WorldWideScience

Sample records for activity improve vascular

  1. ACTIVITIES RESULTS AIMED AT IMPROVED MEDICAL ASSISTANCE TO THE VASCULAR PATIENTS IN TOMSK REGION

    Directory of Open Access Journals (Sweden)

    D. M. Plotnikov

    2013-01-01

    Full Text Available Acute disorders of cerebral circulation remain serious medical and social problem associated with high disability and mortality rates. Since 2011 Tomsk oblast is a participating member of the medical campaign aimed at improved medical services to the vascular patients. The preliminary implementation data analysis for 2012 revealed improvement of most of the indices of medical support to patients suffering from acute cerebral circulation; increased number of the in-patient cases (Regional Vascular Center and primary vascular department, decreased lethality rates from strokes, specifically hemorrhagic cases. Strict observance of the Regulations on Medical Assistance for stroke patients and the using of modern methods of therapy allowed to decrease hospital mortality in the Primary Vascular Departments and early mortality in the Regional Vascular Center. The active implementation of neurorehabilitation approaches resulted in the increased number of patients who do not require third parties’ assistance. Analysis of the work of the departments helped to identifying current problems and perspectives of further development of special medical care for stroke patients.

  2. Ghrelin improves vascular autophagy in rats with vascular calcification.

    Science.gov (United States)

    Xu, Mingming; Liu, Lin; Song, Chenfang; Chen, Wei; Gui, Shuyan

    2017-06-15

    This study aimed to investigate whether ghrelin ameliorated vascular calcification (VC) through improving autophagy. VC model was induced by nicotine plus vitamin D 3 in rats and β-glycerophosphate in vascular smooth muscle cell (VSMC). Calcium deposition was detected by von Kossa staining or alizarin red S staining. ALP activity was also detected. Western blot was used to assess the protein expression. Ghrelin treatment attenuated the elevation of calcium deposition and ALP activity in VC model both in vivo and in vitro. Interesting, the protein levels of autophagy markers, LC3 and beclin1 were significantly upregulated by ghrelin in VC model. An autophagy inhibitor, 3-methyladenine blocks the ameliorative effect of ghrelin on VC. Furthermore, protein expressions of phosphate-AMPK were increased by ghrelin treatment both in calcified aorta and VSMC. The effect of ghrelin on autophagy induction and VC attenuation was prevented by AMPK inhibitor, compound C. Our results suggested that ghrelin improved autophagy through AMPK activation, which was resulted in VC amelioration. These data maybe throw light on prevention and therapy of VC. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Adipokine CTRP6 improves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Chi, Liyi; Hu, Xiaojing; Zhang, Wentao; Bai, Tiao; Zhang, Linjing; Zeng, Hua; Guo, Ruirui; Zhang, Yanhai; Tian, Hongyan

    2017-01-01

    Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNA was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II (Ang

  4. Novel strategies to improve the patency of vascular prostheses

    NARCIS (Netherlands)

    Heyligers, J.M.M.

    2006-01-01

    Two novel strategies to improve the patency of vascular prostheses are described in this thesis. To improve the outcome of synthetic vascular bypass surgery, cell seeding is a promising concept that has extensively been investigated and is still evolving. To improve the short term effects due to

  5. Active music therapy improves cognition and behaviour in chronic vascular encephalopathy: a case report.

    Science.gov (United States)

    Giovagnoli, Anna Rita; Oliveri, Serena; Schifano, Letizia; Raglio, Alfredo

    2014-02-01

    This study describes the effects of active music therapy (AMT) on cognition and behaviour in chronic vascular encephalopathy. A single case study investigated different cognitive and psycho-behavioural changes after AMT. An adult patient with memory, attention, and verbal fluency deficits associated with Vascular Cognitive Impairment-No Dementia (VCI-ND) was treated. A four-months AMT course was based on creative and interactive music playing. Sixteen sessions were conducted simultaneously to the pharmacological therapy. Cognitive performances, mood, interpersonal interactions, and perceived abilities were assessed using standardized neuropsychological and psycho-behavioural measurements. At baseline, the patient reported a tendency to feel tense, nervous, and angry and difficulties in memory and visuospatial performances, frequently accompanied by attention drops. The social network was a habitual component of the patient's life, but not a source of sharing of personal experiences, safety or comfort. Neuropsychological tests showed deficits in object and figure naming, verbal fluency, short and long-term verbal memory, short-term spatial memory, selective attention, and visuomotor coordination. After AMT, the cognitive profile significantly improved in attention, visuomotor coordination, and verbal and spatial memory. Such positive changes were confirmed at the three-months follow-up. An increase of the interpersonal interactions and consistent reduction of anxiety were also observed. In selected patients with VCI-ND, a well-structured AMT intervention added to standard therapy may contribute in determining a stable improvement of cognitive and psycho-behavioural aspects. Controlled studies are needed to confirm these promising results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Improved vascularization of planar membrane diffusion devices following continuous infusion of vascular endothelial growth factor.

    Science.gov (United States)

    Trivedi, N; Steil, G M; Colton, C K; Bonner-Weir, S; Weir, G C

    2000-01-01

    Improving blood vessel formation around an immunobarrier device should improve the survival of the encapsulated tissue. In the present study we investigated the formation of new blood vessels around a planar membrane diffusion device (the Baxter Theracyte System) undergoing a continuous infusion of vascular endothelial growth factor through the membranes and into the surrounding tissue. Each device (20 microl) had both an inner immunoisolation membrane and an outer vascularizing membrane. Human recombinant vascular endothelial growth factor-165 was infused at 100 ng/day (low dose: n = 6) and 500 ng/day (high dose: n = 7) for 10 days into devices implanted s.c. in Sprague-Dawley rats; noninfused devices transplanted for an identical period were used as controls (n = 5). Two days following the termination of VEGF infusion, devices were loaded with 20 microl of Lispro insulin (1 U/kg) and the kinetics of insulin release from the lumen of the device was assessed. Devices were then explanted and the number of blood vessels (capillary and noncapillary) was quantified using morphometry. High-dose vascular endothelial growth factor infusion resulted in two- to threefold more blood vessels around the device than that obtained with the noninfused devices and devices infused with low-dose vascular endothelial growth factor. This increase in the number of blood vessels was accompanied by a modest increase in insulin diffusion from the device in the high-dose vascular endothelial growth factor infusion group. We conclude that vascular endothelial growth factor can be used to improve blood vessel formation adjacent to planar membrane diffusion devices.

  7. [Vascular aging, arterial hypertension and physical activity].

    Science.gov (United States)

    Schmidt-Trucksäss, A; Weisser, B

    2011-11-01

    The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Group-based exercise combined with dual-task training improves gait but not vascular health in active older adults without dementia.

    Science.gov (United States)

    Gregory, Michael A; Gill, Dawn P; Zou, Guangyong; Liu-Ambrose, Teresa; Shigematsu, Ryosuke; Fitzgerald, Clara; Hachinski, Vladimir; Shoemaker, Kevin; Petrella, Robert J

    2016-01-01

    Gait abnormalities and vascular disease risk factors are associated with cognitive impairment in aging. To determine the impact of group-based exercise and dual-task training on gait and vascular health, in active community-dwelling older adults without dementia. Participants [n=44, mean (SD) age: 73.5 (7.2) years, 68% female] were randomized to either intervention (exercise+dual-task; EDT) or control (exercise only; EO). Each week, for 26 weeks, both groups accumulated 50 or 75 min of aerobic exercise from group-based classes and 45 min of beginner-level square stepping exercise (SSE). Participants accumulating only 50 min of aerobic exercise were instructed to participate in an additional 25 min each week outside of class. The EDT group also answered cognitively challenging questions while performing SSE (i.e., dual-task training). The effect of the interventions on gait and vascular health was compared between groups using linear mixed effects models. At 26 weeks, the EDT group demonstrated increased dual-task (DT) gait velocity [difference between groups in mean change from baseline (95% CI): 0.29 m/s (0.16-0.43), pexercise combined with dual-task training can improve DT gait characteristics in active older adults without dementia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Delayed sodium (18)F-fluoride PET/CT imaging does not improve quantification of vascular calcification metabolism

    DEFF Research Database (Denmark)

    Blomberg, Björn Alexander; Thomassen, Anders; Takx, Richard A P

    2014-01-01

    This study aimed to determine if delayed sodium (18)F-fluoride (Na(18)F) PET/CT imaging improves quantification of vascular calcification metabolism. Blood-pool activity can disturb the arterial Na(18)F signal. With time, blood-pool activity declines. Therefore, delayed imaging can potentially...

  10. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Ottesen, B; Jørgensen, M

    1994-01-01

    In vitro effects of two bioactive forms of pituitary adenylate cyclase activating polypeptide (PACAP): PACAP-38 and PACAP-27 were studied on rabbit vascular and non-vascular smooth muscle. Segments of the ovarian artery and muscle strips from the fallopian tube were used. Two series of experiment...

  11. N-acetylcysteine improves arterial vascular reactivity in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Wittstock, Antje; Burkert, Magdalena; Zidek, Walter

    2009-01-01

    Patients with stage 5 chronic kidney disease show increased cardiovascular morbidity and mortality that are partly related to impaired arterial vascular reactivity. We investigated whether intravenous administration of the antioxidant acetylcysteine improves arterial vascular reactivity in these ...

  12. Obesity-induced vascular inflammation involves elevated arginase activity.

    Science.gov (United States)

    Yao, Lin; Bhatta, Anil; Xu, Zhimin; Chen, Jijun; Toque, Haroldo A; Chen, Yongjun; Xu, Yimin; Bagi, Zsolt; Lucas, Rudolf; Huo, Yuqing; Caldwell, Ruth B; Caldwell, R William

    2017-11-01

    Obesity-induced vascular dysfunction involves pathological remodeling of the visceral adipose tissue (VAT) and increased inflammation. Our previous studies showed that arginase 1 (A1) in endothelial cells (ECs) is critically involved in obesity-induced vascular dysfunction. We tested the hypothesis that EC-A1 activity also drives obesity-related VAT remodeling and inflammation. Our studies utilized wild-type and EC-A1 knockout (KO) mice made obese by high-fat/high-sucrose (HFHS) diet. HFHS diet induced increases in body weight, fasting blood glucose, and VAT expansion. This was accompanied by increased arginase activity and A1 expression in vascular ECs and increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in both VAT and ECs. HFHS also markedly increased circulating inflammatory monocytes and VAT infiltration by inflammatory macrophages, while reducing reparative macrophages. Additionally, adipocyte size and fibrosis increased and capillary density decreased in VAT. These effects of HFHS, except for weight gain and hyperglycemia, were prevented or reduced in mice lacking EC-A1 or treated with the arginase inhibitor 2-( S )-amino-6-boronohexanoic acid (ABH). In mouse aortic ECs, exposure to high glucose (25 mM) and Na palmitate (200 μM) reduced nitric oxide production and increased A1, TNF-α, VCAM-1, ICAM-1, and MCP-1 mRNA, and monocyte adhesion. Knockout of EC-A1 or ABH prevented these effects. HFHS diet-induced VAT inflammation is mediated by EC-A1 expression/activity. Limiting arginase activity is a possible therapeutic means of controlling obesity-induced vascular and VAT inflammation.

  13. Impaired vascular function in physically active premenopausal women with functional hypothalamic amenorrhea is associated with low shear stress and increased vascular tone.

    Science.gov (United States)

    O'Donnell, Emma; Goodman, Jack M; Mak, Susanna; Harvey, Paula J

    2014-05-01

    Exercise-trained hypoestrogenic premenopausal women with functional hypothalamic amenorrhea (ExFHA) exhibit impaired endothelial function. The vascular effects of an acute bout of exercise, a potent nitric oxide stimulus, in these women are unknown. Three groups were studied: recreationally active ExFHA women (n = 12; 24.2 ± 1.2 years of age; mean ± SEM), and recreationally active (ExOv; n = 14; 23.5 ± 1.2 years of age) and sedentary (SedOv; n = 15; 23.1 ± 0.5 years of age) ovulatory eumenorrheic women. Calf blood flow (CBF) and brachial artery flow-mediated dilation (FMD) were evaluated using plethysmographic and ultrasound techniques, respectively, both before and 1 hour after 45 minutes of moderate-intensity exercise. Endothelium-independent dilation was assessed at baseline using glyceryl trinitrate. Calf vascular resistance (CVR) and brachial peak shear rate, as determined by the area under the curve (SRAUCpk), were also calculated. FMD and glyceryl trinitrate responses were lower (P .05) the findings. CBF was lower (P .05) between the groups. CBF in ExFHA was increased (P < .05) and CVR decreased (P < .05) to levels observed in ovulatory women. Acute dynamic exercise improves vascular function in ExFHA women. Although the role of estrogen deficiency per se is unclear, our findings suggest that low shear rate and increased vasoconstrictor tone may play a role in impaired basal vascular function in these women.

  14. Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF.

    Science.gov (United States)

    Schini-Kerth, Valérie B; Auger, Cyril; Kim, Jong-Hun; Etienne-Selloum, Nelly; Chataigneau, Thierry

    2010-05-01

    Numerous studies indicate that regular intake of polyphenol-rich beverages (red wine and tea) and foods (chocolate, fruit, and vegetables) is associated with a protective effect on the cardiovascular system in humans and animals. Beyond the well-known antioxidant properties of polyphenols, several other mechanisms have been shown to contribute to their beneficial cardiovascular effects. Indeed, both experimental and clinical studies indicate that polyphenols improve the ability of endothelial cells to control vascular tone. Experiments with isolated arteries have shown that polyphenols cause nitric oxide (NO)-mediated endothelium-dependent relaxations and increase the endothelial formation of NO. The polyphenol-induced NO formation is due to the redox-sensitive activation of the phosphatidylinositol3-kinase/Akt pathway leading to endothelial NO synthase (eNOS) activation subsequent to its phosphorylation on Ser 1177. Besides the phosphatidylinositol3-kinase/Akt pathway, polyphenols have also been shown to activate eNOS by increasing the intracellular free calcium concentration and by activating estrogen receptors in endothelial cells. In addition to causing a rapid and sustained activation of eNOS by phosphorylation, polyphenols can increase the expression level of eNOS in endothelial cells leading to an increased formation of NO. Moreover, the polyphenol-induced endothelium-dependent relaxation also involves endothelium-derived hyperpolarizing factor, besides NO, in several types of arteries. Altogether, polyphenols have the capacity to improve the endothelial control of vascular tone not only in several experimental models of cardiovascular diseases such as hypertension but also in healthy and diseased humans. Thus, these experimental and clinical studies highlight the potential of polyphenol-rich sources to provide vascular protection in health and disease.

  15. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass.

    Science.gov (United States)

    Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena

    2017-11-14

    Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs are the basis of islet vascularization and Sertoli cells (SCs have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32, survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt and demonstrated increased vascular endothelial growth factor receptor 2 (KDR and angiogenesis signal molecules (FAk and PLC-γ. SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.

  17. Active hemorrhage and vascular injuries in splenic trauma: utility of the arterial phase in multidetector CT.

    Science.gov (United States)

    Uyeda, Jennifer W; LeBedis, Christina A; Penn, David R; Soto, Jorge A; Anderson, Stephan W

    2014-01-01

    To determine whether the addition of arterial phase computed tomography (CT) to the standard combination of portal venous and delayed phase imaging increases sensitivity in the diagnosis of active hemorrhage and/or contained vascular injuries in patients with splenic trauma. The institutional review board approved this HIPAA-compliant retrospective study; the requirement to obtain informed consent was waived. The study included all patients aged 15 years and older who sustained a splenic injury from blunt or penetrating trauma and who underwent CT in the arterial and portal venous phases of image acquisition during a 74-month period (September 2005 to November 2011). CT scans were reviewed by three radiologists, and a consensus interpretation was made to classify the splenic injuries according to the American Association for the Surgery of Trauma splenic injury scale. One radiologist independently recorded the presence of contained vascular injuries or active hemorrhage and the phase or phases at which these lesions were seen. Clinical outcome was assessed by reviewing medical records. The relationship between imaging findings and clinical management was assessed with the Fisher exact test. One hundred forty-seven patients met the inclusion criteria; 32 patients (22%) had active hemorrhage and 22 (15%) had several contained vascular injuries. In 13 of the 22 patients with contained injuries, the vascular lesion was visualized only at the arterial phase of image acquisition; the other nine contained vascular injuries were seen at all phases. Surgery or embolization was performed in 11 of the 22 patients with contained vascular injury. The arterial phase of image acquisition improves detection of traumatic contained splenic vascular injuries and should be considered to optimize detection of splenic injuries in trauma with CT. ©RSNA, 2013.

  18. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    International Nuclear Information System (INIS)

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Duntsch, Christopher; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-01-01

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-β (IFN-β) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-β and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-β caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-β or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-β or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-β each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  19. Acute vascular effects of waterpipe smoking: Importance of physical activity and fitness status.

    Science.gov (United States)

    Alomari, Mahmoud A; Khabour, Omar F; Alzoubi, Karem H; Shqair, Dana M; Stoner, Lee

    2015-06-01

    While new forms of tobacco, including waterpipe (WP) smoking, continue to gain popularity, limited literature has examined the vascular health consequences. The purpose of the current study was to examine: (i) the acute WP-induced changes in vascular function; (ii) whether acute changes in vascular function are modified by lifestyle behaviors (habitual physical activity, physical fitness). Fifty three (22.7 y, 36% F, 23.4 kg/m(2)) otherwise healthy WP smokers were recruited. Strain-gauge plethysmography was used to measure forearm blood flow, vascular resistance, venous capacitance, and venous outflow at rest and following occlusion. Habitual physical activity was determined using the Arabic version of short-form international physical activity questionnaire, while physical fitness was assessed using the 6 min walk test and handgrip strength. Partial correlations were used to examine the relationships between post-smoking vascular function and lifestyle behaviors, controlling for pre-smoking vascular measures. (i) WP had a small effect on forearm post-occlusion blood flow (d = -0.19), a moderate effect on venous outflow (d = 0.30), and a moderate effect on post-occlusion vascular resistance (d = 0.32). (ii) Total habitual physical activity strongly correlated with resting blood flow (r = 0.50) and moderately with vascular resistance (r = -0.40). Handgrip strength moderately correlated with venous capacitance (r = 0.30) and post-occlusion blood flow (r = 0.30), while 6 min walked distance moderately correlated with resting venous capacitance (r = 0.30). Waterpipe smoking is associated with immediate changes in vascular function, which are exacerbated in individuals with low habitual physical activity and physical fitness levels in young otherwise healthy individuals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Moderate Champagne consumption promotes an acute improvement in acute endothelial-independent vascular function in healthy human volunteers.

    Science.gov (United States)

    Vauzour, David; Houseman, Emily J; George, Trevor W; Corona, Giulia; Garnotel, Roselyne; Jackson, Kim G; Sellier, Christelle; Gillery, Philippe; Kennedy, Orla B; Lovegrove, Julie A; Spencer, Jeremy P E

    2010-04-01

    Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of CVD. However, Champagne wine has not been fully investigated for its cardioprotective potential. In order to assess whether acute and moderate Champagne wine consumption is capable of modulating vascular function, we performed a randomised, placebo-controlled, cross-over intervention trial. We show that consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, induced an acute change in endothelium-independent vasodilatation at 4 and 8 h post-consumption. Although both Champagne wine and the control also induced an increase in endothelium-dependent vascular reactivity at 4 h, there was no significant difference between the vascular effects induced by Champagne or the control at any time point. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase (MMP-9), a significant decrease in plasma levels of oxidising species and an increase in urinary excretion of a number of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared with the control intervention. Our data suggest that a daily moderate consumption of Champagne wine may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and reducing matrix metalloproteinase activity.

  1. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension.

    Science.gov (United States)

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-02-01

    Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O(2) (-) production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  2. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension

    Science.gov (United States)

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-01-01

    Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554

  3. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  4. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    Science.gov (United States)

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation?

    Science.gov (United States)

    Ter Braake, Anique D; Shanahan, Catherine M; de Baaij, Jeroen H F

    2017-08-01

    Over the last decade, an increasing number of studies report a close relationship between serum magnesium concentration and cardiovascular disease risk in the general population. In end-stage renal disease, an association was found between serum magnesium and survival. Hypomagnesemia was identified as a strong predictor for cardiovascular disease in these patients. A substantial body of in vitro and in vivo studies has identified a protective role for magnesium in vascular calcification. However, the precise mechanisms and its contribution to cardiovascular protection remain unclear. There are currently 2 leading hypotheses: first, magnesium may bind phosphate and delay calcium phosphate crystal growth in the circulation, thereby passively interfering with calcium phosphate deposition in the vessel wall. Second, magnesium may regulate vascular smooth muscle cell transdifferentiation toward an osteogenic phenotype by active cellular modulation of factors associated with calcification. Here, the data supporting these major hypotheses are reviewed. The literature supports both a passive inorganic phosphate-buffering role reducing hydroxyapatite formation and an active cell-mediated role, directly targeting vascular smooth muscle transdifferentiation. However, current evidence relies on basic experimental designs that are often insufficient to delineate the underlying mechanisms. The field requires more advanced experimental design, including determination of intracellular magnesium concentrations and the identification of the molecular players that regulate magnesium concentrations in vascular smooth muscle cells. © 2017 American Heart Association, Inc.

  6. Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-γ-dependent activity

    International Nuclear Information System (INIS)

    Toyama, Kensuke; Nakamura, Taishi; Kataoka, Keiichiro; Yasuda, Osamu; Fukuda, Masaya; Tokutomi, Yoshiko; Dong, Yi-Fei; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2011-01-01

    Highlights: → Telmisartan, an angiotensin receptor blocker, acts as a partial PPARγ agonist. → The protective effects of telmisartan against diabetic vascular injury were associated with attenuation of vascular NFκB activation and TNF α. → PPARγ activity of telmisartan was involved in the normalization of vascular PPARγ downregulation in diabetic mice. → We provided the first evidence indicating that PPARγ activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. -- Abstract: Experimental and clinical data support the notion that peroxisome proliferator-activated receptor γ (PPARγ) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPARγ agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPARγ activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPARγ antagonist), and losartan with no PPARγ activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NFκB) activation and tumor necrosis factor α. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPARγ activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of vascular PPARγ in db/db mice and this effect of telmisartan was cancelled by the coadministration

  7. Vascular function in health, hypertension, and diabetes

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Gliemann, Lasse; Hellsten, Ylva

    2015-01-01

    muscle, which can affect muscle function. Central aspects in the vascular impairments are alterations in the formation of prostacyclin, the bioavailability of NO and an increased formation of vasoconstrictors and reactive oxygen species (ROS). Regular physical activity effectively improves vascular......, the increase in muscle blood flow required for oxygen supply during exercise is achieved through a substantial increase in vasodilators locally formed in the active muscle tissue that overcome the vasoconstrictor signals. Most of the vasodilator signals are mediated via endothelial cells, which lead...... to the formation of vasodilators such as nitric oxide (NO) and prostacyclin. In essential hypertension and type II diabetes, the endothelial function and regulation of vascular tone is impaired with consequent increases in peripheral vascular resistance and inadequate regulation of oxygen supply to the skeletal...

  8. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  9. Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-{gamma}-dependent activity

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Kensuke; Nakamura, Taishi; Kataoka, Keiichiro [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Yasuda, Osamu [Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Kumamoto (Japan); Fukuda, Masaya; Tokutomi, Yoshiko; Dong, Yi-Fei [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Ogawa, Hisao [Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Kim-Mitsuyama, Shokei, E-mail: kimmitsu@gpo.kumamoto-u.ac.jp [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan)

    2011-07-08

    Highlights: {yields} Telmisartan, an angiotensin receptor blocker, acts as a partial PPAR{gamma} agonist. {yields} The protective effects of telmisartan against diabetic vascular injury were associated with attenuation of vascular NF{kappa}B activation and TNF {alpha}. {yields} PPAR{gamma} activity of telmisartan was involved in the normalization of vascular PPAR{gamma} downregulation in diabetic mice. {yields} We provided the first evidence indicating that PPAR{gamma} activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. -- Abstract: Experimental and clinical data support the notion that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPAR{gamma} agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPAR{gamma} activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPAR{gamma} antagonist), and losartan with no PPAR{gamma} activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NF{kappa}B) activation and tumor necrosis factor {alpha}. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPAR{gamma} activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of

  10. Physical Activity Prevents Progression for Cognitive Impairment and Vascular Dementia

    DEFF Research Database (Denmark)

    Verdelho, Ana; Madureira, Sofia; Ferro, José M

    2012-01-01

    BACKGROUND AND PURPOSE: We aimed to study if physical activity could interfere with progression for cognitive impairment and dementia in older people with white matter changes living independently. METHODS: The LADIS (Leukoaraiosis and Disability) prospective multinational European study evaluates....... Physical activity was recorded during the clinical interview. MRI was performed at entry and at the end of the study. RESULTS: Six hundred thirty-nine subjects were included (74.1±5 years old, 55% women, 9.6±3.8 years of schooling, 64% physically active). At the end of follow-up, 90 patients had dementia...... (vascular dementia, 54; Alzheimer disease with vascular component, 34; frontotemporal dementia, 2), and 147 had cognitive impairment not dementia. Using Cox regression analysis, physical activity reduced the risk of cognitive impairment (dementia and not dementia: β=-0.45, P=0.002; hazard ratio, 0.64; 95...

  11. Novel Mechanism of Plasma Prekallikrein (PK) Activation by Vascular Smooth Muscle Cells: Evidence of the presence of PK Activator

    OpenAIRE

    Keum, Joo-Seob; Jaffa, Miran A; Luttrell, Louis M; Jaffa, Ayad A.

    2014-01-01

    The contribution of plasma prekallikrein (PK) to vascular remodeling is becoming increasingly recognized. Plasma PK is activated when the zymogen PK is digested to an active enzyme by activated factor XII (FXII). Here, we present our findings that vascular smooth muscle cells (VSMC) activate plasma PK in the absence of FXII. Extracted plasma membrane and cytosolic fractions of VSMCs activate PK, but the rate of PK activation was greater by the membrane fraction. FXII neutralizing antibody did...

  12. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition.

    Science.gov (United States)

    Kutryb-Zajac, Barbara; Mateuszuk, Lukasz; Zukowska, Paulina; Jasztal, Agnieszka; Zabielska, Magdalena A; Toczek, Marta; Jablonska, Patrycja; Zakrzewska, Agnieszka; Sitek, Barbara; Rogowski, Jan; Lango, Romuald; Slominska, Ewa M; Chlopicki, Stefan; Smolenski, Ryszard T

    2016-11-01

    Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular

  13. Consuming a balanced high fat diet for 16 weeks improves body composition, inflammation and vascular function parameters in obese premenopausal women.

    Science.gov (United States)

    Silver, Heidi J; Kang, Hakmook; Keil, Charles D; Muldowney, James A; Kocalis, Heidi; Fazio, Sergio; Vaughan, Douglas E; Niswender, Kevin D

    2014-04-01

    Inflammation, insulin resistance and vascular dysfunction characterize obesity and predict development of cardiovascular disease (CVD). Although women experience CVD events at an older age, vascular dysfunction is evident 10years prior to coronary artery disease. Questions remain whether replacing SFA entirely with MUFA or PUFA is the optimal approach for cardiometabolic benefits. This study tested the hypotheses that: a) body composition, inflammation and vascular function would improve with a high fat diet (HFD) when type of fat is balanced as 1/3 SFA, 1/3 MUFA and 1/3 PUFA; and b) body composition, inflammation and vascular function would improve more when balanced HFD is supplemented with 18C fatty acids, in proportion to the degree of 18C unsaturation. Obese premenopausal women were stabilized on balanced HFD and randomized to consume 9g/d of encapsulated stearate (18:0), oleate (18:1), linoleate (18:2) or placebo. Significant improvements occurred in fat oxidation rate (↑6%), body composition (%fat: ↓2.5±2.1%; %lean: ↑2.5±2.1%), inflammation (↓ IL-1α, IL-1β, 1L-12, Il-17, IFNγ, TNFα, TNFβ) and vascular function (↓BP, ↓PAI-1, ↑tPA activity). When compared to HFD+placebo, HFD+stearate had the greatest effect on reducing IFNγ (↓74%) and HFD+linoleate had the greatest effect on reducing PAI-1 (↓31%). Balancing the type of dietary fat consumed (SFA/MUFA/PUFA) is a feasible strategy to positively affect markers of CVD risk. Moreover, reductions in inflammatory molecules involved in vascular function might be enhanced when intake of certain 18C fatty acids is supplemented. Long term effects need to be determined for this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. CONSUMING A BALANCED HIGH FAT DIET FOR 16 WEEKS IMPROVES BODY COMPOSITION, INFLAMMATION AND VASCULAR FUNCTION PARAMETERS IN OBESE PREMENOPAUSAL WOMEN

    Science.gov (United States)

    Silver, Heidi J.; Kang, Hakmook; Keil, Charles D.; Muldowney, James A.; Kocalis, Heidi; Fazio, Sergio; Vaughan, Douglas E.; Niswender, Kevin D.

    2014-01-01

    Objective Inflammation, insulin resistance and vascular dysfunction characterize obesity and predict development of cardiovascular disease (CVD). Although women experience CVD events at an older age, vascular dysfunction is evident 10 years prior to coronary artery disease. Questions remain whether replacing SFA entirely with MUFA or PUFA is the optimal approach for cardiometabolic benefits. This study tested the hypotheses that: a) body composition, inflammation and vascular function would improve with a high fat diet (HFD) when type of fat is balanced as 1/3 SFA, 1/3 MUFA and 1/3 PUFA; and b) body composition, inflammation and vascular function would improve more when balanced HFD is supplemented with 18C fatty acids, in proportion to the degree of 18C unsaturation. Methods Obese premenopausal women were stabilized on balanced HFD and randomized to consume 9 g/d of encapsulated stearate (18:0), oleate (18:1), linoleate (18:2) or placebo. Results Significant improvements occurred in fat oxidation rate (↑6%), body composition (%fat: ↓2.5 ± 2.1%; %lean: ↑2.5 ± 2.1%), inflammation (↓ IL-1α, IL-1β, 1L-12, Il-17, IFNγ, TNFα, TNFβ) and vascular function (↓BP, ↓PAI-1, ↑tPA activity). When compared to HFD+placebo, HFD+stearate had the greatest effect on reducing IFNγ (↓74%) and HFD+linoleate had the greatest effect on reducing PAI-1 (↓31%). Conclusions Balancing the type of dietary fat consumed (SFA/MUFA/PUFA) is a feasible strategy to positively affect markers of CVD risk. Moreover, reductions in inflammatory molecules involved in vascular function might be enhanced when intake of certain 18C fatty acids is supplemented. Long term effects need to be determined for this approach. PMID:24559846

  15. Quality of provided care in vascular surgery : outcome assessment & improvement strategies

    NARCIS (Netherlands)

    Flu, Hans Christiaan

    2010-01-01

    The aim of this thesis was to evaluate the quality of care in vascular surgery in end-stage renal disease (ESRD) and peripheral arterial occlusive disease (PAOD): intermittent claudication (IC) and critical lower limb ischaemia (CLI) patients. Therefore firstly it focused on the improvement of the

  16. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul J J; Keller, Beat

    2002-01-01

    report that in addition to this leafy petiole phenotype, the size of the vascular bundles is increased in all aerial organs in let as a result of an increase in the number of xylem, phloem (pro)cambial and pericycle cells. This vascular phenotype is caused by activation tagging of the two genes VASCULAR......-promoting factor. The activation tagging of VAS only resulted in a specific increase in phloem (pro)cambial and pericycle cells. We conclude that activation tagging of LEP and VAS results in additive phenotypes. Insertional mutants for LEP and VAS display wild-type vascular development, indicating the relevance...... of activation tagging for functional analysis of novel genes involved in plant development....

  17. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  18. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    International Nuclear Information System (INIS)

    Liu, Penghao; Xie, Qihai; Wei, Tong; Chen, Yichen; Chen, Hong; Shen, Weili

    2015-01-01

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in both strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.

  19. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Penghao [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Xie, Qihai [Department of Cardiology, Shanghai Jiading District Central Hospital, Shanghai (China); Wei, Tong [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Chen, Yichen [Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Chen, Hong, E-mail: hchen100@shsmu.edu.cn [Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Shen, Weili, E-mail: wlshen@sibs.ac.cn [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2015-12-04

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in both strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.

  20. In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability.

    Science.gov (United States)

    Yamauchi, Fumio; Kamioka, Yuji; Yano, Tetsuya; Matsuda, Michiyuki

    2016-09-15

    Vascular hyperpermeability is a pathological hallmark of cancer. Previous in vitro studies have elucidated roles of various signaling molecules in vascular hyperpermeability; however, the activities of such signaling molecules have not been examined in live tumor tissues for technical reasons. Here, by in vivo two-photon excitation microscopy with transgenic mice expressing biosensors based on Förster resonance energy transfer, we examined the activity of protein kinase A (PKA), which maintains endothelial barrier function. The level of PKA activity was significantly lower in the intratumoral endothelial cells than the subcutaneous endothelial cells. PKA activation with a cAMP analogue alleviated the tumor vascular hyperpermeability, suggesting that the low PKA activity in the endothelial cells may be responsible for the tumor-tissue hyperpermeability. Because the vascular endothelial growth factor (VEGF) receptor is a canonical inducer of vascular hyperpermeability and a molecular target of anticancer drugs, we examined the causality between VEGF receptor activity and the PKA activity. Motesanib, a kinase inhibitor for VEGF receptor, activated tumor endothelial PKA and reduced the vascular permeability in the tumor. Conversely, subcutaneous injection of VEGF decreased endothelial PKA activity and induced hyperpermeability of subcutaneous blood vessels. Notably, in cultured human umbilical vascular endothelial cells, VEGF activated PKA rather than decreasing its activity, highlighting the remarkable difference between its actions in vitro and in vivo These data suggested that the VEGF receptor signaling pathway increases vascular permeability, at least in part, by reducing endothelial PKA activity in the live tumor tissue. Cancer Res; 76(18); 5266-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet

    Directory of Open Access Journals (Sweden)

    Luis A. Martinez-Lemus

    2017-06-01

    Full Text Available Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD, high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC activity on endothelial cells (EnNaC. Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

  2. Vascular complications in diabetes: Microparticles and microparticle associated microRNAs as active players.

    Science.gov (United States)

    Alexandru, Nicoleta; Badila, Elisabeta; Weiss, Emma; Cochior, Daniel; Stępień, Ewa; Georgescu, Adriana

    2016-03-25

    The recognition of the importance of diabetes in vascular disease has greatly increased lately. Common risk factors for diabetes-related vascular disease include hyperglycemia, insulin resistance, dyslipidemia, inflammation, hypercoagulability, hypertension, and atherosclerosis. All of these factors contribute to the endothelial dysfunction which generates the diabetic complications, both macro and microvascular. Knowledge of diabetes-related vascular complications and of associated mechanisms it is becoming increasingly important for therapists. The discovery of microparticles (MPs) and their associated microRNAs (miRNAs) have opened new perspectives capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers. MPs known as submicron vesicles generated from membranes of apoptotic or activated cells into circulation have the ability to act as autocrine and paracrine effectors in cell-to-cell communication. They operate as biological vectors modulating the endothelial dysfunction, inflammation, coagulation, angiogenesis, thrombosis, subsequently contributing to the progression of macro and microvascular complications in diabetes. More recently, miRNAs have started to be actively investigated, leading to first exciting reports, which suggest their significant role in vascular physiology and disease. The contribution of MPs and also of their associated miRNAs to the development of vascular complications in diabetes was largely unexplored and undiscussed. In essence, with this review we bring light upon the understanding of impact diabetes has on vascular biology, and the significant role of MPs and MPs associated miRNAs as novel mediators, potential biomarkers and therapeutic targets in vascular complications in diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Kilsdonk, Iris D.; Wattjes, Mike P.; Lopez-Soriano, Alexandra; Jong, Marcus C. de; Graaf, Wolter L. de; Conijn, Mandy M.A.; Barkhof, Frederik [VU University Medical Center, Department of Radiology, De Boelelaan 1118, HZ, Amsterdam (Netherlands); Kuijer, Joost P.A. [VU University Medical Center, Department of Physics and Medical Technology, Amsterdam (Netherlands); Polman, Chris H. [VU University Medical Center, Department of Neurology, Amsterdam (Netherlands); Luijten, Peter R. [University Medical Center, Department of Radiology, Utrecht (Netherlands); Geurts, Jeroen J.G. [VU University, Department of Anatomy and Neurosciences, Amsterdam (Netherlands); Geerlings, Mirjam I. [University Medical Center, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands)

    2014-04-15

    To investigate whether a new magnetic resonance image (MRI) technique called T2*-weighted fluid attenuation inversion recovery (FLAIR*) can differentiate between multiple sclerosis (MS) and vascular brain lesions, at 7 Tesla (T). We examined 16 MS patients and 16 age-matched patients with (risk factors for) vascular disease. 3D-FLAIR and T2*-weighted images were combined into FLAIR* images. Lesion type and intensity, perivascular orientation and presence of a hypointense rim were analysed. In total, 433 cerebral lesions were detected in MS patients versus 86 lesions in vascular patients. Lesions in MS patients were significantly more often orientated in a perivascular manner: 74 % vs. 47 % (P < 0.001). Ten MS lesions (2.3 %) were surrounded by a hypointense rim on FLAIR*, and 24 MS lesions (5.5 %) were hypointense on T2*. No lesions in vascular patients showed any rim or hypointensity. Specificity of differentiating MS from vascular lesions on 7-T FLAIR* increased when the presence of a central vessel was taken into account (from 63 % to 88 %), most obviously for deep white matter lesions (from 69 % to 94 %). High sensitivity remained (81 %). 7-T FLAIR* improves differentiation between MS and vascular lesions based on lesion location, perivascular orientation and presence of hypointense (rims around) lesions. circle A new MRI technique T2*-weighted fluid attenuation inversion recovery (FLAIR*) was investigated. circle FLAIR* at 7-T MRI combines FLAIR and T2* images into a single image. circle FLAIR* at 7 T does not require enhancement with contrast agents. (orig.)

  4. Lowering Interleukin-12 Activity Improves Myocardial and Vascular Function Compared With Tumor Necrosis Factor-a Antagonism or Cyclosporine in Psoriasis.

    Science.gov (United States)

    Ikonomidis, Ignatios; Papadavid, Evangelia; Makavos, George; Andreadou, Ioanna; Varoudi, Maria; Gravanis, Kostas; Theodoropoulos, Kostas; Pavlidis, George; Triantafyllidi, Helen; Moutsatsou, Paraskevi; Panagiotou, Christina; Parissis, John; Iliodromitis, Efstathios; Lekakis, John; Rigopoulos, Dimitrios

    2017-09-01

    Interleukin (IL)-12 activity is involved in the pathogenesis of psoriasis and acute coronary syndromes. We investigated the effects of IL-12 inhibition on vascular and left ventricular (LV) function in psoriasis. One hundred fifty psoriasis patients were randomized to receive an anti-IL-12/23 (ustekinumab, n=50), anti-tumor necrosis factor-a (TNF-α; etanercept, n=50), or cyclosporine treatment (n=50). At baseline and 4 months post-treatment, we measured (1) LV global longitudinal strain, twisting, and percent difference between peak twisting and untwisting at mitral valve opening (%untwMVO) using speckle-tracking echocardiography, (2) coronary flow reserve, (3) pulse wave velocity and augmentation index, (4) circulating NT-proBNP (N-terminal pro-B-type natriuretic peptide), TNF-α, IL-6, IL-12, IL-17, malondialdehyde, and fetuin-a. Compared with baseline, all patients had improved global longitudinal strain (median values: -17.7% versus -19.5%), LV twisting (12.4° versus 14°), %untwMVO (27.8% versus 35%), and coronary flow reserve (2.8 versus 3.1) and reduced circulating NT-proBNP, IL-17, TNF-α, and IL-6 post-treatment ( P psoriasis, IL-12/23 inhibition results in a greater improvement of coronary, arterial, and myocardial function than TNF-α inhibition or cyclosporine treatment. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02144857. © 2017 American Heart Association, Inc.

  5. Quality improvement initiative: Preventative Surgical Site Infection Protocol in Vascular Surgery.

    Science.gov (United States)

    Parizh, David; Ascher, Enrico; Raza Rizvi, Syed Ali; Hingorani, Anil; Amaturo, Michael; Johnson, Eric

    2018-02-01

    Objective A quality improvement initiative was employed to decrease single institution surgical site infection rate in open lower extremity revascularization procedures. In an attempt to lower patient morbidity, we developed and implemented the Preventative Surgical Site Infection Protocol in Vascular Surgery. Surgical site infections lead to prolonged hospital stays, adjunctive procedure, and additive costs. We employed targeted interventions to address the common risk factors that predispose patients to post-operative complications. Methods Retrospective review was performed between 2012 and 2016 for all surgical site infections after revascularization procedures of the lower extremity. A quality improvement protocol was initiated in January 2015. Primary outcome was the assessment of surgical site infection rate reduction in the pre-protocol vs. post-protocol era. Secondary outcomes evaluated patient demographics, closure method, perioperative antibiotic coverage, and management outcomes. Results Implementation of the protocol decreased the surgical site infection rate from 6.4% to 1.6% p = 0.0137). Patient demographics and comorbidities were assessed and failed to demonstrate a statistically significant difference among the infection and no-infection groups. Wound closure with monocryl suture vs. staple proved to be associated with decreased surgical site infection rate ( p site infections in the vascular surgery population are effective and necessary. Our data suggest that there may be benefit in the incorporation of MRSA and Gram-negative coverage as part of the Surgical Care Improvement Project perioperative guidelines.

  6. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    Science.gov (United States)

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (PMyostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of

  7. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity.

    Science.gov (United States)

    Rodriguez-Mateos, Ana; Rendeiro, Catarina; Bergillos-Meca, Triana; Tabatabaee, Setareh; George, Trevor W; Heiss, Christian; Spencer, Jeremy Pe

    2013-11-01

    There are very limited data regarding the effects of blueberry flavonoid intake on vascular function in healthy humans. We investigated the impact of blueberry flavonoid intake on endothelial function in healthy men and assessed potential mechanisms of action by the assessment of circulating metabolites and neutrophil NADPH oxidase activity. Two randomized, controlled, double-blind, crossover human-intervention trials were conducted with 21 healthy men. Initially, the impact of blueberry flavonoid intake on flow-mediated dilation (FMD) and polyphenol absorption and metabolism was assessed at baseline and 1, 2, 4, and 6 h after consumption of blueberry containing 766, 1278, and 1791 mg total blueberry polyphenols or a macronutrient- and micronutrient-matched control drink (0 mg total blueberry polyphenols). Second, an intake-dependence study was conducted (from baseline to 1 h) with 319, 637, 766, 1278, and 1791 mg total blueberry polyphenols and a control. We observed a biphasic time-dependent increase in FMD, with significant increases at 1-2 and 6 h after consumption of blueberry polyphenols. No significant intake-dependence was observed between 766 and 1791 mg. However, at 1 h after consumption, FMD increased dose dependently to ≤766 mg total blueberry polyphenol intake, after which FMD plateaued. Increases in FMD were closely linked to increases in circulating metabolites and by decreases in neutrophil NADPH oxidase activity at 1-2 and 6 h. Blueberry intake acutely improves vascular function in healthy men in a time- and intake-dependent manner. These benefits may be mechanistically linked to the actions of circulating phenolic metabolites on neutrophil NADPH oxidase activity. This trial was registered at clinicaltrials.gov as NCT01292954 and NCT01829542.

  8. Activation of vascular cholinergic and adrenergic receptors induced by gamma rays

    International Nuclear Information System (INIS)

    Alya, G.

    1999-10-01

    Activation of vascular cholinergic receptors and adrenoceptors plays an important role in vasomotoricity and peripheric vascular resistance. These factors are essential in maintaining a stable blood pressure. The aim of this study is to investigate the radiosensitivity differences between vascular cholinergic receptors and adrenoceptors, and consequently to determinate the effects of ionizing radiation (whole body irradiation) on contractile response regulation of vascular smooth muscle fibers VSMF isolated from rat portal vein. Our results show that Clonidine, (non-specific adrenergic agonist), and phenylephrine which is more specific α1-adrenoceptor agonist, increase the VSMF contractions. The maximum effect is obtained at 10 -5 - 3.10 -5 M. On irradiated rats (1-3-5 Gy), there is an important shift thus, the maximal response (E m ax) can be obtained in lower concentrations of clonidine and phenylephrine. Irradiation deceases the contractile responses of VSMF mediated by cholinergic stimulation, in a dose dependant manner. With E m ax 1 Gy>E m ax 3 Gy>E m ax 5 Gy. Irradiated muscular fibers became less sensitive to acetylcholine, thus 3.10 -8 M. A. ch induced more than 50% of contraction force increase in normal conditions. This concentration induce generally a negligible effect after irradiation. The results reveal the existence of radiosensitivity differences between vascular cholinergic and adrenergic receptors. (author)

  9. Non-invasive vascular imaging: assessing tumour vascularity

    International Nuclear Information System (INIS)

    Delorme, S.; Knopp, M.V.

    1998-01-01

    Non-invasive assessment of vascularity is a new diagnostic approach to characterise tumours. Vascular assessment is based on the pathophysiology of tumour angiogenesis and its diagnostic implications for tumour biology, prognosis and therapy response. Two current techniques investigating vascular features in addition to morphology are Doppler ultrasonography and contrast-enhanced MRI. Diagnostic differentiation has been shown to be possible with Doppler, and a high degree of observed vascularity could be linked to an aggressive course of the disease. Dynamic MRI using gadolinium chelates is already used clinically to detect and differentiate tumours. The histological correlation shows that capillary permeability is increased in malignant tumours and is the best criterion for differentiation from benign processes. Permeability and perfusion factors seem to be more diagnostic than overall vessel density. New clinical applications are currently being established for therapy monitoring. Further instrumental developments will bring harmonic imaging in Doppler, and faster imaging techniques, higher spatial resolution and novel pharmacokinetic concepts in MRI. Upcoming contrast agents for both Doppler and MRI will further improve estimation of intratumoural blood volume and vascular permeability. (orig.)

  10. Novel cellular bouton structure activated by ATP in the vascular wall of porcine retinal arterioles.

    Science.gov (United States)

    Misfeldt, Mikkel Wölck; Aalkjaer, Christian; Simonsen, Ulf; Bek, Toke

    2010-12-01

    The retinal blood flow is regulated by the tone of resistance arterioles, which is influenced by purinergic compounds such as adenosine and adenosine 5'-triphosphate (ATP) released from the retinal tissue. However, it is unknown what cellular elements in the perivascular retina are responsible for the effect of purines on the tone of retinal arterioles. Porcine retinal arterioles were loaded with the calcium-sensitive fluorophore Oregon green. The vessels were mounted in a confocal myograph for simultaneous recordings of tone and calcium activity in cells of the vascular wall during stimulation with ATP and adenosine, with and without modifiers of these compounds. Additionally, immunohistochemistry was used to localize elements with calcium activity in the vascular wall. Hyperfluorescence indicating calcium activity was recorded in a population of abundant round boutons interspersed in a network of vimentin-positive processes located immediately external to the smooth muscle cell layer but internal to the perivascular glial cells. These structures showed calcium activity when the vessel was relaxed with ATP but not when it was relaxed with adenosine. Ryanodine reduced calcium activity in the boutons, whereas the ATP antagonist adenosine-5'-O-(α, β- methylene diphosphate) reduced calcium activity in both the boutons and vascular tone. The vasodilating effect of purines in porcine retinal tissue involves ATP-dependent calcium activity in a layer of cellular boutons located external to the vascular smooth muscle cells and internal to the perivascular glial cells.

  11. Incorporation of bone marrow cells in pancreatic pseudoislets improves posttransplant vascularization and endocrine function.

    Directory of Open Access Journals (Sweden)

    Christine Wittig

    Full Text Available Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislets containing 4×10(3 cells. To create bone marrow cell-enriched pseudoislets 2×10(3 islet cells were co-cultured with 2×10(3 bone marrow cells. Pseudoislets and bone marrow cell-enriched pseudoislets were transplanted syngeneically into skinfold chambers to study graft vascularization by intravital fluorescence microscopy. Native islet transplants served as controls. Bone marrow cell-enriched pseudoislets showed a significantly improved vascularization compared to native islets and pseudoislets. Moreover, bone marrow cell-enriched pseudoislets but not pseudoislets normalized blood glucose levels after transplantation of 1000 islet equivalents under the kidney capsule of streptozotocin-induced diabetic animals, although the bone marrow cell-enriched pseudoislets contained only 50% of islet cells compared to pseudoislets and native islets. Fluorescence microscopy of bone marrow cell-enriched pseudoislets composed of bone marrow cells from GFP-expressing mice showed a distinct fraction of cells expressing both GFP and insulin, indicating a differentiation of bone marrow-derived cells to an insulin-producing cell-type. Thus, enrichment of pseudoislets by bone marrow cells enhances vascularization after transplantation and increases the amount of insulin-producing tissue. Accordingly, bone marrow cell-enriched pseudoislets may represent a novel approach to increase the success rate of islet transplantation.

  12. Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    da Silva Gonçalves Bós, Denielli; Van Der Bruggen, Cathelijne E E; Kurakula, Kondababu; Sun, Xiao-Qing; Casali, Karina R; Casali, Adenauer G; Rol, Nina; Szulcek, Robert; Dos Remedios, Cris; Guignabert, Christophe; Tu, Ly; Dorfmüller, Peter; Humbert, Marc; Wijnker, Paul J M; Kuster, Diederik W D; van der Velden, Jolanda; Goumans, Marie-José; Bogaard, Harm-Jan; Vonk-Noordegraaf, Anton; de Man, Frances S; Handoko, M Louis

    2018-02-27

    PYR treatment in PH rats normalized the cardiovascular autonomic function, demonstrated by an increase in parasympathetic activity and baroreflex sensitivity. PYR improved survival, increased RV contractility, and reduced RV stiffness, RV hypertrophy, RV fibrosis, RV inflammation, and RV α-7 nicotinic acetylcholine receptor and muscarinic acetylcholine type 2 receptor expression, as well. Furthermore, PYR reduced pulmonary vascular resistance, RV afterload, and pulmonary vascular remodeling, which was associated with reduced local and systemic inflammation. RV dysfunction is associated with reduced systemic parasympathetic activity in patients with PAH, with an inadequate adaptive response of the cholinergic system in the RV. Enhancing parasympathetic activity by PYR improved survival, RV function, and pulmonary vascular remodeling in experimental PH. © 2017 American Heart Association, Inc.

  13. Mechanistic insights into the vascular effects of blueberries: Evidence from recent studies.

    Science.gov (United States)

    Cutler, Brett Ronald; Petersen, Chrissa; Anandh Babu, Pon Velayutham

    2017-06-01

    Cardiovascular disease is the leading cause of death in the United States. Dietary habits influence a variety of cardiovascular complications such as peripheral artery disease, heart failure, and kidney disease. We along with others have previously reported the cardiovascular beneficial effects of dietary flavonoids. Anthocyanins, one class of flavonoids widely available in berries, have recently drawn wide scientific attention because of their diverse health benefits. Epidemiological, clinical, and animal studies indicate that blueberry anthocyanins exert protection against cardiovascular complications by acting on multiple targets in the vascular system. These include activating endothelial nitric oxide synthase signaling, reducing oxidative stress, improving inflammatory pathways, and ameliorating dyslipidemia. Anthocyanins are extensively metabolized in humans suggesting that their vascular benefits are likely mediated by their circulating metabolites. However, the bioactivities of blueberry metabolites are unknown. Evaluating the bioactivities of metabolites, analyzing their structure-activity relationship, and well-designed human trials are needed to understand the potential vascular effects of blueberries and their metabolites. Understanding the vascular effects will provide a solid scientific foundation to recommend blueberries to improve vascular health. This review highlights the recent developments in the understanding of the vascular effects of blueberries with special emphasis on the molecular mechanisms involved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of exercise training and resveratrol on vascular health in aging

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    Cardiovascular disease is a leading cause of death in the western world with aging being one of the strongest predictors of cardiovascular events. Aging is associated with impaired vascular function due to endothelial dysfunction and altered redox balance, partly caused by an increased formation ...... effects of physical activity. Regular physical activity remains the most effective way of maintaining and improving vascular health status and caution should be taken regarding potential interference of supplements on training adaptations....... of the observed detrimental effects of aging on vascular function. The effects of aging and physical activity on vascular function are, in part, related to alterations in cellular signaling through sirtuin-1, AMPK and the estrogen receptor. The polyphenol resveratrol can activate these same pathways and has......, in animals and in vitro models, been shown to act as a partial mimetic of physical activity. However, support for beneficial effects of resveratrol in human is weak and studies even show that resveratrol supplementation, similarly to supplementation with other antioxidants, can counteract the positive...

  15. Vascular dysfunction by myofibroblast activation in patients with idiopathic pulmonary fibrosis and prognostic significance

    Directory of Open Access Journals (Sweden)

    E.R. Parra

    2012-07-01

    Full Text Available In this study, we demonstrated the importance of telomerase protein expression and determined the relationships among telomerase, endothelin-1 (ET-1 and myofibroblasts during early and late remodeling of parenchymal and vascular areas in usual interstitial pneumonia (UIP using 27 surgical lung biopsies from patients with idiopathic pulmonary fibrosis (IPF. Telomerase+, myofibroblasts α-SMA+, smooth muscle cells caldesmon+, endothelium ET-1+ cellularity, and fibrosis severity were evaluated in 30 fields covering normal lung parenchyma, minimal fibrosis (fibroblastic foci, severe (mural fibrosis, and vascular areas of UIP by the point-counting technique and a semiquantitative score. The impact of these markers was determined in pulmonary functional tests and follow-up until death from IPF. Telomerase and ET-1 expression was significantly increased in normal and vascular areas compared to areas of fibroblast foci. Telomerase and ET-1 expression was inversely correlated with minimal fibrosis in areas of fibroblast foci and directly associated with severe fibrosis in vascular areas. Telomerase activity in minimal fibrosis areas was directly associated with diffusing capacity of the lung for oxygen/alveolar volume and ET-1 expression and indirectly associated with diffusing capacity of the lungs for carbon monoxide and severe fibrosis in vascular areas. Cox proportional hazards regression revealed a low risk of death for females with minimal fibrosis displaying high telomerase and ET-1 expression in normal areas. Vascular dysfunction by telomerase/ET-1 expression was found earlier than vascular remodeling by myofibroblast activation in UIP with impact on IPF evolution, suggesting that strategies aimed at preventing the effect of these mediators may have a greater impact on patient outcome.

  16. Accelerated Vascular Aging as a Paradigm for Hypertensive Vascular Disease: Prevention and Therapy.

    Science.gov (United States)

    Barton, Matthias; Husmann, Marc; Meyer, Matthias R

    2016-05-01

    Aging is considered the most important nonmodifiable risk factor for cardiovascular disease and death after age 28 years. Because of demographic changes the world population is expected to increase to 9 billion by the year 2050 and up to 12 billion by 2100, with several-fold increases among those 65 years of age and older. Healthy aging and prevention of aging-related diseases and associated health costs have become part of political agendas of governments around the world. Atherosclerotic vascular burden increases with age; accordingly, patients with progeria (premature aging) syndromes die from myocardial infarctions or stroke as teenagers or young adults. The incidence and prevalence of arterial hypertension also increases with age. Arterial hypertension-like diabetes and chronic renal failure-shares numerous pathologies and underlying mechanisms with the vascular aging process. In this article, we review how arterial hypertension resembles premature vascular aging, including the mechanisms by which arterial hypertension (as well as other risk factors such as diabetes mellitus, dyslipidemia, or chronic renal failure) accelerates the vascular aging process. We will also address the importance of cardiovascular risk factor control-including antihypertensive therapy-as a powerful intervention to interfere with premature vascular aging to reduce the age-associated prevalence of diseases such as myocardial infarction, heart failure, hypertensive nephropathy, and vascular dementia due to cerebrovascular disease. Finally, we will discuss the implementation of endothelial therapy, which aims at active patient participation to improve primary and secondary prevention of cardiovascular disease. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  17. Anti-TNF-α activity of Portulaca oleracea in vascular endothelial cells.

    Science.gov (United States)

    Lee, An Sook; Kim, Jin Sook; Lee, Yun Jung; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Vascular inflammation plays a key role in the pathogenesis and progression of atherosclerosis, a main complication of diabetes. The present study investigated whether an aqueous extract of Portulaca oleracea (AP) prevents the TNF-α-induced vascular inflammatory process in the human umbilical vein endothelial cell (HUVEC). The stimulation of TNF-α induced overexpression of adhesion molecules affects vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1 and E-selectin for example. However, AP significantly suppressed TNF-α-induced over-expression of these adhesion molecules in a dose-dependent manner. In addition, pretreatment with AP dose-dependently reduced an increase of the adhesion of HL-60 cells to TNF-α-induced HUVEC. Furthermore, we observed that stimulation of TNF-α significantly increased intracellular reactive oxygen species (ROS) production. However, pretreatment with AP markedly blocked TNF-α-induced ROS production in a dose-dependent manner. The western blot and immunofluorescence analysis showed that AP inhibited the translocation of p65 NF-κB to the nucleus. In addition, AP suppressed the TNF-α-induced degradation of IκB-α and attenuated the TNF-α-induced NF-κB binding. AP also effectively reduced TNF-α-induced mRNA expressions of monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-8 in a dose-dependent manner. Taken together, AP prevents the vascular inflammatory process through the inhibition of intracellular ROS production and NF-κB activation as well as the reduction of adhesion molecule expression in TNF-α-induced HUVEC. These results suggested that AP might have a potential therapeutic effect by inhibiting the vascular inflammation process in vascular diseases such as atherosclerosis.

  18. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS

    OpenAIRE

    Perel, Azriel

    2013-01-01

    The recent Berlin definition has made some improvements in the older definition of acute respiratory distress syndrome (ARDS), although the concepts and components of the definition remained largely unchanged. In an effort to improve both predictive and face validity, the Berlin panel has examined a number of additional measures that may reflect increased pulmonary vascular permeability, including extravascular lung water. The panel concluded that although extravascular lung water has improve...

  19. Single-chain vascular endothelial growth factor variant with antagonist activity

    DEFF Research Database (Denmark)

    Boesen, Thomas P; Soni, Bobby; Schwartz, Thue W

    2002-01-01

    receptor molecules and inducing dimerization. By mixing two vascular endothelial growth factor monomers, each with different substitutions, heterodimers with only one active receptor binding site have previously been prepared. These heterodimers bind the receptor molecule but are unable to induce...... dimerization and activation. However, preparation of heterodimers is cumbersome, involving separate expression of different monomers, refolding the mixture, and separating heterodimers from homodimers. Here we show that a fully functional ligand can efficiently be expressed as a single protein chain containing...

  20. Synthesis and structure activity relationships of carbamimidoylcarbamate derivatives as novel vascular adhesion protein-1 inhibitors.

    Science.gov (United States)

    Yamaki, Susumu; Yamada, Hiroyoshi; Nagashima, Akira; Kondo, Mitsuhiro; Shimada, Yoshiaki; Kadono, Keitaro; Yoshihara, Kosei

    2017-11-01

    Vascular adhesion protein-1 (VAP-1) is a promising therapeutic target for the treatment of diabetic nephropathy. Here, we conducted structural optimization of the glycine amide derivative 1, which we previously reported as a novel VAP-1 inhibitor, to improve stability in dog and monkey plasma, and aqueous solubility. By chemical modification of the right part in the glycine amide derivative, we identified the carbamimidoylcarbamate derivative 20c, which showed stability in dog and monkey plasma while maintaining VAP-1 inhibitory activity. We also found that conversion of the pyrimidine ring in 20c into saturated rings was effective for improving aqueous solubility. This led to the identification of 28a and 35 as moderate VAP-1 inhibitors with excellent aqueous solubility. Further optimization led to the identification of 2-fluoro-3-{3-[(6-methylpyridin-3-yl)oxy]azetidin-1-yl}benzyl carbamimidoylcarbamate (40b), which showed similar human VAP-1 inhibitory activity to 1 with improved aqueous solubility. 40b showed more potent ex vivo efficacy than 1, with rat plasma VAP-1 inhibitory activity of 92% at 1h after oral administration at 0.3mg/kg. In our pharmacokinetic study, 40b showed good oral bioavailability in rats, dogs, and monkeys, which may be due to its improved stability in dog and monkey plasma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Physical Activity to Improve Erectile Function

    DEFF Research Database (Denmark)

    Gerbild, Helle; Larsen, Camilla Marie; Graugaard, Christian

    2018-01-01

    , and metabolic syndrome. Physical activity (PA) has proved to be a protective factor against erectile problems, and it has been shown to improve erectile function for men affected by vascular ED. This systematic review estimated the levels of PA needed to decrease ED for men with physical inactivity, obesity......, hypertension, metabolic syndrome, and/or manifest cardiovascular diseases. Aim To provide recommendations of levels of PA needed to decrease ED for men with physical inactivity, obesity, hypertension, metabolic syndrome, and/or cardiovascular diseases. Methods In accord with the Preferred Reporting Items...... intensity 4 times per week. Overall, weekly exercise of 160 minutes for 6 months contributes to decreasing erectile problems in men with ED caused by physical inactivity, obesity, hypertension, metabolic syndrome, and/or cardiovascular diseases....

  2. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Hee [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Schmitt, Christopher E.; Woolls, Melissa J. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Holland, Melinda B. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Kim, Jun-Dae [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Jin, Suk-Won, E-mail: suk-won.jin@yale.edu [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States)

    2013-01-25

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.

  3. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    International Nuclear Information System (INIS)

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.; Holland, Melinda B.; Kim, Jun-Dae; Jin, Suk-Won

    2013-01-01

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process

  4. High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential.

    Science.gov (United States)

    Sherman, Stephen E; Kuljanin, Miljan; Cooper, Tyler T; Putman, David M; Lajoie, Gilles A; Hess, David A

    2017-06-01

    During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDH hi ) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDH l ° and ALDH hi MSC subsets demonstrated similar expression of stromal cell (>95% CD73 + , CD90 + , CD105 + ) and pericyte (>95% CD146 + ) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDH hi MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDH hi MSC or CDM produced by ALDH hi MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDH l ° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDH hi MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-β, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8) and matrix

  5. Evaluation and percutaneous management of atherosclerotic peripheral vascular disease

    International Nuclear Information System (INIS)

    Widlus, D.M.; Osterman, F.A. Jr.

    1989-01-01

    Atherosclerotic peripheral vascular disease (PVD) of the lower extremities deprives a person of the ability to exercise to their satisfaction, later of the ability to perform the activities of their daily life, and finally of their legs themselves. Peripheral vascular disease has long been managed by the vascular surgeon utilizing endarterectomy and peripheral arterial bypass. Patient acceptance of nonsurgical, percutaneous procedures such as percutaneous transluminal balloon angioplasty (PTA) is high. Increased utilization of these procedures has led to improved techniques and adjuncts to therapy, as well as more critical review of long-term results. This article will review the evaluation and nonoperative management of PVD, with an emphasis on the newer modalities of management presently being investigated

  6. SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

    Directory of Open Access Journals (Sweden)

    Julia Matena

    2015-04-01

    Full Text Available To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF, high mobility group box 1 (HMGB1 and chemokine (C-X-C motif ligand 12 (CXCL12. As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI. Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release.

  7. SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Kampmann, Andreas; Teske, Michael; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-01-01

    To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release. PMID:25849656

  8. Organizers and activators: Cytosolic Nox proteins impacting on vascular function.

    Science.gov (United States)

    Schröder, Katrin; Weissmann, Norbert; Brandes, Ralf P

    2017-08-01

    NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Omentopexy improves vascularization and decreases stricture formation of esophageal anastomoses in a dog model.

    Science.gov (United States)

    Hayari, Lili; Hershko, Dan D; Shoshani, Hadas; Maor, Ron; Mordecovich, Daniel; Shoshani, Gideon

    2004-04-01

    Anastomotic strictures are common after primary esophageal anastomosis in pediatric patients. Recent studies provided evidence that omentopexy may improve vascularization of gastroesophageal anastomoses and decrease the rate of stricture-related complications. The effect of omentopexy on primary esophago-esophageal anastomosis, however, is unknown. The aim of the current study was to examine the role of omentopexy on the healing process of primary midesopageal anastomoses. Six dogs were operated on. A 5-cm portion of the midesophagus was resected, and continuity was restored by end-to-end anastomosis. In 3 dogs, an omental pedicle was placed around the anastomotic region. Eating patterns were recorded and functional swallowing was evaluated by fluoroscopic studies. Eight weeks after the operations, the experimental animals were killed and anastomotic lumen diameters and vascularization of the anastomotic sites were evaluated by radiographic studies and histologic examination, respectively. Two dogs in the omentopexy group were able to resume regular feeding, whereas none of the dogs in the control group were able to tolerate solid food intake. Fluoroscopic studies found preserved motility patterns of the esophagus in the omentoesophagopexy group, while prestenotic dilatation and delayed food clearance through the anastomosis were observed in the control group. Histologically, neovascularization was observed at the anastomotic site in the omentoesophagopexy group in contrast to the marked degree of fibrosis displayed in the control group. Omentopexy may improve vascularization and decrease stricture formation after primary esophagoesophageal anastomosis.

  10. Na+K+-ATPase activity and K+ channels differently contribute to vascular relaxation in male and female rats.

    Directory of Open Access Journals (Sweden)

    Fernanda Moura Vargas Dias

    Full Text Available Gender associated differences in vascular reactivity regulation might contribute to the low incidence of cardiovascular disease in women. Cardiovascular protection is suggested to depend on female sex hormones' effects on endothelial function and vascular tone regulation. We tested the hypothesis that potassium (K+ channels and Na+K+-ATPase may be involved in the gender-based vascular reactivity differences. Aortic rings from female and male rats were used to examine the involvement of K+ channels and Na+K+-ATPase in vascular reactivity. Acetylcholine (ACh-induced relaxation was analyzed in the presence of L-NAME (100 µM and the following K+ channels blockers: tetraethylammonium (TEA, 2 mM, 4-aminopyridine (4-AP, 5 mM, iberiotoxin (IbTX, 30 nM, apamin (0.5 µM and charybdotoxin (ChTX, 0.1 µM. The ACh-induced relaxation sensitivity was greater in the female group. After incubation with 4-AP the ACh-dependent relaxation was reduced in both groups. However, the dAUC was greater in males, suggesting that the voltage-dependent K+ channel (Kv participates more in males. Inhibition of the three types of Ca2+-activated K+ channels induced a greater reduction in Rmax in females than in males. The functional activity of the Na+K+-ATPase was evaluated by KCl-induced relaxation after L-NAME and OUA incubation. OUA reduced K+-induced relaxation in female and male groups, however, it was greater in males, suggesting a greater Na+K+-ATPase functional activity. L-NAME reduced K+-induced relaxation only in the female group, suggesting that nitric oxide (NO participates more in their functional Na+K+-ATPase activity. These results suggest that the K+ channels involved in the gender-based vascular relaxation differences are the large conductance Ca2+-activated K+ channels (BKCa in females and Kv in males and in the K+-induced relaxation and the Na+K+-ATPase vascular functional activity is greater in males.

  11. Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Creer Michael H

    2010-03-01

    Full Text Available Abstract Human stem cells from adult sources have been shown to contribute to the regeneration of muscle, liver, heart, and vasculature. The mechanisms by which this is accomplished are, however, still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDHhiLin-, and ALDHloLin- cells following transplantation to NOD/SCID or NOD/SCID β2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDHhiLin- stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDHloLin- committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was, however, a significant increase in vascular density in the central infarct zone of ALDHhiLin- cell-treated mice, as compared to PBS and ALDHloLin- cell-treated mice. Conclusions Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue, but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.

  12. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    Science.gov (United States)

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  13. Activation of Transient Receptor Potential Melastatin Subtype 8 Attenuates Cold-Induced Hypertension Through Ameliorating Vascular Mitochondrial Dysfunction.

    Science.gov (United States)

    Xiong, Shiqiang; Wang, Bin; Lin, Shaoyang; Zhang, Hexuan; Li, Yingsha; Wei, Xing; Cui, Yuanting; Wei, Xiao; Lu, Zongshi; Gao, Peng; Li, Li; Zhao, Zhigang; Liu, Daoyan; Zhu, Zhiming

    2017-08-02

    Environmental cold-induced hypertension is common, but how to treat cold-induced hypertension remains an obstacle. Transient receptor potential melastatin subtype 8 (TRPM8) is a mild cold-sensing nonselective cation channel that is activated by menthol. Little is known about the effect of TRPM8 activation by menthol on mitochondrial Ca 2+ homeostasis and the vascular function in cold-induced hypertension. Primary vascular smooth muscle cells from wild-type or Trpm8 -/- mice were cultured. In vitro, we confirmed that sarcoplasmic reticulum-resident TRPM8 participated in the regulation of cellular and mitochondrial Ca 2+ homeostasis in the vascular smooth muscle cells. TRPM8 activation by menthol antagonized angiotensin II induced mitochondrial respiratory dysfunction and excess reactive oxygen species generation by preserving pyruvate dehydrogenase activity, which hindered reactive oxygen species-triggered Ca 2+ influx and the activation of RhoA/Rho kinase pathway. In vivo, long-term noxious cold stimulation dramatically increased vasoconstriction and blood pressure. The activation of TRPM8 by dietary menthol inhibited vascular reactive oxygen species generation, vasoconstriction, and lowered blood pressure through attenuating excessive mitochondrial reactive oxygen species mediated the activation of RhoA/Rho kinase in a TRPM8-dependent manner. These effects of menthol were further validated in angiotensin II-induced hypertensive mice. Long-term dietary menthol treatment targeting and preserving mitochondrial function may represent a nonpharmaceutical measure for environmental noxious cold-induced hypertension. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Sevostyanova, V. V., E-mail: sevostyanova.victoria@gmail.com; Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo (Russian Federation)

    2015-10-27

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  15. Prunella vulgaris Suppresses HG-Induced Vascular Inflammation via Nrf2/HO-1/eNOS Activation

    Directory of Open Access Journals (Sweden)

    Ho Sub Lee

    2012-01-01

    Full Text Available Vascular inflammation is an important factor which can promote diabetic complications. In this study, the inhibitory effects of aqueous extract from Prunella vulgaris (APV on high glucose (HG-induced expression of cell adhesion molecules in human umbilical vein endothelial cells (HUVEC are reported. APV decreased HG-induced expression of intercellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, and E-selectin. APV also dose-dependently inhibited HG-induced adhesion of HL-60 monocytic cells. APV suppressed p65 NF-κB activation in HG-treated cells. APV significantly inhibited the formation of intracellular reactive oxygen species (ROS. HG-stimulated HUVEC secreted gelatinases, however, APV inhibited it. APV induced Akt phosphorylation as well as activation of heme oxygenase-1 (HO-1, eNOS, and nuclear factor E2-related factor 2 (Nrf2, which may protect vascular inflammation caused by HG. In conclusion, APV exerts anti-inflammatory effect via inhibition of ROS/NF-κB pathway by inducing HO-1 and eNOS expression mediated by Nrf2, thereby suggesting that Prunella vulgaris may be a possible therapeutic approach to the inhibition of diabetic vascular diseases.

  16. Physical Activity to Improve Erectile Function

    DEFF Research Database (Denmark)

    Gerbild, Helle; Larsen, Camilla Marie; Graugaard, Christian

    2018-01-01

    , and metabolic syndrome. Physical activity (PA) has proved to be a protective factor against erectile problems, and it has been shown to improve erectile function for men affected by vascular ED. This systematic review estimated the levels of PA needed to decrease ED for men with physical inactivity, obesity...... for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was performed of research articles specifically investigating PA as a possible treatment of ED. The review included research on ED from physical inactivity, obesity, hypertension, metabolic syndrome, and/or cardiovascular diseases......Introduction The leading cause of erectile dysfunction (ED) is arterial dysfunction, with cardiovascular disease as the most common comorbidity. Therefore, ED is typically linked to a web of closely interrelated cardiovascular risk factors such as physical inactivity, obesity, hypertension...

  17. Combined treatment with atorvastatin and imipenem improves survival and vascular functions in mouse model of sepsis.

    Science.gov (United States)

    Choudhury, Soumen; Kannan, Kandasamy; Pule Addison, M; Darzi, Sazad A; Singh, Vishakha; Singh, Thakur Uttam; Thangamalai, Ramasamy; Dash, Jeevan Ranjan; Parida, Subhashree; Debroy, Biplab; Paul, Avishek; Mishra, Santosh Kumar

    2015-08-01

    We have recently reported that pre-treatment, but not the post-treatment with atorvastatin showed survival benefit and improved hemodynamic functions in cecal ligation and puncture (CLP) model of sepsis in mice. Here we examined whether combined treatment with atorvastatin and imipenem after onset of sepsis can prolong survival and improve vascular functions. At 6 and 18h after sepsis induction, treatment with atorvastatin plus imipenem, atorvastatin or imipenem alone or placebo was initiated. Ex vivo experiments were done on mouse aorta to examine the vascular reactivity to nor-adrenaline and acetylcholine and mRNA expressions of α1D AR, GRK2 and eNOS. Atorvastatin plus imipenem extended the survival time to 56.00±4.62h from 20.00±1.66h observed in CLP mice. The survival time with atorvastatin or imipenem alone was 20.50±1.89h and 27.00±4.09h, respectively. The combined treatment reversed the hyporeactivity to nor-adrenaline through preservation of α1D AR mRNA/protein expression and reversal of α1D AR desensitization mediated by GRK2/Gβγ pathway. The treatment also restored endothelium-dependent relaxation to ACh through restoration of aortic eNOS mRNA expression and NO availability. In conclusion, combined treatment with atorvastatin and imipenem exhibited survival benefit and improved vascular functions in septic mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Potential benefits of exercise on blood pressure and vascular function.

    Science.gov (United States)

    Pal, Sebely; Radavelli-Bagatini, Simone; Ho, Suleen

    2013-01-01

    Physical activity seems to enhance cardiovascular fitness during the course of the lifecycle, improve blood pressure, and is associated with decreased prevalence of hypertension and coronary heart disease. It may also delay or prevent age-related increases in arterial stiffness. It is unclear if specific exercise types (aerobic, resistance, or combination) have a better effect on blood pressure and vascular function. This review was written based on previous original articles, systematic reviews, and meta-analyses indexed on PubMed from years 1975 to 2012 to identify studies on different types of exercise and the associations or effects on blood pressure and vascular function. In summary, aerobic exercise (30 to 40 minutes of training at 60% to 85% of predicted maximal heart rate, most days of the week) appears to significantly improve blood pressure and reduce augmentation index. Resistance training (three to four sets of eight to 12 repetitions at 10 repetition maximum, 3 days a week) appears to significantly improve blood pressure, whereas combination exercise training (15 minutes of aerobic and 15 minutes of resistance, 5 days a week) is beneficial to vascular function, but at a lower scale. Aerobic exercise seems to better benefit blood pressure and vascular function. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  19. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    Directory of Open Access Journals (Sweden)

    Raouf A. Khalil

    2013-03-01

    Full Text Available Blood pressure (BP is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN. In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i, which forms a complex with calmodulin, activates myosin light chain (MLC kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC. PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK and MAPK kinase (MEK, a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in

  20. Registry and health insurance claims data in vascular research and quality improvement.

    Science.gov (United States)

    Behrendt, Christian-Alexander; Heidemann, Franziska; Rieß, Henrik Christian; Stoberock, Konstanze; Debus, Sebastian Eike

    2017-01-01

    The expansion of procedures in multidisciplinary vascular medicine has sparked a controversy regarding measures of quality improvement. In addition to primary registries, the use of health insurance claims data is becoming of increasing importance. However, due to the fact that health insurance claims data are not collected for scientific evaluation but rather for reimbursement purposes, meticulous validation is necessary before and during usage in research and quality improvement matters. This review highlights the advantages and disadvantages of such data sources. A recent comprehensive expert opinion panel examined the use of health insurance claims data and other administrative data sources in medicine. Results from several studies concerning the validity of administrative data varied significantly. Validity of these data sources depends on the clinical relevance of the diagnoses considered. The rate of implausible information was 0.04 %, while the validity of the considered diagnoses varied between 80 and 97 % across multiple validation studies. A matching study between health insurance claims data of the third-largest German health insurance provider, DAK-Gesundheit, and a prospective primary registry of the German Society for Vascular Surgery demonstrated a good level of validity regarding the mortality of endovascular and open surgical treatment of abdominal aortic aneurysm in German hospitals. In addition, a large-scale international comparison of administrative data for the same disorder presented important results in treatment reality, which differed from those from earlier randomized controlled trials. The importance of administrative data for research and quality improvement will continue to increase in the future. When discussing the internal and external validity of this data source, one has to distinguish not only between its intended usage (research vs. quality improvement), but also between the included diseases and/or treatment procedures

  1. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis.

    Science.gov (United States)

    Feucht, Nikolaus; Maier, Mathias; Lepennetier, Gildas; Pettenkofer, Moritz; Wetzlmair, Carmen; Daltrozzo, Tanja; Scherm, Pauline; Zimmer, Claus; Hoshi, Muna-Miriam; Hemmer, Bernhard; Korn, Thomas; Knier, Benjamin

    2018-01-01

    Patients with multiple sclerosis (MS) and clinically isolated syndrome (CIS) may show alterations of retinal layer architecture as measured by optical coherence tomography. Little is known about changes in the retinal vascular network during MS. To characterize retinal vessel structures in patients with MS and CIS and to test for associations with MS disease activity. In all, 42 patients with MS or CIS and 50 healthy controls underwent retinal optical coherence tomography angiography (OCT-A) with analysis of the superficial and deep vascular plexuses and the choriocapillaries. We tested OCT-A parameters for associations with retinal layer volumes, history of optic neuritis (ON), and the retrospective disease activity. Inner retinal layer volumes correlated positively with the density of both the superficial and deep vascular plexuses. Eyes of MS/CIS patients with a history of ON revealed reduced vessel densities of the superficial and deep vascular plexuses as compared to healthy controls. Higher choriocapillary vessel densities were associated with ongoing inflammatory disease activity during 24 months prior to OCT-A examination in MS and CIS patients. Optic neuritis is associated with rarefaction of the superficial and deep retinal vessels. Alterations of the choriocapillaries might be linked to disease activity in MS.

  2. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS.

    Science.gov (United States)

    Perel, Azriel

    2013-01-24

    The recent Berlin definition has made some improvements in the older definition of acute respiratory distress syndrome (ARDS), although the concepts and components of the definition remained largely unchanged. In an effort to improve both predictive and face validity, the Berlin panel has examined a number of additional measures that may reflect increased pulmonary vascular permeability, including extravascular lung water. The panel concluded that although extravascular lung water has improved face validity and higher values are associated with mortality, it is infeasible to mandate on the basis of availability and the fact that it does not distinguish between hydrostatic and inflammatory pulmonary edema. However, the results of a multi-institutional study that appeared in the previous issue of Critical Care show that this latter reservation may not necessarily be true. By using extravascular lung water and the pulmonary vascular permeability index, both of which are derived from transpulmonary thermodilution, the authors could successfully differentiate between patients with ARDS and other patients in respiratory failure due to either cardiogenic edema or pleural effusion with atelectasis. This commentary discusses the merits and limitations of this study in view of the potential improvement that transpulmonary thermodilution may bring to the definition of ARDS.

  3. Use of 3D models of vascular rings and slings to improve resident education.

    Science.gov (United States)

    Jones, Trahern W; Seckeler, Michael D

    2017-09-01

    Three-dimensional (3D) printing is a manufacturing method by which an object is created in an additive process, and can be used with medical imaging data to generate accurate physical reproductions of organs and tissues for a variety of applications. We hypothesized that using 3D printed models of congenital cardiovascular lesions to supplement an educational lecture would improve learners' scores on a board-style examination. Patients with normal and abnormal aortic arches were selected and anonymized to generate 3D printed models. A cohort of pediatric and combined pediatric/emergency medicine residents were then randomized to intervention and control groups. Each participant was given a subjective survey and an objective board-style pretest. Each group received the same 20-minutes lecture on vascular rings and slings. During the intervention group's lecture, 3D printed physical models of each lesion were distributed for inspection. After each lecture, both groups completed the same subjective survey and objective board-style test to assess their comfort with and postlecture knowledge of vascular rings. There were no differences in the basic demographics of the two groups. After the lectures, both groups' subjective comfort levels increased. Both groups' scores on the objective test improved, but the intervention group scored higher on the posttest. This study demonstrated a measurable gain in knowledge about vascular rings and pulmonary artery slings with the addition of 3D printed models of the defects. Future applications of this teaching modality could extend to other congenital cardiac lesions and different learners. © 2017 Wiley Periodicals, Inc.

  4. Adipose derived stromal vascular fraction improves early tendon healing: an experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    Mehdi Behfar

    2011-11-01

    Full Text Available Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF, derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differentiation into multiple lineages to be used in regenerative medicine. In the present study, we investigated potentials of this source on tendon healing. Twenty rabbits were divided into control and treatment groups. Five rabbits were used as donors of adipose tissue. The injury model was unilateral complete transection through the middle one third of deep digital flexor tendon. Immediately after suture repair, either fresh stromal vascular fraction from enzymatic digestion of adipose tissue or placebo was intratendinously injected into the suture site in treatments and controls, respectively. Cast immobilization was continued for two weeks after surgery. Animals were sacrificed at the third week and tendons underwent histological, immunohistochemical, and mechanical evaluations. By histology, improved fibrillar organization and remodeling of neotendon were observed in treatment group. Immunohistochemistry revealed an insignificant increase in collagen type III and I expression in treatments over controls. Mechanical testing showed significant increase in maximum load and energy absorption in SVF treated tendons. The present study showed that intratendinous injection of uncultured adipose derived stromal vascular fraction improved structural and mechanical properties of repaired tendon and it could be an effective modality for treating tendon laceration.

  5. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Aguado, Andrea [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Zhenyukh, Olha; Briones, Ana María [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Alonso, María Jesús [Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón (Spain); Vassallo, Dalton Valentim [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402 (Brazil); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain)

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  6. Evaluation of a novel thermosensitive heparin-poloxamer hydrogel for improving vascular anastomosis quality and safety in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Ying-Zheng Zhao

    Full Text Available Despite progress in the design of advanced surgical techniques, stenosis recurs in a large percentage of vascular anastomosis. In this study, a novel heparin-poloxamer (HP hydrogel was designed and its effects for improving the quality and safety of vascular anastomosis were studied. HP copolymer was synthesized and its structure was confirmed by Fourier transform infrared spectroscopy (FTIR and nuclear magnetic resonance spectroscopy ((1H-NMR. Hydrogels containing HP were prepared and their important characteristics related to the application in vascular anastomosis including gelation temperature, rheological behaviour and micromorphology were measured. Vascular anastomosis were performed on the right common carotid arteries of rabbits, and the in vivo efficiency and safety of HP hydrogel to achieve vascular anastomosis was verified and compared with Poloxamer 407 hydrogel and the conventional hand-sewn method using Doppler ultrasound, CT angiograms, scanning electron microscopy (SEM and histological technique. Our results showed that HP copolymer displayed special gel-sol-gel phase transition behavior with increasing temperature from 5 to 60 °C. HP hydrogel prepared from 18 wt% HP solution had a porous sponge-like structure, with gelation temperature at approximately 38 °C and maximum elastic modulus at 10,000 Pa. In animal studies, imaging and histological examination of rabbit common jugular artery confirmed that HP hydrogel group had similar equivalent patency, flow and burst strength as Poloxamer 407 group. Moreover, HP hydrogel was superior to poloxamer 407 hydrogel and hand-sewn method for restoring the functions and epithelial structure of the broken vessel junctions after operation. By combining the advantages of heparin and poloxamer 407, HP hydrogel holds high promise for improving vascular anastomosis quality and safety.

  7. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    Science.gov (United States)

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  8. Connections matter: channeled hydrogels to improve vascularization.

    Science.gov (United States)

    Muehleder, Severin; Ovsianikov, Aleksandr; Zipperle, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2014-01-01

    The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite, several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser-, and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.

  9. The Soluble Epoxide Hydrolase Inhibitor AR9281 Decreases Blood Pressure, Ameliorates Renal Injury and Improves Vascular Function in Hypertension

    Directory of Open Access Journals (Sweden)

    Sean Shaw

    2009-12-01

    Full Text Available Soluble epoxide hydrolase inhibitors (sEHIs are demonstrating promise as potential pharmaceutical agents for the treatment of cardiovascular disease, diabetes, inflammation, and kidney disease. The present study determined the ability of a first-inclass sEHI, AR9281, to decrease blood pressure, improve vascular function, and decrease renal inflammation and injury in angiotensin hypertension. Rats were infused with angiotensin and AR9281 was given orally during the 14-day infusion period. Systolic blood pressure averaged 180 ± 5 mmHg in vehicle treated and AR9281 treatment significantly lowered blood pressure to 142 ± 7 mmHg in angiotensin hypertension. Histological analysis demonstrated decreased injury to the juxtamedullary glomeruli. Renal expression of inflammatory genes was increased in angiotensin hypertension and two weeks of AR9281 treatment decreased this index of renal inflammation. Vascular function in angiotensin hypertension was also improved by AR9281 treatment. Decreased afferent arteriolar and mesenteric resistance endothelial dependent dilator responses were ameliorated by AR9281 treatment of angiotensin hypertensive rats. These data demonstrate that the first-in-class sEHI, AR9281, lowers blood pressure, improves vascular function and reduces renal damage in angiotensin hypertension.

  10. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  11. Dietary patterns, involvement in physical activity and body mass index of Romanian adults having cardio-vascular diseases

    Directory of Open Access Journals (Sweden)

    Lucia Maria Lotrean

    2016-05-01

    Full Text Available Promotion of a healthy diet, an active lifestyle and appropriate body weight are important components of cardio-vascular disease prevention and control. This study aimed to assess several dietary patterns, involvement in physical activity and body mass index (BMI of Romanian adults hospitalized because of diagnoses of cardio-vascular diseases (CVD. The study was performed in 2014 in 1 hospital setting from Cluj-Napoca, Romania. It involved 80 adult patients (45 to 78 years old hospitalized with diagnoses of CVD. Anonymous questionnaire assessing several lifestyle related behaviours were filled in by the participants; based on their weight and height, the BMI was calculated. The results show that 76.2% of the participants recognize the role of consumption of fruits and vegetables for cardio-vascular diseases prevention and control, but only 5% meet the recommendations of eating at least 5 portions of fruits and vegetables (around 400 g daily. The majority of the subjects know that the consumption of animal fat increases the risk for cardio-vascular diseases, but, only one out of two patients declared their constant preoccupation for avoiding products rich in saturated fatty acids, such as animal fat, high fat dairy products and high fat meat. Around 80% of the participants know the risk of obesity for cardio-vascular diseases, but 81.2% have a BMI higher than 25. A percentage of 60% of the patients declared that they received general information from health care professionals about diet, physical activity and cardio-vascular disease prevention, while one quarter followed an educational program for this issue and only one out of ten patients followed a personalized program for loosing weight. Comprehensive educational and counselling programs for promoting healthy nutrition and achievement of an appropriate body weight are needed for Romanian adults having CVD

  12. Active iris vascular tufts bleeding successfully treated with argon laser photocoagulation.

    Science.gov (United States)

    Sarmad, Ambreen; Alfaqawi, Fadi; Chakrabarti, Monali; Mitra, Arijit; Mushtaq, Bushra

    2018-03-01

    Iris vascular tufts (IVT) are rare biomicroscopic capillary outgrowths from the pupillary margins. Patients are usually asymptomatic until presenting with blurred vision due to spontaneous hyphema or with raised intraocular pressure. A 61-year-old woman presented to eye casualty with left eye (LE) blurred vision and discomfort for 1 day. Her external ocular examination was unremarkable and visual acuity was 6/6 in the right eye (RE) and 6/9 in the LE. Biomicroscopic examination revealed a 2-mm hyphema in her LE and bilateral multiple small IVT and active bleeding from IVT at the pupillary margin of the LE at the 5 o'clock position. Diagnosis of LE active bleeding from IVT was made and she underwent argon laser photocoagulation directed at the source of bleeding. The bleeding stopped immediately after the second burn. She was followed up for 3 months; her visual acuity was 6/5 and 6/6 in the RE and LE, respectively, with no further problems. Iris vascular tufts are benign and recurrent hemorrhages are unlikely. Therefore, definitive argon laser photocoagulation or surgical treatment are reserved to arrest further episodes of hyphema. Our case demonstrates the effective use of argon laser photocoagulation to completely arrest active bleeding from IVT and excellent recovery of hyphema with no further problems for 5 years.

  13. Transcriptional Control of Vascular Smooth Muscle Cell Proliferation by Peroxisome Proliferator-Activated Receptor-γ: Therapeutic Implications for Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Florence Gizard

    2008-01-01

    Full Text Available Proliferation of vascular smooth muscle cells (SMCs is a critical process for the development of atherosclerosis and complications of procedures used to treat atherosclerotic diseases, including postangioplasty restenosis, vein graft failure, and transplant vasculopathy. Peroxisome proliferator-activated receptor (PPAR γ is a member of the nuclear hormone receptor superfamily and the molecular target for the thiazolidinediones (TZD, used clinically to treat insulin resistance in patients with type 2 diabetes. In addition to their efficacy to improve insulin sensitivity, TZD exert a broad spectrum of pleiotropic beneficial effects on vascular gene expression programs. In SMCs, PPARγ is prominently upregulated during neointima formation and suppresses the proliferative response to injury of the arterial wall. Among the molecular target genes regulated by PPARγ in SMCs are genes encoding proteins involved in the regulation of cell-cycle progression, cellular senescence, and apoptosis. This inhibition of SMC proliferation is likely to contribute to the prevention of atherosclerosis and postangioplasty restenosis observed in animal models and proof-of-concept clinical studies. This review will summarize the transcriptional target genes regulated by PPARγ in SMCs and outline the therapeutic implications of PPARγ activation for the treatment and prevention of atherosclerosis and its complications.

  14. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers

    DEFF Research Database (Denmark)

    Del Bo, Cristian; Riso, Patrizia; Campolo, Jonica

    2013-01-01

    It has been suggested that anthocyanin-rich foods may exert antioxidant effects and improve vascular function as demonstrated mainly in vitro and in the animal model. Blueberries are rich sources of anthocyanins and we hypothesized that their intake could improve cell protection against oxidative...... stress and affect endothelial function in humans. The aim of the study was to investigate the effect of one portion (300 g) of blueberries on selected markers of oxidative stress and antioxidant protection (endogenous and oxidatively induced DNA damage) and of vascular function (changes in peripheral...

  15. Changes in cardiovascular function and vascular Na-K pump activity in streptozotocin (STZ)-diabetic rats

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Blood pressure, vascular reactivity and Na-K pump function were examined in male Sprague-Dawley rats and rats made diabetic with a single dose of STZ (50 mg/Kg, I.V.). In each group, body weight, systolic blood pressure and heart rate were determined weekly, and serum glucose was measured biweekly for 12 weeks. Contractile responses and Na-K pump activity of vascular smooth muscle were studied in caudal artery strips. At 12 weeks after treatment, STZ rats had elevated serum glucose but decreased body weight and heart rate in comparison to control rats. Systolic blood pressure of STZ rats was not significantly increased at any time during the treatment period. Contractile responses of caudal artery strips to norepinephrine and serotonin did not indicate altered sensitivity (ED50) of vascular smooth muscle in STZ rats. The responsiveness (g tension/g wet wt.), however, was significantly increased in artery strips from STZ rats. Analysis of ouabain-inhibitable 86 Rb-uptake of caudal artery by the double-reciprocal plot showed that neither the rate of 86 Rb-uptake nor the affinity for rubidium were altered by STZ treatment. The data indicate that nonspecific increases in the reactivity of caudal arteries to excitatory agents occur in diabetic rats which may precede the development of hypertension. The enhanced reactivity is not associated with alteration of the vascular Na-K pump activity

  16. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  17. Connections matter: channeled hydrogels to improve vascularization

    Directory of Open Access Journals (Sweden)

    Severin eMuehleder

    2014-11-01

    Full Text Available The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser- and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.

  18. Telmisartan activates endothelial nitric oxide synthase via Ser1177 phosphorylation in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Myojo

    Full Text Available Because endothelial nitric oxide synthase (eNOS has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177 in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172 and eNOS and the concentration of intracellular guanosine 3',5'-cyclic monophosphate (cGMP. Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.

  19. Vascular Function Is Improved After an Environmental Enrichment Program: The Train the Brain-Mind the Vessel Study.

    Science.gov (United States)

    Bruno, Rosa Maria; Stea, Francesco; Sicari, Rosa; Ghiadoni, Lorenzo; Taddei, Stefano; Ungar, Andrea; Bonuccelli, Ubaldo; Tognoni, Gloria; Cintoli, Simona; Del Turco, Serena; Sbrana, Silverio; Gargani, Luna; D'Angelo, Gennaro; Pratali, Lorenza; Berardi, Nicoletta; Maffei, Lamberto; Picano, Eugenio

    2018-06-01

    Environmental enrichment may slow cognitive decay possibly acting through an improvement in vascular function. Aim of the study was to assess the effects of a 7-month cognitive, social, and physical training program on cognitive and vascular function in patients with mild cognitive impairment. In a single-center, randomized, parallel-group study, 113 patients (age, 65-89 years) were randomized to multidomain training (n=55) or usual care (n=58). All participants underwent neuropsychological tests and vascular evaluation, including brachial artery flow-mediated dilation, carotid-femoral pulse wave velocity, carotid distensibility, and assessment of circulating hematopoietic CD34+ and endothelial progenitor cells. At study entry, an age-matched control group (n=45) was also studied. Compared with controls, patients had at study entry a reduced flow-mediated dilation (2.97±2.14% versus 3.73±2.06%; P =0.03) and hyperemic stimulus (shear rate area under the curve, 19.1±15.7 versus 25.7±15.1×10 -3 ; P =0.009); only the latter remained significant after adjustment for confounders ( P =0.03). Training improved Alzheimer disease assessment scale cognitive (training, 14.0±4.8 to 13.1±5.5; nontraining, 12.1±3.9 to 13.2±4.8; P for interaction visit×training=0.02), flow-mediated dilation (2.82±2.19% to 3.40±1.81%, 3.05±2.08% to 2.24±1.59%; P =0.006; P =0.023 after adjustment for diameter and shear rate area under the curve), and circulating hematopoietic CD34 + cells and prevented the decline in carotid distensibility (18.4±5.3 to 20.0±6.6, 23.9±11.0 to 19.5±7.1 Pa -1 ; P =0.005). The only clinical predictor of improvement of cognitive function after training was established hypertension. There was no correlation between changes in measures of cognitive and vascular function. In conclusion, a multidomain training program slows cognitive decline, especially in hypertensive individuals. This effect is accompanied by improved systemic endothelial function

  20. Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Xin [National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou (China); Department of Mechanical Engineering, University of Wisconsin–Madison, WI (United States); Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI (United States); Mi, Hao-Yang [National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou (China); Salick, Max R. [Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI (United States); Department of Engineering Physics, University of Wisconsin–Madison, WI (United States); Cordie, Travis M. [Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI (United States); Department of Biomedical Engineering, University of Wisconsin–Madison, WI (United States); Peng, Xiang-Fang, E-mail: pmxfpeng@scut.edu.cn [National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou (China); Turng, Lih-Sheng, E-mail: turng@engr.wisc.edu [Department of Mechanical Engineering, University of Wisconsin–Madison, WI (United States); Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI (United States)

    2015-04-01

    Fabrication of small diameter vascular grafts plays an important role in vascular tissue engineering. In this study, thermoplastic polyurethane (TPU)/graphene oxide (GO) scaffolds were fabricated via electrospinning at different GO contents as potential candidates for small diameter vascular grafts. In terms of mechanical and surface properties, the tensile strength, Young's modulus, and hydrophilicity of the scaffolds increased with an increase of GO content while plasma treatment dramatically improved the scaffold hydrophilicity. Mouse fibroblast (3T3) and human umbilical vein endothelial cells (HUVECs) were cultured on the scaffolds separately to study their biocompatibility and potential to be used as vascular grafts. It was found that cell viability for both types of cells, fibroblast proliferation, and HUVEC attachment were the highest at a 0.5 wt.% GO loading whereas oxygen plasma treatment also enhanced HUVEC viability and attachment significantly. In addition, the suture retention strength and burst pressure of tubular TPU/GO scaffolds containing 0.5 wt.% GO were found to meet the requirements of human blood vessels, and endothelial cells were able to attach to the inner surface of the tubular scaffolds. Platelet adhesion tests using mice blood indicated that vascular scaffolds containing 0.5% GO had low platelet adhesion and activation. Therefore, the electrospun TPU/GO tubular scaffolds have the potential to be used in vascular tissue engineering. - Highlights: • TPU/GO vascular scaffolds were prepared via electrospinning. • The addition of GO improved the modulus and hydrophilicity of the scaffolds. • Fibroblast cell culture verified the scaffolds' biocompatibility. • Endothelial cell culture verified the scaffolds' vascular graft affinity. • The mechanical properties fulfilled the requirements of vascular grafts.

  1. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation.

    Science.gov (United States)

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2009-03-15

    Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.

  2. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  3. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Role of vascular smooth muscle cells in vascular calcification].

    Science.gov (United States)

    Kurabayashi, Masahiko

    2015-05-01

    Vascular calcification is commonly seen with aging, chronic kidney disese (CKD), diabetes, and atherosclerosis, and is closely associated with cardiovascular morbidity and mortality. Vascular calcification has long been regarded as the final stage of degeneration and necrosis of arterial wall and a passive, unregulated process. However, it is now known to be an active and tightly regulated process involved with phenotypic transition of vascular smooth muscle cells (VSMC) that resembles bone mineralization. Briefly, calcium deposits of atherosclerotic plaque consist of hydroxyapatite and may appear identical to fully formed lamellar bone. By using a genetic fate mapping strategy, VSMC of the vascular media give rise to the majority of the osteochondrogenic precursor- and chondrocyte-like cells observed in the calcified arterial media of MGP (- / -) mice. Osteogenic differentiation of VSMC is characterized by the expression of bone-related molecules including bone morphogenetic protein (BMP) -2, Msx2 and osteopontin, which are produced by osteoblasts and chondrocytes. Our recent findings are that (i) Runx2 and Notch1 induce osteogenic differentiation, and (ii) advanced glycation end-product (AGE) /receptor for AGE (RAGE) and palmitic acid promote osteogenic differentiation of VSMC. To understand of the molecular mechanisms of vascular calcification is now under intensive research area.

  4. Vascular neuroeffector activity in the rat during pregnancy

    International Nuclear Information System (INIS)

    Hart, J.L.; Freas, W.; Muldoon, S.M.

    1986-01-01

    The activity of the vascular neuroeffector junction was examined in pregnant (PG) and non-pregnant (NPG) rats to determine if changes could account for the reported alterations in sympathetic control of the maternal circulation. Caudal and mesenteric arteries were removed from NPG and 19-21PG rats and prepared for isometric tension recording in Krebs-filled, 37 0 C tissue baths. At optimal passive tension frequency-response measurements were obtained with and without cocaine (10- 5 M), followed by norepinephrine (NE) and tyramine conc-response measurements. The densely innervated caudal artery developed more tension in response to NE, tyramine and transmural electrical stimulation than did the moderately innervated mesenteric artery. There were no significant differences in responses between vessels from NPG and PG rats, NE content, 3 H-NE accumulation, and effects of plasma on 3 H-NE accumulation of NPG and PG caudal arteries were also compared. The NE content of the NPG artery (8.61 +/- .61) was not different from that of the PG artery (9.97 +/- .71 μg/g). Also, NE accumulation was similar, and plasma inhibited 3 H-NE accumulation to the same extent. These results indicate that vascular neuroeffector functions of NE release, receptor sensitivity and uptake are not modified in the rat during pregnancy. Changes in sympathetic control of the circulation previously reported, therefore, are likely to be dependent on alterations at sites other than the neuroeffector junction

  5. Using a multimedia presentation to improve patient understanding and satisfaction with informed consent for minimally invasive vascular procedures.

    Science.gov (United States)

    Bowers, N; Eisenberg, E; Montbriand, J; Jaskolka, J; Roche-Nagle, G

    2017-02-01

    As vascular procedures become more complex, patient understanding of their treatment(s) can become more difficult. We wished to evaluate the utility of multimedia presentations (MPs) to improve patient understanding of their vascular interventions. Patients undergoing endovascular aneurysm repair (EVAR), peripheral angioplasty, Hickman catheter and peripherally inserted central catheter (PICC) insertion were randomized into a control group receiving traditional verbal consent, and a MP group that were shown a two minute simplified video of their procedure on an iPad™ computer in addition to the traditional verbal consent. After obtaining consent, all patients completed a questionnaire assessing their comprehension of the procedure, and satisfaction with the consent process. Satisfaction was rated on a 5 point Likert scale with 5 being 'very helpful' in understanding the procedure. Ninety-three patients were recruited for this study, 62% of which were male. The intervention significantly increased total comprehension in all procedure types controlling for procedure type (multimedia vs. control; F = 9.14, P = .003). A second ANOVA showed there was a significant main effect by intervention (F = 44.06, p consent process to be helpful in patient understanding and that there is improved satisfaction. Given the rapid rate of innovation in vascular interventions, increased regular use of MPs to help patients understand their procedures would be beneficial in the care of patients undergoing vascular interventions. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  6. [The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis].

    Science.gov (United States)

    Fischer, Tamás

    2015-03-01

    The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.

  7. Time-Dependent Vascular Effects of Endocannabinoids Mediated by Peroxisome Proliferator-Activated Receptor Gamma (PPAR

    Directory of Open Access Journals (Sweden)

    Saoirse E. O'Sullivan

    2009-01-01

    Full Text Available The aim of the present study was to examine whether endocannabinoids cause PPAR-mediated vascular actions. Functional vascular studies were carried out in rat aortae. Anandamide and N-arachidonoyl-dopamine (NADA, but not palmitoylethanolamide, caused significant vasorelaxation over time (2 hours. Vasorelaxation to NADA, but not anandamide, was inhibited by CB1 receptor antagonism (AM251, 1 M, and vasorelaxation to both anandamide and NADA was inhibited by PPAR antagonism (GW9662, 1 M. Pharmacological inhibition of de novo protein synthesis, nitric oxide synthase, and super oxide dismutase abolished the responses to anandamide and NADA. Removal of the endothelium partly inhibited the vasorelaxant responses to anandamide and NADA. Inhibition of fatty acid amide hydrolase (URB597, 1 M inhibited the vasorelaxant response to NADA, but not anandamide. These data indicate that endocannabinoids cause time-dependent, PPAR-mediated vasorelaxation. Activation of PPAR in the vasculature may represent a novel mechanism by which endocannabinoids are involved in vascular regulation.

  8. Vitamin K status and vascular calcification: evidence from observational and clinical studies.

    Science.gov (United States)

    Shea, M Kyla; Holden, Rachel M

    2012-03-01

    Vascular calcification occurs when calcium accumulates in the intima (associated with atherosclerosis) and/or media layers of the vessel wall. Coronary artery calcification (CAC) reflects the calcium burden within the intima and media of the coronary arteries. In population-based studies, CAC independently predicts cardiovascular disease (CVD) and mortality. A preventive role for vitamin K in vascular calcification has been proposed based on its role in activating matrix Gla protein (MGP), a calcification inhibitor that is expressed in vascular tissue. Although animal and in vitro data support this role of vitamin K, overall data from human studies are inconsistent. The majority of population-based studies have relied on vitamin K intake to measure status. Phylloquinone is the primary dietary form of vitamin K and available supplementation trials, albeit limited, suggest phylloquinone supplementation is relevant to CAC. Yet observational studies have found higher dietary menaquinone, but not phylloquinone, to be associated with less calcification. Vascular calcification is highly prevalent in certain patient populations, especially in those with chronic kidney disease (CKD), and it is plausible vitamin K may contribute to reducing vascular calcification in patients at higher risk. Subclinical vitamin K deficiency has been reported in CKD patients, but studies linking vitamin K status to calcification outcomes in CKD are needed to clarify whether or not improving vitamin K status is associated with improved vascular health in CKD. This review summarizes the available evidence of vitamin K and vascular calcification in population-based studies and clinic-based studies, with a specific focus on CKD patients.

  9. Physical activity measured by accelerometry and its associations with cardiac structure and vascular function in young and middle-aged adults

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Lyass, Asya; Larson, Martin G

    2015-01-01

    objective measures of moderate- to vigorous-intensity physical activity (MVPA, assessed by accelerometry) to cardiac and vascular indices in 2376 participants of the Framingham Heart Study third generation cohort (54% women, mean age 47 years). Using multivariable regression models, we related MVPA......BACKGROUND: Physical activity is associated with several health benefits, including lower cardiovascular disease risk. The independent influence of physical activity on cardiac and vascular function in the community, however, has been sparsely investigated. MEASURES AND RESULTS: We related...... to the following echocardiographic and vascular measures: left ventricular mass, left atrial and aortic root sizes, carotid-femoral pulse wave velocity, augmentation index, and forward pressure wave. Men and women engaged in MVPA 29.9±21.4 and 25.5±19.4 min/day, respectively. Higher values of MVPA (per 10-minute...

  10. Implementing clinical process management of vascular wounds in a tertiary facility: impact evaluation of a performance improvement project.

    Science.gov (United States)

    Avruscio, Giampiero; Tocco-Tussardi, Ilaria; Bordignon, Greta; Vindigni, Vincenzo

    2017-01-01

    Chronic vascular wounds have a significant economic and social impact on our society calling for allocation of a great deal of attention and resources. Efforts should be oriented toward the achievement of the most effective and efficient clinical management. The Angiology Unit at the University Hospital of Padova, Italy, developed a performance improvement project to enhance the quality of practice for vascular ulcers. The project consisted in a multistep process comprising a critical revision of the previous clinical process management, staff education, tightening connections between operators and services, and creation of a position for a wound care nurse. The previous standard of practice was modified according to the results of revision and the current evidence-based practice. The new standard of practice reached its full application in September 2015. The number of patients treated and the number of visits in 2015 remained almost unvaried from 2014. However, the total annual expenditure for treating vascular ulcers was reduced by ~60% from the previous year. Standardization of guidelines and practice is effective in creating an efficient clinical management and in reducing the economic burden of vascular ulcers.

  11. Isthmin is a novel vascular permeability inducer that functions through cell-surface GRP78-mediated Src activation.

    Science.gov (United States)

    Venugopal, Shruthi; Chen, Mo; Liao, Wupeng; Er, Shi Yin; Wong, Wai-Shiu Fred; Ge, Ruowen

    2015-07-01

    Isthmin (ISM) is a recently identified 60 kDa secreted angiogenesis inhibitor. Two cell-surface receptors for ISM have been defined, the high-affinity glucose-regulated protein 78 kDa (GRP78) and the low-affinity αvβ5 integrin. As αvβ5 integrin plays an important role in pulmonary vascular permeability (VP) and ISM is highly expressed in mouse lung, we sought to clarify the role of ISM in VP. Recombinant ISM (rISM) dose-dependently enhances endothelial monolayer permeability in vitro and local dermal VP when administered intradermally in mice. Systemic rISM administration through intravenous injection leads to profound lung vascular hyperpermeability but not in other organs. Mechanistic investigations using molecular, biochemical approaches and specific chemical inhibitors revealed that ISM-GRP78 interaction triggers a direct interaction between GRP78 and Src, leading to Src activation and subsequent phosphorylation of adherens junction proteins and loss of junctional proteins from inter-endothelial junctions, resulting in enhanced VP. Dynamic studies of Src activation, VP and apoptosis revealed that ISM induces VP directly via Src activation while apoptosis contributes indirectly only after prolonged treatment. Furthermore, ISM is significantly up-regulated in lipopolysaccharide (LPS)-treated mouse lung. Blocking cell-surface GRP78 by systemic infusion of anti-GRP78 antibody significantly attenuates pulmonary vascular hyperpermeability in LPS-induced acute lung injury (ALI) in mice. ISM is a novel VP inducer that functions through cell-surface GRP78-mediated Src activation as well as induction of apoptosis. It induces a direct GRP78-Src interaction, leading to cytoplasmic Src activation. ISM contributes to pulmonary vascular hyperpermeability of LPS-induced ALI in mice. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Cocoa, blood pressure, and vascular function.

    Science.gov (United States)

    Sudano, Isabella; Flammer, Andreas J; Roas, Susanne; Enseleit, Frank; Ruschitzka, Frank; Corti, Roberto; Noll, Georg

    2012-08-01

    The consumption of a high amount of fruits and vegetables was found to be associated with a lower risk of coronary heart disease and stroke. Epidemiologically, a similar relationship has been found with cocoa, a naturally polyphenol-rich food. Obviously, double blind randomized studies are difficult to perform with cocoa and chocolate, respectively. However, intervention studies strongly suggest that cocoa has several beneficial effects on cardiovascular health, including the lowering of blood pressure, the improvement of vascular function and glucose metabolism, and the reduction of platelet aggregation and adhesion. Several potential mechanisms through which cocoa might exert its positive effects have been proposed, among them activation of nitric oxide synthase, increased bioavailability of nitric oxide as well as antioxidant, and anti-inflammatory properties. It is the aim of this review to summarize the findings of cocoa and chocolate on blood pressure and vascular function.

  13. Detection of active bleeding from gastric antral vascular ectasia by capsule endoscopy

    Science.gov (United States)

    Ohira, Tetsuya; Hokama, Akira; Kinjo, Nagisa; Nakamoto, Manabu; Kobashigawa, Chiharu; Kise, Yuya; Yamashiro, Satoshi; Kinjo, Fukunori; Kuniyoshi, Yukio; Fujita, Jiro

    2013-01-01

    Gastric antral vascular ectasia (GAVE) has been recognized as one of the important causes of occult and obscure gastrointestinal bleeding. The diagnosis is typically made based on the characteristic endoscopic features, including longitudinal row of flat, reddish stripes radiating from the pylorus into the antrum that resemble the stripes on a watermelon. These appearances, however, can easily be misinterpreted as moderate to severe gastritis. Although it is believed that capsule endoscopy (CE) is not helpful for the study of the stomach with its large lumen, GAVE can be more likely to be detected at CE rather than conventional endoscopy. CE can be regarded as “physiologic” endoscopy, without the need for gastric inflation and subsequent compression of the vasculature. The blood flow of the ecstatic vessels may be diminished in an inflated stomach. Therefore, GAVE may be prominent in CE. We herein describe a case of active bleeding from GAVE detected by CE and would like to emphasize a possibility that CE can improve diagnostic yields for GAVE. PMID:23515703

  14. Open and endovascular aneurysm repair in the Society for Vascular Surgery Vascular Quality Initiative.

    Science.gov (United States)

    Spangler, Emily L; Beck, Adam W

    2017-12-01

    The Society for Vascular Surgery Vascular Quality Initiative is a patient safety organization and a collection of procedure-based registries that can be utilized for quality improvement initiatives and clinical outcomes research. The Vascular Quality Initiative consists of voluntary participation by centers to collect data prospectively on all consecutive cases within specific registries which physicians and centers elect to participate. The data capture extends from preoperative demographics and risk factors (including indications for operation), through the perioperative period, to outcomes data at up to 1-year of follow-up. Additionally, longer-term follow-up can be achieved by matching with Medicare claims data, providing long-term longitudinal follow-up for a majority of patients within the Vascular Quality Initiative registries. We present the unique characteristics of the Vascular Quality Initiative registries and highlight important insights gained specific to open and endovascular abdominal aortic aneurysm repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Activated Fps/Fes partially rescues the in vivo developmental potential of Flk1-deficient vascular progenitor cells.

    Science.gov (United States)

    Haigh, Jody J; Ema, Masatsugu; Haigh, Katharina; Gertsenstein, Marina; Greer, Peter; Rossant, Janet; Nagy, Andras; Wagner, Erwin F

    2004-02-01

    Relatively little is known about the modulators of the vascular endothelial growth factor A (VEGF-A)/Flk1 signaling cascade. To functionally characterize this pathway, VEGF-A stimulation of endothelial cells was performed. VEGF-A-mediated Flk1 activation resulted in increased translocation of the endogenous Fps/Fes cytoplasmic tyrosine kinase to the plasma membrane and increased tyrosine phosphorylation, suggesting a role for Fps/Fes in VEGF-A/Flk1 signaling events. Addition of a myristoylation consensus sequence to Fps/Fes resulted in VEGF-A-independent membrane localization of Fps/Fes in endothelial cells. Expression of the activated Fps/Fes protein in Flk1-deficient embryonic stem (ES) cells rescued their contribution to the developing vascular endothelium in vivo by using ES cell-derived chimeras. Activated Fps/Fes contributed to this rescue event by restoring the migratory potential to Flk1 null progenitors, which is required for movement of hemangioblasts from the primitive streak region into the yolk sac proper. Activated Fps/Fes in the presence of Flk1 increased the number of hemangioblast colonies in vitro and increased the number of mesodermal progenitors in vivo. These results suggest that Fps/Fes may act synergistically with Flk1 to modulate hemangioblast differentiation into the endothelium. We have also demonstrated that activated Fps/Fes causes hemangioma formation in vivo, independently of Flk1, as a result of increasing vascular progenitor density.

  16. Effects of ouabain on vascular reactivity

    Directory of Open Access Journals (Sweden)

    Vassallo D.V.

    1997-04-01

    Full Text Available Ouabain is an endogenous substance occurring in the plasma in the nanomolar range, that has been proposed to increase vascular resistance and induce hypertension. This substance acts on the a-subunit of Na+,K+-ATPase inhibiting the Na+-pump activity. In the vascular smooth muscle this effect leads to intracellular Na+ accumulation that reduces the activity of the Na+/Ca2+ exchanger and to an increased vascular tone. It was also suggested that circulating ouabain, even in the nanomolar range, sensitizes the vascular smooth muscle to vasopressor substances. We tested the latter hypothesis by studying the effects of ouabain in the micromolar and nanomolar range on phenylephrine (PE-evoked pressor responses. The experiments were performed in normotensive and hypertensive rats in vivo, under anesthesia, and in perfused rat tail vascular beds. The results showed that ouabain pretreatment increased the vasopressor responses to PE in vitro and in vivo. This sensitization after ouabain treatment was also observed in hypertensive animals which presented an enhanced vasopressor response to PE in comparison to normotensive animals. It is suggested that ouabain at nanomolar concentrations can sensitize vascular smooth muscle to vasopressor stimuli possibly contributing to increased tone in hypertension

  17. Age-related ventricular-vascular coupling during acute inflammation in humans: Effect of physical activity.

    Science.gov (United States)

    Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Ranadive, Sushant M; Yan, Huimin; Phillips, Shane; Baynard, Tracy; Woods, Jeffrey A; Motl, Robert; Fernhall, Bo

    2015-07-01

    Aging is commonly accompanied by increased arterial and ventricular stiffness (determined by arterial elastance (Ea) and ventricular elastance (Elv)), augmented ventricular-vascular coupling ratios (Ea/Elv) and systemic inflammation. Acute inflammation may impact ventricular-vascular coupling and predispose older adults to cardiovascular events. However, physically active older adults have more compliant large arteries and left ventricles and lower inflammation than sedentary older adults. We hypothesized that acute inflammation would alter Ea, Elv, and Ea/Elv more in older versus younger adults but that higher levels of physical activity would attenuate inflammation-induced changes. End-systolic and central blood pressures were obtained using applanation tonometry before and at 24 and 48 h post-influenza vaccination in 24 older and 38 younger adults. Ultrasonography was used to measure ventricular volumes and other indices of cardiac performance. Physical activity was measured with accelerometry. Ea and Ea/Elv were maintained (p > 0.05), but Elv was reduced (p  0.05) except in the most active group of seniors (p < 0.05). Aging did not affect the elastance responses but did affect central blood pressure and other ventricular systolic responses to acute inflammation. Aging, not physical activity, appears to modulate cardiovascular responses to acute inflammation, except in the most active older adults. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. [Effects of sodium ethamsylate on anticoagulant and anti-aggregation activity of vascular endothelium in hemorrhagic fever patients with renal syndrome].

    Science.gov (United States)

    Davidovich, I M; Sirotin, B Z; Parshina, T A

    1999-01-01

    To elucidate effects of sodium ethamsylate (SE) on anticoagulant and antiaggregation activity of vascular endothelium in patients suffering from hemorrhagic fever with renal syndrome (HFRS). A trial of SE enrolled 70 HFRS patients (58 males, 12 females aged under 30 years) compatible by the disease severity. They were divided into two groups. 42 patients of the control group received standard therapy, 28 patients of the study group received adjuvant 12% solution of SE in daily dose 1500-2000 mg in the course of HFRS oliguria period. Hemostatic parameters were measured before and after the cuff test to investigate the condition of vascular wall with calculation of the athrombogenicity index (the ratio of the relevant indices before and after the cuff test). SE effects on vascular endothelium was assessed by a blind method. In oliguria, both groups had baseline antiaggregation indices significantly higher than in the control. After the cuff test, control patients' indices tended to an increase while in the study group there was a marked decrease. The trend in anticoagulant activity of microvascular endothelium did not differ much with the groups. This picture persisted also in polyuria. In convalescence hemostasis was similar in both groups. SE enhances antiaggregant activity of vascular endothelium in oliguria period of HFRS without affecting its anticoagulant properties. This is explained by a direct effect of SE on vascular endothelium.

  19. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction.

    Science.gov (United States)

    Furumoto, Yasuko; Smith, Carolyne K; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L; Trier, Anna M; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T; O'Shea, John J; Kaplan, Mariana J; Gadina, Massimo

    2017-01-01

    Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. No drug to date targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a JAK inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and the associated vascular pathology remains to be characterized. MRL/lpr lupus-prone mice were administered tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum levels of autoantibodies and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular traps (NETs) release, endothelium-dependent vasorelaxation, and endothelial differentiation were compared in treated and untreated mice. Treatment with tofacitinib led to significant improvement in measures of disease activity, including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of proinflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated the formation of NETs and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective in both preventive and therapeutic strategies. Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus, and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. © 2016, American College of Rheumatology.

  20. ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell Trafficking

    Directory of Open Access Journals (Sweden)

    Stephanie Smith-Berdan

    2015-02-01

    Full Text Available Despite the use of hematopoietic stem cells (HSCs in clinical therapy for over half a century, the mechanisms that regulate HSC trafficking, engraftment, and life-long persistence after transplantation are unclear. Here, we show that the vascular endothelium regulates HSC trafficking into and out of bone marrow (BM niches. Surprisingly, we found that instead of acting as barriers to cellular entry, vascular endothelial cells, via the guidance molecule ROBO4, actively promote HSC translocation across vessel walls into the BM space. In contrast, we found that the vasculature inhibits the reverse process, as induced vascular permeability led to a rapid increase in HSCs in the blood stream. Thus, the vascular endothelium reinforces HSC localization to BM niches both by promoting HSC extravasation from blood-to-BM and by forming vascular barriers that prevent BM-to-blood escape. Our results uncouple the mechanisms that regulate the directionality of HSC trafficking and show that the vasculature can be targeted to improve hematopoietic transplantation therapies.

  1. Implementing clinical process management of vascular wounds in a tertiary facility: impact evaluation of a performance improvement project

    Directory of Open Access Journals (Sweden)

    Avruscio G

    2017-10-01

    Full Text Available Giampiero Avruscio,1,* Ilaria Tocco-Tussardi,1,2,* Greta Bordignon,3 Vincenzo Vindigni2 1Angiology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University Hospital of Padova, Padova, Italy; 2Clinic of Plastic and Reconstructive Surgery, Department of Neurosciences, University Hospital of Padova, Padova, Italy; 3Clinical Management, University Hospital of Padova, Padova, Italy *These authors contributed equally to this work Background: Chronic vascular wounds have a significant economic and social impact on our society calling for allocation of a great deal of attention and resources. Efforts should be oriented toward the achievement of the most effective and efficient clinical management. The Angiology Unit at the University Hospital of Padova, Italy, developed a performance improvement project to enhance the quality of practice for vascular ulcers.Methods: The project consisted in a multistep process comprising a critical revision of the previous clinical process management, staff education, tightening connections between operators and services, and creation of a position for a wound care nurse. The previous standard of practice was modified according to the results of revision and the current evidence-based practice.Results: The new standard of practice reached its full application in September 2015. The number of patients treated and the number of visits in 2015 remained almost unvaried from 2014. However, the total annual expenditure for treating vascular ulcers was reduced by ~60% from the previous year.Conclusion: Standardization of guidelines and practice is effective in creating an efficient clinical management and in reducing the economic burden of vascular ulcers. Keywords: chronic wounds, clinical process management, cost-effectiveness, vascular ulcers

  2. VA Vascular Injury Study (VAVIS): VA-DoD extremity injury outcomes collaboration.

    Science.gov (United States)

    Shireman, Paula K; Rasmussen, Todd E; Jaramillo, Carlos A; Pugh, Mary Jo

    2015-02-03

    Limb injuries comprise 50-60% of U.S. Service member's casualties of wars in Afghanistan and Iraq. Combat-related vascular injuries are present in 12% of this cohort, a rate 5 times higher than in prior wars. Improvements in medical and surgical trauma care, including initial in-theatre limb salvage approaches (IILS) have resulted in improved survival and fewer amputations, however, the long-term outcomes such as morbidity, functional decline, and risk for late amputation of salvaged limbs using current process of care have not been studied. The long-term care of these injured warfighters poses a significant challenge to the Department of Defense (DoD) and Department of Veterans Affairs (VA). The VA Vascular Injury Study (VAVIS): VA-DoD Extremity Injury Outcomes Collaborative, funded by the VA, Health Services Research and Development Service, is a longitudinal cohort study of Veterans with vascular extremity injuries. Enrollment will begin April, 2015 and continue for 3 years. Individuals with a validated extremity vascular injury in the Department of Defense Trauma Registry will be contacted and will complete a set of validated demographic, social, behavioral, and functional status measures during interview and online/ mailed survey. Primary outcome measures will: 1) Compare injury, demographic and geospatial characteristics of patients with IILS and identify late vascular surgery related limb complications and health care utilization in Veterans receiving VA vs. non-VA care, 2) Characterize the preventive services received by individuals with vascular repair and related outcomes, and 3) Describe patient-reported functional outcomes in Veterans with traumatic vascular limb injuries. This study will provide key information about the current process of care for Active Duty Service members and Veterans with polytrauma/vascular injuries at risk for persistent morbidity and late amputation. The results of this study will be the first step for clinicians in VA and

  3. Tools for evidence-based vascular nursing practice: Achieving information literacy for lifelong learning.

    Science.gov (United States)

    Jameson, Jodi; Walsh, M Eileen

    2017-12-01

    Information literacy is essential in facilitating evidence-based practice (EBP) activities. In vascular nursing, the implementation of EBP is of utmost importance. Best practice grounded in research evidence can contribute to improved patient care outcomes for individuals with vascular disease. The following paper discusses information literacy competencies for nurses to develop in the context of EBP, with an emphasis on formulating a clinical question and searching for evidence. Relevant health science information resources are described, including their value and purpose in the 6S model of evidence. Also discussed are practical and supportive solutions with proven effectiveness in ensuring nurses' success with EBP. Copyright © 2017 Society for Vascular Nursing, Inc. Published by Elsevier Inc. All rights reserved.

  4. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability

    Science.gov (United States)

    Li, Shuoran; Nih, Lina R.; Bachman, Haylee; Fei, Peng; Li, Yilei; Nam, Eunwoo; Dimatteo, Robert; Carmichael, S. Thomas; Barker, Thomas H.; Segura, Tatiana

    2017-09-01

    Integrin binding to bioengineered hydrogel scaffolds is essential for tissue regrowth and regeneration, yet not all integrin binding can lead to tissue repair. Here, we show that through engineering hydrogel materials to promote α3/α5β1 integrin binding, we can promote the formation of a space-filling and mature vasculature compared with hydrogel materials that promote αvβ3 integrin binding. In vitro, α3/α5β1 scaffolds promoted endothelial cells to sprout and branch, forming organized extensive networks that eventually reached and anastomosed with neighbouring branches. In vivo, α3/α5β1 scaffolds delivering vascular endothelial growth factor (VEGF) promoted non-tortuous blood vessel formation and non-leaky blood vessels by 10 days post-stroke. In contrast, materials that promote αvβ3 integrin binding promoted endothelial sprout clumping in vitro and leaky vessels in vivo. This work shows that precisely controlled integrin activation from a biomaterial can be harnessed to direct therapeutic vessel regeneration and reduce VEGF-induced vascular permeability in vivo.

  5. Cocoa, Blood Pressure, and Vascular Function

    Science.gov (United States)

    Ludovici, Valeria; Barthelmes, Jens; Nägele, Matthias P.; Enseleit, Frank; Ferri, Claudio; Flammer, Andreas J.; Ruschitzka, Frank; Sudano, Isabella

    2017-01-01

    Cardiovascular disease (CVD) represents the most common cause of death worldwide. The consumption of natural polyphenol-rich foods, and cocoa in particular, has been related to a reduced risk of CVD, including coronary heart disease and stroke. Intervention studies strongly suggest that cocoa exerts a beneficial impact on cardiovascular health, through the reduction of blood pressure (BP), improvement of vascular function, modulation of lipid and glucose metabolism, and reduction of platelet aggregation. These potentially beneficial effects have been shown in healthy subjects as well as in patients with risk factors (arterial hypertension, diabetes, and smoking) or established CVD (coronary heart disease or heart failure). Several potential mechanisms are supposed to be responsible for the positive effect of cocoa; among them activation of nitric oxide (NO) synthase, increased bioavailability of NO as well as antioxidant, and anti-inflammatory properties. It is the aim of this review to summarize the findings of cocoa and chocolate on BP and vascular function. PMID:28824916

  6. Cocoa, Blood Pressure, and Vascular Function

    Directory of Open Access Journals (Sweden)

    Valeria Ludovici

    2017-08-01

    Full Text Available Cardiovascular disease (CVD represents the most common cause of death worldwide. The consumption of natural polyphenol-rich foods, and cocoa in particular, has been related to a reduced risk of CVD, including coronary heart disease and stroke. Intervention studies strongly suggest that cocoa exerts a beneficial impact on cardiovascular health, through the reduction of blood pressure (BP, improvement of vascular function, modulation of lipid and glucose metabolism, and reduction of platelet aggregation. These potentially beneficial effects have been shown in healthy subjects as well as in patients with risk factors (arterial hypertension, diabetes, and smoking or established CVD (coronary heart disease or heart failure. Several potential mechanisms are supposed to be responsible for the positive effect of cocoa; among them activation of nitric oxide (NO synthase, increased bioavailability of NO as well as antioxidant, and anti-inflammatory properties. It is the aim of this review to summarize the findings of cocoa and chocolate on BP and vascular function.

  7. Microgravity simulation activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis during vasculogenesis

    Directory of Open Access Journals (Sweden)

    Shouli Wang

    2017-12-01

    Full Text Available Gravity plays an important role in normal tissue maintenance. The ability of stem cells to repair tissue loss in space through regeneration and differentiation remains largely unknown. To investigate the impact of microgravity on blood vessel formation from pluripotent stem cells, we employed the embryoid body (EB model for vasculogenesis and simulated microgravity by clinorotation. We first differentiated mouse embryonic stem cells into cystic EBs containing two germ layers and then analyzed vessel formation under clinorotation. We observed that endothelial cell differentiation was slightly reduced under clinorotation, whereas vascular branch morphogenesis was markedly enhanced. EB-derived endothelial cells migrated faster, displayed multiple cellular processes, and had higher Cdc42 and Rac1 activity when subjected to clinorotation. Genetic analysis and rescue experiments demonstrated that Cdc42 but not Rac1 is required for microgravity-induced vascular branch morphogenesis. Furthermore, affinity pull-down assay and mass spectrometry identified Rap1GDS1 to be a Cdc42 guanine nucleotide exchange factor, which was upregulated by clinorotation. shRNA-mediated knockdown of Rap1GDS1 selectively suppressed Cdc42 activation and inhibited both baseline and microgravity-induced vasculogenesis. This was rescued by ectopic expression of constitutively active Cdc42. Taken together, these results support the notion that simulated microgravity activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis.

  8. Contemporary vascular smartphone medical applications.

    Science.gov (United States)

    Carter, Thomas; O'Neill, Stephen; Johns, Neil; Brady, Richard R W

    2013-08-01

    Use of smartphones and medical mHealth applications (apps) within the clinical environment provides a potential means for delivering elements of vascular care. This article reviews the contemporary availability of apps specifically themed to major vascular diseases and the opportunities and concerns regarding their integration into practice. Smartphone apps relating to major vascular diseases were identified from the app stores for the 6 most popular smartphone platforms, including iPhone, Android, Blackberry, Nokia, Windows, and Samsung. Search terms included peripheral artery (arterial) disease, varicose veins, aortic aneurysm, carotid artery disease, amputation, ulcers, hyperhydrosis, thoracic outlet syndrome, vascular malformation, and lymphatic disorders. Forty-nine vascular-themed apps were identified. Sixteen (33%) were free of charge. Fifteen apps (31%) had customer satisfaction ratings, but only 3 (6%) had greater than 100. Only 13 apps (27%) had documented medical professional involvement in their design or content. The integration of apps into the delivery of care has the potential to benefit vascular health care workers and patients. However, high-quality apps designed by clinicians with vascular expertise are currently lacking and represent an area of concern in the mHealth market. Improvement in the quality and reliability of these apps will require the development of robust regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Selective cyclooxygenase-1 inhibition improves collateral vascular reactivity in biliary cirrhotic rats

    Directory of Open Access Journals (Sweden)

    Ching-Chih Chang

    2013-10-01

    Conclusion: There was no significant hemodynamic change and renal toxicity after acute administration of COX inhibitor in the FBDL-induced cirrhotic rats. Preincubation of selective COX-1, but not COX-2, inhibitor could enhance collateral vascular response to AVP, indicating that COX-1 plays a major role in the collateral vascular reactivity.

  10. Retinal vascular diameters in relation to physical activity in Danish children - The CHAMPS Eye Study

    DEFF Research Database (Denmark)

    Lundberg, Kristian; Tarp, Jakob; Vestergaard, Anders Højslet

    2018-01-01

    Our objective was to determine associations between retinal vascular caliber and physical activity (PA) in a school-based child cohort. In a prospective study we created a childhood cumulative average PA-index using objectively measured PA (accelerometry) assessed at four periods between 2009...

  11. Efficacy of cognitive stimulation therapy for older adults with vascular dementia

    Directory of Open Access Journals (Sweden)

    Federica Piras

    Full Text Available ABSTRACT. Background: Cognitive stimulation therapy (CST is an evidence-based psychosocial intervention for people with mild-to-moderate dementia due to various etiological factors. Objective: The aim of the present study was to assess the efficacy of the CST program, Italian adaptation -CST-IT-, in individuals who have vascular dementia (VaD. Methods: Older adults with mild-to-moderate VaD (N = 35 were assigned to one of two programs: one group (N = 21 attended the 14 sessions of the CST-IT program, while the other, active control group (N = 14 took part in alternative activities. The following domains were examined: cognitive functioning, quality of life, mood, behavior, functional activities of daily living. Results: Compared with the active controls, the CST-IT group showed a greater improvement in general cognitive functioning after the intervention (i.e. score increase on the Mini-Mental State Examination and decrease on the Alzheimer's Disease Assessment Scale – Cognitive subscale. A trend towards improvement was also identified in short-term/working memory – the backward digit span task- and perceived quality of life (Quality of Life – Alzheimer's Disease scale. No significant differences emerged between the two groups for the other domains considered. Conclusion: The present results support the efficacy of CST in people with vascular dementia.

  12. Vascular Endothelial Growth Factor Improves Physico-Mechanical Properties and Enhances Endothelialization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(ε-caprolactone) Small-Diameter Vascular Grafts In vivo.

    Science.gov (United States)

    Antonova, Larisa V; Sevostyanova, Victoria V; Kutikhin, Anton G; Mironov, Andrey V; Krivkina, Evgeniya O; Shabaev, Amin R; Matveeva, Vera G; Velikanova, Elena A; Sergeeva, Evgeniya A; Burago, Andrey Y; Vasyukov, Georgiy Y; Glushkova, Tatiana V; Kudryavtseva, Yuliya A; Barbarash, Olga L; Barbarash, Leonid S

    2016-01-01

    The combination of a natural polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a synthetic hydrophobic polymer poly(ε-caprolactone) (PCL) is promising for the preparation of biodegradable and biocompatible small-diameter vascular grafts for bypass surgery. However, physico-mechanical properties and endothelialization rate of PHBV/PCL grafts are poor. We suggested that incorporation of vascular endothelial growth factor (VEGF) into PHBV/PCL grafts may improve their physico-mechanical properties and enhance endothelialization. Here we compared morphology, physico-mechanical properties, and in vivo performance of electrospun small-diameter vascular grafts prepared from PHBV/PCL with and without VEGF. Structure of the graft surface and physico-mechanical properties were examined by scanning electron microscopy and universal testing machine, respectively. Grafts were implanted into rat abdominal aorta for 1, 3, and 6 months with the further histological, immunohistochemical, and immunofluorescence examination. PHBV/PCL grafts with and without VEGF were highly porous and consisted mostly of nanoscale and microscale fibers, respectively. Mean pore diameter and mean pore area were significantly lower in PHBV/PCL/VEGF compared to PHBV/PCL grafts (1.47 μm and 10.05 μm(2); 2.63 μm and 47.13 μm(2), respectively). Durability, elasticity, and stiffness of PHBV/PCL grafts with VEGF were more similar to internal mammary artery compared to those without, particularly 6 months postimplantation. Both qualitative examination and quantitative image analysis showed that three-fourths of PHBV/PCL grafts with VEGF were patent and had many CD31-, CD34-, and vWF-positive cells at their inner surface. However, all PHBV/PCL grafts without VEGF were occluded and had no or a few CD31-positive cells at the inner surface. Therefore, VEGF enhanced endothelialization and improved graft patency at all the time points in a rat abdominal aorta replacement model. In conclusion, PHBV

  13. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    Science.gov (United States)

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  14. Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension.

    Science.gov (United States)

    Itani, Hana A; Dikalova, Anna E; McMaster, William G; Nazarewicz, Rafal R; Bikineyeva, Alfiya T; Harrison, David G; Dikalov, Sergey I

    2016-06-01

    Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension. © 2016 American Heart Association, Inc.

  15. Lifestyle and metabolic approaches to maximizing erectile and vascular health.

    Science.gov (United States)

    Meldrum, D R; Gambone, J C; Morris, M A; Esposito, K; Giugliano, D; Ignarro, L J

    2012-01-01

    Oxidative stress and inflammation, which disrupt nitric oxide (NO) production directly or by causing resistance to insulin, are central determinants of vascular diseases including ED. Decreased vascular NO has been linked to abdominal obesity, smoking and high intakes of fat and sugar, which all cause oxidative stress. Men with ED have decreased vascular NO and circulating and cellular antioxidants. Oxidative stress and inflammatory markers are increased in men with ED, and all increase with age. Exercise increases vascular NO, and more frequent erections are correlated with decreased ED, both in part due to stimulation of endothelial NO production by shear stress. Exercise and weight loss increase insulin sensitivity and endothelial NO production. Potent antioxidants or high doses of weaker antioxidants increase vascular NO and improve vascular and erectile function. Antioxidants may be particularly important in men with ED who smoke, are obese or have diabetes. Omega-3 fatty acids reduce inflammatory markers, decrease cardiac death and increase endothelial NO production, and are therefore critical for men with ED who are under age 60 years, and/or have diabetes, hypertension or coronary artery disease, who are at increased risk of serious or even fatal cardiac events. Phosphodiesterase inhibitors have recently been shown to improve antioxidant status and NO production and allow more frequent and sustained penile exercise. Some angiotensin II receptor blockers decrease oxidative stress and improve vascular and erectile function and are therefore preferred choices for lowering blood pressure in men with ED. Lifestyle modifications, including physical and penile-specific exercise, weight loss, omega-3 and folic acid supplements, reduced intakes of fat and sugar, and improved antioxidant status through diet and/or supplements should be integrated into any comprehensive approach to maximizing erectile function, resulting in greater overall success and patient

  16. Macrophages control vascular stem/progenitor cell plasticity through tumor necrosis factor-α-mediated nuclear factor-κB activation.

    Science.gov (United States)

    Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo

    2014-03-01

    Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

  17. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNFα-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    International Nuclear Information System (INIS)

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D.; Tang, Dong-Qi; Li, Dong-Sheng; Cui, Taixing

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNFα)-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNFα-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNFα hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  18. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    International Nuclear Information System (INIS)

    Solomon, Kimberly D.; Ong, Joo L.

    2013-01-01

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells

  19. Ebselen does not improve oxidative stress and vascular function in patients with diabetes: a randomized, crossover trial.

    Science.gov (United States)

    Beckman, Joshua A; Goldfine, Allison B; Leopold, Jane A; Creager, Mark A

    2016-12-01

    Oxidative stress is a key driver of vascular dysfunction in diabetes mellitus. Ebselen is a glutathione peroxidase mimetic. A single-site, randomized, double-masked, placebo-controlled, crossover trial was carried out in 26 patients with type 1 or type 2 diabetes to evaluate effects of high-dose ebselen (150 mg po twice daily) administration on oxidative stress and endothelium-dependent vasodilation. Treatment periods were in random order of 4 wk duration, with a 4-wk washout between treatments. Measures of oxidative stress included nitrotyrosine, plasma 8-isoprostanes, and the ratio of reduced to oxidized glutathione. Vascular ultrasound of the brachial artery and plethysmographic measurement of blood flow were used to assess flow-mediated and methacholine-induced endothelium-dependent vasodilation of conduit and resistance vessels, respectively. Ebselen administration did not affect parameters of oxidative stress or conduit artery or forearm arteriolar vascular function compared with placebo treatment. There was no difference in outcome by diabetes type. Ebselen, at the dose and duration evaluated, does not improve the oxidative stress profile, nor does it affect endothelium-dependent vasodilation in patients with diabetes mellitus. Copyright © 2016 the American Physiological Society.

  20. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Wada, Hiromichi; Abe, Mitsuru; Ono, Koh; Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide; Satoh, Noriko; Fujita, Masatoshi; Kita, Toru; Shimatsu, Akira; Hasegawa, Koji

    2008-01-01

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 μM of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-α-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 μM), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs

  1. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Hiromichi [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan); Abe, Mitsuru; Ono, Koh [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan); Satoh, Noriko [Division of Metabolic Research, National Hospital Organization Kyoto Medical Center, Kyoto (Japan); Fujita, Masatoshi [Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Kita, Toru [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Shimatsu, Akira [Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto (Japan); Hasegawa, Koji [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan)

    2008-10-03

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 {mu}M of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-{alpha}-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 {mu}M), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs.

  2. Reciprocal Effects of Oxidative Stress on Heme Oxygenase Expression and Activity Contributes to Reno-Vascular Abnormalities in EC-SOD Knockout Mice

    Directory of Open Access Journals (Sweden)

    Tomoko Kawakami

    2012-01-01

    although, HO activity was significantly (P<0.05 attenuated along with attenuation of serum adiponectin and vascular epoxide levels (P<0.05. CoPP, in EC-SOD(−/− mice, enhanced HO activity (P<0.05 and reversed aforementioned pathophysiological abnormalities along with restoration of vascular EET, p-eNOS, p-AKT and serum adiponectin levels in these animals. Taken together our results implicate a causative role of insufficient activation of heme-HO-adiponectin system in pathophysiological abnormalities observed in animal models of chronic oxidative stress such as EC-SOD(−/− mice.

  3. Improvement of photodynamic activity of aluminium sulphophthalocyanine due to biotinylation

    Science.gov (United States)

    Meerovich, Irina G.; Jerdeva, Victoria V.; Derkacheva, Valentina M.; Meerovich, Gennadii A.; Lukyanets, Eugeny A.; Kogan, Eugenia A.; Savitsky, Alexander P.

    2003-09-01

    The photodynamic activity of dibiotinylated aluminium sulphophthalocyanine in vitro and in vivo were studied. It was obtained that in vitro dibiotinylated aluminium sulphophthalocyanine provides the effective damage of small cell lung carcinoma OAT-75. In vivo dibiotinylated aluminium sulphophthalocyanine causes destruction of tumor (Erlich carcinoma), results in total necrosis of tumor tissue and expresses vascular damage (trombosis and destruction of vascular walls) even in concentration 0.25 mg/kg of a body weight.

  4. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  5. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  6. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking.

    Directory of Open Access Journals (Sweden)

    Anna E Daniel

    Full Text Available Plasminogen activator inhibitor-1 (PAI-1, a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact.We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus.Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall.

  7. Modulation of vascular function by diet and exercise.

    Science.gov (United States)

    Jennings, G L; Chin-Dusting, J P; Kingwell, B A; Dart, A M; Cameron, J; Esler, M; Lewis, T V

    1997-01-01

    Clinical research is conducted in free living individuals who are always subject to the influences on vascular function and the major cardiovascular regulators of their lifestyle. The purpose of this paper is to review some lifestyle influences on cardiovascular function, particularly the sympathetic nervous system and endothelially mediated vasodilatation. There are highly differentiated sympathetic responses to feeding, and to acute exercise. Over a longer period obesity has a typical pattern of sympathetic activity. Reduced dietary salt intake elicits profound localised increases in sympathetic activity to the kidney. Marine oil supplementation attenuates the sympathetic responses to psychological stress and improves endothelially mediated vasodilatation in hypercholesterolaemics. Exercise training reduced total noradrenaline spillover, the major beds affected being the renal and skeletal muscle. These examples illustrate the dynamic nature of vascular dilatation and that, like the sympathetic nervous system, it is modulated by short, medium and long term influences. In both cases there is regulation both at a local and systemic level. Habitual, and recent, lifestyle can exert important cardiovascular effects which must be taken into account in clinical and epidemiological research.

  8. Trends in a changing vascular practice environment for members of the Society for Vascular Surgery

    Science.gov (United States)

    Matthews, Mika A. B.; Satiani, Bhagwan; Lohr, Joann M.

    2013-01-01

    Objective To survey the Society for Vascular Surgery (SVS) membership with regard to practice trends related to work effort, employment status, practice ownership, endovascular cases, and anticipated changes in practice in the near future. Methods A survey questionnaire was developed to gather information about member demographics and practice, hours worked, full-time (FT) or part-time status, employment status, practice ownership, competition for referrals, proportion of endovascular vs open procedures, and anticipated changes in practice in the next 3 years. We used SurveyMonkey and distributed the survey to all active vascular surgeon (VS) members of the SVS. Results The response rate was 207 of 2230 (10.7%). Two thirds were in private practice, and 21% were in solo practice. Twenty-four percent were employed by hospitals/health systems. Those VS under the age of 50 years were more likely to exclusively practice vascular surgery compared with VS over the age of 50 years (P = .0003). Sixty-eight of the physicians (32.7%) were between 50 and 59 years old, 186 (90.3%) were men, 192 (92.8%) worked FT (>36 hours of patient care per week), and almost two thirds worked >60 hours per week. Those in physician-owned practices worked >40 hours of patient care per week more often than did FT employed VS (P = .012). Younger VS (age 50% of their workload being endovascular compared with older VS (age ≥50 years; P 40 hours of patient care per week than are FT employed VS. Longitudinal surveys of SVS members are imperative to help tailor educational, training, and practice management offerings, guide governmental activities, advocate for issues important to members, improve branding initiatives, and sponsor workforce analyses. PMID:23254185

  9. Age related vascular endothelial function following lifelong sedentariness: positive impact of cardiovascular conditioning without further improvement following low frequency high intensity interval training

    OpenAIRE

    Grace, Fergal M.; Herbert, Peter; Ratcliffe, John W.; New, Karl J.; Baker, Julien S.; Sculthorpe, Nicholas F.

    2015-01-01

    Abstract Aging is associated with diffuse impairments in vascular endothelial function and traditional aerobic exercise is known to ameliorate these changes. High intensity interval training (HIIT) is effective at improving vascular function in aging men with existing disease, but its effectiveness remains to be demonstrated in otherwise healthy sedentary aging. However, the frequency of commonly used HIIT protocols may be poorly tolerated in older cohorts. Therefore, the present study invest...

  10. [Can the vascular specialist improve patient awareness about advanced directives?].

    Science.gov (United States)

    Sanson, H; Priollet, P

    2016-05-01

    In France, the Leonetti law, adopted on April 22, 2005, stipulates the regulations concerning advanced directives. This is a patient's right that is not well known and rarely applied. In 2015, a new law project was thus presented in which the French National Authority for Health recommended that doctors, including all specialists, bring up the subject, especially during consultation. To evaluate the vascular specialist's possibility to mention the topic of advanced directives during consultations. A single and non-interventional prospective study conducted with the help of patients who consulted a private practitioner vascular specialist: recurrent patients regularly consulting a private practitioner vascular specialist were included. First-time consultants, minors and patients to whom it was not adapted to speak about the subject were not included. Between July 27 and September 23, 2015, 159 consecutive patients were examined. Fifty-five first-time consultants and four patients for whom the interview was unsuitable were excluded. In all, 100 patients were questioned. None of them refused to talk about the subject. Women made up a majority of the population (63 %) with an average age of 67 years (23-97). The principal diagnostics were common to vascular medicine consultations: deep vein thrombosis (20 %), peripheral arterial disease (15 %), varicose veins (11 %), lymphedema (11 %) and leg ulcers (9 %). Thirteen percent of the people had a history of cancer. Half of the patients had had follow-ups for over 10 years. The average time devoted to discussing the topic was 12minutes (5-40). Only 22 % of the patients declared having been familiar with advance directives. Once informed however, 78 % chose to write up an adapted form: 36 % with the help of their doctor and 42 % with a doctor and a relative. Seventy-three percent of the consultants thought that talking about the advance directives would reinforce the confidence link between the doctor and the

  11. Biological activity of anthocyanins and their phenolic degradation products and metabolites in human vascular endothelial cells

    OpenAIRE

    Edwards, Michael

    2013-01-01

    Human, animal, and in vitro data indicate significant vasoprotective activity of anthocyanins. However, few studies have investigated the activity of anthocyanin degradation products and metabolites which are likely to mediate bioactivity in vivo. The present thesis therefore examined the vascular bioactivity in vitro of anthocyanins, their phenolic degradants, and the potential for interactions between dietary bioactive compounds. Seven treatment compounds (cyanidin-, peonidin-, petunidin- &...

  12. Postural vascular response in human skin: passive and active reactions to alteration of transmural pressure.

    Science.gov (United States)

    Jepsen, H; Gaehtgens, P

    1993-09-01

    Laser-Doppler (LD) fluxmetry was performed in the palmar finger skin of healthy subjects to study the mechanisms contributing to the postural vascular response. Local transmural pressure in the skin blood vessels of the region studied was altered for 1 min in two experimental series either by passive movement of the arm to different vertical hand positions relative to heart level or by application of external pressure (-120-180 mmHg) to the finger. Heart and respiratory rate, arterial blood pressure, and LD flux in the contralateral finger (kept at heart level) were measured. The measurements suggest a compound reaction of local (myogenic) and systemic (neurogenic) mechanisms: the local regulatory component appears as a graded active vascular response elicited by passive vessel distension or compression. A systemic component, associated with a single deep inspiration, is frequently observed during the actual movement of the arm. In addition, prolonged holding of the test hand in a given vertical position also elicits a delayed vascular response in the control hand at heart level, which may be generated by volume receptors in the intrathoracic low-pressure system.

  13. Enhancing Tumor Drug Delivery by Laser-Activated Vascular Barrier Disruption

    Science.gov (United States)

    2009-12-01

    diabetic retinopathy . Therefore, se- lectively targeting existing blood vessels (vascular- disrupting therapy) and/or inhibiting the forma- tion of new...adhesion led to the formation of thrombi that can occlude blood vessels, causing vascular shutdown. However, viable tumor cells were often detected at...tumor sections (Fig. 4). However, viable tumor cells were commonly detected at tumor periphery. Because of the existence of viable peripheral tumor cells

  14. Improved FPGA controlled artificial vascular system for plethysmographic measurements

    Directory of Open Access Journals (Sweden)

    Laqua Daniel

    2016-09-01

    Full Text Available The fetal oxygen saturation is an important parameter to determine the health status of a fetus, which is until now mostly acquired invasively. The transabdominal, fetal pulse oximetry is a promising approach to measure this non-invasively and continuously. The fetal pulse curve has to be extracted from the mixed signal of mother and fetus to determine its oxygen saturation. For this purpose efficient algorithms are necessary, which have to be evaluated under constant and reproducable test conditions. This paper presents the improved version of a phantom which can generate artificial pulse waves in a synthetic tissue phantom. The tissue phantom consists of several layers that mimic the different optical properties of the fetal and maternal tissue layers. Additionally an artificial vascular system and a dome, which mimics the bending of the belly of a pregnant woman, are incorporated. To obtain data on the pulse waves, several measurement methods are included, to help understand the behavior of the signals gained from the pulse waves. Besides pressure sensors and a transmissive method we integrated a capacitive approach, that makes use of the so called “Pin Oscillator” method. Apart from the enhancements in the tissue phantom and the measurements, we also improved the used blood substitute, which reproduces the different absorption characteristics of fetal and maternal blood. The results show that the phantom can generate pulse waves similar to the natural ones. Furthermore, the phantom represents a reference that can be used to evaluate the algorithms for transabdominal, fetal pulse oximetry.

  15. Relaxin as a natural agent for vascular health

    Directory of Open Access Journals (Sweden)

    Daniele Bani

    2008-06-01

    Full Text Available Daniele BaniDepartment of Anatomy, Histology and Forensic Medicine, Sect. Histology, University of Florence, ItalyAbstract: Hypertension, atherothrombosis, myocardial infarction, stroke, peripheral vascular disease, and renal failure are the main manifestations of cardiovascular disease (CVD, the leading cause of death and disability in developed countries. Continuing insight into the pathophysiology of CVD can allow identification of effective therapeutic strategies to reduce the occurrence of death and/or severe disabilities. In this context, a healthy endothelium is deemed crucial to proper functioning and maintenance of anatomical integrity of the vascular system in many organs. Of note, epidemiologic studies indicate that the incidence of CVD in women is very low until menopause and increases sharply thereafter. The loss of protection against CVD in post-menopausal women has been chiefly attributed to ovarian steroid deficiency. However, besides steroids, the ovary also produces the peptide hormone relaxin (RLX, which provides potent vasoactive effects which render it the most likely candidate as the elusive physiological shield against CVD in fertile women. In particular, RLX has a specific relaxant effect on peripheral and coronary vasculature, exerted by the stimulation of endogenous nitric oxide (NO generation by cells of the vascular wall, and can induce angiogenesis. Moreover, RLX inhibits the activation of inflammatory leukocytes and platelets, which play a key role in CVD. Experimental studies performed in vascular and blood cell in vitro and in animal models of vascular dysfunction, as well as pioneer clinical observations, have provided evidence that RLX can prevent and/or improve CVD, thus offering background to clinical trials aimed at exploring the broad therapeutic potential of human recombinant RLX as a new cardiovascular drug.Keywords: relaxin, blood vessels, endothelial cells, vascular smooth muscle, nitric oxide

  16. Image Quality in Vascular Radiology

    International Nuclear Information System (INIS)

    Vanhavere, F.; Struelens, L.

    2005-01-01

    In vascular radiology, the radiologists use the radiological image to diagnose or treat a specific vascular structure. From literature, we know that related doses are high and that large dose variability exists between different hospitals. The application of the optimization principle is therefore necessary and is obliged by the new legislation. So far, very little fieldwork has been performed and no practical instructions are available to do the necessary work. It's indisputable that obtaining quantitative data is of great interest for optimization purposes. In order to gain insight into these doses and the possible measures for dose reduction, we performed a comparative study in 7 hospitals. Patient doses will be measured and calculated for specific procedures in vascular radiology and evaluated against their most influencing parameters. In view of optimization purposes, a protocol for dose audit will be set-up. From the results and conclusions in this study, experimentally based guidelines will be proposed, in order to improve clinical practice in vascular radiology

  17. Polysaccharide from Fuzi protects against Ox-LDL-induced calcification of human vascular smooth muscle cells by increasing autophagic activity

    Science.gov (United States)

    Liao, Lizhen; Zhuang, Xiaodong; Li, Weidong; Su, Qibiao; Zhao, Jie; Liu, Ying

    2018-01-01

    Polysaccharide from Fuzi (FPS) is a water-soluble polysaccharide isolated from the traditional Chinese herbal medicine Fuzi. It has been demonstrated to protect hepatocytes against ischemia-reperfusion injury through its potent antioxidant effects, and to attenuate starvation-induced cytotoxicity in H9c2 cells by increasing autophagic activity. In the present study, Alizarin Red S staining was used to detect mineral deposition and reverse transcription-quantitative polymerase chain reaction was used to detect the core binding factor α1 and smooth muscle 22α mRNA expression. To analyze autophagic activity, western blotting was used to detect microtubule-associated protein 1A/1B light chain 3 and nucleoporin P62 expression. In addition, green fluorescent protein-LC3 dots-per-cell was observed by fluorescence microscopy. It was demonstrated that oxidized low-density lipoprotein (Ox-LDL) could increase the calcification of human vascular smooth muscle cells (VSMCs) in a concentration-dependent manner, and that FPS treatment had a significant protective effect against Ox-LDL-induced calcification of human VSMCs. Furthermore, FPS treatment alleviated the Ox-LDL-induced downregulation of autophagic activity, and the protective effect of FPS on Ox-LDL-induced calcification was attenuated by the autophagy inhibitor 3-methyladenine. In conclusion, the present study demonstrated for the first time to the best of the authors' knowledge that FPS can protect against Ox-LDL-induced vascular calcification in human VSMCs, and that this likely occurs via the activation of autophagy. This supports the hypothesis that autophagy may be an endogenous protective mechanism counteracting vascular calcification, and that FPS may be used as a potential therapeutic for vascular calcification. PMID:29393437

  18. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study123

    Science.gov (United States)

    Velmurugan, Shanti; Gan, Jasmine Ming; Rathod, Krishnaraj S; Khambata, Rayomand S; Ghosh, Suborno M; Hartley, Amy; Van Eijl, Sven; Sagi-Kiss, Virag; Chowdhury, Tahseen A; Curtis, Mike; Kuhnle, Gunter GC; Wade, William G; Ahluwalia, Amrita

    2016-01-01

    Background: The beneficial cardiovascular effects of vegetables may be underpinned by their high inorganic nitrate content. Objective: We sought to examine the effects of a 6-wk once-daily intake of dietary nitrate (nitrate-rich beetroot juice) compared with placebo intake (nitrate-depleted beetroot juice) on vascular and platelet function in untreated hypercholesterolemics. Design: A total of 69 subjects were recruited in this randomized, double-blind, placebo-controlled parallel study. The primary endpoint was the change in vascular function determined with the use of ultrasound flow-mediated dilatation (FMD). Results: Baseline characteristics were similar between the groups, with primary outcome data available for 67 patients. Dietary nitrate resulted in an absolute increase in the FMD response of 1.1% (an ∼24% improvement from baseline) with a worsening of 0.3% in the placebo group (P nitrate group, showing a trend (P = 0.06) to improvement in comparison with the placebo group. Dietary nitrate also caused a small but significant reduction (7.6%) in platelet-monocyte aggregates compared with an increase of 10.1% in the placebo group (P = 0.004), with statistically significant reductions in stimulated (ex vivo) P-selectin expression compared with the placebo group (P nitrate were detected. The composition of the salivary microbiome was altered after the nitrate treatment but not after the placebo treatment (P nitrate treatment; of those taxa present, 2 taxa were responsible for >1% of this change, with the proportions of Rothia mucilaginosa trending to increase and Neisseria flavescens (P nitrate treatment relative to after placebo treatment. Conclusions: Sustained dietary nitrate ingestion improves vascular function in hypercholesterolemic patients. These changes are associated with alterations in the oral microbiome and, in particular, nitrate-reducing genera. Our findings provide additional support for the assessment of the potential of dietary nitrate as a

  19. Improving hemocompatibility and accelerating endothelialization of vascular stents by a copper-titanium film

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hengquan, E-mail: 99xyxy@163.com [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Pan, Changjiang [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaiyin 223033 (China); Zhou, Shijie; Li, Junfeng [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Huang, Nan [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031 (China); Dong, Lihua [Department of Research & Development, Lifetech Scientific (Shenzhen) Co., Ltd, Shenzhen 518057 (China)

    2016-12-01

    Bio-inorganic films and drug-eluting coatings are usually used to improve the hemocompatibility and inhibit restenosis of vascular stent; however, above bio-performances couldn't combine together with single materials. In the present study, we reported a simple approach to fabricate a metal film with the aim of imparting the stent with good blood compatibility and accelerating endothelialization. The films with various ratios of Cu and Ti were prepared through the physical vapor deposition. Phase structure and element composition were investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The releasing volume of copper ion in Cu/Ti film was determined by immersing test. The hemolysis ratio, platelet adhesion and clotting time were applied to evaluate the hemocompatibility. The proliferative behaviors of endothelial cells and smooth muscle cells under certain copper concentration were investigated in vitro and in vivo. Results indicated that copper-titanium films exhibited good hemocompatibility in vitro; however, the increase of Cu/Ti ratio could lead to increasing hemolysis ratio. Endothelial cells displayed more proliferative than smooth muscle cells when the copper concentration was < 7.5 μg/ml, however both cells tended to apoptosis to some degree when the copper concentration was increased. The complete endothelialization of the film with low copper in vivo was observed at the 2nd week, indicating that the copper-titanium film with the lower copper concentration could promote endothelialization. Therefore, the inorganic copper-titanium film could be potential biomaterials to improve blood compatibility and accelerating endothelialization of vascular stents. - Highlight: • The Cu/Ti film with regulating the various responses of ECs and SMCs has been prepared. • The hemocompatibility of Cu/Ti film is favorable and regulatable. • The volume of copper ion released from film could be designed.

  20. Viral haemorrhagic fever and vascular alterations.

    Science.gov (United States)

    Aleksandrowicz, P; Wolf, K; Falzarano, D; Feldmann, H; Seebach, J; Schnittler, H

    2008-02-01

    Pathogenesis of viral haemorrhagic fever (VHF) is closely associated with alterations of the vascular system. Among the virus families causing VHF, filoviruses (Marburg and Ebola) are the most fatal, and will be focused on here. After entering the body, Ebola primarily targets monocytes/macrophages and dendritic cells. Infected dendritic cells are largely impaired in their activation potency, likely contributing to the immune suppression that occurs during filovirus infection. Monocytes/macrophages, however, immediately activate after viral contact and release reasonable amounts of cytokines that target the vascular system, particularly the endothelial cells. Some underlying molecular mechanisms such as alteration of the vascular endothelial cadherin/catenin complex, tyrosine phosphorylation, expression of cell adhesion molecules, tissue factor and the effect of soluble viral proteins released from infected cells to the blood stream will be discussed.

  1. Lipid lowering and HDL raising gene transfer increase endothelial progenitor cells, enhance myocardial vascularity, and improve diastolic function.

    Directory of Open Access Journals (Sweden)

    Stephanie C Gordts

    Full Text Available BACKGROUND: Hypercholesterolemia and low high density lipoprotein (HDL cholesterol contribute to coronary heart disease but little is known about their direct effects on myocardial function. Low HDL and raised non-HDL cholesterol levels carried increased risk for heart failure development in the Framingham study, independent of any association with myocardial infarction. The objective of this study was to test the hypothesis that increased endothelial progenitor cell (EPC number and function after lipid lowering or HDL raising gene transfer in C57BL/6 low density lipoprotein receptor deficient (LDLr(-/- mice may be associated with an enhanced relative vascularity in the myocardium and an improved cardiac function. METHODOLOGY/PRINCIPAL FINDINGS: Lipid lowering and HDL raising gene transfer were performed using the E1E3E4-deleted LDLr expressing adenoviral vector AdLDLr and the human apolipoprotein A-I expressing vector AdA-I, respectively. AdLDLr transfer in C57BL/6 LDLr(-/- mice resulted in a 2.0-fold (p<0.05 increase of the circulating number of EPCs and in an improvement of EPC function as assessed by ex vivo EPC migration and EPC adhesion. Capillary density and relative vascularity in the myocardium were 28% (p<0.01 and 22% (p<0.05 higher, respectively, in AdLDLr mice compared to control mice. The peak rate of isovolumetric relaxation was increased by 12% (p<0.05 and the time constant of isovolumetric relaxation was decreased by 14% (p<0.05 after AdLDLr transfer. Similarly, HDL raising gene transfer increased EPC number and function and raised both capillary density and relative vascularity in the myocardium by 24% (p<0.05. The peak rate of isovolumetric relaxation was increased by 16% (p<0.05 in AdA-I mice compared to control mice. CONCLUSIONS/SIGNIFICANCE: Both lipid lowering and HDL raising gene transfer have beneficial effects on EPC biology, relative myocardial vascularity, and diastolic function. These findings raise concerns over the

  2. Limb vascular function in women

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Gliemann, Lasse

    2018-01-01

    Throughout life, women are subjected to both acute fluctuations in sex hormones, associated with the menstrual cycle, and chronic changes following the onset of menopause. Female sex hormones, and in particular estrogen, strongly influence cardiovascular function such as the regulation of vascular...... studies. Physical activity should be recommended for women of all ages, but the most essential timing for maintenance of vascular health may be from menopause and onwards....

  3. Vascular surgery research in the Gulf Cooperation Council countries

    Directory of Open Access Journals (Sweden)

    Ali Jawas

    2014-04-01

    Conclusion: The quality and quantity of vascular surgery research in the GCC countries should be improved to answer important local questions related to vascular diseases. This needs better strategic planning and more collaboration between various institutions.

  4. Sirtuins, Cell Senescence, and Vascular Aging.

    Science.gov (United States)

    Kida, Yujiro; Goligorsky, Michael S

    2016-05-01

    The sirtuins (SIRTs) constitute a class of proteins with nicotinamide adenine dinucleotide-dependent deacetylase or adenosine diphosphate-ribosyltransferase activity. Seven SIRT family members have been identified in mammals, from SIRT1, the best studied for its role in vascular aging, to SIRT7. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are nuclear. Extensive studies have clearly revealed that SIRT proteins regulate diverse cell functions and responses to stressors. Vascular aging involves the aging process (senescence) of endothelial and vascular smooth muscle cells. Two types of cell senescence have been identified: (1) replicative senescence with telomere attrition; and (2) stress-induced premature senescence without telomere involvement. Both types of senescence induce vascular cell growth arrest and loss of vascular homeostasis, and contribute to the initiation and progression of cardiovascular diseases. Previous mechanistic studies have revealed in detail that SIRT1, SIRT3, and SIRT6 show protective functions against vascular aging, and definite vascular function of other SIRTs is under investigation. Thus, direct SIRT modulation and nicotinamide adenine dinucleotide stimulation of SIRT are promising candidates for cardiovascular disease therapy. A small number of pilot studies have been conducted to assess SIRT modulation in humans. These clinical studies have not yet provided convincing evidence that SIRT proteins alleviate morbidity and mortality in patients with cardiovascular diseases. The outcomes of multiple ongoing clinical trials are awaited to define the efficacy of SIRT modulators and SIRT activators in cardiovascular diseases, along with the potential adverse effects of chronic SIRT modulation. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  5. Calcineurin /NFAT activation-dependence of leptin synthesis and vascular growth in response to mechanical stretch

    Directory of Open Access Journals (Sweden)

    Nadia Soudani

    2016-09-01

    Full Text Available Background and Aims- Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca+2/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC hypertrophy and leptin synthesis. Methods and Results- Rat portal vein (RPV organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM, the selective calcineurin inhibitor FK506 (1 nM and the ERK1/2 inhibitor PD98059 (1 μM. The transcription inhibitor actinomycin D (0.1M and the translation inhibitor cycloheximide (1 mM significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM. In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL, the ROCK inhibitor Y-27632 (10 μM, and the actin depolymerization agents Latrunculin B (50 nM and cytochalasin D (1 μM reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions- Mechanical stretch-induced VSMC hypertrophy and leptin

  6. Oxidative and inflammatory signals in obesity-associated vascular abnormalities.

    Science.gov (United States)

    Reho, John J; Rahmouni, Kamal

    2017-07-15

    Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Angiogenesis, Cancer, and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Junji Moriya

    2017-10-01

    Full Text Available Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.

  8. Experimental study of vascularized nerve graft: evaluation of nerve regeneration using choline acetyltransferase activity.

    Science.gov (United States)

    Iwai, M; Tamai, S; Yajima, H; Kawanishi, K

    2001-01-01

    A comparative study of nerve regeneration was performed on vascularized nerve graft (VNG) and free nerve graft (FNG) in Fischer strain rats. A segment of the sciatic nerve with vascular pedicle of the femoral artery and vein was harvested from syngeneic donor rat for the VNG group and the sciatic nerve in the same length without vascular pedicle was harvested for the FNG group. They were transplanted to a nerve defect in the sciatic nerve of syngeneic recipient rats. At 2, 4, 6, 8, 12, 16, and 24 weeks after operation, the sciatic nerves were biopsied and processed for evaluation of choline acetyltransferase (CAT) activity, histological studies, and measurement of wet weight of the muscle innervated by the sciatic nerve. Electrophysiological evaluation of the grafted nerve was also performed before sacrifice. The average CAT activity in the distal to the distal suture site was 383 cpm in VNG and 361 cpm in FNG at 2 weeks; 6,189 cpm in VNG and 2,264 cpm in FNG at 4 weeks; and 11,299 cpm in VNG and 9,424 cpm in FNG at 6 weeks postoperatively. The value of the VNG group was statistically higher than that of the FNG group at 4 weeks postoperatively. Electrophysiological and histological findings also suggested that nerve regeneration in the VNG group was superior to that in the FNG group during the same period. However, there was no significant difference between the two groups after 6 weeks postoperatively in any of the evaluations. The CAT measurement was useful in the experiments, because it was highly sensitive and reproducible. Copyright 2001 Wiley-Liss, Inc.

  9. Smoking Cessation Counseling Improves Quality of Care and Surgical Outcomes with Financial Gain for a Vascular Practice.

    Science.gov (United States)

    Moses, D A; Mehaffey, J H; Strider, D V; Tracci, M C; Kern, J A; Upchurch, G R

    2017-07-01

    Cigarette smoking is strongly associated with atherosclerotic disease. It is incumbent on vascular surgeons to provide smoking cessation counseling (SCC) to their patients. The objective of this study was to determine the association of SCC and improvement in quality of care. As a quality project using retrospective data, the study received institutional review board exemption status. A retrospective review of prospectively maintained database from April 2014 through March 2015 of outpatient encounters in a vascular surgery clinic was performed of current smokers. Through the quality support team, providers were encouraged to counsel smokers to quit, document the discussion, and bill specific Evaluate and Management codes (99406 and 99407). The number of outpatients by smoking status, documentation and billing of SCC, demographics of current smokers, and monetary collections were collected. Data were compared using a correlation coefficient calculated and tested for statistical significant using two-tailed t-test. A sample of 1,077 visits by 612 currently smoking patients accounted for 24% of all outpatient vascular surgery visits. The average age was 61 years, and 64% were male. Comorbidities included 77% with hypertension, 32% with diabetes mellitus, and 14% with chronic kidney disease. Medically, 72% were on aspirin, 71% on statin, and 48% on beta blocker. A total of 208 (34%) never underwent a vascular intervention, and 183 (30%) had an intervention during the study period (44% for peripheral artery disease, 10% for carotid stenosis, 14% amputations, and 10% abdominal aortic aneurysm). Documentation improved from 65% of encounters during the first month to 89% in the peak month and 79% of total encounters. All-cause mortality rate was 2%, and this cohort demonstrated 75% SCC for 28 encounters. Fifty-five patients (9%) quit smoking for more than 30 days at the end of the study period, and this cohort had 69% of their 97 encounters with documented SCC

  10. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Yun-Yun Ma

    Full Text Available Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  11. Physical Activity: A Viable Way to Reduce the Risks of Mild Cognitive Impairment, Alzheimer’s Disease, and Vascular Dementia in Older Adults

    Directory of Open Access Journals (Sweden)

    Patrick J. Gallaway

    2017-02-01

    Full Text Available A recent alarming rise of neurodegenerative diseases in the developed world is one of the major medical issues affecting older adults. In this review, we provide information about the associations of physical activity (PA with major age-related neurodegenerative diseases and syndromes, including Alzheimer’s disease, vascular dementia, and mild cognitive impairment. We also provide evidence of PA’s role in reducing the risks of these diseases and helping to improve cognitive outcomes in older adults. Finally, we describe some potential mechanisms by which this protective effect occurs, providing guidelines for future research.

  12. Audit of the Danish national vascular database

    DEFF Research Database (Denmark)

    Levi-Mazloum, Niels Donald; Jensen, L P; Schroeder, T V

    1996-01-01

    The accuracy of data contained in the Danish vascular database was compared with the case notes. A total of 100 case notes were reviewed for 11 pertinent variables in the database. A high error rate ranging from 2 to 34% was found. Also, approximately 10% of patients had never been entered into t...... into the vascular database. Further improvement of the Danish vascular database is necessary for its use as basis for reporting results.......The accuracy of data contained in the Danish vascular database was compared with the case notes. A total of 100 case notes were reviewed for 11 pertinent variables in the database. A high error rate ranging from 2 to 34% was found. Also, approximately 10% of patients had never been entered...

  13. Taurine Supplementation Lowers Blood Pressure and Improves Vascular Function in Prehypertension: Randomized, Double-Blind, Placebo-Controlled Study.

    Science.gov (United States)

    Sun, Qianqian; Wang, Bin; Li, Yingsha; Sun, Fang; Li, Peng; Xia, Weijie; Zhou, Xunmei; Li, Qiang; Wang, Xiaojing; Chen, Jing; Zeng, Xiangru; Zhao, Zhigang; He, Hongbo; Liu, Daoyan; Zhu, Zhiming

    2016-03-01

    Taurine, the most abundant, semiessential, sulfur-containing amino acid, is well known to lower blood pressure (BP) in hypertensive animal models. However, no rigorous clinical trial has validated whether this beneficial effect of taurine occurs in human hypertension or prehypertension, a key stage in the development of hypertension. In this randomized, double-blind, placebo-controlled study, we assessed the effects of taurine intervention on BP and vascular function in prehypertension. We randomly assigned 120 eligible prehypertensive individuals to receive either taurine supplementation (1.6 g per day) or a placebo for 12 weeks. Taurine supplementation significantly decreased the clinic and 24-hour ambulatory BPs, especially in those with high-normal BP. Mean clinic systolic BP reduction for taurine/placebo was 7.2/2.6 mm Hg, and diastolic BP was 4.7/1.3 mm Hg. Mean ambulatory systolic BP reduction for taurine/placebo was 3.8/0.3 mm Hg, and diastolic BP was 3.5/0.6 mm Hg. In addition, taurine supplementation significantly improved endothelium-dependent and endothelium-independent vasodilation and increased plasma H2S and taurine concentrations. Furthermore, changes in BP were negatively correlated with both the plasma H2S and taurine levels in taurine-treated prehypertensive individuals. To further elucidate the hypotensive mechanism, experimental studies were performed both in vivo and in vitro. The results showed that taurine treatment upregulated the expression of hydrogen sulfide-synthesizing enzymes and reduced agonist-induced vascular reactivity through the inhibition of transient receptor potential channel subtype 3-mediated calcium influx in human and mouse mesenteric arteries. In conclusion, the antihypertensive effect of chronic taurine supplementation shows promise in the treatment of prehypertension through improvement of vascular function. © 2016 American Heart Association, Inc.

  14. Insulin resistance: vascular function and exercise

    Directory of Open Access Journals (Sweden)

    Moon-Hyon Hwang

    2016-09-01

    Full Text Available Insulin resistance associated with metabolic syndrome and Type 2 diabetes mellitus is an epidemic metabolic disorder, which increases the risk of cardiovascular complications. Impaired vascular endothelial function is an early marker for atherosclerosis, which causes cardiovascular complications. Both experimental and clinical studies indicate that endothelial dysfunction in vasculatures occurs with insulin resistance. The associated physiological mechanisms are not fully appreciated yet, however, it seems that augmented oxidative stress, a physiological imbalance between oxidants and antioxidants, in vascular cells is a possible mechanism involved in various vascular beds with insulin resistance and hyperglycemia. Regardless of the inclusion of resistance exercise, aerobic exercise seems to be beneficial for vascular endothelial function in both large conduit and small resistance vessels in both clinical and experimental studies with insulin resistance. In clinical cases, aerobic exercise over 8 weeks with higher intensity seems more beneficial than the cases with shorter duration and lower intensity. However, more studies are needed in the future to elucidate the physiological mechanisms by which vascular endothelial function is impaired in insulin resistance and improved with aerobic exercise.

  15. Changes in Ultrasonographic Vascularity Upon Initiation of Adalimumab Combination Therapy in Rheumatoid Arthritis Patients With an Inadequate Response to Methotrexate.

    Science.gov (United States)

    Kaeley, Gurjit S; Nishio, Midori J; Goyal, Janak R; MacCarter, Daryl K; Wells, Alvin F; Chen, Su; Kupper, Hartmut; Kalabic, Jasmina

    2016-11-01

    To assess joint disease activity by ultrasound (US) in patients with rheumatoid arthritis (RA) initiating treatment with adalimumab (ADA) plus methotrexate (MTX). Data for this post hoc analysis originated from the MUSICA trial (ClinicalTrials.gov identifier: NCT01185288), which evaluated the efficacy of initiating ADA (40 mg every other week) plus 7.5 or 20 mg/week MTX in 309 patients with RA with an inadequate response to MTX. Synovial vascularization over 24 weeks was assessed bilaterally at metacarpophalangeal joint 2 (MCP2), MCP3, MCP5, metatarsophalangeal joint 5, and the wrists by power Doppler US (PDUS). A semiquantitative 4-grade scale was used. Disease activity was assessed using the Disease Activity Score in 28 joints using the C-reactive protein level (DAS28-CRP) and Simplified Disease Activity Index (SDAI). The correlation between continuous variables was assessed using Pearson's correlation coefficient. After 24 weeks of treatment with ADA plus MTX, rapid improvements in the mean synovial vascularity score were observed; the greatest improvements were in MCP2 (-0.5), MCP3 (-0.4), and the wrist (-0.4). At week 24, patients with the lowest DAS28-CRP ( 0.9). Synovial vascularity scores correlated poorly with DAS28, swollen joint count in 66 joints (SJC66), SJC28, tender joint count in 68 joints (TJC68), TJC28, Clinical Disease Activity Index (CDAI), SDAI, physician's global assessment, patient's global assessment of pain, and disease duration (ρ < 0.2). Thirty-two (70%) of 46 patients with a DAS28-CRP of <2.6, and 11 (58%) of 19 patients with an SDAI indicating remission had at least 1 joint with a synovial vascularity score of ≥1. PDUS detects changes in synovial vascularity in RA patients treated with ADA plus MTX, and residual synovial vascularity in patients in whom clinical disease control has been achieved. © 2016 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  16. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Science.gov (United States)

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  17. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats.

    Science.gov (United States)

    Li, Peng; Huang, Pei-Pei; Yang, Yun; Liu, Chi; Lu, Yan; Wang, Fang; Sun, Wei; Kong, Xiang-Qing

    2017-01-01

    Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121-129, 2017. First published October 14, 2016; doi:10.1152/japplphysiol.01019.2015-Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These

  18. Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial

    Directory of Open Access Journals (Sweden)

    Kupchak Brian R

    2009-07-01

    Full Text Available Abstract Background Whey protein is a potential source of bioactive peptides. Based on findings from in vitro experiments indicating a novel whey derived peptide (NOP-47 increased endothelial nitric oxide synthesis, we tested its effects on vascular function in humans. Methods A randomized, placebo-controlled, crossover study design was used. Healthy men (n = 10 and women (n = 10 (25 ± 5 y, BMI = 24.3 ± 2.3 kg/m2 participated in two vascular testing days each preceded by 2 wk of supplementation with a single dose of 5 g/day of a novel whey-derived peptide (NOP-47 or placebo. There was a 2 wk washout period between trials. After 2 wk of supplementation, vascular function in the forearm and circulating oxidative stress and inflammatory related biomarkers were measured serially for 2 h after ingestion of 5 g of NOP-47 or placebo. Macrovascular and microvascular function were assessed using brachial artery flow mediated dilation (FMD and venous occlusion strain gauge plethysmography. Results Baseline peak FMD was not different for Placebo (7.7% and NOP-47 (7.8%. Placebo had no effect on FMD at 30, 60, and 90 min post-ingestion (7.5%, 7.2%, and 7.6%, respectively whereas NOP-47 significantly improved FMD responses at these respective postprandial time points compared to baseline (8.9%, 9.9%, and 9.0%; P P = 0.008 for time × trial interaction. Plasma myeloperoxidase was increased transiently by both NOP-47 and placebo, but there were no changes in markers inflammation. Plasma total nitrites/nitrates significantly decreased over the 2 hr post-ingestion period and were lower at 120 min after placebo (-25% compared to NOP-47 (-18%. Conclusion These findings indicate that supplementation with a novel whey-derived peptide in healthy individuals improves vascular function.

  19. Effect of agmatine on experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S

    2016-05-01

    This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium. © The Author(s) 2015.

  20. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications

    Science.gov (United States)

    Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  1. Activation of protein kinase C by elevation of glucose concentration: Proposal for a mechanism in the development of diabetic vascular complications

    International Nuclear Information System (INIS)

    Lee, Tianshing; Saltsman, K.A.; Ohashi, Hiromi; King, G.L.

    1989-01-01

    Hyperglycemia is believed to be the major cause of diabetic vascular complications involving both microvessels and arteries as in the retina, renal glomeruli, and aorta. It is unclear by which mechanism hyperglycemia is altering the metabolism and functions of vascular cells, although changes in nonenzymatic protein glycosylation and increases in cellular sorbitol levels have been postulated to be involved. Previously, the authors have reported that the elevation of extracellular glucose levels with cultured bovine retinal capillary endothelial cells causes an increase in protein kinase C (PKC) activity of the membranous pool with a parallel decrease in the cytosol without alteration of its total activity. Now they demonstrate that the mechanism for the activation of PKC is due to an enhanced de novo synthesis of diacylglycerol as indicated by a 2-fold increase of [ 14 C]diacylglycerol labeling from [ 14 C]glucose. The elevated diacylglycerol de novo synthesis is secondarily due to increased formation of precursors derived from glucose metabolism; this formation is enhanced by hyperglycemia as substantiated by elevated [ 3 H]glucose conversion into water. This effect of hyperglycemia on PKC is also observed in cultured aortic smooth muscle and endothelial cells and the retina and kidney of diabetic rats, but not in the brain. Since PKC in vascular cells has been shown to modulate hormone receptor turnover, neovascularization in vitro, and cell growth, they propose that this mechanism of enhancing the membranous PKC activities by hyperglycemia plays an important role in the development of diabetic vascular complications

  2. Chronic Stress Improves NO- and Ca2+ Flux-Dependent Vascular Function: A Pharmacological Study

    Energy Technology Data Exchange (ETDEWEB)

    Bruder-Nascimento, Thiago, E-mail: bruderthiago@usp.br [Departamento de Farmacologia - Instituto de Biociências de Botucatu - Universidade do Estado de São Paulo (UNESP), Botucatu, São Paulo (Brazil); Departamento de Clínica Médica - Faculdade de Medicina de Botucatu - Universidade do Estado de São Paulo (UNESP), Botucatu, São Paulo (Brazil); Campos, Dijon Henrique Salome [Departamento de Clínica Médica - Faculdade de Medicina de Botucatu - Universidade do Estado de São Paulo (UNESP), Botucatu, São Paulo (Brazil)

    2015-03-15

    Stress is associated with cardiovascular diseases. This study aimed at assessing whether chronic stress induces vascular alterations, and whether these modulations are nitric oxide (NO) and Ca2+ dependent. Wistar rats, 30 days of age, were separated into 2 groups: control (C) and Stress (St). Chronic stress consisted of immobilization for 1 hour/day, 5 days/week, 15 weeks. Systolic blood pressure was assessed. Vascular studies on aortic rings were performed. Concentration-effect curves were built for noradrenaline, in the presence of L-NAME or prazosin, acetylcholine, sodium nitroprusside and KCl. In addition, Ca{sup 2+} flux was also evaluated. Chronic stress induced hypertension, decreased the vascular response to KCl and to noradrenaline, and increased the vascular response to acetylcholine. L-NAME blunted the difference observed in noradrenaline curves. Furthermore, contractile response to Ca{sup 2+} was decreased in the aorta of stressed rats. Our data suggest that the vascular response to chronic stress is an adaptation to its deleterious effects, such as hypertension. In addition, this adaptation is NO- and Ca{sup 2+}-dependent. These data help to clarify the contribution of stress to cardiovascular abnormalities. However, further studies are necessary to better elucidate the mechanisms involved in the cardiovascular dysfunction associated with stressors. (Arq Bras Cardiol. 2014; [online].ahead print, PP.0-0)

  3. Pulmonary vascular imaging

    International Nuclear Information System (INIS)

    Fedullo, P.F.; Shure, D.

    1987-01-01

    A wide range of pulmonary vascular imaging techniques are available for the diagnostic evaluation of patients with suspected pulmonary vascular disease. The characteristics of any ideal technique would include high sensitivity and specificity, safety, simplicity, and sequential applicability. To date, no single technique meets these ideal characteristics. Conventional pulmonary angiography remains the gold standard for the diagnosis of acute thromboembolic disease despite the introduction of newer techniques such as digital subtraction angiography and magnetic resonance imaging. Improved noninvasive lower extremity venous testing methods, particularly impedance plethysmography, and ventilation-perfusion scanning can play significant roles in the noninvasive diagnosis of acute pulmonary emboli when properly applied. Ventilation-perfusion scanning may also be useful as a screening test to differentiate possible primary pulmonary hypertension from chronic thromboembolic pulmonary hypertension. And, finally, angioscopy may be a useful adjunctive technique to detect chronic thromboembolic disease and determine operability. Optimal clinical decision-making, however, will continue to require the proper interpretation of adjunctive information obtained from the less-invasive techniques, applied with an understanding of the natural history of the various forms of pulmonary vascular disease and with a knowledge of the capabilities and shortcomings of the individual techniques

  4. Imaging and modification of the tumor vascular barrier for improvement in magnetic nanoparticle uptake and hyperthermia treatment efficacy

    Science.gov (United States)

    Hoopes, P. Jack; Petryk, Alicia A.; Tate, Jennifer A.; Savellano, Mark S.; Strawbridge, Rendall R.; Giustini, Andrew J.; Stan, Radu V.; Gimi, Barjor; Garwood, Michael

    2013-02-01

    The predicted success of nanoparticle based cancer therapy is due in part to the presence of the inherent leakiness of the tumor vascular barrier, the so called enhanced permeability and retention (EPR) effect. Although the EPR effect is present in varying degrees in many tumors, it has not resulted in the consistent level of nanoparticle-tumor uptake enhancement that was initially predicted. Magnetic/iron oxide nanoparticles (mNPs) have many positive qualities, including their inert/nontoxic nature, the ability to be produced in various sizes, the ability to be activated by a deeply penetrating and nontoxic magnetic field resulting in cell-specific cytotoxic heating, and the ability to be successfully coated with a wide variety of functional coatings. However, at this time, the delivery of adequate numbers of nanoparticles to the tumor site via systemic administration remains challenging. Ionizing radiation, cisplatinum chemotherapy, external static magnetic fields and vascular disrupting agents are being used to modify the tumor environment/vasculature barrier to improve mNP uptake in tumors and subsequently tumor treatment. Preliminary studies suggest use of these modalities, individually, can result in mNP uptake improvements in the 3-10 fold range. Ongoing studies show promise of even greater tumor uptake enhancement when these methods are combined. The level and location of mNP/Fe in blood and normal/tumor tissue is assessed via histopathological methods (confocal, light and electron microscopy, histochemical iron staining, fluorescent labeling, TEM) and ICP-MS. In order to accurately plan and assess mNP-based therapies in clinical patients, a noninvasive and quantitative imaging technique for the assessment of mNP uptake and biodistribution will be necessary. To address this issue, we examined the use of computed tomography (CT), magnetic resonance imaging (MRI), and Sweep Imaging With Fourier Transformation (SWIFT), an MRI technique which provides a

  5. Major Vascular Neurocognitive Disorder: A Reappraisal to Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Emre Kumral

    2017-03-01

    Full Text Available Major vascular neurocognitive disorder (NCD is the second leading form of dementia after Alzheimer’s disease, accounting for 17-20% of all dementias. Vascular NCD is a progressive disease caused by reduced cerebral blood flow related to multiple large volume or lacunar infarcts that induce a sudden onset and stepwise decline in cognitive abilities. Despite its prevalence and clinical importance, there is still controversy in the terminology of vascular NCD. Only after the release of Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5 (2013 did the American Psychiatric Association define vascular dementia as “major vascular NCD”. This review includes an overview of risk factors, pathophysiology, types, diagnostic and clinical features of major vascular NCD, and current treatment options of vascular NCD regarding to DSM-5 criteria

  6. Enhancing eNOS activity with simultaneous inhibition of IKKβ restores vascular function in Ins2(Akita+/-) type-1 diabetic mice.

    Science.gov (United States)

    Krishnan, Manickam; Janardhanan, Preethi; Roman, Linda; Reddick, Robert L; Natarajan, Mohan; van Haperen, Rien; Habib, Samy L; de Crom, Rini; Mohan, Sumathy

    2015-10-01

    The balance of nitric oxide (NO) versus superoxide generation has a major role in the initiation and progression of endothelial dysfunction. Under conditions of high glucose, endothelial nitric oxide synthase (eNOS) functions as a chief source of superoxide rather than NO. In order to improve NO bioavailability within the vessel wall in type-1 diabetes, we investigated treatment strategies that improve eNOS phosphorylation and NO-dependent vasorelaxation. We evaluated methods to increase the eNOS activity by (1) feeding Ins2(Akita) spontaneously diabetic (type-1) mice with l-arginine in the presence of sepiapterin, a precursor of tetrahydrobiopterin; (2) preventing eNOS/NO deregulation by the inclusion of inhibitor kappa B kinase beta (IKKβ) inhibitor, salsalate, in the diet regimen in combination with l-arginine and sepiapterin; and (3) independently increasing eNOS expression to improve eNOS activity and associated NO production through generating Ins2(Akita) diabetic mice that overexpress human eNOS predominantly in vascular endothelial cells. Our results clearly demonstrated that diet supplementation with l-arginine, sepiapterin along with salsalate improved phosphorylation of eNOS and enhanced vasorelaxation of thoracic/abdominal aorta in type-1 diabetic mice. More interestingly, despite the overexpression of eNOS, the in-house generated transgenic eNOS-GFP (TgeNOS-GFP)-Ins2(Akita) cross mice showed an unanticipated effect of reduced eNOS phosphorylation and enhanced superoxide production. Our results demonstrate that enhancement of endogenous eNOS activity by nutritional modulation is more beneficial than increasing the endogenous expression of eNOS by gene therapy modalities.

  7. Vascular retraction driven by matrix softening

    Science.gov (United States)

    Valentine, Megan

    We recently discovered we can directly apply physical forces and monitor the downstream responses in a living organism in real time through manipulation of the blood vessels of a marine organism called, Botryllus schlosseri. The extracellular matrix (ECM) plays a key role in regulating vascular growth and homeostasis in Botryllus,a basal chordate which has a large, transparent extracorporeal vascular network that can encompass areas >100 cm2. We have determined that lysyl oxidase 1 (LOX1), which is responsible for cross-linking collagen, is expressed in all vascular cells and is critically important for vascular maintenance. Inhibition of LOX1 activity in vivo by the addition of a specific inhibitor, ß-aminopropionitrile (BAPN), caused a rapid, global regression of the entire vascular bed, with some vessels regressing >10 mm within 16 hrs. In this talk, I will discuss the molecular and cellular origins of this systemic remodeling event, which hinges upon the ability of the vascular cells to sense and respond to mechanical signals, while introducing this exciting new model system for studies of biological physics and mechanobiology. Collaborators: Anthony DeTomaso, Delany Rodriguez, Aimal Khankhel (UCSB).

  8. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    Science.gov (United States)

    Chen, Kewei; Reiman, E. M.; Lawson, M.; Yun, Lang-sheng; Bandy, D.; Palant, A.

    1996-12-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control (baseline) scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0-60 s after radiotracer administration, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20-80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the application of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted the authors to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging.

  9. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    International Nuclear Information System (INIS)

    Chen, K.; Reiman, E.M.; Good Samaritan Regional Medical Center, Phoenix, AZ; Lawson, M.; Yun, L.S.; Bandy, D.

    1996-01-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0--60 s after radiotracer administrations, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20--80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the applications of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted us to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging

  10. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    Directory of Open Access Journals (Sweden)

    Qishan Chen

    2013-01-01

    Full Text Available Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs, and vascular smooth muscle cells (VSMCs and its interaction with extracellular matrix (ECM play a critical role in the processes. Matrix metalloproteinases (MMPs, well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.

  11. Three-dimensional bioprinting of thick vascularized tissues

    Science.gov (United States)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  12. Effects of PPARγ ligands on vascular tone.

    Science.gov (United States)

    Salomone, Salvatore; Drago, Filippo

    2012-06-01

    Peroxisome Proliferator-Activated Receptor γ (PPARγ), originally described as a transcription factor for genes of carbohydrate and lipid metabolism, has been more recently studied in the context of cardiovascular pathophysiology. Here, we review the available data on PPARγ ligands as modulator of vascular tone. PPARγ ligands include: thiazolidinediones (used in the treatment of type 2 diabetes mellitus), glitazars (bind and activate both PPARγ and PPARα), and other experimental drugs (still in development) that exploit the chemistry of thiazolidinediones as a scaffold for PPARγ-independent pharmacological properties. In this review, we examine both short (mostly from in vitro data)- and long (mostly from in vivo data)-term effects of PPARγ ligands that extend from PPARγ-independent vascular effects to PPARγ-dependent gene expression. Because endothelium is a master regulator of vascular tone, we have attempted to differentiate between endothelium-dependent and endothelium-independent effects of PPARγ ligands. Based on available data, we conclude that PPARγ ligands appear to influence vascular tone in different experimental paradigms, most often in terms of vasodilatation (potentially increasing blood flow to some tissues). These effects on vascular tone, although potentially beneficial, must be weighed against specific cardiovascular warnings that may apply to some drugs, such as rosiglitazone.

  13. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits.

    Science.gov (United States)

    Wang, Chunyang; Jia, Yachao; Yang, Weichao; Zhang, Cheng; Zhang, Kuihua; Chai, Yimin

    2018-07-01

    Silk fibroin (SF)-based nerve conduits have been widely used to bridge peripheral nerve defects. Our previous study showed that nerve regeneration in a SF-blended poly (l-lactide-co-ɛ-caprolactone) [P(LLA-CL)] nerve conduit is better than that in a P(LLA-CL) conduit. However, the involved mechanisms remain unclarified. Because angiogenesis within a nerve conduit plays an important role in nerve regeneration, vascularization of SF/P(LLA-CL) and P(LLA-CL) conduits was compared both in vitro and in vivo. In the present study, we observed that SF/P(LLA-CL) nanofibers significantly promoted fibroblast proliferation, and vascular endothelial growth factor secreted by fibroblasts seeded in SF/P(LLA-CL) nanofibers was more than seven-fold higher than that in P(LLA-CL) nanofibers. Conditioned medium of fibroblasts in the SF/P(LLA-CL) group stimulated more human umbilical vein endothelial cells (HUVEC) to form capillary-like networks and promoted faster HUVEC migration. The two kinds of nerve conduits were used to bridge 10-mm-length nerve defects in rats. At 3 weeks of reparation, the blood vessel area in the SF/P(LLA-CL) group was significantly larger than that in the P(LLA-CL) group. More regenerated axons and Schwann cells were also observed in the SF/P(LLA-CL) group, which was consistent with the results of blood vessels. Collectively, our data revealed that the SF/P(LLA-CL) nerve conduit enhances peripheral nerve regeneration by improving angiogenesis within the conduit. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2070-2077, 2018. © 2018 Wiley Periodicals, Inc.

  14. The PPARα/p16INK4a Pathway inhibits Vascular Smooth Muscle Cell Proliferation by repressing Cell Cycle-dependent Telomerase Activation

    Science.gov (United States)

    Gizard, Florence; Nomiyama, Takashi; Zhao, Yue; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Staels, Bart; Bruemmer, Dennis

    2009-01-01

    Peroxisome Proliferator-Activated Receptor (PPAR) α, the molecular target for fibrates used to treat dyslipidemia, exerts pleiotropic effects on vascular cells. In vascular smooth muscle cells (VSMCs), we have previously demonstrated that PPARα activation suppresses G1→S cell cycle progression by targeting the cyclin-dependent kinase inhibitor p16INK4a (p16). In the present study, we demonstrate that this inhibition of VSMC proliferation by PPARα is mediated through a p16-dependent suppression of telomerase activity, which has been implicated in key cellular functions including proliferation. PPARα activation inhibited mitogen-induced telomerase activity by repressing the catalytic subunit telomerase reverse transcriptase (TERT) through negative cross-talk with an E2F-1-dependent trans-activation of the TERT promoter. This trans-repression involved the recruitment of the retinoblastoma (RB) family proteins p107 and p130 to the TERT promoter resulting in impaired E2F-1 binding, an effect which was dependent on p16. The inhibition of cell proliferation by PPARα activation was lost in VSMC following TERT overexpression or knock-down, pointing to a key role of telomerase as a target for the antiproliferative effects of PPARα. Finally, we demonstrate that PPARα agonists suppress telomerase activation during the proliferative response following vascular injury indicating that these findings are applicable in vivo. In concert, these results demonstrate that the anti-proliferative effects of PPARα in VSMCs depend on the suppression of telomerase activity by targeting the p16/RB/E2F transcriptional cascade. PMID:18818403

  15. The adventitia: Essential role in pulmonary vascular remodeling.

    Science.gov (United States)

    Stenmark, Kurt R; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia; Anwar, Adil; Li, Min; Riddle, Suzette; Frid, Maria

    2011-01-01

    A rapidly emerging concept is that the vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and comprises a variety of cells including fibroblasts, immunomodulatory cells, resident progenitor cells, vasa vasorum endothelial cells, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to then influence tone and structure of the vessel wall. Experimental data indicate that the adventitial fibroblast, the most abundant cellular constituent of adventitia, is a critical regulator of vascular wall function. In response to vascular stresses such as overdistension, hypoxia, or infection, the adventitial fibroblast is activated and undergoes phenotypic changes that include proliferation, differentiation, and production of extracellular matrix proteins and adhesion molecules, release of reactive oxygen species, chemokines, cytokines, growth factors, and metalloproteinases that, collectively, affect medial smooth muscle cell tone and growth directly and that stimulate recruitment and retention of circulating inflammatory and progenitor cells to the vessel wall. Resident dendritic cells also participate in "sensing" vascular stress and actively communicate with fibroblasts and progenitor cells to simulate repair processes that involve expansion of the vasa vasorum, which acts as a conduit for further delivery of inflammatory/progenitor cells. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of pulmonary vascular wall function and structure from the "outside in." © 2011 American Physiological Society.

  16. Self-Replenishing Vascularized Fouling-Release Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Howell, C; Vu, TL; Lin, JJ; Kolle, S; Juthani, N; Watson, E; Weaver, JC; Alvarenga, J; Aizenberg, J

    2014-08-13

    Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the self-replenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella sauna, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.

  17. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Science.gov (United States)

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  18. Subfailure overstretch injury leads to reversible functional impairment and purinergic P2X7 receptor activation in intact vascular tissue

    Directory of Open Access Journals (Sweden)

    Weifeng Luo

    2016-09-01

    Full Text Available Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities.

  19. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

    Science.gov (United States)

    Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang

    2015-04-29

    The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the

  20. Revascularization of diaphyseal bone segments by vascular bundle implantation.

    Science.gov (United States)

    Nagi, O N

    2005-11-01

    Vascularized bone transfer is an effective, established treatment for avascular necrosis and atrophic or infected nonunions. However, limited donor sites and technical difficulty limit its application. Vascular bundle transplantation may provide an alternative. However, even if vascular ingrowth is presumed to occur in such situations, its extent in aiding revascularization for ultimate graft incorporation is not well understood. A rabbit tibia model was used to study and compare vascularized, segmental, diaphyseal, nonvascularized conventional, and vascular bundle-implanted grafts with a combination of angiographic, radiographic, histopathologic, and bone scanning techniques. Complete graft incorporation in conventional grafts was observed at 6 months, whereas it was 8 to 12 weeks with either of the vascularized grafts. The pattern of radionuclide uptake and the duration of graft incorporation between vascular segmental bone grafts (with intact endosteal blood supply) and vascular bundle-implanted segmental grafts were similar. A vascular bundle implanted in the recipient bone was found to anastomose extensively with the intraosseous circulation at 6 weeks. Effective revascularization of bone could be seen when a simple vascular bundle was introduced into a segment of bone deprived of its normal blood supply. This simple technique offers promise for improvement of bone graft survival in clinical circumstances.

  1. Poly(ADP-ribose polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell.

    Directory of Open Access Journals (Sweden)

    Dan Huang

    Full Text Available BACKGROUND: Transforming growth factor type-β (TGF-β/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose polymerase 1 (PARP1, a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs. METHODS AND RESULTS: TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB or N-(6-oxo-5,6-dihydrophenanthridin-2-yl-2-(N,N-dimethylaminoacetami (PJ34, or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosylation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosylation enhanced Smad-Smad binding element (SBE complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. CONCLUSIONS: PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.

  2. Theobromine consumption does not improve fasting and postprandial vascular function in overweight and obese subjects.

    Science.gov (United States)

    Smolders, Lotte; Mensink, Ronald P; van den Driessche, Jose J; Joris, Peter J; Plat, Jogchum

    2018-01-12

    Theobromine, a component of cocoa, may favorably affect conventional lipid-related cardiovascular risk markers, but effects on flow-mediated dilation (FMD) and other vascular function markers are not known. To evaluate the effects of 4-week theobromine consumption (500 mg/day) on fasting and postprandial vascular function markers. In a randomized, double-blind crossover study, 44 apparently healthy overweight (N = 30) and obese (N = 14) men and women with low HDL-C concentrations, consumed daily 500 mg theobromine or placebo for 4 weeks. After 4 weeks, FMD, peripheral arterial tonometry (PAT), augmentation index (AIx), pulse wave velocity (PWV), blood pressure (BP) and retinal microvasculature measurements were performed. These measurements were carried out under fasting conditions and 2.5 h after a high-fat mixed meal challenge. 4-week theobromine consumption did not change fasting vascular function markers, except for a decrease in central AIx (cAIx, - 1.7 pp, P = 0.037) and a trend towards smaller venular calibers (- 2 µm, P = 0.074). Consuming a high-fat mixed meal decreased FMD (0.89 pp, P = 0.002), reactive hyperemia index (RHI, - 0.30, P Theobromine did not modify these postprandial effects, but increased postprandially the brachial artery diameter (0.03 cm, P = 0.015), and decreased the cAIx corrected for a HR of 75 (cAIx75, - 5.0 pp, P = 0.004) and peripheral AIx (pAIx, - 6.3 pp, P = 0.017). Theobromine consumption did not improve fasting and postprandial endothelial function, but increased postprandial peripheral arterial diameters and decreased the AIx. These findings do not suggest that theobromine alone contributes to the proposed cardioprotective effects of cocoa. This trial was registered on clinicaltrials.gov under study number NCT02209025.

  3. Analysis of Active Components in Salvia Miltiorrhiza Injection Based on Vascular Endothelial Cell Protection

    Directory of Open Access Journals (Sweden)

    Shen Jie

    2014-09-01

    Full Text Available Correlation analysis based on chromatograms and pharmacological activities is essential for understanding the effective components in complex herbal medicines. In this report, HPLC and measurement of antioxidant properties were used to describe the active ingredients of Salvia miltiorrhiza injection (SMI. HPLC results showed that tanshinol, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B, protocatechuic acid and their metabolites in rat serum may contribute to the efficacy of SMI. Assessment of antioxidant properties indicated that differences in the composition of serum powder of SMI caused differences in vascular endothelial cell protection. When bivariate correlation was carried out it was found that salvianolic acid B, tanshinol and protocatechuic aldehyde were active components of SMI because they were correlated to antioxidant properties.

  4. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    Science.gov (United States)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; Pmuscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  5. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers.

    Science.gov (United States)

    Del Bó, Cristian; Riso, Patrizia; Campolo, Jonica; Møller, Peter; Loft, Steffen; Klimis-Zacas, Dorothy; Brambilla, Ada; Rizzolo, Anna; Porrini, Marisa

    2013-03-01

    It has been suggested that anthocyanin-rich foods may exert antioxidant effects and improve vascular function as demonstrated mainly in vitro and in the animal model. Blueberries are rich sources of anthocyanins and we hypothesized that their intake could improve cell protection against oxidative stress and affect endothelial function in humans. The aim of the study was to investigate the effect of one portion (300 g) of blueberries on selected markers of oxidative stress and antioxidant protection (endogenous and oxidatively induced DNA damage) and of vascular function (changes in peripheral arterial tone and plasma nitric oxide levels) in male subjects. In a randomized cross-over design, separated by a wash out period ten young volunteers received one portion of blueberries ground by blender or one portion of a control jelly. Before and after consumption (at 1, 2, and 24 hours), blood samples were collected and used to evaluate anthocyanin absorption (through mass spectrometry), endogenous and H(2)O(2)-induced DNA damage in blood mononuclear cells (through the comet assay), and plasma nitric oxide concentrations (through a fluorometric assay). Peripheral arterial function was assessed by means of Endo-PAT 2000. Blueberries significantly reduced (P < .01) H(2)O(2)-induced DNA damage (-18%) 1 hour after blueberry consumption compared to control. No significant differences were observed for endogenous DNA damage, peripheral arterial function and nitric oxide levels after blueberry intake. In conclusion, one portion of blueberries seems sufficient to improve cell antioxidant defense against DNA damage, but further studies are necessary to understand their role on vascular function. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction.

    Science.gov (United States)

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-02-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Li, Wei [Department of Gerontology, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qichang [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Qin, Tao [Department of Hepatobiliary Pancreatic Surgery, People' s Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou 450003 (China); Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Liu, Sanguang, E-mail: sanguang1998@sina.com [Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang 050000 (China); Song, Zifang, E-mail: zsong@hust.edu.cn [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China)

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  8. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-01-01

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation

  9. Vascularized nerve grafts: an experimental study.

    Science.gov (United States)

    Donzelli, Renato; Capone, Crescenzo; Sgulò, Francesco Giovanni; Mariniello, Giuseppe; Maiuri, Francesco

    2016-08-01

    The aim of this study is to define an experimental model in order to promote the functional recovery of the nerves using grafts with vascular support (Vascular Nerve Grafts - VNG). The aim of this study is to define, on an experimental model in normal recipient bed, whether the functional recovery with VNG is superior to that obtained non-vascularized graft (NNG). Twenty male rabbits, which underwent dissection of sciatic nerve, were later treated by reinnervation through an autograft. In 10 animals the reconstruction of sciatic nerve was realized with VNG; in 10 control animals the reconstruction of sciatic nerve was realized with NNG. The VNG group showed a better axonal organization and a significantly higher number of regenerated axons in the early phases (after 30 days) than the NNG group, whereas the difference in the axonal number at day 90 was less significant; besides, the axon diameter and the myelin thickness were not significantly improved by VNG group. Our data suggests that the use of VNG leads to a faster regeneration process and a better functional recovery, although the final results are comparable to those of the NNG. VNG improve the quality of the axonal regeneration (axonal diameter and Schwann cells), although the increase in the axonal number is not significant and does not improve the long-term functional outcome.

  10. Biomimicry, vascular restenosis and coronary stents.

    Science.gov (United States)

    Schwartz, R S; van der Giessen, W J; Holmes, D R

    1998-01-01

    Biomimicry is in its earliest stages and is being considered in the realm of tissue engineering. If arterial implants are to limit neointimal thickening, purely passive structures cannot succeed. Bioactivity must be present, either by pharmacologic intervention or by fabricating a 'living stent' that contains active cellular material. As tissue engineering evolves, useful solutions will emerge from applying this knowledge directly to vascular biologic problems resulting from angioplasty, stenting, and vascular prosthesis research.

  11. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.

    Science.gov (United States)

    Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M

    2015-05-01

    During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue

  12. Disruption of COX-2 and eNOS does not confer protection from cardiovascular failure in lipopolysaccharide-treated conscious mice and isolated vascular rings

    DEFF Research Database (Denmark)

    Stæhr, Mette; Madsen, Kirsten; Vanhoutte, Paul M

    2011-01-01

    (NS 398), disruption of COX-2, endothelium removal, or eNOS deletion (eNOS(-/-)) did not improve vascular reactivity after LPS, while the NO synthase blockers 1400W and N(G)-nitro-l-arginine methyl ester prevented loss of tone. COX-2 and eNOS activities are not necessary for LPS-induced decreases...... in blood pressure, heart rate, and vascular reactivity. Inducible NOS activity appears crucial. COX-2 and eNOS are not obvious therapeutic targets for cardiovascular rescue during gram-negative endotoxemic shock....

  13. Effects of infection with recombinant adenovirus on human vascular endothelial and smooth muscle cells

    NARCIS (Netherlands)

    Quax, P.H.A.; Lamfers, M.L.M.; Grimbergen, J.M.; Teeling, J.; Hoeben, R.C.; Nieuw Amerongen, G.P. van; Hinsbergh, V.W.M. van

    1996-01-01

    The plasminogen activation (PA) system is involved in vascular remodelling. Modulating its activity in vascular cells might be a way to interfere in processes such as angiogenesis and restenosis. Adenoviral vectors have become a favourable tool for direct gene transfer into vascular cells. In the

  14. Treatment of the diabetic foot from a vascular surgeon's viewpoint.

    Science.gov (United States)

    Chang, B B; Shah, D M; Darling, R C; Leather, R P

    1993-11-01

    Diabetic foot lesions are caused by neurologic, orthopaedic, immunologic, and vascular derangements. Whereas some lesions may be initially caused by trauma and others directly caused by vascular disease, improvement of arterial perfusion often plays an important role in the successful salvage of these limbs. Fortunately, in the last several years, there has been a major improvement in the identification and treatment of those patients in whom correction of arterial occlusive disease is necessary for healing.

  15. The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization.

    Science.gov (United States)

    Joeng, Kyu Sang; Long, Fanxin

    2009-12-01

    Indian hedgehog (Ihh) critically regulates multiple aspects of endochondral bone development. Although it is generally believed that all Ihh functions are mediated by the Gli family of transcription activators and repressors, formal genetic proof for this notion has not been provided. Moreover, the extent to which different Gli proteins contribute to Ihh functions is not fully understood. Previous work has shown that de-repression of the Gli3 repressor is the predominant mode through which Ihh controls chondrocyte proliferation and maturation, but that osteoblast differentiation and hypertrophic cartilage vascularization require additional mechanisms. To test the involvement of Gli2 activation in these processes, we have generated a mouse strain that expresses a constitutive Gli2 activator in a Cre-dependent manner, and have attempted to rescue the Ihh-null mouse with the Gli2 activator, either alone or in combination with Gli3 removal. Here, we report that the Gli2 activator alone is sufficient to induce vascularization of the hypertrophic cartilage in the absence of Ihh but requires simultaneous removal of Gli3 to restore osteoblast differentiation. These results therefore provide direct genetic evidence that Gli2 and Gli3 collectively mediate all major aspects of Ihh function during endochondral skeletal development.

  16. Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation.

    Science.gov (United States)

    Na, Tong; Xie, Jianyang; Zhao, Yitian; Zhao, Yifan; Liu, Yue; Wang, Yongtian; Liu, Jiang

    2018-05-09

    Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries/veins classification are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A nonlocal total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel-based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. The proposed segmentation method yields competitive results on three public data sets (STARE, DRIVE, and IOSTAR), and it has superior performance when compared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to five public databases (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries/veins classification based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. The experimental results show that the proposed framework has effectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology reconstruction. The vascular topology information significantly improves the accuracy on arteries/veins classification. © 2018 American Association of Physicists in Medicine.

  17. A novel vascular-targeting peptide for gastric cancer delivers low-dose TNFα to normalize the blood vessels and improve the anti-cancer efficiency of 5-fluorouracil.

    Science.gov (United States)

    Lu, Lan; Li, Zhi Jie; Li, Long Fei; Shen, Jing; Zhang, Lin; Li, Ming Xing; Xiao, Zhan Gang; Wang, Jian Hao; Cho, Chi Hin

    2017-11-01

    Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs. Copyright © 2017. Published by Elsevier Inc.

  18. Physical activity improves cognition: possible explanations.

    Science.gov (United States)

    Koščak Tivadar, Blanka

    2017-08-01

    Good cognitive abilities (CA) enable autonomy, improve social inclusion and act preventively. Regular physical activity (PA) reduces the risk of developing Alzheimer's disease (AD) and, at the same time, it reduces the decline of CA and stimulates neurogenesis. So PA in connection with cognitive training, nutrition and social interaction has a positive effect on general CA and the central nervous system, the central executor, memory and attention, and reduces the likelihood of developing dementia. Our objective was to examine which sort and intensity of PA is preferred. We did a review, restricted only to human studies, of transparent scientific articles and sample surveys carried out and published in the period between 2001 and 2016 based on the keywords: age, aging, physical activity, physical abilities, cognitive abilities, memory and Alzheimer's disease. According to results CA and PA interact, as an increasing PA of only 10% reduces the risk of dementia and AD significantly. However, there is a question of appropriate intensity of exercise. Low-intensity aerobic exercise has a positive effect on the visual spatial perception and attention, whereas moderate PA has a positive impact on general CA, working memory and attention, verbal memory and attention and vice versa. While the majority of experts recommends vigorous or moderate exercise, many of them warn that higher intensity requires more attention to PA and less to cognitive processes, particularly in terms of reducing reactions, selective attention and flexibility to tasks. There is also a further question what PA should be like. Although some experts believe that the best combination is aerobic PA and exercises against resistance, it is not entirely clear whether the improvement in CA is a result of cardiac vascular fitness. On the other hand, for most elderly it is more suitable to perform an alternative form (not anaerobic) of PA due to comorbidity and actual fragility. We can conclude that PA has a

  19. Judicious use of ethanol embolization to improve the curative rate of vascular malformations

    International Nuclear Information System (INIS)

    Wang Jingbing; Fan Xindong; Cheng Yongde

    2010-01-01

    The incidence of vascular malformations is very low, and its clinical manifestations are infinite in variety, from an asymptomatic birthmark to life-threatening massive bleeding, even to congestive heart failure. The pathogenesis of vascular malformations is still unknown, therefore, its effective treatment is a real challenge. With the development of interventional technology and the accumulation of clinical experience in ethanol embolization, in local direct puncture injection and in endovascular embolization, the ethanol embolization will hopefully become the therapy of first choice for this kind of complicate and intractable disorders. (authors)

  20. Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction

    Science.gov (United States)

    Lamping, KL; Nuno, DW; Coppey, LJ; Holmes, AJ; Hu, S; Oltman, CL; Norris, AW; Yorek, MA

    2013-01-01

    Aims The ability of dietary enrichment with monounsaturated (MUFA), n-3, or n-6 polyunsaturated fatty acids (PUFA) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). Material and Methods We fed mice a high saturated fat diet (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signaling and reactivity of isolated pressurized gracilis arteries. Results After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance, and indices of insulin signaling (phosphorylated Akt) to normal whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine reduced in MO fed mice compared to normal. Conclusion We conclude that short term enrichment of an ongoing high fat diet with n-3 PUFA rich MO but not MUFA rich OO or n-6 PUFA rich SO reverses glucose tolerance, insulin signaling, and vascular dysfunction. PMID:22950668

  1. Incremental value of a genetic risk score for the prediction of new vascular events in patients with clinically manifest vascular disease.

    Science.gov (United States)

    Weijmans, Maaike; de Bakker, Paul I W; van der Graaf, Yolanda; Asselbergs, Folkert W; Algra, Ale; Jan de Borst, Gert; Spiering, Wilko; Visseren, Frank L J

    2015-04-01

    Several genetic markers are related to incidence of cardiovascular events. We evaluated whether a genetic risk score (GRS) based on 30 single-nucleotide-polymorphisms associated with coronary artery disease (CAD) can improve prediction of 10-year risk of new cardiovascular events in patients with clinical manifest vascular disease. In 5742 patients with symptomatic vascular disease enrolled in the SMART study, we developed Cox regression models based on the SMART Risk Score (SRS) and based on the SRS plus the GRS in all patients, in patients with a history of acute arterial thrombotic events and in patients with a history of more stable atherosclerosis and without CAD. The discriminatory ability was expressed by the c-statistic. Model calibration was evaluated by calibration plots. The incremental value of adding the GRS was assessed by net reclassification index (NRI) and decision curve analysis. During a median follow-up of 6.5 years (IQR4.0-9.5), the composite outcome of myocardial infarction, stroke, or vascular death occurred in 933 patients. Hazard ratios of GRS ranging from 0.86 to 1.35 were observed. The discriminatory capacity of the SRS for prediction of 10-year risk of cardiovascular events was fairly good (c-statistic 0.70, 95%CI 0.68-0.72), similar to the model based on the SRS plus the GRS. Calibration of the models based on SRS and SRS plus GRS was adequate. No increase in c-statistics, categorical NRIs and decision curves was observed when adding the GRS. The continuous NRI improved only in patients with stable atherosclerosis (0.14, 95%CI 0.03-0.25), increasing further excluding patients with a history of CAD (0.21, 95%CI 0.06-0.36). In patients with symptomatic vascular disease, a GRS did not improve risk prediction of 10-year risk of cardiovascular events beyond clinical characteristics. The GRS might improve risk prediction of first vascular events in the subgroup of patients with a history of stable atherosclerosis. Copyright © 2015 Elsevier

  2. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  3. Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts.

    Science.gov (United States)

    Wang, Kai; Zhu, Meifeng; Li, Ting; Zheng, Wenting; Li, Li; Xu, Mian; Zhao, Qiang; Kong, Deling; Wang, Lianyong

    2014-08-01

    The less-than-ideal cell infiltration resulting from inherently small pore size limits the application of electrospinning scaffold in tissue engineering and regeneration medicine. The present study aims to develop a porogenic method which can significantly increase pore size in electrospinning scaffold and enhance cell migration. With this method, composite scaffolds consisting of poly(epsilon-caprolactone) (PCL) fibers and poly(ethylene oxide) (PEO) microparticles were prepared by simultaneously electrospinning and electrospraying. Removal of the PEO microparticles from the composites generated large pores. In vitro culture of NIH3T3 cells and in vivo subcutaneous implantation both demonstrated that the porogenic scaffolds markedly facilitated cell infiltration. With the same technique, vascular grafts with alternative dense and loose layers were prepared by turning on or off electrospraying PEO. SEM showed that there was no a clear delamination between the loose and dense layers. The mechanical strength and burst pressure of these vascular grafts could meet the requirements of vascular implantation. In conclusion, electrospinning PCL fibers with electrospraying PEO microparticles may be an effective and controllable method to increase pore size in electrospinning scaffold and provides a useful tool for the fabrication of vascular grafts that meets the need of blood vessel replacement.

  4. Preclinical Activity of the Vascular Disrupting Agent OXi4503 against Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Katelyn D. Bothwell

    2016-01-01

    Full Text Available Vascular disrupting agents (VDAs represent a relatively distinct class of agents that target established blood vessels in tumors. In this study, we examined the preclinical activity of the second-generation VDA OXi4503 against human head and neck squamous cell carcinoma (HNSCC. Studies were performed in subcutaneous and orthotopic FaDu-luc HNSCC xenografts established in immunodeficient mice. In the subcutaneous model, bioluminescence imaging (BLI along with tumor growth measurements was performed to assess tumor response to therapy. In mice bearing orthotopic tumors, a dual modality imaging approach based on BLI and magnetic resonance imaging (MRI was utilized. Correlative histologic assessment of tumors was performed to validate imaging data. Dynamic BLI revealed a marked reduction in radiance within a few hours of OXi4503 administration compared to baseline levels. However, this reduction was transient with vascular recovery observed at 24 h post treatment. A single injection of OXi4503 (40 mg/kg resulted in a significant (p < 0.01 tumor growth inhibition of subcutaneous FaDu-luc xenografts. MRI revealed a significant reduction (p < 0.05 in volume of orthotopic tumors at 10 days post two doses of OXi4503 treatment. Corresponding histologic (H&E sections of Oxi4503 treated tumors showed extensive areas of necrosis and hemorrhaging compared to untreated controls. To the best of our knowledge, this is the first report, on the activity of Oxi4503 against HNSCC. These results demonstrate the potential of tumor-VDAs in head and neck cancer. Further examination of the antivascular and antitumor activity of Oxi4503 against HNSCC alone and in combination with chemotherapy and radiation is warranted.

  5. Vascular endothelial growth factor in systemic lupus erythematosus - correlations with disease activity and nailfold capillaroscopy changes.

    Science.gov (United States)

    Bărbulescu, Andreea Lili; Vreju, Ananu Florentin; Bugă, Ana Maria; Sandu, Raluca Elena; Criveanu, Cristina; Tudoraşcu, Diana Rodica; Gheonea, Ioana Andreea; Ciurea, Paulina Lucia

    2015-01-01

    Our study aimed to quantify serum VEGF (vascular endothelial growth factor) and its inter-relation with the severity of microvascular damage, assessed by nailfold capillaroscopy (NC), and to establish the possible relationship with disease activity score. We included 18 patients, diagnosed with systemic lupus erythematosus (SLE) and 17 gender and age-matched control subjects. For determining serum VEGF, we used a Human VEGF Assay kit-IBL. NC was performed, according to the standard method, using a video-capillaroscope Videocap 3.0, DS Medica, by the same examiner, blinded to clinical and laboratory data. Serum VEGF registered a mean value of 68.99±71.06 pg/mL for SLE patients and 31.84±11.74 pg/mL for controls, differences statistically significant; depending on disease activity, we found a mean value of 60.11±57.74 pg/mL, for patients with moderate disease activity vs. 30.96±11.51 pg/mL for the ones with a low activity (p=0.014). We found a moderately positive correlation, statistically significant (p=0.015), between serum level of VEGF and Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Performing NC, we found changes in 88.88% of the patients; the most frequent were increased tortuosity, dilated capillaries, an increased length and a prominent subpapillary plexus. The presence of nailfold capillaroscopy changes and serum level of VEGF, correlated moderately, positive. Since serum levels of VEGF are higher in SLE patients, compared to controls, significantly different according to disease activity degree, and directly inter-related to abnormal NC patterns and a more active disease, we can include these accessible parameters in the routine evaluation, in order to better quantify the systemic damage, individualize the treatment, improve the outcome and life quality for these patients.

  6. Molecular mechanisms of maternal vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Goulopoulou, Styliani; Davidge, Sandra T

    2015-02-01

    In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Development of the Australasian vascular surgical audit.

    Science.gov (United States)

    Bourke, Bernie M; Beiles, Charles Barry; Thomson, Ian A; Grigg, Michael J; Fitridge, Rob

    2012-01-01

    The purpose of this study was to describe the development of the Australasian Vascular Audit that was created to unify audit activities under the umbrella of the Australian and New Zealand Society for Vascular Surgery as a Web-based application. Constitutional change in late 2008 deemed participation in this audit compulsory for Society members. The Web-based application was developed and tested during 2009. Data for all open vascular surgery and for all endovascular procedures are collected at two points in the admission episode: at the time of operation and at discharge, and entered into the application. Data are analyzed to produce risk-adjusted outcomes. An algorithm has been developed to deal with outliers according to natural justice and to comply with the requirements of regulatory bodies. The Audit is protected by legislated privilege and is officially endorsed and indemnified by the Royal Australasian College of Surgeons. Confidentiality of surgeons and patients alike is ensured by a legally protected coding system and computer encryption system. Validation is by a verification process of 5% of members per year who are randomly selected. The application is completely funded by the Society. Data entry commenced on January 1, 2010. Over 40,000 vascular procedures were entered in the first year. The Audit application allows instantaneous on-line access to individual data and to deidentified group data and specific reports. It also allows real-time instantaneous production of log books for vascular trainees. The Audit has already gained recognition in the Australasian public arena during its first year of operation as an important benchmark of correct professional surgical behavior. Compliance has been extremely high in public hospitals but less so in private hospitals such that only 60% of members received a certificate of complete participation at the end of its first year of operation. An Internet-based compulsory audit of complete surgical practice is

  8. Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI.

    Science.gov (United States)

    Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B

    2018-06-01

    To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. NON-PHARMACOLOGICAL CONCEPTS OF ENDOTHELIAL DYSFUNCTION IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    Mirjana Bakic

    2007-04-01

    Full Text Available Endothelium plays an important role in maintaining normal vascular tonus and blood fluidity reducing thrombocyte activity and adhesion of leukocytes as well as limiting response of vascular inflammation. However, in certain pathological conditions such as hypercholesterolemia, hypertension, and diabetes, endothelium improves vasoconstriction, inflammation and thrombocytic events.Non-pharmacological concept is based on recognition of genetic factors, environmental factors, or combination of risk factors for the occurrence of endothelial dysfunction, general and individual education of the significance of adequate nutrition, physical activity and regulation of body weight, regular check-ups and the application of antioxidants which can regulate and protect several aspects of endothelial functions.

  10. Microparticle-Induced Activation of the Vascular Endothelium Requires Caveolin-1/Caveolae.

    Directory of Open Access Journals (Sweden)

    Allison M Andrews

    Full Text Available Microparticles (MPs are small membrane fragments shed from normal as well as activated, apoptotic or injured cells. Emerging evidence implicates MPs as a causal and/or contributing factor in altering normal vascular cell phenotype through initiation of proinflammatory signal transduction events and paracrine delivery of proteins, mRNA and miRNA. However, little is known regarding the mechanism by which MPs influence these events. Caveolae are important membrane microdomains that function as centers of signal transduction and endocytosis. Here, we tested the concept that the MP-induced pro-inflammatory phenotype shift in endothelial cells (ECs depends on caveolae. Consistent with previous reports, MP challenge activated ECs as evidenced by upregulation of intracellular adhesion molecule-1 (ICAM-1 expression. ICAM-1 upregulation was mediated by activation of NF-κB, Poly [ADP-ribose] polymerase 1 (PARP-1 and the epidermal growth factor receptor (EGFR. This response was absent in ECs lacking caveolin-1/caveolae. To test whether caveolae-mediated endocytosis, a dynamin-2 dependent process, is a feature of the proinflammatory response, EC's were pretreated with the dynamin-2 inhibitor dynasore. Similar to observations in cells lacking caveolin-1, inhibition of endocytosis significantly attenuated MPs effects including, EGFR phosphorylation, activation of NF-κB and upregulation of ICAM-1 expression. Thus, our results indicate that caveolae play a role in mediating the pro-inflammatory signaling pathways which lead to EC activation in response to MPs.

  11. Clinical application of the amplatzer vascular plug in the embolization of vascular malformations associated with congenital heart diseasee

    International Nuclear Information System (INIS)

    Pan Xin; Wang Cheng; Lu Jing; Wu Weihua; Fang Weiyi

    2009-01-01

    Objective: To evaluate the clinical efficacy of percutaneous transcatheter embolization by using Amplatzer vascular plug (AVP) for the treatment of vascular malformations associated with congenital heart diseases. Methods: During the period of June 2006-June 2008, 12 patients with congenital heart disease accompanied by vascular malformations received transcatheter occlusion of the anomalous vessels with AVP. The vascular malformations included solitary or multiple saccular pulmonary arteriovenous malformation (n = 7), coronary artery fistula (n = 2) and major aortopulmonary collaterals concomitant with severe Fallot' s tetralogy (n = 3). All patients were screened with transthoracic echocardiography (TTE) and thoracic CT angiography (CTA), and all the diagnoses were confirmed by routine cardioangiography. Results: Transcatheter occlusion of vascular malformations with AVP was successfully accomplished in all 12 patients. An angiographic check immediately after the procedure showed that complete occlusion was obtained in all patients and no embolism,migration or residual shunt were seen. Sixteen anomalous vessels were occluded. The mean internal diameter of these vessels was (5.2 ± 1.9) mm,while the mean diameter of AVP used was (9.2 ± 2.4) mm. After the operation (mean 3 months), the follow-up echocardiography and/or thoracic CT angiography showed that in all patients the occlusion remained in satisfactory condition and no residual shunt was found. Conclusions: Percutaneous transcatheter closure of congenital vascular malformations with AVP is technically feasible and clinically effective, this treatment can markedly improve patient's living quality and it is well worth extending its clinical application. (authors)

  12. Upregulation of decorin by FXR in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    He Fengtian; Zhang Qiuhong; Kuruba, Ramalinga; Gao Xiang; Li Jiang; Li Yong; Gong Wei; Jiang, Yu; Xie Wen; Li Song

    2008-01-01

    Decorin is a member of the family of small leucine-rich proteoglycans that are present in blood vessels and synthesized by vascular smooth muscle cells (VSMCs). Decorin plays complex roles in both normal vascular physiology and the pathogenesis of various types of vascular disorders. However, the mechanisms of regulation of decorin expression in vasculature are not clearly understood. Particularly little information is available about a role of nuclear receptors in the regulation of decorin expression. In the present study, we report that activation of vascular FXR by a specific ligand resulted in upregulation of decorin at the levels of both mRNA and protein. FXR appears to induce decorin expression at a transcriptional level because (1) upregulation of decorin mRNA expression was abolished by the treatment of a transcription inhibitor, actinomycin D; and (2) decorin promoter activity was significantly increased by activation of FXR. Functional analysis of human decorin promoter identified an imperfect inverted repeat DNA motif, IR8 (-2313TGGTCAtagtgtcaTGACCT-2294), as a likely FXR-responsive element that is involved in decorin regulation

  13. Physical Activity to Improve Erectile Function: A Systematic Review of Intervention Studies

    DEFF Research Database (Denmark)

    Gerbild, Helle Nygaard; Larsen, Camilla Marie; Graugaard, Christian

    2018-01-01

    , and metabolic syndrome. Physical activity (PA) has proved to be a protective factor against erectile problems, and it has been shown to improve erectile function for men affected by vascular ED. This systematic review estimated the levels of PA needed to decrease ED for men with physical inactivity, obesity...... for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was performed of research articles specifically investigating PA as a possible treatment of ED. The review included research on ED from physical inactivity, obesity, hypertension, metabolic syndrome, and/or cardiovascular diseases......Introduction: The leading cause of erectile dysfunction (ED) is arterial dysfunction, with cardiovascular disease as the most common comorbidity. Therefore, ED is typically linked to a web of closely interrelated cardiovascular risk factors such as physical inactivity, obesity, hypertension...

  14. Interplay between coagulation and vascular inflammation in sickle cell disease

    Science.gov (United States)

    Sparkenbaugh, Erica; Pawlinski, Rafal

    2013-01-01

    Sickle cell disease is the most common inherited hematologic disorder that leads to the irreversible damage of multiple organs. Although sickling of red blood cells and vaso-occlusion are central to the pathophysiology of sickle cell disease the importance of hemolytic anemia and vasculopathy has been recently recognized. Hypercoagulation state is another prominent feature of sickle cell disease and is mediated by activation of both intrinsic and extrinsic coagulation pathways. Growing evidence demonstrates that coagulation may not only contribute to the thrombotic complications, but also to vascular inflammation associated with this disease. This article summarizes the role of vascular inflammation and coagulation activation, discusses potential mechanisms responsible for activation of coagulation and reviews recent data demonstrating the crosstalk between coagulation and vascular inflammation in sickle cell disease. PMID:23593937

  15. DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses.

    Science.gov (United States)

    Bruneau, Sarah; Nakayama, Hironao; Woda, Craig B; Flynn, Evelyn A; Briscoe, David M

    2013-09-05

    The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution.

  16. Effect of oxidative stress on racial differences in vascular function at rest and during hand grip exercise.

    Science.gov (United States)

    Kappus, Rebecca M; Bunsawat, Kanokwan; Brown, Michael D; Phillips, Shane A; Haus, Jacob M; Baynard, Tracy; Fernhall, Bo

    2017-10-01

    African-Americans have a higher prevalence of hypertension compared with whites, possibly due to elevated oxidative stress and subsequent vascular dysfunction. It is unclear the contribution of aging on oxidative stress and vascular function in a racially diverse cohort. Ninety-three young and older African-American and white participants received antioxidant (AOX) or placebo supplementation in a double-blind, randomized, cross-over design. Measures of endothelial function (reactive hyperemia, flow-mediated dilation), exercise blood flow, and biomarkers of oxidative stress and AOX activity were measured following supplementation. In young adults, there were racial differences in resistance vessel response to reactive hyperemia and no effects of race on macrovascular function following AOX supplementation. Following AOX supplementation, older white adults improved while African-Americans reduced resistance vessel function responses to reactive hyperemia, whereas macrovascular function improved in both races, with a greater increase in African-Americans. There were racial differences in blood flow normalized to lean mass during handgrip exercise at 20% maximal voluntary contraction in the young group and AOX supplementation led to increased forearm vascular conductance in older whites with a decrease in older African-Americans. There was a supplement effect in superoxide dismutase activity in younger adults only. The results of the current study show that there are differential effects of AOX supplementation on macrovascular and resistance vessel function, and this is impacted by both age and race.

  17. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

    Science.gov (United States)

    Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E

    2006-01-01

    Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275

  18. Quantification of atherosclerotic plaque activity and vascular inflammation using [18-F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT).

    Science.gov (United States)

    Mehta, Nehal N; Torigian, Drew A; Gelfand, Joel M; Saboury, Babak; Alavi, Abass

    2012-05-02

    Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC) and carotid intimal medial thickness (C-IMT) provide information about the burden of disease. However, despite multiple validation studies of CAC, and C-IMT, these modalities do not accurately assess plaque characteristics, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events. [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity, an important source of cellular inflammation in vessel walls. More recently, we and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy as well as longer term therapeutic lifestyle changes (16 months). The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is

  19. Pathogenesis of vascular leak in dengue virus infection.

    Science.gov (United States)

    Malavige, Gathsaurie Neelika; Ogg, Graham S

    2017-07-01

    Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease. © 2017 John Wiley & Sons Ltd.

  20. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  1. [A new specialty is born: Vascular medicine].

    Science.gov (United States)

    Laroche, J-P

    2016-05-01

    On the 4th of December 2015, the French authorities officially recognized the birth of a specialty in vascular medicine entitled CO-DES cardiology-vascular/vascular Medicine. France is the 7th country to obtain this specialty after Switzerland, Germany, Austria, Czech Republic, Slovakia and Slovenia, six countries in the EEC. It has taken years to achieve a long but exciting experience: we went from hopes to disappointments, sometimes with the blues, but lobbying helping… with sustained confidence. This article tells the story of 30 years of struggle to achieve this vascular medicine specialty. Gaston Bachelard wrote: "Nothing is obvious, nothing is given, all is built." For the construction of vascular medicine, we had to overcome many obstacles, nothing was given to us, everything was conquered. Beware "The specialist is one who knows more and more things about an increasingly restricted field, up to 'knowing everything about nothing"' recalled Ralph Barton Ferry, philosopher; so there is room for modesty and humility but also convictions. The physical examination will remain the basis of our exercise. But let us recall the contributions of all those vascular physicians who practiced in the past, together with those currently active, who built day after day, year after year, a vascular medicine of quality. It is because of the trust of our colleagues and our patients that we can occupy the place that is ours today. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  3. Harmful effects of the azathioprine metabolite 6-mercaptopurine in vascular cells: induction of mineralization.

    Science.gov (United States)

    Prüfer, Jasmin; Schuchardt, Mirjam; Tölle, Markus; Prüfer, Nicole; Höhne, Matthias; Zidek, Walter; van der Giet, Markus

    2014-01-01

    Vascular mineralization contributes to the high cardiovascular morbidity and mortality in patients who suffer from chronic kidney disease and in individuals who have undergone solid organ transplantation. The immunosuppressive regimen used to treat these patients appears to have an impact on vascular alterations. The effect of 6-mercaptopurine (6-MP) on vascular calcification has not yet been determined. This study investigates the effect of 6-MP on vascular mineralization by the induction of trans-differentiation of rat vascular smooth muscle cells in vitro. 6-MP not only induces the expression of osteo-chondrocyte-like transcription factors and proteins but also activates alkaline phosphatase enzyme activity and produces calcium deposition in in vitro and ex vivo models. These processes are dependent on 6-MP-induced production of reactive oxygen species, intracellular activation of mitogen-activated kinases and phosphorylation of the transcription factor Cbfa1. Furthermore, the metabolic products of 6-MP, 6-thioguanine nucleotides and 6-methyl-thio-inosine monophosphate have major impacts on cellular calcification. These data provide evidence for a possible harmful effect of the immunosuppressive drug 6-MP in vascular diseases, such as arteriosclerosis.

  4. Harmful effects of the azathioprine metabolite 6-mercaptopurine in vascular cells: induction of mineralization.

    Directory of Open Access Journals (Sweden)

    Jasmin Prüfer

    Full Text Available Vascular mineralization contributes to the high cardiovascular morbidity and mortality in patients who suffer from chronic kidney disease and in individuals who have undergone solid organ transplantation. The immunosuppressive regimen used to treat these patients appears to have an impact on vascular alterations. The effect of 6-mercaptopurine (6-MP on vascular calcification has not yet been determined. This study investigates the effect of 6-MP on vascular mineralization by the induction of trans-differentiation of rat vascular smooth muscle cells in vitro. 6-MP not only induces the expression of osteo-chondrocyte-like transcription factors and proteins but also activates alkaline phosphatase enzyme activity and produces calcium deposition in in vitro and ex vivo models. These processes are dependent on 6-MP-induced production of reactive oxygen species, intracellular activation of mitogen-activated kinases and phosphorylation of the transcription factor Cbfa1. Furthermore, the metabolic products of 6-MP, 6-thioguanine nucleotides and 6-methyl-thio-inosine monophosphate have major impacts on cellular calcification. These data provide evidence for a possible harmful effect of the immunosuppressive drug 6-MP in vascular diseases, such as arteriosclerosis.

  5. Improving Technology for Vascular Imaging

    Science.gov (United States)

    Rana, Raman

    Neuro-endovascular image guided interventions (Neuro-EIGIs) is a minimally invasive procedure that require micro catheters and endovascular devices be inserted into the vasculature via an incision near the femoral artery and guided under low dose fluoroscopy to the vasculature of the head and neck. However, the endovascular devices used for the purpose are of very small size (stents are of the order of 50mum to 100mum) and the success of these EIGIs depends a lot on the accurate placement of these devices. In order to accurately place these devices inside the patient, the interventionalist should be able to see them clearly. Hence, high resolution capabilities are of immense importance in neuro-EIGIs. The high-resolution detectors, MAF-CCD and MAF-CMOS, at the Toshiba Stroke and Vascular Research Center at the University at Buffalo are capable of presenting improved images for better patient care. Focal spot of an x-ray tube plays an important role in performance of these high resolution detectors. The finite size of the focal spot results into the blurriness around the edges of the image of the object resulting in reduced spatial resolution. Hence, knowledge of accurate size of the focal spot of the x-ray tube is very essential for the evaluation of the total system performance. Importance of magnification and image detector blur deconvolution was demonstrated to carry out the more accurate measurement of x-ray focal spot using a pinhole camera. A 30 micron pinhole was used to obtain the focal spot images using flat panel detector (FPD) and different source to image distances (SIDs) were used to achieve different magnifications (3.16, 2.66 and 2.16). These focal spot images were deconvolved with a 2-D modulation transfer function (MTF), obtained using noise response (NR) method, to remove the detector blur present in the images. Using these corrected images, the accurate size of all the three focal spots were obtained and it was also established that effect of

  6. Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Pier Andrea Nicolosi

    2016-01-01

    Full Text Available Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc. The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment.

  7. Aliskiren, a Direct Renin Inhibitor, Improves Vascular Endothelial Function in Patients on Hemodialysis Independent of Antihypertensive Effect ∼ a Pilot Study∼

    Directory of Open Access Journals (Sweden)

    Hidekazu Moriya

    2013-05-01

    Full Text Available Aims: Aliskiren inhibits the first step in the renin-angiotensin system (RAS and recently has been shown to modulate vascular diseases via RAS-dependent and independent pathways. This study aimed to determine the effect of aliskiren-associated direct renin inhibition on endothelial function in patients on hemodialysis via flow-mediated dilatation (FMD and platelet-derived microparticles (PDMP, as biomarkers of atherosclerosis. Methods: A 12-week prospective study was performed with 24 patients on hemodialysis who were administered 150 mg orally aliskiren once daily for 12 weeks. Results: No significant difference were observed between pre-dialysis, home, and weekly averaged blood pressure at baseline and at 12 weeks (151.5 ± 8.5/80.9 ± 12.9 mmHg vs 150.3 ± 15.3/78.9 ± 21.2 mmHg, 151.4 ± 9.7/82.3 ± 14.7 mmHg vs 151.2 ± 17.7/81.4 ± 10.6 mmHg, and 156.0 ± 18.3/81.9 ± 9.4 mmHg vs 152.5 ± 18.9/81.7 ± 12.3 mmHg, respectively. FMD significantly increased from 2.54% ± 1.45% at baseline to 3.11% ± 1.37% at 12 weeks (P = 0.0267, and PDMP significantly decreased from 13.9 ± 5.8 U/mL at baseline to 10.9 ± 4.5 U/mL at 12 weeks (P = 0.0002. Conclusion: Aliskiren improved vascular endothelial function and platelet-endothelium activation in patients on hemodialysis independent of antihypertensive effect.

  8. CDBG Public Improvements Activity

    Data.gov (United States)

    Department of Housing and Urban Development — CDBG activity related to public improvements, including senior centers, youth centers, parks, street improvements, water/sewer improvements, child care centers, fire...

  9. Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1α and VEGF mRNA abundances.

    Science.gov (United States)

    Item, Flurin; Nocito, Antonio; Thöny, Sandra; Bächler, Thomas; Boutellier, Urs; Wenger, Roland H; Toigo, Marco

    2013-04-01

    We previously reported that high load resistance exercise with superimposed whole-body vibration and sustained vascular occlusion (vibroX) markedly improves cycling endurance capacity, increases capillary-to-fibre ratio and skeletal muscle oxidative enzyme activity in untrained young women. These findings are intriguing, since increases in oxidative muscle phenotype and endurance capacity are typically induced by endurance but not heavy resistance exercise. Here, we tested the hypothesis that vibroX activates genes associated with mitochondrial biogenesis and angiogenesis. Eight healthy, recreationally resistance-trained young men performed either vibroX or resistance exercise (RES) in a randomised, cross-over design. Needle biopsies (M. vastus lateralis) were obtained at rest and 3 h post-exercise. Changes in relative gene expression levels were assessed by real-time quantitative PCR. After vibroX, vascular endothelial growth factor and peroxisome proliferator-activated receptor-γ coactivator 1α mRNA abundances increased to 2- and 4.4-fold, respectively, but did not significantly change above resting values after RES. Other genes involved in mitochondrial biogenesis were not affected by either exercise modality. While vibroX increased the expression of hexokinase II, xanthine dehydrogenase, and manganese superoxide dismutase mRNA, there were no changes in these transcripts after RES. This study demonstrates that high load resistance exercise with superimposed whole-body vibration and sustained vascular occlusion activates metabolic and angiogenic gene programs, which are usually activated after endurance but not resistance exercise. Thus, targeted modification of high load resistance exercise by vibration and vascular occlusion might represent a novel strategy to induce endurance-type muscle adaptations.

  10. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite.

    Science.gov (United States)

    Damacena-Angelis, Célio; Oliveira-Paula, Gustavo H; Pinheiro, Lucas C; Crevelin, Eduardo J; Portella, Rafael L; Moraes, Luiz Alberto B; Tanus-Santos, Jose E

    2017-08-01

    Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite ( 15 N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15 N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the

  11. Omega-3 Polyunsaturated Fatty Acids: Structural and Functional Effects on the Vascular Wall

    Directory of Open Access Journals (Sweden)

    Michela Zanetti

    2015-01-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFA consumption is associated with reduced cardiovascular disease risk. Increasing evidence demonstrating a beneficial effect of n-3 PUFA on arterial wall properties is progressively emerging. We reviewed the recent available evidence for the cardiovascular effects of n-3 PUFA focusing on structural and functional properties of the vascular wall. In experimental studies and clinical trials n-3 PUFA have shown the ability to improve arterial hemodynamics by reducing arterial stiffness, thus explaining some of its cardioprotective properties. Recent studies suggest beneficial effects of n-3 PUFA on endothelial activation, which are likely to improve vascular function. Several molecular, cellular, and physiological pathways influenced by n-3 PUFA can affect arterial wall properties and therefore interfere with the atherosclerotic process. Although the relative weight of different physiological and molecular mechanisms and the dose-response on arterial wall properties have yet to be determined, n-3 PUFA have the potential to beneficially impact arterial wall remodeling and cardiovascular outcomes by targeting arterial wall stiffening and endothelial dysfunction.

  12. Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Chen, Yu-Ying; Hsu, Ming-Jen; Hsieh, Cheng-Ying; Lee, Lin-Wen; Chen, Zhih-Cherng; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  13. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  14. Vascular dynamics aid a coupled neurovascular network learn sparse independent features: A computational model

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Philips

    2016-02-01

    Full Text Available Cerebral vascular dynamics are generally thought to be controlled by neural activity in a unidirectional fashion. However, both computational modeling and experimental evidence point to the feedback effects of vascular dynamics on neural activity. Vascular feedback in the form of glucose and oxygen controls neuronal ATP, either directly or via the agency of astrocytes, which in turn modulates neural firing. Recently, a detailed model of the neuron-astrocyte-vessel system has shown how vasomotion can modulate neural firing. Similarly, arguing from known cerebrovascular physiology, an approach known as `hemoneural hypothesis' postulates functional modulation of neural activity by vascular feedback. To instantiate this perspective, we present a computational model in which a network of `vascular units' supplies energy to a neural network. The complex dynamics of the vascular network, modeled by a network of oscillators, turns neurons ON and OFF randomly. The informational consequence of such dynamics is explored in the context of an auto-encoder network. In the proposed model, each vascular unit supplies energy to a subset of hidden neurons of an autoencoder network, which constitutes its `projective field'. Neurons that receive adequate energy in a given trial have reduced threshold, and thus are prone to fire. Dynamics of the vascular network are governed by changes in the reconstruction error of the auto-encoder network, interpreted as the neuronal demand. Vascular feedback causes random inactivation of a subset of hidden neurons in every trial. We observe that, under conditions of desynchronized vascular dynamics, the output reconstruction error is low and the feature vectors learnt are sparse and independent. Our earlier modeling study highlighted the link between desynchronized vascular dynamics and efficient energy delivery in skeletal muscle. We now show that desynchronized vascular dynamics leads to efficient training in an auto

  15. Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation

    Directory of Open Access Journals (Sweden)

    Yoshinobu Takahashi

    2018-05-01

    Full Text Available Summary: Clinical transplantation of tissue fragments, including islets, faces a critical challenge because of a lack of effective strategies that ensure efficient engraftment through the timely integration of vascular networks. We recently developed a complex organoid engineering method by “self-condensation” culture based on mesenchymal cell-dependent contraction, thereby enabling dissociated heterotypic lineages including endothelial cells to self-organize in a spatiotemporal manner. Here, we report the successful adaptation of this method for generating complex tissues from diverse tissue fragments derived from various organs, including pancreatic islets. The self-condensation of human and mouse islets with endothelial cells not only promoted functionalization in culture but also massively improved post-transplant engraftment. Therapeutically, fulminant diabetic mice were more efficiently treated by a vascularized islet transplant compared with the conventional approach. Given the general limitations of post-transplant vascularization associated with 3D tissue-based therapy, our approach offers a promising means of enhancing efficacy in the context of therapeutic tissue transplantation. : Takahashi et al. report on generating vascularized islet tissue from humans and mice. After transplantation, vascularized islets significantly improve survival of diabetic mice, demonstrating the quick normalization of blood glucose compared with conventional islet transplantation. Keywords: tissue engineering, tissue-based therapy, vascularization, islet transplantation, organoid

  16. VEGF signaling inside vascular endothelial cells and beyond.

    Science.gov (United States)

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Interventional vascular radiology

    International Nuclear Information System (INIS)

    Yune, H.Y.

    1984-01-01

    The papers published during this past year in the area of interventional vascular radiology presented some useful modifications and further experiences both in the area of thromboembolic therapy and in dilation and thrombolysis, but no new techniques. As an introductory subject, an excellent monograph reviewing the current spectrum of pharmacoangiography was presented in Radiographics. Although the presented material is primarily in diagnostic application of various pharmacologic agents used today to facilitate demonstration of certain diagnostic criteria of various disease processes, both vasodilatory and vasoconstrictive reaction to these agents are widely used in various therapeutic vascular procedures. This monograph should be reviewed by every angiographer whether or not he or she performs interventional procedures, and it would be very convenient to have this table available in the angiography suite. In a related subject, Bookstein and co-workers have written an excellent review concerning pharmacologic manipulations of various blood coagulative parameters during angiography. Understanding the proper method of manipulation of the bloodclotting factors during angiography, and especially during interventional angiography, is extremely important. Particularly, the method of manipulating the coagulation with the use of heparin and protamine and modification of the platelet activity by using aspirin and dipyridamole are succinctly reviewed. The systemic and selective thrombolytic activities of streptokianse are also discussed

  18. Phase-based vascular input function: Improved quantitative DCE-MRI of atherosclerotic plaques

    NARCIS (Netherlands)

    van Hoof, R. H. M.; Hermeling, E.; Truijman, M. T. B.; van Oostenbrugge, R. J.; Daemen, J. W. H.; van der Geest, R. J.; van Orshoven, N. P.; Schreuder, A. H.; Backes, W. H.; Daemen, M. J. A. P.; Wildberger, J. E.; Kooi, M. E.

    2015-01-01

    Purpose: Quantitative pharmacokinetic modeling of dynamic contrast-enhanced (DCE)-MRI can be used to assess atherosclerotic plaque microvasculature, which is an important marker of plaque vulnerability. Purpose of the present study was (1) to compare magnitude-versus phase-based vascular input

  19. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    Science.gov (United States)

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  20. Targets of vascular protection in acute ischemic stroke differ in type 2 diabetes

    Science.gov (United States)

    Kelly-Cobbs, Aisha I.; Prakash, Roshini; Li, Weiguo; Pillai, Bindu; Hafez, Sherif; Coucha, Maha; Johnson, Maribeth H.; Ogbi, Safia N.; Fagan, Susan C.

    2013-01-01

    Hemorrhagic transformation is an important complication of acute ischemic stroke, particularly in diabetic patients receiving thrombolytic treatment with tissue plasminogen activator, the only approved drug for the treatment of acute ischemic stroke. The objective of the present study was to determine the effects of acute manipulation of potential targets for vascular protection [i.e., NF-κB, peroxynitrite, and matrix metalloproteinases (MMPs)] on vascular injury and functional outcome in a diabetic model of cerebral ischemia. Ischemia was induced by middle cerebral artery occlusion in control and type 2 diabetic Goto-Kakizaki rats. Treatment groups received a single dose of the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III), the nonspecific NF-κB inhibitor curcumin, or the broad-spectrum MMP inhibitor minocycline at reperfusion. Poststroke infarct volume, edema, hemorrhage, neurological deficits, and MMP-9 activity were evaluated. All acute treatments reduced MMP-9 and hemorrhagic transformation in diabetic groups. In addition, acute curcumin and minocycline therapy reduced edema in these animals. Improved neurological function was observed in varying degrees with treatment, as indicated by beam-walk performance, modified Bederson scores, and grip strength; however, infarct size was similar to untreated diabetic animals. In control animals, all treatments reduced MMP-9 activity, yet bleeding was not improved. Neuroprotection was only conferred by curcumin and minocycline. Uncovering the underlying mechanisms contributing to the success of acute therapy in diabetes will advance tailored stroke therapies. PMID:23335797

  1. Rho kinase inhibitor fasudil mitigates high-cholesterol diet-induced hypercholesterolemia and vascular damage.

    Science.gov (United States)

    Abdali, Nibrass Taher; Yaseen, Awny H; Said, Eman; Ibrahim, Tarek M

    2017-04-01

    The current study was designed to investigate the potential beneficial therapeutic outcome of Rho kinase inhibitor (fasudil) against hypercholesterolemia-induced myocardial and vascular injury in rabbits together with diet modification. Sixteen male rabbits were randomly divided into four groups: normal control group which received standard rabbit chow, hypercholesterolemic control group, and treated groups which received cholesterol-rich rabbit chow (1.5% cholesterol) for 8 weeks. Treated groups received either fasudil (100 mg/kg/day) or rosuvastatin (2.5 mg/kg/day) starting from the ninth week for further 4 weeks with interruption of the cholesterol-rich chow. Biochemical assessment of serum cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and myocardial oxidative/antioxidant biomarkers malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH), besides biochemical assessment of serum nitric oxide (NO), creatine kinase (CK), and lactate dehydrogenase (LDH) activities and serum total antioxidant capacity (TAC), was conducted. Serum vascular cell adhesion molecule 1 (VCAM-1) and serum Rho-associated protein kinase 1 (ROCK-1) were also evaluated along with histopathological examination of aorta specimens. Fasudil administration significantly decreased serum cholesterol, triglyceride (TG), and LDL and significantly increased serum HDL, with concomitant decrease in serum CK and LDH activities, NO, and restoration of serum TAC. Myocardial MDA significantly declined; SOD activity and GSH contents were restored. Serum ROCK-1 and VCAM-1 levels significantly declined as well. Vascular improvement was confirmed with histopathological examination, which revealed normal aortic intema with the absence of atheromas. Fasudil has promising anti-atherogenic activity mediated primarily via alleviation of hypercholesterolemia-induced oxidative stress and modulation of inflammatory response.

  2. Renal posttransplant's vascular complications

    Directory of Open Access Journals (Sweden)

    Bašić Dragoslav

    2003-01-01

    present study demonstrate that the rate of this complication in LD group was low, only 0.3%, but significantly higher in CD group - 11.8%. Many factors should be considered in order to understand for such significant difference among these groups. First of all, cadaveric transplant activity in our country is very low. In our series, median waiting period for renal transplantation was 2.8 years in LD group vs. 4.8 years in CD group (p<0.01. Also, vascular damages because of long term hemodialysis are contributing factors. Mean age of CD recipients was 7.4 years bigger vs. LD recipients. Primary cadaveric graft damage by accident and further manipulations during cadaveric donor nephrectomy, preservation and per-fusion are additional factors compromising the quality of cadaveric renal transplant outcome. Also, preoperative evaluation of cadaveric grafts is not as exact as in cases of LD grafts (excretory urography arteriography, etc. In the available transplant literature it is almost impossible to find data about vascular complications by different donor types. Mostly, authors offer experiences related to all transplants and most of them agree that in the present time better results are obtained using living donors [17].

  3. Mathematical Modeling of Neuro-Vascular Coupling in Rat Cerebellum

    DEFF Research Database (Denmark)

    Rasmussen, Tina

    Activity in the neurons called climbing fibers causes blood flow changes. But the physiological mechanisms which mediate the coupling are not well understood. This PhD thesis investigates the mechanisms of neuro-vascular coupling by means of mathematical methods. In experiments, the extracellularly...... measured field potential is used as an indicator of neuronal activity, and the cortical blood flow is measured by means of laser-Doppler flowmetry. Using system identification methods, these measurements have been used to construct and validate parametric mathematical models of the neuro-vascular system...

  4. The vascular basement membrane in the healthy and pathological brain.

    Science.gov (United States)

    Thomsen, Maj S; Routhe, Lisa J; Moos, Torben

    2017-10-01

    The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.

  5. Inhibition of NF-κB activity in rabbit vascular smooth muscle cells by lovastatin

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Lan Xiaoli

    2003-01-01

    Nuclear factor NF-κB is believed to play an important role in regulating the production of matrix metalloproteinase (MMPs), which induce atherosclerosis, restenosis and plaque rupture. We incubated rabbit vascular smooth muscle cells (RVSMCs) with 5 μmol/L lovastatin in the presence of IL-1-α and PDGF BB (20 μg/L, respectively) to study whether lovastatin inhibited NF-κB binding activity induced by IL-1 and PDGF. The NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); MMP-1 and MMP-3 were measured by western blotting; and MMP-9 was detected by zymography. The result showed that lovastatin strongly reduced NF-κB activity upregulated by IL-1 combined with PDGF, and lovastatin also dose-dependently inhibited the expression of MMP-1, -3 and -9 induced by IL-1 and PDGF. It suggested that the beneficial effects of statins may extend to mechanisms beyond cholesterol reduction

  6. Longitudinal visualization of vascular occlusion, reperfusion, and remodeling in a zebrafish model of retinal vascular leakage using OCT angiography

    Science.gov (United States)

    Spitz, Kathleen; Bozic, Ivan; Desai, Vineet; Rao, Gopikrishna M.; Pollock, Lana M.; Anand-Apte, Bela; Tao, Yuankai K.

    2017-02-01

    Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are two of the leading causes of blindness and visual impairment in the world. Neovascularization results in severe vision loss in DR and AMD and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a leading model organism for studying human disease pathogenesis, and the highly conserved drug activity between zebrafish and humans and their ability to readily absorb small molecules dissolved in water has benefited pharmaceutical discovery. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo retinal imaging in a zebrafish model of vascular leakage. Zebrafish were treated with diethylaminobenzaldehyde (DEAB) to induce vascular leakage and imaged with OCT and OCT-A at six time points over two weeks: baseline one day before treatment and one, three, six, eight, and ten days post treatment. Longitudinal functional imaging showed significant vascular response immediately after DEAB treatment. Observed vascular changes included partial or complete vascular occlusion immediately after treatment and reperfusion during a two-week period. Increased vascular tortuosity several days post treatment indicated remodeling, and bifurcations and collateral vessel formation were also observed. In addition, significant treatment response variabilities were observed in the contralateral eye of the same animal. Anatomical and functional normalization was observed in most animals by ten days post treatment. These preliminary results motivate potential applications of OCT-A as a tool for studying pathogenesis and therapeutic screening in zebrafish models of retinal vascular disease.

  7. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Joshua E Basford

    Full Text Available Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1 in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.

  8. Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1.

    Science.gov (United States)

    Bhatta, Anil; Yao, Lin; Xu, Zhimin; Toque, Haroldo A; Chen, Jijun; Atawia, Reem T; Fouda, Abdelrahman Y; Bagi, Zsolt; Lucas, Rudolf; Caldwell, Ruth B; Caldwell, Robert W

    2017-11-01

    Elevation of arginase activity has been linked to vascular dysfunction in diabetes and hypertension by a mechanism involving decreased nitric oxide (NO) bioavailability due to L-arginine depletion. Excessive arginase activity also can drive L-arginine metabolism towards the production of ornithine, polyamines, and proline, promoting proliferation of vascular smooth muscle cells and collagen formation, leading to perivascular fibrosis. We hypothesized that there is a specific involvement of arginase 1 expression within the vascular endothelial cells in this pathology. To test this proposition, we used models of type 2 diabetes and metabolic syndrome. Studies were performed using wild type (WT), endothelial-specific arginase 1 knockout (EC-A1-/-) and littermate controls(A1con) mice fed high fat-high sucrose (HFHS) or normal diet (ND) for 6 months and isolated vessels exposed to palmitate-high glucose (PA/HG) media. Some WT mice or isolated vessels were treated with an arginase inhibitor, ABH [2-(S)-amino-6-boronohexanoic acid. In WT mice, the HFHS diet promoted increases in body weight, fasting blood glucose, and post-prandial insulin levels along with arterial stiffening and fibrosis, elevated blood pressure, decreased plasma levels of L-arginine, and elevated L-ornithine. The HFHS diet or PA/HG treatment also induced increases in vascular arginase activity along with oxidative stress, reduced vascular NO levels, and impaired endothelial-dependent vasorelaxation. All of these effects except obesity and hypercholesterolemia were prevented or significantly reduced by endothelial-specific deletion of arginase 1 or ABH treatment. Vascular dysfunctions in diet-induced obesity are prevented by deletion of arginase 1 in vascular endothelial cells or arginase inhibition. These findings indicate that upregulation of arginase 1 expression/activity in vascular endothelial cells has an integral role in diet-induced cardiovascular dysfunction and metabolic syndrome. Published

  9. Local vascular adaptations after hybrid training in spinal cord-injured subjects.

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Heesterbeek, P.J.C.; Kuppevelt, D. van; Duysens, J.E.J.; Hopman, M.T.E.

    2005-01-01

    PURPOSE: Studies investigating vascular adaptations in non-exercised areas during whole body exercise training show conflicting results. Individuals with spinal cord injury (SCI) provide a unique model to examine vascular adaptations in active tissue vs adjacent inactive areas. The purpose of this

  10. Pediatric vascular access

    International Nuclear Information System (INIS)

    Donaldson, James S.

    2006-01-01

    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  11. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    Science.gov (United States)

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  12. Nanomedicine approaches in vascular disease: a review.

    Science.gov (United States)

    Gupta, Anirban Sen

    2011-12-01

    Nanomedicine approaches have revolutionized the treatment of cancer and vascular diseases, where the limitations of rapid nonspecific clearance, poor biodistribution and harmful side effects associated with direct systemic drug administration can be overcome by packaging the agents within sterically stabilized, long-circulating nanovehicles that can be further surface-modified with ligands to actively target cellular/molecular components of the disease. With significant advancements in genetics, proteomics, cellular and molecular biology and biomaterials engineering, the nanomedicine strategies have become progressively refined regarding the modulation of surface and bulk chemistry of the nanovehicles, control of drug release kinetics, manipulation of nanoconstruct geometry and integration of multiple functionalities on single nanoplatforms. The current review aims to capture the various nanomedicine approaches directed specifically toward vascular diseases during the past two decades. Analysis of the promises and limitations of these approaches will help identify and optimize vascular nanomedicine systems to enhance their efficacy and clinical translation in the future. Nanomedicine-based approaches have had a major impact on the treatment and diagnosis of malignancies and vascular diseases. This review discusses various nanomedicine approaches directed specifically toward vascular diseases during the past two decades, highlighting their advantages, limitations and offering new perspectives on future applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Practical alternatives to chronic caloric restriction for optimizing vascular function with ageing

    Science.gov (United States)

    Seals, Douglas R.

    2016-01-01

    Abstract Calorie restriction (CR) in the absence of malnutrition exerts a multitude of physiological benefits with ageing in model organisms and in humans including improvements in vascular function. Despite the well‐known benefits of chronic CR, long‐term energy restriction is not likely to be a feasible healthy lifestyle strategy in humans due to poor sustained adherence, and presents additional concerns if applied to normal weight older adults. This review summarizes what is known about the effects of CR on vascular function with ageing including the underlying molecular ‘energy‐ and nutrient‐sensing’ mechanisms, and discusses the limited but encouraging evidence for alternative pharmacological and lifestyle interventions that may improve vascular function with ageing by mimicking the beneficial effects of long‐term CR. PMID:27641062

  14. The Interaction Between IGF-1, Atherosclerosis and Vascular Aging

    Science.gov (United States)

    Higashi, Yusuke; Quevedo, Henry C.; Tiwari, Summit; Sukhanov, Sergiy; Shai, Shaw-Yung; Anwar, Asif; Delafontaine, Patrice

    2014-01-01

    The process of vascular aging encompasses alterations in the function of endothelial (EC) and vascular smooth muscle cells (VSMCs) via oxidation, inflammation, cell senescence and epigenetic modifications, increasing the probability of atherosclerosis. Aged vessels exhibit decreased endothelial antithrombogenic properties, increased reactive oxygen species (ROS) generation and inflammatory signaling, increased migration of VSMCs to the subintimal space, impaired angiogenesis and increased elastin degradation. The key initiating step in atherogenesis is subendothelial accumulation of apolipoprotein-B containing low density lipoproteins resulting in activation of endothelial cells and recruitment of monocytes. Activated endothelial cells secrete “chemokines” that interact with cognate chemokine receptors on monocytes and promote directional migration. Recruitment of immune cells establishes a pro-inflammatory status, further causing elevated oxidative stress, which in turn triggers a series of events including apoptotic or necrotic death of vascular and non-vascular cells. Increased oxidative stress is also considered to be a key factor in mechanisms of aging-associated changes in tissue integrity and function. Experimental evidence indicates that insulin-like growth factor-1 (IGF-1) exerts anti-oxidant, anti-inflammatory and pro-survival effects on the vasculature, reducing atherosclerotic plaque burden and promoting features of atherosclerotic plaque stability. PMID:24943302

  15. Effect of lower limb preference on local muscular and vascular function

    International Nuclear Information System (INIS)

    Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Loenneke, Jeremy P; Kim, Daeyeol; Bemben, Michael G; Abe, Takashi

    2014-01-01

    Unilateral physical training can enhance muscular size and function as well as vascular function in the trained limb. In non-athletes, the preferred arm for use during unilateral tasks may exhibit greater muscular strength compared to the non-preferred arm. It is unclear if lower limb preference affects lower limb vascular function or muscular endurance and power in recreationally active adults. To examine the effect of lower limb preference on quadriceps muscle size and function and on lower limb vascular function in middle-aged adults. Twenty (13 men, 7 women) recreationally-active middle-aged (55 ± 7 yrs) adults underwent measurements of quadriceps muscle thickness, strength, mean power, endurance, and arterial stiffness, calf venous compliance, and calf blood flow in the preferred and non-preferred lower limb. The preferred limb exhibited greater calf vascular conductance (31.6 ± 15.5 versus 25.8 ± 13.0 units flow/mmHg; p = 0.011) compared to the non-preferred limb. The interlimb difference in calf vascular conductance was negatively related to weekly aerobic activity (hrs/week) (r = −0.521; p = 0.019). Lower limb preference affects calf blood flow but not quadriceps muscle size or function. Studies involving unilateral lower limb testing procedures in middle-aged individuals should consider standardizing the testing to either the preferred or non-preferred limb rather than the right or left limb. (paper)

  16. Role of vascular potassium channels in the regulation of renal hemodynamics

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Braunstein, Thomas Hartig; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    of one or more classes of K+ channels will lead to a change in hemodynamic resistance and therefore of renal blood flow and glomerular filtration pressure. Through these effects, the activity of renal vascular K+ channels influences renal salt and water excretion, fluid homeostasis, and ultimately blood...... pressure. Four main classes of K+ channels [calcium activated (KCa), inward rectifier (Kir), voltage activated (KV), and ATP sensitive (KATP)] are found in the renal vasculature. Several in vitro experiments have suggested a role for individual classes of K+ channels in the regulation of renal vascular...... function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K+ channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations...

  17. Vascular Augmentation in Renal Transplantation: Supercharging and Turbocharging

    Directory of Open Access Journals (Sweden)

    Euicheol C. Jeong

    2017-05-01

    Full Text Available The most common anatomic variant seen in donor kidneys for renal transplantation is the presence of multiple renal arteries, which can cause an increased risk of complications. Accessory renal arteries should be anastomosed to the proper source arteries to improve renal perfusion via the appropriate vascular reconstruction techniques. In microsurgery, 2 kinds of vascular augmentation methods, known as ‘supercharging’ and ‘turbocharging,’ have been introduced to ensure vascular perfusion in the transferred flap. Supercharging uses a distant source of the vessels, while turbocharging uses vascular sources within the same flap territory. These technical concepts can also be applied in renal transplantation, and in this report, we describe 2 patients who underwent procedures using supercharging and turbocharging. In one case, the ipsilateral deep inferior epigastric artery was transposed to the accessory renal artery (supercharging, and in the other case, the accessory renal artery was anastomosed to the corresponding main renal artery with a vascular graft (turbocharging. The transplanted kidneys showed good perfusion and proper function. No cases of renal failure, hypertension, rejection, or urologic complications were observed. These microsurgical techniques can be safely utilized for renal transplantation with donor kidneys that have multiple arteries with a lower complication rate and better outcome.

  18. Vascular Augmentation in Renal Transplantation: Supercharging and Turbocharging.

    Science.gov (United States)

    Jeong, Euicheol C; Hwang, Seung Hwan; Eo, Su Rak

    2017-05-01

    The most common anatomic variant seen in donor kidneys for renal transplantation is the presence of multiple renal arteries, which can cause an increased risk of complications. Accessory renal arteries should be anastomosed to the proper source arteries to improve renal perfusion via the appropriate vascular reconstruction techniques. In microsurgery, 2 kinds of vascular augmentation methods, known as 'supercharging' and 'turbocharging,' have been introduced to ensure vascular perfusion in the transferred flap. Supercharging uses a distant source of the vessels, while turbocharging uses vascular sources within the same flap territory. These technical concepts can also be applied in renal transplantation, and in this report, we describe 2 patients who underwent procedures using supercharging and turbocharging. In one case, the ipsilateral deep inferior epigastric artery was transposed to the accessory renal artery (supercharging), and in the other case, the accessory renal artery was anastomosed to the corresponding main renal artery with a vascular graft (turbocharging). The transplanted kidneys showed good perfusion and proper function. No cases of renal failure, hypertension, rejection, or urologic complications were observed. These microsurgical techniques can be safely utilized for renal transplantation with donor kidneys that have multiple arteries with a lower complication rate and better outcome.

  19. Carbon nanotubes as VEGF carriers to improve the early vascularization of porcine small intestinal submucosa in abdominal wall defect repair

    Directory of Open Access Journals (Sweden)

    Liu Z

    2014-03-01

    MWNT–PSIS contributed to early vascularization from 2–12 weeks postimplantation and obtained more effective collagen deposition and exhibited improved tensile strength at 24 weeks postimplantation compared to PSIS or PSIS scaffolds, incorporating MWNT without VEGF165 loading (MWNT–PSIS. Keywords: vascular endothelial growth factor165, controlled release, multi-walled carbon nanotube, early vascularization

  20. Fibroblast growth factor-2 induces osteogenic differentiation through a Runx2 activation in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Takehiro; Sato, Hiroko; Shimizu, Takehisa; Tanaka, Toru; Matsui, Hiroki; Kawai-Kowase, Keiko; Sato, Mahito; Iso, Tatsuya; Arai, Masashi [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Kurabayashi, Masahiko, E-mail: mkuraba@med.gunma-u.ac.jp [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 (Japan)

    2010-04-02

    Expression of bone-associated proteins and osteoblastic transcription factor Runx2 in arterial cells has been implicated in the development of vascular calcification. However, the signaling upstream of the Runx2-mediated activation of osteoblastic program in vascular smooth muscle cells (VSMC) is poorly understood. We examined the effects of fibroblast growth factor-2 (FGF-2), an important regulator of bone formation, on osteoblastic differentiation of VSMC. Stimulation of cultured rat aortic SMC (RASMC) with FGF-2 induced the expression of the osteoblastic markers osteopontin (OPN) and osteocalcin. Luciferase assays showed that FGF-2 induced osteocyte-specific element (OSE)-dependent transcription. Downregulation of Runx2 by siRNA repressed the basal and FGF-2-stimulated expression of the OPN gene in RASMC. FGF-2 produced hydrogen peroxide in RASMC, as evaluated by fluorescent probe. Induction of OPN expression by FGF-2 was inhibited not only by PD98059 (MEK1 inhibitor) and PP1 (c-Src inhibitor), but also by an antioxidant, N-acetyl cysteine. Nuclear extracts from FGF-2-treated RASMC exhibited increased DNA-binding of Runx2 to its target sequence. Immunohistochemistry of human coronary atherectomy specimens and calcified aortic tissues showed that expression of FGF receptor-1 and Runx2 was colocalized. In conclusion, these results suggest that FGF-2 plays a role in inducing osteoblastic differentiation of VSMC by activating Runx2 through mitogen-activated protein kinase (MAPK)-dependent- and oxidative stress-sensitive-signaling pathways.

  1. Vascular nitric oxide: Beyond eNOS

    Directory of Open Access Journals (Sweden)

    Yingzi Zhao

    2015-10-01

    Full Text Available As the first discovered gaseous signaling molecule, nitric oxide (NO affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC to produce cyclic guanosine monophosphate (cGMP, although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA or production of cyclic inosine monophosphate (cIMP] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.

  2. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Science.gov (United States)

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Xu, Zhimin; Kondrikov, Dmitry; Su, Yunchao; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-01-01

    Elevated arginase (Arg) activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO) synthase (NOS) and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC) from Akita mice. Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT) mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP) was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC) compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH) reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177) (in aorta and CC) and nNOS expression (in CC) were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks. Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  3. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Directory of Open Access Journals (Sweden)

    Haroldo A Toque

    Full Text Available Elevated arginase (Arg activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO synthase (NOS and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC from Akita mice.Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177 (in aorta and CC and nNOS expression (in CC were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks.Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  4. Vascular responses to radiotherapy and androgendeprivation therapy in experimental prostate cancer

    LENUS (Irish Health Repository)

    2012-05-23

    AbstractBackgroundRadiotherapy (RT) and androgen-deprivation therapy (ADT) are standard treatments for advanced prostate cancer (PC). Tumor vascularization is recognized as an important physiological feature likely to impact on both RT and ADT response, and this study therefore aimed to characterize the vascular responses to RT and ADT in experimental PC.MethodsUsing mice implanted with CWR22 PC xenografts, vascular responses to RT and ADT by castration were visualized in vivo by DCE MRI, before contrast-enhancement curves were analyzed both semi-quantitatively and by pharmacokinetic modeling. Extracted image parameters were correlated to the results from ex vivo quantitative fluorescent immunohistochemical analysis (qIHC) of tumor vascularization (9 F1), perfusion (Hoechst 33342), and hypoxia (pimonidazole), performed on tissue sections made from tumors excised directly after DCE MRI.ResultsCompared to untreated (Ctrl) tumors, an improved and highly functional vascularization was detected in androgen-deprived (AD) tumors, reflected by increases in DCE MRI parameters and by increased number of vessels (VN), vessel density ( VD), and vessel area fraction ( VF) from qIHC. Although total hypoxic fractions ( HF) did not change, estimated acute hypoxia scores ( AHS) – the proportion of hypoxia staining within 50 μm from perfusion staining – were increased in AD tumors compared to in Ctrl tumors. Five to six months after ADT renewed castration-resistant (CR) tumor growth appeared with an even further enhanced tumor vascularization. Compared to the large vascular changes induced by ADT, RT induced minor vascular changes. Correlating DCE MRI and qIHC parameters unveiled the semi-quantitative parameters area under curve ( AUC) from initial time-points to strongly correlate with VD and VF, whereas estimation of vessel size ( VS) by DCE MRI required pharmacokinetic modeling. HF was not correlated to any DCE MRI parameter, however, AHS may be estimated after

  5. Nitric oxide signaling and the cross talk with prostanoids pathways in vascular system.

    Science.gov (United States)

    Silva, Bruno R; Paula, Tiago D; Paulo, Michele; Bendhack, Lusiane M

    2016-12-28

    This review provides an overview of the cellular signaling of nitric oxide (NO) and prostanoids in vascular cells and the possible cross talk between their pathways, mainly in hypertension, since the imbalance of these two systems has been attributed to development of some cardiovascular diseases. It also deals with the modulation of vasodilation induced by NO donors. NO is a well-known second messenger involved in many cellular functions. In the vascular system, the NO produced by endothelial NO-synthase (eNOS) or released by NO donors acts in vascular smooth muscle cells, the binding of NO to Fe2+-heme of soluble guanylyl-cyclase (sGC) activates sGC and the production of cyclic guanosine-3-5-monophosphate (cGMP). The second messenger (cGMP) activates protein kinase G and the signaling cascade, including K+ channels. Activation of K+ channels leads to cell membrane hyperpolarization and Ca2+ channels blockade, which induce vascular relaxation. Moreover, the enzyme cyclooxygenase (COX) is also an important regulator of the vascular function by prostanoids production such as thromboxane A2 (TXA2) and prostacyclin (PGI2), which classically induce contraction and relaxation, respectively. Additionaly, studies indicate that the activity of both enzymes can be modulated by their products and reactive oxygen species (ROS) in cardiovascular diseases such as hypertension. The interaction of NO with cellular molecules, particularly the reaction of NO with ROS, determines the biological mechanisms of action and short half-life of NO. We have been working on the vascular effects of ruthenium-derived complexes that release NO. Our research group has published works on the vasodilating effects of ruthenium-derived NO donors and the mechanisms of vascular cells involved in the relaxation of the vascular smooth muscle in health and hypertensive rats. In our previous studies, we have compared the new NO donors synthesized by our group to SNP. It shows the cellular signaling of NO

  6. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    National Research Council Canada - National Science Library

    Carson, Paul

    1997-01-01

    This project is to improve the diagnosis and management of patients with breast cancer through development and evaluation of 3D ultrasound imaging and quantification techniques emphasizing vascularity...

  7. Social withdrawal of persons with vascular dementia associated with disturbance of basic daily activities, apathy, and impaired social judgment.

    Science.gov (United States)

    Honda, Yukiko; Meguro, Kenichi; Meguro, Mitsue; Akanuma, Kyoko

    2013-01-01

    Patients with vascular dementia (VaD) are often isolated, withdrawn from society because of negative symptoms and functional disabilities. The aim of this study was to detect factors associated with social withdrawal in patients with VaD. The participants were 36 institutionalized patients with VaD. Social withdrawal was assessed with the social withdrawal of the Multidimensional Observation Scale for Elderly Subjects (MOSES). Possible explanatory variables were the MOSES items depression and self-care, Cognitive Abilities Screening Instrument (CASI), apathy evaluation scale (AES), and Behavioral Pathology in Alzheimer's Disease Frequency-Weighted Severity Scale (BEHAVE-AD-FW). Multiple regression analyses were conducted for two groups: Analysis 1 was performed in all patients (N = 36) and Analysis 2 was performed in the patients with the ability to move by themselves (i.e., independent walking or independent movement with a cane or a wheelchair; n = 28). In Analysis 1, MOSES item social withdrawal was correlated with AES and MOSES item self-care. In Analysis 2, MOSES item social withdrawal was correlated with AES and CASI domain abstraction and judgment. Decreased social activities of VaD were not related to general cognitive function or depression. Disturbed activities of daily living (ADLs) for self-care may involve decreased frontal lobe function, indicating that comprehensive rehabilitation for both ADL and dementia are needed to improve the social activities of patients with VaD.

  8. Vascular Access in Children

    International Nuclear Information System (INIS)

    Krishnamurthy, Ganesh; Keller, Marc S.

    2011-01-01

    Establishment of stable vascular access is one of the essential and most challenging procedures in a pediatric hospital. Many clinical specialties provide vascular service in a pediatric hospital. At the top of the “expert procedural pyramid” is the pediatric interventional radiologist, who is best suited and trained to deliver this service. Growing awareness regarding the safety and high success rate of vascular access using image guidance has led to increased demand from clinicians to provide around-the-clock vascular access service by pediatric interventional radiologists. Hence, the success of a vascular access program, with the pediatric interventional radiologist as the key provider, is challenging, and a coordinated multidisciplinary team effort is essential for success. However, there are few dedicated pediatric interventional radiologists across the globe, and also only a couple of training programs exist for pediatric interventions. This article gives an overview of the technical aspects of pediatric vascular access and provides useful tips for obtaining vascular access in children safely and successfully using image guidance.

  9. Transforming growth factor β family members in regulation of vascular function: in the light of vascular conditional knockouts.

    Science.gov (United States)

    Jakobsson, Lars; van Meeteren, Laurens A

    2013-05-15

    Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor β (TGF-β) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-β family in the mouse. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Response of local vascular volumes to lower body negative pressure stress

    Science.gov (United States)

    Wolthuis, R. A.; Leblanc, A.; Carpentier, W. A.; Bergman, S. A., Jr.

    1975-01-01

    The present study involved an intravenous injection of radioactive iodinated serum albumin, equilibration of this isotope within the vascular space, and the continuous measurement of isotope activity over selected anatomical areas before, during and following multiple human LBNP tests. Both rate and magnitude of vascular pooling were distinctly different within each of five selected lower body anatomical areas. In the upper body, all areas except the abdomen showed depletions from their resting vascular volumes during LBNP. The presence of uniquely different pooling patterns in the lower body, the apparent stability of abdominal vascular volumes, and a possible decrease in cerebral blood volume during LBNP represent the major findings of this study.

  11. Oscillation of Angiogenesis and Vascular Dropout in Progressive Human Vascular Disease. [Vascular Pattern as Useful Read-Out of Complex Molecular Signaling

    Science.gov (United States)

    Parsons-Wingerter, Patricia

    2010-01-01

    When analyzed by VESsel GENeration Analysis (VESGEN) software, vascular patterns provide useful integrative read-outs of complex, interacting molecular signaling pathways. Using VESGEN, we recently discovered and published our innovative, surprising findings that angiogenesis oscillated with vascular dropout throughout progression of diabetic retinopathy, a blinding vascular disease. Our findings provide a potential paradigm shift in the current prevailing view on progression and treatment of this disease, and a new early-stage window of regenerative therapeutic opportunities. The findings also suggest that angiogenesis may oscillate with vascular disease in a homeostatic-like manner during early stages of other inflammatory progressive diseases such as cancer and coronary vascular disease.

  12. Syncytiotrophoblast extracellular vesicles impair rat uterine vascular function via the lectin-like oxidized LDL receptor-1.

    Directory of Open Access Journals (Sweden)

    Floor Spaans

    Full Text Available Syncytiotrophoblast extracellular vesicles (STBEVs are placenta derived particles that are released into the maternal circulation during pregnancy. Abnormal levels of STBEVs have been proposed to affect maternal vascular function. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1 is a multi-ligand scavenger receptor. Increased LOX-1 expression and activation has been proposed to contribute to endothelial dysfunction. As LOX-1 has various ligands, we hypothesized that, being essentially packages of lipoproteins, STBEVs are able to activate the LOX-1 receptor thereby impairing vascular function via the production of superoxide and decreased nitric oxide bioavailability. Uterine arteries were obtained in late gestation from Sprague-Dawley rats and incubated for 24h with or without human STBEVs (derived from a normal pregnant placenta in the absence or presence of a LOX-1 blocking antibody. Vascular function was assessed using wire myography. Endothelium-dependent maximal vasodilation to methylcholine was impaired by STBEVs (MCh Emax: 57.7±5.9% in STBEV-incubated arteries vs. 77.8±2.9% in controls, p<0.05. This was prevented by co-incubation of STBEV-incubated arteries with LOX-1 blocking antibodies (MCh Emax: 78.8±4.3%, p<0.05. Pre-incubation of the vessels with a nitric oxide synthase inhibitor (L-NAME demonstrated that the STBEV-induced impairment in vasodilation was due to decreased nitric oxide contribution (ΔAUC 12.2±11.7 in STBEV-arteries vs. 86.5±20 in controls, p<0.05, which was abolished by LOX-1 blocking antibody (ΔAUC 98.9±17, p<0.05. In STBEV-incubated vessels, LOX-1 inhibition resulted in an increased endothelial nitric oxide synthase expression (p<0.05, to a level similar to control vessels. The oxidant scavenger, superoxide dismutase, did not improve this impairment, nor were vascular superoxide levels altered. Our data support an important role for STBEVs in impairment of vascular function via activation of

  13. Taking a positive spin: preserved initiative and performance of everyday activities across mild Alzheimer's, vascular and mixed dementia.

    Science.gov (United States)

    Giebel, Clarissa M; Burns, Alistair; Challis, David

    2017-09-01

    The literature commonly evaluates those daily activities which are impaired in dementia. However, in the mild stages, people with dementia (PwD) are still able to initiate and perform many of those tasks. With a lack of research exploring variations between different dementia diagnoses, this study sought to investigate those daily activities with modest impairments in the mild stages and how these compare between Alzheimer's disease (AD), vascular dementia (VaD) and mixed dementia. Staff from memory assessment services from nine National Health Service trusts across England identified and approached informal carers of people with mild dementia. Carers completed the newly revised Interview for Deteriorations in Daily Living Activities in Dementia 2 assessing the PwD's initiative and performance of instrumental activities of daily living (IADLs). Data were analysed using analysis of variance and Chi-square tests to compare the maintenance of IADL functioning across AD, VaD, and mixed dementia. A total of 160 carers returned the Interview for Deteriorations in Daily Living Activities in Dementia 2, of which 109, 21, and 30 cared for someone with AD, VaD, and mixed dementia, respectively. There were significant variations across subtypes, with AD showing better preserved initiative and performance than VaD for several IADLs. Overall, PwD showed greater preservation of performance than initiative, with tasks such as preparing a hot drink and dressing being best maintained. Findings can help classify dementia better into subtypes in order to receive bespoke support. It suggests that interventions should primarily address initiative to improve overall functioning. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Health improvement and prevention study (HIPS - evaluation of an intervention to prevent vascular disease in general practice

    Directory of Open Access Journals (Sweden)

    Davies Gawaine

    2010-08-01

    Full Text Available Abstract Background The Health Improvement and Prevention Study (HIPS study aims to evaluate the capacity of general practice to identify patients at high risk for developing vascular disease and to reduce their risk of vascular disease and diabetes through behavioural interventions delivered in general practice and by the local primary care organization. Methods/Design HIPS is a stratified randomized controlled trial involving 30 general practices in NSW, Australia. Practices are randomly allocated to an 'intervention' or 'control' group. General practitioners (GPs and practice nurses (PNs are offered training in lifestyle counselling and motivational interviewing as well as practice visits and patient educational resources. Patients enrolled in the trial present for a health check in which the GP and PN provide brief lifestyle counselling based on the 5As model (ask, assess, advise, assist, and arrange and refer high risk patients to a diet education and physical activity program. The program consists of two individual visits with a dietician or exercise physiologist and four group sessions, after which patients are followed up by the GP or PN. In each practice 160 eligible patients aged between 40 and 64 years are invited to participate in the study, with the expectation that 40 will be eligible and willing to participate. Evaluation data collection consists of (1 a practice questionnaire, (2 GP and PN questionnaires to assess preventive care attitudes and practices, (3 patient questionnaire to assess self-reported lifestyle behaviours and readiness to change, (4 physical assessment including weight, height, body mass index (BMI, waist circumference and blood pressure, (5 a fasting blood test for glucose and lipids, (6 a clinical record audit, and (7 qualitative data collection. All measures are collected at baseline and 12 months except the patient questionnaire which is also collected at 6 months. Study outcomes before and after the

  15. A role of TDIF peptide signaling in vascular cell differentiation is conserved among euphyllophytes

    Directory of Open Access Journals (Sweden)

    Yuki eHirakawa

    2015-11-01

    Full Text Available Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related family peptide hormone, TDIF (tracheary element differentiation inhibitory factor, regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, monilophytes and lycophytes. We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM in Ginkgo biloba, Adiantum aethiopicum and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and monilophytes were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. bioloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the monilophyte Asplenium x lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs.

  16. Tissue vascularization through 3D printing: Will technology bring us flow?

    Science.gov (United States)

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  17. Ebselen by modulating oxidative stress improves hypoxia-induced macroglial Müller cell and vascular injury in the retina.

    Science.gov (United States)

    Tan, Sih Min; Deliyanti, Devy; Figgett, William A; Talia, Dean M; de Haan, Judy B; Wilkinson-Berka, Jennifer L

    2015-07-01

    Oxidative stress is an important contributor to glial and vascular cell damage in ischemic retinopathies. We hypothesized that ebselen via its ability to reduce reactive oxygen species (ROS) and augment nuclear factor-like 2 (Nrf2) anti-oxidants would attenuate hypoxia-induced damage to macroglial Müller cells and also lessen retinal vasculopathy. Primary cultures of rat Müller cells were exposed to normoxia (21% O2), hypoxia (0.5% O2) and ebselen (2.5 μM) for up to 72 h. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice while control mice were housed in room air. Mice received vehicle (saline, 5% dimethyl sulfoxide) or ebselen (10 mg/kg) each day between postnatal days 6-18. In cultured Müller cells, flow cytometry for dihydroethidium revealed that ebselen reduced the hypoxia-induced increase in ROS levels, whilst increasing the expression of Nrf2-regulated anti-oxidant genes, heme oxygenase 1, glutathione peroxidase-1, NAD(P)H dehydrogenase quinone oxidoreductase 1 and glutamate-cysteine ligase. Moreover, in Müller cells, ebselen reduced the hypoxia-induced increase in protein levels of pro-angiogenic and pro-inflammatory factors including vascular endothelial growth factor, interleukin-6, monocyte chemoattractant-protein 1 and intercellular adhesion molecule-1, and the mRNA levels of glial fibrillary acidic protein (GFAP), a marker of Müller cell injury. Ebselen improved OIR by attenuating capillary vaso-obliteration and neovascularization and a concomitant reduction in Müller cell gliosis and GFAP. We conclude that ebselen protects against hypoxia-induced injury of retinal Müller cells and the microvasculature, which is linked to its ability to reduce oxidative stress, vascular damaging factors and inflammation. Agents such as ebselen may be potential treatments for retinopathies that feature oxidative stress-mediated damage to glia and the microvasculature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mitochondrial damage-associated molecular patterns and vascular function†

    Science.gov (United States)

    Wenceslau, Camilla Ferreira; McCarthy, Cameron G.; Szasz, Theodora; Spitler, Kathryn; Goulopoulou, Styliani; Webb, R. Clinton

    2014-01-01

    Immune system activation occurs not only due to foreign stimuli, but also due to endogenous molecules. As such, endogenous molecules that are released into the circulation due to cell death and/or injury alarm the immune system that something has disturbed homeostasis and a response is needed. Collectively, these molecules are known as damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs (mtDAMPs) are potent immunological activators due to the bacterial ancestry of mitochondria. Mitochondrial DAMPs are recognized by specific pattern recognition receptors of the innate immune system, some of which are expressed in the cardiovascular system. Cell death leads to release of mtDAMPs that may induce vascular changes by mechanisms that are currently not well understood. This review will focus on recently published evidence linking mtDAMPs and immune system activation to vascular dysfunction and cardiovascular disease. PMID:24569027

  19. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography

    Science.gov (United States)

    Campbell, J. P.; Zhang, M.; Hwang, T. S.; Bailey, S. T.; Wilson, D. J.; Jia, Y.; Huang, D.

    2017-02-01

    Optical coherence tomography angiography (OCTA) is a noninvasive method of 3D imaging of the retinal and choroidal circulations. However, vascular depth discrimination is limited by superficial vessels projecting flow signal artifact onto deeper layers. The projection-resolved (PR) OCTA algorithm improves depth resolution by removing projection artifact while retaining in-situ flow signal from real blood vessels in deeper layers. This novel technology allowed us to study the normal retinal vasculature in vivo with better depth resolution than previously possible. Our investigation in normal human volunteers revealed the presence of 2 to 4 distinct vascular plexuses in the retina, depending on location relative to the optic disc and fovea. The vascular pattern in these retinal plexuses and interconnecting layers are consistent with previous histologic studies. Based on these data, we propose an improved system of nomenclature and segmentation boundaries for detailed 3-dimensional retinal vascular anatomy by OCTA. This could serve as a basis for future investigation of both normal retinal anatomy, as well as vascular malformations, nonperfusion, and neovascularization.

  20. A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants.

    Science.gov (United States)

    Vera-Sirera, Francisco; De Rybel, Bert; Úrbez, Cristina; Kouklas, Evangelos; Pesquera, Marta; Álvarez-Mahecha, Juan Camilo; Minguet, Eugenio G; Tuominen, Hannele; Carbonell, Juan; Borst, Jan Willem; Weijers, Dolf; Blázquez, Miguel A

    2015-11-23

    Control of tissue dimensions in multicellular organisms requires the precise quantitative regulation of mitotic activity. In plants, where cells are immobile, tissue size is achieved through control of both cell division orientation and mitotic rate. The bHLH transcription factor heterodimer formed by target of monopteros5 (TMO5) and lonesome highway (LHW) is a central regulator of vascular width-increasing divisions. An important unanswered question is how its activity is limited to specify vascular tissue dimensions. Here we identify a regulatory network that restricts TMO5/LHW activity. We show that thermospermine synthase ACAULIS5 antagonizes TMO5/LHW activity by promoting the accumulation of SAC51-LIKE (SACL) bHLH transcription factors. SACL proteins heterodimerize with LHW-therefore likely competing with TMO5/LHW interactions-prevent activation of TMO5/LHW target genes, and suppress the over-proliferation caused by excess TMO5/LHW activity. These findings connect two thus-far disparate pathways and provide a mechanistic understanding of the quantitative control of vascular tissue growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Uterine Vascular Lesions

    Science.gov (United States)

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  2. MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation

    DEFF Research Database (Denmark)

    Schlosser, Anders; Pilecki, Bartosz; Hemstra, Line E.

    2016-01-01

    in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. APPROACH AND RESULTS: We produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular...... kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVβ3-dependent manner. CONCLUSIONS: MFAP4 regulates integrin αVβ3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular...

  3. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils

    Science.gov (United States)

    Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.

    2014-03-01

    Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.

  4. Neuropsychiatric symptoms in Vascular Cognitive Impairment: A systematic review

    Directory of Open Access Journals (Sweden)

    Chan Tiel

    Full Text Available Neuropsychiatric symptoms or Behavioral and Psychological Symptoms of Dementia (BPSD are common and invariably appear at some point during the course of the disease, mediated both by cerebrovascular disease and neurodegenerative processes. Few studies have compared the profiles of BPSD in Vascular Cognitive Impairment (VCI of different subtypes (subcortical or cortical and clinical stages (Vascular Cognitive Impairment No Dementia [VaCIND] and Vascular Dementia [VaD].Objective:To review the BPSD associated with different subtypes and stages of VCI using the Neuropsychiatric Inventory (NPI.Methods:Medline, Scielo and Lilacs databases were searched for the period January 2000 to December 2014, with the key words: "BPSD AND Vascular Dementia, "NPI AND Vascular Dementia" and "NPI AND VCI. Qualitative analysis was performed on studies evaluating BPSD in VCI, using the Neuropsychiatric Inventory (NPI.Results:A total of 82 studies were retrieved of which 13 were eligible and thus included. Among the articles selected, 4 compared BPSD in Subcortical Vascular Dementia (SVaD versus Cortical-Subcortical Vascular Dementia (CSVaD, 3 involved comparisons between SVaD and VaCIND, 1 study analyzed differences between CSVaD and VaCIND, while 5 studies assessed BPSD in CSVaD. Subcortical and Cortical-Subcortical VaD were associated predominantly with Apathy and Depression. VaCIND may present fewer behavioral symptoms than VaD.Conclusion:The profile of BPSD differs for different stages of VCI. Determining the most prevalent BPSD in VCI subtypes might be helpful for improving early diagnosis and management of these symptoms.

  5. Reduced endothelial activation after exercise is associated with improved HbA1c in patients with type 2 diabetes and coronary artery disease.

    Science.gov (United States)

    Byrkjeland, Rune; Njerve, Ida U; Arnesen, Harald; Seljeflot, Ingebjørg; Solheim, Svein

    2017-03-01

    We have previously reported insignificant changes in HbA 1c after exercise in patients with both type 2 diabetes and coronary artery disease. In this study, we investigated the effect of exercise on endothelial function and possible associations between changes in endothelial function and HbA 1c . Patients with type 2 diabetes and coronary artery disease ( n = 137) were randomised to 12 months exercise or standard follow-up. Endothelial function was assessed by circulating biomarkers (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, von Willebrand factor, tissue plasminogen activator antigen, asymmetric dimethylarginine and L-arginine/asymmetric dimethylarginine ratio). Differences between the randomised groups were analysed by analysis of covariance and correlations by Spearman's rho or Pearson's correlation. No effect of exercise on endothelial function was demonstrated. The changes in HbA 1c in the exercise group correlated with changes in E-selectin ( r = 0.56, p < 0.001), intercellular adhesion molecule-1 ( r = 0.27, p = 0.052), vascular cell adhesion molecule-1 ( r = 0.32, p = 0.022) and tissue plasminogen activator antigen ( r = 0.35, p =  0.011). HbA 1c decreased significantly more in patients with versus without a concomitant reduction in E-selectin ( p =  0.002), intercellular adhesion molecule-1 ( p =  0.011), vascular cell adhesion molecule-1 ( p =  0.028) and tissue plasminogen activator antigen ( p =  0.009). Exercise did not affect biomarkers of endothelial function in patients with both type 2 diabetes and coronary artery disease. However, changes in biomarkers of endothelial activation correlated with changes in HbA 1c , and reduced endothelial activation was associated with improved HbA 1c after exercise.

  6. The vascular surgery workforce: a survey of consultant vascular surgeons in the UK, 2014.

    Science.gov (United States)

    Harkin, D W; Beard, J D; Shearman, C P; Wyatt, M G

    2015-04-01

    The purpose of this study was to describe the demographics, training, and practice characteristics of consultant vascular surgeons across the UK to provide an assessment of current, and inform future prediction of workforce needs. A questionnaire was developed using a modified Delphi process to generate questionnaire items. The questionnaire was emailed to all consultant vascular surgeons (n = 450) in the UK who were members of the Vascular Society of Great Britain & Ireland. 352 consultant vascular surgeons from 95 hospital trusts across the UK completed the survey (78% response rate). The mean age was 50.6 years old, the majority (62%) were mid-career, but 24% were above the age of 55. Currently, 92% are men and only 8% women. 93% work full-time, with 60% working >50 hours, and 21% working >60 hours per week. The average team was 5 to 6 (range 2-10) vascular surgeons, with 23% working in a large team of ≥8. 17% still work in small teams of ≤3. Over 90% of consultant vascular surgeons perform the major index vascular surgery procedures (aneurysm repair, carotid endarterectomy, infra-inguinal bypass, amputation). While 84% perform standard endovascular abdominal aortic aneurysm repair (EVAR), <50% perform more complex endovascular aortic therapy. The majority of vascular surgeons "like their job" (85%) and are "satisfied" (69%) with their job. 34% of consultant vascular surgeons indicated they were "extremely likely" to retire within the next 10 years. This study provides the first detailed analysis of the new specialty of vascular surgery as practiced in the UK. There is a need to plan for a significant expansion in the consultant vascular surgeon workforce in the UK over the next 10 years to maintain the status quo. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Effectiveness of quantitative MAA SPECT/CT for the definition of vascularized hepatic volume and dosimetric approach: phantom validation and clinical preliminary results in patients with complex hepatic vascularization treated with yttrium-90-labeled microspheres.

    Science.gov (United States)

    Garin, Etienne; Lenoir, Laurence; Rolland, Yan; Laffont, Sophie; Pracht, Marc; Mesbah, Habiba; Porée, Philippe; Ardisson, Valérie; Bourguet, Patrick; Clement, Bruno; Boucher, Eveline

    2011-12-01

    The goal of this study was to assess the use of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) analysis for vascularized volume measurements in the use of the yttrium-90-radiolabeled microspheres (TheraSphere). A phantom study was conducted for the validation of SPECT/CT volume measurement. SPECT/CT quantitative analysis was used for the measurement of the volume of distribution of the albumin macroaggregates (MAA; i.e., the vascularized volume) in the liver and the tumor, and the total activity contained in the liver and the tumor in four consecutive patients presenting with a complex liver vascularization referred for a treatment with TheraSphere. SPECT/CT volume measurement proved to be accurate (mean error <7%) and reproducible (interobserver concordance 0.99). For eight treatments, in cases of complex hepatic vascularization, the hepatic volumes based on angiography and CT led to a relative overestimation or underestimation of the vascularized hepatic volume by 43.2 ± 32.7% (5-87%) compared with SPECT/CT analyses. The vascularized liver volume taken into account calculated from SPECT/CT data, instead of angiography and CT data, results in modifying the activity injected for three treatments of eight. Moreover, quantitative analysis of SPECT/CT allows us to calculate the absorbed dose in the tumor and in the healthy liver, leading to doubling of the injected activity for one treatment of eight. MAA SPECT/CT is accurate for volume measurements. It provides a valuable contribution to the therapeutic planning of patients presenting with complex hepatic vascularization, in particular for calculating the vascularized liver volume, the activity to be injected and the absorbed doses. Studies should be conducted to assess the role of quantitative MAA/SPECT CT in therapeutic planning.

  8. VASCULAR REMODELING AND HEART RATE VARIABILITY IN DIFFERENT ANTIHYPERTENSIVE THERAPIES

    Directory of Open Access Journals (Sweden)

    E. D. Golovanova

    2008-01-01

    Full Text Available Aim. To study the effect of the long-term antihypertensive monotherapy with indapamide (Arifon Retard, 1,5 mg/d, metoprolol tartrate (Egilok Retard, 50 mg/d and combined therapy with indapamide and perindopril (Noliprel Forte, 1 tab/d: perindopril 4 mg and indapamide 1,25 mg on pulse wave velocity (PWV, cardio-ankle vascular index (CAVI and the sympathetic system activity.Material and methods. 88 patients, aged 30-59 y.o. (32 normotensive patients, 56 with arterial hypertension [HT] of 1-2 grades were examined. Biological age (BA was determined by the linear regression and the vascular wall age (VWA was estimated with the use of volume sphygmography (“VaSera-1000”, “Fucuda Denshi”, Japan. 39 patients with HT were randomized into 3 parallel groups with studied therapies lasted for 6 months. PWV, CAVI of the vessels of elastic, muscular and mixed types, blood pressure, measured in upper and lower extremities and heart rate variability (HRV were determined before and at the end of the therapies.Results. BA and VWA were elevated in all of patients with HT as compared with normotensive patients. The reduction in PWV and CAVI of the vessels of elastic and mixed types, HRV increase were found in patients with Arifon Retard monotherapy. Monotherapy with metoprolol significantly improved HVR without any influence on the vascular remodeling. Noliprel Forte significantly decreased in blood pressure in the upper and lower extremities, PWV and CAVI of the vessels of all types, decreased in VWA and increased in parasympathetic drive.Conclusion. Long-term therapy with Arifon Retard and Noliprel Forte resulted in decrease in vascular remodeling and increase in HRV simultaneously with significant antihypertensive effect in patients with HT. Metoprolol low doses therapy resulted in normalization of autonomic drive independently on antihypertensive action.

  9. A multifaceted approach to maximize erectile function and vascular health.

    Science.gov (United States)

    Meldrum, David R; Gambone, Joseph C; Morris, Marge A; Ignarro, Louis J

    2010-12-01

    To review the role of various factors influencing vascular nitric oxide (NO) and cyclic GMP, and consequently, erectile function and vascular health. Pertinent publications are reviewed. Daily moderate exercise stimulates vascular NO production. Maintenance of normal body weight and waist/hip ratio allows NO stimulation by insulin. Decreased intake of fat, sugar, and simple carbohydrates rapidly converted to sugar reduces the adverse effects of fatty acids and sugar on endothelial NO production. Omega-3 fatty acids stimulate endothelial NO release. Antioxidants boost NO production and prevent NO breakdown. Folic acid, calcium, vitamin C, and vitamin E support the biochemical pathways leading to NO release. Cessation of smoking and avoidance of excessive alcohol preserve normal endothelial function. Moderate use of alcohol and certain proprietary supplements may favorably influence erectile and vascular function. Treatment of any remaining testosterone deficit will both increase erectile function and reduce any associated metabolic syndrome. After production of NO and cyclic GMP are improved, use of phosphodiesterase-5 inhibitors should result in greater success in treating remaining erectile dysfunction. Recent studies have also suggested positive effects of phosphodiesterase-5 inhibitors on vascular function. A multifaceted approach will maximize both erectile function and vascular health. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Automated tracking of the vascular tree on DSA images

    International Nuclear Information System (INIS)

    Alperin, N.; Hoffmann, K.R.; Doi, K.

    1990-01-01

    Determination of the vascular tree structure is important for reconstruction of three-dimensional vascular tree from biplane images, for assessment of the significance of a lesion, and for planning treatment for arteriovenous malformation. To automate these analyses, the authors of this paper are developing a method to determine the vascular tree structure from digital subtraction angiography (DSA) images. The authors have previously described a vessel tracking method, based on the double-square-box technique. To improve the tracking accuracy, they have developed and integrated with the previous method a connectivity test and guided-sector-search technique. The connectivity test, based on region growing techniques, eliminates tracking across nonvessel regions. The guided sector-search method incorporates information from a larger are of the image to guide the search for the next tracking point

  11. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    International Nuclear Information System (INIS)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man

    2014-01-01

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repair with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways

  12. Features and selection of vascular access devices.

    Science.gov (United States)

    Sansivero, Gail Egan

    2010-05-01

    To review venous anatomy and physiology, discuss assessment parameters before vascular access device (VAD) placement, and review VAD options. Journal articles, personal experience. A number of VAD options are available in clinical practice. Access planning should include comprehensive assessment, with attention to patient participation in the planning and selection process. Careful consideration should be given to long-term access needs and preservation of access sites. Oncology nurses are uniquely suited to perform a key role in VAD planning and placement. With knowledge of infusion therapy, anatomy and physiology, device options, and community resources, nurses can be key leaders in preserving vascular access and improving the safety and comfort of infusion therapy. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Kcne4 Deletion Sex-Dependently Alters Vascular Reactivity

    DEFF Research Database (Denmark)

    Abbott, Geoffrey W; Jepps, Thomas A

    2016-01-01

    transcripts, with no striking sex-specific differences. However, Kv7.4 protein expression in females was twice that in males, and was reduced in both sexes by Kcne4 deletion. Our findings confirm a crucial role for KCNE4 in regulation of Kv7 channel activity to modulate vascular tone, and provide the first......Voltage-gated potassium (Kv) channels formed by Kv7 (KCNQ) α-subunits are recognized as crucial for vascular smooth muscle function, in addition to their established roles in the heart (Kv7.1) and the brain (Kv7.2-5). In vivo, Kv7 α-subunits are often regulated by KCNE subfamily ancillary (β...... known molecular mechanism for sex-specificity of this modulation that has important implications for vascular reactivity and may underlie sex-specific susceptibility to cardiovascular diseases....

  14. Physicochemical hydrodynamics of porous structures in vascular plants

    Science.gov (United States)

    Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, Taejoo; Lee, Sang Joon

    2013-11-01

    Transport of sap flow through xylem conduits of vascular plants has been considered as a passive process, because the xylem conduits are regarded as inert, dead wood. However, plants can actively regulate water transport using ion-mediated response for adapting to environmental changes. In order to understand the active regulation mechanism of physicochemical hydrodynamics of porous structures in vascular plants, the effects of specific ion types and their ionic ratios on the water transport were experimentally investigated under in vivocondition. Based on the experimental results, the principle of ionic effects will be explained through in-vitro comparative experiments and theoretical considerations. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  15. The role of vitamin K in vascular calcification of patients with chronic kidney disease.

    Science.gov (United States)

    Wuyts, Julie; Dhondt, Annemieke

    2016-12-01

    Patients with chronic kidney disease (CKD) are prone to vascular calcification. Pathogenetic mechanisms of vascular calcifications have been broadly studied and discussed such as the role of hyperphosphatemia, hypercalcemia, parathormone, and vitamin D. In recent years, new insights have been gained pointing to vitamin K as a main actor. It has been discovered that vitamin K is an essential cofactor for the activation of matrix Gla protein (MGP), a calcification inhibitor in the vessel wall. Patients with CKD often suffer from vitamin K deficiency, resulting in low active MGP and eventually a lack of inhibition of vascular calcification. Vitamin K supplementation and switching warfarin to new oral anticoagulants are potential treatments. In addition, MGP may have a role as a non-invasive biomarker for vascular calcification.

  16. Choto-san in the treatment of vascular dementia: a double-blind, placebo-controlled study.

    Science.gov (United States)

    Terasawa, K; Shimada, Y; Kita, T; Yamamoto, T; Tosa, H; Tanaka, N; Saito, Y; Kanaki, E; Goto, S; Mizushima, N; Fujioka, M; Takase, S; Seki, H; Kimura, I; Ogawa, T; Nakamura, S; Araki, G; Maruyama, I; Maruyama, Y; Takaori, S

    1997-03-01

    In an earlier placebo-controlled study, we demonstrated that a kampo (Japanese herbal) medicine called Choto-san (Diao-Teng-San in Chinese) was effective in treating vascular dementia. To evaluate its efficacy using more objective criteria, we carried out a multi-center, double-blind study of Choto-san extract (7.5 g/day) and a placebo, each given three times a day for 12 weeks to patients suffering from this condition. The study enrolled and analyzed 139 patients, 50 males and 89 females, with a mean age of 76.6 years. Choto-san was statistically superior to the placebo in global improvement rating, utility rating, global improvement rating of subjective symptoms, global improvement rating of psychiatric symptoms and global improvement rating of disturbance in daily living activities. Such items as spontaneity of conversation, lack of facial expression, decline in simple mathematical ability, global intellectual ability, nocturnal delirium, sleep disturbance, hallucination or delusion, and putting on and taking off clothes were significantly improved at one or more evaluation points in those taking Choto-san compared to those taking the placebo. Furthermore, the change in revised version of Hasegawa's dementia scale from the beginning point in Choto-san group was tended to be higher than that in placebo group with no statistical significance. These results suggest that Choto-san is effective in the treatment of vascular dementia. Copyright © 1997 Gustav Fischer Verlag. Published by Elsevier GmbH.. All rights reserved.

  17. Relational databases for rare disease study: application to vascular anomalies.

    Science.gov (United States)

    Perkins, Jonathan A; Coltrera, Marc D

    2008-01-01

    To design a relational database integrating clinical and basic science data needed for multidisciplinary treatment and research in the field of vascular anomalies. Based on data points agreed on by the American Society of Pediatric Otolaryngology (ASPO) Vascular Anomalies Task Force. The database design enables sharing of data subsets in a Health Insurance Portability and Accountability Act (HIPAA)-compliant manner for multisite collaborative trials. Vascular anomalies pose diagnostic and therapeutic challenges. Our understanding of these lesions and treatment improvement is limited by nonstandard terminology, severity assessment, and measures of treatment efficacy. The rarity of these lesions places a premium on coordinated studies among multiple participant sites. The relational database design is conceptually centered on subjects having 1 or more lesions. Each anomaly can be tracked individually along with their treatment outcomes. This design allows for differentiation between treatment responses and untreated lesions' natural course. The relational database design eliminates data entry redundancy and results in extremely flexible search and data export functionality. Vascular anomaly programs in the United States. A relational database correlating clinical findings and photographic, radiologic, histologic, and treatment data for vascular anomalies was created for stand-alone and multiuser networked systems. Proof of concept for independent site data gathering and HIPAA-compliant sharing of data subsets was demonstrated. The collaborative effort by the ASPO Vascular Anomalies Task Force to create the database helped define a common vascular anomaly data set. The resulting relational database software is a powerful tool to further the study of vascular anomalies and the development of evidence-based treatment innovation.

  18. Physical Activity Improves Quality of Life

    Science.gov (United States)

    ... It Works Healthy Workplace Food and Beverage Toolkit Physical activity improves quality of life Updated:Mar 2,2015 ... proven to improve both mental and physical health. Physical activity boosts mental wellness. Regular physical activity can relieve ...

  19. Microvascular dysfunction with increased vascular leakage response in mice systemically exposed to arsenic.

    Science.gov (United States)

    Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan

    2014-09-01

    The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.

  20. Vascular responses to radiotherapy and androgen-deprivation therapy in experimental prostate cancer

    International Nuclear Information System (INIS)

    Røe, Kathrine; Mikalsen, Lars TG; Kogel, Albert J van der; Bussink, Johan; Lyng, Heidi; Ree, Anne H; Marignol, Laure; Olsen, Dag R

    2012-01-01

    Radiotherapy (RT) and androgen-deprivation therapy (ADT) are standard treatments for advanced prostate cancer (PC). Tumor vascularization is recognized as an important physiological feature likely to impact on both RT and ADT response, and this study therefore aimed to characterize the vascular responses to RT and ADT in experimental PC. Using mice implanted with CWR22 PC xenografts, vascular responses to RT and ADT by castration were visualized in vivo by DCE MRI, before contrast-enhancement curves were analyzed both semi-quantitatively and by pharmacokinetic modeling. Extracted image parameters were correlated to the results from ex vivo quantitative fluorescent immunohistochemical analysis (qIHC) of tumor vascularization (9 F1), perfusion (Hoechst 33342), and hypoxia (pimonidazole), performed on tissue sections made from tumors excised directly after DCE MRI. Compared to untreated (Ctrl) tumors, an improved and highly functional vascularization was detected in androgen-deprived (AD) tumors, reflected by increases in DCE MRI parameters and by increased number of vessels (VN), vessel density (VD), and vessel area fraction (VF) from qIHC. Although total hypoxic fractions (HF) did not change, estimated acute hypoxia scores (AHS) – the proportion of hypoxia staining within 50 μm from perfusion staining – were increased in AD tumors compared to in Ctrl tumors. Five to six months after ADT renewed castration-resistant (CR) tumor growth appeared with an even further enhanced tumor vascularization. Compared to the large vascular changes induced by ADT, RT induced minor vascular changes. Correlating DCE MRI and qIHC parameters unveiled the semi-quantitative parameters area under curve (AUC) from initial time-points to strongly correlate with VD and VF, whereas estimation of vessel size (VS) by DCE MRI required pharmacokinetic modeling. HF was not correlated to any DCE MRI parameter, however, AHS may be estimated after pharmacokinetic modeling. Interestingly, such

  1. Enhanced growth and improved vascular function in offspring from successive pregnancies in endothelial nitric oxide synthase knockout mice

    NARCIS (Netherlands)

    Longo, M; Jain, [No Value; Langenveld, J; Vedernikov, YP; Garfield, RE; Hankins, GDV; Anderson, GD; Saade, GR

    2004-01-01

    Objective: Transgenic mice that lack endothelial nitric oxide synthase have offspring with growth deficiency and abnormal vascular reactivity in later life. Our objective was to evaluate the role of parity in the modulation of the fetal programming of growth and vascular responses in these

  2. Usefulness of semiquantitative analysis of dipyridamole-thallium-201 redistribution for improving risk stratification before vascular surgery

    International Nuclear Information System (INIS)

    Levinson, J.R.; Boucher, C.A.; Coley, C.M.; Guiney, T.E.; Strauss, H.W.; Eagle, K.A.

    1990-01-01

    Preoperative dipyridamole-thallium-201 scanning is sensitive in identifying patients prone to ischemic cardiac complications after vascular surgery, but most patients with redistribution do not have an event after surgery. Therefore, its positive predictive value is limited. To determine which patients with thallium redistribution are at highest risk, dipyridamole-thallium-201 images were interpreted semiquantitatively. Sixty-two consecutive patients with redistribution on preoperative dipyridamole-thallium-201 planar imaging studies were identified. Each thallium scan was then analyzed independently by 2 observers for the number of myocardial segments out of 15, the number of thallium views out of 3 and the number of coronary artery territories with redistribution. Seventeen patients (27%) had postoperative ischemic events, including unstable angina pectoris, ischemic pulmonary edema, myocardial infarction and cardiac death. Thallium predictors of ischemic operative complications included thallium redistribution greater than or equal to 4 myocardial segments (p = 0.03), greater than or equal to 2 of the 3 planar views (p = 0.005) and greater than or equal to 2 coronary territories (p = 0.007). No patient with redistribution in only 1 view had an ischemic event (0 of 15). Thus, determining the extent of redistribution by dipyridamole-thallium-201 scanning improves risk stratification before vascular surgery. Patients with greater numbers of myocardial segments and greater numbers of coronary territories showing thallium-201 redistribution are at higher risk for ischemic cardiac complications. In contrast, when the extent of thallium redistribution is limited, there is a lower risk despite the presence of redistribution

  3. VEGF-A, cytoskeletal dynamics, and the pathological vascular phenotype

    International Nuclear Information System (INIS)

    Nagy, Janice A.; Senger, Donald R.

    2006-01-01

    Normal angiogenesis is a complex process involving the organization of proliferating and migrating endothelial cells (ECs) into a well-ordered and highly functional vascular network. In contrast, pathological angiogenesis, which is a conspicuous feature of tumor growth, ischemic diseases, and chronic inflammation, is characterized by vessels with aberrant angioarchitecture and compromised barrier function. Herein we review the subject of pathological angiogenesis, particularly that driven by vascular endothelial growth factor (VEGF-A), from a new perspective. We propose that the serious structural and functional anomalies associated with VEGF-A-elicited neovessels, reflect, at least in part, imbalances in the internal molecular cues that govern the ordered assembly of ECs into three dimensional vascular networks and preserve vessel barrier function. Adopting such a viewpoint widens the focus from solely on specific pro-angiogenic stimuli such as VEGF-A to include a key set of cytoskeletal regulatory molecules, the Rho GTPases, which are known to direct multiple aspects of vascular morphogenesis including EC motility, alignment, multi-cellular organization, as well as intercellular junction integrity. We offer this perspective to draw attention to the importance of endothelial cytoskeletal dynamics for proper neovascularization and to suggest new therapeutic strategies with the potential to improve the pathological vascular phenotype

  4. Cues for cellular assembly of vascular elastin networks

    Science.gov (United States)

    Kothapalli, Chandrasekhar R.

    Elastin, a structural protein distributed in the extracellular matrix of vascular tissues is critical to the maintenance of vascular mechanics, besides regulation of cell-signaling pathways involved in injury response and morphogenesis. Thus, congenital absence or disease-mediated degradation of vascular elastin and its malformation within native vessels due to innately poor elastin synthesis by adult vascular cells compromise vascular homeostasis. Current elastin regenerative strategies using tissue engineering principles are limited by the progressive destabilization of tropoelastin mRNA expression in adult vascular cells and the unavailability of scaffolds that can provide cellular cues necessary to up-regulate elastin synthesis and regenerate faithful mimics of native elastin. Since our earlier studies demonstrated the elastogenic utility of hyaluronan (HA)-based cues, we have currently sought to identify a unique set of culture conditions based on HA fragments (0.756-2000 kDa), growth factors (TGF-beta1, IGF-1) and other biomolecules (Cu2+ ions, LOX), which will together enhance synthesis, crosslinking, maturation and fibrous elastin matrix formation by adult SMCs, under both healthy and inflammatory conditions. It was observed that TGF-beta1 (1 ng/mL) together with HA oligomers (0.2 microg/mL) synergistically suppressed SMC proliferation, enhanced tropoelastin (8-fold) and matrix elastin synthesis (5.5-fold), besides improving matrix yield (4.5-fold), possibly by increasing production and activity of lysyl oxidase (LOX). Though addition of IGF-1 alone did not offer any advantage, HA fragments (20-200 kDa) in the presence of IGF-1 stimulated tropoelastin and soluble elastin synthesis more than 2.2-fold, with HMW HA contributing for ˜5-fold increase in crosslinked matrix elastin synthesis. Similarly, 0.1 M of Cu2+ ions, alone or together with HA fragments stimulated synthesis of tropoelastin (4-fold) and crosslinked matrix elastin (4.5-fold), via increases in

  5. Vascular pattern formation in plants.

    Science.gov (United States)

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Vascular injury is associated with increased mortality in winter sports trauma.

    Science.gov (United States)

    Eun, John C; Bronsert, Michael; Hansen, Kristine; Moulton, Steven L; Jazaeri, Omid; Nehler, Mark; Greenberg, Joshua I

    2015-01-01

    Trauma is the leading cause of injury and death for individuals aged 1-44 years. Up to 8% of the US population participates in winter sports, and although vascular injuries are uncommon in these activities, little is published in this area. We sought to identify the incidence, injury patterns, and outcomes of vascular injuries resulting from winter sports trauma. Patients with winter sports trauma and the subset with vascular injuries were identified by accessing the National Trauma Data Bank querying years 2007-2010. Patients with and without vascular injuries were then compared. Admission variables included transport time, emergency department hypotension (systolic blood pressure Injury Severity Score ≥ 25, fractures, solid organ injury, and vascular injury. Outcomes were analyzed and associations with vascular injuries were determined. A total of 2,298 patients were identified with winter sports-related trauma and 28 (1.2%) had associated vascular injuries. Overall, the top 3 injuries were head trauma (16.7%), thoracic vertebral fractures (5.5%), and lumbar vertebral fractures (5.1%). The most common associated vascular injures were to the popliteal artery (17.7%), splenic artery (14.7%), and brachial blood vessels (14.7%). In the entire cohort, 1 patient (0.04%) suffered an amputation and 15 patients (0.7%) died. There were no amputations in the vascular injury group. Mortality was 0.6% in patients without a vascular injury compared with 7.1% of those with a vascular injury (P = 0.01). Although vascular injury is an uncommon associated finding in winter sports trauma, it is associated with a significant increase in mortality. These findings highlight the need for rapid identification of traumatic vascular injuries, which predicts worse overall outcomes in this patient population. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Influence of L-citrulline and watermelon supplementation on vascular function and exercise performance.

    Science.gov (United States)

    Figueroa, Arturo; Wong, Alexei; Jaime, Salvador J; Gonzales, Joaquin U

    2017-01-01

    L-Citrulline, either synthetic or in watermelon, may improve vascular function through increased L-arginine bioavailability and nitric oxide synthesis. This article analyses potential vascular benefits of L-citrulline and watermelon supplementation at rest and during exercise. There is clear evidence that acute L-citrulline ingestion increases plasma L-arginine, the substrate for endothelial nitric oxide synthesis. However, the subsequent acute improvement in nitric oxide production and mediated vasodilation is inconsistent, which likely explains the inability of acute L-citrulline or watermelon to improve exercise tolerance. Recent studies have shown that chronic L-citrulline supplementation increases nitric oxide synthesis, decreases blood pressure, and may increase peripheral blood flow. These changes are paralleled by improvements in skeletal muscle oxygenation and performance during endurance exercise. The antihypertensive effect of L-citrulline/watermelon supplementation is evident in adults with prehypertension or hypertension, but not in normotensives. However, L-citrulline supplementation may attenuate the blood pressure response to exercise in normotensive men. The beneficial vascular effects of L-citrulline/watermelon supplementation may stem from improvements in the L-arginine/nitric oxide pathway. Reductions in resting blood pressure with L-citrulline/watermelon supplementation may have major implications for individuals with prehypertension and hypertension. L-Citrulline supplementation, but not acute ingestion, have shown to improve exercise performance in young healthy adults.

  8. Disruptive technological advances in vascular access for dialysis: an overview.

    Science.gov (United States)

    Yeo, Wee-Song; Ng, Qin Xiang

    2017-11-29

    End-stage kidney disease (ESKD), one of the most prevalent diseases in the world and with increasing incidence, is associated with significant morbidity and mortality. Current available modes of renal replacement therapy (RRT) include dialysis and renal transplantation. Though renal transplantation is the preferred and ideal mode of RRT, this modality may not be available to all patients with ESKD. Moreover, renal transplant recipients are constantly at risk of complications associated with immunosuppression and immunosuppressant use, and posttransplant lymphoproliferative disorder. Dialysis may be the only available modality in certain patients. However, dialysis has its limitations, which include issues associated with lack of vascular access, risks of infections and vascular thrombosis, decreased quality of life, and absence of biosynthetic functions of the kidney. In particular, the creation and maintenance of hemodialysis vascular access in children poses a unique set of challenges to the pediatric nephrologist owing to the smaller vessel diameters and vascular hyperreactivity compared with adult patients. Vascular access issues continue to be one of the major limiting factors prohibiting the delivery of adequate dialysis in ESKD patients and is the Achilles' heel of hemodialysis. This review aims to provide a critical overview of disruptive technological advances and innovations for vascular access. Novel strategies in preventing neointimal hyperplasia, novel bioengineered products, grafts and devices for vascular access will be discussed. The potential impact of these solutions on improving the morbidity encountered by dialysis patients will also be examined.

  9. ITE and TCDD differentially regulate the vascular remodeling of rat placenta via the activation of AhR.

    Science.gov (United States)

    Wu, Yanming; Chen, Xiao; Zhou, Qian; He, Qizhi; Kang, Jiuhong; Zheng, Jing; Wang, Kai; Duan, Tao

    2014-01-01

    Vascular remodeling in the placenta is essential for normal fetal development. The previous studies have demonstrated that in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an environmental toxicant) induces the intrauterine fetal death in many species via the activation of aryl hydrocarbon receptor (AhR). In the current study, we compared the effects of 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and TCDD on the vascular remodeling of rat placentas. Pregnant rats on gestational day (GD) 15 were randomly assigned into 5 groups, and were exposed to a single dose of 1.6 and 8.0 mg/kg body weight (bw) ITE, 1.6 and 8.0 µg/kg bw TCDD, or an equivalent volume of the vehicle, respectively. The dams were sacrificed on GD20 and the placental tissues were gathered. The intrauterine fetal death was observed only in 8.0 µg/kg bw TCDD-exposed group and no significant difference was seen in either the placental weight or the fetal weight among all these groups. The immunohistochemical and histological analyses revealed that as compared with the vehicle-control, TCDD, but not ITE, suppressed the placental vascular remodeling, including reduced the ratio of the placental labyrinth zone to the basal zone thickness (at least 0.71 fold of control), inhibited the maternal sinusoids dilation and thickened the trophoblastic septa. However, no marked difference was observed in the density of fetal capillaries in the labyrinth zone among these groups, although significant differences were detected in the expression of angiogenic growth factors between ITE and TCDD-exposed groups, especially Angiopoietin-2 (Ang-2), Endoglin, Interferon-γ (IFN-γ) and placenta growth factor (PIGF). These results suggest ITE and TCDD differentially regulate the vascular remodeling of rat placentas, as well as the expression of angiogenic factors and their receptors, which in turn may alter the blood flow in the late gestation and partially resulted in

  10. A new approach to the evaluation of peripheral vascular disease using the gamma camera

    International Nuclear Information System (INIS)

    Gerritsen, H.A.M.

    1976-01-01

    To estimate the degree of impaired perfusion in legs, and the extent of improvement after treatment, a functional test was developed using a gamma camera to follow the perfusion of intravenously injected sup(99m)Tc-pertechnetate. An analysis is given of normal and pathologic curve patterns. The influence of the severity of occlusive arterial disease on the arrival and distribution of radioactivity in the leg is demonstrated. After vascular surgery, changes in the curve pattern and the imaging of activity distribution reflected the function of the inserted bypass grafts. The test proved to be useful in the differentiation between patients with false claudication complaints due to non-arterial disease and patients with true claudication. It is concluded that the technique presented in this thesis can serve as a useful, non-invasive, screening test prior to arteriography and as a functional assessment of vascular reconstruction

  11. Renovated Parks Improve Physical Activity

    Centers for Disease Control (CDC) Podcasts

    We know that children who are physically active every day are less likely to develop chronic diseases as adults, including obesity. Dr. Sandy Slater, a researcher with the University of Illinois, Chicago Prevention Research Center, discusses how a park improvement project in Chicago helped engage communities to improve areas for play and activity.

  12. [Application of 1% lauromacrogol in the treatment of facial refractory hemangioma and vascular malformations].

    Science.gov (United States)

    Wang, Yin; Zhu, Fei; Ning, Jin-long; Li, Xiao-jing; Liu, Ye

    2012-11-01

    To investigate the clinical effect of 1% lauromacrogol for the treatment of facial refractory hemangioma and vascular malformation. From Sept 2009 to Nov 2011, 55 patients (20 male, 35 female, 1 month to 30 years) with different types of facial hemangiorwa and vascular malformation about 1.0 cm x (0. 5-5.0) cm x 10.0 cm in size, underwent 1% lauromacrogol intratumor injection therapy. Generally, the injection dose, concentration, frequency were determined by the age of the patients, the volume and depth of the lesion. The dose was limited to 10 mg every time. The injection interval is 14 weeks. After followed up for 3-16 months, 41 cases were cured, 9 cases were greatly improved, and 5 were partially improved. Skin necrosis happened in only 2 cases. Lauromacrogol is safe, simple and effective as a sderosing agent for the treatment of facial refractory hemangioma and vascular malformation. It provides a new and alternative way for the treatment of facial refractory hemangioma and vascular malformation.

  13. [The changes of serum angiotensin converting enzyme activity in Type 2 diabetes and its vascular complications].

    Science.gov (United States)

    Wu, H; Qu, S; Zhang, Y; Deng, J; Li, J; Zhou, J

    2000-09-01

    This investigation was made with reference to the changes of serum angiotensin converting enzyme (SACE) activity in type 2 diabetes and its vascular complications. SACE activity was studied in 127 type 2 diabetic patients and 90 healthy persons by using a spectrophotometric assay. The results showed SACE activity was obviously higher in diabetic patients (459.51 +/- 175.85 U) than in healthy persons (321.14 +/- 121.27 U); SACE activity was significantly higher in type 2 diabetic patients with diabetic nephropathy (548.27 +/- 166.60 U) than in patients without diabetic nephropathy (383.2 +/- 139.00 U), but there was no difference between patients with microalbuminuria and macroalbuminuria; no statistical difference was detected in SACE activity between diabetic patients with diabetic retinopathy (465.64 +/- 178.93 U) and without retinopathy (449.07 +/- 170.04 U); SACE activity was not associated with the course of diabetes, blood pressure, blood lipid and blood glucose. These data suggest that raised SACE activity might only play a role in the initiation of type 2 diabetes and diabetic nephropathy, but not relate to the progress of diabetic nephropathy, the onset of diabetic retinopathy and hypertension.

  14. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia.

    Science.gov (United States)

    Ola, Roxana; Dubrac, Alexandre; Han, Jinah; Zhang, Feng; Fang, Jennifer S; Larrivée, Bruno; Lee, Monica; Urarte, Ana A; Kraehling, Jan R; Genet, Gael; Hirschi, Karen K; Sessa, William C; Canals, Francesc V; Graupera, Mariona; Yan, Minhong; Young, Lawrence H; Oh, Paul S; Eichmann, Anne

    2016-11-29

    Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.

  15. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  16. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  17. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    International Nuclear Information System (INIS)

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey

    2013-01-01

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease

  18. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors.

    Science.gov (United States)

    Reichman, David E; Park, Laura; Man, Limor; Redmond, David; Chao, Kenny; Harvey, Richard P; Taketo, Makoto M; Rosenwaks, Zev; James, Daylon

    2018-01-08

    Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. © 2018. Published by The Company of Biologists Ltd.

  19. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122).......Vascularization is recognized to be the biggest challenge for the fabrication of tissues and finally, organs in vitro. So far, several fabrication techniques have been proposed to create a perfusable vasculature within hydrogels, however, the vascularization and perfusion of hydrogels...... with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...

  20. Clinical applications of robotic technology in vascular and endovascular surgery.

    Science.gov (United States)

    Antoniou, George A; Riga, Celia V; Mayer, Erik K; Cheshire, Nicholas J W; Bicknell, Colin D

    2011-02-01

    Emerging robotic technologies are increasingly being used by surgical disciplines to facilitate and improve performance of minimally invasive surgery. Robot-assisted intervention has recently been introduced into the field of vascular surgery to potentially enhance laparoscopic vascular and endovascular capabilities. The objective of this study was to review the current status of clinical robotic applications in vascular surgery. A systematic literature search was performed in order to identify all published clinical studies related to robotic implementation in vascular intervention. Web-based search engines were searched using the keywords "surgical robotics," "robotic surgery," "robotics," "computer assisted surgery," and "vascular surgery" or "endovascular" for articles published between January 1990 and November 2009. An evaluation and critical overview of these studies is reported. In addition, an analysis and discussion of supporting evidence for robotic computer-enhanced telemanipulation systems in relation to their applications in laparoscopic vascular and endovascular surgery was undertaken. Seventeen articles reporting on clinical applications of robotics in laparoscopic vascular and endovascular surgery were detected. They were either case reports or retrospective patient series and prospective studies reporting laparoscopic vascular and endovascular treatments for patients using robotic technology. Minimal comparative clinical evidence to evaluate the advantages of robot-assisted vascular procedures was identified. Robot-assisted laparoscopic aortic procedures have been reported by several studies with satisfactory results. Furthermore, the use of robotic technology as a sole modality for abdominal aortic aneurysm repair and expansion of its applications to splenic and renal artery aneurysm reconstruction have been described. Robotically steerable endovascular catheter systems have potential advantages over conventional catheterization systems

  1. Natural antioxidant ice cream acutely reduces oxidative stress and improves vascular function and physical performance in healthy individuals.

    Science.gov (United States)

    Sanguigni, Valerio; Manco, Melania; Sorge, Roberto; Gnessi, Lucio; Francomano, Davide

    2017-01-01

    The formation of reactive oxygen species (ROS) contributes to the pathogenesis and progression of several diseases. Polyphenols have been shown to be beneficial against ROS. The aim of this study was to evaluate the effects of a natural antioxidant ice cream on oxidative stress, vascular function, and physical performance. In this controlled, single-blind, crossover study, 14 healthy individuals were randomized to consume 100 g of either antioxidant ice cream containing dark cocoa powder and hazelnut and green tea extracts or milk chocolate ice cream (control ice cream). Participants were studied at baseline and 2 h after ingesting ice cream. Serum polyphenols, antioxidant status (ferric-reducing ability of plasma [FRAP]), nitric oxide (NOx) bioavailability, markers of oxidative stress (determination of reactive oxygen metabolites [d-ROMs] and hydrogen peroxide [H 2 O 2 ]), endothelium function (flow-mediated dilation [FMD] and reactive hyperemia index [RHI]), and exercise tolerance (stress test) were assessed, and the double product was measured. Serum polyphenols (P ice cream ingestion. No changes were found after control ice cream ingestion. To our knowledge, this is the first study to demonstrate that a natural ice cream rich in polyphenols acutely improved vascular function and physical performance in healthy individuals through a reduction in oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. In vitro model of vascularized bone: synergizing vascular development and osteogenesis.

    Directory of Open Access Journals (Sweden)

    Cristina Correia

    Full Text Available Tissue engineering provides unique opportunities for regenerating diseased or damaged tissues using cells obtained from tissue biopsies. Tissue engineered grafts can also be used as high fidelity models to probe cellular and molecular interactions underlying developmental processes. In this study, we co-cultured human umbilical vein endothelial cells (HUVECs and human mesenchymal stem cells (MSCs under various environmental conditions to elicit synergistic interactions leading to the colocalized development of capillary-like and bone-like tissues. Cells were encapsulated at the 1:1 ratio in fibrin gel to screen compositions of endothelial growth medium (EGM and osteogenic medium (OM. It was determined that, to form both tissues, co-cultures should first be supplied with EGM followed by a 1:1 cocktail of the two media types containing bone morphogenetic protein-2. Subsequent studies of HUVECs and MSCs cultured in decellularized, trabecular bone scaffolds for 6 weeks assessed the effects on tissue construct of both temporal variations in growth-factor availability and addition of fresh cells. The resulting grafts were implanted subcutaneously into nude mice to determine the phenotype stability and functionality of engineered vessels. Two important findings resulted from these studies: (i vascular development needs to be induced prior to osteogenesis, and (ii the addition of additional hMSCs at the osteogenic induction stage improves both tissue outcomes, as shown by increased bone volume fraction, osteoid deposition, close proximity of bone proteins to vascular networks, and anastomosis of vascular networks with the host vasculature. Interestingly, these observations compare well with what has been described for native development. We propose that our cultivation system can mimic various aspects of endothelial cell-osteogenic precursor interactions in vivo, and could find utility as a model for studies of heterotypic cellular interactions that

  3. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering.

    Science.gov (United States)

    Cai, Lei; Wang, Qian; Gu, Congmin; Wu, Jingguo; Wang, Jian; Kang, Ning; Hu, Jiewei; Xie, Fang; Yan, Li; Liu, Xia; Cao, Yilin; Xiao, Ran

    2011-11-01

    Bone tissue engineering (BTE) has been demonstrated an effective approach to generate bone tissue and repair bone defect in ectopic and orthotopic sites. The strategy of using a prevascularized tissue-engineered bone grafts (TEBG) fabricated ectopically to repair bone defects, which is called live bone graft surgery, has not been reported. And the quantitative advantages of vascularization and osteogenic environment in promoting engineered bone formation have not been defined yet. In the current study we generated a tissue engineered bone flap with a vascular pedicle of saphenous arteriovenous in which an organized vascular network was observed after 4 weeks implantation, and followed by a successful repaire of fibular defect in beagle dogs. Besides, after a 9 months long term observation of engineered bone formation in ectopic and orthotopic sites, four CHA (coral hydroxyapatite) scaffold groups were evaluated by CT (computed tomography) analysis. By the comparison of bone formation and scaffold degradation between different groups, the influences of vascularization and micro-environment on tissue engineered bone were quantitatively analyzed. The results showed that in the first 3 months vascularization improved engineered bone formation by 2 times of non-vascular group and bone defect micro-environment improved it by 3 times of ectopic group, and the CHA-scaffold degradation was accelerated as well. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Switching to multiple daily injection therapy with glulisine improves glycaemic control, vascular damage and treatment satisfaction in basal insulin glargine-injected diabetic patients.

    Science.gov (United States)

    Yanagisawa, Katsuyuki; Ashihara, Junya; Obara, Shinji; Wada, Norio; Takeuchi, Masayoshi; Nishino, Yuri; Maeda, Sayaka; Ishibashi, Yuji; Yamagishi, Sho-ichi

    2014-11-01

    Basal and bolus insulin therapy is required for strict blood control in diabetic patients, which could lead to prevention of vascular complications in diabetes. However, the optimal combination regimen is not well established. Fifty-nine diabetic patients (49 type 1 and 10 type 2; 52.9 ± 13.3 years old) whose blood glucose levels were uncontrolled (HbA1c  > 6.2%) by combination treatment of basal insulin glargine with multiple daily pre-meal injections of bolus short-acting insulin [aspart (n = 19), lispro (n = 37) and regular human insulin (n = 3)] for at least 8 weeks were enrolled in this study. We examined whether glycaemic control and vascular injury were improved by replacement of short-acting insulin with glulisine. Patient satisfaction was assessed with Diabetes Treatment Satisfaction Questionnaire. Although bolus and basal insulin doses were almost unchanged before and after replacement therapy, switching to glulisine insulin for 24 weeks significantly decreased level of HbA1c , advanced glycation end products (AGEs), soluble receptor for AGEs (sRAGE), monocyte chemoattractant protein-1 (MCP-1) and urinary albumin excretion. In multiple stepwise regression analysis, change in MCP-1 values from baseline (ΔMCP-1) was a sole determinant of log urinary albumin excretion. ΔAGEs and ΔsRAGE were independently correlated with each other. The relationship between ΔMCP-1 and ΔsRAGE was marginally significant (p = 0.05). Replacement of short-acting insulin by glulisine significantly increased Diabetes Treatment Satisfaction Questionnaire scores. Our present study suggests that combination therapy of glargine with multiple daily pre-meal injections of glulisine might show superior efficacy in controlling blood glucose, preventing vascular damage and improving treatment satisfaction in diabetic patients. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    International Nuclear Information System (INIS)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-01-01

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  6. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  7. Cardiac and Vascular Synergic Protective Effect of Olea europea L. Leaves and Hibiscus sabdariffa L. Flower Extracts

    Science.gov (United States)

    Micucci, Matteo; Gallina Toschi, Tullia; Di Lecce, Giuseppe; Aldini, Rita; Angeletti, Andrea; Chiarini, Alberto

    2015-01-01

    This study was aimed at investigating the cardiovascular effects of an Olea europea L. leaf extract (OEE), of a Hibiscus sabdariffa L. flower extract (HSE), and of their 13 : 2 w/w mixture in order to assess their cardiac and vascular activity. Both extracts were fully characterized in their bioactive compounds by HPLC-MS/MS analysis. The study was performed using primary vascular endothelial cells (HUVECs) to investigate the antioxidant and cytoprotective effect of the extracts and their mixture and isolated guinea-pig left and right atria and aorta to evaluate the inotropic and chronotropic activities and vasorelaxant properties. In cultured HUVECs, OEE and HSE reduced intracellular reactive oxygen species formation and improved cell viability, following oxidative stress in dose-dependent manner. OEE and HSE exerted negative inotropic and vasorelaxant effects without any chronotropic property. Interestingly, the mixture exerted higher cytoprotective effects and antioxidant activities. Moreover, the mixture exerted an inotropic effect similar to each single extract, while it revealed an intrinsic negative chronotropic activity different from the single extract; its relaxant activity was higher than that of each single extract. In conclusion OEE and HSE mixture has a good potential for pharmaceutical and nutraceutical application, thanks to the synergistic effects of the single phytochemicals. PMID:26180582

  8. Cardiac and Vascular Synergic Protective Effect of Olea europea L. Leaves and Hibiscus sabdariffa L. Flower Extracts.

    Science.gov (United States)

    Micucci, Matteo; Malaguti, Marco; Toschi, Tullia Gallina; Di Lecce, Giuseppe; Aldini, Rita; Angeletti, Andrea; Chiarini, Alberto; Budriesi, Roberta; Hrelia, Silvana

    2015-01-01

    This study was aimed at investigating the cardiovascular effects of an Olea europea L. leaf extract (OEE), of a Hibiscus sabdariffa L. flower extract (HSE), and of their 13 : 2 w/w mixture in order to assess their cardiac and vascular activity. Both extracts were fully characterized in their bioactive compounds by HPLC-MS/MS analysis. The study was performed using primary vascular endothelial cells (HUVECs) to investigate the antioxidant and cytoprotective effect of the extracts and their mixture and isolated guinea-pig left and right atria and aorta to evaluate the inotropic and chronotropic activities and vasorelaxant properties. In cultured HUVECs, OEE and HSE reduced intracellular reactive oxygen species formation and improved cell viability, following oxidative stress in dose-dependent manner. OEE and HSE exerted negative inotropic and vasorelaxant effects without any chronotropic property. Interestingly, the mixture exerted higher cytoprotective effects and antioxidant activities. Moreover, the mixture exerted an inotropic effect similar to each single extract, while it revealed an intrinsic negative chronotropic activity different from the single extract; its relaxant activity was higher than that of each single extract. In conclusion OEE and HSE mixture has a good potential for pharmaceutical and nutraceutical application, thanks to the synergistic effects of the single phytochemicals.

  9. Vascular Damage and Kidney Transplant Outcomes: An Unfriendly and Harmful Link.

    Science.gov (United States)

    Hernández, Domingo; Triñanes, Javier; Armas, Ana María; Ruiz-Esteban, Pedro; Alonso-Titos, Juana; Duarte, Ana; González-Molina, Miguel; Palma, Eulalia; Salido, Eduardo; Torres, Armando

    2017-07-01

    Kidney transplant (KT) is the treatment of choice for most patients with chronic kidney disease, but this has a high cardiovascular mortality due to traditional and nontraditional risk factors, including vascular calcification. Inflammation could precede the appearance of artery wall lesions, leading to arteriosclerosis and clinical and subclinical atherosclerosis in these patients. Additionally, mineral metabolism disorders and activation of the renin-angiotensin system could contribute to this vascular damage. Thus, understanding the vascular lesions that occur in KT recipients and the pathogenic mechanisms involved in their development could be crucial to optimize the therapeutic management and outcomes in survival of this population. This review focuses on the following issues: (1) epidemiological data framing the problem; (2) atheromatosis in KT patients: subclinical and clinical atheromatosis, involving ischemic heart disease, congestive heart failure, stroke and peripheral vascular disease; (3) arteriosclerosis and vascular calcifications; and (4) potential pathogenic mechanisms and their therapeutic targets. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  10. Supply and demand: Will we have enough vascular surgeons by 2030?

    Science.gov (United States)

    Williams, Katherine; Schneider, Brandon; Lajos, Paul; Marin, Michael; Faries, Peter

    2016-08-01

    The increase in prevalence of certain cardiovascular risk factors increases susceptibility to vascular disease, which may create demand for surgical intervention. In our study, data collected by the American Association of Medical Colleges Physician Specialty Databook of 2012, the United States Census Bureau, and other nationwide organizations were referenced to calculate future changes in vascular surgeon supply and prevalence of people at risk for vascular disease. In 2010, there were 2853 active vascular surgeons. By 2040, the workforce is expected to linearly rise to 3573. There will be an exponential rise in people with cardiovascular risk factors. Adding to concern, in 2030, an estimated 3333 vascular surgeons will be available for 180,000,000 people with at least one risk factor for peripheral arterial disease. The paucity of properly trained surgeons entering the workforce needs to be addressed before this shortage becomes a larger burden on healthcare providers and governmental spending. © The Author(s) 2015.

  11. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy.

    Science.gov (United States)

    Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas

    2011-08-01

    Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Contrast-enhanced Harmonic power Doppler ultrasonography: Improved depiction of vascularity and characterization of flow pattern in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Baek, Hyung Chul; Yoon, Kwon Ha; Kim, Chang Guhn; Park, Ki Han; Won, Jong Jin

    2000-01-01

    To evaluate the value of contrast-enhanced harmonic power Doppler ultrasonography (PDUS) in depiction and characterization of tumoral vascularity in hepatocellular carcinoma (HCC). Thirty-three patients with HCC were prospectively evaluated with harmonic PDUS before and after injection of the contrast agent SH U 508A (2.5g, 300 mg/ml ). Unenhanced and serial dynamic scans at 15, 30, 45, 60, 90, 120, 150, 180, 240, 300 seconds after injection of contrast agents were obtained using a tissue harmonic technique with power Doppler imaging. The tumoral vascularity was expressed as percentage of power Doppler area, which was measured quantitatively by a computerized program (Ultrasonic Imaging Tool; Soongsil University, Seoul, Korea). The grade (0, no signal; 1, less than 5%; 2, 5-25%; 3, more than 25%) and flow pattern (intratumoral, detour, basket, and mixed) of tumoral vascularity were analyzed. Peak time of contrast-enhancement was measured on each tumor. After injection of contrast agent, tumoral flow signals increased in all lesions (100%). At unenhanced harmonic PDUS, flow signals were detected in 17 HCCs (52%); 15 tumors (46%) demonstrated grade 1 vascularity; and two (6%), grade 2. At contrast-enhanced harmonic PDUS, all tumors were detected vascularity; five (15%) were grade 1; eight (24%), grade 2; and 20 (61%), grade 3. Flow patterns were demonstated as follows at unenhanced harmonic PDUS; intratumoral pattern in 13 tumors (76%), detour in 2 (12%), and basket in 2 (12%). After injection of contrast agent, intratumoral pattern in 7 tumors (21%), detour 0 (0%), basket in 3 (9%) and mixed in 23 (70%) were demonstrated. Peak time of enhancement after injection of contrast agent was 30- 90 seconds in majority of the patients. Contrast-enhanced harmonic PDUS would be valuable in depiction of vascularity and characterization of flow pattern in HCC.

  13. Contrast-enhanced Harmonic power Doppler ultrasonography: Improved depiction of vascularity and characterization of flow pattern in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hyung Chul; Yoon, Kwon Ha; Kim, Chang Guhn; Park, Ki Han; Won, Jong Jin [Wonkwang University School of Medicine, Iksa (Korea, Republic of)

    2000-12-15

    To evaluate the value of contrast-enhanced harmonic power Doppler ultrasonography (PDUS) in depiction and characterization of tumoral vascularity in hepatocellular carcinoma (HCC). Thirty-three patients with HCC were prospectively evaluated with harmonic PDUS before and after injection of the contrast agent SH U 508A (2.5g, 300 mg/ml ). Unenhanced and serial dynamic scans at 15, 30, 45, 60, 90, 120, 150, 180, 240, 300 seconds after injection of contrast agents were obtained using a tissue harmonic technique with power Doppler imaging. The tumoral vascularity was expressed as percentage of power Doppler area, which was measured quantitatively by a computerized program (Ultrasonic Imaging Tool; Soongsil University, Seoul, Korea). The grade (0, no signal; 1, less than 5%; 2, 5-25%; 3, more than 25%) and flow pattern (intratumoral, detour, basket, and mixed) of tumoral vascularity were analyzed. Peak time of contrast-enhancement was measured on each tumor. After injection of contrast agent, tumoral flow signals increased in all lesions (100%). At unenhanced harmonic PDUS, flow signals were detected in 17 HCCs (52%); 15 tumors (46%) demonstrated grade 1 vascularity; and two (6%), grade 2. At contrast-enhanced harmonic PDUS, all tumors were detected vascularity; five (15%) were grade 1; eight (24%), grade 2; and 20 (61%), grade 3. Flow patterns were demonstated as follows at unenhanced harmonic PDUS; intratumoral pattern in 13 tumors (76%), detour in 2 (12%), and basket in 2 (12%). After injection of contrast agent, intratumoral pattern in 7 tumors (21%), detour 0 (0%), basket in 3 (9%) and mixed in 23 (70%) were demonstrated. Peak time of enhancement after injection of contrast agent was 30- 90 seconds in majority of the patients. Contrast-enhanced harmonic PDUS would be valuable in depiction of vascularity and characterization of flow pattern in HCC.

  14. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  15. Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats.

    Science.gov (United States)

    Peyton, Kelly J; Liu, Xiao-Ming; Shebib, Ahmad R; Johnson, Fruzsina K; Johnson, Robert A; Durante, William

    2018-04-27

    This study investigated the temporal activation of arginase in obese Zucker rats (ZR) and determined if arginase inhibition prevents the development of hypertension and improves insulin resistance in these animals. Arginase activity, plasma arginine and nitric oxide (NO) concentration, blood pressure, and insulin resistance were measured in lean and obese animals. There was a chronological increase in vascular and plasma arginase activity in obese ZR beginning at 8 weeks of age. The increase in arginase activity in obese animals was associated with a decrease in insulin sensitivity and circulating levels of arginine and NO. The rise in arginase activity also preceded the increase in blood pressure in obese ZR detected at 12 weeks of age. Chronic treatment of 8-week-old obese animals with an arginase inhibitor or L-arginine for 4 weeks prevented the development of hypertension and improved plasma concentrations of arginine and NO. Arginase inhibition also improved insulin sensitivity in obese ZR while L-arginine supplementation had no effect. In conclusion, arginase inhibition prevents the development of hypertension and improves insulin sensitivity while L-arginine administration only mitigates hypertension in obese animals. Arginase represents a promising therapeutic target in ameliorating obesity-associated vascular and metabolic dysfunction.

  16. The adventitia: essential regulator of vascular wall structure and function.

    Science.gov (United States)

    Stenmark, Kurt R; Yeager, Michael E; El Kasmi, Karim C; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia V; Li, Min; Riddle, Suzette R; Frid, Maria G

    2013-01-01

    The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.

  17. Proatherogenic pathways leading to vascular calcification

    International Nuclear Information System (INIS)

    Mazzini, Michael J.; Schulze, P. Christian

    2006-01-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the western world and atherosclerosis is the major common underlying disease. The pathogenesis of atherosclerosis involves local vascular injury, inflammation and oxidative stress as well as vascular calcification. Vascular calcification has long been regarded as a degenerative process leading to mineral deposition in the vascular wall characteristic for late stages of atherosclerosis. However, recent studies identified vascular calcification in early stages of atherosclerosis and its occurrence has been linked to clinical events in patients with cardiovascular disease. Its degree correlates with local vascular inflammation and with the overall impact and the progression of atherosclerosis. Over the last decade, diverse and highly regulated molecular signaling cascades controlling vascular calcification have been described. Local and circulating molecules such as osteopontin, osteoprogerin, leptin and matrix Gla protein were identified as critical regulators of vascular calcification. We here review the current knowledge on molecular pathways of vascular calcification and their relevance for the progression of cardiovascular disease

  18. Early Detection System of Vascular Disease and Its Application Prospect

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2016-01-01

    Full Text Available Markers of imaging, structure, and function reflecting vascular damage, integrating a long time accumulation effect of traditional and unrecognized cardiovascular risk factors, can be regarded as surrogate endpoints of target organ damage before the occurrence of clinical events. Prevention of cardiovascular disease requires risk stratification and treatment of traditional risk factors, such as smoking, hypertension, hyperlipidemia, and diabetes. However, traditional risk stratification is not sufficient to provide accurate assessment of future cardiovascular events. Therefore, vascular injury related parameters obtained by ultrasound or other noninvasive devices, as a surrogate parameter of subclinical cardiovascular disease, can improve cardiovascular risk assessment and optimize the preventive treatment strategy. Thus, we will summarize the research progress and clinical application of early assessment technology of vascular diseases in the present review.

  19. TRPV1 channels in human skeletal muscle feed arteries: implications for vascular function.

    Science.gov (United States)

    Ives, Stephen J; Park, Song Young; Kwon, Oh Sung; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Richardson, Russell S

    2017-09-01

    What is the central question of this study? We sought to determine whether human skeletal muscle feed arteries (SFMAs) express TRPV 1 channels and what role they play in modulating vascular function. What is the main finding and its importance? Human SMFAs do express functional TRPV 1 channels that modulate vascular function, specifically opposing α-adrenergic receptor-mediated vasocontraction and potentiating vasorelaxation, in an endothelium-dependent manner, as evidenced by the α 1 -receptor-mediated responses. Thus, the vasodilatory role of TRPV 1 channels, and their ligand capsaicin, could be a potential therapeutic target for improving vascular function. Additionally, given the 'sympatholytic' effect of TRPV 1 activation and known endogenous activators (anandamide, reactive oxygen species, H + , etc.), TRPV 1 channels might contribute to functional sympatholysis during exercise. To examine the role of the transient receptor potential vanilloid type 1 (TRPV 1 ) ion channel in the vascular function of human skeletal muscle feed arteries (SMFAs) and whether activation of this heat-sensitive receptor could be involved in modulating vascular function, SMFAs from 16 humans (63 ± 5 years old, range 41-89 years) were studied using wire myography with capsaicin (TRPV 1 agonist) and without (control). Specifically, phenylephrine (α 1 -adrenergic receptor agonist), dexmedetomidine (α 2 -adrenergic receptor agonist), ACh and sodium nitroprusside concentration-response curves were established to assess the role of TRPV 1 channels in α-receptor-mediated vasocontraction as well as endothelium-dependent and -independent vasorelaxation, respectively. Compared with control conditions, capsaicin significantly attenuated maximal vasocontraction in response to phenylephrine [control, 52 ± 8% length-tension max (LT max ) and capsaicin, 21 ± 5%LT max ] and dexmedetomidine (control, 29 ± 12%LT max and capsaicin, 2 ± 3%LT max ), while robustly enhancing maximal

  20. The impact of various scaffold components on vascularized bone constructs.

    Science.gov (United States)

    Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila

    2017-06-01

    Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct

  1. Warfarin accelerated vascular calcification and worsened cardiac dysfunction in remnant kidney mice

    Directory of Open Access Journals (Sweden)

    Ming-Tsun Tsai

    2018-04-01

    Full Text Available Background: Vascular calcification is highly prevalent in end-stage renal disease (ESRD and is a significant risk factor for future cardiovascular events and death. Warfarin use results in dysfunction of matrix Gla protein, an inhibitor of vascular calcification. However, the effect of warfarin on vascular calcification in patients with ESRD is still not well characterized. Thus we investigated whether arterial calcification can be accelerated by warfarin treatment both in vitro and in vivo using a mouse remnant kidney model. Methods: Human aortic smooth muscle cells (HASMC were cultured in medium supplemented with warfarin and phosphate to investigate the potential role of this drug in osteoblast transdifferentiation. For in vivo study, adult male C57BL/6 mice underwent 5/6 nephrectomy were treated with active vitamin D3 plus warfarin to determine the extent of vascular calcification and parameters of cardiovascular function. Results: We found that the expressions of Runx2 and osteocalcin in HASMC were markedly enhanced in the culture medium containing warfarin and high phosphate concentration. Warfarin induced calcification of cultured HASMC in the presence of high phosphate levels, and this effect is inhibited by vitamin K2. Severe aortic calcification and reduced left ventricular ejection fractions were also noted in 5/6 nephrectomy mice treated with warfarin and active vitamin D3. Conclusion: Warfarin treatment contributes to the accelerated vascular calcification in animal models of advanced chronic kidney disease. Clinicians should therefore be aware of the profound risk of warfarin use on vascular calcification and cardiac dysfunction in patients with ESRD and atrial fibrillation. Keywords: Left ventricular dysfunction, Uremia, Vascular calcification, Warfarin

  2. Improvement of vascular function by acute and chronic treatment with the GPR30 agonist G1 in experimental diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Zi-lin Li

    Full Text Available The G-protein coupled estrogen receptor 30 (GPR30 is a seven-transmembrane domain receptor that mediates rapid estrogen responses in a wide variety of cell types. This receptor is highly expressed in the cardiovascular system, and exerts vasodilatory effects. The objective of the present study was to investigate the effects of GPR30 on vascular responsiveness in diabetic ovariectomized (OVX rats and elucidate the possible mechanism involved. The roles of GPR30 were evaluated in the thoracic aorta and cultured endothelial cells. The GPR30 agonist G1 induced a dose-dependent vasodilation in the thoracic aorta of the diabetic OVX rats, which was partially attenuated by the nitric oxide synthase (NOS inhibitor, nitro-L-arginine methylester (L-NAME and the GPR30-selective antagonist G15. Dose-dependent vasoconstrictive responses to phenylephrine were attenuated significantly in the rings of the thoracic aorta following the acute G1 administration in the diabetic OVX rats. This effect of G1 was abolished partially by L-NAME and G15. The acute administration of G1 increased significantly the eNOS activity and the concentration of NO in the endothelial cells exposed to high glucose. G1 treatment induced an enhanced endothelium-dependent relaxation to acetylcholine (Ach in the diabetic OVX rats. Further examination revealed that G1 induced vasodilation in the diabetic OVX rats by increasing the phosphorylation of eNOS. These findings provide preliminary evidence that GPR30 activation leads to eNOS activation, as well as vasodilation, to a certain degree and has beneficial effects on vascular function in diabetic OVX rats.

  3. Vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T

    2014-01-01

    Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review. © 2013 John Wiley & Sons Ltd.

  4. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads

    2017-01-01

    Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular...... by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement, to asses the protein amount and phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2...... %) and to 12 watts of active exercise (by 9 ± 1 %), indicating impaired vascular function. Reduced flow response to passive and active exercise was paralleled by a significant upregulation of Platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho...

  5. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure

    Science.gov (United States)

    Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.

    2013-01-01

    Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (psodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID

  6. Regional cerebral blood flow in vascular depression assessed by 123I-IMP SPECT

    International Nuclear Information System (INIS)

    Kimura, Mahito; Shimoda, Kengo; Mizumura, Sunao; Tateno, Amane; Fujito, Tatsuma; Mori, Takao; Endo, Shunkichi

    2003-01-01

    As the prevalence of white matter hyperintensities detected on T2 weighted MRI scans in patients with late-onset depression is higher than that in nondepressed patients, the concept of ''vascular depression'' (VDep) was introduced in 1997. However, the pathology of vascular depression has not been clarified. This study examined the differences in functional imaging between vascular and non-vascular depression (non-VDep). We utilized 123 I-IMP single photon emission computed tomography (SPECT) to compare regional cerebral blood flows (rCBF) between 9 patients with VDep (Krishnan criteria) and 11 age- and sex-matched patients with non-VDep in both depressed and remitted states. In both VDep and non-VDep patients, mean rCBF increased significantly as depression improved, partially aided by changes in left anterior temporal blood flow. In addition, compared to non-VDep patients, the left anterior frontal rCBF for VDep patients was significantly lower in both depressed and remitted states. Left anterior temporal rCBF therefore appears to represent a state marker that increases as symptoms associated with late-onset depression improve, regardless of vascular changes. Furthermore, in VDep patients, left anterior frontal rCBF was low in both states compared to non-VDep patients, and might not only represent a trait marker, but also correlated with the duration of disease and likelihood of recurrence and relapse. (author)

  7. Hospital costs associated with surgical site infections in general and vascular surgery patients.

    Science.gov (United States)

    Boltz, Melissa M; Hollenbeak, Christopher S; Julian, Kathleen G; Ortenzi, Gail; Dillon, Peter W

    2011-11-01

    Although much has been written about excess cost and duration of stay (DOS) associated with surgical site infections (SSIs) after cardiothoracic surgery, less has been reported after vascular and general surgery. We used data from the National Surgical Quality Improvement Program (NSQIP) to estimate the total cost and DOS associated with SSIs in patients undergoing general and vascular surgery. Using standard NSQIP practices, data were collected on patients undergoing general and vascular surgery at a single academic center between 2007 and 2009 and were merged with fully loaded operating costs obtained from the hospital accounting database. Logistic regression was used to determine which patient and preoperative variables influenced the occurrence of SSIs. After adjusting for patient characteristics, costs and DOS were fit to linear regression models to determine the effect of SSIs. Of the 2,250 general and vascular surgery patients sampled, SSIs were observed in 186 inpatients. Predisposing factors of SSIs were male sex, insulin-dependent diabetes, steroid use, wound classification, and operative time (P surgery. Although the excess costs and DOS associated with SSIs after general and vascular surgery are somewhat less, they still represent substantial financial and opportunity costs to hospitals and suggest, along with the implications for patient care, a continuing need for cost-effective quality improvement and programs of infection prevention. Copyright © 2011 Mosby, Inc. All rights reserved.

  8. Neuroprotection, learning and memory improvement of a standardized extract from Renshen Shouwu against neuronal injury and vascular dementia in rats with brain ischemia.

    Science.gov (United States)

    Wan, Li; Cheng, Yufang; Luo, Zhanyuan; Guo, Haibiao; Zhao, Wenjing; Gu, Quanlin; Yang, Xu; Xu, Jiangping; Bei, Weijian; Guo, Jiao

    2015-05-13

    The Renshen Shouwu capsule (RSSW) is a patented Traditional Chinese Medicine (TCM), that has been proven to improve memory and is widely used in China to apoplexy syndrome and memory deficits. To investigate the neuroprotective and therapeutic effect of the Renshen Shouwu standardized extract (RSSW) on ischemic brain neuronal injury and impairment of learning and memory related to Vascular Dementia (VD) induced by a focal and global cerebral ischemia-reperfusion injury in rats. Using in vivo rat models of both focal ischemia/reperfusion (I/R) injuries induced by a middle cerebral artery occlusion (MCAO), and VD with transient global brain I/R neuronal injuries induced by a four-vessel occlusion (4-VO) in Sprague-Dawley (SD) rats, RSSW (50,100, and 200 mg kg(-1) body weights) and Egb761® (80 mg kg(-1)) were administered orally for 20 days (preventively 6 days+therapeutically 14 days) in 4-VO rats, and for 7 days (3 days preventively+4 days therapeutically) in MCAO rats. Learning and memory behavioral performance was assayed using a Morris water maze test including a place navigation trial and a spatial probe trial. Brain histochemical morphology and hippocampal neuron survival was quantified using microscope assay of a puffin brain/hippocampus slice with cresyl violet staining. MCAO ischemia/reperfusion caused infarct damage in rat brain tissue. 4-VO ischemia/reperfusion caused a hippocampal neuronal lesion and learning and memory deficits in rats. Administration of RSSW (50, 100, and 200mg/kg) or EGb761 significantly reduced the size of the insulted brain hemisphere lesion and improved the neurological behavior of MCAO rats. In addition, RSSW markedly reduced an increase in the brain infarct volume from an I/R-induced MCAO and reduced the cerebral water content in a dose-dependent way. Administration of RSSW also increased the pyramidal neuronal density in the hippocampus of surviving rats after transient global brain ischemia and improved the learning and memory

  9. The influence of perivascular adipose tissue on vascular homeostasis.

    Science.gov (United States)

    Szasz, Theodora; Bomfim, Gisele Facholi; Webb, R Clinton

    2013-01-01

    The perivascular adipose tissue (PVAT) is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT.

  10. Vascular anatomy of the spinal cord

    International Nuclear Information System (INIS)

    Thron, A.K.

    1988-01-01

    The book summarizes the anatomic guidelines of external blood supply to the spinal cord. The basic principles of arterial supply and venous drainage are illustrated by explicit schemes for quick orientation. In the first part of the book, systematic radiologic-anatomic investigations of the superficial and deep vessels of all segments of the spinal cord are introduced. The microvascular morphology is portrayed by numerous microradiographic sections in all three dimensions without overshadowing. The three-dimensional representation of the vascular architecture illustrates elementary outlines and details of arterial territories, anastomotic cross-linking as well as the capillary system, particularly the hitherto unknown structure of the medullary venous system with its functionally important anastomoses and varying regional structures. These often now radiologic-anatomic findings are discussed as to their functional and pathophysiologic impact and constitute the basic on which to improve one's understanding of vascular syndromes of the spinal cord

  11. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jiajun; Yang, Ming [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Kosterin, Paul [Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Salzberg, Brian M. [Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Milovanova, Tatyana N.; Bhopale, Veena M. [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Thom, Stephen R., E-mail: sthom@smail.umaryland.edu [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  12. Dark chocolate consumption improves leukocyte adhesion factors and vascular function in overweight men.

    Science.gov (United States)

    Esser, Diederik; Mars, Monica; Oosterink, Els; Stalmach, Angelique; Müller, Michael; Afman, Lydia A

    2014-03-01

    Flavanol-enriched chocolate consumption increases endothelium-dependent vasodilation. Most research so far has focused on flow-mediated dilation (FMD) only; the effects on other factors relevant to endothelial health, such as inflammation and leukocyte adhesion, have hardly been addressed. We investigated whether consumption of regular dark chocolate also affects other markers of endothelial health, and whether chocolate enrichment with flavanols has additional benefits. In a randomized double-blind crossover study, the effects of acute and of 4 wk daily consumption of high flavanol chocolate (HFC) and normal flavanol chocolate (NFC) on FMD, augmentation index (AIX), leukocyte count, plasma cytokines, and leukocyte cell surface molecules in overweight men (age 45-70 yr) were investigated. Sensory profiles and motivation scores to eat chocolate were also collected. Findings showed that a 4 wk chocolate intake increased FMD by 1%, which was paralleled by a decreased AIX of 1%, decreased leukocyte cell count, decreased plasma sICAM1 and sICAM3, and decreased leukocyte adhesion marker expression (Peffect), with no difference between HFC and NFC consumption. Flavanol enrichment did affect taste and negatively affected motivation to consume chocolate. This study provides new insights on how chocolate affects endothelial health by demonstrating that chocolate consumption, besides improving vascular function, also lowers the adherence capacity of leukocytes in the circulation.

  13. Coexistence of pheochromocytoma with uncommon vascular lesions

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2012-01-01

    Full Text Available Background: Pheochromocytoma/paragangliomas have been described to be associated with rare vascular abnormalities like renal artery stenosis. Coexistence of physiologically significant renal artery lesions is a compounding factor that alters management and prognosis of pheochromocytoma patients. Apart from individual case reports, data on such association in Indian population is not available. The aim of this study is to find the nature and prevalence of associated vascular abnormalities. Materials and Methods: From 1990 to 2010, a total of 50 patients were diagnosed with pheochromocytoma/paragangliomas. Hospital charts of these patients were reviewed retrospectively to identify those with unusual vascular abnormalities. Available literature was also reviewed. Results: Of the 50 patients with pheochromocytoma, 7 (14% had coexisting vascular lesions including renal artery stenosis in 4, aortoarteritis in 1, aortic aneurysm in 1 and inferior vena cava thrombosis in 1. Pheochromocytoma was adrenal in 42 and extra adrenal in 8. Laparoscopic adrenalectomy was done in the patients. One patient with renal artery stenosis due to intimal fibrosis was subjected to percutaneous balloon angioplasty; the other three improved after adrenalectomy and lysis of fibrous adhesive bands. The patient with aortoarteritos was treated with oral steroids. Inferior vena cava thrombosis was reversed with anticoagulants. The patient with abdominal aortic aneurysm was advised for annual follow-up on account of its size of 4.5 cm and asymptomatic presentation. Conclusion: There are multiple mechanisms that can lead to renal artery stenosis and other vascular abnormalities in a case of pheochromocytoma. A high index of suspicion is necessary to enable both entities to be diagnosed preoperatively and allow proper planning of surgical therapy. Incomplete diagnosis may lead to persistent hypertension postoperatively in a case of associated renal artery stenosis.

  14. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Science.gov (United States)

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions

  15. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Directory of Open Access Journals (Sweden)

    Gemma Chiva-Blanch

    Full Text Available Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke.Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls.Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions.Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger

  16. Vascular injuries of the upper extremity Lesões vasculares de membros superiores

    Directory of Open Access Journals (Sweden)

    Raafat Shalabi

    2006-12-01

    Full Text Available OBJECTIVE: This study analyzes the causes of injuries, presentations, surgical approaches, outcome and complications of vascular trauma of the upper limbs, in spite of limited hospital resources. METHODS: A 5-year retrospective analysis. From 01/01/2001 to 31/12/2005, 165 patients were operated for vascular injuries at King Fahd Hospital, Medina, Saudi Arabia. Of all peripheral vascular trauma patients (115, upper limb trauma was present in 58. Diagnosis was made by physical examination and hand-held Doppler alone or in combination with Doppler scan/angiography. Primary vascular repair was performed whenever possible; otherwise, the interposition vein graft was used. Fasciotomy was considered when required. Patients with unsalvageable lower extremity injury requiring primary amputation were excluded from the study. RESULTS: Fifty patients were male (86% and eight were female (14%, aged between 2.5-55 years (mean 23 years. Mean duration of presentation was 8 h after the injury. The most common etiological factor was road traffic accidents, accounting for 50.5% in the blunt trauma group and 33% among all penetrating and stab wound injuries. Incidence of concomitant orthopedic injuries was very high in our study (51%. The brachial artery was the most affected (51%. Interposition vein grafts were used in 53% of the cases. Limb salvage rate was 100%. CONCLUSION: Patients who suffer vascular injuries of the upper extremities should be transferred to vascular surgery centers as soon as possible. Decisive management of peripheral vascular trauma will maximize patient survival and limb salvage. Priorities must be established in the management of associated injuries, and delay must be avoided when ischemic changes are present.OBJETIVO: Este estudo analisa as causas de lesões, apresentação, abordagens cirúrgicas, desfechos e complicações do trauma vascular de membros superiores, apesar de recursos hospitalares limitados. MÉTODOS: An

  17. Post-translational control of nitrate reductase activity responding to light and photosynthesis evolved already in the early vascular plants.

    Science.gov (United States)

    Nemie-Feyissa, Dugassa; Królicka, Adriana; Førland, Nina; Hansen, Margarita; Heidari, Behzad; Lillo, Cathrine

    2013-05-01

    Regulation of nitrate reductase (NR) by reversible phosphorylation at a conserved motif is well established in higher plants, and enables regulation of NR in response to rapid fluctuations in light intensity. This regulation is not conserved in algae NR, and we wished to test the evolutionary origin of the regulatory mechanism by physiological examination of ancient land plants. Especially a member of the lycophytes is of interest since their NR is candidate for regulation by reversible phosphorylation based on sequence analysis. We compared Selaginella kraussiana, a member of the lycophytes and earliest vascular plants, with the angiosperm Arabidopsis thaliana, and also tested the moss Physcomitrella patens. Interestingly, optimization of assay conditions revealed that S. kraussiana NR used NADH as an electron donor like A. thaliana, whereas P. patens NR activity depended on NADPH. Examination of light/darkness effects showed that S. kraussiana NR was rapidly regulated similar to A. thaliana NR when a differential (Mg(2+) contra EDTA) assay was used to reveal activity state of NR. This implies that already existing NR enzyme was post-translationally activated by light in both species. Light had a positive effect also on de novo synthesis of NR in S. kraussiana, which could be shown after the plants had been exposed to a prolonged dark period (7 days). Daily variations in NR activity were mainly caused by post-translational modifications. As for angiosperms, the post-translational light activation of NR in S. kraussiana was inhibited by 3-(3,4-dichlorophenyl)-1*1-dimethylurea (DCMU), an inhibitor of photosynthesis and stomata opening. Evolutionary, a post-translational control mechanism for NR have occurred before or in parallel with development of vascular tissue in land plants, and appears to be part of a complex mechanisms for coordination of CO2 and nitrogen metabolism in these plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation.

    Science.gov (United States)

    Aloni, Roni

    2013-11-01

    The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling signal in vascular differentiation. Its polar and non-polar transport pathways and major controlling mechanisms are clarified. Ethylene produced in differentiating protoxylem vessels is the signal that triggers lateral root initiation, while tumor-induced ethylene is a limiting and controlling factor of crown gall development and its vascular differentiation. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity and induces long fibers. Cytokinin from the root cap moves upward to promote cambial activity and stimulate shoot growth and branching, while strigolactone from the root inhibits branching. Furthermore, the role of the hormonal signals in controlling the type of differentiating vascular elements and gradients of conduit size and density, and how they regulate plant adaptation and have shaped wood evolution are elucidated.

  19. The inflammatory cells in vascular graft anastomosis an electron microscopy study.

    Science.gov (United States)

    Skóra, Jan; Pupka, Artur

    2011-01-01

    In order to determine the processes arising during the healing in vascular grafts the following experiment was desinged in 16 dogs. The animals underwent implantation of unilateral bypass aorto-femoral (straight prosthesis from politetrafluoroethylrne--PTFE). After the 6 months all the animals sacrificed and vascular grafts were dissected and exam in electron microscopy. There were significant differences in the histological findings in structure of neoitima between the proximal and distal anastomoses vascular prostheses. There were evidence of presence of fibroblasts but not macrophages in proximal anastomoses The histological structure of the proximal anastomoses indicates that inflammatory processes was ended during the prosthesis healing. There were presence of macrophages and myofibroblasts, some in the active secretion of collagen in distal anastomoses. Theses images of vascular anastomoses of artery with politerafluoroeth-ylene prosthesis corresponds to the chronic inflammatory reaction in distal anastomoses.

  20. Lean principles optimize on-time vascular surgery operating room starts and decrease resident work hours.

    Science.gov (United States)

    Warner, Courtney J; Walsh, Daniel B; Horvath, Alexander J; Walsh, Teri R; Herrick, Daniel P; Prentiss, Steven J; Powell, Richard J

    2013-11-01

    Lean process improvement techniques are used in industry to improve efficiency and quality while controlling costs. These techniques are less commonly applied in health care. This study assessed the effectiveness of Lean principles on first case on-time operating room starts and quantified effects on resident work hours. Standard process improvement techniques (DMAIC methodology: define, measure, analyze, improve, control) were used to identify causes of delayed vascular surgery first case starts. Value stream maps and process flow diagrams were created. Process data were analyzed with Pareto and control charts. High-yield changes were identified and simulated in computer and live settings prior to implementation. The primary outcome measure was the proportion of on-time first case starts; secondary outcomes included hospital costs, resident rounding time, and work hours. Data were compared with existing benchmarks. Prior to implementation, 39% of first cases started on time. Process mapping identified late resident arrival in preoperative holding as a cause of delayed first case starts. Resident rounding process inefficiencies were identified and changed through the use of checklists, standardization, and elimination of nonvalue-added activity. Following implementation of process improvements, first case on-time starts improved to 71% at 6 weeks (P = .002). Improvement was sustained with an 86% on-time rate at 1 year (P < .001). Resident rounding time was reduced by 33% (from 70 to 47 minutes). At 9 weeks following implementation, these changes generated an opportunity cost potential of $12,582. Use of Lean principles allowed rapid identification and implementation of perioperative process changes that improved efficiency and resulted in significant cost savings. This improvement was sustained at 1 year. Downstream effects included improved resident efficiency with decreased work hours. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All

  1. Pioglitazone Attenuates Vascular Fibrosis in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Dengfeng Gao

    2012-01-01

    Full Text Available Objective. We sought to investigate whether the peroxisome proliferator-activated receptor-γ (PPAR-γ ligand pioglitazone can attenuate vascular fibrosis in spontaneously hypertensive rats (SHRs and explore the possible molecular mechanisms. Methods. SHRs (8-week-old males were randomly divided into 3 groups (n=8 each for treatment: pioglitazone (10 mg/kg/day, hydralazine (25 mg/kg/day, or saline. Normal male Wistar Kyoto (WKY rats (n=8 served as normal controls. Twelve weeks later, we evaluated the effect of pioglitazone on vascular fibrosis by Masson’s trichrome and immunohistochemical staining of collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA.Vascular expression of PPAR-γ and connective tissue growth factor (CTGF and transforming growth factor-β (TGF-β expression were evaluated by immunohistochemical staining, western blot analysis, and real-time RT-PCR. Results. Pioglitazone and hydralazine treatment significantly decreased systolic blood pressure in SHRs. Masson’s trichrome staining for collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA indicated that pioglitazone significantly inhibited extracellular matrix production in the aorta. Compared with Wistar Kyoto rats, SHRs showed significantly increased vascular CTGF expression. Pioglitazone treatment significantly increased PPAR-γ expression and inhibited CTGF expression but had no effect on TGF-β expression. Conclusions. The results indicate that pioglitazone attenuated vascular fibrosis in SHRs by inhibiting CTGF expression in a TGF-β-independent mechanism.

  2. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-Abdominal Adhesions, and Arterial Injuries

    National Research Council Canada - National Science Library

    Folkman, Judah; Puder, Mark; Bischoff, Joyce

    2006-01-01

    ...) to develop angiogenesis inhibitors which would inhibit post-operative abdominal adhesions; and (iii) to isolate endothelial progenitor cells from blood capable of being expanded in vitro and applied to vascular grafts...

  3. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-Abdominal Adhesions, and Arterial Injuries

    National Research Council Canada - National Science Library

    Folkman, Judah; Puder, Mark; Bischoff, Joyce

    2007-01-01

    ...) to develop angiogenesis inhibitors which would inhibit post-operative abdominal adhesions; and, (iii) to isolate endothelial progenitor cells from blood, capable of being expanded in vitro and applied to vascular grafts...

  4. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-abdominal Adhesions, and Arterial Injuries

    National Research Council Canada - National Science Library

    Folkman, Judah

    2008-01-01

    ...) to develop angiogenesis inhibitors which would inhibit post-operative abdominal adhesions; and, (iii) to isolate endothelial progenitor cells from blood, capable of being expanded in vitro and applied to vascular grafts...

  5. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  6. Pediatric central nervous system vascular malformations

    International Nuclear Information System (INIS)

    Burch, Ezra A.; Orbach, Darren B.

    2015-01-01

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  7. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications.

    Science.gov (United States)

    Qi Nan, Wu; Ling, Zhang; Bing, Chen

    2015-06-01

    The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.

  8. Osteonecrosis of femoral head: Treatment by core decompression and vascular pedicle grafting

    Directory of Open Access Journals (Sweden)

    Babhulkar Sudhir

    2009-01-01

    Full Text Available Background: Femoral head-preserving core decompression and bone grafting have shown excellent result in preventing collapse. The use of vascularized grafts have shown better clinical results. The vascular pedicle bone graft is an easy to perform operation and does not require special equipment. We analyzed and report a series of patients of osteonecrosis of femoral head treated by core decompression and vascular pedicle grafting of part of iliac crest based on deep circumflex iliac vessels. Materials and Methods: The article comprises of the retrospective study of 31 patients of osteonecrosis of femoral head in stage II and III treated with core decompression and vascular pedicle grafting by using part of iliac crest with deep circumflex iliac vessels from January 1990 to December 2005. The young patients with a mean age 32 years (18-52 years with a minimum follow-up of five years were included for analysis. Sixteen patients had osteonecrosis following alcohol abuse, 12 patients following corticosteroid consumption, 3 patients had idiopathic osteonecrosis. Nine patients were stage IIB, and 22 patients were stage IIIC according to ARCO′s system. The core decompression and vascular pedicle grafting was performed by anterior approach by using part of iliac crest with deep circumflex iliac vessels. Results: Digital subtraction arteriography performed in 9 patients at the end of 12 weeks showed the patency of deep circumflex artery in all cases, and bone scan performed in 6 other patients showed high uptake in the grafted area of the femoral head proving the efficacy of the operative procedure. Out of 31 patients, only one patient progressed to collapse and total joint replacement was advised. At the final follow up period of 5-8 years, Harris Hip Score improved mean ± SD of 28.2 ± 6.4 ( p < 0.05. Forty-eight percent of patients had an improvement in Harris Hip Score of more that 28 points. Conclusion: The core decompression and vascular pedicle

  9. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jiwoo [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Ku, Sae-Kwang [Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 (Korea, Republic of); Lee, Suyeon [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Bae, Jong-Sup, E-mail: baejs@knu.ac.kr [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of)

    2016-06-10

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.

  10. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    International Nuclear Information System (INIS)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon; Bae, Jong-Sup

    2016-01-01

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.

  11. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  12. Inhibition of Vascular Smooth Muscle Growth via Signaling Crosstalk between AMP-Activated Protein Kinase and cAMP-Dependent Protein Kinase

    Directory of Open Access Journals (Sweden)

    Joshua Daniel Stone

    2012-10-01

    Full Text Available Abnormal vascular smooth muscle (VSM growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK and cAMP-dependent protein kinase (PKA. Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remains unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells, the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSM cell migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashions. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth.

  13. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction.

    Science.gov (United States)

    Fisher, Mark

    2008-01-01

    Vascular endothelial injury has multiple elements, and this article focuses on ischemia-related processes that have particular relevance to ischemic stroke. Distinctions between necrotic and apoptotic cell death provide a basic science context in which to better understand the significance of classical core and penumbra concepts of acute stroke, with apoptotic processes particularly prominent in the penumbra. The mitochondria are understood to serve as a reservoir of proteins that mediate apoptosis. Oxidative stress pathways generating reactive oxygen species (ROS) are prominent in endothelial injury, both ischemic and nonischemic, with prominent roles of enzyme- and nonenzymemediated pathways; mitochondria once again have a critical role, particularly in the nonenzymatic pathways generating ROS. Inflammation also contributes to vascular endothelial injury, and endothelial cells have the capacity to rapidly increase expression of inflammatory mediators following ischemic challenge; this leads to enhanced leukocyte-endothelial interactions mediated by selectins and adhesion molecules. Preconditioning consists of a minor version of an injurious event, which in turn may protect vascular endothelium from injury following a more substantial event. Presence of the blood-brain barrier creates unique responses to endothelial injury, with permeability changes due to impairment of endothelial-matrix interactions compounding altered vasomotor tone and tissue perfusion mediated by nitric oxide. Pharmacological protection against vascular endothelial injury can be provided by several of the phosphodiesterases (cilostazol and dipyridamole), along with statins. Optimal clinical responses for protection of brain vascular endothelium may use preconditioning as a model, and will likely require combined protection against apoptosis, ROS, and inflammation.

  14. Action research regarding the optimisation of radiological protection for nurses during vascular interventional radiology

    International Nuclear Information System (INIS)

    Mori, Hiroshige

    2015-01-01

    The optimisation and decision-making processes for radiological protection have been broadened by the introduction of re-examination or feedback after introducing protective measures. In this study, action research was used to reduce the occupational exposure of vascular interventional radiology (IR) nurses. Four radiological protection improvement measures were continuously performed in cooperation with the researchers, nurses and stakeholders, and the nurses’ annual effective doses were compared before and after the improvements. First, the dosimetry equipment was changed from one electronic personal dosimeter (EPD) to two silver-activated phosphate glass dosimeters (PGDs). Second, the nurses were educated regarding maintaining a safe distance from the sources of scattered and leakage radiation. Third, portable radiation shielding screens were placed in the IR rooms. Fourth, the x-ray units’ pulse rates were reduced by half. On changing the dosimetry method, the two PGDs recorded a 4.4 fold greater dose than the single EPD. Educating nurses regarding radiological protection and reducing the pulse rates by half decreased their effective doses to one-third and two-fifths of the baseline dose, respectively. No significant difference in their doses was detected after the placement of the shielding screens. Therefore, the action research effectively decreased the occupational doses of the vascular IR nurses. (practical matter)

  15. Action research regarding the optimisation of radiological protection for nurses during vascular interventional radiology.

    Science.gov (United States)

    Mori, Hiroshige

    2015-06-01

    The optimisation and decision-making processes for radiological protection have been broadened by the introduction of re-examination or feedback after introducing protective measures. In this study, action research was used to reduce the occupational exposure of vascular interventional radiology (IR) nurses. Four radiological protection improvement measures were continuously performed in cooperation with the researchers, nurses and stakeholders, and the nurses' annual effective doses were compared before and after the improvements. First, the dosimetry equipment was changed from one electronic personal dosimeter (EPD) to two silver-activated phosphate glass dosimeters (PGDs). Second, the nurses were educated regarding maintaining a safe distance from the sources of scattered and leakage radiation. Third, portable radiation shielding screens were placed in the IR rooms. Fourth, the x-ray units' pulse rates were reduced by half. On changing the dosimetry method, the two PGDs recorded a 4.4 fold greater dose than the single EPD. Educating nurses regarding radiological protection and reducing the pulse rates by half decreased their effective doses to one-third and two-fifths of the baseline dose, respectively. No significant difference in their doses was detected after the placement of the shielding screens. Therefore, the action research effectively decreased the occupational doses of the vascular IR nurses.

  16. Nucleotide Excision DNA Repair is Associated with Age-Related Vascular Dysfunction

    Science.gov (United States)

    Durik, Matej; Kavousi, Maryam; van der Pluijm, Ingrid; Isaacs, Aaron; Cheng, Caroline; Verdonk, Koen; Loot, Annemarieke E.; Oeseburg, Hisko; Musterd-Bhaggoe, Usha; Leijten, Frank; van Veghel, Richard; de Vries, Rene; Rudez, Goran; Brandt, Renata; Ridwan, Yanto R.; van Deel, Elza D.; de Boer, Martine; Tempel, Dennie; Fleming, Ingrid; Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Uitterlinden, Andre G.; Hofman, Albert; Duckers, Henricus J.; van Duijn, Cornelia M.; Oostra, Ben A.; Witteman, Jacqueline C.M.; Duncker, Dirk J.; Danser, A.H. Jan; Hoeijmakers, Jan H.; Roks, Anton J.M.

    2012-01-01

    Background Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. Conclusions Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease. PMID:22705887

  17. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    International Nuclear Information System (INIS)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-01-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of 3 H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena

  18. Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells

    Science.gov (United States)

    Montes de Oca, Addy; Guerrero, Fatima; Martinez-Moreno, Julio M.; Madueño, Juan A.; Herencia, Carmen; Peralta, Alan; Almaden, Yolanda; Lopez, Ignacio; Aguilera-Tejero, Escolastico; Gundlach, Kristina; Büchel, Janine; Peter, Mirjam E.; Passlick-Deetjen, Jutta; Rodriguez, Mariano; Muñoz-Castañeda, Juan R.

    2014-01-01

    Magnesium reduces vascular smooth muscle cell (VSMC) calcification in vitro but the mechanism has not been revealed so far. This work used only slightly increased magnesium levels and aimed at determining: a) whether inhibition of magnesium transport into the cell influences VSMC calcification, b) whether Wnt/β-catenin signaling, a key mediator of osteogenic differentiation, is modified by magnesium and c) whether magnesium can influence already established vascular calcification. Human VSMC incubated with high phosphate (3.3 mM) and moderately elevated magnesium (1.4 mM) significantly reduced VSMC calcification and expression of the osteogenic transcription factors Cbfa-1 and osterix, and up-regulated expression of the natural calcification inhibitors matrix Gla protein (MGP) and osteoprotegerin (OPG). The protective effects of magnesium on calcification and expression of osteogenic markers were no longer observed in VSMC cultured with an inhibitor of cellular magnesium transport (2-aminoethoxy-diphenylborate [2-APB]). High phosphate induced activation of Wnt/β-catenin pathway as demonstrated by the translocation of β-catenin into the nucleus, increased expression of the frizzled-3 gene, and downregulation of Dkk-1 gene, a specific antagonist of the Wnt/β-catenin signaling pathway. The addition of magnesium however inhibited phosphate-induced activation of Wnt/β-catenin signaling pathway. Furthermore, TRPM7 silencing using siRNA resulted in activation of Wnt/β-catenin signaling pathway. Additional experiments were performed to test the ability of magnesium to halt the progression of already established VSMC calcification in vitro. The delayed addition of magnesium decreased calcium content, down-regulated Cbfa-1 and osterix and up-regulated MGP and OPG, when compared with a control group. This effect was not observed when 2-APB was added. In conclusion, magnesium transport through the cell membrane is important to inhibit VSMC calcification in vitro

  19. Caveolin-1 influences vascular protease activity and is a potential stabilizing factor in human atherosclerotic disease.

    Directory of Open Access Journals (Sweden)

    Juan A Rodriguez-Feo

    Full Text Available Caveolin-1 (Cav-1 is a regulatory protein of the arterial wall, but its role in human atherosclerosis remains unknown. We have studied the relationships between Cav-1 abundance, atherosclerotic plaque characteristics and clinical manisfestations of atherosclerotic disease.We determined Cav-1 expression by western blotting in atherosclerotic plaques harvested from 378 subjects that underwent carotid endarterectomy. Cav-1 levels were significantly lower in carotid plaques than non-atherosclerotic vascular specimens. Low Cav-1 expression was associated with features of plaque instability such as large lipid core, thrombus formation, macrophage infiltration, high IL-6, IL-8 levels and elevated MMP-9 activity. Clinically, a down-regulation of Cav-1 was observed in plaques obtained from men, patients with a history of myocardial infarction and restenotic lesions. Cav-1 levels above the median were associated with absence of new vascular events within 30 days after surgery [0% vs. 4%] and a trend towards lower incidence of new cardiovascular events during longer follow-up. Consistent with these clinical data, Cav-1 null mice revealed elevated intimal hyperplasia response following arterial injury that was significantly attenuated after MMP inhibition. Recombinant peptides mimicking Cav-1 scaffolding domain (Cavtratin reduced gelatinase activity in cultured porcine arteries and impaired MMP-9 activity and COX-2 in LPS-challenged macrophages. Administration of Cavtratin strongly impaired flow-induced expansive remodeling in mice. This is the first study that identifies Cav-1 as a novel potential stabilizing factor in human atherosclerosis. Our findings support the hypothesis that local down-regulation of Cav-1 in atherosclerotic lesions contributes to plaque formation and/or instability accelerating the occurrence of adverse clinical outcomes. Therefore, given the large number of patients studied, we believe that Cav-1 may be considered as a novel target

  20. The defensive effect of benfotiamine in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Verma, Sanjali; Reddy, Krishna; Balakumar, Pitchai

    2010-10-01

    The present study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Sodium arsenite (1.5 mg(-1) kg(-1) day(-1) i.p., 2 weeks) was administered in rats to produce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating the serum and aortic concentrations of nitrite/nitrate. Further, the integrity of vascular endothelium in thoracic aorta was assessed by scanning electron microscopy. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of sodium arsenite markedly produced VED by attenuating acetylcholine-induced endothelium-dependent relaxation, decreasing serum and aortic concentrations of nitrite/nitrate, and impairing the integrity of vascular endothelium. Further, sodium arsenite produced oxidative stress by increasing serum TBARS and aortic superoxide generation. The treatment with benfotiamine (25, 50, and 100 mg(-1) kg(-1) day(-1) p.o.) or atorvastatin (30 mg(-1) kg(-1) day(-1) p.o., a standard agent) prevented sodium arsenite-induced VED and oxidative stress. However, the beneficial effects of benfotiamine in preventing the sodium arsenite-induced VED were attenuated by co-administration with N-omega-nitro-L: -arginine methyl ester (L: -NAME) (25 mg(-1) kg(-1) day(-1), i.p.), an inhibitor of NOS. Thus, it may be concluded that benfotiamine reduces oxidative stress and activates endothelial nitric oxide synthase to enhance the generation and bioavailability of NO and subsequently improves the integrity of vascular endothelium to prevent sodium arsenite-induced experimental VED.

  1. Pathogenesis of diabetic vascular disease: evidence for the role of reduced heparan sulfate proteoglycan

    DEFF Research Database (Denmark)

    Jensen, Tonny Joran

    1997-01-01

    that albuminuria is a marker of widespread vascular dysfunction. Increased transport of macromolecules across the vascular wall, elevated plasma levels of von Willebrand factor, and impaired fibrinolytic capacity have been demonstrated in albuminuric patients. The cause of this vascular vulnerability...... problems. What are the mechanisms of action of glycosaminoglycans at the molecular biology level, and how can we select compounds without anticoagulant activity suitable for long-term use in the prevention and treatment of late diabetic complications?...

  2. Specialized mouse embryonic stem cells for studying vascular development.

    Science.gov (United States)

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  3. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries

    Directory of Open Access Journals (Sweden)

    Charanpreet Singh

    2015-06-01

    Full Text Available Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants.

  4. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.

    Science.gov (United States)

    Tanaka, Leonardo Y; Laurindo, Francisco R M

    2017-08-01

    Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases. Copyright © 2017 Elsevier Inc. All

  5. Vascular lesions of the vocal fold.

    Science.gov (United States)

    Gökcan, Kürşat Mustafa; Dursun, Gürsel

    2009-04-01

    The aim of the study was to present symptoms, laryngological findings, clinical course, management modalities, and consequences of vascular lesions of vocal fold. This study examined 162 patients, the majority professional voice users, with vascular lesions regarding their presenting symptoms, laryngological findings, clinical courses and treatment results. The most common complaint was sudden hoarseness with hemorrhagic polyp. Microlaryngoscopic surgery was performed in 108 cases and the main indication of surgery was the presence of vocal fold mass or development of vocal polyp during clinical course. Cold microsurgery was utilized for removal of vocal fold masses and feeding vessels cauterized using low power, pulsed CO(2) laser. Acoustic analysis of patients revealed a significant improvement of jitter, shimmer and harmonics/noise ratio values after treatment. Depending on our clinical findings, we propose treatment algorithm where voice rest and behavioral therapy is the integral part and indications of surgery are individualized for each patient.

  6. The influence of perivascular adipose tissue on vascular homeostasis

    Directory of Open Access Journals (Sweden)

    Szasz T

    2013-03-01

    Full Text Available Theodora Szasz,1 Gisele Facholi Bomfim,2 R Clinton Webb1 1Department of Physiology, Georgia Regents University, Augusta, USA; 2Department of Pharmacology, University of São Paulo, São Paulo, Brazil Abstract: The perivascular adipose tissue (PVAT is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT. Keywords: adipokines

  7. Vascular malformations in pediatrics

    International Nuclear Information System (INIS)

    Reith, W.; Shamdeen, M.G.

    2003-01-01

    Vascular malformations are the cause of nearly all non-traumatic intracranial hemorrhage in children beyond the neonatal stage. Therefore, any child presenting with spontaneous intracranial hemorrhage should be evaluated for child abuse and for vascular malformations. Intracerebral malformations of the cerebral vasculature include vein of Galen malformations, arteriovenous malformation (AVM), cavernomas, dural arteriovenous fistulas, venous anomalies (DVA), and capillary teleangiectasies. Although a few familial vascular malformation have been reported, the majority are sporadic. Clinical symptoms, diagnostic and therapeutic options are discussed. (orig.) [de

  8. Inhibitory Effect of Chinese Propolis on Phosphatidylcholine-Specific Phospholipase C Activity in Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hongzhuan Xuan

    2011-01-01

    Full Text Available To understand the mechanisms underlying the anti-inflammatory action of Chinese propolis, we investigated its effect on the activity of phosphatidylcholine-specific phospholipase C (PC-PLC that plays critical roles in control of vascular endothelial cell (VEC function and inflammatory responses. Furthermore, p53 and reactive oxygen species (ROS levels and mitochondrial membrane potential (Δψm were investigated. Our data indicated that treatment of Chinese propolis 6.25 and 12.5 μg/ml for 12 hours increased VEC viability obviously. Exposure to Chinese propolis 6.25, 12.5, and 25 μg/ml for 6 and 12 hours significantly decreased PC-PLC activity and p53 level, and ROS levels were depressed by Chinese propolis 12.5 μg/ml and 25 μg/ml dramatically. The Δψm of VECs was not affected by Chinese propolis at low concentration but disrupted by the propolis at 25 μg/ml significantly, which indicated that Chinese propolis depressed PC-PLC activity and the levels of p53 and ROS in VECs but disrupted Δψm at a high concentration.

  9. Control of Vascular Streak Dieback Disease of Cocoa with Flutriafol Fungicides

    Directory of Open Access Journals (Sweden)

    Febrilia Nur'aini

    2014-12-01

    Full Text Available Vascular streak dieback caused by the fungus Oncobasidium theobromae is one of the important diseases in cocoa crop in Indonesia. One approach to control the disease is by using fungicides. The aim of this research was to determine the effect of class triazole fungicides to the intensity of the vascular streak dieback disease on cocoa seedling phase, immature and mature cocoa. Experiments were conducted in Kotta Blater, PTPN XII and Kaliwining, Indonesian  Coffee and Cocoa Research Institute. Flutriafol 250 g/l with a concentration 0,05%, 0,1% and 0,15% foliar sprayed on cocoa seedlings, immature and mature cocoa. Active compound combination of Azoxystrobin and Difenoconazole with 0,1% concentration used as a comparation fungicides. The result showed that Flutriafol with 0,05%, 0,1% and 0,15% concentration and Azoxystrobin & Difenoconazol with 0,1% concentration could suppress the vascular streak dieback disease on seedlings. On immature plants, the application of Flutriafol was not effectively suppress the vascular streak dieback disease whereas the fungicide comparison could suppress with the efficacy level of 46.22%. On mature plants,both of fungicides could not suppress the vascular streak dieback disease. Key words: Fungicide, cocoa, vascular streak dieback, triazole, flutriafol, azoxystrobin+difenoconazol

  10. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

    Science.gov (United States)

    Lee, Ted T.; García, José R.; Paez, Julieta I.; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J.

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  11. Treating fat grafts with human endothelial progenitor cells promotes their vascularization and improves their survival in diabetes mellitus.

    Science.gov (United States)

    Hamed, Saher; Ben-Nun, Ohad; Egozi, Dana; Keren, Aviad; Malyarova, Nastya; Kruchevsky, Danny; Gilhar, Amos; Ullmann, Yehuda

    2012-10-01

    Bone marrow-derived endothelial progenitor cells are required for vascularization of a fat graft to form a functional microvasculature within the graft and to facilitate its integration into the surrounding tissues. Organ transplantation carries a high risk of graft loss and rejection in patients with diabetes mellitus because endothelial progenitor cell function is impaired. The authors investigated the influence of endothelial progenitor cell treatment on the phenotype and survival of human fat grafts in immunocompromised mice with experimentally induced diabetes mellitus. The authors injected 1 ml of human fat tissue into the scalps of 14 nondiabetic and 28 diabetic immunocompromised mice, and then treated some of the grafts with endothelial progenitor cells that was isolated from the blood of a human donor. The phenotype of the endothelial progenitor cell-treated fat grafts from the 14 diabetic mice was compared with that of the untreated fat grafts from 14 nondiabetic and 14 diabetic mice, 18 days and 15 weeks after fat transplantation. Determination of graft phenotype included measurements of weight and volume, vascular endothelial growth factor levels, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and caspase 3 expression levels, and histologic analysis of the extent of vascularization. The untreated grafts from the diabetic mice were fully resorbed 15 weeks after fat transplantation. The phenotype of endothelial progenitor cell-treated fat grafts from the diabetic mice was similar to that of the untreated fat grafts from the nondiabetic mice. Endothelial progenitor cell treatment of transplanted fat can increase the survival of a fat graft by inducing its vascularization and decreasing the extent of apoptosis.

  12. Exercise training improves physical fitness and vascular function in children with type 1 diabetes

    NARCIS (Netherlands)

    Seeger, J.P.H.; Thijssen, D.H.J.; Noordam, K.; Cranen, M.E.; Hopman, M.T.E.; Nijhuis-Van der Sanden, M.W.G.

    2011-01-01

    Children with type 1 diabetes mellitus (DM1) show endothelial dysfunction and mild artery wall thickening compared to their age-matched healthy peers. In this study, we examined the effect of 18-week exercise training on physical fitness and vascular function and structure in children with DM1. We

  13. Panax ginseng extract attenuates neuronal injury and cognitive deficits in rats with vascular dementia induced by chronic cerebral hypoperfusion

    Directory of Open Access Journals (Sweden)

    Jun-De Zhu

    2018-01-01

    Full Text Available Panax ginseng is a slow-growing perennial plant. Panax ginseng extract has numerous biological activities, including antitumor, anti-inflammatory and antistress activities. Panax ginseng extract also has a cognition-enhancing effect in rats with alcohol-induced memory impairment. In this study, we partially occluded the bilateral carotid arteries in the rat to induce chronic cerebral hypoperfusion, a well-known model of vascular dementia. The rats were then intragastrically administered 50 or 100 mg/kg Panax ginseng extract. Morris water maze and balance beam tests were used to evaluate memory deficits and motor function, respectively. Protein quantity was used to evaluate cholinergic neurons. Immunofluorescence staining was used to assess the number of glial fibrillary acidic protein-positive cells. Western blot assay was used to evaluate protein levels of vascular endothelial growth factor, basic fibroblast growth factor, Bcl-2 and Bax. Treatment with Panax ginseng extract for 8 weeks significantly improved behavioral function and increased neuronal density and VEGF and bFGF protein expression in the hippocampal CA3 area. Furthermore, Panax ginseng extract reduced the number of glial fibrillary acidic protein-immunoreactive cells, and it decreased apoptosis by upregulating Bcl-2 and downregulating Bax protein expression. The effect of Panax ginseng extract was dose-dependent and similar to that of nimodipine, a commonly used drug for the treatment of vascular dementia. These findings suggest that Panax ginseng extract is neuroprotective against vascular dementia induced by chronic cerebral hypoperfusion, and therefore might have therapeutic potential for preventing and treating the disease.

  14. Expression of Vascular Endothelial Growth Factor Receptors in Benign Vascular Lesions of the Orbit: A Case Series.

    Science.gov (United States)

    Atchison, Elizabeth A; Garrity, James A; Castillo, Francisco; Engman, Steven J; Couch, Steven M; Salomão, Diva R

    2016-01-01

    Vascular lesions of the orbit, although not malignant, can cause morbidity because of their location near critical structures in the orbit. For the same reason, they can be challenging to remove surgically. Anti-vascular endothelial growth factor (VEGF) drugs are increasingly being used to treat diseases with prominent angiogenesis. Our study aimed to determine to what extent VEGF receptors and their subtypes are expressed on selected vascular lesions of the orbit. Retrospective case series of all orbital vascular lesions removed by one of the authors (JAG) at the Mayo Clinic. A total of 52 patients who underwent removal of vascular orbital lesions. The pathology specimens from the patients were retrieved, their pathologic diagnosis was confirmed, demographic and clinical information were gathered, and sections from vascular tumors were stained with vascular endothelial growth factor receptor (VEGFR), vascular endothelial growth factor receptor type 1 (VEGFR1), vascular endothelial growth factor receptor type 2 (VEGFR2), and vascular endothelial growth factor receptor type 3 (VEGFR3). The existence and pattern of staining with VEGF and its subtypes on these lesions. There were 28 specimens of venous malformations, 4 capillary hemangiomas, 7 lymphatic malformations, and 6 lymphaticovenous malformations. All samples stained with VEGF, 55% stained with VEGFR1, 98% stained with VEGFR2, and 96% stained with VEGFR3. Most (94%) of the VEGFR2 staining was diffuse. Most orbital vascular lesions express VEGF receptors, which may suggest a future target for nonsurgical treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  15. Separating the roles of nitrogen and oxygen in high pressure-induced blood-borne microparticle elevations, neutrophil activation, and vascular injury in mice.

    Science.gov (United States)

    Yang, Ming; Bhopale, Veena M; Thom, Stephen R

    2015-08-01

    An elevation in levels of circulating microparticles (MPs) due to high air pressure exposure and the associated inflammatory changes and vascular injury that occur with it may be due to oxidative stress. We hypothesized that these responses arise due to elevated partial pressures of N2 and not because of high-pressure O2. A comparison was made among high-pressure air, normoxic high-pressure N2, and high-pressure O2 in causing an elevation in circulating annexin V-positive MPs, neutrophil activation, and vascular injury by assessing the leakage of high-molecular-weight dextran in a murine model. After mice were exposed for 2 h to 790 kPa air, there were over 3-fold elevations in total circulating MPs as well as subgroups bearing Ly6G, CD41, Ter119, CD31, and CD142 surface proteins-evidence of neutrophil activation; platelet-neutrophil interaction; and vascular injury to brain, omentum, psoas, and skeletal muscles. Similar changes were found in mice exposed to high-pressure N2 using a gas mixture so that O2 partial pressure was the same as that of ambient air, whereas none of these changes occurred after exposures to 166 kPa O2, the same partial pressure that occurs during high-pressure air exposures. We conclude that N2 plays a central role in intra- and perivascular changes associated with exposure to high air pressure and that these responses appear to be a novel form of oxidative stress. Copyright © 2015 the American Physiological Society.

  16. Use of vascular access for haemodialysis in Europe

    DEFF Research Database (Denmark)

    Noordzij, Marlies; Jager, Kitty J; van der Veer, Sabine N

    2014-01-01

    BACKGROUND: Although arteriovenous fistulas (AVFs) are actively promoted, their use at the start of haemodialysis (HD) seems to be decreasing worldwide. In this paper, we describe recent trends in incidence and prevalence of vascular access types in Europe from 2005 to 2009 and their relationship...

  17. Towards the therapeutic use of vascular smooth muscle progenitor cells.

    Science.gov (United States)

    Merkulova-Rainon, Tatyana; Broquères-You, Dong; Kubis, Nathalie; Silvestre, Jean-Sébastien; Lévy, Bernard I

    2012-07-15

    Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.

  18. Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Sanjana Dayal

    Full Text Available There is an emerging consensus that hyperhomocysteinemia is an independent risk factor for cerebral vascular disease and that homocysteine-lowering therapy protects from ischemic stroke. However, the mechanisms by which hyperhomocysteinemia produces abnormalities of cerebral vascular structure and function remain largely undefined. Our objective in this study was to define the mechanistic role of superoxide in hyperhomocysteinemia-induced cerebral vascular dysfunction and hypertrophy. Unlike previous studies, our experimental design included a genetic approach to alter superoxide levels by using superoxide dismutase 1 (SOD1-deficient mice fed a high methionine/low folate diet to produce hyperhomocysteinemia. In wild-type mice, the hyperhomocysteinemic diet caused elevated superoxide levels and impaired responses to endothelium-dependent vasodilators in cerebral arterioles, and SOD1 deficiency compounded the severity of these effects. The cross-sectional area of the pial arteriolar wall was markedly increased in mice with SOD1 deficiency, and the hyperhomocysteinemic diet sensitized SOD1-deficient mice to this hypertrophic effect. Analysis of individual components of the vascular wall demonstrated a significant increase in the content of smooth muscle and elastin. We conclude that superoxide is a key driver of both cerebral vascular hypertrophy and vasomotor dysfunction in this model of dietary hyperhomocysteinemia. These findings provide insight into the mechanisms by which hyperhomocysteinemia promotes cerebral vascular disease and ischemic stroke.

  19. Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Harrison, Michael A; Tomlinson, Darren C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-07-01

    Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases.

  20. Arctigenin improves vascular tone and decreases inflammation in human saphenous vein.

    Science.gov (United States)

    Daci, Armond; Neziri, Burim; Krasniqi, Shaip; Cavolli, Raif; Alaj, Rame; Norata, Giuseppe Danilo; Beretta, Giangiacomo

    2017-09-05

    The goal of this study was to test the effects of bioactive phenylpropanoid dibenzylbutyrolactone lignan arctigenin (ATG) in vascular tone. Human bypass graft vessel, from a saphenous vein (SV), were set up in organ bath system and contracted with potassium chloride (KCl, 40mM). Two concentration-response curves of noradrenaline (NE) (10nM-100μM) separated with an incubation period of 30min without (Control) or with ATG (3-100μM) were established. Inhibitors of nitric oxide, prostaglandins, K + related channels or calcium influx were used to delineate the molecular mechanisms beyond ATG effects. To investigate anti-inflammatory actions, SV were treated with 10μM or 100μM ATG and incubated for 18h in the absence or presence of both interleukin-1beta (IL-1β) and lipopolysaccharide (LPS) to mimic the physiological or inflamed tissue conditions. Proatherogenic and inflammatory mediators İnterleukine-1 beta (IL-1β), Monocyte Chemoattractant Proteine-1 (MCP-1), Tumor Necrosis Factor- α (TNF-α), İnterleukine-6 (IL-6), Prostaglandin E 2 (PGE 2 ) and İnterleukine-8 (IL-8) in the supernatant were measured. ATG significantly decreased vascular contractile response to NE. Moreover, it reduced contractions induced by KCl and cumulative addition of CaCl 2. The mediators were significantly increased in inflammatory conditions compared to normal conditions, an effect which was inhibited by ATG (10 and 100µM). ATG reduces contractions in SV and decreases the production of proinflammatory-proatherogenic mediators, setting the stage for further evaluating the effect of ATG in cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Nilai Rerata Vascular Pedicle Width, Vascular Pedicle-Cardiac Ratio Vascular Pedicle-Thoracic Ratio Orang Dewasa Normal Indonesia Studi di RS dr. Cipto Mangunkusomo

    Directory of Open Access Journals (Sweden)

    Rommy Zunera

    2016-03-01

    Full Text Available Vascular pedicle width (VPW adalah jarak tepi luar vena kava superior ke tepi luar arteri subklavia kiri. Pemeriksaan VPW di foto toraks bersifat non-invasif, cepat dan mudah untuk memprediksi hipervolemia.Penelitian ini bertujuan untuk mengetahui rerata nilai VPW orang dewasa normal Indonesia. VPW diukurdengan dua metode: pertama pengukuran VPW tunggal yang akurasinya terbatas di foto toraks digital karenarelatif tidak dipengaruhi faktor magnifikasi. Metode kedua untuk foto toraks nondigital yaitu pengukuranrasio:vascular pedicle-cardiac ratio (VPCR dan vascular pedicle-thoracic ratio (VPTR. Pengukuran serupadilakukan terhadap  topogram CT scan toraks AP terlentang dan CT scan toraks lalu dibandingkan akurasipengukuran di topogram dengan CT scan  toraks sebagai standar baku. Sampel terdiri atas 104 foto toraksPA subyek normal dan 103 CT scan  toraks subyek terpilih. Pada pemeriksaan toraks PA didapatkan rerata VPW 48,0±5,5mm, rerata VPCR 40,3±4,6%, dan rerata VPTR 17,2±1,7%. Pada pemeriksaan topogram CTscan didapatkan rerata VPW 50,3±6,2mm, rerata VPTR 45±5,1%, dan rerata VPTR 19,8±2,5%. Rerata VPWpada CT scan toraks 50,4±6,1mm. Pengukuran di foto toraks AP 10% lebih besar dibandingkan pada fototoraks PA dan pengukuranVPW di foto toraks terbukti memiliki akurasi  tinggi. Kata kunci: fototoraks, vascular pedicle width, vascular pedicle-cardiac ratio, vascular pedicle-thoracic ratio, hipervolemia.   The Mean Value of Vascular Pedicle Width, Vascular Pedicle-Cardiac Ratio,Vascular Pedicle-Thoracic Ratio of Normal Indonesian Adult Study In dr. Cipto Mangunkusomo Hospital Abstract Vascular pedicle width (VPW is the distance, from a perpendicular line at the takeoff point of the left subclavian artery off the aorta to the point at which the superior vena cava. Measurement of VPW on chestx-ray is relatively non-invasive, fast and easy technique as  hypervolemia predictor. The purpose of thisstudy is to know the mean VPW value of normal

  2. Vascular dementia: Facts and controversies

    Directory of Open Access Journals (Sweden)

    Pavlović Aleksandra

    2013-01-01

    Full Text Available Vascular dementia (VaD is the second most frequent dementia after Alzheimer’s disease, and is diagnosed during lifetime in 20% of demented patients. Five­year survival rate in VaD is 39%, while it is estimated to be 75% in healthy persons of the same age. It is therefore important to make correct diagnosis of VaD early in the course of the disease. Risk factors for VaD are identical to stroke risk factors, and there are significant possibilities for the prevention of vascular cognitive decline. Cognitive decline develops acutely or step­by­step within three months after stroke, but more gradual progression of intellectual decline is also possible. Neurological examination can reveal pyramidal and extrapyramidal signs, pseudobulbar palsy, gait disturbance and urinary incontinence. Neuropsychological profile comprises the loss of cognitive set shifting, decline in word fluency, verbal learning difficulties, perseverations, difficulties in complex figure copying, and in patients with cortically located lesions also problems with speech and praxia. The basis of the diagnosis is, besides history, neurological examination and neuropsychological assessment, computed tomography and/ or magnetic resonance brain imaging. Vascular risk factors control is the most important measure in VaD prevention. Modern guidelines for the treatment of cognitive decline in VaD emphasize that donepezil can be useful in the improvement of cognitive status at the level of Class IIa recommendation at the level of evidence A, while memantine may be useful in patients with mixed VaD and Alzheimer’s disease dementia. [Projekat Ministarstva nauke Republike Srbije, br. 175022 i br. 175033

  3. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways

    International Nuclear Information System (INIS)

    Laxmanan, Sreenivas; Robertson, Stuart W.; Wang Enfeng; Lau, Julie S.; Briscoe, David M.; Mukhopadhyay, Debabrata

    2005-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that plays an important role in tumor growth and progression. Recent evidence suggests an alternate, albeit indirect, role of VEGF on host immune response to tumors. VEGF appears to diminish host immunity by altering the function of major antigen-presenting cells such as dendritic cells (DCs) [D.I. Gabrilovich, T. Ishida, S. Nadaf, J.E. Ohm, D.P. Carbone, Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function, Clin. Cancer Res. 5 (1999) 2963-2970, D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov, S. Nadaf, D.P. Carbone, Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo, Blood 92 (1998) 4150-4166, T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, D.I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells, J. Immunol. 160 (1998) 1224-1232.]. DCs are prime initiators of host immunity as they are known to activate both primary as well as secondary immune responses [J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka, Immunobiology of dendritic cells, Ann. Rev. Immunol. 18 (2000) 767-811.]. However, the exact nature of how VEGF suppresses DC function is not fully clear. In this report, we show that DCs cultured in the presence of VEGF are less potent in stimulating antigen-specific T-cells. Furthermore, by using DCs derived from Id1 -/- mice that are defective in Flt-1 signaling, we demonstrated that the inhibitory function of VEGF on DC function is most likely mediated by Flt-1. Thus, the role of VEGF in downregulating host immunity may highlight a unique role of VEGF in the pathogenesis of cancer

  4. Vascular quality of care pilot study: how admission to a vascular surgery service affects evidence-based pharmacologic risk factor modification in patients with lower extremity peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Steenhof N

    2014-06-01

    Full Text Available Naomi Steenhof,1,2 Francesca Le Piane,1 Kori Leblanc,1–3 Naomi R Eisenberg,4 Yvonne Kwan,1 Christine Malmberg,1,6 Alexandra Papadopoulos,5,7 Graham Roche-Nagle4,7,8 1Department of Pharmacy, University Health Network, 2Leslie Dan Faculty of Pharmacy, University of Toronto, 3Centre for Innovation in Complex Care, University Health Network, 4Division of Vascular Surgery, University Health Network, 5Faculty of Nursing, University of Toronto, Toronto, ON, 6Victoria General Hospital, Vancouver Island Health Authority, Victoria, BC, 7Peter Munk Cardiac Centre, University Health Network, 8Faculty of Medicine, University of Toronto, Toronto, ON, Canada Background: Peripheral arterial disease (PAD guidelines recommend aggressive risk factor modification to improve cardiovascular outcomes. Recommended pharmacologic therapies include antiplatelets, angiotensin converting enzyme (ACE inhibitors, and HMG-CoA-reductase inhibitors (statins. Purpose: We studied the degree to which patient admission to a vascular surgery service increased the use of these therapies. Patients and methods: The authors conducted a retrospective chart review of 150 patients with PAD admitted to the vascular surgery service at a large Canadian tertiary care hospital. The use of recommended pharmacologic therapies at the time of admission and discharge were compared. A multidisciplinary clinical team established criteria by which patients were deemed ineligible to receive any of the recommended therapies. Angiotensin receptor blockers (ARBs were considered an alternative to ACE inhibitors. Results: Prior to hospital admission, 64% of patients were on antiplatelet therapy, 67% were on an ACE inhibitor or ARB, and 71% were on a statin. At the time of discharge, 91% of patients were on an antiplatelet (or not, with an accepta