressed, but HeLa-H cells exhibited a significant decrease in OxPhos protein contents, ΔΨm and OxPhos flux. Although glycolytic function was also diminished vs. HeLa-L cells in hypoxia, glycolysis provided more than 60% of cellular ATP in HeLa-H cells. The energy metabolism phenotype of HeLa-H cells was reverted to that of HeLa-L cells by incubating with pifithrin-α, a p53-inhibitor. In normoxia, the energy metabolism phenotype of breast cancer MCF-7 cells was similar to that of HeLa-H cells, whereas p53shRNAMCF-7 cells resembled the HeLa-L cell phenotype. In hypoxia, autophagy proteins and lysosomes contents increased 2-5 times in HeLa-H cells suggesting mitophagy activation. These results indicated that under normoxia p53 up-regulated OxPhos without affecting glycolysis, whereas under hypoxia, p53 down-regulated both OxPhos (severely) and glycolysis (weakly). These p53 effects appeared mediated by the formation of p53-HIF-1α complexes. Therefore, p53 exerts a dual and contrasting regulatory role on cancer energy metabolism, depending on the O₂level.

  12. Oxidized DJ-1 Inhibits p53 by Sequestering p53 from Promoters in a DNA-Binding Affinity-Dependent Manner

    Science.gov (United States)

    Kato, Izumi; Maita, Hiroshi; Takahashi-Niki, Kazuko; Saito, Yoshiro; Noguchi, Noriko; Iguchi-Ariga, Sanae M. M.

    2013-01-01

    DJ-1 is an oncogene and the causative gene for familial Parkinson's disease. Although the oxidative status of DJ-1 at cysteine 106 (C106) is thought to affect all of the activities of DJ-1 and excess oxidation leads to the onset of various diseases, the precise molecular mechanisms underlying the effects of oxidation of DJ-1 on protein-protein interactions of DJ-1 remain unclear. In this study, we found that DJ-1 bound to the DNA-binding region of p53 in a manner dependent on the oxidation of C106. Of the p53 target genes, the expression level and promoter activity of the DUSP1 gene, but not those of the p21 gene, were increased in H2O2-treated DJ-1−/− cells and were decreased in wild-type DJ-1- but not C106S DJ-1-transfected H1299 cells through sequestration of p53 from the DUSP1 promoter by DJ-1. DUSP1 downregulated by oxidized DJ-1 activated extracellular signal-regulated kinase (ERK) and decreased apoptosis. The DUSP1 and p21 promoters harbor nonconsensus and consensus p53 recognition sequences, respectively, which have low affinity and high affinity for p53. However, DJ-1 inhibited p21 promoter activity exhibited by p53 mutants harboring low DNA-binding affinity but not by wild-type p53. These results indicate that DJ-1 inhibits the expression of p53 target genes and depend on p53 DNA-binding affinity and oxidation of DJ-1 C106. PMID:23149933

  13. Protective role of p53 in acetaminophen hepatotoxicity.

    Science.gov (United States)

    Huo, Yazhen; Yin, Shutao; Yan, Mingzhu; Win, Sanda; Aung Than, Tin; Aghajan, Mariam; Hu, Hongbo; Kaplowitz, Neil

    2017-02-11

    p53 is a tumor suppressor with a pro-death role in many conditions. However, in some contexts, evidence supports a pro-survival function. p53 has been shown to be activated in acetaminophen (APAP) toxicity but the impact of this on toxicity is uncertain. In the present study, we have found that p53 plays a protective role in APAP-induced liver injury. We inhibited p53 using three different approaches in mice, pifithrin-α (PFTα), knockdown of p53 expression with antisense oligonucleotide, and p53 knockout. Mice were treated with APAP (300mg/kg) i.p. and after 24h in all three conditions, the liver injury was more severe as reflected in higher ALT levels and great area of necrosis in histology of the liver. Conversely, a p53 activator, nutlin-3a, decreased the liver injury induced by APAP. In the p53 inhibition models, enhanced sustained JNK activation was seen in the early time course, while the JNK was suppressed with the p53 activator. In conclusion, p53 plays a novel protective role in APAP induced liver injury through inhibiting the activation of JNK, a key mediator in APAP-induced oxidative stress.

  14. Tumor suppressor p53 meets microRNAs

    Institute of Scientific and Technical Information of China (English)

    Zhaohui Feng; Cen Zhang; Rui Wu; Wenwei Hu

    2011-01-01

    Tumor suppressor p53 plays a central role in tumor prevention. As a transcription factor, p53 mainly exerts its function through transcription regulation of its target genes to initiate various cellular responses. To maintain its proper function, p53 is tightly regulated by a wide variety of regulators in cells. Thus, p53, its regulators and regulated genes form a complex p53 network which is composed of hundreds of genes and their products. microRNAs (miRNAs) are a class of endogenously expressed, small non-coding RNA molecules which play a key role in regulation of gene expression at the post-transcriptional level. Recent studies have demonstrated that miRNAs interact with p53 and its network at multiple levels. p53 regulates the transcription expression and the maturation of a group of miRNAs. On the other hand, miRNAs can regulate the activity and function of p53 through direct repression of p53 or its regulators in cells. These findings have demonstrated that miRNAs are important components in the p53 network, and also added another layer of complexity to the p53 network.

  15. Depression of p53-independent Akt survival signals after high-LET radiation in mutated p53 cells

    Science.gov (United States)

    Ohnishi, Takeo; Takahashi, Akihisa; Nakagawa, Yosuke

    Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses the activities of serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signals were analyzed with Western blotting analysis 1 h, 2 h, 3 h and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis.Akt-related protein levels were decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G _{2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and depresses cell growth by suppressing Akt-related signals, even in the mp53 cells.

  16. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Katharine J.; Cook, Anthony L., E-mail: Anthony.Cook@utas.edu.au; Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au

    2014-06-15

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.

  17. p53 interaction with JMJD3 results in its nuclear distribution during mouse neural stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Susana Solá

    Full Text Available Conserved elements of apoptosis are also integral components of cellular differentiation. In this regard, p53 is involved in neurogenesis, being required for neurite outgrowth in primary neurons and for axonal regeneration in mice. Interestingly, demethylases regulate p53 activity and its interaction with co-activators by acting on non-histone proteins. In addition, the histone H3 lysine 27-specific demethylase JMJD3 induces ARF expression, thereby stabilizing p53 in mouse embryonic fibroblasts. We hypothesized that p53 interacts with key regulators of neurogenesis to redirect stem cells to differentiation, as an alternative to cell death. Specifically, we investigated the potential cross-talk between p53 and JMJD3 during mouse neural stem cell (NSC differentiation. Our results demonstrated that JMJD3 mRNA and protein levels were increased early in mouse NSC differentiation, when JMJD3 activity was readily detected. Importantly, modulation of JMJD3 in NSCs resulted in changes of total p53 protein, coincident with increased ARF mRNA and protein expression. ChIP analysis revealed that JMJD3 was present at the promoter and exon 1 regions of ARF during neural differentiation, although without changes in H3K27me3. Immunoprecipitation assays demonstrated a direct interaction between p53 and JMJD3, independent of the C-terminal region of JMJD3, and modulation of p53 methylation by JMJD3-demethylase activity. Finally, transfection of mutant JMJD3 showed that the demethylase activity of JMJD3 was crucial in regulating p53 cellular distribution and function. In conclusion, JMJD3 induces p53 stabilization in mouse NSCs through ARF-dependent mechanisms, directly interacts with p53 and, importantly, causes nuclear accumulation of p53. This suggests that JMJD3 and p53 act in a common pathway during neurogenesis.

  18. Blocking of p53-Snail Binding, Promoted by Oncogenic K-Ras, Recovers p53 Expression and function

    Directory of Open Access Journals (Sweden)

    Sun-Hye Lee

    2009-01-01

    Full Text Available Differentially from other kinds of Ras, oncogenic K-Ras, which is mutated approximately 30% of human cancer, does not induce apoptosis and senescence. Here, we provide the evidence that oncogenic K-Ras abrogates p53 function and expression through induction of Ataxia telangiectasia-mutated and Rad3-related mediated Snail stabilization. Snail directly binds to DNA binding domain of p53 and diminishes the tumor-suppressive function of p53. Thus, elimination of Snail through si-RNA can induce p53 in K-Ras-mutated cells, whereas Snail and mutant K-Ras can suppress p53 in regardless of K-Ras status. Chemicals, isolated from inhibitor screening of p53-Snail binding, can block the Snail-mediated p53 suppression and enhance the expression of p53 as well as the transcriptional activity of p53 in an oncogenic K-Ras-dependent manner. Among the chemicals, two are very similar in structure. These results can answer why K-Ras can coexist with wild type p53 and propose the Snail-p53 binding as the new therapeutic target for K-Ras-mutated cancers including pancreatic, lung, and colon cancers.

  19. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    Energy Technology Data Exchange (ETDEWEB)

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira; Tan, Martha; Senear, Donald F. [University of California, Irvine, Irvine, CA 92697 (United States); Luecke, Hartmut, E-mail: hudel@uci.edu [University of California, Irvine, Irvine, CA 92697 (United States); University of California, Irvine, Irvine, CA 92697 (United States); University of California, Irvine, Irvine, CA 92697 (United States); University of California, Irvine, Irvine, CA 92697 (United States); Universidad del Pais Vasco, 48940 Leioa (Spain)

    2013-10-01

    X-ray crystallographic structures of four p53 core-domain variants were determined in order to gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53. To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol{sup −1} (15.1 kJ mol{sup −1}). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the

  20. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hong Shik [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Baek, Jeong-Hwa [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Yim, Ji-Hye [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Lee, Su-Jae [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Chang-Woo [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Hwang, Sang-Gu, E-mail: sgh63@kcch.re.kr [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-11

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

  1. Hypermethylation of the 5′ CpG island of the p14ARF flanking exon 1β in human colorectal cancer displaying a restricted pattern of p53 overexpression concomitant with increased MDM2 expression

    Directory of Open Access Journals (Sweden)

    Nyiraneza Christine

    2012-06-01

    Full Text Available Abstract Background It has been suggested that inactivation of p14ARF, a tumor suppressor central to regulating p53 protein stability through interaction with the MDM2 oncoprotein, abrogates p53 activity in human tumors retaining the wild-type TP53 gene. Differences in expression of tumor suppressor genes are frequently associated with cancer. We previously reported on a pattern of restricted p53 immunohistochemical overexpression significantly associated with microsatellite instability (MSI, low TP53 mutation frequency, and MDM2 overexpression in colorectal cancers (CRCs. In this study, we investigated whether p14ARF alterations could be a mechanism for disabling the p53 pathway in this subgroup of CRCs. Results Detailed maps of the alterations in the p14ARF gene were determined in a cohort of 98 CRCs to detect both nucleotide and copy-number changes. Methylation-specific PCR combined with bisulfite sequencing was used to evaluate the prevalence and distribution of p14ARF methylation. p14ARF alterations were then correlated with MSI status, TP53 mutations, and immunohistochemical expression of p53 and MDM2. The frequency of p14ARF mutations was extremely low (1/98; 1%, whereas coexistence of methylated and unmethylated alleles in both tumors and normal colon mucosa was common (91/98; 93%. Only seven of ninety-eight tumors (7% had a distinct pattern of methylation compared with normal colon mucosa. Evaluation of the prevalence and distribution of p14ARF promoter methylation in a region containing 27 CpG sites in 35 patients showed a range of methylated CpG sites in tumors (0 to 25 (95% CI 1 to 13 versus 0 to 17 (95% CI 0 to 2 in adjacent colon mucosa (P = 0.004. Hypermethylation of the p14ARF promoter was significantly correlated with the restricted p53 overexpression pattern (P = 0.03, and MDM2 overexpression (P = 0.02, independently of MSI phenotype. Although no significant correlation between p14ARF methylation and TP53 mutational

  2. Whole-genome cartography of p53 response elements ranked on transactivation potential.

    Science.gov (United States)

    Tebaldi, Toma; Zaccara, Sara; Alessandrini, Federica; Bisio, Alessandra; Ciribilli, Yari; Inga, Alberto

    2015-06-17

    Many recent studies using ChIP-seq approaches cross-referenced to trascriptome data and also to potentially unbiased in vitro DNA binding selection experiments are detailing with increasing precision the p53-directed gene regulatory network that, nevertheless, is still expanding. However, most experiments have been conducted in established cell lines subjected to specific p53-inducing stimuli, both factors potentially biasing the results. We developed p53retriever, a pattern search algorithm that maps p53 response elements (REs) and ranks them according to predicted transactivation potentials in five classes. Besides canonical, full site REs, we developed specific pattern searches for non-canonical half sites and 3/4 sites and show that they can mediate p53-dependent responsiveness of associated coding sequences. Using ENCODE data, we also mapped p53 REs in about 44,000 distant enhancers and identified a 16-fold enrichment for high activity REs within those sites in the comparison with genomic regions near transcriptional start sites (TSS). Predictions from our pattern search were cross-referenced to ChIP-seq, ChIP-exo, expression, and various literature data sources. Based on the mapping of predicted functional REs near TSS, we examined expression changes of thirteen genes as a function of different p53-inducing conditions, providing further evidence for PDE2A, GAS6, E2F7, APOBEC3H, KCTD1, TRIM32, DICER, HRAS, KITLG and TGFA p53-dependent regulation, while MAP2K3, DNAJA1 and potentially YAP1 were identified as new direct p53 target genes. We provide a comprehensive annotation of canonical and non-canonical p53 REs in the human genome, ranked on predicted transactivation potential. We also establish or corroborate direct p53 transcriptional control of thirteen genes. The entire list of identified and functionally classified p53 REs near all UCSC-annotated genes and within ENCODE mapped enhancer elements is provided. Our approach is distinct from, and complementary

  3. Convolvulus galaticus, Crocus antalyensis, and Lilium candidum extracts show their antitumor activity through induction of p53-mediated apoptosis on human breast cancer cell line MCF-7 cells.

    Science.gov (United States)

    Tokgun, Onur; Akca, Hakan; Mammadov, Ramazan; Aykurt, Candan; Deniz, Gökhan

    2012-11-01

    Conventional and newly emerging treatment procedures such as chemotherapy, catalytic therapy, photodynamic therapy, and radiotherapy have not succeeded in reversing the outcome of cancer diseases to any drastic extent, which has led researchers to investigate alternative treatment options. The extensive repertoire of traditional medicinal knowledge systems from various parts of the world are being re-investigated for their healing properties. It has been reported that several members of the Convolvulaceae, Iridaceae, and Liliaceae families have antitumor activity against some tumor cell lines. Here we first report that Convolvulus galaticus, Crocus antalyensis, and Lilium candidum species have cytotoxic activity on human breast cancer cell line MCF-7 cells. Plant samples were collected and identified, and their cytotoxic effects on the MCF-7 cell line were examined at different concentrations of methanol extracts. We found that all three plants have cytotoxic effects on MCF-7 cells but that C. galaticus has the strongest cytotoxic effect even in the lowest extract concentration tested (0.32 μg/mL). Our results indicate that these plant extracts have cytotoxic effects on human breast carcinoma cell line MCF-7 cells and that this cytotoxic effect comes from p53-mediated stimulation of apoptosis.

  4. Targeting the p53 Pathway in Ewing Sarcoma

    Directory of Open Access Journals (Sweden)

    Paul M. Neilsen

    2011-01-01

    Full Text Available The p53 tumour suppressor plays a pivotal role in the prevention of oncogenic transformation. Cancers frequently evade the potent antitumour surveillance mechanisms of p53 through mutation of the TP53 gene, with approximately 50% of all human malignancies expressing dysfunctional, mutated p53 proteins. Interestingly, genetic lesions in the TP53 gene are only observed in 10% of Ewing Sarcomas, with the majority of these sarcomas expressing a functional wild-type p53. In addition, the p53 downstream signaling pathways and DNA-damage cell cycle checkpoints remain functionally intact in these sarcomas. This paper summarizes recent insights into the functional capabilities and regulation of p53 in Ewing Sarcoma, with a particular focus on the cross-talk between p53 and the EWS-FLI1 gene rearrangement frequently associated with this disease. The development of several activators of p53 is discussed, with recent evidence demonstrating the potential of small molecule p53 activators as a promising systemic therapeutic approach for the treatment of Ewing Sarcomas with wild-type p53.

  5. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells.

    Science.gov (United States)

    Matsumoto, Masaru; Nakajima, Wataru; Seike, Masahiro; Gemma, Akihiko; Tanaka, Nobuyuki

    2016-04-29

    Cisplatin is a highly effective anticancer drug for treatment of various tumors including non-small-cell lung cancer (NSCLC), and is especially useful in cases nonresponsive to molecular-targeted drugs. Accumulating evidence has shown that cisplatin activates the p53-dependent apoptotic pathway, but it also induces apoptosis in p53-mutated cancer cells. Here we demonstrated that DNA-damage inducible proapoptotic BH3 (Bcl-2 homology region 3)-only Bcl-2 family members, Noxa, Puma, Bim and Bid, are not involved in cisplatin-induced apoptosis in human NSCLC cell lines. In contrast, the expression of proapoptotic multidomain Bcl-2-family members, Bak and Bax, was induced by cisplatin in p53-dependent and -independent manners, respectively. Moreover, in wild-type p53-expressing cells, cisplatin mainly used the Bak-dependent apoptotic pathway, but this apoptotic pathway shifted to the Bax-dependent pathway by loss-of-function of p53. Furthermore, both Bak- and Bax-induced apoptosis was enhanced by the antiapoptotic Bcl-2 family member, Bcl-XL knockdown, but not by Mcl-1 knockdown. From this result, we tested the effect of ABT-263 (Navitoclax), the specific inhibitor of Bcl-2 and Bcl-XL, but not Mcl-1, and found that ABT-263 synergistically enhanced cisplatin-induced apoptosis in NSCLC cells in the presence or absence of p53. These results indicate a novel regulatory system in cisplatin-induced NSCLC cell apoptosis, and a candidate efficient combination chemotherapy method against lung cancers.

  6. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53

    Energy Technology Data Exchange (ETDEWEB)

    Sheren, Jamie E. [Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Kassenbrock, C. Kenneth, E-mail: ken.kassenbrock@ucdenver.edu [Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 (United States)

    2013-11-01

    Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequence (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.

  7. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements.

    Directory of Open Access Journals (Sweden)

    Ivan Raimondi

    Full Text Available The tumor suppressor p53 was previously shown to markedly up-regulate the expression of the PRODH gene, encoding the proline dehydrogenase (PRODH enzyme, which catalyzes the first step in proline degradation. Also PRODH2, which degrades 4-hydroxy-L-proline, a product of protein (e.g. collagen catabolism, was recently described as a p53 target. Here, we confirmed p53-dependent induction of endogenous PRODH in response to genotoxic damage in cell lines of different histological origin. We established that over-expression of TAp73β or TAp63β is sufficient to induce PRODH expression in p53-null cells and that PRODH expression parallels the modulation of endogenous p73 by genotoxic drugs in several cell lines. The p53, p63, and p73-dependent transcriptional activation was linked to specific intronic response elements (REs, among those predicted by bioinformatics tools and experimentally validated by a yeast-based transactivation assay. p53 occupancy measurements were validated in HCT116 and MCF7 human cell lines. Conversely, PRODH2 was not responsive to p63 nor p73 and, at best, could be considered a weak p53 target. In fact, minimal levels of PRODH2 transcript induction by genotoxic stress was observed exclusively in one of four p53 wild-type cell lines tested. Consistently, all predicted p