WorldWideScience

Sample records for activity exacerbates insulin

  1. Myeloid Cell-specific Disruption of Period1 and Period2 Exacerbates Diet-induced Inflammation and Insulin Resistance*

    Science.gov (United States)

    Xu, Hang; Li, Honggui; Woo, Shih-Lung; Kim, Sam-Moon; Shende, Vikram R.; Neuendorff, Nichole; Guo, Xin; Guo, Ting; Qi, Ting; Pei, Ya; Zhao, Yan; Hu, Xiang; Zhao, Jiajia; Chen, Lili; Chen, Lulu; Ji, Jun-Yuan; Alaniz, Robert C.; Earnest, David J.; Wu, Chaodong

    2014-01-01

    The circadian clockworks gate macrophage inflammatory responses. Given the association between clock dysregulation and metabolic disorders, we conducted experiments to determine the extent to which over-nutrition modulates macrophage clock function and whether macrophage circadian dysregulation is a key factor linking over-nutrition to macrophage proinflammatory activation, adipose tissue inflammation, and systemic insulin resistance. Our results demonstrate that 1) macrophages from high fat diet-fed mice are marked by dysregulation of the molecular clockworks in conjunction with increased proinflammatory activation, 2) global disruption of the clock genes Period1 (Per1) and Per2 recapitulates this amplified macrophage proinflammatory activation, 3) adoptive transfer of Per1/2-disrupted bone marrow cells into wild-type mice potentiates high fat diet-induced adipose and liver tissue inflammation and systemic insulin resistance, and 4) Per1/2-disrupted macrophages similarly exacerbate inflammatory responses and decrease insulin sensitivity in co-cultured adipocytes in vitro. Furthermore, PPARγ levels are decreased in Per1/2-disrupted macrophages and PPARγ2 overexpression ameliorates Per1/2 disruption-associated macrophage proinflammatory activation, suggesting that this transcription factor may link the molecular clockworks to signaling pathways regulating macrophage polarization. Thus, macrophage circadian clock dysregulation is a key process in the physiological cascade by which diet-induced obesity triggers macrophage proinflammatory activation, adipose tissue inflammation, and insulin resistance. PMID:24770415

  2. Myeloid cell-specific disruption of Period1 and Period2 exacerbates diet-induced inflammation and insulin resistance.

    Science.gov (United States)

    Xu, Hang; Li, Honggui; Woo, Shih-Lung; Kim, Sam-Moon; Shende, Vikram R; Neuendorff, Nichole; Guo, Xin; Guo, Ting; Qi, Ting; Pei, Ya; Zhao, Yan; Hu, Xiang; Zhao, Jiajia; Chen, Lili; Chen, Lulu; Ji, Jun-Yuan; Alaniz, Robert C; Earnest, David J; Wu, Chaodong

    2014-06-06

    The circadian clockworks gate macrophage inflammatory responses. Given the association between clock dysregulation and metabolic disorders, we conducted experiments to determine the extent to which over-nutrition modulates macrophage clock function and whether macrophage circadian dysregulation is a key factor linking over-nutrition to macrophage proinflammatory activation, adipose tissue inflammation, and systemic insulin resistance. Our results demonstrate that 1) macrophages from high fat diet-fed mice are marked by dysregulation of the molecular clockworks in conjunction with increased proinflammatory activation, 2) global disruption of the clock genes Period1 (Per1) and Per2 recapitulates this amplified macrophage proinflammatory activation, 3) adoptive transfer of Per1/2-disrupted bone marrow cells into wild-type mice potentiates high fat diet-induced adipose and liver tissue inflammation and systemic insulin resistance, and 4) Per1/2-disrupted macrophages similarly exacerbate inflammatory responses and decrease insulin sensitivity in co-cultured adipocytes in vitro. Furthermore, PPARγ levels are decreased in Per1/2-disrupted macrophages and PPARγ2 overexpression ameliorates Per1/2 disruption-associated macrophage proinflammatory activation, suggesting that this transcription factor may link the molecular clockworks to signaling pathways regulating macrophage polarization. Thus, macrophage circadian clock dysregulation is a key process in the physiological cascade by which diet-induced obesity triggers macrophage proinflammatory activation, adipose tissue inflammation, and insulin resistance.

  3. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome.

    Science.gov (United States)

    Lin, Yan-Jie; Juan, Chi-Chang; Kwok, Ching-Fai; Hsu, Yung-Pei; Shih, Kuang-Chung; Chen, Chin-Chang; Ho, Low-Tone

    2015-05-08

    activation, whereas remained insulin-induced ERK activation. ET-1 and insulin synergistically potentiated migration and proliferation mainly through ETAR/ERK dependent pathway, which is dominant in VSMCs during modest insulin resistance syndrome. Therefore, ET-1 and ETAR are potential targets responsible for the observed synergism effect in the hypertensive atherosclerotic process through enhancement of ET-1 binding, ET-1 binding, ETAR expression, and ET-1-induced mitogenic actions in aortic VSMCs.

  4. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yan-Jie [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China); Juan, Chi-Chang [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Kwok, Ching-Fai [Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Hsu, Yung-Pei [Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China); Shih, Kuang-Chung [Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chen, Chin-Chang [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Ho, Low-Tone, E-mail: ltho@vghtpe.gov.tw [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2015-05-08

    suppressed insulin-induced AKT activation, whereas remained insulin-induced ERK activation. ET-1 and insulin synergistically potentiated migration and proliferation mainly through ET{sub A}R/ERK dependent pathway, which is dominant in VSMCs during modest insulin resistance syndrome. Therefore, ET-1 and ET{sub A}R are potential targets responsible for the observed synergism effect in the hypertensive atherosclerotic process through enhancement of ET-1 binding, ET-1 binding, ET{sub A}R expression, and ET-1-induced mitogenic actions in aortic VSMCs. - Highlights: • ET-1/ET{sub A}R signaling and insulin-induced pERK were high in modest insulin resistance. • ET-1 via ET{sub A}R suppressed insulin-induced pAKT but remained intact pERK in VSMCs. • Insulin potentiated ET-1-induced VSMC mitogenic action was ET{sub A}R/ERK dependent.

  5. High Protein Intake Improves Insulin Sensitivity but Exacerbates Bone Resorption in Immobility (WISE Study)

    Science.gov (United States)

    Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie

    2012-01-01

    Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (pprotein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: pprotein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.

  6. Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Teng Wei-Ping

    2010-11-01

    Full Text Available Abstract Background Although increasing evidence has indicated that brain insulin dysfunction is a risk factor for Alzheimer disease (AD, the underlying mechanisms by which insulin deficiency may impact the development of AD are still obscure. Using a streptozotocin (STZ-induced insulin deficient diabetic AD transgenic mouse model, we evaluated the effect of insulin deficiency on AD-like behavior and neuropathology. Results Our data showed that administration of STZ increased the level of blood glucose and reduced the level of serum insulin, and further decreased the phosphorylation levels of insulin receptors, and increased the activities of glycogen synthase kinase-3α/β and c-Jun N-terminal kinase in the APP/PS1 mouse brain. We further showed that STZ treatment promoted the processing of amyloid-β (Aβ precursor protein resulting in increased Aβ generation, neuritic plaque formation, and spatial memory deficits in transgenic mice. Conclusions Our present data indicate that there is a close link between insulin deficient diabetes and cerebral amyloidosis in the pathogenesis of AD.

  7. Macrophage activation in acute exacerbation of idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Jonas Christian Schupp

    Full Text Available Acute exacerbation (AE of idiopathic pulmonary fibrosis (IPF is a common cause of disease acceleration in IPF and has a major impact on mortality. The role of macrophage activation in AE of IPF has never been addressed before.We evaluated BAL cell cytokine profiles and BAL differential cell counts in 71 IPF patients w/wo AE and in 20 healthy volunteers. Twelve patients suffered from AE at initial diagnosis while sixteen patients developed AE in the 24 months of follow-up. The levels of IL-1ra, CCL2, CCL17, CCL18, CCL22, TNF-α, IL-1β, CXCL1 and IL-8 spontaneously produced by BAL-cells were analysed by ELISA.In patients with AE, the percentage of BAL neutrophils was significantly increased compared to stable patients. We found an increase in the production rate of the pro-inflammatory cytokines CXCL1 and IL-8 combined with an increase in all tested M2 cytokines by BAL-cells. An increase in CCL18 levels and neutrophil counts during AE was observed in BAL cells from patients from whom serial lavages were obtained. Furthermore, high baseline levels of CCL18 production by BAL cells were significantly predictive for the development of future AE.BAL cell cytokine production levels at acute exacerbation show up-regulation of pro-inflammatory as well as anti-inflammatory/ M2 cytokines. Our data suggest that AE in IPF is not an incidental event but rather driven by cellular mechanisms including M2 macrophage activation.

  8. Diclofenac derivatives with insulin-sensitizing activity

    Institute of Scientific and Technical Information of China (English)

    Jian Ta Wang; Ying Wang; Ji Quan Zhang; Xing Cui; Yi Zhang; Gao Feng Zhu; Lei Tang

    2011-01-01

    A series of diclofenac derivatives were synthesized. The insulin-sensitizing activity of 28 new compounds was evaluated in 3T3-L1 cells. The compounds 10a and 10f exhibited similar insulin-sensitizing activity with positive drag rosiglitazone.

  9. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets.

    Science.gov (United States)

    Park, Sunmin; Yoo, Kyung Min; Hyun, Joo Suk; Kang, Suna

    2017-02-01

    Intermittent fasting (IMF) is a relatively new dietary approach to weight management, although the efficacy and adverse effects have not been full elucidated and the optimal diets for IMF are unknown. We tested the hypothesis that a one-meal-per-day intermittent fasting with high fat (HF) or protein (HP) diets can modify energy, lipid, and glucose metabolism in normal young male Sprague-Dawley rats with diet-induced obesity or overweight. Male rats aged 5 weeks received either HF (40% fat) or HP (26% protein) diets ad libitum (AL) or for 3 h at the beginning of the dark cycle (IMF) for 5 weeks. Epidydimal fat pads and fat deposits in the leg and abdomen were lower with HP and IMF. Energy expenditure at the beginning of the dark cycle, especially from fat oxidation, was higher with IMF than AL, possibly due to greater activity levels. Brown fat content was higher with IMF. Serum ghrelin levels were higher in HP-IMF than other groups, and accordingly, cumulative food intake was also higher in HP-IMF than HF-IMF. HF-IMF exhibited higher area under the curve (AUC) of serum glucose at the first part (0-40 min) during oral glucose tolerance test, whereas AUC of serum insulin levels in both parts were higher in IMF and HF. During intraperitoneal insulin tolerance test, serum glucose levels were higher with IMF than AL. Consistently, hepatic insulin signaling (GLUT2, pAkt) was attenuated and PEPCK expression was higher with IMF and HF than other groups, and HOMA-IR revealed significantly impaired attenuated insulin sensitivity in the IMF groups. However, surprisingly, hepatic and skeletal muscle glycogen storage was higher in IMF groups than AL. The higher glycogen storage in the IMF groups was associated with the lower expression of glycogen phosphorylase than the AL groups. In conclusion, IMF especially with HF increased insulin resistance, possibly by attenuating hepatic insulin signaling, and lowered glycogen phosphorylase expression despite decreased fat mass in young

  10. Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function

    DEFF Research Database (Denmark)

    Mottillo, Emilio P; Desjardins, Eric M; Crane, Justin D

    2016-01-01

    Brown (BAT) and white (WAT) adipose tissues play distinct roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The AMP-activated protein kinase (AMPK) is a cellular energy sensor, but its role...... in mitochondrial structure, function, and markers of mitophagy. In response to a high-fat diet, iβ1β2AKO mice more rapidly developed liver steatosis as well as glucose and insulin intolerance. Thus, AMPK in adipocytes is vital for maintaining mitochondrial integrity, responding to pharmacological agents...

  11. Effect of insulin and glucose on the activity of insulin-degrading enzymes in rat liver.

    Science.gov (United States)

    Jurcovicová, J; Németh, S; Vigas, M

    1977-09-01

    The degradation of insulin by insulin protease and glutathion-insulin transhydrogenase (glutathioneproteindisulphide oxidoreductase--EC 1.8.4.2, GIT) was measured in rat liver either after replacing food and water by 15% glucose solution, or after daily insulin administration 8 U daily for 3 days or after fasting. The breakdown of radioiodinated insulin was followed by measuring the increase of TCA soluble radioactivity during incubation of cell fractions with 125I insulin at 37 degrees C. The highest GIT activity was observed in liver microsomes of rats after glucose feeding and after insulin administration, whereas enzyme activity of fasted animals did not essentially differ from corresponding values of normally fed controls. The insulin protease in cytosol of liver cells remained unchanged after these procedures. The important role of GIT in insulin degradation seems to be conclusively demonstrated.

  12. Insulin-Dependent Activation of MCH Neurons Impairs Locomotor Activity and Insulin Sensitivity in Obesity.

    Science.gov (United States)

    Hausen, A Christine; Ruud, Johan; Jiang, Hong; Hess, Simon; Varbanov, Hristo; Kloppenburg, Peter; Brüning, Jens C

    2016-12-06

    Melanin-concentrating-hormone (MCH)-expressing neurons (MCH neurons) in the lateral hypothalamus (LH) are critical regulators of energy and glucose homeostasis. Here, we demonstrate that insulin increases the excitability of these neurons in control mice. In vivo, insulin promotes phosphatidylinositol 3-kinase (PI3K) signaling in MCH neurons, and cell-type-specific deletion of the insulin receptor (IR) abrogates this response. While lean mice lacking the IR in MCH neurons (IR(ΔMCH)) exhibit no detectable metabolic phenotype under normal diet feeding, they present with improved locomotor activity and insulin sensitivity under high-fat-diet-fed, obese conditions. Similarly, obesity promotes PI3 kinase signaling in these neurons, and this response is abrogated in IR(ΔMCH) mice. In turn, acute chemogenetic activation of MCH neurons impairs locomotor activity but not insulin sensitivity. Collectively, our experiments reveal an insulin-dependent activation of MCH neurons in obesity, which contributes via distinct mechanisms to the manifestation of impaired locomotor activity and insulin resistance.

  13. Induction of miR-96 by Dietary Saturated Fatty Acids Exacerbates Hepatic Insulin Resistance through the Suppression of INSR and IRS-1.

    Science.gov (United States)

    Yang, Won-Mo; Min, Kyung-Ho; Lee, Wan

    2016-01-01

    Obesity is defined as the excessive accumulation of body fat that ultimately leads to chronic metabolic diseases. Diets rich in saturated fatty acids (SFA) exacerbate obesity and hepatic steatosis, which increase the risk of hepatic insulin resistance and type 2 diabetes (T2DM). Although microRNAs (miRNAs) play an important role in a range of biological processes, the implications of SFA-induced miRNAs in metabolic dysregulation, particularly in the pathogenesis of hepatic insulin resistance, are not well understood. This study investigated the implications of miR-96, which is induced strongly by SFA, in the development of hepatic insulin resistance. The liver of HFD mice and the palmitate-treated hepatocytes exhibited an impairment of insulin signaling due to the significant decrease in INSR and IRS-1 expression. According to expression profiling and qRT-PCR analysis of the miRNAs, the expression level of miR-96 was higher in hepatocytes treated with palmitate. Moreover, miR-96 was also upregulated in the liver of HFD mice. Interestingly, miR-96 targeted the 3'UTRs of INSR and IRS-1 directly, and repressed the expression of INSR and IRS-1 at the post-transcriptional level. Accordingly, the overexpression of miR-96 was found to cause a significant decrease in INSR and IRS-1 expression, thereby leading to an impairment of insulin signaling and glycogen synthesis in hepatocytes. These results reveal a novel mechanism whereby miR-96 promotes the pathogenesis of hepatic insulin resistance resulted from SFA or obesity.

  14. Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death

    Directory of Open Access Journals (Sweden)

    Thundyil John

    2010-08-01

    Full Text Available Abstract Background- Adiponectin is a hormone produced in and released from adipose cells, which has been shown to have anti-diabetic and anti-inflammatory actions in peripheral cells. Two cell surface adiponectin receptors (ADRs mediate the majority of the known biological actions of adiponectin. Thus far, ADR expression in the brain has been demonstrated in the arcuate and the paraventricular nucleus of hypothalamus, where its activation affects food intake. Recent findings suggest that levels of circulating adiponectin increase after an ischemic stroke, but the role of adiponectin receptor activation in stroke pathogenesis and its functional outcome is unclear. Methods- Ischemic stroke was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO for 1 h, followed by reperfusion. Primary cortical neuronal cultures were established from individual embryonic neocortex. For glucose deprivation (GD, cultured neurons were incubated in glucose-free Locke's medium for 6, 12 or 24 h. For combined oxygen and glucose deprivation (OGD, neurons were incubated in glucose-free Locke's medium in an oxygen-free chamber with 95% N2/5% CO2 atmosphere for either 3, 6, 9, 12 or 24 h. Primary neurons and brain tissues were analysed for Adiponectin and ADRs using reverse transcriptase polymerase chain reaction (RT-PCR, immunoblot and immunochemistry methods. Results- Cortical neurons express ADR1 and ADR2, and that the levels of ADR1 are increased in neurons in response to in vitro or in vivo ischemic conditions. Neurons treated with either globular or trimeric adiponectin exhibited increased vulnerability to oxygen and glucose deprivation which was associated with increased activation of a pro-apoptotic signaling cascade involving p38 mitogen-activated protein kinase (p38MAPK and AMP-activated protein kinase (AMPK. Conclusions- This study reveals a novel pathogenic role for adiponectin and adiponectin receptor activation in ischemic stroke. We show that

  15. Isoorientin reverts TNF-α-induced insulin resistance in adipocytes activating the insulin signaling pathway.

    Science.gov (United States)

    Alonso-Castro, Angel Josabad; Zapata-Bustos, Rocio; Gómez-Espinoza, Guadalupe; Salazar-Olivo, Luis A

    2012-11-01

    Isoorientin (ISO) is a plant C-glycosylflavonoid with purported antidiabetic effects but unexplored mechanisms of action. To gain insight into its antidiabetic mechanisms, we assayed nontoxic ISO concentrations on the 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2-deoxy-d-glucose (2-NBDG) uptake by murine 3T3-F442A and human sc adipocytes. In insulin-sensitive adipocytes, ISO stimulated the 2-NBDG uptake by 210% (murine) and 67% (human), compared with insulin treatment. Notably, ISO also induced 2-NBDG uptake in murine (139%) and human (60%) adipocytes made resistant to insulin by treatment with TNF-α, compared with the incorporation induced in these cells by rosiglitazone. ISO induction of glucose uptake in adipocytes was abolished by inhibitors of the insulin signaling pathway. These inhibitors also blocked the proper phosphorylation of insulin signaling pathway components induced by ISO in both insulin-sensitive and insulin-resistant adipocytes. Additionally, ISO stimulated the transcription of genes encoding components of insulin signaling pathway in murine insulin-sensitive and insulin-resistant adipocytes. In summary, we show here that ISO exerts its antidiabetic effects by activating the insulin signaling pathway in adipocytes, reverts the insulin resistance caused in these cells by TNF-α by stimulating the proper phosphorylation of proteins in this signaling pathway, and induces the expression of genes encoding these proteins.

  16. CCR2 knockout exacerbates cerulein-induced chronic pancreatitis with hyperglycemia via decreased GLP-1 receptor expression and insulin secretion.

    Science.gov (United States)

    Nakamura, Yuji; Kanai, Takanori; Saeki, Keita; Takabe, Miho; Irie, Junichiro; Miyoshi, Jun; Mikami, Yohei; Teratani, Toshiaki; Suzuki, Takahiro; Miyata, Naoteru; Hisamatsu, Tadakazu; Nakamoto, Nobuhiro; Yamagishi, Yoshiyuki; Higuchi, Hajime; Ebinuma, Hirotoshi; Hozawa, Shigenari; Saito, Hidetsugu; Itoh, Hiroshi; Hibi, Toshifumi

    2013-04-15

    Glucagon-like peptide-1 (GLP-1) promotes insulin release; however, the relationship between the GLP-1 signal and chronic pancreatitis is not well understood. Here we focus on chemokine (C-C motif) ligand 2 (CCL2) and its receptor (CCR2) axis, which regulates various immune cells, including macrophages, to clarify the mechanism of GLP-1-mediated insulin secretion in chronic pancreatitis in mice. One and multiple series of repetitive cerulein administrations were used to induce acute and chronic cerulein pancreatitis, respectively. Acute cerulein-administered CCR2-knockout (KO) mice showed suppressed infiltration of CD11b(+)Gr-1(low) macrophages and pancreatic inflammation and significantly upregulated insulin secretion compared with paired wild-type (WT) mice. However, chronic cerulein-administered CCR2-KO mice showed significantly increased infiltration of CD11b(+)/Gr-1(-) and CD11b(+)/Gr-1(high) cells, but not CD11b(+)/Gr-1(low) cells, in pancreas with severe inflammation and significantly decreased insulin secretion compared with their WT counterparts. Furthermore, although serum GLP-1 levels in chronic cerulein-administered WT and CCR2-KO mice were comparably upregulated after cerulein administrations, GLP-1 receptor levels in pancreases of chronic cerulein-administered CCR2-KO mice were significantly lower than in paired WT mice. Nevertheless, a significantly higher hyperglycemia level in chronic cerulein-administered CCR2-KO mice was markedly restored by treatment with a GLP-1 analog to a level comparable to the paired WT mice. Collectively, the CCR2/CCL2 axis-mediated CD11b(+)-cell migration to the pancreas is critically involved in chronic pancreatitis-mediated hyperglycemia through the modulation of GLP-1 receptor expression and insulin secretion.

  17. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III.

    Directory of Open Access Journals (Sweden)

    Preethi Srikanthan

    2010-05-01

    Full Text Available BACKGROUND: Sarcopenia often co-exists with obesity, and may have additive effects on insulin resistance. Sarcopenic obese individuals could be at increased risk for type 2 diabetes. We performed a study to determine whether sarcopenia is associated with impairment in insulin sensitivity and glucose homeostasis in obese and non-obese individuals. METHODOLOGY: We performed a cross-sectional analysis of National Health and Nutrition Examination Survey III data utilizing subjects of 20 years or older, non-pregnant (N = 14,528. Sarcopenia was identified from bioelectrical impedance measurement of muscle mass. Obesity was identified from body mass index. Outcomes were homeostasis model assessment of insulin resistance (HOMA IR, glycosylated hemoglobin level (HbA1C, and prevalence of pre-diabetes (6.0≤ HbA1C<6.5 and not on medication and type 2 diabetes. Covariates in multiple regression were age, educational level, ethnicity and sex. PRINCIPAL FINDINGS: Sarcopenia was associated with insulin resistance in non-obese (HOMA IR ratio 1.39, 95% confidence interval (CI 1.26 to 1.52 and obese individuals (HOMA-IR ratio 1.16, 95% CI 1.12 to 1.18. Sarcopenia was associated with dysglycemia in obese individuals (HbA1C ratio 1.021, 95% CI 1.011 to 1.043 but not in non-obese individuals. Associations were stronger in those under 60 years of age. We acknowledge that the cross-sectional study design limits our ability to draw causal inferences. CONCLUSIONS: Sarcopenia, independent of obesity, is associated with adverse glucose metabolism, and the association is strongest in individuals under 60 years of age, which suggests that low muscle mass may be an early predictor of diabetes susceptibility. Given the increasing prevalence of obesity, further research is urgently needed to develop interventions to prevent sarcopenic obesity and its metabolic consequences.

  18. Stiffness-activated GEF-H1 expression exacerbates LPS-induced lung inflammation.

    Directory of Open Access Journals (Sweden)

    Isa Mambetsariev

    Full Text Available Acute lung injury (ALI is accompanied by decreased lung compliance. However, a role of tissue mechanics in modulation of inflammation remains unclear. We hypothesized that bacterial lipopolysacharide (LPS stimulates extracellular matrix (ECM production and vascular stiffening leading to stiffness-dependent exacerbation of endothelial cell (EC inflammatory activation and lung barrier dysfunction. Expression of GEF-H1, ICAM-1, VCAM-1, ECM proteins fibronectin and collagen, lysyl oxidase (LOX activity, interleukin-8 and activation of Rho signaling were analyzed in lung samples and pulmonary EC grown on soft (1.5 or 2.8 kPa and stiff (40 kPa substrates. LPS induced EC inflammatory activation accompanied by expression of ECM proteins, increase in LOX activity, and activation of Rho signaling. These effects were augmented in EC grown on stiff substrate. Stiffness-dependent enhancement of inflammation was associated with increased expression of Rho activator, GEF-H1. Inhibition of ECM crosslinking and stiffening by LOX suppression reduced EC inflammatory activation and GEF-H1 expression in response to LPS. In vivo, LOX inhibition attenuated LPS-induced expression of GEF-H1 and lung dysfunction. These findings present a novel mechanism of stiffness-dependent exacerbation of vascular inflammation and escalation of ALI via stimulation of GEF-H1-Rho pathway. This pathway represents a fundamental mechanism of positive feedback regulation of inflammation.

  19. Berberine inhibits PTP1B activity and mimics insulin action.

    Science.gov (United States)

    Chen, Chunhua; Zhang, Yuebo; Huang, Cheng

    2010-07-02

    Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.

  20. Determinants of change in physical activity during moderate-to-severe COPD exacerbation

    Directory of Open Access Journals (Sweden)

    Esteban C

    2016-02-01

    Full Text Available Cristóbal Esteban,1,2 José M Quintana,2,3 Susana Garcia-Gutierrez,2,3 Ane Anton-Ladislao,3 Nerea Gonzalez,2,3 Marisa Baré,2,4 Nerea Fernández de Larrea,2,5 Francisco Rivas-Ruiz2,6 For the IRYSS-COPD group 1Respiratory Department, Hospital Galdakao-Usansolo, Bizkaia; 2Red de Investigación en Servicios Sanitarios y Enfermedades Crónicas (REDISSEC, Galdakao; 3Research Unit, Hospital Galdakao-Usansolo, Bizkaia; 4Unit of Clinical Epidemiology, Corporacio Parc Tauli, Barcelona; 5Health Department, Madrid; 6Research Unit, Hospital Costa del Sol, Mabella, Málaga, Spain Background: Data are scarce on patient physical activity (PA level during exacerbations of chronic obstructive pulmonary disease (eCOPD. The objective of the study was to evaluate the level and determinants of change in PA during an eCOPD. Materials and methods: We conducted a prospective cohort study with recruitment from emergency departments (EDs of 16 participating hospitals from June 2008 to September 2010. Data were recorded on socioeconomic characteristics, dyspnea, forced expiratory volume in 1 second (FEV1%, comorbidities, health-related quality of life, factors related to exacerbation, and PA in a stable clinical condition and during the eCOPD episode. Results: We evaluated 2,487 patients. Common factors related to the change in PA during hospital admission or 7 days after discharge to home from the ED were lower PA at baseline and during the first 24 hours after the index evaluation. Age, quality of life, living alone, length of hospital stay, and use of anticholinergic or systemic corticosteroids in treating the exacerbation were associated with the change in PA among hospitalized patients. Predictors of change among patients not admitted to hospital were baseline FEV1% and dyspnea at rest on ED arrival. Conclusion: Among the patients evaluated in an ED for an eCOPD, the level and change in PA was markedly variable. Factors associated with exacerbation (PA 24 hours

  1. Physical exercise exacerbates memory deficits induced by intracerebroventricular STZ but improves insulin regulation of H₂O₂ production in mice synaptosomes.

    Science.gov (United States)

    Muller, Alexandre P; Zimmer, Eduardo Rigon; Kalinine, Eduardo; Haas, Clarissa B; Oses, Jean Pierre; Martimbianco de Assis, Adriano; Galina, Antonio; Souza, Diogo O; Portela, Luis Valmor

    2012-01-01

    Insulin brain resistant state is associated with cognitive deficits and Alzheimer's disease by mechanisms that may involve mitochondrial damage and oxidative stress. Conversely, physical exercise improves cognitive function and brain insulin signaling. The intracerebroventricular (i.c.v.) administration of streptozotocin (STZ) in rodents is an established model of insulin-resistant brain state. This study evaluates the effects of physical exercise on memory performance of i.c.v., STZ-treated mice(1 and 3 mg/kg) and whether insulin (50 and 100 ng/ml) modulates mitochondrial H₂O₂ generation in synaptosomes. S100B levels and SOD and CAT activities were assessed as markers of brain damage caused by STZ. Sedentary and exercise vehicle-treated mice demonstrated similar performance in object recognition memory task. In the water maze test, exercise vehicle-treated mice showed improvement performance in the acquisition and retrieval phases. The administration of STZ (1 mg/kg) before thirty days of voluntary physical exercise protocol impaired recognition and spatial memory only in exercised mice, whereas STZ (3 mg/kg) impaired the performance of sedentary and exercise groups. Moreover, STZ (3 mg/kg) increased hippocampal S100B levels in both groups and SOD/CAT ratio in the sedentary animals. Insulin decreased synaptosomal H₂O₂ production in exercised compared to sedentary mice; however, both STZ doses abolished this effect. Normal brain insulin signaling is mechanistically involved in the improvement of cognitive function induced by exercise through the regulation of mitochondrial H₂O₂ production. However, a prior blockade of brain insulin signaling with STZ abolished the benefits of exercise on memory performance and mitochondrial H₂O₂ regulation.

  2. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    Science.gov (United States)

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  3. Activation of proteinase 3 contributes to Non-alcoholic Fatty Liver Disease (NAFLD) and insulin resistance.

    Science.gov (United States)

    Toonen, Erik J M; Mirea, Andreea-Manuela; Tack, Cees J; Stienstra, Rinke; Ballak, Dov B; van Diepen, Janna A; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H; Pham, Christine T N; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo A B

    2016-05-24

    Activation of inflammatory pathways is known to accompany development of obesity-induced non-alcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive pro-inflammatory mediators IL-1β and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In the present study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human alpha-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3 deficient mice showed strongly reduced levels of lipids in the liver after fed a high fat diet. Moreover, these mice were resistant to high fat diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1(-/-) mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with alpha-1 antitrypsin during the last 10 days of a 16 week high fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential.

  4. Curcumin improves high glucose-induced INS-1 cell insulin resistance via activation of insulin signaling.

    Science.gov (United States)

    Song, Zhenfeng; Wang, Huan; Zhu, Lin; Han, Mingbao; Gao, Yuan; Du, Yu; Wen, Ying

    2015-02-01

    Curcumin is a yellow pigment isolated from Corcuma longan. This research investigates the improvement of curcumin on INS-1 cells with insulin resistance induced by high glucose. INS-1 cells were treated with high glucose (30 mmol L(-1)) for 48 h. Subsequently, the medium was replaced with curcumin for 24 h. Curcumin effectively increased insulin gene expression and glucose stimulated insulin secretion (GSIS) in a dose-dependent manner. Furthermore, the molecular mechanism of curcumin-induced insulin expression and secretion in high glucose-induced INS-1 cells was investigated in this study. Curcumin increased the expression of glucose transporter 2 (GLUT2) and phosphorylation of insulin receptor (IR), insulin receptor substrate-1 (IRS1), phosphatidylinositol-3-kinase (PI3K) and AKT in the INS-1 cells. Moreover, curcumin stimulation increased the expression of PDX-1 and GCK. This investigation suggests that curcumin prevented high glucose-reduced insulin expression and secretion through activation of the PI3K/Akt/GLUT2 pathway in INS-1 cells.

  5. Antihyperglycemic and insulin secretagogue activities of Abrus precatorius leaf extract

    Directory of Open Access Journals (Sweden)

    Balekari Umamahesh

    2016-01-01

    Full Text Available Aim: Abrus precatorius leaves methanolic extract (APME was evaluated for in vivo antihyperglycemic activity and in vitro insulinotropic effect. Materials and Methods: In vivo antihyperglycemic and insulin secretagogue activities were assessed in streptozotocin-induced diabetic rats by oral administration of APME (200 mg/kg body weight [bw] for 28 days. In vitro insulin secretion mechanisms were studied using mouse insulinoma beta cells (MIN6-β. In vivo body weight and blood glucose and in vivo and in vitro insulin levels were estimated. Results: In diabetic rats, APME treatment significantly restored body weight (26.39%, blood glucose (32.39%, and insulin levels (73.95% in comparison to diabetic control rats. In MIN6-β cells, APME potentiated insulin secretion in a dependent manner of glucose (3–16.7 mM and extract (5–500 μg/mL concentration. Insulin secretagogue effect was demonstrated in the presence of 3-isobutyl-1-methyl xanthine, glibenclamide, elevated extracellular calcium, and K+ depolarized media. Insulin release was reduced in the presence of nifedipine, ethylene glycol tetra acetic acid (calcium blocking agents, and diazoxide (potassium channel opener. Conclusion: The study suggests that APME antihyperglycemic activity might involve the insulin secretagogue effect by pancreatic beta cells physiological pathways via K+-ATP channel dependent and independently, along with an effect on Ca2+ channels.

  6. Thiazide diuretics exacerbate fructose-induced metabolic syndrome.

    Science.gov (United States)

    Reungjui, Sirirat; Roncal, Carlos A; Mu, Wei; Srinivas, Titte R; Sirivongs, Dhavee; Johnson, Richard J; Nakagawa, Takahiko

    2007-10-01

    Fructose is a commonly used sweetener associated with diets that increase the prevalence of metabolic syndrome. Thiazide diuretics are frequently used in these patients for treatment of hypertension, but they also exacerbate metabolic syndrome. Rats on high-fructose diets that are given thiazides exhibit potassium depletion and hyperuricemia. Potassium supplementation improves their insulin resistance and hypertension, whereas allopurinol reduces serum levels of uric acid and ameliorates hypertension, hypertriglyceridemia, hyperglycemia, and insulin resistance. Both potassium supplementation and treatment with allopurinol also increase urinary nitric oxide excretion. We suggest that potassium depletion and hyperuricemia in rats exacerbates endothelial dysfunction and lowers the bioavailability of nitric oxide, which blocks insulin activity and causes insulin resistance during thiazide usage. Addition of potassium supplements and allopurinol with thiazides might be helpful in the management of metabolic syndrome.

  7. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Eells

    Full Text Available Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%, genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/- mice and wild-type (+/+ mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.

  8. Validation of Algorithms for Basal Insulin Rate Reductions in Type 1 Diabetic Patients Practising Physical Activity

    Science.gov (United States)

    2013-04-19

    Type 1 Diabetes With a Subcutaneous Insulin Pump; Adjustment of the Recommended Basal Insulin Flow Rate in the Event of Physical Activity; Adjustment of the Recommended Prandial Insulin in the Event of Physical Activity

  9. Antihyperglycemic and Insulin Secretagogue Activities of Abrus precatorius Leaf Extract

    Science.gov (United States)

    Umamahesh, Balekari; Veeresham, Ciddi

    2016-01-01

    Aim: Abrus precatorius leaves methanolic extract (APME) was evaluated for in vivo antihyperglycemic activity and in vitro insulinotropic effect. Materials and Methods: In vivo antihyperglycemic and insulin secretagogue activities were assessed in streptozotocin-induced diabetic rats by oral administration of APME (200 mg/kg body weight [bw]) for 28 days. In vitro insulin secretion mechanisms were studied using mouse insulinoma beta cells (MIN6-β). In vivo body weight and blood glucose and in vivo and in vitro insulin levels were estimated. Results: In diabetic rats, APME treatment significantly restored body weight (26.39%), blood glucose (32.39%), and insulin levels (73.95%) in comparison to diabetic control rats. In MIN6-β cells, APME potentiated insulin secretion in a dependent manner of glucose (3–16.7 mM) and extract (5–500 μg/mL) concentration. Insulin secretagogue effect was demonstrated in the presence of 3-isobutyl-1-methyl xanthine, glibenclamide, elevated extracellular calcium, and K+ depolarized media. Insulin release was reduced in the presence of nifedipine, ethylene glycol tetra acetic acid (calcium blocking agents), and diazoxide (potassium channel opener). Conclusion: The study suggests that APME antihyperglycemic activity might involve the insulin secretagogue effect by pancreatic beta cells physiological pathways via K+-ATP channel dependent and independently, along with an effect on Ca2+ channels. SUMMARY Abrus precatorius leaves methanolic extract (APME) showed a significant anti hyperglycemic and insulin secretagogue activities in streptozotocin induced diabetic rats. Also demonstrated a potent In vitro insulin secretagogue effect in mouse insulinoma beta cells (MIN6-β)APME treatment significantly restored body weight (26.39%), reduced blood glucose (32.39%) and enhanced circulatory insulin levels (73.95%) in diabetic ratsAPME demonstrated glucose and extract dose dependent insulin secretionInsulin secretagogue effect was demonstrated

  10. Saturated lipids decrease mitofusin 2 leading to endoplasmic reticulum stress activation and insulin resistance in hypothalamic cells.

    Science.gov (United States)

    Diaz, Brenda; Fuentes-Mera, Lizeth; Tovar, Armando; Montiel, Teresa; Massieu, Lourdes; Martínez-Rodríguez, Herminia Guadalupe; Camacho, Alberto

    2015-11-19

    Endoplasmic reticulum (ER) and mitochondria dysfunction contribute to insulin resistance generation during obesity and diabetes. ER and mitochondria interact through Mitofusin 2 (MTF2), which anchors in the outer mitochondrial and ER membranes regulating energy metabolism. Ablation of MTF2 leads to ER stress activation and insulin resistance. Here we determine whether lipotoxic insult induced by saturated lipids decreases MTF2 expression leading to ER stress response in hypothalamus and its effects on insulin sensitivity using in vitro and in vivo models. We found that lipotoxic stimulation induced by palmitic acid, but not the monounsaturated palmitoleic acid, decreases MTF2 protein levels in hypothalamic mHypoA-CLU192 cells. Also, palmitic acid incubation activates ER stress response evidenced by increase in the protein levels of GRP78/BIP marker at later stage than MTF2 downregulation. Additionally, we found that MTF2 alterations induced by palmitic, but not palmitoleic, stimulation exacerbate insulin resistance in hypothalamic cells. Insulin resistance induced by palmitic acid is prevented by pre-incubation of the anti-inflammatory and the ER stress release reagents, sodium salicylate and 4 phenylbutirate, respectively. Finally, we demonstrated that lipotoxic insult induced by high fat feeding to mice decreases MTF2 proteins levels in arcuate nucleus of hypothalamus. Our data indicate that saturated lipids modulate MTF2 expression in hypothalamus coordinating the ER stress response and the susceptibility to insulin resistance.

  11. Mechanisms of macrophage activation in obesity-induced insulin resistance

    OpenAIRE

    Odegaard, Justin I.; Chawla, Ajay

    2008-01-01

    Chronic inflammation is now recognized as a key step in the pathogenesis of obesity-induced insulin resistance and type 2 diabetes mellitus. This low-grade inflammation is mediated by the inflammatory (classical) activation of recruited and resident macrophages that populate metabolic tissues, including adipose tissue and liver. These findings have led to the concept that infiltration and activation of adipose tissue macrophages is causally linked to obesity-induced insulin resistance. Studie...

  12. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    Energy Technology Data Exchange (ETDEWEB)

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J. (Harvard-Med); (BWH); (Yale-MED); (Scripps); (UC); (Mayo)

    2010-09-20

    Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are {approx} 10{sup 6} times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-a-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's 'closed,' inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  13. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin.

    Directory of Open Access Journals (Sweden)

    Malcolm A Leissring

    Full Text Available BACKGROUND: Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE, a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. METHODOLOGY/PRINCIPAL FINDINGS: We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are approximately 10(6 times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's "closed," inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. CONCLUSIONS/SIGNIFICANCE: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  14. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease.

    Science.gov (United States)

    Leffler, Jonatan; Martin, Myriam; Gullstrand, Birgitta; Tydén, Helena; Lood, Christian; Truedsson, Lennart; Bengtsson, Anders A; Blom, Anna M

    2012-04-01

    Ongoing inflammation including activation of the complement system is a hallmark of systemic lupus erythematosus (SLE). Antimicrobial neutrophil extracellular traps (NETs) are composed of secreted chromatin that may act as a source of autoantigens typical for SLE. In this study, we investigated how complement interacts with NETs and how NET degradation is affected by complement in SLE patients. We found that sera from a subset of patients with active SLE had a reduced ability to degrade in vitro-generated NETs, which was mostly restored when these patients were in remission. Patients that failed to degrade NETs had a more active disease and they also displayed lower levels of complement proteins C4 and C3 in blood. We discovered that NETs activated complement in vitro and that deposited C1q inhibited NET degradation including a direct inhibition of DNase-I by C1q. Complement deposition on NETs may facilitate autoantibody production, and indeed, Abs against NETs and NET epitopes were more pronounced in patients with impaired ability to degrade NETs. NET-bound autoantibodies inhibited degradation but also further increased C1q deposition, potentially exacerbating the disease. Thus, NETs are a potent complement activator, and this interaction may play an important role in SLE. Targeting complement with inhibitors or by removing complement activators such as NETs could be beneficial for patients with SLE.

  15. Peptidyl arginine deiminase-4 activation exacerbates kidney ischemia-reperfusion injury.

    Science.gov (United States)

    Ham, Ahrom; Rabadi, May; Kim, Mihwa; Brown, Kevin M; Ma, Zhe; D'Agati, Vivette; Lee, H Thomas

    2014-11-01

    Peptidyl arginine deiminase (PAD)4 is a nuclear enzyme that catalyzes the posttranslational conversion of arginine residues to citrulline. Posttranslational protein citrullination has been implicated in several inflammatory autoimmune diseases, including rheumatoid arthritis, colitis, and multiple sclerosis. Here, we tested the hypothesis that PAD4 contributes to ischemic acute kidney injury (AKI) by exacerbating the inflammatory response after renal ischemia-reperfusion (I/R). Renal I/R injury in mice increased PAD4 activity as well as PAD4 expression in the mouse kidney. After 30 min of renal I/R, vehicle-treated mice developed severe AKI with large increases in plasma creatinine. In contrast, mice pretreated with PAD4 inhibitors (2-chloroamidine or streptonigrin) had significantly reduced renal I/R injury. Further supporting a critical role for PAD4 in generating ischemic AKI, mice pretreated with recombinant human PAD4 (rPAD4) protein and subjected to mild (20 min) renal I/R developed exacerbated ischemic AKI. Consistent with the hypothesis that PAD4 regulates renal tubular inflammation after I/R, mice treated with a PAD4 inhibitor had significantly reduced renal neutrophil chemotactic cytokine (macrophage inflammatory protein-2 and keratinocyte-derived cytokine) expression and had decreased neutrophil infiltration. Furthermore, mice treated with rPAD4 had significantly increased renal tubular macrophage inflammatory protein-2 and keratinocyte-derived cytokine expression as well as increased neutrophil infiltration and necrosis. Finally, cultured mouse kidney proximal tubules treated with rPAD4 had significantly increased proinflammatory chemokine expression compared with vehicle-treated cells. Taken together, our results suggest that PAD4 plays a critical role in renal I/R injury by increasing renal tubular inflammatory responses and neutrophil infiltration after renal I/R.

  16. Rab5 activity regulates GLUT4 sorting into insulin-responsive and non-insulin-responsive endosomal compartments: a potential mechanism for development of insulin resistance.

    Science.gov (United States)

    Tessneer, Kandice L; Jackson, Robert M; Griesel, Beth A; Olson, Ann Louise

    2014-09-01

    Glucose transporter isoform 4 (GLUT4) is the insulin-responsive glucose transporter mediating glucose uptake in adipose and skeletal muscle. Reduced GLUT4 translocation from intracellular storage compartments to the plasma membrane is a cause of peripheral insulin resistance. Using a chronic hyperinsulinemia (CHI)-induced cell model of insulin resistance and Rab5 mutant overexpression, we determined these manipulations altered endosomal sorting of GLUT4, thus contributing to the development of insulin resistance. We found that CHI induced insulin resistance in 3T3-L1 adipocytes by retaining GLUT4 in a Rab5-activity-dependent compartment that is unable to equilibrate with the cell surface in response to insulin. Furthermore, CHI-mediated retention of GLUT4 in this non-insulin-responsive compartment impaired filling of the transferrin receptor (TfR)-positive and TfR-negative insulin-responsive storage compartments. Our data suggest that hyperinsulinemia may inhibit GLUT4 by chronically maintaining GLUT4 in the Rab5 activity-dependent endosomal pathway and impairing formation of the TfR-negative and TfR-positive insulin-responsive GLUT4 pools. This model suggests that an early event in the development of insulin-resistant glucose transport in adipose tissue is to alter the intracellular localization of GLUT4 to a compartment that does not efficiently equilibrate with the cell surface when insulin levels are elevated for prolonged periods of time.

  17. Border Patrol Gone Awry: Lung NKT Cell Activation by Francisella tularensis Exacerbates Tularemia-Like Disease.

    Science.gov (United States)

    Hill, Timothy M; Gilchuk, Pavlo; Cicek, Basak B; Osina, Maria A; Boyd, Kelli L; Durrant, Douglas M; Metzger, Dennis W; Khanna, Kamal M; Joyce, Sebastian

    2015-06-01

    The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia--because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice.

  18. Interleukin-33 drives activation of alveolar macrophages and airway inflammation in a mouse model of acute exacerbation of chronic asthma.

    Science.gov (United States)

    Bunting, Melissa M; Shadie, Alexander M; Flesher, Rylie P; Nikiforova, Valentina; Garthwaite, Linda; Tedla, Nicodemus; Herbert, Cristan; Kumar, Rakesh K

    2013-01-01

    We investigated the role of interleukin-33 (IL-33) in airway inflammation in an experimental model of an acute exacerbation of chronic asthma, which reproduces many of the features of the human disease. Systemically sensitized female BALB/c mice were challenged with a low mass concentration of aerosolized ovalbumin for 4 weeks to induce chronic asthmatic inflammation and then received a single moderate-level challenge to trigger acute airway inflammation simulating an asthmatic exacerbation. The inflammatory response and expression of cytokines and activation markers by alveolar macrophages (AM) were assessed, as was the effect of pretreatment with a neutralizing antibody to IL-33. Compared to chronically challenged mice, AM from an acute exacerbation exhibited significantly enhanced expression of markers of alternative activation, together with enhanced expression of proinflammatory cytokines and of cell surface proteins associated with antigen presentation. In parallel, there was markedly increased expression of both mRNA and immunoreactivity for IL-33 in the airways. Neutralization of IL-33 significantly decreased both airway inflammation and the expression of proinflammatory cytokines by AM. Collectively, these data indicate that in this model of an acute exacerbation of chronic asthma, IL-33 drives activation of AM and has an important role in the pathogenesis of airway inflammation.

  19. Interleukin-33 Drives Activation of Alveolar Macrophages and Airway Inflammation in a Mouse Model of Acute Exacerbation of Chronic Asthma

    Directory of Open Access Journals (Sweden)

    Melissa M. Bunting

    2013-01-01

    Full Text Available We investigated the role of interleukin-33 (IL-33 in airway inflammation in an experimental model of an acute exacerbation of chronic asthma, which reproduces many of the features of the human disease. Systemically sensitized female BALB/c mice were challenged with a low mass concentration of aerosolized ovalbumin for 4 weeks to induce chronic asthmatic inflammation and then received a single moderate-level challenge to trigger acute airway inflammation simulating an asthmatic exacerbation. The inflammatory response and expression of cytokines and activation markers by alveolar macrophages (AM were assessed, as was the effect of pretreatment with a neutralizing antibody to IL-33. Compared to chronically challenged mice, AM from an acute exacerbation exhibited significantly enhanced expression of markers of alternative activation, together with enhanced expression of proinflammatory cytokines and of cell surface proteins associated with antigen presentation. In parallel, there was markedly increased expression of both mRNA and immunoreactivity for IL-33 in the airways. Neutralization of IL-33 significantly decreased both airway inflammation and the expression of proinflammatory cytokines by AM. Collectively, these data indicate that in this model of an acute exacerbation of chronic asthma, IL-33 drives activation of AM and has an important role in the pathogenesis of airway inflammation.

  20. Exacerbation of Bloody Diarrhea as a Side Effect of Mesalamine Treatment of Active Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Yuichi Shimodate

    2011-04-01

    Full Text Available Mesalamine has been used as the first-line therapy for the treatment of ulcerative colitis (UC because of its efficacy and fewer side effects. However, earlier study showed that mesalamine occasionally causes diarrhea. We are presenting a patient with active UC in whom bloody diarrhea accompanied by abdominal pain and fever occurred and the symptoms were aggravated after administration of mesalamine. In order to clarify the reason of symptoms aggravation, drug lymphocyte stimulation test and rechallenge trial with mesalamine were performed. The results indicated the possibility that aggravation was related to allergic reaction and was dose-dependent. Furthermore, we examined colonoscopic views but there was no remarkable change in before and after rechallenge trial. Based on the above result, the patient was diagnosed with mesalamine intolerance. In order to differentiate whether the exacerbation of bloody diarrhea is due to the side effects of the mesalamine or a true relapse of UC, taking careful history before and after increasing mesalamine dosage as well as being aware of side effects of mesalamine are required. Clinicians should be aware of diarrhea as a side effect of mesalamine particularly after onset of mesalamine formulation, change in mesalamine formulation, or change in mesalamine dose.

  1. Complement activation, endothelial dysfunction, insulin resistance and chronic heart failure

    DEFF Research Database (Denmark)

    Bjerre, M.; Kistorp, C.; Hansen, T.K.

    2010-01-01

    CRP), endothelial activation (soluble E-selectin, sEsel)), endothelial damage/dysfunction (von Willebrand factor, vWf) and insulin resistance (IR) and prognosis in CHF remains unknown. Design. We investigated the association(s) between plasma sMAC, hsCRP, sEsel, vWf and IR (assessed by homeostatic model assessment...

  2. Ouabain exacerbates activation-induced cell death in human peripheral blood lymphocytes

    Directory of Open Access Journals (Sweden)

    Mabel B. Esteves

    2005-06-01

    Full Text Available Lymphocytes activated by mitogenic lectins display changes in transmembrane potential, an elevation in the cytoplasmic Ca2+ concentrations, proliferation and/or activation induced cell death. Low concentrations of ouabain (an inhibitor of Na+,K+-ATPase suppress mitogen-induced proliferation and increases cell death. To understand the mechanisms involved, a number of parameters were analyzed using fluorescent probes and flow cytometry. The addition of 100nM ouabain to cultures of peripheral blood lymphocytes activated with 5µg/ml phytohemagglutinin (PHA did not modify the increased expression of the Fas receptor or its ligand FasL induced by the mitogen. However, treatment with ouabain potentiated apoptosis induced by an anti-Fas agonist antibody. A synergy between ouabain and PHA was also observed with regard to plasma membrane depolarization. PHA per se did not induce dissipation of mitochondrial membrane potential but when cells were also exposed to ouabain a marked depolarization could be observed, and this was a late event. It is possible that the inhibitory effect of ouabain on activated peripheral blood lymphocytes involves the potentiation of some of the steps of the apoptotic process and reflects an exacerbation of the mechanism of activation-induced cell death.Quando linfócitos são ativados por lectinas mitogênicas apresentam mudanças do potencial de membrana, elevação das concentrações citoplasmáticas de cálcio, proliferação e/ou morte celular induzida por ativação (AICD. Concentrações baixas de ouabaína (um inibidor da Na,K-ATPase suprimem a proliferação induzida por mitógenos e aumentam a morte celular. Para entender os mecanismos envolvidos, uma série de parâmetros foram avaliados usando sondas fluorescentes e citometria de fluxo. A adição de 100nM de ouabaína para culturas de linfócitos de sangue periférico ativadas por fitohemaglutinina (PHA não modificou o aumento de expressão do receptor Fas ou de

  3. A novel hydroxyfuroic acid compound as an insulin receptor activator – structure and activity relationship of a prenylindole moiety to insulin receptor activation

    Directory of Open Access Journals (Sweden)

    Tsai Henry J

    2009-07-01

    Full Text Available Abstract Background Diabetes Mellitus is a chronic disease and many patients of which require frequent subcutaneous insulin injection to maintain proper blood glucose levels. Due to the inconvenience of insulin administration, an orally active insulin replacement has long been a prime target for many pharmaceutical companies. Demethylasterriquinone (DMAQ B1, extracted from tropical fungus, Pseudomassaria sp., has been reported to be an orally effective agent at lowering circulating glucose levels in diabetic (db/db mice; however, the cytotoxicity associated with the quinone moiety has not been addressed thus far. Methods A series of hydroxyfuroic acid compounds were synthesized and tested for their efficacies at activating human insulin receptor. Cytotoxicity to Chinese hamster ovary cells, selectivities over insulin-like growth factor-1 (IGF-1, epidermal growth factor (EGF, and fibroblast growth factor (FGF receptors were examined in this study. Result and Conclusion This study reports a new non-quinone DMAQ B1 derivative, a hydroxyfuroic acid compound (D-410639, which is 128 fold less cytotoxic as DMAQ B1 and as potent as compound 2, a DMAQ B1 synthetic derivative from Merck, at activating human insulin receptor. D-410639 has little activation potential on IGF-1 receptor but is a moderate inhibitor to EGF receptor. Structure and activity relationship of the prenylindole moiety to insulin receptor activation is discussed.

  4. Macrophage CGI-58 Deficiency Activates ROS-Inflammasome Pathway to Promote Insulin Resistance in Mice

    Directory of Open Access Journals (Sweden)

    Hongming Miao

    2014-04-01

    Full Text Available Overnutrition activates a proinflammatory program in macrophages to induce insulin resistance (IR, but its molecular mechanisms remain incompletely understood. Here, we show that saturated fatty acid and lipopolysaccharide, two factors implicated in high-fat diet (HFD-induced IR, suppress macrophage CGI-58 expression. Macrophage-specific CGI-58 knockout (MaKO in mice aggravates HFD-induced glucose intolerance and IR, which is associated with augmented systemic/tissue inflammation and proinflammatory activation of adipose tissue macrophages. CGI-58-deficient macrophages exhibit mitochondrial dysfunction due to defective peroxisome proliferator-activated receptor (PPARγ signaling. Consequently, they overproduce reactive oxygen species (ROS to potentiate secretion of proinflammatory cytokines by activating NLRP3 inflammasome. Anti-ROS treatment or NLRP3 silencing prevents CGI-58-deficient macrophages from oversecreting proinflammatory cytokines and from inducing proinflammatory signaling and IR in the cocultured fat slices. Anti-ROS treatment also prevents exacerbation of inflammation and IR in HFD-fed MaKO mice. Our data thus establish CGI-58 as a suppressor of overnutrition-induced NLRP3 inflammasome activation in macrophages.

  5. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Science.gov (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  6. Orally active insulin mimics: where do we stand now?

    Indian Academy of Sciences (India)

    M Balasubramanyam; V Mohan

    2001-09-01

    The war against diabetes through the development of new drugs is an ongoing continuous process to counter the alarming global increase in the prevalence of diabetes and its complications, particularly in developing countries like India. Unfortunately, the speed with which our knowledge of diabetes and its effects is expanding is not matched by the availability of new drugs. Following the identification of the insulin receptor (IR), its intrinsic kinase activity and molecular cloning, many studies have looked at IR as an ideal drug target. This review summarizes in brief the latest advancements in this field with particular reference to the current situation in respect of the development of orally active insulin mimetics in the treatment of type 2 diabetes.

  7. Extract of lotus leaf ( Nelumbo nucifera ) and its active constituent catechin with insulin secretagogue activity.

    Science.gov (United States)

    Huang, Chun Fa; Chen, Ya Wen; Yang, Ching Yao; Lin, Hui Yi; Way, Tzong Der; Chiang, Wenchang; Liu, Shing Hwa

    2011-02-23

    The effect of lotus leaf ( Nelumbo nucifera Gaertn.) on diabetes is unclear. We hypothesized that lotus leaf can regulate insulin secretion and blood glucose levels. The in vitro and in vivo effects of lotus leaf methanolic extract (NNE) on insulin secretion and hyperglycemia were investigated. NNE increased insulin secretion from β cells (HIT-T15) and human islets. NNE enhanced the intracellular calcium levels in β cells. NNE could also enhance phosphorylation of extracellular signal-regulated protein kinases (ERK)1/2 and protein kinase C (PKC), which could be reversed by a PKC inhibitor. The in vivo studies showed that NNE possesses the ability to regulate blood glucose levels in fasted normal mice and high-fat-diet-induced diabetic mice. Furthermore, the in vitro and in vivo effects of the active constituents of NNE, quercetin, and catechin, on glucose-induced insulin secretion and blood glucose regulation were evaluated. Quercetin did not affect insulin secretion, but catechin significantly and dose-dependently enhanced insulin secretion. Orally administered catechin significantly reversed the glucose intolerance in high-fat-diet-induced diabetic mice. These findings suggest that NNE and its active constituent catechin are useful in the control of hyperglycemia in non-insulin-dependent diabetes mellitus through their action as insulin secretagogues.

  8. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates.

    Science.gov (United States)

    Chou, Danny Hung-Chieh; Webber, Matthew J; Tang, Benjamin C; Lin, Amy B; Thapa, Lavanya S; Deng, David; Truong, Jonathan V; Cortinas, Abel B; Langer, Robert; Anderson, Daniel G

    2015-02-24

    Since its discovery and isolation, exogenous insulin has dramatically changed the outlook for patients with diabetes. However, even when patients strictly follow an insulin regimen, serious complications can result as patients experience both hyperglycemic and hypoglycemic states. Several chemically or genetically modified insulins have been developed that tune the pharmacokinetics of insulin activity for personalized therapy. Here, we demonstrate a strategy for the chemical modification of insulin intended to promote both long-lasting and glucose-responsive activity through the incorporation of an aliphatic domain to facilitate hydrophobic interactions, as well as a phenylboronic acid for glucose sensing. These synthetic insulin derivatives enable rapid reversal of blood glucose in a diabetic mouse model following glucose challenge, with some derivatives responding to repeated glucose challenges over a 13-h period. The best-performing insulin derivative provides glucose control that is superior to native insulin, with responsiveness to glucose challenge improved over a clinically used long-acting insulin derivative. Moreover, continuous glucose monitoring reveals responsiveness matching that of a healthy pancreas. This synthetic approach to insulin modification could afford both long-term and glucose-mediated insulin activity, thereby reducing the number of administrations and improving the fidelity of glycemic control for insulin therapy. The described work is to our knowledge the first demonstration of a glucose-binding modified insulin molecule with glucose-responsive activity verified in vivo.

  9. Disruption of inducible 6-phosphofructo-2-kinase ameliorates diet-induced adiposity but exacerbates systemic insulin resistance and adipose tissue inflammatory response.

    Science.gov (United States)

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y Eugene; Ye, Jianping; Chapkin, Robert S; Wu, Chaodong

    2010-02-05

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3(+/-) mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high-fat diet (HFD), PFKFB3(+/-) mice gained much less body weight than did wild-type littermates. This was attributed to a smaller increase in adiposity in PFKFB3(+/-) mice than in wild-type controls. However, HFD-induced systemic insulin resistance was more severe in PFKFB3(+/-) mice than in wild-type littermates. Compared with wild-type littermates, PFKFB3(+/-) mice exhibited increased severity of HFD-induced adipose tissue dysfunction, as evidenced by increased adipose tissue lipolysis, inappropriate adipokine expression, and decreased insulin signaling, as well as increased levels of proinflammatory cytokines in both isolated adipose tissue macrophages and adipocytes. In an in vitro system, knockdown of PFKFB3/iPFK2 in 3T3-L1 adipocytes caused a decrease in the rate of glucose incorporation into lipid but an increase in the production of reactive oxygen species. Furthermore, knockdown of PFKFB3/iPFK2 in 3T3-L1 adipocytes inappropriately altered the expression of adipokines, decreased insulin signaling, increased the phosphorylation states of JNK and NFkappaB p65, and enhanced the production of proinflammatory cytokines. Together, these data suggest that PFKFB3/iPFK2, although contributing to adiposity, protects against diet-induced insulin resistance and adipose tissue inflammatory response.

  10. Minimum active structure of insulin-like peptide 5.

    Science.gov (United States)

    Belgi, Alessia; Bathgate, Ross A D; Kocan, Martina; Patil, Nitin; Zhang, Suode; Tregear, Geoffrey W; Wade, John D; Hossain, Mohammed Akhter

    2013-12-12

    Insulin-like peptide 5 (INSL5) is a complex two-chain peptide hormone constrained by three disulfide bonds in a pattern identical to insulin. High expression of INSL5 in the colon suggests roles in activation of colon motility and appetite control. A more recent study indicates it may have significant roles in the regulation of insulin secretion and β-cell homeostasis. This peptide thus has considerable potential for the treatment of eating disorders, obesity, and/or diabetes. However, the synthesis of INSL5 is extremely challenging either by chemical or recombinant means. The A-chain is very poorly soluble and the B-chain is highly aggregating in nature which, together, makes their postsynthesis handling and purification very difficult. Given these difficulties, we have developed a highly active INSL5 analogue that has a much simpler structure with two disulfide bonds and is thus easier to assemble compared to native INSL5. This minimized peptide represents an attractive new mimetic for investigating the functional role of INSL5.

  11. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    Science.gov (United States)

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  12. An Extended Polyanion Activation Surface in Insulin Degrading Enzyme.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    Full Text Available Insulin degrading enzyme (IDE is believed to be the major enzyme that metabolizes insulin and has been implicated in the degradation of a number of other bioactive peptides, including amyloid beta peptide (Aβ, glucagon, amylin, and atrial natriuretic peptide. IDE is activated toward some substrates by both peptides and polyanions/anions, possibly representing an important control mechanism and a potential therapeutic target. A binding site for the polyanion ATP has previously been defined crystallographically, but mutagenesis studies suggest that other polyanion binding modes likely exist on the same extended surface that forms one wall of the substrate-binding chamber. Here we use a computational approach to define three potential ATP binding sites and mutagenesis and kinetic studies to confirm the relevance of these sites. Mutations were made at four positively charged residues (Arg 429, Arg 431, Arg 847, Lys 898 within the polyanion-binding region, converting them to polar or hydrophobic residues. We find that mutations in all three ATP binding sites strongly decrease the degree of activation by ATP and can lower basal activity and cooperativity. Computational analysis suggests conformational changes that result from polyanion binding as well as from mutating residues involved in polyanion binding. These findings indicate the presence of multiple polyanion binding modes and suggest the anion-binding surface plays an important conformational role in controlling IDE activity.

  13. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Mackenzie RWA

    2014-02-01

    Full Text Available Richard WA Mackenzie, Bradley T Elliott Department of Human and Health Sciences, Facility of Science and Technology, University of Westminster, London, UK Abstract: Type 2 diabetes is a metabolic disease categorized primarily by reduced insulin sensitivity, β-cell dysfunction, and elevated hepatic glucose production. Treatments reducing hyperglycemia and the secondary complications that result from these dysfunctions are being sought after. Two distinct pathways encourage glucose transport activity in skeletal muscle, ie, the contraction-stimulated pathway reliant on Ca2+/5′-monophosphate-activated protein kinase (AMPK-dependent mechanisms and an insulin-dependent pathway activated via upregulation of serine/threonine protein kinase Akt/PKB. Metformin is an established treatment for type 2 diabetes due to its ability to increase peripheral glucose uptake while reducing hepatic glucose production in an AMPK-dependent manner. Peripheral insulin action is reduced in type 2 diabetics whereas AMPK signaling remains largely intact. This paper firstly reviews AMPK and its role in glucose uptake and then focuses on a novel mechanism known to operate via an insulin-dependent pathway. Inositol hexakisphosphate (IP6 kinase 1 (IP6K1 produces a pyrophosphate group at the position of IP6 to generate a further inositol pyrophosphate, ie, diphosphoinositol pentakisphosphate (IP7. IP7 binds with Akt/PKB at its pleckstrin homology domain, preventing interaction with phosphatidylinositol 3,4,5-trisphosphate, and therefore reducing Akt/PKB membrane translocation and insulin-stimulated glucose uptake. Novel evidence suggesting a reduction in IP7 production via IP6K1 inhibition represents an exciting therapeutic avenue in the treatment of insulin resistance. Metformin-induced activation of AMPK is a key current intervention in the management of type 2 diabetes. However, this treatment does not seem to improve peripheral insulin resistance. In light of this

  14. Insulin

    Science.gov (United States)

    ... your diabetes medicines. Be active and get exercise. Dance, take a walk, or join an exercise class. Check with your doctor about safe ways to be more active. Monitor your overall mental and physical health. Work with your health care team to keep ...

  15. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans

    Science.gov (United States)

    Szendroedi, Julia; Yoshimura, Toru; Phielix, Esther; Koliaki, Chrysi; Marcucci, Mellissa; Zhang, Dongyan; Jelenik, Tomas; Müller, Janette; Herder, Christian; Nowotny, Peter; Shulman, Gerald I.; Roden, Michael

    2014-01-01

    Muscle insulin resistance is a key feature of obesity and type 2 diabetes and is strongly associated with increased intramyocellular lipid content and inflammation. However, the cellular and molecular mechanisms responsible for causing muscle insulin resistance in humans are still unclear. To address this question, we performed serial muscle biopsies in healthy, lean subjects before and during a lipid infusion to induce acute muscle insulin resistance and assessed lipid and inflammatory parameters that have been previously implicated in causing muscle insulin resistance. We found that acute induction of muscle insulin resistance was associated with a transient increase in total and cytosolic diacylglycerol (DAG) content that was temporally associated with protein kinase (PKC)θ activation, increased insulin receptor substrate (IRS)-1 serine 1101 phosphorylation, and inhibition of insulin-stimulated IRS-1 tyrosine phosphorylation and AKT2 phosphorylation. In contrast, there were no associations between insulin resistance and alterations in muscle ceramide, acylcarnitine content, or adipocytokines (interleukin-6, adiponectin, retinol-binding protein 4) or soluble intercellular adhesion molecule-1. Similar associations between muscle DAG content, PKCθ activation, and muscle insulin resistance were observed in healthy insulin-resistant obese subjects and obese type 2 diabetic subjects. Taken together, these data support a key role for DAG activation of PKCθ in the pathogenesis of lipid-induced muscle insulin resistance in obese and type 2 diabetic individuals. PMID:24979806

  16. Possible activation of auto-immune thyroiditis from continuous subcutaneous infusion of genapol-containing insulin.

    Science.gov (United States)

    Chantelau, E

    2000-09-01

    A case of a type 1 diabetic woman with auto-immune thyroiditis is reported, in whom repeated exposure to insulin containing Genapol(R) (polyethylen-polypropylenglycol) over 3 years reproducibly parallels with an increase of serum TSH (thyroid-stimulating hormone) above the normal limit. Previously, adverse effects of Genapol(R) insulin have been related to its intraperitoneal application, and thought to be restricted to anti-insulin-immunity; activating effects on thyroid auto-immunity have been repeatedly disputed. We suggest that Genapol(R) insulin should be replaced by other insulin preparations with a better safety record.

  17. Different cytokine profile and eosinophil activation are involved in rhinovirus- and RS virus-induced acute exacerbation of childhood wheezing.

    Science.gov (United States)

    Kato, Masahiko; Tsukagoshi, Hiroyuki; Yoshizumi, Masakazu; Saitoh, Mika; Kozawa, Kunihisa; Yamada, Yoshiyuki; Maruyama, Kenichi; Hayashi, Yasuhide; Kimura, Hirokazu

    2011-02-01

    Because little information is available on eosinophil activation and cytokine response in virus-induced wheezing, we attempted to detect respiratory viruses and measure eosinophil cationic protein (ECP), and 27 types of cytokines/chemokines in both serum and nasal secretions from children with wheezing. This study was an observational, case-control investigation of 267 subjects, who were visited and/or hospitalized with acute respiratory symptoms (with wheezing: men, 115; women, 59; mean/median age, 3.6/3.0 years) or who were visited for regular physical examination and treatment (non-symptomatic wheezing: men, 48; women, 31; mean/median, 5.0/4.7 years), and 14 control subjects (controls: men, 9; women, 5; mean/median, 3.6/3.7 years). We detected viruses in nasal secretions from 174 patients with acute exacerbations of wheezing using antigen detection kits or reverse transcription-polymerase chain reaction, followed by direct DNA sequencing analysis. We measured peripheral eosinophil counts, and serum concentrations of ECP and 27 cytokines/chemokines using a multiplex bead-based assay in patients with wheezing or non-symptomatic wheezing. We also examined nasal ECP and 27 cytokines/chemokines in patients with wheezing. Of 174 samples from wheezing exacerbations, rhinovirus was detected in 59; respiratory syncytial (RS) virus in 44; enterovirus in 17; other viruses in 19; and no viruses in 35. Serum concentrations of ECP, IL-5, IL-6, IL-1ra, and IP-10 were significantly elevated in rhinovirus-induced wheezing compared with non-symptomatic wheezing. Similarly, serum ECP, IL-5, and IP-10 were significantly higher in rhinovirus-induced wheezing than in controls. On the other hand, IL-1ra and IP-10, but not ECP and IL-5 were significantly higher in RS virus-induced wheezing than in controls. Furthermore, only IL-5 was significantly elevated in the rhinovirus group compared with the RS virus group in both serum and nasal secretions. Different cytokine profile and

  18. Mitochondrial Ca2+-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis.

    Science.gov (United States)

    Rimessi, Alessandro; Bezzerri, Valentino; Patergnani, Simone; Marchi, Saverio; Cabrini, Giulio; Pinton, Paolo

    2015-02-04

    The common pathological manifestation of cystic fibrosis (CF) is associated with an excessive lung inflammatory response characterized by interleukin-1β accumulation. CF airway epithelial cells show an exacerbated pro-inflammatory response to Pseudomonas aeruginosa; however, it is unclear whether this heightened inflammatory response is intrinsic to cells lacking CF transmembrane conductance regulator (CFTR). Here we demonstrate that the degree and quality of the inflammatory response in CF are supported by P. aeruginosa-dependent mitochondrial perturbation, in which flagellin is the inducer and mitochondrial Ca(2+) uniporter (MCU) is a signal-integrating organelle member for NLRP3 activation and IL-1β and IL-18 processing. Our work elucidates the regulation of the NLRP3 inflammasome by mitochondrial Ca(2+) in the P. aeruginosa-dependent inflammatory response and deepens our understanding of the significance of mitochondria in the Ca(2+)-dependent control of inflammation.

  19. Cysteine 904 is required for maximal insulin degrading enzyme activity and polyanion activation.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    Full Text Available Cysteine residues in insulin degrading enzyme have been reported as non-critical for its activity. We found that converting the twelve cysteine residues in rat insulin degrading enzyme (IDE to serines resulted in a cysteine-free form of the enzyme with reduced activity and decreased activation by polyanions. Mutation of each cysteine residue individually revealed cysteine 904 as the key residue required for maximal activity and polyanion activation, although other cysteines affect polyanion binding to a lesser extent. Based on the structure of IDE, Asn 575 was identified as a potential hydrogen bond partner for Cys904 and mutation of this residue also reduced activity and decreased polyanion activation. The oligomerization state of IDE did not correlate with its activity, with the dimer being the predominant form in all the samples examined. These data suggest that there are several conformational states of the dimer that affect activity and polyanion activation.

  20. Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin.

    Science.gov (United States)

    Hjorth, Christian Fogt; Norrman, Mathias; Wahlund, Per-Olof; Benie, Andrew J; Petersen, Bent O; Jessen, Christian M; Pedersen, Thomas Å; Vestergaard, Kirsten; Steensgaard, Dorte B; Pedersen, Jan Skov; Naver, Helle; Hubálek, František; Poulsen, Christian; Otzen, Daniel

    2016-04-01

    A specific covalently linked dimeric species of insulin high molecular weight products (HMWPs), formed during prolonged incubation of a neutral pharmaceutical formulation of human insulin, were characterized in terms of tertiary structure, self-association, biological activity, and fibrillation properties. The dimer was formed by a covalent link between A21Asn and B29Lys. It was analyzed using static and dynamic light scattering and small-angle X-ray scattering to evaluate its self-association behavior. The tertiary structure was obtained using nuclear magnetic resonance and X-ray crystallography. The biological activity of HMWP was determined using 2 in vitro assays, and its influence on fibrillation was investigated using Thioflavin T assays. The dimer's tertiary structure was nearly identical to that of the noncovalent insulin dimer, and it was able to form hexamers in the presence of zinc. The dimer exhibited reduced propensity for self-association in the absence of zinc but significantly postponed the onset of fibrillation in insulin formulations. Consistent with its dimeric state, the tested species of HMWP showed little to no biological activity in the used assays. This study is the first detailed characterization of a specific type of human insulin HMWP formed during storage of a marketed pharmaceutical formulation. These results indicate that this specific type of HMWP is unlikely to antagonize the physical stability of the formulation, as HMWP retained a tertiary structure similar to the noncovalent dimer and participated in hexamer assembly in the presence of zinc. In addition, increasing amounts of HMWP reduce the rate of insulin fibrillation.

  1. Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor.

    Science.gov (United States)

    Iwasaki, Yusaku; Dezaki, Katsuya; Kumari, Parmila; Kakei, Masafumi; Yada, Toshihiko

    2015-08-01

    Vagal afferent nerves sense meal-related gastrointestinal and pancreatic hormones and convey their information to the brain, thereby regulating brain functions including feeding. We have recently demonstrated that postprandial insulin directly acts on the vagal afferent neurons. Plasma concentrations of orexigenic ghrelin and anorexigenic insulin show reciprocal dynamics before and after meals. The present study examined interactive effects of ghrelin and insulin on vagal afferent nerves. Cytosolic Ca(2+) concentration ([Ca(2+)]i) in isolated nodose ganglion (NG) neurons was measured to monitor their activity. Insulin at 10(-7)M increased [Ca(2+)]i in NG neurons, and the insulin-induced [Ca(2+)]i increase was inhibited by treatment with ghrelin at 10(-8)M. This inhibitory effect of ghrelin was attenuated by [D-Lys(3)]-GHRP-6, an antagonist of growth hormone-secretagogue receptor (GHSR). Des-acyl ghrelin had little effect on insulin-induced [Ca(2+)]i increases in NG neurons. Ghrelin did not affect [Ca(2+)]i increases in response to cholecystokinin (CCK), a hormone that inhibits feeding via vagal afferent neurons, indicating that ghrelin selectively counteracts the insulin action. These results demonstrate that ghrelin via GHSR suppresses insulin-induced activation of NG neurons. The action of ghrelin to counteract insulin effects on NG might serve to efficiently inform the brain of the systemic change between fasting-associated ghrelin-dominant and fed-associated insulin-dominant states for the homeostatic central regulation of feeding and metabolism.

  2. Bcl10 links saturated fat overnutrition with hepatocellular NF-kB activation and insulin resistance

    NARCIS (Netherlands)

    Beek, M.H. van; Oravecz-Wilson, K.I.; Delekta, P.C.; Gu, S.; Li, X.; Jin, X.; Apel, I.J.; Konkle, K.S.; Feng, Y.; Teitelbaum, D.H.; Ruland, J.; McAllister-Lucas, L.M.; Lucas, P.C.

    2012-01-01

    Excess serum free fatty acids (FFAs) are fundamental to the pathogenesis of insulin resistance. With high-fat feeding, FFAs activate NF-kB in target tissues, initiating negative crosstalk with insulin signaling. However, the mechanisms underlying FFA-dependent NF-kB activation remain unclear. Here,

  3. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    DEFF Research Database (Denmark)

    Nellemann, Birgitte; Vendelbo, Mikkel H; Nielsen, Thomas S

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  4. Dark chocolate exacerbates acne.

    Science.gov (United States)

    Vongraviopap, Saivaree; Asawanonda, Pravit

    2016-05-01

    The effects of chocolate on acne exacerbations have recently been reevaluated. For so many years, it was thought that it had no role in worsening acne. To investigate whether 99% dark chocolate, when consumed in regular daily amounts, would cause acne to worsen in acne-prone male subjects, twenty-five acne prone male subjects were asked to consume 25 g of 99% dark chocolate daily for 4 weeks. Assessments which included Leeds revised acne scores as well as lesion counts took place weekly. Food frequency questionnaire was used, and daily activities were recorded. Statistically significant changes of acne scores and numbers of comedones and inflammatory papules were detected as early as 2 weeks into the study. At 4 weeks, the changes remained statistically significant compared to baseline. Dark chocolate when consumed in normal amounts for 4 weeks can exacerbate acne in male subjects with acne-prone skin.

  5. Inhibition of endocytosis exacerbates TNF-α-induced endothelial dysfunction via enhanced JNK and p38 activation.

    Science.gov (United States)

    Choi, Hyehun; Nguyen, Hong N; Lamb, Fred S

    2014-04-15

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine that causes endothelial dysfunction. Endocytosis of TNF-α receptors (TNFR) precedes endosomal reactive oxygen species (ROS) production, which is required for NF-κB activation in vascular smooth muscle cells. It is unknown how endocytosis of TNFRs impacts signaling in endothelial cells. We hypothesized that TNF-α-induced endothelial dysfunction is induced by both endosomal and cell surface events, including NF-κB and mitogen-activated protein kinases (MAPKs) activation, and endocytosis of the TNFR modifies signaling. Mesenteric artery segments from C57BL/6 mice were treated with TNF-α (10 ng/ml) for 22 h in tissue culture, with or without signaling inhibitors (dynasore for endocytosis, SP600125 for JNK, SB203580 for p38, U0126 for ERK), and vascular function was assessed. Endothelium-dependent relaxation to acetylcholine (ACh) was impaired by TNF-α, and dynasore exacerbated this, whereas JNK or p38 inhibition prevented these effects. In cultured endothelial cells from murine mesenteric arteries, dynasore potentiated JNK and p38 but not ERK phosphorylation and promoted cell death. NF-κB activation by TNF-α was decreased by dynasore. JNK inhibition dramatically increased both the magnitude and duration of TNF-α-induced NF-κB activation and potentiated intercellular adhesion molecule-1 (ICAM-1) activation. Dynasore still inhibited NF-κB activation in the presence of SP600125. Thus TNF-α-induced endothelial dysfunction is both JNK and p38 dependent. Endocytosis modulates the balance of NF-κB and MAPK signaling, and inhibition of NF-κB activation by JNK limits this pro-proliferative signal, which may contribute to endothelial cell death in response to TNF-α.

  6. Activity of histidine in peripheral blood erythrocytes of pregnant women during exacerbation of cytomegalovirus infection.

    Science.gov (United States)

    Lutsenko, M T; Andrievskaya, I A

    2014-10-01

    We studied the effect of active cytomegalovirus infection on histidine content in peripheral blood erythrocytes of pregnant women at gestation weeks 20-22 and its involvement into hemoglobin oxygenation. Using the histochemical technique developed by us, we studied the distribution of products of specific reaction for histidine in peripheral blood erythrocytes of pregnant women. The percentage of histidine-positive erythrocytes and their area were evaluated. The relationship between the distribution of the products of the reaction for histidine in peripheral blood erythrocytes of pregnant women and the titer of anti-cytomegalovirus IgG was revealed. The histidine content in peripheral blood erythrocytes of pregnant women with active cytomegalovirus infection was reduced, which impaired heme binding to globin and decreased the formation of oxyhemoglobin.

  7. Exacerbation of Bloody Diarrhea as a Side Effect of Mesalamine Treatment of Active Ulcerative Colitis

    OpenAIRE

    Yuichi Shimodate; Kunihiro Takanashi; Eriko Waga; Tomoki Fujita; Shinichi Katsuki; Masafumi Nomura

    2011-01-01

    Mesalamine has been used as the first-line therapy for the treatment of ulcerative colitis (UC) because of its efficacy and fewer side effects. However, earlier study showed that mesalamine occasionally causes diarrhea. We are presenting a patient with active UC in whom bloody diarrhea accompanied by abdominal pain and fever occurred and the symptoms were aggravated after administration of mesalamine. In order to clarify the reason of symptoms aggravation, drug lymphocyte stimulation test and...

  8. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Satwiko, Muhammad Gahan [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Ikeda, Koji [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Nakayama, Kazuhiko [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Yagi, Keiko [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Hocher, Berthold [Institute for Nutritional Science, University of Potsdam, Potsdam (Germany); Hirata, Ken-ichi [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan)

    2015-09-25

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  9. Amoxicillin concentrations in relation to beta-lactamase activity in sputum during exacerbations of chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Brusse-Keizer, Marjolein; VanderValk, Paul; van der Zanden, Rogier W.; Nijdam, Lars; van der Palen, Job; Hendrix, Ron; Movig, Kris

    2015-01-01

    Background: Acute exacerbations of chronic obstructive pulmonary disease (COPD) are often treated with antibiotics. Theoretically, to be maximally effective, the antibiotic concentration at sites of infection should exceed the minimum inhibitory concentration at which 90% of the growth of potential

  10. A physiological increase in insulin suppresses gluconeogenic gene activation in fetal sheep with sustained hypoglycemia.

    Science.gov (United States)

    Thorn, Stephanie R; Sekar, Satya M; Lavezzi, Jinny R; O'Meara, Meghan C; Brown, Laura D; Hay, William W; Rozance, Paul J

    2012-10-15

    Reduced maternal glucose supply to the fetus and resulting fetal hypoglycemia and hypoinsulinemia activate fetal glucose production as a means to maintain cellular glucose uptake. However, this early activation of fetal glucose production may be accompanied by hepatic insulin resistance. We tested the capacity of a physiological increase in insulin to suppress fetal hepatic gluconeogenic gene activation following sustained hypoglycemia to determine whether hepatic insulin sensitivity is maintained. Control fetuses (CON), hypoglycemic fetuses induced by maternal insulin infusion for 8 wk (HG), and 8 wk HG fetuses that received an isoglycemic insulin infusion for the final 7 days (HG+INS) were studied. Glucose and insulin concentrations were 60% lower in HG compared with CON fetuses. Insulin was 50% higher in HG+INS compared with CON and four-fold higher compared with HG fetuses. Expression of the hepatic gluconeogenic genes, PCK1, G6PC, FBP1, GLUT2, and PGC1A was increased in the HG and reduced in the HG+INS liver. Expression of the insulin-regulated glycolytic and lipogenic genes, PFKL and FAS, was increased in the HG+INS liver. Total FOXO1 protein expression, a gluconeogenic activator, was 60% higher in the HG liver. Despite low glucose, insulin, and IGF1 concentrations, phosphorylation of AKT and ERK was higher in the HG liver. Thus, a physiological increase in fetal insulin is sufficient for suppression of gluconeogenic genes and activation of glycolytic and lipogenic genes in the HG fetal liver. These results demonstrate that fetuses exposed to sustained hypoglycemia have maintained hepatic insulin action in contrast to fetuses exposed to placental insufficiency.

  11. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM

    DEFF Research Database (Denmark)

    Klein, H H; Vestergaard, H; Kotzke, G;

    1995-01-01

    The role of skeletal muscle insulin receptor kinase in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM) was investigated. Muscle biopsies from 13 patients with NIDDM and 10 control subjects at fasting serum insulin concentrations and approximately 1,000 pmol/l steady-state serum...... insulin during euglycemic hyperinsulinemic clamps were immediately frozen. The biopsies were then solubilized, and the receptors were immobilized to anti-insulin receptor antibody-coated microwells. Receptor kinase and binding activities were consecutively measured in these wells. The increase in serum...... insulin concentration (73 +/- 14 to 1,004 +/- 83 and 45 +/- 7 to 1,07 +/- 77 pmol/l in the NIDDM and control groups, respectively) had similar effects on receptor kinase activity in both study groups (12 +/- 1 to 42 +/- 5 and 12 +/- 2 to 47 +/- 5 amol P.fmol binding activity-1. min-1 in the NIDDM...

  12. Structure, antihyperglycemic activity and cellular actions of a novel diglycated human insulin

    DEFF Research Database (Denmark)

    O'Harte, F P; Boyd, A C; McKillop, A M;

    2000-01-01

    Human insulin was glycated under hyperglycemic reducing conditions and a novel diglycated form (M(r) 6135.1 Da) was purified by RP-HPLC. Endoproteinase Glu-C digestion combined with mass spectrometry and automated Edman degradation localized glycation to Gly(1) and Phe(1) of the insulin A- and B......-chains, respectively. Intraperitoneal (i.p.) administration of diglycated insulin to mice alone or in combination with glucose (7 nmol/kg) resulted in a 43-61% and 11-34% reduction in glucose lowering activity, respectively, compared with native insulin. Consistent with these findings, diglycated insulin (10(-9) to 10......(-7) mol/liter) was 22-38% less effective (P insulin in stimulating glucose uptake, glucose oxidation and glycogen production in isolated mouse abdominal muscle....

  13. A two-week reduction of ambulatory activity attenuates peripheral insulin sensitivity

    DEFF Research Database (Denmark)

    Krogh-Madsen, Rikke; Thyfault, John P; Broholm, Christa

    2009-01-01

    possible biological cause for the public health problem of type 2 diabetes has been identified. Reduced ambulatory activity for two weeks in healthy, non-exercising young men significantly reduced peripheral insulin sensitivity, cardiovascular fitness, and lean leg mass. Key words: Inactivity, Insulin...... activity would influence peripheral insulin sensitivity. We aimed to explore if healthy, non-exercising subjects who went from a normal to a low level of ambulatory activity for two weeks would display metabolic alterations including reduced peripheral insulin sensitivity. -To do this, ten healthy young...... after step reduction, with a post hoc analysis revealing the most pronounced effect after 4 h of insulin infusion. In addition, the two-week period induced a 7% decline in VO2max (ml/min; cardiovascular fitness). Lean mass of legs, but not arms and truck, decreased concurrently. Taken together, one...

  14. Dietary fiber stabilizes blood glucose and insulin levels and reduces physical activity in sows (Sus scrofa)

    NARCIS (Netherlands)

    Leeuw, de J.A.; Jongbloed, A.W.; Verstegen, M.W.A.

    2004-01-01

    The aim of this study was to test whether a diet with a high level of fermentable dietary fiber can stabilize interprandial blood glucose and insulin levels, prevent declines below basal levels, and reduce physical activity in limited-fed breeding sows. Stable levels of glucose and insulin may preve

  15. Role of AMP-activated protein kinase for regulating post-exercise insulin sensitivity

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Wojtaszewski, Jørgen; Treebak, Jonas Thue

    2016-01-01

    Skeletal muscle insulin resistance precedes development of type 2 diabetes (T2D). As skeletal muscle is a major sink for glucose disposal, understanding the molecular mechanisms involved in maintaining insulin sensitivity of this tissue could potentially benefit millions of people that are diagno......Skeletal muscle insulin resistance precedes development of type 2 diabetes (T2D). As skeletal muscle is a major sink for glucose disposal, understanding the molecular mechanisms involved in maintaining insulin sensitivity of this tissue could potentially benefit millions of people...... that are diagnosed with insulin resistance. Regular physical activity in both healthy and insulin-resistant individuals is recognized as the single most effective intervention to increase whole-body insulin sensitivity and thereby positively affect glucose homeostasis. A single bout of exercise has long been known...... to increase glucose disposal in skeletal muscle in response to physiological insulin concentrations. While this effect is identified to be restricted to the previously exercised muscle, the molecular basis for an apparent convergence between exercise- and insulin-induced signaling pathways is incompletely...

  16. Mutational Analysis of the Absolutely Conserved B8Gly: Consequence on Foldability and Activity of Insulin

    Institute of Scientific and Technical Information of China (English)

    Zhan-Yun GUO; Zhou ZHANG; Xiao-Yuan JIA; Yue-Hua TANG; You-Min FENG

    2005-01-01

    B8Gly is absolutely conserved in insulins during evolution. Moreover, its corresponding position is always occupied by a Gly residue in other members of insulin superfamily. Previous work showed that Ala replacement of B8Gly significantly decreased both the activity and the foldability of insulin. However,the effects of substitution are complicated, and different replacements sometimes cause significantly different results. To analyze the effects of B8 replacement by different amino acids, three new insulin/single-chain insulin mutants with B8Gly replaced by Ser, Thr or Leu were prepared by protein engineering, and both their foldability and activity were analyzed. In general, replacement of B8Gly by other amino acids causes significant detriment to the foldability of single-chain insulin: the conformations of the three B8 mutants are essentially different from that of wild-type molecules as revealed by circular dichroism; their disulfide stabilities in redox buffer are significantly decreased; their in vitro refolding efficiencies are decreased approximately two folds; the structural stabilities of the mutants with Ser or Thr substitution are decreased significantly,while Leu substitution has little effect as measured by equilibrium guanidine denaturation. As far as biological activity is concerned, Ser replacement of B8Gly has only a moderate effect: its insulin receptor-binding activity is 23% of native insulin. But Thr or Leu replacement produces significant detriment: the receptorbinding potencies of the two mutants are less than 0.2% of native insulin. The present results suggest that Gly is likely the only applicable natural amino acid for the B8 position of insulin where both foldability and activity are concerned.

  17. Insulin Excites Anorexigenic Proopiomelanocortin Neurons via Activation of Canonical Transient Receptor Potential Channels

    Science.gov (United States)

    Qiu, Jian; Zhang, Chunguang; Borgquist, Amanda; Nestor, Casey C; Smith, Arik W.; Bosch, Martha A.; Ku, Stephen; Wagner, Edward J.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2014-01-01

    SUMMARY Proopiomelanocortin (POMC) neurons within the hypothalamic arcuate nucleus are vital anorexigenic neurons. Although both the leptin receptor and insulin receptor are coupled to activation of phosphatidylinositide3-kinase (PI3K) in POMC neurons, they are thought to have disparate actions on POMC excitability. Using whole-cell recording and selective pharmacological tools, we have found that similar to leptin, purified insulin depolarized POMC, and adjacent kisspeptin neurons via activation of TRPC5 channels, which are highly expressed in these neurons. In contrast, insulin hyperpolarized and inhibited NPY/AgRP neurons via activation of KATP channels. Moreover, Zn2+, which is found in insulin formulations at nanomolar concentrations, inhibited POMC neurons via activation of KATP channels. Finally as predicted, insulin given intracerebroventrically robustly inhibited food intake and activated c-fos expression in arcuate POMC neurons. Our results show that purified insulin excites POMC neurons in the arcuate nucleus, which we propose is a major mechanism by which insulin regulates energy homeostasis. PMID:24703699

  18. Role of Peroxisome Proliferator-Activated Receptor Gamma in Glucose-induced Insulin Secretion

    Institute of Scientific and Technical Information of China (English)

    Ze-Kuan XU; Neng-Guin CHEN; Chang-Yan MA; Zhuo-Xian MENG; Yu-Jie SUN; Xiao HAN

    2006-01-01

    Peroxisome proliferator-activated receptor (PPAR) isoforms (α and γ) are known to be expressed in pancreatic islets as well as in insulin-producing cell lines. Ligands of PPAR have been shown to enhance glucose-induced insulin secretion in rat pancreatic islets. However, their effect on insulin secretion is still unclear. To understand the molecular mechanism by which PPARγ exerts its effect on glucoseinduced insulin secretion, we examined the endogenous activity of PPAR isoforms, and studied the PPARγfunction and its target gene expression in INS-1 cells. We found that: (1) endogenous PPARγ was activated in a ligand-dependent manner in INS-1 cells; (2) overexpression of PPARγ in the absence of PPARγ ligands enhanced glucose-induced insulin secretion, which indicates that the increased glucose-induced insulin secretion is a PPARγ-mediated event; (3) the addition of both PPARγ and retinoid X receptor (RXR) ligands showed a synergistic effect on the augmentation of reporter activity, suggesting that the hetero-dimerization of PPARγand RXR is required for the regulation of the target genes; (4) PPARs upregulated both the glucose transporter 2 (GLUT2) and Cbl-associated protein (CAP) genes in INS-1 cells. Our findings suggest an important mechanistic pathway in which PPARγ enhances glucose-induced insulin secretion by activating the expression of GLUT2 and CAP genes in a ligand-dependent manner.

  19. Relationship between insulinase activity of erythrocytes and insulin resistance in patients with type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    LI Chen-zhong; ZHANG Su-hua; QIU Hong-xin; WANG Ding-nian

    2001-01-01

    To investigate the relationship between insulinase activity of erythrocytes (EIA) and insulin resistance in patients with type 2 diabetes mellitus. Methods: EIA was determined with the method of radioassay of enzyme activity in 65 healthy subjects, and 109 patients with type 2 diabetes mellitus divided into 3 subgroups according to their therapy and plasma glucose control. Fasting plasma insulin (FINS) and other related indices were also measured in all the subjects. Moreover, insulin sensitive index (lSI) was calculated for estimation of insulin sensitivity. Results: EIA and FINS are increased in two subgroups of diabetic patients on hypoglycemics (subgroup A and subgroup B), and especially higher in the poor controlled subgroup of patients ( subgroup A). EIA and FINS are normal in subgroup of patients without medication (subgroup C). Moreover, ISI is decreased in all the subgroups of patients as compared with normal subjects. Correlation analysis show that EIA is inversely correlated with ISI in all subgroups of patients and normal subjects, and positively correlated with FINS in normal subjects. Conclusions:The rate of insulin degradation in erythrocytes is increased in patients with type 2 diabetes, and increased insulin degradation may result in their insulin- resistant state. Moreover, EIA may be used as one of the indices for estimation of insulin sensitivity.

  20. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity

    DEFF Research Database (Denmark)

    Krogh-Madsen, Rikke; Thyfault, John P; Broholm, Christa;

    2010-01-01

    US adults take between approximately 2,000 and approximately 12,000 steps per day, a wide range of ambulatory activity that at the low range could increase risk for developing chronic metabolic diseases. Dramatic reductions in physical activity induce insulin resistance; however, it is uncertain...... possible biological cause for the public health problem of Type 2 diabetes has been identified. Reduced ambulatory activity for 2 wk in healthy, nonexercising young men significantly reduced peripheral insulin sensitivity, cardiovascular fitness, and lean leg mass....... if and how low ambulatory activity would influence peripheral insulin sensitivity. We aimed to explore if healthy, nonexercising subjects who went from a normal to a low level of ambulatory activity for 2 wk would display metabolic alterations including reduced peripheral insulin sensitivity. To do this, ten...

  1. Body fat related to daily physical activity and insulin concentrations in non-diabetic children

    DEFF Research Database (Denmark)

    Dencker, Magnus; Thorsson, Ola; Karlsson, Magnus K

    2007-01-01

    This study explored the associations between body fat versus daily physical activity and insulin concentrations in non-diabetic young children in a cross-sectional study of 172 children (93 boys and 79 girls) aged 8-11 years. Blood samples were analysed for serum insulin and daily physical activity...... was measured by accelerometers. Time spent performing vigorous activity was estimated from accelerometer data by using established cut-off points. Dual-energy x-ray absorptiometry (DXA) was used to quantify abdominal fat mass (AFM) and total body fat (TBF), also calculated as percentage of body weight (BF......%). Body fat distribution was calculated as AFM/TBF. Body fat distribution was independently linked to both insulin concentrations and physical activity. In contrast, TBF, AFM, and BF% were linked to physical activity only and not to insulin concentrations. In conclusion in this population of non...

  2. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages

    Directory of Open Access Journals (Sweden)

    Papackova Zuzana

    2012-03-01

    Full Text Available Abstract Background Resident macrophages (Kupffer cells, KCs in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF diet rich in monounsaturated fatty acids. Methods Male Wistar rats were fed either standard (SD or high-fat (HF diet for 4 weeks. Half of the animals were subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3. Results We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked exacerbation of HF diet-induced hepatic insulin resistance. Conclusions We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes.

  3. Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes.

    Science.gov (United States)

    Zhou, Jun; Wang, Qilong; Ding, Ye; Zou, Ming-Hui

    2015-02-01

    We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake, GLUT4 translocation, and insulin signals, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and phosphorylation of Akt. Furthermore, treatment with HOCl induced phosphorylation of IRS1 at serine 307, inhibitor κB kinase (IKK), c-Jun NH2-terminal kinase (JNK), and phosphorylation of PKCθ (PKCθ). In addition, genetic and pharmacological inhibition of IKK and JNK abolished serine phosphorylation of IRS1 and impairment of insulin signaling by HOCl. Furthermore, knockdown of PKCθ using siRNA transfection suppressed phosphorylation of IKK and JNK and consequently attenuated the HOCl-impaired insulin signaling pathway. Moreover, activation of PKCθ by peroxynitrite was accompanied by increased phosphorylation of IKK, JNK, and IRS1-serine 307. In contrast, ONOO(-) inhibitors abolished HOCl-induced phosphorylation of PKCθ, IKK, JNK, and IRS1-serine 307, as well as insulin resistance. Finally, high-fat diet (HFD)-induced insulin resistance was associated with enhanced phosphorylation of PKCθ, IKK, JNK, and IRS1 at serine 307 in white adipose tissues from WT mice, all of which were not found in Mpo knockout mice fed HFDs. We conclude that HOCl impairs insulin signaling pathway by increasing ONOO(-) mediated phosphorylation of PKCθ, resulting in phosphorylation of IKK/JNK and consequent serine phosphorylation of IRS1 in adipocytes.

  4. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets.

    Science.gov (United States)

    Fleming, Ingrid; Schulz, Christian; Fichtlscherer, Birgit; Kemp, Bruce E; Fisslthaler, Beate; Busse, Rudi

    2003-11-01

    Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries. In platelets, insulin also elicited the activation of Akt as well as the phosphorylation of eNOS and initiated NO production which was associated with increased cyclic GMP levels and the inhibition of thrombin-induced aggregation. The insulin-induced inhibition of aggregation was accompanied by a decreased Ca(2+) response to thrombin and was also prevented by N(omega) nitro-L-arginine. In platelets, but not in endothelial cells, insulin induced the activation of the AMP-activated protein kinase (AMPK), a metabolic stress-sensing kinase which was sensitive to the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the AMPK inhibitor iodotubercidin. Moreover, the insulin-mediated inhibition of thrombin-induced aggregation was prevented by iodotubercidin. Insulin-independent activation of the AMPK using 5-aminoimidazole-4-carboxamide ribonucleoside, increased platelet eNOS phosphorylation, increased cyclic GMP levels and attenuated platelet aggregation. These results highlight the differences in the signal transduction cascade activated by insulin in endothelial cells and platelets, and demonstrate that insulin stimulates the formation of NO in human platelets, in the absence of an increase in Ca(2+), by acti-vating PI3-K and AMPK which phosphorylates eNOS on Ser(1177).

  5. ANTIDIABETIC AND HYPOLIPIDEMIC ACTIVITY OF GYMNEMA SYLVESTRE IN DEXAMETHASONE INDUCED INSULIN RESISTANCE IN ALBINO RATS

    OpenAIRE

    Hemanth Kumar V, Nagendra Nayak IM , Shobha V Huilgol, Saeed M Yendigeri , Narendar K

    2015-01-01

    Background: Gymnema sylvestre plant was widely used for medicinal purpose. The plant leaves were traditionally used to treat diabetes. Aim: To determine the antidiabetic and hypolipidemic activity of Gymnema sylvestre in dexamethasone induced insulin resistance in Albino rats. Objectives: The present study was undertaken to evaluate antidiabetic and hypolipidemic activity of Gymnema sylvestre leaf aqueous extract against dexamethasone induced insulin resistance in Albino rats. Materials and M...

  6. Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action

    DEFF Research Database (Denmark)

    Kiens, Bente; Lithell, H; Mikines, K J;

    1989-01-01

    -induced increase in leg glucose uptake (r = 0.93, P less than 0.05). In the control group (n = 6) in which saline was infused in place of insulin and glucose, m-LPLA in nonexercised muscle did not change with time. No change in m-LPLA was observed immediately after one-legged knee extension exercise, but 4 h after......The effects of exercise and a physiological increase in plasma insulin concentration on muscle lipoprotein lipase activity (mLPLA), leg exchange of glucose, and serum lipoprotein levels were investigated in healthy young men. During euglycemic hyperinsulinemia (n = 7) at 44 mU.liter-1, m......-LPLA in non-exercised muscle decreased from 30 +/- 7.4 mU.g-1 wet weight (w.w.) (mean +/- SE) to 19 +/- 3.3 (P less than 0.05). Furthermore, the decrease in m-LPLA correlated closely (r = 0.97, P less than 0.05) with the increase in leg glucose uptake. Moreover, basal m-LPLA correlated with the insulin...

  7. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2

    DEFF Research Database (Denmark)

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu

    2015-01-01

    and dephosphorylation of the cAMP regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where...... accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis....... increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite...

  8. Reduced DPP4 activity improves insulin signaling in primary human adipocytes.

    Science.gov (United States)

    Röhrborn, Diana; Brückner, Julia; Sell, Henrike; Eckel, Jürgen

    2016-03-11

    DPP4 is a ubiquitously expressed cell surface protease which is also released to the circulation as soluble DPP4 (sDPP4). Recently, we identified DPP4 as a novel adipokine oversecreted in obesity and thus potentially linking obesity to the metabolic syndrome. Furthermore, sDPP4 impairs insulin signaling in an autocrine and paracrine fashion in different cell types. However, it is still unknown which functional role DPP4 might play in adipocytes. Therefore, primary human adipocytes were treated with a specific DPP4 siRNA. Adipocyte differentiation was not affected by DPP4 silencing. Interestingly, DPP4 reduction improved insulin responsiveness of adipocytes at the level of insulin receptor, proteinkinase B (Akt) and Akt substrate of 160 kDa. To investigate whether the observed effects could be attributed to the enzymatic activity of DPP4, human adipocytes were treated with the DPP4 inhibitors sitagliptin and saxagliptin. Our data show that insulin-stimulated activation of Akt is augmented by DPP4 inhibitor treatment. Based on our previous observation that sDPP4 induces insulin resistance in adipocytes, and that adipose DPP4 levels are higher in obese insulin-resistant patients, we now suggest that the abundance of DPP4 might be a regulator of adipocyte insulin signaling.

  9. Effect of recreational physical activity on insulin levels in Mexican/Hispanic children.

    Science.gov (United States)

    Macias-Cervantes, Maciste H; Malacara, Juan M; Garay-Sevilla, Ma Eugenia; Díaz-Cisneros, Francisco J

    2009-10-01

    The effect of increased recreational physical activity in children on insulin levels has not yet been studied. We carried out a randomized controlled trial in 76 children 6-9 years old, 32 of them increased their physical activity and 30 maintained the same level. In the intervention group, after a week of baseline, recreational activity three times/week was programmed for 12 weeks. We compared insulin, homeostatic model assessment (HOMA) index, glucose, HDL-C, LDL-C, triglycerides, and body mass index in both groups. Thereafter, we compared groups of normal weight, overweight, and with obesity in the experimental group. The group of recreational activity increased their median daily steps (15,329 to 19,910) and decreased insulin (p < 0.001) and HOMA index (4.36 vs. 2.39, p < 0.001). The diminution of insulin levels was more significant in the overweight group (p < 0.007). In conclusion, in our group, children who increased physical activity during 12 weeks decrease insulin levels and insulin resistance without change in other metabolic and anthropometric variables.

  10. Elucidating the Activation Mechanism of the Insulin-Family Proteins with Molecular Dynamics Simulations

    Science.gov (United States)

    Papaioannou, Anastasios; Kuyucak, Serdar; Kuncic, Zdenka

    2016-01-01

    The insulin-family proteins bind to their own receptors, but insulin-like growth factor II (IGF-II) can also bind to the A isoform of the insulin receptor (IR-A), activating unique and alternative signaling pathways from those of insulin. Although extensive studies of insulin have revealed that its activation is associated with the opening of the B chain-C terminal (BC-CT), the activation mechanism of the insulin-like growth factors (IGFs) still remains unknown. Here, we present the first comprehensive study of the insulin-family proteins comparing their activation process and mechanism using molecular dynamics simulations to reveal new insights into their specificity to the insulin receptor. We have found that all the proteins appear to exhibit similar stochastic dynamics in their conformational change to an active state. For the IGFs, our simulations show that activation involves two opening locations: the opening of the BC-CT section away from the core, similar to insulin; and the additional opening of the BC-CT section away from the C domain. Furthermore, we have found that these two openings occur simultaneously in IGF-I, but not in IGF-II, where they can occur independently. This suggests that the BC-CT section and the C domain behave as a unified domain in IGF-I, but as two independent domains in IGF-II during the activation process, implying that the IGFs undergo different activation mechanisms for receptor binding. The probabilities of the active and inactive states of the proteins suggest that IGF-II is hyperactive compared to IGF-I. The hinge residue and the hydrophobic interactions in the core are found to play a critical role in the stability and activity of IGFs. Overall, our simulations have elucidated the crucial differences and similarities in the activation mechanisms of the insulin-family proteins, providing new insights into the molecular mechanisms responsible for the observed differences between IGF-I and IGF-II in receptor binding. PMID

  11. Elucidating the Activation Mechanism of the Insulin-Family Proteins with Molecular Dynamics Simulations.

    Science.gov (United States)

    Papaioannou, Anastasios; Kuyucak, Serdar; Kuncic, Zdenka

    2016-01-01

    The insulin-family proteins bind to their own receptors, but insulin-like growth factor II (IGF-II) can also bind to the A isoform of the insulin receptor (IR-A), activating unique and alternative signaling pathways from those of insulin. Although extensive studies of insulin have revealed that its activation is associated with the opening of the B chain-C terminal (BC-CT), the activation mechanism of the insulin-like growth factors (IGFs) still remains unknown. Here, we present the first comprehensive study of the insulin-family proteins comparing their activation process and mechanism using molecular dynamics simulations to reveal new insights into their specificity to the insulin receptor. We have found that all the proteins appear to exhibit similar stochastic dynamics in their conformational change to an active state. For the IGFs, our simulations show that activation involves two opening locations: the opening of the BC-CT section away from the core, similar to insulin; and the additional opening of the BC-CT section away from the C domain. Furthermore, we have found that these two openings occur simultaneously in IGF-I, but not in IGF-II, where they can occur independently. This suggests that the BC-CT section and the C domain behave as a unified domain in IGF-I, but as two independent domains in IGF-II during the activation process, implying that the IGFs undergo different activation mechanisms for receptor binding. The probabilities of the active and inactive states of the proteins suggest that IGF-II is hyperactive compared to IGF-I. The hinge residue and the hydrophobic interactions in the core are found to play a critical role in the stability and activity of IGFs. Overall, our simulations have elucidated the crucial differences and similarities in the activation mechanisms of the insulin-family proteins, providing new insights into the molecular mechanisms responsible for the observed differences between IGF-I and IGF-II in receptor binding.

  12. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones.

    Science.gov (United States)

    Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H; Kleiner, Ralph E; Du, Xiu Quan; Leissring, Malcolm A; Tang, Wei-Jen; Charron, Maureen J; Seeliger, Markus A; Saghatelian, Alan; Liu, David R

    2014-07-03

    Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation.

  13. Exacerbated cardiac fibrosis induced by β-adrenergic activation in old mice due to decreased AMPK activity.

    Science.gov (United States)

    Wang, Jingjing; Song, Yao; Li, Hao; Shen, Qiang; Shen, Jing; An, Xiangbo; Wu, Jimin; Zhang, Jianshu; Wu, Yunong; Xiao, Han; Zhang, Youyi

    2016-11-01

    Senescent hearts exhibit defective responses to β-adrenergic receptor (β-AR) over-activation upon stress, leading to more severe pathological cardiac remodelling. However, the underlying mechanisms remain unclear. Here, we investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in protecting against ageing-associated cardiac remodelling in mice upon β-AR over-activation. 10-week-old (young) and 18-month-old (old) mice were subcutaneously injected with the β-AR agonist isoproterenol (ISO; 5 mg/kg). More extensive cardiac fibrosis was found in old mice upon ISO exposure than in young mice. Meanwhile, ISO treatment decreased AMPK activity and increased β-arrestin 1, but not β-arrestin 2, expression, and the effects of ISO on AMPK and β-arrestin 1 were greater in old mice than in young mice. Similarly, young AMPKα2-knockout (KO) mice showed more extensive cardiac fibrosis upon ISO exposure than that was observed in age-matched wild-type (WT) littermates. The extent of cardiac fibrosis in WT old mice was similar to that in young KO mice. Additionally, AMPK activities were decreased and β-arrestin 1 expression increased in KO mice. In contrast, the AMPK activator metformin decreased β-arrestin 1 expression and attenuated cardiac fibrosis in both young and old mice upon ISO exposure. In conclusion, more severe cardiac fibrosis is induced by ISO in old mice than in young mice. A decrease in AMPK activity, which further increases β-arrestin 1 expression, is the central mechanism underlying the ageing-related cardiac fibrosis induced by ISO. The AMPK activator metformin is a promising therapeutic agent for treating ageing-related cardiac remodelling upon β-AR over-activation.

  14. Erdosteine for COPD exacerbations.

    Science.gov (United States)

    2008-10-01

    The mucolytic drug erdosteine (Erdotin - Galen) is licensed in the UK as treatment for up to 10 days "for the symptomatic treatment of acute exacerbations of chronic bronchitis in adults". This indication differs from that for carbocisteine and mecysteine, two older mucolytic drugs that are licensed for adjunctive treatment in respiratory disorders characterised by viscous mucus, and typically used for longer to prevent exacerbations of chronic obstructive pulmonary disease (COPD). Does erdosteine have a role for people with COPD exacerbations?

  15. Identification of a small molecule activator of novel PKCs for promoting glucose-dependent insulin secretion

    Institute of Scientific and Technical Information of China (English)

    Shuai Han; Heling Pan; Jianhua Zhang; Li Tan; Dawei Ma; Junying Yuan; Jia-Rui Wu

    2011-01-01

    Using an image-based screen for small molecules that can affect Golgi morphology, we identify a small molecule,Sioc145, which can enlarge the Golgi compartments and promote protein secretion. More importantly, Siocl45 potentiates insulin secretion in a glucose-dependent manner. We show that Sioc145 selectively activates novel protein kinase Cs (nPKCs; δ and ε) but not conventional PKCs;cPKCs; a, βI and βll) in INS-1E insulinoma cells. In contrast, PMA, a non-selective activator of cPKCs and nPKCs, promotes insulin secretion independent of glucose concentrations. Furthermore, we demonstrate that Sioc145 and PMA show differential abilities in depolarizing the cell membrane, and suggest that Sioc145 promotes insulin secretion in the amplifying pathway downstream of K ATp channels. In pancreatic islets, the treatment with Sioc145 enhances the second phase of insulin secretion. Increased insulin granules close to the plasma membrane are observed after Sioc145 treatment. Finally, the administration of Sioc145 to diabetic GK rats increases their serum insulin levels and improves glucose tolerance. Collectively, our studies identify Sioc145 as a novel glucose-dependent insulinotropic compound via selectively activating nPKCs.

  16. Potential efficacy of Lactobacillus casei IBRC_M10711 on expression and activity of insulin degrading enzyme but not insulin degradation.

    Science.gov (United States)

    Neyazi, Nadia; Mohammadi Farsani, Taiebeh; Nouri, Zahra; Ghahremani, Mohammad Hossein; Khorramizadeh, Mohammad Reza; Tajerian, Roksana; Motevaseli, Elahe

    2017-01-01

    Type 2 diabetes (T2D) is a condition with insufficient insulin production or in the setting of insulin resistance with many origins including intestinal microbiota-related molecular mechanism. Insulin-degrading enzyme (IDE) is responsible for insulin breakdown in various tissues and is known as a potential drug target for T2D. Here, we assessed the effects of cell-free supernatant (CFS) and UV-killed Lactobacillus casei IBRC_M10711 on IDE expression, IDE activity, and insulin degradation in Caco-2 cell line. It was found that CFS and UV-killed L. casei IBRC_M10711 led to lower expression of IDE. UV-killed L. casei IBRC_M10711 significantly inhibited IDE activity but CFS did not. Insulin degradation was affected with none of them. In conclusion, L. casei IBRC_M10711 is effective on IDE expression and its activity, but not on insulin degradation. Future studies are recommended to explore the effect of this probiotic on other substrates of IDE.

  17. Effects of breed and zeranol implantation on serum insulin, somatomedin-like activity and fibroblast proliferative activity.

    Science.gov (United States)

    Wangsness, P J; Olsen, R F; Martin, R J

    1981-01-01

    Twenty-eight Suffolk-sired (Sx) and 28 Finnsheep-sired (Fx) lambs were implanted with either 0 or 12 mg zeranol. Zeranol significantly increased average daily gain over that of controls. Serum taken at biweekly intervals for 6 weeks was assayed for insulin, somatomedin-like activity (Sm) and fibroblast proliferative activity (FPA). Insulin appeared to increase with time, but there were no consistent time changes for FPA or Sm. Serum insulin concentration was higher (P less than .05) in implanted lambs than in controls (33.4 vs 25.6 microU/ml). Unlike insulin, serum Sm and FPA were not affected by zeranol implantation, and, thus, these serum factors appeared not to be involved in zeranol-stimulated growth. Sm was higher in the faster growing Sx lambs than in the slower growing Fx lambs. Thus, serum Sm activity may be involved in normal regulation of growth.

  18. Role of signal transducer and activator of transcription 1 in murine allergen-induced airway remodeling and exacerbation by carbon nanotubes.

    Science.gov (United States)

    Thompson, Elizabeth A; Sayers, Brian C; Glista-Baker, Ellen E; Shipkowski, Kelly A; Ihrie, Mark D; Duke, Katherine S; Taylor, Alexia J; Bonner, James C

    2015-11-01

    Asthma is characterized by a T helper type 2 phenotype and by chronic allergen-induced airway inflammation (AAI). Environmental exposure to air pollution ultrafine particles (i.e., nanoparticles) exacerbates AAI, and a concern is possible exacerbation posed by engineered nanoparticles generated by emerging nanotechnologies. Signal transducer and activator of transcription (STAT) 1 is a transcription factor that maintains T helper type 1 cell development. However, the role of STAT1 in regulating AAI or exacerbation by nanoparticles has not been explored. In this study, mice with whole-body knockout of the Stat1 gene (Stat1(-/-)) or wild-type (WT) mice were sensitized to ovalbumin (OVA) allergen and then exposed to multiwalled carbon nanotubes (MWCNTs) by oropharygneal aspiration. In Stat1(-/-) and WT mice, OVA increased eosinophils in bronchoalveolar lavage fluid, whereas MWCNTs increased neutrophils. Interestingly, OVA sensitization prevented MWCNT-induced neutrophilia and caused only eosinophilic inflammation. Stat1(-/-) mice displayed increased IL-13 in bronchoalveolar lavage fluid at 1 day compared with WT mice after treatment with OVA or OVA and MWCNTs. At 21 days, the lungs of OVA-sensitized Stat1(-/-) mice displayed increased eosinophilia, goblet cell hyperplasia, airway fibrosis, and subepithelial apoptosis. MWCNTs further increased OVA-induced goblet cell hyperplasia, airway fibrosis, and apoptosis in Stat1(-/-) mice at 21 days. These changes corresponded to increased levels of profibrogenic mediators (transforming growth factor-β1, TNF-α, osteopontin) but decreased IL-10 in Stat1(-/-) mice. Finally, fibroblasts isolated from the lungs of Stat1(-/-) mice produced significantly more collagen mRNA and protein in response to transforming growth factor-β1 compared with WT lung fibroblasts. Our results support a protective role for STAT1 in chronic AAI and exacerbation of remodeling caused by MWCNTs.

  19. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis.

    Science.gov (United States)

    Kir, Serkan; Beddow, Sara A; Samuel, Varman T; Miller, Paul; Previs, Stephen F; Suino-Powell, Kelly; Xu, H Eric; Shulman, Gerald I; Kliewer, Steven A; Mangelsdorf, David J

    2011-03-25

    Fibroblast growth factor (FGF) 19 is an enterokine synthesized and released when bile acids are taken up into the ileum. We show that FGF19 stimulates hepatic protein and glycogen synthesis but does not induce lipogenesis. The effects of FGF19 are independent of the activity of either insulin or the protein kinase Akt and, instead, are mediated through a mitogen-activated protein kinase signaling pathway that activates components of the protein translation machinery and stimulates glycogen synthase activity. Mice lacking FGF15 (the mouse FGF19 ortholog) fail to properly maintain blood concentrations of glucose and normal postprandial amounts of liver glycogen. FGF19 treatment restored the loss of glycogen in diabetic animals lacking insulin. Thus, FGF19 activates a physiologically important, insulin-independent endocrine pathway that regulates hepatic protein and glycogen metabolism.

  20. Increased IL-1β activation, the culprit not only for defective insulin secretion but also for insulin resistance?

    Institute of Scientific and Technical Information of China (English)

    Marianne B(o)ni-Schnetzler; Marc Y Donath

    2011-01-01

    @@ Type 2 diabetes is a chronic progressive disease characterized by insufficient insulin secretion to compensate for insulin resistance.The onset of type 2 diabetes and its progression are mainly determined by the progressive failure of the pancreatic islet β-cells to produce sufficient levels of insulin.

  1. Insulin, macronutrient intake, and physical activity: are potential indicators of insulin resistance associated with mortality from breast cancer?

    Science.gov (United States)

    Borugian, Marilyn J; Sheps, Samuel B; Kim-Sing, Charmaine; Van Patten, Cheri; Potter, John D; Dunn, Bruce; Gallagher, Richard P; Hislop, T Gregory

    2004-07-01

    High levels of insulin have been associated with increased risk of breast cancer, and poorer survival after diagnosis. Data and sera were collected from 603 breast cancer patients, including information on diet and physical activity, medical history, family history, demographic, and reproductive risk factors. These data were analyzed to test the hypothesis that excess insulin and related factors are directly related to mortality after a diagnosis of breast cancer. The cohort was recruited from breast cancer patients treated at the British Columbia Cancer Agency between July 1991 and December 1992. Questionnaire and medical record data were collected at enrollment and outcomes were ascertained by linkage to the BC Cancer Registry after 10 years of follow-up. The primary outcome of interest was breast cancer-specific mortality (n = 112). Lifestyle data were analyzed using Cox proportional hazards regression models to relate risk factors to outcomes, controlling for potential confounders, such as age and stage at diagnosis. Data for biological variables were analyzed as a nested case-control study due to limited serum volumes, with at least one survivor from the same cohort as a control for each breast cancer death, matched on stage and length of follow-up. High levels of insulin were associated with poorer survival for postmenopausal women [odds ratio, 1.9; 95% confidence interval (CI), 0.7-6.6, comparing highest to lowest tertile, P trend = 0.10], while high dietary fat intake was associated with poorer survival for premenopausal women (relative risk, 4.8; 95% CI, 1.3-18.1, comparing highest to lowest quartile). Higher dietary protein intake was associated with better survival for all women (relative risk, 0.4; 95% CI, 0.2-0.8, comparing highest to lowest quartile).

  2. Insulin resistance in non-obese subjects is associated with activation of the JNK pathway and impaired insulin signaling in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Umesh B Masharani

    Full Text Available BACKGROUND: The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms related to lipid oversupply locally in insulin target tissues and in various adipose depots. METHODOLOGY/PRINCIPAL FINDINGS: To explore whether specific stress kinases that have been implicated in the insulin resistance of obesity are potentially contributing to insulin resistance in non-obese individuals, twenty healthy, non-obese, normoglycemic subjects identified as insulin sensitive or resistant were studied. Vastus lateralis muscle biopsies obtained during euglycemic, hyperinsulinemic clamp were evaluated for insulin signaling and for activation of stress kinase pathways. Total and regional adipose stores and intramyocellular lipids (IMCL were assessed by DXA, MRI and (1H-MRS. In muscle of resistant subjects, phosphorylation of JNK was increased (1.36±0.23 vs. 0.78±0.10 OD units, P<0.05, while there was no evidence for activation of p38 MAPK or IKKβ. IRS-1 serine phosphorylation was increased (1.30±0.09 vs. 0.22±0.03 OD units, P<0.005 while insulin-stimulated tyrosine phosphorylation decreased (10.97±0.95 vs. 0.89±0.50 OD units, P<0.005. IMCL levels were twice as high in insulin resistant subjects (3.26±0.48 vs. 1.58±0.35% H(2O peak, P<0.05, who also displayed increased total fat and abdominal fat when compared to insulin sensitive controls. CONCLUSIONS: This is the first report demonstrating that insulin resistance in non-obese, normoglycemic subjects is associated with activation of the JNK pathway related to increased IMCL and higher total body and abdominal adipose stores. While JNK activation is consistent with a primary impact of muscle lipid accumulation on metabolic stress, further work is necessary to determine the

  3. Sam68 Mediates the Activation of Insulin and Leptin Signalling in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Antonio Pérez-Pérez

    Full Text Available Obesity is a well-known risk factor for breast cancer development in postmenopausal women. High insulin and leptin levels seem to have a role modulating the growth of these tumours. Sam68 is an RNA-binding protein with signalling functions that has been found to be overexpressed in breast cancer. Moreover, Sam68 may be recruited to insulin and leptin signalling pathways, mediating its effects on survival, growth and proliferation in different cellular types. We aimed to study the expression of Sam68 and its phosphorylation level upon insulin and leptin stimulation, and the role of Sam68 in the proliferative effect and signalling pathways that are activated by insulin or leptin in human breast adenocarcinoma cells. In the human breast adenocarcinoma cell lines MCF7, MDA-MB-231 and BT-474, Sam68 protein quantity and gene expression were increased upon leptin or insulin stimulation, as it was checked by qPCR and immunoblot. Moreover, both insulin and leptin stimulation promoted an increase in Sam68 tyrosine phosphorylation and negatively regulated its RNA binding capacity. siRNA was used to downregulate Sam68 expression, which resulted in lower proliferative effects of both insulin and leptin, as well as a lower activation of MAPK and PI3K pathways promoted by both hormones. These effects may be partly explained by the decrease in IRS-1 expression by down-regulation of Sam68. These results suggest the participation of Sam68 in both leptin and insulin receptor signaling in human breast cancer cells, mediating the trophic effects of these hormones in proliferation and cellular growth.

  4. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    Directory of Open Access Journals (Sweden)

    Fluharty Eric

    2003-09-01

    Full Text Available Abstract Background Phospholipase D (PLD is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor.

  5. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    Science.gov (United States)

    Li, Hai-Sheng; Shome, Kuntala; Rojas, Raúl; Rizzo, Mark A; Vasudevan, Chandrasekaran; Fluharty, Eric; Santy, Lorraine C; Casanova, James E; Romero, Guillermo

    2003-01-01

    Background Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor. PMID:12969509

  6. Defective insulin secretion by chronic glucagon receptor activation in glucose intolerant mice.

    Science.gov (United States)

    Ahlkvist, Linda; Omar, Bilal; Valeur, Anders; Fosgerau, Keld; Ahrén, Bo

    2016-03-01

    Stimulation of insulin secretion by short-term glucagon receptor (GCGR) activation is well characterized; however, the effect of long-term GCGR activation on β-cell function is not known, but of interest, since hyperglucagonemia occurs early during development of type 2 diabetes. Therefore, we examined whether chronic GCGR activation affects insulin secretion in glucose intolerant mice. To induce chronic GCGR activation, high-fat diet fed mice were continuously (2 weeks) infused with the stable glucagon analog ZP-GA-1 and challenged with oral glucose and intravenous glucose±glucagon-like peptide 1 (GLP1). Islets were isolated to evaluate the insulin secretory response to glucose±GLP1 and their pancreas were collected for immunohistochemical analysis. Two weeks of ZP-GA-1 infusion reduced insulin secretion both after oral and intravenous glucose challenges in vivo and in isolated islets. These inhibitory effects were corrected for by GLP1. Also, we observed increased β-cell area and islet size. We conclude that induction of chronic ZP-GA-1 levels in glucose intolerant mice markedly reduces insulin secretion, and thus, we suggest that chronic activation of the GCGR may contribute to the failure of β-cell function during development of type 2 diabetes.

  7. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Kumi Kimura

    2016-03-01

    Full Text Available Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  8. A telehealth program for self-management of COPD exacerbations and promotion of an active lifestyle: a pilot randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Tabak M

    2014-09-01

    Full Text Available Monique Tabak,1,2 Marjolein Brusse-Keizer,3 Paul van der Valk,3,4 Hermie Hermens,1,2 Miriam Vollenbroek-Hutten1,2 1Telemedicine Group, Roessingh Research and Development, 2Telemedicine Group, University of Twente, 3Department of Pulmonary Medicine, Medisch Spectrum Twente, 4Medical School Twente, Medisch Spectrum Twente, Enschede, the Netherlands Abstract: The objective of this pilot study was to investigate the use of and satisfaction with a chronic obstructive pulmonary disease (COPD telehealth program applied in both primary and secondary care. The program consisted of four modules: 1 activity coach for ambulant activity monitoring and real-time coaching of daily activity behavior, 2 web-based exercise program for home exercising, 3 self-management of COPD exacerbations via a triage diary on the web portal, including self-treatment of exacerbations, and 4 teleconsultation. Twenty-nine COPD patients were randomly assigned to either the intervention group (telehealth program for 9 months or the control group (usual care. Page hits on the web portal showed the use of the program, and the Client Satisfaction Questionnaire showed satisfaction with received care. The telehealth program with decision support showed good satisfaction (mean 26.4, maximum score 32. The program was accessed on 86% of the treatment days, especially the diary. Patient adherence with the exercise scheme was low (21%. Health care providers seem to play an important role in patients' adherence to telehealth in usual care. Future research should focus on full-scale implementation in daily care and investigating technological advances, like gaming, to increase adherence. Keywords: COPD, physical activity, exacerbations, telehealth, self-management

  9. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  10. Prevention of COPD exacerbations

    DEFF Research Database (Denmark)

    Vestbo, Jørgen; Lange, Peter

    2015-01-01

    Exacerbations have significant impact on the morbidity and mortality of patients with chronic obstructive pulmonary disease. Most guidelines emphasise prevention of exacerbations by treatment with long-acting bronchodilators and/or anti-inflammatory drugs. Whereas most of this treatment is evidence......-based, it is clear that patients differ regarding the nature of exacerbations and are likely to benefit differently from different types of treatment. In this short review, we wish to highlight this, suggest a first step in differentiating pharmacological exacerbation prevention and call for more studies...... in this area. Finally, we wish to highlight that there are perhaps easier ways of achieving similar success in exacerbation prevention using nonpharmacological tools....

  11. CYP24A1 exacerbated activity during diabetes contributes to kidney tubular apoptosis via caspase-3 increased expression and activation.

    Directory of Open Access Journals (Sweden)

    Alexandre Tourigny

    Full Text Available Decreases in circulating 25,hydroxyl-vitamin D3 (25 OH D3 and 1,25,dihydroxyl-vitamin D3 (1,25 (OH2 D3 have been extensively documented in patients with type 2 diabetes. Nevertheless, the molecular reasons behind this drop, and whether it is a cause or an effect of disease progression is still poorly understood. With the skin and the liver, the kidney is one of the most important sites for vitamin D metabolism. Previous studies have also shown that CYP24A1 (an enzyme implicated in vitamin D metabolism, might play an important role in furthering the progression of kidney lesions during diabetic nephropathy. In this study we show a link between CYP24A1 increase and senescence followed by apoptosis induction in the renal proximal tubules of diabetic kidneys. We show that CYP24A1 expression was increased during diabetic nephropathy progression. This increase derived from protein kinase C activation and increased H(2O(2 cellular production. CYP24A1 increase had a major impact on cellular phenotype, by pushing cells into senescence, and later into apoptosis. Our data suggest that control of CYP24A1 increase during diabetes has a beneficial effect on senescence induction and caspase-3 increased expression. We concluded that diabetes induces an increase in CYP24A1 expression, destabilizing vitamin D metabolism in the renal proximal tubules, leading to cellular instability and apoptosis, and thereby accelerating tubular injury progression during diabetic nephropathy.

  12. Adiponectin increases glucose-induced insulin secretion through the activation of lipid oxidation.

    Science.gov (United States)

    Patané, G; Caporarello, N; Marchetti, P; Parrino, C; Sudano, D; Marselli, L; Vigneri, R; Frittitta, L

    2013-12-01

    The expression of adiponectin receptors has been demonstrated in human and rat pancreatic beta cells, where globular (g) adiponectin rescues rat beta cells from cytokine and fatty acid-induced apoptosis. The aim of our study was to evaluate whether adiponectin has a direct effect on insulin secretion and the metabolic pathways involved. Purified human pancreatic islets and rat beta cells (INS-1E) were exposed (1 h) to g-adiponectin, and glucose-induced insulin secretion was measured. A significant increase in glucose-induced insulin secretion was observed in the presence of g-adiponectin (1 nmol/l) with respect to control cells in both human pancreatic islets (n = 5, p < 0.05) and INS-1E cells (n = 5, p < 0.001). The effect of globular adiponectin on insulin secretion was independent of AMP-dependent protein kinase (AMPK) activation or glucose oxidation. In contrast, g-adiponectin significantly increased oleate oxidation (n = 5, p < 0.05), and the effect of g-adiponectin (p < 0.001) on insulin secretion by INS-1E was significantly reduced in the presence of etomoxir (1 μmol/l), an inhibitor of fatty acid beta oxidation. g-Adiponectin potentiates glucose-induced insulin secretion in both human pancreatic islets and rat beta cells via an AMPK independent pathway. Increased fatty acid oxidation rather than augmented glucose oxidation is the mechanism responsible. Overall, our data indicate that, in addition to its anti-apoptotic action, g-adiponectin has another direct effect on beta cells by potentiating insulin secretion. Adiponectin, therefore, in addition to its well-known effect on insulin sensitivity, has important effects at the pancreatic level.

  13. ANTIDIABETIC AND HYPOLIPIDEMIC ACTIVITY OF GYMNEMA SYLVESTRE IN DEXAMETHASONE INDUCED INSULIN RESISTANCE IN ALBINO RATS

    Directory of Open Access Journals (Sweden)

    Hemanth Kumar V, Nagendra Nayak IM , Shobha V Huilgol, Saeed M Yendigeri , Narendar K

    2015-07-01

    Full Text Available Background: Gymnema sylvestre plant was widely used for medicinal purpose. The plant leaves were traditionally used to treat diabetes. Aim: To determine the antidiabetic and hypolipidemic activity of Gymnema sylvestre in dexamethasone induced insulin resistance in Albino rats. Objectives: The present study was undertaken to evaluate antidiabetic and hypolipidemic activity of Gymnema sylvestre leaf aqueous extract against dexamethasone induced insulin resistance in Albino rats. Materials and Methods: Animals were divided into five groups. Normal control and diabetic control group received gum acacia (2% orally for 12days, and normal saline (i.p., dexamethasone (8mg/kg/i.p. from day 7- day12 respectively. Two test groups (Gymnema sylvestre leaf aqueous extract 2 and 4gm/kg/p.o./12days and standard control received metformin (2gm/kg/p.o./12 days. The two test groups, standard control group received dexamethasone (8mg/kg/i.p from day 7- day 12 respectively. The antidiabetic and hypolipidemic activity was estimated by measuring serum glucose, insulin, lipid levels and histopathological evaluation of liver tissue. Results were analyzed by using one way ANOVA followed by Scheffe’s multiple comparison test. Results: Treatment with aqueous extract of Gymnema sylvestre (2 and 4gm/kg/p.o significantly (p<0.01 altered the elevated glucose, lipid, insulin levels and also improved the histopathology of liver in dexamethasone induced insulin resistance rats. Conclusion: Treatment with aqueous extract of Gymnema sylvestre improved the altered glucose, insulin and lipid profile in insulin resistance rats.

  14. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice

    DEFF Research Database (Denmark)

    Madsen, Birgitte Lindegaard; Matthews, Vance B; Brandt, Claus

    2013-01-01

    Circulating interleukin (IL)-18 is elevated in obesity, but paradoxically causes hypophagia. We hypothesized that IL-18 may attenuate high fat diet induced insulin resistance by activating AMP activated protein kinase (AMPK). We studied mice with a global deletion of the α isoform of the IL-18...

  15. Calorie restriction minimizes activation of insulin signaling in response to glucose: potential involvement of the growth hormone-insulin-like growth factor 1 axis.

    Science.gov (United States)

    Hayashi, Hiroko; Yamaza, Haruyoshi; Komatsu, Toshimitsu; Park, Seongjoon; Chiba, Takuya; Higami, Yoshikazu; Nagayasu, Takeshi; Shimokawa, Isao

    2008-09-01

    Calorie restriction (CR) may modulate insulin signaling in response to energy intake through suppression of the growth hormone (GH)-IGF-1 axis. We investigated the glucose-stimulated serum insulin response and subsequent alterations in insulin receptor (IR), Akt, and FoxO1 in the rat liver and quadriceps femoris muscle (QFM). Nine-month-old wild-type (W) male Wistar rats fed ad libitum (AL) or a 30% CR diet initiated at 6 weeks of age and GH-suppressed transgenic (Tg) rats fed AL were killed 15 min after intraperitoneal injection of glucose or saline. In W-AL rats, the serum insulin concentration was elevated by glucose injection. Concomitantly, the phosphorylated (p)-IR and p-Akt levels were increased in both tissues. The active FoxO1 level was decreased in the liver, but not significantly in the QFM. In W-CR and Tg-AL rats, the serum insulin response was lower, and no significant changes were noted for the p-IR, p-Akt, or active FoxO1 levels in the liver. In the QFM, the p-Akt level was increased in W-CR and Tg-AL rats with an insignificant elevation of p-IR levels. The phenotypic similarity of W-CR and Tg-AL rats suggest that CR minimizes activation of insulin signaling in response to energy intake mostly through the GH-IGF-1 axis.

  16. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  17. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  18. Independent Benefits of Meeting the 2008 Physical Activity Guidelines to Insulin Resistance in Obese Latino Children

    Directory of Open Access Journals (Sweden)

    Nazrat Mirza

    2012-01-01

    Full Text Available We examined the independent association between moderate-to-vigorous physical activity (MVPA and insulin resistance (IR among obese Latino children (N=113; 7–15 years who were enrolled in a community-based obesity intervention. Baseline information on physical activity was gathered by self-report. Clinical assessments of body composition, resting energy expenditure (REE, as well as glucose and insulin responses to an oral glucose tolerance test (OGTT were performed after an overnight fast. Insulin resistance was defined as a 2 h insulin concentration >57 μU·mL-1. We observed that those obese children who met the 2008 Guidelines for MVPA (≥60 min/day experienced a significantly lower odds of IR compared with those not meeting the Guidelines (OR=0.29; 95% CI: (0.10–0.92 and these findings were independent of age, sex, pubertal stage, acculturation, fasting insulin, and 2 h glucose concentrations. Efforts to promote 60 min or more of daily MVPA among children from ethnic minority and high-risk communities should assume primary public health importance.

  19. Complement activation capacity in plasma before and during high-dose prednisolone treatment and tapering in exacerbations of Crohn's disease and ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Baatrup Gunnar

    2005-09-01

    Full Text Available Abstract Background Ulcerative colitis (UC and Crohn's disease (CD are characterized by intestinal inflammation mainly caused by a disturbance in the balance between cytokines and increased complement (C activation. Our aim was to evaluate possible associations between C activation capacity and prednisolone treatment. Methods Plasma from patients with exacerbations of UC (n = 18 or CD (n = 18 were collected before and during high dose prednisolone treatment (1 mg/kg body weight and tapering. Friedman's two way analysis of variance, Mann-Whitney U test and Wilcoxon signed-rank sum test were used Results Before treatment, plasma from CD patients showed significant elevations in all C-mediated analyses compared to the values obtained from 38 healthy controls (p Conclusion Our findings indicate that C activation capacity is up-regulated significantly in plasma from CD patients. The decreases observed after prednisolone treatment reflect a general down-regulation in immune activation.

  20. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    Science.gov (United States)

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  1. AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B.

    Science.gov (United States)

    Bertrand, Luc; Ginion, Audrey; Beauloye, Christophe; Hebert, Alexandre D; Guigas, Bruno; Hue, Louis; Vanoverschelde, Jean-Louis

    2006-07-01

    Diabetic hearts are known to be more susceptible to ischemic disease. Biguanides, like metformin, are known antidiabetic drugs that lower blood glucose concentrations by decreasing hepatic glucose production and increasing glucose disposal in muscle. Part of these metabolic effects is thought to be mediated by the activation of AMP-activated protein kinase (AMPK). In this work, we studied the relationship between AMPK activation and glucose uptake stimulation by biguanides and oligomycin, another AMPK activator, in both insulin-sensitive and insulin-resistant cardiomyocytes. In insulin-sensitive cardiomyocytes, insulin, biguanides and oligomycin were able to stimulate glucose uptake with the same efficiency. Stimulation of glucose uptake by insulin or biguanides was correlated to protein kinase B (PKB) or AMPK activation, respectively, and were additive. In insulin-resistant cardiomyocytes, where insulin stimulation of glucose uptake was greatly reduced, biguanides or oligomycin, in the absence of insulin, induced a higher stimulation of glucose uptake than that obtained in insulin-sensitive cells. This stimulation was correlated with the activation of both AMPK and PKB and was sensitive to the phosphatidylinositol-3-kinase/PKB pathway inhibitors. Finally, an adenoviral-mediated expression of a constitutively active form of AMPK increased both PKB phosphorylation and glucose uptake in insulin-resistant cardiomyocytes. We concluded that AMPK activators, like biguanides and oligomycin, are able to restore glucose uptake stimulation, in the absence of insulin, in insulin-resistant cardiomyocytes via the additive activation of AMPK and PKB. Our results suggest that AMPK activation could restore normal glucose metabolism in diabetic hearts and could be a potential therapeutic approach to treat insulin resistance.

  2. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2*

    Science.gov (United States)

    Hogan, Meghan F.; Ravnskjaer, Kim; Matsumura, Shigenobu; Huising, Mark O.; Hull, Rebecca L.; Kahn, Steven E.; Montminy, Marc

    2015-01-01

    Under fasting conditions, increases in circulating concentrations of glucagon maintain glucose homeostasis via the induction of hepatic gluconeogenesis. Triggering of the cAMP pathway in hepatocytes stimulates the gluconeogenic program via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where it contributes to the attendant hyperglycemia. Whether selective activation of the hepatic CREB/CRTC pathway is sufficient to trigger metabolic changes in other tissues is unclear, however. Modest hepatic expression of a phosphorylation-defective and therefore constitutively active CRTC2S171,275A protein increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A-expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice, demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis. PMID:26342077

  3. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2.

    Science.gov (United States)

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu; Huising, Mark O; Hull, Rebecca L; Kahn, Steven E; Montminy, Marc

    2015-10-23

    Under fasting conditions, increases in circulating concentrations of glucagon maintain glucose homeostasis via the induction of hepatic gluconeogenesis. Triggering of the cAMP pathway in hepatocytes stimulates the gluconeogenic program via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where it contributes to the attendant hyperglycemia. Whether selective activation of the hepatic CREB/CRTC pathway is sufficient to trigger metabolic changes in other tissues is unclear, however. Modest hepatic expression of a phosphorylation-defective and therefore constitutively active CRTC2S171,275A protein increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A-expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice, demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis.

  4. Acute exacerbation of COPD.

    Science.gov (United States)

    Ko, Fanny W; Chan, Ka Pang; Hui, David S; Goddard, John R; Shaw, Janet G; Reid, David W; Yang, Ian A

    2016-10-01

    The literature of acute exacerbation of chronic obstructive pulmonary disease (COPD) is fast expanding. This review focuses on several aspects of acute exacerbation of COPD (AECOPD) including epidemiology, diagnosis and management. COPD poses a major health and economic burden in the Asia-Pacific region, as it does worldwide. Triggering factors of AECOPD include infectious (bacteria and viruses) and environmental (air pollution and meteorological effect) factors. Disruption in the dynamic balance between the 'pathogens' (viral and bacterial) and the normal bacterial communities that constitute the lung microbiome likely contributes to the risk of exacerbations. The diagnostic approach to AECOPD varies based on the clinical setting and severity of the exacerbation. After history and examination, a number of investigations may be useful, including oximetry, sputum culture, chest X-ray and blood tests for inflammatory markers. Arterial blood gases should be considered in severe exacerbations, to characterize respiratory failure. Depending on the severity, the acute management of AECOPD involves use of bronchodilators, steroids, antibiotics, oxygen and noninvasive ventilation. Hospitalization may be required, for severe exacerbations. Nonpharmacological interventions including disease-specific self-management, pulmonary rehabilitation, early medical follow-up, home visits by respiratory health workers, integrated programmes and telehealth-assisted hospital at home have been studied during hospitalization and shortly after discharge in patients who have had a recent AECOPD. Pharmacological approaches to reducing risk of future exacerbations include long-acting bronchodilators, inhaled steroids, mucolytics, vaccinations and long-term macrolides. Further studies are needed to assess the cost-effectiveness of these interventions in preventing COPD exacerbations.

  5. The relationship between vitamin D status, physical activity and insulin resistance in overweight and obese subjects

    Directory of Open Access Journals (Sweden)

    Gülis Kavadar

    2015-05-01

    Full Text Available Type 2 diabetes mellitus (T2DM incidence has been increasing worldwide along with the rise of obesity and sedantery lifestyle. Decreased physical activity (PA and obesity have also been associated with the low vitamin D levels. We aimed to determine the association between PA, vitamin D status and insulin resistance in overweight and obese subjects. A total of 294 (186 female, 108 male overweight or obese subjects were included in this cross-sectional study. 25-hydroxy vitamin D (25(OHD, insulin, fasting plasma glucose (FPG and HbA1c levels were measured in blood samples. Body mass index (BMI, HOMA-index and total score of International Physical Activity Questionnaire-long form (IPAQ were calculated. Insulin resistant subjects were compared with the non-resistant group. The mean age of the participants was 45±12.25 and 41.39±10.32; 25(OHD levels were 8.91 ± 4.30 and 17.62 ± 10.47 ng/dL; BMIs were 31.29 ± 4.48  and 28.2 ± 3.16 kg/m², IPAQ total scores were 548.71±382.81 and 998±486.21 in the insulin resistant and nonresistant subjects, respectively. There was a statistically significant difference in terms of 25(OHD, FPG, insulin levels, IPAQ  total score and BMI between the two groups (p = 0.001, p = 0.001, p = 0.001, p = 0.001, p = 0.001.Significantly low 25(OHD levels, high BMI and low PA in insulin resistant subjects confirm the importance of active lifestyle and the maintenance of normal vitamin D levels in overweight and obese subjects in prevention of T2DM.

  6. Role of metabolically active hormones in the insulin resistance associated with short-term glucocorticoid treatment

    Directory of Open Access Journals (Sweden)

    Lip Gregory YH

    2006-09-01

    Full Text Available Abstract Background The mechanisms by which glucocorticoid therapy promotes obesity and insulin resistance are incompletely characterized. Modulations of the metabolically active hormones, tumour necrosis factor alpha (TNF alpha, ghrelin, leptin and adiponectin are all implicated in the development of these cardiovascular risk factors. Little is known about the effects of short-term glucocorticoid treatment on levels of these hormones. Research methods and procedures Using a blinded, placebo-controlled approach, we randomised 25 healthy men (mean (SD age: 24.2 (5.4 years to 5 days of treatment with either placebo or oral dexamethasone 3 mg twice daily. Fasting plasma TNFα, ghrelin, leptin and adiponectin were measured before and after treatment. Results Mean changes in all hormones were no different between treatment arms, despite dexamethasone-related increases in body weight, blood pressure, HDL cholesterol and insulin. Changes in calculated indices of insulin sensitivity (HOMA-S, insulin sensitivity index were strongly related to dexamethasone treatment (p Discussion Our data do not support a role for TNF alpha, ghrelin, leptin or adiponectin in the insulin resistance associated with short-term glucocorticoid treatment.

  7. Structure based discovery of small molecules to regulate the activity of human insulin degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Bilal Çakir

    Full Text Available BACKGROUND: Insulin-degrading enzyme (IDE is an allosteric Zn(+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD and type 2 diabetes mellitus (T2DM, respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. CONCLUSION/SIGNIFICANCE: This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible.

  8. Activation of proteinase 3 contributes to nonalcoholic fatty liver disease and insulin resistance

    NARCIS (Netherlands)

    Toonen, Erik J.M.; Mirea, Andreea Manuela; Tack, Cees J.; Stienstra, Rinke; Ballak, Dov B.; Diepen, van Janna A.; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H.; Pham, Christine Tn; Netea, Mihai G.; Dinarello, Charles A.; Joosten, Leo A.B.

    2016-01-01

    Activation of inflammatory pathways is known to accompany development of obesity-induced nonalcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to proces

  9. Central Administration of Insulin and Leptin Together Enhance Renal Sympathetic Nerve Activity and Fos Production in the Arcuate Nucleus

    Science.gov (United States)

    Habeeballah, Hamza; Alsuhaymi, Naif; Stebbing, Martin J.; Jenkins, Trisha A.; Badoer, Emilio

    2017-01-01

    There is considerable interest in the central actions of insulin and leptin. Both induce sympatho-excitation. This study (i) investigated whether centrally administered leptin and insulin together elicits greater increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) than when given alone, and (ii) quantified the number of activated neurons in brain regions influencing SNA, to identify potential central sites of interaction. In anesthetised (urethane 1.4–1.6 g/kg iv) male Sprague-Dawley rats, RSNA, MAP, and HR were recorded following intracerebroventricular (ICV) saline (control; n = 5), leptin (7 μg; n = 5), insulin (500 mU; n = 4) and the combination of leptin and insulin; (n = 4). Following leptin or insulin alone, RSNA was significantly increased (74 and 62% respectively). MAP responses were not significantly different between the groups. Insulin alone significantly increased HR. Leptin alone also increased HR but it was significantly less than following insulin alone (P < 0.005). When leptin and insulin were combined, the RSNA increase (124%) was significantly greater than the response to either alone. There were no differences between the groups in MAP responses, however, the increase in HR induced by insulin was attenuated by leptin. Of the brain regions examined, only in the arcuate nucleus did leptin and insulin together increase the number of Fos-positive cell nuclei significantly more than leptin or insulin alone. In the lamina terminalis and rostroventrolateral medulla, leptin and insulin together increased Fos, but the effect was not greater than leptin alone. The results suggest that when central leptin and insulin levels are elevated, the sympatho-excitatory response in RSNA will be greater. The arcuate nucleus may be a common site of cardiovascular integration. PMID:28119622

  10. Plasminogen activator inhibitor-1, free fatty acids, and insulin resistance in patients with myocardial infarction

    Directory of Open Access Journals (Sweden)

    Gruzdeva O

    2013-08-01

    Full Text Available Olga Gruzdeva, Evgenya Uchasova, Yulia Dyleva, Ekaterina Belik, Ekaterina Shurygina, Olga Barbarash Research Institute for Complex Issues of Cardiovascular Diseases under the Siberian Branch of the Russian Academy of Medical Sciences, Kemerovo, Russian Federation Background: Insulin resistance is known to be a common feature of type 2 diabetes mellitus and is regarded as an important mechanism in the pathogenesis of this disease. The key pathogenetic mechanisms of insulin resistance progression are free fatty acids metabolism impairment and enhanced activity of plasminogen activator inhibitor 1. Both free fatty acids and plasminogen activator inhibitor 1 are recognized as risk factors for coronary heart disease. Methods: The patients were divided into two groups: group 1 included 65 non-diabetic myocardial infarction patients and group 2 enrolled 60 diabetic myocardial infarction patients. The control group consisted of 30 sex- and age-matched volunteers. The concentration of serum free fatty acids, glucose, C-peptide, and insulin were measured on the 1st and 12th days of the study. All the patients had their postprandial glycemia, insulin, and C-peptide concentrations measured 2 hours after a standard carbohydrate breakfast containing 360 kcal (protein 20 g, carbohydrate 57 g, and fat 9 g. Results: Free fatty acids levels in group 1 and in group 2 exceeded the control group values by 7-fold and 11-fold, respectively. Plasminogen activator inhibitor 1 concentration was 2.5-fold higher in group 1 and 4.6-fold higher in group 2 compared to the control group on the 1st day from the myocardial infarction onset. In addition, plasminogen activator inhibitor 1 concentration was significantly reduced in both groups on the 12th day from the myocardial infarction onset; however, it did not achieve the control group values. Conclusion: Increased postprandial glucose level, insulinemia, and elevated levels of free fatty acids and plasminogen activator

  11. Insulin receptor-overexpressing β-cells ameliorate hyperglycemia in diabetic rats through Wnt signaling activation.

    Directory of Open Access Journals (Sweden)

    Mi-Hyun Kim

    Full Text Available To investigate the therapeutic efficacy and mechanism of β-cells with insulin receptor (IR overexpression on diabetes mellitus (DM, rat insulinoma (INS-1 cells were engineered to stably express human insulin receptor (INS-IR cells, and subsequently transplanted into streptozotocin- induced diabetic rats. Compared with INS-1 cells, INS-IR cells showed improved β-cell function, including the increase in glucose utilization, calcium mobilization, and insulin secretion, and exhibited a higher rate of cell proliferation, and maintained lower levels of blood glucose in diabetic rats. These results were attributed to the increase of β-catenin/PPARγ complex bindings to peroxisome proliferator response elements in rat glucokinase (GK promoter and the prolongation of S-phase of cell cycle by cyclin D1. These events resulted from more rapid and higher phosphorylation levels of insulin-signaling intermediates, including insulin receptor substrate (IRS-1/IRS-2/phosphotylinositol 3 kinase/v-akt murine thymoma viral oncogene homolog (AKT 1, and the consequent enhancement of β-catenin nuclear translocation and Wnt responsive genes including GK and cyclin D1. Indeed, the higher functionality and proliferation shown in INS-IR cells were offset by β-catenin, cyclin D1, GK, AKT1, and IRS-2 gene depletion. In addition, the promotion of cell proliferation and insulin secretion by Wnt signaling activation was shown by 100 nM insulin treatment, and to a similar degree, was shown in INS-IR cells. In this regard, this study suggests that transferring INS-IR cells into diabetic animals is an effective and feasible DM treatment. Accordingly, the method might be a promising alternative strategy for treatment of DM given the adverse effects of insulin among patients, including the increased risk of modest weight gain and hypoglycemia. Additionally, this study demonstrates that the novel mechanism of cross-talk between insulin and Wnt signaling plays a primary role in

  12. Essential role of PSM/SH2-B variants in insulin receptor catalytic activation and the resulting cellular responses.

    Science.gov (United States)

    Zhang, Manchao; Deng, Youping; Tandon, Ruchi; Bai, Cheng; Riedel, Heimo

    2008-01-01

    The positive regulatory role of PSM/SH2-B downstream of various mitogenic receptor tyrosine kinases or gene disruption experiments in mice support a role of PSM in the regulation of insulin action. Here, four alternative PSM splice variants and individual functional domains were compared for their role in the regulation of specific metabolic insulin responses. We found that individual PSM variants in 3T3-L1 adipocytes potentiated insulin-mediated glucose and amino acid transport, glycogenesis, lipogenesis, and key components in the metabolic insulin response including p70 S6 kinase, glycogen synthase, glycogen synthase kinase 3 (GSK3), Akt, Cbl, and IRS-1. Highest activity was consistently observed for PSM alpha, followed by beta, delta, and gamma with decreasing activity. In contrast, dominant-negative peptide mimetics of the PSM Pro-rich, pleckstrin homology (PH), or src homology 2 (SH2) domains inhibited any tested insulin response. Potentiation of the insulin response originated at the insulin receptor (IR) kinase level by PSM variant-specific regulation of the Km (ATP) whereas the Vmax remained unaffected. IR catalytic activation was inhibited by peptide mimetics of the PSM SH2 or dimerization domain (DD). Either peptide should disrupt the complex of a PSM dimer linked to IR via SH2 domains as proposed for PSM activation of tyrosine kinase JAK2. Either peptide abolished downstream insulin responses indistinguishable from PSM siRNA knockdown. Our results implicate an essential role of the PSM variants in the activation of the IR kinase and the resulting metabolic insulin response. PSM variants act as internal IR ligands that in addition to potentiating the insulin response stimulate IR catalytic activation even in the absence of insulin.

  13. A neglected modulator of insulin-degrading enzyme activity and conformation: The pH.

    Science.gov (United States)

    Grasso, Giuseppe; Satriano, Cristina; Milardi, Danilo

    2015-01-01

    Insulin-degrading enzyme (IDE), a ubiquitously expressed zinc metalloprotease, has multiple activities in addition to insulin degradation and its malfunction is believed to connect type 2 diabetes with Alzheimer's disease. IDE has been found in many different cellular compartments, where it may experience significant physio-pathological pH variations. However, the exact role of pH variations on the interplay between enzyme conformations, stability, oligomerization state and catalysis is not understood. Here, we use ESI mass spectrometry, atomic force microscopy, surface plasmon resonance and circular dichroism to investigate the structure-activity relationship of IDE at different pH values. We show that acidic pH affects the ability of the enzyme to bind the substrate and decrease the stability of the protein by inducing an α-helical bundle conformation with a concomitant dissociation of multi-subunit IDE assemblies into monomeric units and loss of activity. These effects suggest a major role played by electrostatic forces in regulating multi-subunit enzyme assembly and function. Our results clearly indicate a pH dependent coupling among enzyme conformation, assembly and stability and suggest that cellular acidosis can have a large effect on IDE oligomerization state, inducing an enzyme inactivation and an altered insulin degradation that could have an impact on insulin signaling.

  14. p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients

    DEFF Research Database (Denmark)

    Brown, Audrey E; Palsgaard, Jane; Borup, Rehannah;

    2015-01-01

    Skeletal muscle is the key site of peripheral insulin resistance in type 2 diabetes. Insulin-stimulated glucose uptake is decreased in differentiated diabetic cultured myotubes, which is in keeping with a retained genetic/epigenetic defect of insulin action. We investigated differences in gene...... expression during differentiation between diabetic and control muscle cell cultures. Microarray analysis was performed using skeletal muscle cell cultures established from type 2 diabetic patients with a family history of type 2 diabetes and clinical evidence of marked insulin resistance and nondiabetic...... significantly, it did not improve insulin-stimulated glucose uptake. Increased cytokine expression driven by increased p38 MAPK activation is a key feature of cultured myotubes derived from insulin-resistant type 2 diabetic patients. p38 MAPK inhibition decreased cytokine expression but did not affect...

  15. Direct Angiotensin II Type 2 Receptor Stimulation Ameliorates Insulin Resistance in Type 2 Diabetes Mice with PPARγ Activation

    DEFF Research Database (Denmark)

    Ohshima, Kousei; Mogi, Masaki; Jing, Fei;

    2012-01-01

    The role of angiotensin II type 2 (AT(2)) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT(2) receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing/anti-diabetic effects in ty...... 2 diabetes (T2DM) with PPARγ activation, mainly focusing on adipose tissue.......The role of angiotensin II type 2 (AT(2)) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT(2) receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing/anti-diabetic effects in type...

  16. Activation of the insulin receptor (IR) by insulin and a synthetic peptide has different effects on gene expression in IR-transfected L6 myoblasts

    DEFF Research Database (Denmark)

    Jensen, M.; Palsgaard, J.; Borup, R.;

    2008-01-01

    differentially activates post-receptor signalling, we studied the gene expression profile in response to IR activation by either insulin or S597 using microarray technology. We found striking differences between the patterns induced by these two ligands. Most remarkable was that almost half of the genes...... differentially regulated by insulin and S597 were involved in cell proliferation and growth. Insulin either selectively regulated the expression of these genes or was a more potent regulator. Furthermore, we found that half of the differentially regulated genes interact with the genes involved with the MAPK...... differentially affect gene expression in cells, resulting in a different mitogenicity of the two ligands, a finding which has critical therapeutic implications Udgivelsesdato: 2008/6/15...

  17. Non-diabetic hyperglycemia exacerbates disease severity in Mycobacterium tuberculosis infected guinea pigs.

    Science.gov (United States)

    Podell, Brendan K; Ackart, David F; Kirk, Natalie M; Eck, Sarah P; Bell, Christopher; Basaraba, Randall J

    2012-01-01

    Hyperglycemia, the diagnostic feature of diabetes also occurs in non-diabetics associated with chronic inflammation and systemic insulin resistance. Since the increased risk of active TB in diabetics has been linked to the severity and duration of hyperglycemia, we investigated what effect diet-induced hyperglycemia had on the severity of Mycobacterium tuberculosis (Mtb) infection in non-diabetic guinea pigs. Post-prandial hyperglycemia was induced in guinea pigs on normal chow by feeding a 40% sucrose solution daily or water as a carrier control. Sucrose feeding was initiated on the day of aerosol exposure to the H37Rv strain of Mtb and continued for 30 or 60 days of infection. Despite more severe hyperglycemia in sucrose-fed animals on day 30, there was no significant difference in lung bacterial or lesion burden until day 60. However the higher spleen and lymph node bacterial and lesion burden at day 30 indicated earlier and more severe extrapulmonary TB in sucrose-fed animals. In both sucrose- and water-fed animals, serum free fatty acids, important mediators of insulin resistance, were increased by day 30 and remained elevated until day 60 of infection. Hyperglycemia mediated by Mtb infection resulted in accumulation of advanced glycation end products (AGEs) in lung granulomas, which was exacerbated by sucrose feeding. However, tissue and serum AGEs were elevated in both sucrose and water-fed guinea pigs by day 60. These data indicate that Mtb infection alone induces insulin resistance and chronic hyperglycemia, which is exacerbated by sucrose feeding. Moreover, Mtb infection alone resulted in the accumulation tissue and serum AGEs, which are also central to the pathogenesis of diabetes and diabetic complications. The exacerbation of insulin resistance and hyperglycemia by Mtb infection alone may explain why TB is more severe in diabetics with poorly controlled hyperglycemia compared to non-diabetics and patients with properly controlled blood glucose levels.

  18. Non-diabetic hyperglycemia exacerbates disease severity in Mycobacterium tuberculosis infected guinea pigs.

    Directory of Open Access Journals (Sweden)

    Brendan K Podell

    Full Text Available Hyperglycemia, the diagnostic feature of diabetes also occurs in non-diabetics associated with chronic inflammation and systemic insulin resistance. Since the increased risk of active TB in diabetics has been linked to the severity and duration of hyperglycemia, we investigated what effect diet-induced hyperglycemia had on the severity of Mycobacterium tuberculosis (Mtb infection in non-diabetic guinea pigs. Post-prandial hyperglycemia was induced in guinea pigs on normal chow by feeding a 40% sucrose solution daily or water as a carrier control. Sucrose feeding was initiated on the day of aerosol exposure to the H37Rv strain of Mtb and continued for 30 or 60 days of infection. Despite more severe hyperglycemia in sucrose-fed animals on day 30, there was no significant difference in lung bacterial or lesion burden until day 60. However the higher spleen and lymph node bacterial and lesion burden at day 30 indicated earlier and more severe extrapulmonary TB in sucrose-fed animals. In both sucrose- and water-fed animals, serum free fatty acids, important mediators of insulin resistance, were increased by day 30 and remained elevated until day 60 of infection. Hyperglycemia mediated by Mtb infection resulted in accumulation of advanced glycation end products (AGEs in lung granulomas, which was exacerbated by sucrose feeding. However, tissue and serum AGEs were elevated in both sucrose and water-fed guinea pigs by day 60. These data indicate that Mtb infection alone induces insulin resistance and chronic hyperglycemia, which is exacerbated by sucrose feeding. Moreover, Mtb infection alone resulted in the accumulation tissue and serum AGEs, which are also central to the pathogenesis of diabetes and diabetic complications. The exacerbation of insulin resistance and hyperglycemia by Mtb infection alone may explain why TB is more severe in diabetics with poorly controlled hyperglycemia compared to non-diabetics and patients with properly controlled

  19. Maternal Physical Activity and Insulin Action in Pregnancy and Their Relationships With Infant Body Composition

    OpenAIRE

    Pomeroy, Jeremy; Renström, Frida; Gradmark, Anna M.; Mogren, Ingrid; Persson, Margareta; Bluck, Les; Wright, Antony; Kahn, Steven E; Domellöf, Magnus; Franks, Paul W.

    2013-01-01

    OBJECTIVE We sought to assess the association between maternal gestational physical activity and insulin action and body composition in early infancy. RESEARCH DESIGN AND METHODS At 28–32 weeks' gestation, pregnant women participating in an observational study in Sweden underwent assessments of height, weight, and body composition, an oral glucose tolerance test, and 10 days of objective physical activity assessment. Thirty mothers and infants returned at 11–19 weeks postpartum. Infants under...

  20. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Mogensen, Martin; Petersen, Ingrid;

    2005-01-01

    responded to high levels of insulin and/or palmitate. These results provide evidence for an intrinsic defect in CS activity, which may play a role in the pathogenesis of T2D. Moreover, the data suggest that insulin resistance at the CS level can be induced by exposure to high free fatty acid levels.......In myotubes established from patients with type 2 diabetes (T2D), lipid oxidation and insulin-mediated glucose oxidation are reduced, whereas in myotubes from obese non-diabetic subjects, exposure to palmitate impairs insulin-mediated glucose oxidation. To determine the underlying mechanisms...... of these metabolic malfunctions, we studied mitochondrial respiration, uncoupled respiration and oxidative enzyme activities (citrate synthase (CS), 3-hydroxy-acyl-CoA-dehydrogenase activity (HAD)) before and after acute exposure to insulin and/or palmitate in myotubes established from healthy lean and obese...

  1. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Hyejin Lee

    2016-04-01

    Full Text Available The fruit of Psoralea corylifolia L. (Fabaceae (PC, known as “Bo-Gol-Zhee” in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ and CCAAT/enhancer binding protein-α (C/EBPα. Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4 translocation by activating the Akt and 5′AMP-activated protein kinase (AMPK pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways.

  2. Bcl10 Links Saturated Fat Overnutrition with Hepatocellular NF-κB Activation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Matthew Van Beek

    2012-05-01

    Full Text Available Excess serum free fatty acids (FFAs are fundamental to the pathogenesis of insulin resistance. With high-fat feeding, FFAs activate NF-κB in target tissues, initiating negative crosstalk with insulin signaling. However, the mechanisms underlying FFA-dependent NF-κB activation remain unclear. Here, we demonstrate that the saturated FA, palmitate, requires Bcl10 for NF-κB activation in hepatocytes. Uptake of palmitate, metabolism to diacylglycerol, and subsequent activation of protein kinase C (PKC appear to mechanistically link palmitate with Bcl10, known as a central component of a signaling complex that, along with CARMA3 and MALT1, activates NF-κB downstream of selected cell surface receptors. Consequently, Bcl10-deficient mice are protected from hepatic NF-κB activation and insulin resistance following brief high-fat diet, suggesting that Bcl10 plays a major role in the metabolic consequences of acute overnutrition. Surprisingly, while CARMA3 also participates in the palmitate response, MALT1 is completely dispensable, thereby revealing an apparent nonclassical role for Bcl10 in NF-κB signaling.

  3. Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    García-Arencibia Moisés

    2008-07-01

    Full Text Available Abstract Background this study set out to examine the effects of the treatment with 1,25-dihydroxyvitamin D3 (1,25D3 [150 IU/Kg (3.75 μg/Kg one a day, for 15 days] to non-diabetic rats and in rats rendered diabetic by a single injection of streptozotocin [65 mg/kg]. Results treatment with 1,25D3 to non-diabetic rats did not affect the biochemical parameters measured in the plasma and urine of these animals. Likewise, insulin receptor expression in the kidney, liver, or adipose tissue and insulin-stimulated glucose transport in adipocytes from these animals were not affected either. Treatment with 1,25D3 to streptozotocin-induced diabetic rats did not correct the hyperglycemia, hypoinsulinemia, glycosuria or ketonemia induced by the diabetes, although it partially reversed the over-expression of the insulin receptor gene in the liver and adipose tissue, without altering the normal expression of this gene in the kidney. These effects were accompanied by a normalization of the number of insulin receptors without altering receptor affinity but improving the insulin response to glucose transport in adipocytes from these diabetic animals. Moreover, a computer search in the rat insulin receptor promoter revealed the existence of two candidate vitamin D response element (VDRE sequences located at -256/-219 bp and -653/-620 bp, the first overlapped by three and the second by four AP-2-like sites. Conclusion these genomic actions of 1,25D3 could represent beneficial effects associated with the amelioration of diabetes via mechanisms that possibly involve direct transcriptional activation of the rat insulin receptor gene. The candidate VDREs identified may respond to 1,25D3 via activation of the vitamin D receptor, although this remains to be investigated.

  4. Associations of objective physical activity with insulin sensitivity and circulating adipokine profile: the Framingham Heart Study.

    Science.gov (United States)

    Spartano, N L; Stevenson, M D; Xanthakis, V; Larson, M G; Andersson, C; Murabito, J M; Vasan, R S

    2017-04-01

    The purpose of this study was to explore the relation of physical activity (PA) and sedentary time (SED) to insulin sensitivity and adipokines. We assessed PA and SED using Actical accelerometers and insulin resistance (HOMA-IR) in 2109 participants (free of type 1 and 2 diabetes mellitus) from Framingham Generation 3 and Omni 2 cohorts (mean age 46 years, 54% women). Systemic inflammation (C-reactive protein [CRP]) and circulating adipokines were measured 6 years earlier. Steps per day, moderate-to-vigorous PA (MVPA) and SED per wear time (%SED) were predictor variables in multivariable regression analyses, with HOMA-IR, CRP and circulating adipokines as outcome measures. We reported that higher MVPA and more steps per day were associated with lower HOMA-IR, adjusting for %SED (β = -0.036, P = 0.002; β = -0.041, P = 0.005). Steps were inversely associated with CRP, but were directly associated with insulin-like growth factor (IGF)-1 levels (β = -0.111, P = 0.002; β = 3.293, P = 0.007). %SED was positively associated with HOMA-IR (β = 0.033, P insulin resistance and inflammation, whereas SED influences FABPs.

  5. Soybean fermentation with Bacillus licheniformis increases insulin sensitizing and insulinotropic activity.

    Science.gov (United States)

    Yang, Hye Jeong; Kwon, Dae Young; Moon, Na Rang; Kim, Min Jung; Kang, Hee Joo; Jung, Do Yeon; Park, Sunmin

    2013-11-01

    Traditionally fermented soybeans (chungkookjang; TFC) may have potent anti-diabetic activity, depending on the ambient microorganisms and conditions. We hypothesized that one of the major Bacillus species in TFC contributes to the anti-diabetic activity and could be used to standardize a highly functional TFC. We tested the hypothesis by using cell-based studies to evaluate insulin sensitizing and insulinotropic action of chungkookjangs fermented with various Bacillus spp. and fermentation periods. The 70% methanol and water extracts of chungkookjang fermented with Bacillus licheniformis (BL) for 48 h contained similar profiles of isoflavonoids and peptides to methanol and water extracts of TFC with potent anti-diabetic activity. Water extracts (mainly containing peptides) of TFC and BL fermented for 48 h and 72 h had a better insulin sensitizing action via activating peroxisome proliferator-activated receptor-γ (PPAR-γ) and increased the expression of PPAR-γ in 3T3-L1 adipocytes better than unfermented cooked soybeans (CSB). The 70% methanol extracts (predominantly isoflavone aglycones) of BL fermented for 48 h and 72 h improved glucose-stimulated insulin secretion and protected β-cell viability better than CSB in insulinoma cells, and the improvement by BL was similar to TFC. In conclusion, the BL water extract fermented for 48 h exhibited equal insulin sensitization as TFC and BL methanol extract exerted similar insulinotropic actions to those of TFC. B. licheniformis may be one of the major microorganisms responsible for anti-diabetic actions of chungkookjang. It is important to make chungkookjang that retains the anti-diabetic properties of the most efficacious traditional chungkookjang using a standardized method.

  6. Dietary fibre consumption and insulin resistance - the role of body fat and physical activity.

    Science.gov (United States)

    Breneman, Charity B; Tucker, Larry

    2013-07-28

    The present study was conducted to determine the association between fibre intake and insulin resistance in 264 women using a cross-sectional design. Insulin resistance was indexed using homeostasis model assessment of insulin resistance (HOMA-IR) (US formula: fasting insulin (μU/ml) × fasting glucose (mg/dl)/405 international formula: fasting glucose (mmol/l) × fasting insulin (μU/l)/22.5). Fibre and energy consumption were assessed using 7 d weighed food records. Fibre was expressed as g/4184 kJ (1000 kcal). Body fat percentage (BF%) was measured using the BOD POD, and physical activity (PA) was ascertained using Actigraph accelerometers (Health One Technology) worn for seven consecutive days. Women with high total fibre intakes (F= 4·58, P= 0·0332) or high soluble fibre intakes (F= 7·97, P= 0·0051) had significantly less insulin resistance than their counterparts. Participants with high insoluble fibre intakes did not differ from their counterparts (F= 0·7, P= 0·6875). Adjusting for either PA or BF% weakened the relationships significantly. Controlling for BF% nullified the total fibre–HOMA-IR link (F= 1·96, P= 0·1631) and attenuated the association between soluble fibre and HOMA-IR by 32 % (F= 6·86, P= 0·0094). To create dichotomous variables, fibre intake and HOMA-IR were each divided into two categories using the median (low and high). In women who had high soluble fibre intake (upper 50 %), the OR of having an elevated HOMA-IR level was 0·58 (95 % CI 0·36, 0·94) times that of women with low soluble fibre intake (lower 50 %). After controlling for all of the potential confounding factors simultaneously, the OR was 0·52 (95 % CI 0·29, 0·93). High fibre intake, particularly soluble fibre, is significantly related to lower levels of insulin resistance in women. Part of this association is a function of differences in PA and BF%.

  7. Critical role of gap junction coupled KATP channel activity for regulated insulin secretion.

    Directory of Open Access Journals (Sweden)

    Jonathan V Rocheleau

    2006-02-01

    Full Text Available Pancreatic beta-cells secrete insulin in response to closure of ATP-sensitive K+ (KATP channels, which causes membrane depolarization and a concomitant rise in intracellular Ca2+ (Cai. In intact islets, beta-cells are coupled by gap junctions, which are proposed to synchronize electrical activity and Cai oscillations after exposure to stimulatory glucose (>7 mM. To determine the significance of this coupling in regulating insulin secretion, we examined islets and beta-cells from transgenic mice that express zero functional KATP channels in approximately 70% of their beta-cells, but normal KATP channel density in the remainder. We found that KATP channel activity from approximately 30% of the beta-cells is sufficient to maintain strong glucose dependence of metabolism, Cai, membrane potential, and insulin secretion from intact islets, but that glucose dependence is lost in isolated transgenic cells. Further, inhibition of gap junctions caused loss of glucose sensitivity specifically in transgenic islets. These data demonstrate a critical role of gap junctional coupling of KATP channel activity in control of membrane potential across the islet. Control via coupling lessens the effects of cell-cell variation and provides resistance to defects in excitability that would otherwise lead to a profound diabetic state, such as occurs in persistent neonatal diabetes mellitus.

  8. Critical role of gap junction coupled KATP channel activity for regulated insulin secretion.

    Science.gov (United States)

    Rocheleau, Jonathan V; Remedi, Maria S; Granada, Butch; Head, W Steven; Koster, Joseph C; Nichols, Colin G; Piston, David W

    2006-02-01

    Pancreatic beta-cells secrete insulin in response to closure of ATP-sensitive K+ (KATP) channels, which causes membrane depolarization and a concomitant rise in intracellular Ca2+ (Cai). In intact islets, beta-cells are coupled by gap junctions, which are proposed to synchronize electrical activity and Cai oscillations after exposure to stimulatory glucose (>7 mM). To determine the significance of this coupling in regulating insulin secretion, we examined islets and beta-cells from transgenic mice that express zero functional KATP channels in approximately 70% of their beta-cells, but normal KATP channel density in the remainder. We found that KATP channel activity from approximately 30% of the beta-cells is sufficient to maintain strong glucose dependence of metabolism, Cai, membrane potential, and insulin secretion from intact islets, but that glucose dependence is lost in isolated transgenic cells. Further, inhibition of gap junctions caused loss of glucose sensitivity specifically in transgenic islets. These data demonstrate a critical role of gap junctional coupling of KATP channel activity in control of membrane potential across the islet. Control via coupling lessens the effects of cell-cell variation and provides resistance to defects in excitability that would otherwise lead to a profound diabetic state, such as occurs in persistent neonatal diabetes mellitus.

  9. Impaired insulin activation and dephosphorylation of glycogen synthase in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Højlund, Kurt; Andersen, Nicoline Resen

    2008-01-01

    . No significant abnormalities in GSK-3alpha or -3beta were found in PCOS subjects. Pioglitazone treatment improved insulin-stimulated glucose metabolism and GS activity in PCOS (all P ... of GS including absent dephosphorylation at sites 2+2a contributes to insulin resistance in skeletal muscle in PCOS. The ability of pioglitazone to enhance insulin sensitivity, in part, involves improved insulin action on GS activity and dephosphorylation at NH2-terminal sites....

  10. Effects of soybean oligosaccharides on antioxidant enzyme activities and insulin resistance in pregnant women with gestational diabetes mellitus.

    Science.gov (United States)

    Fei, Bei-bei; Ling, Li; Hua, Chen; Ren, Shu-yan

    2014-09-01

    The effects of soybean oligosaccharides (SBOS) on antioxidant enzyme activities and insulin resistance in pregnant women with gestational diabetes mellitus (GDM) were investigated. Ninety-seven pregnant women with GDM were randomly divided into two groups, the control group (51 cases) and the SBOS group (46 cases). Before the group separation, the blood sugar level in patients was maintained stable by regular diet and insulin treatment. The control group was continued with the insulin treatment, while the SBOS group was treated with the combination of insulin and SBOS. Results showed that SBOS were able to reduce oxidative stress and alleviate insulin resistance in pregnant women with GDM, which indicates that SBOS may play an important role in the control of GDM complications.

  11. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression.

    Directory of Open Access Journals (Sweden)

    Tipwadee Bunprajun

    Full Text Available Both aging and physical inactivity are associated with increased development of insulin resistance whereas physical activity has been shown to promote increased insulin sensitivity. Here we investigated the effects of physical activity level on aging-associated insulin resistance in myotubes derived from human skeletal muscle satellite cells. Satellite cells were obtained from young (22 yrs normally active or middle-aged (56.6 yrs individuals who were either lifelong sedentary or lifelong active. Both middle-aged sedentary and middle-aged active myotubes had increased p21 and myosin heavy chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells, and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact on the metabolism of human myotubes during aging and may contribute to aging-associated insulin resistance through impaired GLUT4 localization.

  12. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression

    DEFF Research Database (Denmark)

    Bunprajun, Tipwadee; Henriksen, Tora Ida; Scheele, Camilla

    2013-01-01

    chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma...... membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells......, and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact...

  13. Leptin Regulated Insulin Secretion via Stimulating IRS2-associated Phosphoinositide 3-kinase Activity in the isolated Rat Pancreatic Islets

    Institute of Scientific and Technical Information of China (English)

    袁莉; 安汉祥; 李卓娅; 邓秀玲

    2003-01-01

    To investigate the molecular mechanism of leptin regulating insulin secretion through determining the regulation of insulin secretion and the insulin receptor substrate (IRS)-2-associated phosphoinositide 3-kinase (PI3K) activity by leptin in the isolated rat pancreatic islets, pancreatic islets were isolated from male SD rats by the collagenase method. The purified islets were incubated with leptin 2 nmol/L for 1 h in the presence of 5.6 mmol/L or 11.1 mmol/L glucose. Insulin release was measured using radioimmunoassay. IRS-2-associated activity of PI3K was determined by immunoprecipitate assay and Western blot. The results showed that in the presence of 5.6 mmol/L glucose, leptin had no significant effect on both insulin secretion and IRS-2-associated PI3K activity, but in the presence of 11.1 mmol/L glucose, insulin release was significantly inhibited after the islets were exposed to leptin for 1 h (P<0. 01). PI3K inhibitor wortmannin blocked the inhibitory regulation of leptin on insulin release (P<0. 05). Western Blot assay revealed that 2 nmol/L leptin could significantly increase the IRS-2-associated activity of PI3K by 51.5 % (P<0. 05) in the presence of 11.1 mmol/L glucose. It was concluded that Leptin could significantly inhibit insulin secretion in the presence of 11.1 mmol/L glucose by stimulating IRS-2-associated activity of PI3K, which might be the molecular mechanism of leptin regulating insulin secretion.

  14. Matrix Metalloproteinase-2 (MMP-2) Gene Deletion Enhances MMP-9 Activity, Impairs PARP-1 Degradation, and Exacerbates Hepatic Ischemia and Reperfusion Injury in Mice.

    Science.gov (United States)

    Kato, Hiroyuki; Duarte, Sergio; Liu, Daniel; Busuttil, Ronald W; Coito, Ana J

    2015-01-01

    Hepatic ischemia and reperfusion injury (IRI) is an inflammatory condition and a significant cause of morbidity and mortality after surgery. Matrix metalloproteinases (MMPs) have been widely implicated in the pathogenesis of inflammatory diseases. Among the different MMPs, gelatinases (MMP-2 and MMP-9) are within the most prominent MMPs detected during liver IRI. While the role of MMP-9 in liver damage has been fairly documented, direct evidence of the role for MMP-2 activity in hepatic IRI remains to be established. Due to the lack of suitable inhibitors to target individual MMPs in vivo, gene manipulation is as an essential tool to assess MMP direct contribution to liver injury. Hence, we used MMP-2-/- deficient mice and MMP-2+/+ wild-type littermates to examine the function of MMP-2 activity in hepatic IRI. MMP-2 expression was detected along the sinusoids of wild-type livers before and after surgery and in a small population of leukocytes post-IRI. Compared to MMP-2+/+ mice, MMP-2 null (MMP-2-/-) mice showed exacerbated liver damage at 6, 24, and 48 hours post-reperfusion, which was fatal in some cases. MMP-2 deficiency resulted in upregulation of MMP-9 activity, spontaneous leukocyte infiltration in naïve livers, and amplified MMP-9-dependent transmigration of leukocytes in vitro and after hepatic IRI. Moreover, complete loss of MMP-2 activity impaired the degradation of poly (ADP-ribose) polymerase (PARP-1) in extensively damaged livers post-reperfusion. However, the administration of a PARP-1 inhibitor to MMP-2 null mice restored liver preservation to almost comparable levels of MMP-2+/+ mice post-IRI. Deficient PARP-1 degradation in MMP-2-null sinusoidal endothelial cells correlated with their increased cytotoxicity, evaluated by the measurement of LDH efflux in the medium. In conclusion, our results show for the first time that MMP-2 gene deletion exacerbates liver IRI. Moreover, they offer new insights into the MMP-2 modulation of inflammatory responses

  15. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    Energy Technology Data Exchange (ETDEWEB)

    Piwkowska, Agnieszka, E-mail: apiwkowska@cmdik.pan.pl [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Rogacka, Dorota; Angielski, Stefan [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Jankowski, Maciej [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Medical University of Gdansk, Department of Therapy Monitoring and Pharmacogenetics (Poland)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} activates the insulin signaling pathway and glucose uptake in podocytes. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} induces time-dependent changes in AMPK phosphorylation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} enhances insulin signaling pathways via AMPK activation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H{sub 2}O{sub 2}) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H{sub 2}O{sub 2}-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H{sub 2}O{sub 2} (100 {mu}M) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min ({Delta} 183%, P < 0.05), 3 min ({Delta} 414%, P < 0.05), and 10 min ({Delta} 35%, P < 0.05), respectively. Immunostaining cells with an Akt-specific antibody showed increased intensity at the plasma membrane after treatment with H{sub 2}O{sub 2}>. Furthermore, H{sub 2}O{sub 2} inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; {Delta} -32%, P < 0.05) and stimulated phosphorylation of the AMP-dependent kinase alpha subunit (AMPK{alpha}; 78% at 3 min and 244% at 10 min). The stimulation of AMPK was abolished with an AMPK inhibitor, Compound C (100 {mu}M, 2 h). Moreover, Compound C significantly reduced the effect of H{sub 2}O{sub 2} on IR phosphorylation by about 40% (from 2.07 {+-} 0.28 to 1.28 {+-} 0.12, P < 0.05). In addition, H{sub 2}O{sub 2} increased glucose uptake in podocytes

  16. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhi-Qin [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China); College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002 (China); Liu, Ting; Chen, Chuan [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China); Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-song; Wei, Gui-xiang; Wang, Xiao-yi [College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002 (China); Luo, Du-Qiang, E-mail: duqiangluo999@126.com [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China)

    2015-05-15

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo.

  17. nitric oxide triggers the phosphatidylinositol 3-kinase/Akt survival pathway in insulin-producing RINm5F cells by arousing Src to activate insulin receptor substrate-1.

    Science.gov (United States)

    Tejedo, Juan R; Cahuana, Gladys M; Ramírez, Remedios; Esbert, Margarida; Jiménez, Juan; Sobrino, Francisco; Bedoya, Francisco J

    2004-05-01

    Mechanisms involved in the protective action of nitric oxide (NO) in insulin-producing cells are a matter of debate. We have previously shown that pharmacological inhibition of c-Src cancels the antiapoptotic action of low and sustained concentrations of exogenous NO. In this study, using insulin-producing RINm5F cells that overexpress Src either permanently active (v-Src) or dominant negative (dn-Src) forms, we determine that this tyrosine kinase is the principal mediator of the protective action of NO. We also show that Src-directed activation of insulin receptor substrate-1, phosphatidylinositol 3-kinase (PI3K), Akt, and Bad phosphorylation conform a substantial component of the survival route because pharmacological inhibition of PI3K and Akt canceled the antiapoptotic effects of NO. Studies performed with the protein kinase G (PKG) inhibitor KT-5823 revealed that NO-dependent activation of c-Src/ insulin receptor substrate-1 is not affected by PKG activation. By contrast, Akt and Bad activation are partially dependent on PKG activation. Endogenous production of NO after overexpression of endothelial nitric oxide synthase in RINm5F cells mimics the effects produced by generation of low amounts of NO from exogenous diethylenetriamine/NO. In addition, we found that NO produces c-Src/PI3K- and PKG-dependent activation of ERK 1/2. The MAPK kinase inhibitor PD 98059 suppresses NO-dependent protection from DNA fragmentation induced by serum deprivation. The protective action of low and sustained concentration of NO is also observed in staurosporine- and Taxol-induced apoptosis. Finally, NO also protects isolated rat islets from DNA fragmentation induced by serum deprivation. These data strengthen the notion that NO production at physiological levels plays a role in protection from apoptosis in pancreatic beta-cells.

  18. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI.

  19. [EFFICIENCY OF COMBINATION OF ROFLUMILAST AND QUERCETIN FOR CORRECTION OXYGEN- INDEPENDENT MECHANISMS AND PHAGOCYTIC ACTIVITY OF MACROPHAGE CELLS OF PATIENTS WITH ACUTE EXACERBATION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE WHEN COMBINED WITH CORONARY HEART DISEASE].

    Science.gov (United States)

    Gerych, P; Yatsyshyn, R

    2015-01-01

    Studied oxygen independent reaction and phagocytic activity of macrophage cells of patients with chronic obstructive pulmonary disease (COPD) II-III stage when combined with coronary heart disease (CHD). The increasing oxygen independent reactions monocytes and neutrophils and a decrease of the parameters that characterize the functional state of phagocytic cells, indicating a decrease in the functional capacity of macrophage phagocytic system (MPS) in patients with acute exacerbation of COPD, which runs as its own or in combination with stable coronary heart disease angina I-II. FC. Severity immunodeficiency state in terms of cellular component of nonspecific immunity in patients with acute exacerbation of COPD II-III stage in conjunction with the accompanying CHD increases with the progression of heart failure. Inclusion of basic therapy of COPD exacerbation and standard treatment of coronary artery disease and drug combinations Roflumilastand quercetin causes normalization of phagocytic indices MFS, indicating improved immune status and improves myocardial perfusion in terms of daily ECG monitoring.

  20. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  1. Nandinine, a Derivative of Berberine, Inhibits Inflammation and Reduces Insulin Resistance in Adipocytes via Regulation of AMP-Kinase Activity.

    Science.gov (United States)

    Zhao, Wenwen; Ge, Haixia; Liu, Kang; Chen, Xiuping; Zhang, Jian; Liu, Baolin

    2017-02-01

    Nandinine is a derivative of berberine that has high efficacy for treating cardiovascular diseases. This study investigated the effects of berberine and nandinine on the regulation of insulin sensitivity in adipocytes. Through treatment with macrophage-derived conditioned medium in 3T3-L1 adipocytes, dysregulation of adipokine production and activation of the IκB kinase β/nuclear factor-kappa B pathway was induced. However, these phenomena were effectively reversed by berberine, nandinine, and salicylate pretreatments. Furthermore, both berberine and nandinine inhibited serine phosphorylation of insulin receptor substrate-1 induced by IκB kinase β and increased tyrosine phosphorylation of insulin receptor substrate-1 to activate the PI3K/Akt pathway, which finally led to insulin-mediated glucose uptake. In addition, berberine and nandinine significantly increased AMP-activated protein kinase activity, thereby contributing to their anti-inflammatory effect by inhibiting IκB kinase β activation. Finally, in vivo studies demonstrated that both berberine (100 or 200 mg/kg) and nandinine (100 or 200 mg/kg) effectively ameliorated glucose intolerance and induced the insulin sensitivity index in mice. In conclusion, berberine and nandinine attenuated insulin resistance in adipocytes by inhibiting inflammation in an AMP-activated protein kinase-dependent manner. Berberine and nandinine may be used as dietary supplements and nandinine is a new candidate for obesity treatment.

  2. CHANGES IN LEVELS OF SOLUBLE T-CELL ACTIVATION MARKERS, SIL-2R, SCD4 AND SCD8, IN RELATION TO DISEASE EXACERBATIONS IN PATIENTS WITH SYSTEMIC LUPUS-ERYTHEMATOSUS - A PROSPECTIVE-STUDY

    NARCIS (Netherlands)

    SPRONK, P.E.; TERBORG, E.J.; HUITEMA, M.G.; Limburg, Piet; Kallenberg, Cees

    1994-01-01

    Objectives-To assess serial activation of T-cell subsets in relation to auto-antibody production and the occurrence of disease exacerbations in patients with systemic lupus erythematosus (SLE). Methods-To study the possible role of T-cells in the pathophysiology of the disease, 16 consecutive exacer

  3. Subthreshold α2-Adrenergic Activation Counteracts Glucagon-Like Peptide-1 Potentiation of Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Minglin Pan

    2011-01-01

    Full Text Available The pancreatic β cell harbors α2-adrenergic and glucagon-like peptide-1 (GLP-1 receptors on its plasma membrane to sense the corresponding ligands adrenaline/noradrenaline and GLP-1 to govern glucose-stimulated insulin secretion. However, it is not known whether these two signaling systems interact to gain the adequate and timely control of insulin release in response to glucose. The present work shows that the α2-adrenergic agonist clonidine concentration-dependently depresses glucose-stimulated insulin secretion from INS-1 cells. On the contrary, GLP-1 concentration-dependently potentiates insulin secretory response to glucose. Importantly, the present work reveals that subthreshold α2-adrenergic activation with clonidine counteracts GLP-1 potentiation of glucose-induced insulin secretion. This counteractory process relies on pertussis toxin- (PTX- sensitive Gi proteins since it no longer occurs following PTX-mediated inactivation of Gi proteins. The counteraction of GLP-1 potentiation of glucose-stimulated insulin secretion by subthreshold α2-adrenergic activation is likely to serve as a molecular mechanism for the delicate regulation of insulin release.

  4. Activation of AMPK improves inflammation and insulin resistance in adipose tissue and skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2015-12-01

    Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance and inflammation. Sterile inflammation and bacterial infection are key mediators of this enhanced inflammatory response. Adenosine monophosphate (AMP)-activated kinase (AMPK), which is decreased in insulin resistant states, possesses potent pro-inflammatory actions. There are, however, no studies on the role of AMPK in pregnancies complicated by GDM. Thus, the aims of this study were (i) to compare the expression of AMPK in adipose tissue and skeletal muscle from women with GDM and normal glucose-tolerant (NGT) pregnant women; and (ii) to investigate the effect of AMPK activation on inflammation and insulin resistance induced by the bacterial endotoxin lipopolysaccharide (LPS) and the pro-inflammatory cytokine IL-1β. When compared to NGT pregnant women, AMPKα activity was significantly lower in women with GDM as evidenced by a decrease in threonine phosphorylation of AMPKα. Activation of AMPK, using two pharmacologically distinct compounds, AICAR or phenformin, significantly suppressed LPS- or IL-1β-induced gene expression and secretion of pro-inflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, and COX-2 and subsequent prostaglandin release from adipose tissue and skeletal muscle. In addition, activators of AMPK decreased skeletal muscle insulin resistance induced by LPS or IL-1β as evidenced by increased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. These findings suggest that AMPK may play an important role in inflammation and insulin resistance.

  5. Dairy consumption and insulin resistance: the role of body fat, physical activity, and energy intake.

    Science.gov (United States)

    Tucker, Larry A; Erickson, Andrea; LeCheminant, James D; Bailey, Bruce W

    2015-01-01

    The relationship between dairy consumption and insulin resistance was ascertained in 272 middle-aged, nondiabetic women using a cross-sectional design. Participants kept 7-day, weighed food records to report their diets, including dairy intake. Insulin resistance was assessed using the homeostatic model assessment (HOMA). The Bod Pod was used to measure body fat percentage, and accelerometry for 7 days was used to objectively index physical activity. Regression analysis was used to determine the extent to which mean HOMA levels differed across low, moderate, and high dairy intake categories. Results showed that women in the highest quartile of dairy consumption had significantly greater log-transformed HOMA values (0.41 ± 0.53) than those in the middle-two quartiles (0.22 ± 0.55) or the lowest quartile (0.19 ± 0.58) (F = 6.90, P = 0.0091). The association remained significant after controlling for each potential confounder individually and all covariates simultaneously. Adjusting for differences in energy intake weakened the relationship most, but the association remained significant. Of the 11 potential confounders, only protein intake differed significantly across the dairy categories, with those consuming high dairy also consuming more total protein than their counterparts. Apparently, high dairy intake is a significant predictor of insulin resistance in middle-aged, nondiabetic women.

  6. Dairy Consumption and Insulin Resistance: The Role of Body Fat, Physical Activity, and Energy Intake

    Directory of Open Access Journals (Sweden)

    Larry A. Tucker

    2015-01-01

    Full Text Available The relationship between dairy consumption and insulin resistance was ascertained in 272 middle-aged, nondiabetic women using a cross-sectional design. Participants kept 7-day, weighed food records to report their diets, including dairy intake. Insulin resistance was assessed using the homeostatic model assessment (HOMA. The Bod Pod was used to measure body fat percentage, and accelerometry for 7 days was used to objectively index physical activity. Regression analysis was used to determine the extent to which mean HOMA levels differed across low, moderate, and high dairy intake categories. Results showed that women in the highest quartile of dairy consumption had significantly greater log-transformed HOMA values (0.41 ± 0.53 than those in the middle-two quartiles (0.22 ± 0.55 or the lowest quartile (0.19 ± 0.58 (F = 6.90, P = 0.0091. The association remained significant after controlling for each potential confounder individually and all covariates simultaneously. Adjusting for differences in energy intake weakened the relationship most, but the association remained significant. Of the 11 potential confounders, only protein intake differed significantly across the dairy categories, with those consuming high dairy also consuming more total protein than their counterparts. Apparently, high dairy intake is a significant predictor of insulin resistance in middle-aged, nondiabetic women.

  7. Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men.

    Science.gov (United States)

    Vincent, Sophie; Berthon, Phanélie; Zouhal, Hassane; Moussa, Elie; Catheline, Michel; Bentué-Ferrer, Danièle; Gratas-Delamarche, Arlette

    2004-01-01

    The influence of gender on the glucose response to exercise remains contradictory. Moreover, to our knowledge, the glucoregulatory responses to anaerobic sprint exercise have only been studied in male subjects. Hence, the aim of the present study was to compare glucoregulatory metabolic (glucose and lactate) and hormonal (insulin, catecholamines and estradiol only in women) responses to a 30-s Wingate test, in physically active students. Eight women [19.8 (0.7) years] and eight men [22.0 (0.6) years] participated in a 30-s Wingate test on a bicycle ergometer. Plasma glucose, insulin, and catecholamine concentrations were determined at rest, at the end of both the warm-up and the exercise period and during the recovery (5, 10, 20, and 30 min). Results showed that the plasma glucose increase in response to a 30-s Wingate test was significantly higher in women than in men [0.99 (0.15) versus 0.33 (0.20) mmol l(-1) respectively, Pwomen than in men [14.7 (2.9) versus 2.3 (1.9) pmol l(-1) respectively, P<0.05]. However, there was no gender difference concerning the catecholamine response. The study indicates a gender-related difference in post-exercise plasma glucose and insulin responses after a supramaximal exercise.

  8. Serum soluble urokinase-type plasminogen activator receptor levels in male patients with acute exacerbation of schizophrenia.

    Science.gov (United States)

    Genc, Abdullah; Kalelioglu, Tevfik; Karamustafalioglu, Nesrin; Tasdemir, Akif; Genc, Esra Sena; Akkus, Mustafa; Emul, Murat

    2016-02-28

    Inflammatory abnormalities have been shown in the pathogenesis of schizophrenia. Soluble urokinase-type plasminogen activator receptor (suPAR) is a protein that is measurable in the circulating blood and reflects the inflammation in the body. We aimed to investigate serum suPAR levels in patients with schizophrenia who were in acute state and to compare with healthy controls. Forty five patients and 43 healthy controls were included in the study. We found no significant difference in suPAR levels between patients and controls, suggesting that suPAR as an inflammatory marker does not have a role in the inflammatory process of acute schizophrenia.

  9. Comparison of In Vivo Effects of Insulin on SREBP-1c Activation and INSIG-1/2 in Rat Liver and Human and Rat Adipose Tissue

    OpenAIRE

    Boden, Guenther; Salehi, Sajad; Cheung, Peter; Homko, Carol; Song, Weiwei; Loveland-Jones, Catherine; Jayarajan, Senthil

    2013-01-01

    The stimulatory effects of insulin on de novo lipogenesis (DNL) in the liver, where it is an important contributor to non-alcoholic fatty liver disease (NAFLD), hepatic and systemic insulin resistance, is strong and well established. In contrast, insulin plays only a minor role in DNL in adipose tissue. The reason why insulin stimulates DNL more in liver than in fat is not known but may be due to differential regulation of the transcription and post-translational activation of sterol regulato...

  10. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1.

    Directory of Open Access Journals (Sweden)

    Maki Koyanagi

    Full Text Available AIM: We previously found that chronic tuberous sclerosis protein 2 (TSC2 deletion induces activation of mammalian target of rapamycin Complex 1 (mTORC1 and leads to hypertrophy of pancreatic beta cells from pancreatic beta cell-specific TSC2 knockout (βTSC2(-/- mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells. METHODS: Isolated islets from βTSC2(-/- mice and TSC2 knockdown insulin 1 (INS-1 insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes. RESULTS: Activation of mTORC1 increased mitochondrial DNA expression, mitochondrial density and ATP production in pancreatic beta cells of βTSC2(-/- mice. In TSC2 knockdown INS-1 cells, mitochondrial DNA expression, mitochondrial density and ATP production were increased compared with those in control INS-1 cells, consistent with the phenotype of βTSC2(-/- mice. TSC2 knockdown INS-1 cells also exhibited augmented insulin secretory response to glucose. Rapamycin inhibited mitochondrial DNA expression and ATP production as well as insulin secretion in response to glucose. Thus, βTSC2(-/- mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1. CONCLUSION: Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells.

  11. Activation of PPARα ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress.

    Science.gov (United States)

    Chan, Stanley M H; Sun, Ruo-Qiong; Zeng, Xiao-Yi; Choong, Zi-Heng; Wang, Hao; Watt, Matthew J; Ye, Ji-Ming

    2013-06-01

    Endoplasmic reticulum (ER) stress is suggested to cause hepatic insulin resistance by increasing de novo lipogenesis (DNL) and directly interfering with insulin signaling through the activation of the c-Jun N-terminal kinase (JNK) and IκB kinase (IKK) pathway. The current study interrogated these two proposed mechanisms in a mouse model of hepatic insulin resistance induced by a high fructose (HFru) diet with the treatment of fenofibrate (FB) 100 mg/kg/day, a peroxisome proliferator-activated receptor α (PPARα) agonist known to reduce lipid accumulation while maintaining elevated DNL in the liver. FB administration completely corrected HFru-induced glucose intolerance, hepatic steatosis, and the impaired hepatic insulin signaling (pAkt and pGSK3β). Of note, both the IRE1/XBP1 and PERK/eIF2α arms of unfolded protein response (UPR) signaling were activated. While retaining the elevated DNL (indicated by the upregulation of SREBP1c, ACC, FAS, and SCD1 and [3H]H2O incorporation into lipids), FB treatment markedly increased fatty acid oxidation (indicated by induction of ACOX1, p-ACC, β-HAD activity, and [14C]palmitate oxidation) and eliminated the accumulation of diacylglycerols (DAGs), which is known to have an impact on insulin signaling. Despite the marked activation of UPR signaling, neither JNK nor IKK appeared to be activated. These findings suggest that lipid accumulation (mainly DAGs), rather than the activation of JNK or IKK, is pivotal for ER stress to cause hepatic insulin resistance. Therefore, by reducing the accumulation of deleterious lipids, activation of PPARα can ameliorate hepatic insulin resistance against increased ER stress.

  12. Role of endosomal trafficking dynamics on the regulation of hepatic insulin receptor activity: models for Fao cells.

    Science.gov (United States)

    Hori, Sharon S; Kurland, Irwin J; DiStefano, Joseph J

    2006-05-01

    Evidence indicates that endosomal insulin receptor (IR) trafficking plays a role in regulating insulin signal transduction. To evaluate its importance, we developed a series of biokinetic models for quantifying activated surface and endosomal IR dynamics from published experimental data. Starting with a published two-compartment Fao hepatoma model, a four-pool model was formulated that depicts IR autophosphorylation after receptor binding, IR endosomal internalization/trafficking, insulin dissociation from and dephosphorylation of internalized IR, and recycling of unliganded, dephosphorylated IR to the plasma membrane. Quantification required three additional data sets, two measured, but unmodeled by the same group. A five-pool model created to include endosomal trafficking of the nonphosphorylated insulin-IR complex was fitted using the same data sets, augmented with another published data set. Creation of a six-pool model added the physiologically relevant dissociation of insulin ligand from the activated endosomal IR. More importantly, all three models, validated against additional data not used in model fitting, predict that, mechanistically, internalization of activated IR is a rate-limiting step, at least under the receptor saturating conditions of the fitting data. This rate includes the transit time to a site where insulin dissociation from and/or dephosphorylation of the IR occurs by docking with protein-tyrosine phosphatases (PTPases), or where a sufficient conformational change occurs in the IR, perhaps due to insulin-IR dissociation, where associated PTPases may complete IR dephosphorylation. Our new models indicate that key events in endosomal IR trafficking have significance in mediating IR activity, possibly serving to regulate insulin signal transduction.

  13. Analysis of Phosphatidylinositol 3-kinase Activation in the Adipose Tissue of Gestational Diabetes Mellitus Patients and Insulin Resistance

    Institute of Scientific and Technical Information of China (English)

    初永丽; 刘文娟; 崔青; 冯桂姣; 王彦; 姜学强

    2010-01-01

    The P85 regulatory subunit protein and gene expression and P110 catalylic subunit activity of phosphatidylinositol 3-kinase (PI-3K) were investigated in adipose tissue of patients with gestational diabetes mellitus (GDM) in order to explore the molecular mechanisms of insulin resistance (IR) of GDM. Samples from patients with GDM (n=50), and controls (n=50) were collected. Fasting insulin (FIN) was determined by radioimmunoassay. Fasting plasma glucose (FPG) was measured by oxidase assay. Western blot techn...

  14. Insulin analog with additional disulfide bond has increased stability and preserved activity

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Ribel, Ulla;

    2013-01-01

    bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin...... (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation...... the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example...

  15. Management and prevention of exacerbations of COPD.

    Science.gov (United States)

    Aaron, Shawn D

    2014-09-22

    Patients with chronic obstructive pulmonary disease (COPD) are prone to acute respiratory exacerbations, which can develop suddenly or subacutely over the course of several days. Exacerbations have a detrimental effect on patients' health status and increase the burden on the healthcare system. Initial treatment is unsuccessful in 24-27% of patients, who have a relapse or a second exacerbation within 30 days of the initial event. No obvious benefit has been seen in recent clinical trials of anti-tumour necrosis factor therapy, anti-leukotriene therapy, intensive chest physiotherapy, or early inpatient pulmonary rehabilitation for treatment of exacerbations. By contrast, clinical trials of prevention rather than acute treatment have shown promising results. Long acting β agonist (LABA) or long acting anti-muscarinic (LAMA) bronchodilators and inhaled corticosteroid-LABA combinations prevent exacerbations in patients at risk, with relative risk reductions averaging 14-27% for each of these drugs relative to placebo. Triple therapy with inhaled corticosteroid-LABA plus LAMA may provide additional benefit, although study results to date are heterogeneous and more studies are needed. Pneumonia is an important complication of treatment with inhaled corticosteroid-LABA products, and the risk of pneumonia seems to be doubled in patients with COPD who use fluticasone. The addition of azithromycin to usual COPD therapy prevents exacerbations, although it may prolong the Q-T interval and increase the risk of death from cardiovascular disease in patients prone to arrhythmia. New potential drugs--including mitogen activated protein kinase inhibitors, phosphodiesterase 3 inhibitors, and monoclonal antibodies to the interleukin 1 receptor--offer additional hope for treatments that may prevent exacerbations in the future.

  16. Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme

    OpenAIRE

    Bilal Çakir; Onur Dağliyan; Ezgi Dağyildiz; İbrahim Bariş; Ibrahim Halil Kavakli; Seda Kizilel; Metin Türkay

    2012-01-01

    Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme Bilal C¸ akir1, Onur Dag˘ liyan1, Ezgi Dag˘ yildiz1, I˙brahim Baris¸1, Ibrahim Halil Kavakli1,2*, Seda Kizilel1*, Metin Tu¨ rkay3* 1 Department of Chemical and Biological Engineering, Koc¸ University, Sariyer, Istanbul, Turkey, 2 Department of Molecular Biology and Genetics, Koc¸ University, Sariyer, Istanbul, Turkey, 3 Department of Industrial Engineering, Koc¸ University...

  17. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase.

    Science.gov (United States)

    Stahnke, Marie-Jeannette; Dickel, Corinna; Schröder, Sabine; Kaiser, Diana; Blume, Roland; Stein, Roland; Pouponnot, Celio; Oetjen, Elke

    2014-09-01

    Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5'- and 3'-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2.

  18. Somatostatin modulates insulin-degrading-enzyme metabolism: implications for the regulation of microglia activity in AD.

    Directory of Open Access Journals (Sweden)

    Grazia Tundo

    Full Text Available The deposition of β-amyloid (Aβ into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD. Insulin-degrading-enzyme (IDE is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.

  19. Insulin-degrading enzyme is activated by the C-terminus of α-synuclein.

    Science.gov (United States)

    Sharma, Sandeep K; Chorell, Erik; Wittung-Stafshede, Pernilla

    2015-10-16

    The insulin-degrading enzyme (IDE) plays a key role in type-2 diabetes and typically degrades small peptides such as insulin, amyloid β and islet amyloid polypeptide. We recently reported a novel non-proteolytical interaction in vitro between IDE and the Parkinson's disease 140-residue protein α-synuclein that resulted in dual effects: arrested α-synuclein oligomers and, simultaneously, increased IDE proteolysis activity. Here we demonstrate that these outcomes arise due to IDE interactions with the C-terminus of α-synuclein. Whereas a peptide containing the first 97 residues of α-synuclein did not improve IDE activity and its aggregation was not blocked by IDE, a peptide with the C-terminal 44 residues of α-synuclein increased IDE proteolysis to the same degree as full-length α-synuclein. Because the α-synuclein C-terminus is acidic, the interaction appears to involve electrostatic attraction with IDE's basic exosite, known to be involved in activation.

  20. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Eamruthai Wisetmuen

    2013-01-01

    Full Text Available Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ. Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively. Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively. Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF for control and HS-EE treated group, respectively and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively. Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion.

  1. Interleukin-1beta exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and microglial activation after excitotoxic damage in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Hailer, Nils P; Vogt, Cornelia; Korf, Horst-Werner; Dehghani, Faramarz

    2005-05-01

    The effects of interleukin (IL)-1beta and IL-1 receptor antagonist (IL-1ra) on neurons and microglial cells were investigated in organotypic hippocampal slice cultures (OHSCs). OHSCs obtained from rats were excitotoxically lesioned after 6 days in vitro by application of N-methyl-D-aspartate (NMDA) and treated with IL-1beta (6 ng/mL) or IL-1ra (40, 100 or 500 ng/mL) for up to 10 days. OHSCs were then analysed by bright field microscopy after hematoxylin staining and confocal laser scanning microscopy after labeling of damaged neurons with propidium iodide (PI) and fluorescent staining of microglial cells. The specificity of PI labeling of damaged neurons was validated by triple staining with neuronal and glial markers and it was observed that PI accumulated in damaged neurons only but not in microglial cells or astrocytes. Treatment of unlesioned OHSCs with IL-1beta did not induce neuronal damage but caused an increase in the number of microglial cells. NMDA lesioning alone resulted in a massive increase in the number of microglial cells and degenerating neurons. Treatment of NMDA-lesioned OHSCs with IL-1beta exacerbated neuronal cell death and further enhanced microglial cell numbers. Treatment of NMDA-lesioned cultures with IL-1ra significantly attenuated NMDA-induced neuronal damage and reduced the number of microglial cells, whereas application of IL-1ra in unlesioned OHSCs did not induce significant changes in either cell population. Our findings indicate that: (i) IL-1beta directly affects the central nervous system and acts independently of infiltrating hematogenous cells; (ii) IL-1beta induces microglial activation but is not neurotoxic per se; (iii) IL-1beta enhances excitotoxic neuronal damage and microglial activation and (iv) IL-1ra, even when applied for only 4 h, reduces neuronal cell death and the number of microglial cells after excitotoxic damage.

  2. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin

    Energy Technology Data Exchange (ETDEWEB)

    Ness, Gene C., E-mail: gness@hsc.usf.edu [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612 (United States); Edelman, Jeffrey L.; Brooks, Patricia A. [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer siRNAs to tristetraprolin blocks transcription of HMGR in vivo in rat liver. Black-Right-Pointing-Pointer siRNAs to tristetraprolin inhibits insulin activation of HMGR transcription. Black-Right-Pointing-Pointer Insulin acts to rapidly increase tristetraprolin in liver nuclear extracts. -- Abstract: Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (-325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from the HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.

  3. Extract of Polygala tenuifolia Alleviates Stress-Exacerbated Atopy-Like Skin Dermatitis through the Modulation of Protein Kinase A and p38 Mitogen-Activated Protein Kinase Signaling Pathway

    Science.gov (United States)

    Sur, Bongjun; Lee, Bombi; Yoon, Ye Seul; Lim, Pooreum; Hong, Riwon; Yeom, Mijung; Lee, Hyang Sook; Park, Hijoon; Shim, Insop; Lee, Hyejung; Jang, Young Pyo; Hahm, Dae-Hyun

    2017-01-01

    Atopic dermatitis (AD) and stress create a vicious cycle: stress exacerbates atopic symptoms, and atopic disease elicits stress and anxiety. Targeting multiple pathways including stress and allergic inflammation is, therefore, important for treating AD. In this study, we investigated the remedial value of Polygala tenuifolia Willd. (PTW) for treating immobilization (IMO) stress-exacerbated atopy-like skin dermatitis and its underlying mechanism. Trimellitic anhydride (TMA) was applied to dorsal skin for sensitization and subsequently both ears for eliciting T-cell-dependent contact hypersensitivity in mice, which underwent 2 h-IMO stress and PTW administration for the latter 6 and 9 days in the ear exposure period of TMA, respectively. To elicit in vitro degranulation of human mast cell line-1 (HMC-1), 10 µM substance P (SP) and 200 nM corticotrophin-releasing factor (CRF) were sequentially added with 48 h-interval. PTW extract (500 µg/mL) was added 30 min before CRF treatment. IMO stress exacerbated TMA-induced scratching behavior by 252%, and increased their blood corticosterone levels by two-fold. Treatment with 250 mg/kg PTW significantly restored IMO stress-exacerbated scratching behavior and other indicators such as skin inflammation and water content, lymph node weights, and serum histamine and immunoglobulin E (lgE) levels. Furthermore, it also reversed TMA-stimulated expression of tumor necrosis factor (TNF)-α and interleukin (IL)-4 mRNAs in ear tissues. PTW significantly inhibited SP/CRF-stimulated degranulation of HMC-1 cells, subsequent tryptase secretion, and protein kinase A (PKA) activity. PTW also selectively inhibited p38 mitogen-activated protein kinase (MAPK) phosphorylation in SP/CRF-treated HMC-1 cells. PTW significantly inhibited HMC-1 cell degranulation and alleviated IMO stress-exacerbated atopic dermatitis symptoms by modulating the PKA/p38 MAPK signaling pathway. PMID:28106783

  4. Impact of exacerbations on COPD

    Directory of Open Access Journals (Sweden)

    A. Anzueto

    2010-06-01

    Full Text Available Exacerbations of chronic obstructive pulmonary disease (COPD determine disease-associated morbidity, mortality, resource burden and healthcare costs. Acute exacerbation care requirements range from unscheduled primary care visits to emergency room, inpatient or intensive care, generating significant costs in COPD. Even after an exacerbation resolves, respiratory, physical, social and emotional impairment may persist for prolonged time. Frequent exacerbations, mainly in patients with severe COPD, accelerate disease progression and mortality. Thus, patients with frequent exacerbations have a more rapid decline in lung function, worse quality of life and decreased exercise performance. Management of COPD directed to reduce incidence and severity of exacerbations improves long-term health status and conserves health care resources and costs.

  5. Insulin improves cardiomyocyte contractile function through enhancement of SERCA2a activity in simulated ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Jie YU; Hai-feng ZHANG; Feng WU; Qiu-xia LI; Heng MA; Wen-yi GUO; Hai-chang WANG; Feng GAO

    2006-01-01

    Aim: Insulin exerts anti-apoptotic effects in both cardiomyocytes and coronary endothelial cells following ischemia/reperfusion (I/R) via the Akt-endothelial nitric oxide synthase survival signal pathway. This important insulin signaling might further contribute to the improvement of cardiac function after reperfusion. In this study, we tested the hypothesis that sarcoplasmic reticulum calcium-AT-Pase (SERCA2a) is involved in the insulin-induced improvement of cardiac contractile function following I/R. Methods: Ventricular myocytes were enzymatically isolated from adult SD rats. Simulated I/R was induced by perfusing cells with chemical anoxic solution for 15 min followed by reperfusion with Tyrode's solution with or without insulin for 30 min. Myocyte shortening and intracellular calcium transients were assessed and underlying mechanisms were investigated. Results: Reperfusion with insulin (10-7 mol/L) significantly improved the recovery of contractile function (n=15-20 myocytes from 6-8 hearts, P<0.05), and increased calcium transients, as evidenced by the increased calcium (Ca2+) fluorescence ratio, shortened time to peak Ca2+ and time to 50% diastolic Ca2+, compared with those in cells reperfused with vehicle (P<0.05). In addition, Akt phosphorylation and SERCA2a activity were both increased in insulin-treated I/R cardiomyocytes, which were markedly inhibited by pretreatment of cells with a specific Akt inhibitor. Moreover, inhibition of Akt activity abolished insulin-induced positive contractile and calcium transients responses in I/R cardiomyocytes. Conclusion: These data demonstrated for the first time that insulin improves the recovery of contractile function in simulated I/R cardiomyocytes in an Akt-dependent and SERCA2a-mediated fashion.

  6. Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. Insulin action and binding in isolated hepatocytes, insulin receptor structure, and kinase activity.

    OpenAIRE

    Caro, J F; Ittoop, O; Pories, W J; Meelheim, D; Flickinger, E G; Thomas, F; Jenquin, M; Silverman, J F; Khazanie, P G; Sinha, M. K.

    1986-01-01

    We have developed a method to isolate insulin-responsive human hepatocytes from an intraoperative liver biopsy to study insulin action and resistance in man. Hepatocytes from obese patients with noninsulin-dependent diabetes were resistant to maximal insulin concentration, and those from obese controls to submaximal insulin concentration in comparison to nonobese controls. Insulin binding per cell number was similar in all groups. However, insulin binding per surface area was decreased in the...

  7. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    % of the receptors to become insulin-dependently activated. The mother carries a point mutation at the last base pair in exon 17 which, due to abnormal alternative splicing, could lead to normally transcribed receptor or truncated receptor lacking the kinase region. Kinase activation was normal in the mother......We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in situ......'s skeletal muscle, suggesting that virtually no truncated receptor was expressed. Receptor kinase activity was, however, reduced by 95 and 91% in the compound heterozygous brothers. This suggests that the mother's mutated allele contributes little to the generation of functional receptor protein...

  8. THE ROLE OF PHYSICAL ACTIVITY IN THE PRIMARY PREVENTION OF TYPE 2 DIABETES VIA THE AMELIORATION OF INSULIN RESISTANCE

    Directory of Open Access Journals (Sweden)

    Ash C. Routen

    2010-08-01

    Full Text Available Type 2 diabetes is the most common endocrine disease in our society, affecting around 5% of Western populations, whilst showing a steady rise in prevalence. The complications that arise from the disease are known to cause morbidity and mortality, and are associated with long-term damage, dysfunction, and failure of variousorgans. These complications include atherosclerosis in the micro and macro vasculature, kidney dysfunction, nerve problems, hypertension; and eye problems such as retinopathy. Epidemiological evidence suggests regular physical activity improves insulin sensitivity. This review presents the case for physical activity as a tool ofprimary prevention, in the population of non-diabetics and high risk individuals (IFG & IGT, in reference to obesity related insulin resistance. Cross-sectional, prospective cohort and randomised control trials clearly show that moderate-intensity physical activity can improve insulin sensitivity; this can be improved further byundertaking vigorous-intensity physical activity.

  9. Bioluminescence imaging of β cells and intrahepatic insulin gene activity under normal and pathological conditions.

    Directory of Open Access Journals (Sweden)

    Tokio Katsumata

    Full Text Available In diabetes research, bioluminescence imaging (BLI has been applied in studies of β-cell impairment, development, and islet transplantation. To develop a mouse model that enables noninvasive imaging of β cells, we generated a bacterial artificial chromosome (BAC transgenic mouse in which a mouse 200-kbp genomic fragment comprising the insulin I gene drives luciferase expression (Ins1-luc BAC transgenic mouse. BLI of mice was performed using the IVIS Spectrum system after intraperitoneal injection of luciferin, and the bioluminescence signal from the pancreatic region analyzed. When compared with MIP-Luc-VU mice [FVB/N-Tg(Ins1-lucVUPwrs/J] expressing luciferase under the control of the 9.2-kbp mouse insulin I promoter (MIP, the bioluminescence emission from Ins1-luc BAC transgenic mice was enhanced approximately 4-fold. Streptozotocin-treated Ins1-luc BAC transgenic mice developed severe diabetes concomitant with a sharp decline in the BLI signal intensity in the pancreas. Conversely, mice fed a high-fat diet for 8 weeks showed an increase in the signal, reflecting a decrease or increase in the β-cell mass. Although the bioluminescence intensity of the islets correlated well with the number of isolated islets in vitro, the intensity obtained from a living mouse in vivo did not necessarily reflect an absolute quantification of the β-cell mass under pathological conditions. On the other hand, adenovirus-mediated gene transduction of β-cell-related transcription factors in Ins1-luc BAC transgenic mice generated luminescence from the hepatic region for more than 1 week. These results demonstrate that BLI in Ins1-luc BAC transgenic mice provides a noninvasive method of imaging islet β cells and extrapancreatic activity of the insulin gene in the liver under normal and pathological conditions.

  10. The effects of two-week program of individually measured physical activity on insulin resistance in obese non-insulin-dependent diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Čizmić Milica

    2003-01-01

    Full Text Available It is well known that under the influence of regular, individually measured aerobic physical activity, it is possible to raise the biological efficiency of insulin by several mechanisms: by increasing the number of insulin receptors, their sensitivity and efficiency, as well as by increasing glucose transporters GLUT-4 on the level of cell membrane. The aim of this research was to examine whether decreased insulin resistance could be achieved under the influence of the program of individually measured aerobic physical activity in the 2-week period, in the obese type 2 diabetes patients with the increased aerobic capacity (VO2max. In 10 type 2 diabetes patients 47.6 ± 4.6 years of age (group E, in the 14-days period, program of aerobic training was applied (10 sessions - 35 min session of walking on treadmill, intensity 60.8 ± 5.7% (VO2max, frequency 5 times a week , as well as 1 600 kcal diet. At the same time, other 10 type 2 diabetes patients 45.9 ± 5.5 years of age (group C were on 1 600 kcal diet. Before and after this period the following was measured in both groups: insulin sensitivity (M/I by the method of hyperinsulin euglycemic clamp, and (VO2max by Astrand test on ergocycle. In contrast to the group C, in the second testing of E group subjects a significant increase was obtained in M/I (1.23 ± 0.78 vs. 2.42 ± 0.95 mg/kg/min/mU p<0.001, 96.75% as well as the increase of (VO2max (26.34 ± 4.26 vs. 29.16 ± 5.01 ml/kg/min p<0.05, 10.7%. The results had shown that 2-week program of aerobic training had had significant influence on the increased aerobic capacity and insulin sensitivity in the tested patients.

  11. Insulin Secretagogues

    Science.gov (United States)

    ... Your Body in Balance › Insulin Secretagogues Fact Sheet Insulin Secretagogues March, 2012 Download PDFs English Espanol Editors ... medicines can help you stay healthy. What are insulin secretagogues? Insulin secretagogues (pronounced seh-KREET-ah-gogs) ...

  12. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice.

    Science.gov (United States)

    Mellor, Kimberley M; Bell, James R; Young, Morag J; Ritchie, Rebecca H; Delbridge, Lea M D

    2011-06-01

    Fructose intake is linked with the increasing prevalence of insulin resistance and there is now evidence for a specific insulin-resistant cardiomyopathy. The aim of this study was to determine the cardiac-specific myocardial remodeling effects of high fructose dietary intake. Given the links between insulin signaling, reactive oxygen species generation and autophagy induction, we hypothesized that autophagy contributes to pathologic remodeling in the insulin-resistant heart, and in particular may be a feature of high fructose diet-induced cardiac phenotype. Male C57Bl/6 mice were fed a high fructose (60%) diet or nutrient-matched control diet for 12 weeks. Systemic and myocardial insulin-resistant status was characterized. Superoxide production (lucigenin) and cellular growth and death signaling pathways were examined in myocardial tissue. Myocardial structural remodeling was evaluated by measurement of heart weight indices and histological analysis of collagen deposition (picrosirius red). Fructose-fed mice exhibited hyperglycemia and glucose intolerance, but plasma insulin and blood pressure were unchanged. High fructose intake suppressed the myocardial Akt cell survival signaling coincident with increased cardiac superoxide generation (21% increase, pFructose feeding induced elevated autophagy (LC3B-II: LC3B-I ratio: 46% increase, pfructose-fed mice. We provide the first evidence that myocardial autophagy activation is associated with systemic insulin resistance, and that high level fructose intake inflicts direct cardiac damage. Upregulated autophagy is associated with elevated cardiac superoxide production, suppressed cell survival signaling and fibrotic infiltration in fructose-fed mice. The novel finding that autophagy contributes to cardiac pathology in insulin resistance identifies a new therapeutic target for diabetic cardiomyopathy.

  13. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: skarnam@vcu.edu [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: asanyal@mcvh-vcu.edu [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  14. 25-hydroxyvitamin D deficiency, exacerbation frequency and human rhinovirus exacerbations in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Quint Jennifer K

    2012-06-01

    Full Text Available Abstract Background 25-hydroxyvitamin D deficiency is associated with COPD and increased susceptibility to infection in the general population. Methods We investigated whether COPD patients deficient in 25-hydroxyvitamin D were more likely to be frequent exacerbators, had reduced outdoor activity and were more susceptible to human rhinovirus (HRV exacerbations than those with insufficient and normal levels. We also investigated whether the frequency of FokI, BsmI and TaqIα 25-hydroxyvitamin D receptor (VDR polymorphisms differed between frequent and infrequent exacerbators. Results There was no difference in 25-hydroxyvitamin D levels between frequent and infrequent exacerbators in the summer; medians 44.1nmol/L (29.1 – 68.0 and 39.4nmol/L (22.3 – 59.2 or winter; medians 24.9nmol/L (14.3 – 43.1 and 27.1nmol/L (19.9 – 37.6. Patients who spent less time outdoors in the 14 days prior to sampling had lower 25-hydroxyvitamin D levels (p = 0.02. Day length was independently associated with 25-hydroxyvitamin D levels (p = 0.02. There was no difference in 25-hydroxyvitamin D levels between baseline and exacerbation; medians 36.2nmol/L (IQR 22.4-59.4 and 33.3nmol/L (23.0-49.7; p = 0.43. HRV positive exacerbations were not associated with lower 25-hydroxyvitamin D levels at exacerbation than exacerbations that did not test positive for HRV; medians 30.0nmol/L (20.4 – 57.8 and 30.6nmol/L (19.4 – 48.7. There was no relationship between exacerbation frequency and any VDR polymorphisms (all p > 0.05. Conclusions Low 25-hydroxyvitamin D levels in COPD are not associated with frequent exacerbations and do not increase susceptibility to HRV exacerbations. Independent of day length, patients who spend less time outdoors have lower 25-hydroxyvitamin D concentration.

  15. Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution.

    Science.gov (United States)

    Sbardella, Diego; Tundo, Grazia Raffaella; Sciandra, Francesca; Bozzi, Manuela; Gioia, Magda; Ciaccio, Chiara; Tarantino, Umberto; Brancaccio, Andrea; Coletta, Massimo; Marini, Stefano

    2015-01-01

    Insulin-Degrading-Enzyme (IDE) is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism.

  16. Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution.

    Directory of Open Access Journals (Sweden)

    Diego Sbardella

    Full Text Available Insulin-Degrading-Enzyme (IDE is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism.

  17. A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases

    Institute of Scientific and Technical Information of China (English)

    Yu ZHANG; Yan LI; Yue-wei GUO; Hua-liang JIANG; Xu SHEN

    2009-01-01

    Aim: The sesquiterpene hydroquinones/quinones belong to one class of marine sponge metabolites, and they have Accepted considerable attention due to their varied biological activities, including anti-tumor, anti-HIV, and anti-inflammatory action. In order to probe the potential anti-diabetic effect of the sesquiterpene hydroquinones/quinones, the effect of dysi-dine on the insulin pathway was studied.Methods: The promotion of glucose uptake by dysidine was studied in differentiated 3T3-L1 cells. The increase in membrane-located GLUT4 by dysidine was studied in CHO-K1/GLUT4 and 3T3-L1 cells by immuno-staining. The activation of the insulin signaling pathway by dysidine was probed by Western blotting. The inhibition of PTPases by dysidine was detected in vitro.Results: Dysidine, found in the Hainan sponge Dysidea villosa in the Chinese South Sea, effectively activated the insulin signaling pathway, greatly promoted glucose uptake in 3T3-L1 ceils, and showed strong insulin-sensitizing activities. The potential targets of action for dysidine were probed, and the results indicated that dysidine exhibited its cellular effects through activation of the insulin pathway, possibly through the inhibition of protein tyrosine phosphatases, with more specific inhibition against protein tyrosine phosphatase 1B (PTPIB). Conclusion: Our findings are expected to expand understanding of the biological activities of sesquiterpene hydroquino-nes/quinones, and they show that dysidine could be a potential lead compound in the development of an alternative adju-vant in insulin therapy.

  18. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance.

    Science.gov (United States)

    Talbot, Nicola A; Wheeler-Jones, Caroline P; Cleasby, Mark E

    2014-08-05

    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.

  19. Insulin and Insulin Resistance

    OpenAIRE

    Wilcox, Gisela

    2005-01-01

    As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, stru...

  20. Defects in TLR3 expression and RNase L activation lead to decreased MnSOD expression and insulin resistance in muscle cells of obese people

    DEFF Research Database (Denmark)

    Fabre, Odile Martine Julie; Breuker, C; Amouzou, C

    2014-01-01

    with palmitate, a saturated free fatty acid (FFA) known to induce inflammation and oxidative stress via TLR4 activation. While RNase L and RLI levels remained unchanged, OAS level was decreased in primary myotubes from insulin-resistant obese subjects (OB-IR) compared with myotubes from insulin-sensitive obese......Obesity is associated with chronic low-grade inflammation and oxidative stress that blunt insulin response in its target tissues, leading to insulin resistance (IR). IR is a characteristic feature of type 2 diabetes. Skeletal muscle is responsible for 75% of total insulin-dependent glucose uptake......; consequently, skeletal muscle IR is considered to be the primary defect of systemic IR development. Interestingly, some obese people stay insulin-sensitive and metabolically healthy. With the aim of understanding this difference and identifying the mechanisms responsible for insulin sensitivity maintenance...

  1. Time-dependent regulation of muscle caveolin activation and insulin signalling in response to high-fat diet.

    Science.gov (United States)

    Gómez-Ruiz, Ana; de Miguel, Carlos; Campión, Javier; Martínez, J Alfredo; Milagro, Fermín I

    2009-10-06

    We studied the effect of high-fat diet on the expression and activation of the three caveolins in rat skeletal muscle and their association with the insulin signalling cascade. Initial response was characterized by increased signalling through Cav-1 and Cav-3 phosphorylation, suggesting that both participate in an initial acute response to the calorie surplus. Afterwards, Cav-1 signalling was slightly reduced, whereas Cav-3 remained active. Late chronic phase signalling through both proteins was impaired inducing a prediabetic state. Summarizing, caveolins seem to mediate a time-dependent regulation of insulin cascade in response to high-fat diet in muscle.

  2. Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening.

    Directory of Open Access Journals (Sweden)

    Christelle Cabrol

    Full Text Available BACKGROUND: Hypocatabolism of the amyloid beta-protein (Abeta by insulin-degrading enzyme (IDE is implicated in the pathogenesis of Alzheimer disease (AD, making pharmacological activation of IDE an attractive therapeutic strategy. However, it has not been established whether the proteolytic activity of IDE can be enhanced by drug-like compounds. METHODOLOGY/PRINCIPAL FINDINGS: Based on the finding that ATP and other nucleotide polyphosphates modulate IDE activity at physiological concentrations, we conducted parallel high-throughput screening campaigns in the absence or presence of ATP and identified two compounds--designated Ia1 and Ia2--that significantly stimulate IDE proteolytic activity. Both compounds were found to interfere with the crosslinking of a photoaffinity ATP analogue to IDE, suggesting that they interact with a bona fide ATP-binding domain within IDE. Unexpectedly, we observed highly synergistic activation effects when the activity of Ia1 or Ia2 was tested in the presence of ATP, a finding that has implications for the mechanisms underlying ATP-mediated activation of IDE. Notably, Ia1 and Ia2 activated the degradation of Abeta by approximately 700% and approximately 400%, respectively, albeit only when Abeta was presented in a mixture also containing shorter substrates. CONCLUSIONS/SIGNIFICANCE: This study describes the first examples of synthetic small-molecule activators of IDE, showing that pharmacological activation of this important protease with drug-like compounds is achievable. These novel activators help to establish the putative ATP-binding domain as a key modulator of IDE proteolytic activity and offer new insights into the modulatory action of ATP. Several larger lessons abstracted from this screen will help inform the design of future screening campaigns and facilitate the eventual development of IDE activators with therapeutic utility.

  3. Glucose administration inhibits the hepatic activation of gluconeogenesis promoted by insulin-induced hypoglycemia

    Directory of Open Access Journals (Sweden)

    Sharize Betoni Galende

    2009-08-01

    Full Text Available The activation of hepatic gluconeogenesis in male Wistar adult 6 h fasted rats during insulin-induced hypoglycemia (IIH was previously demonstrated. In this study, the effects of intraperitoneal (ip glucose (100 mg/kg on the activation of liver gluconeogenesis during IIH was investigated. Thus, 6 h fasted rats that received ip regular insulin (1 U/kg and 30 min later ip saline (Control group or glucose (Experimental group were compared. All the experiments were executed 60 min after insulin injection. The glycemia of Control and Experimental groups were not different (P > 0.05. To investigate gluconeogenesis, liver perfusion experiments were performed. The results demonstrated that excepting glycerol, livers from rats which received ip glucose showed lower (P Em estudo recente empregando ratos Wistar com 6 h de privação alimentar demonstramos que ocorre ativação da neoglicogênese hepática durante a hipoglicemia induzida por insulina (HII. Neste estudo, os efeitos da administração intraperitoneal (ip de glicose (100 mg/kg sobre a ativação da neoglicogênese hepática durante a HII foi investigada. Assim, ratos com 6 h de privação alimentar que receberam insulina regular ip (1 U/kg e 30 min depois salina (Grupo Controle ou glicose ip (Grupo Experimental foram comparados. Os experimentos foram executados 60 min após a injeção de insulina. A glicemia dos grupos Controle e Experimental não foi diferente (P > 0.05. Para investigar a neoglicogênese, realizouse experimentos de perfusão de fígado. Os resultados demonstraram, exceto para o glicerol, que fígados de ratos que receberam glicose ip (Grupo Experimental, apresentaram menor taxa (P < 0.05 de neoglicogênese a partir de L-alanina, Lglutamina, L-lactato ou L-alanina + L-glutamina + L-lactato + glicerol. Portanto, a ausência de recuperação da glicemia após administração de glicose foi mediada por inibição da neoglicogênese hepática.

  4. Activation of PPARd and RXRa stimulates fatty acid oxidatin and insulin secretion inpancreatic beta-cells

    DEFF Research Database (Denmark)

    Børgesen, Michael; Ravnskjær, Kim; Frigerio, Francesca;

    ACTIVATION OF PPARd AND RXRa STIMULATES FATTY ACID OXIDATION AND INSULIN SECRETION IN PANCREATIC b-CELLS Michael Boergesen1, Kim Ravnskjaer2, Francesca Frigerio3, Allan E. Karlsen4, Pierre Maechler3 and Susanne Mandrup1 1 Department of Biochemistry and Molecular Biology, University of Southern...... oxidation and dissipation of lipids particularly in skeletal muscle. Here we show that PPARd at the RNA as well as protein level is the most abundant PPAR subtype in the rat pancreatic ß-cell line INS-1E and in isolated rat pancreatic islets. In keeping with that, a large number of PPAR target genes...... involved in fatty acid uptake and oxidation. This correlates with a 5-fold induction of 14C-Oleate ß-oxidation when INS-1E cells are exposed to PPARd and RXR agonists. Notably, culture of INS-1E cells with oleate and other unsaturated fatty acids in the presence of an RXR agonist induces the same subset...

  5. Chronic inhibition of 11 β -hydroxysteroid dehydrogenase type 1 activity decreases hypertension, insulin resistance, and hypertriglyceridemia in metabolic syndrome.

    Science.gov (United States)

    Schnackenberg, Christine G; Costell, Melissa H; Krosky, Daniel J; Cui, Jianqi; Wu, Charlene W; Hong, Victor S; Harpel, Mark R; Willette, Robert N; Yue, Tian-Li

    2013-01-01

    Metabolic syndrome is a constellation of risk factors including hypertension, dyslipidemia, insulin resistance, and obesity that promote the development of cardiovascular disease. Metabolic syndrome has been associated with changes in the secretion or metabolism of glucocorticoids, which have important functions in adipose, liver, kidney, and vasculature. Tissue concentrations of the active glucocorticoid cortisol are controlled by the conversion of cortisone to cortisol by 11 β -hydroxysteroid dehydrogenase type 1 (11 β -HSD1). Because of the various cardiovascular and metabolic activities of glucocorticoids, we tested the hypothesis that 11 β -HSD1 is a common mechanism in the hypertension, dyslipidemia, and insulin resistance in metabolic syndrome. In obese and lean SHR/NDmcr-cp (SHR-cp), cardiovascular, metabolic, and renal functions were measured before and during four weeks of administration of vehicle or compound 11 (10 mg/kg/d), a selective inhibitor of 11 β -HSD1. Compound 11 significantly decreased 11 β -HSD1 activity in adipose tissue and liver of SHR-cp. In obese SHR-cp, compound 11 significantly decreased mean arterial pressure, glucose intolerance, insulin resistance, hypertriglyceridemia, and plasma renin activity with no effect on heart rate, body weight gain, or microalbuminuria. These results suggest that 11 β -HSD1 activity in liver and adipose tissue is a common mediator of hypertension, hypertriglyceridemia, glucose intolerance, and insulin resistance in metabolic syndrome.

  6. Chronic Inhibition of 11β-Hydroxysteroid Dehydrogenase Type 1 Activity Decreases Hypertension, Insulin Resistance, and Hypertriglyceridemia in Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Christine G. Schnackenberg

    2013-01-01

    Full Text Available Metabolic syndrome is a constellation of risk factors including hypertension, dyslipidemia, insulin resistance, and obesity that promote the development of cardiovascular disease. Metabolic syndrome has been associated with changes in the secretion or metabolism of glucocorticoids, which have important functions in adipose, liver, kidney, and vasculature. Tissue concentrations of the active glucocorticoid cortisol are controlled by the conversion of cortisone to cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1. Because of the various cardiovascular and metabolic activities of glucocorticoids, we tested the hypothesis that 11β-HSD1 is a common mechanism in the hypertension, dyslipidemia, and insulin resistance in metabolic syndrome. In obese and lean SHR/NDmcr-cp (SHR-cp, cardiovascular, metabolic, and renal functions were measured before and during four weeks of administration of vehicle or compound 11 (10 mg/kg/d, a selective inhibitor of 11β-HSD1. Compound 11 significantly decreased 11β-HSD1 activity in adipose tissue and liver of SHR-cp. In obese SHR-cp, compound 11 significantly decreased mean arterial pressure, glucose intolerance, insulin resistance, hypertriglyceridemia, and plasma renin activity with no effect on heart rate, body weight gain, or microalbuminuria. These results suggest that 11β-HSD1 activity in liver and adipose tissue is a common mediator of hypertension, hypertriglyceridemia, glucose intolerance, and insulin resistance in metabolic syndrome.

  7. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Alfredo Csibi

    Full Text Available Angiotensin II (Ang II plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O(2(*--dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt. Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser(473 and Thr(308 as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3alpha phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(PHoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr(156/139, close to their active site Asp(166/149, in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein

  8. Activation of the adenosine A2A receptor exacerbates experimental autoimmune neuritis in Lewis rats in association with enhanced humoral immunity.

    Science.gov (United States)

    Zhang, Min; Li, Xiao-Li; Li, Heng; Wang, Shan; Wang, Cong-Cong; Yue, Long-Tao; Xu, Hua; Zhang, Peng; Chen, Hui; Yang, Bing; Duan, Rui-Sheng

    2016-04-15

    Accumulated evidence demonstrated that Adenosine A2A receptor (A2AR) is involved in the inflammatory diseases. In the present study, we showed that a selective A2AR agonist, CGS21680, exacerbated experimental autoimmune neuritis in Lewis rats induced with bovine peripheral myelin. The exacerbation was accompanied with reduced CD4(+)Foxp3(+) T cells, increased CD4(+)CXCR5(+) T cells, B cells, dendritic cells and antigen-specific autoantibodies, which is possibly due to the inhibition of IL-2 induced by CGS21680. Combined with previous studies, our data indicate that the effects of A2AR stimulation in vivo are variable in different diseases. Caution should be taken in the use of A2AR agonists.

  9. Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous System only in insulin-sensitive mice

    NARCIS (Netherlands)

    Coomans, C.P.; Geerling, J.J.; Guigas, B.; Hoek, A.M. van den; Parlevliet, E.T.; Ouwens, D.M.; Pijl, H.; Voshol, P.J.; Rensen, P.C.N.; Havekes, L.M.; Romijn, J.A.

    2011-01-01

    Insulin signaling in the central nervous system (CNS) is required for the inhibitory effect of insulin on glucose production. Our aim was to determine whether the CNS is also involved in the stimulatory effect of circulating insulin on the tissue-specific retention of fatty acid (FA) from plasma. In

  10. Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes

    OpenAIRE

    Zhou, Jun; Wang, Qilong; Ding, Ye; Zou, Ming-hui

    2015-01-01

    We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake...

  11. Data in support of fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    Directory of Open Access Journals (Sweden)

    Du-Qiang Luo

    2015-09-01

    Full Text Available This data article contains data related to the research article entitled “Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice” in the Toxicology and Applied Pharmacology [1]. Fumosorinone (FU is a new inhibitor of protein phosphatase 1B inhibitor, which was isolated from insect pathogenic fungi Isaria fumosorosea. FU was found to inhibit PTP1B activity in our previous study [2]. PTP1B is the physiological antagonist of the insulin signalling pathway. Inhibition of PTP 1B may increase insulin sensitivity [3]. PTP1B has been considered promising as an insulin-sensitive drug target for the prevention and the treatment of insulin-based diseases [4]. We determined the effect of FU on the glucose consumption of IR HepG2 cells. FU caused significant enhancement in glucose consumption by insulin-resistant HepG2 cells compared with control cells.

  12. Data in support of fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice.

    Science.gov (United States)

    Luo, Du-Qiang; Liu, Zhi-Qin; Liu, Ting; Chen, Chuan; Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-Song; Wei, Gui-Xiang; Wang, Xiao-Yi

    2015-09-01

    This data article contains data related to the research article entitled "Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice" in the Toxicology and Applied Pharmacology [1]. Fumosorinone (FU) is a new inhibitor of protein phosphatase 1B inhibitor, which was isolated from insect pathogenic fungi Isaria fumosorosea. FU was found to inhibit PTP1B activity in our previous study [2]. PTP1B is the physiological antagonist of the insulin signalling pathway. Inhibition of PTP 1B may increase insulin sensitivity [3]. PTP1B has been considered promising as an insulin-sensitive drug target for the prevention and the treatment of insulin-based diseases [4]. We determined the effect of FU on the glucose consumption of IR HepG2 cells. FU caused significant enhancement in glucose consumption by insulin-resistant HepG2 cells compared with control cells.

  13. Plasminogen Activator Inhibitor -1 (PAI-1) Predicts Negative Alterations in Whole Body Insulin Sensitivity in Chronic HIV Infection.

    Science.gov (United States)

    Wirunsawanya, Kamonkiat; Belyea, Loni; Shikuma, Cecilia; Watanabe, Richard; Kohorn, Lindsay; Shiramizu, Bruce; Mitchell, Brooks; Souza, Scott A; Keating, Sheila; Norris, Philip J; Ndhlovu, Lishomwa; Chow, Dominic

    2017-03-21

    Plasminogen activator inhibitor type 1 (PAI-1), a key negative regulator of fibrinolysis, has been investigated to be a potential predictor of the development of insulin resistance and diabetes mellitus. Because chronically stable HIV-infected individuals frequently develop abnormal glucose metabolism including insulin resistance and diabetes mellitus, we postulated PAI-1 could be one of multifactorial pathogenic roles in the development of insulin resistance among chronic HIV-infected individuals. From our longitudinal cohort study, we selectively recruited chronically stable HIV-infected individuals without diagnosis of diabetes mellitus at baseline (N = 62) to analyze the correlation of baseline inflammatory cytokines including PAI-1 and whole body insulin sensitivity with two-year follow-up, as measured by Matsuda Index. We found a negative correlation between baseline PAI-1 and Matsuda Index (r = -.435 , p = .001) and a negative correlation with PAI-1 at baseline and Matsuda Index at two years (r = -.377 , p = .005). In a linear regression model that included age, total body fat mass percentage, serum amyloid A and family history of diabetes mellitus, PAI-1 still remained significantly associated with Matsuda Index at two-year follow-up (β = -.397, p = .002). Our longitudinal study suggests PAI-1 is an independent predictor of insulin resistance among chronic HIV-infected individuals.

  14. Mg2+-dependent ATPase activity in cardiac myofibrils from the insulin-resistant JCR:LA-cp rat.

    Science.gov (United States)

    Misra, T; Russell, J C; Clark, T A; Pierce, G N

    2001-01-01

    There is a great deal of information presently available documenting a cardiomyopathic condition in insulin-deficient models of diabetes. Less information is available documenting a similar status in non insulin-dependent models of diabetes. We have studied the functional integrity of the myofibrils isolated from hearts of JCR:LA rats. The JCR:LA rat is hyperinsulinemic, hyperlipidemic, glucose intolerant and obese. As such, it carries many of the characteristics found in humans with non insulin-dependent diabetes mellitus. These animals also have many indications of heart disease. However, it is not clear if the hearts suffer from vascular complications or are cardiomyopathic in nature. We examined Mg2+-dependent myofibrillar ATPase in hearts of JCR:LA-cp/cp rats and their corresponding control animals (+/?) and found no significant differences (P> 0.05). This is in striking contrast to the depression in this activity exhibited by cardiac myofibrils isolated from insulin-deficient models of diabetes. Our data demonstrate that myofibrillar functional integrity is normal in JCR:LA-cp rats and suggest that these hearts are not in a cardiomyopathic state. Insulin status may be critical in generating a cardiomyopathic condition in diabetes.

  15. Plasma phospholipid transfer protein activity is independently determined by obesity and insulin resistance in non-diabetic subjects

    NARCIS (Netherlands)

    de Vries, Rindert; Kappelle, Paul J.W.H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    2011-01-01

    Background: Phospholipid transfer protein (PLTP) is an emerging cardio-metabolic risk factor which is intricately involved in lipoprotein metabolism. Elevated plasma PLTP activity levels are reported in obesity and diabetes mellitus, but the relative contributions of obesity and insulin resistance t

  16. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    Science.gov (United States)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  17. Intravenous tissue plasminogen activator in patients with stroke increases the bioavailability of insulin-like growth factor-1

    NARCIS (Netherlands)

    Wilczak, Nadine; Elting, Jan Willem; Chesik, Daniel; Kema, Ido P.; De Keyser, Jacques

    2006-01-01

    Background and Purpose-Insulin-like growth factor (IGF)-1 has potent neuroprotective properties. We investigated the effects of intravenous administration of tissue plasminogen activator (tPA) on serum levels of IGF-1 and IGF-binding protein (IGFBP)-3 in patients with acute ischemic stroke. Methods-

  18. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  19. Allosteric activation of protein phosphatase 2C by D-chiro-inositol-galactosamine, a putative mediator mimetic of insulin action.

    Science.gov (United States)

    Brautigan, D L; Brown, M; Grindrod, S; Chinigo, G; Kruszewski, A; Lukasik, S M; Bushweller, J H; Horal, M; Keller, S; Tamura, S; Heimark, D B; Price, J; Larner, A N; Larner, J

    2005-08-23

    Insulin-stimulated glucose disposal in skeletal muscle proceeds predominantly through a nonoxidative pathway with glycogen synthase as a rate-limiting enzyme, yet the mechanisms for insulin activation of glycogen synthase are not understood despite years of investigation. Isolation of putative insulin second messengers from beef liver yielded a pseudo-disaccharide consisting of pinitol (3-O-methyl-d-chiro-inositol) beta-1,4 linked to galactosamine chelated with Mn(2+) (called INS2). Here we show that chemically synthesized INS2 has biological activity that significantly enhances insulin reduction of hyperglycemia in streptozotocin diabetic rats. We used computer modeling to dock INS2 onto the known three-dimensional crystal structure of protein phosphatase 2C (PP2C). Modeling and FlexX/CScore energy minimization predicted a unique favorable site on PP2C for INS2 in a surface cleft adjacent to the catalytic center. Binding of INS2 is predicted to involve formation of multiple H-bonds, including one with residue Asp163. Wild-type PP2C activity assayed with a phosphopeptide substrate was potently stimulated in a dose-dependent manner by INS2. In contrast, the D163A mutant of PP2C was not activated by INS2. The D163A mutant and wild-type PP2C in the absence of INS2 had the same Mn(2+)-dependent phosphatase activity with p-nitrophenyl phosphate as a substrate, showing that this mutation did not disrupt the catalytic site. We propose that INS2 allosterically activates PP2C, fulfilling the role of a putative mediator mimetic of insulin signaling to promote protein dephosphorylation and metabolic responses.

  20. Reciprocal regulation of insulin and plasma 5'-AMP in glucose homeostasis in mice.

    Science.gov (United States)

    Xia, Lin; Wang, Zhongqiu; Zhang, Ying; Yang, Xiao; Zhan, Yibei; Cheng, Rui; Wang, Shiming; Zhang, Jianfa

    2015-03-01

    A previous investigation has demonstrated that plasma 5'-AMP (pAMP) exacerbates and causes hyperglycemia in diabetic mice. However, the crosstalk between pAMP and insulin signaling to regulate glucose homeostasis has not been investigated in depth. In this study, we showed that the blood glucose level was more dependent on the ratio of insulin to pAMP than on the absolute level of these two factors. Administration of 5'-AMP significantly attenuated the insulin-stimulated insulin receptor (IR) autophosphorylation in the liver and muscle tissues, resulting in the inhibition of downstream AKT phosphorylation. A docking analysis indicated that adenosine was a potential inhibitor of IR tyrosine kinase. Moreover, the 5'-AMP treatment elevated the ATP level in the pancreas and in the isolated islets, stimulating insulin secretion and increasing the plasma level of insulin. The insulin administration decreased the 5'-AMP-induced hyper-adenosine level by the up-regulation of adenosine kinase activities. Our results indicate that blood glucose homeostasis is reciprocally regulated by pAMP and insulin.

  1. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    Science.gov (United States)

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  2. Enhanced insulin sensitivity mediated by adipose tissue browning perturbs islet morphology and hormone secretion in response to autonomic nervous activation in female mice.

    Science.gov (United States)

    Omar, Bilal A; Kvist-Reimer, Martina; Enerbäck, Sven; Ahrén, Bo

    2016-01-01

    Insulin resistance results in a compensatory increase in insulin secretion to maintain normoglycemia. Conversely, high insulin sensitivity results in reduced insulin secretion to prevent hypoglycemia. The mechanisms for this inverse adaptation are not well understood. We utilized highly insulin-sensitive mice, due to adipocyte-specific overexpression of the FOXC2 transcription factor, to study mechanisms of the reversed islet adaptation to increased insulin sensitivity. We found that Foxc2TG mice responded to mild hyperglycemia with insulin secretion significantly lower than that of wild-type mice; however, when severe hyperglycemia was induced, Foxc2TG mice demonstrated insulin secretion equal to or greater than that of wild-type mice. In response to autonomic nervous activation by 2-deoxyglucose, the acute suppression of insulin seen in wild-type mice was absent in Foxc2TG mice, suggesting impaired sympathetic signaling to the islet. Basal glucagon was increased in Foxc2TG mice, but they displayed severely impaired glucagon responses to cholinergic and autonomic nervous stimuli. These data suggest that the autonomic nerves contribute to the islet adaptation to high insulin sensitivity, which is compatible with a neuro-adipo regulation of islet function being instrumental for maintaining glucose regulation.

  3. Improved insulin sensitivity and islet function after PPARdelta activation in diabetic db/db mice.

    Science.gov (United States)

    Winzell, Maria Sörhede; Wulff, Erik Max; Olsen, Grith Skytte; Sauerberg, Per; Gotfredsen, Carsten F; Ahrén, Bo

    2010-01-25

    The peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor superfamily. Several reports have shown that PPARdelta is involved in lipid metabolism, increasing fat oxidation and depleting lipid accumulation. Whether PPARdelta is involved in the regulation of glucose metabolism is not completely understood. In this study, we examined effects of long-term PPARdelta activation on glycemic control, islet function and insulin sensitivity in diabetic db/db mice. Male db/db mice were administered orally once daily with a selective and partial PPARdelta agonist (NNC 61-5920, 30 mg/kg) for eight weeks; control mice received vehicle. Fasting and non-fasting plasma glucose were reduced, reflected in reduced hemoglobinA(1c) (3.6+/-1.6% vs. 5.4+/-1.8 in db/db controls, Pdiabetic db/db mice. This suggests that activation of PPARdelta improves glucose metabolism and may therefore potentially be target for treatment of type 2 diabetes.

  4. Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Dikkers, Arne; Jurdzinski, Angelika; von Felden, Johann; Gaestel, Matthias; Bavendiek, Udo; Tietge, Uwe J. F.

    2014-01-01

    Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2(-

  5. Ethanolic extract of Allium cepa stimulates glucose transporter typ 4-mediated glucose uptake by the activation of insulin signaling.

    Science.gov (United States)

    Gautam, Sudeep; Pal, Savita; Maurya, Rakesh; Srivastava, Arvind K

    2015-02-01

    The present work was undertaken to investigate the effects and the molecular mechanism of the standardized ethanolic extract of Allium cepa (onion) on the glucose transport for controlling diabetes mellitus. A. cepa stimulates glucose uptake by the rat skeletal muscle cells (L6 myotubes) in both time- and dose-dependent manners. This effect was shown to be mediated by the increased translocation of glucose transporter typ 4 protein from the cytoplasm to the plasma membrane as well as the synthesis of glucose transporter typ 4 protein. The effect of A. cepa extract on glucose transport was stymied by wortmannin, genistein, and AI½. In vitro phosphorylation analysis revealed that, like insulin, A. cepa extract also enhances the tyrosine phosphorylation of the insulin receptor-β, insulin receptor substrate-1, and the serine phosphorylation of Akt under both basal and insulin-stimulated conditions without affecting the total amount of these proteins. Furthermore, it is also shown that the activation of Akt is indispensable for the A. cepa-induced glucose uptake in L6 myotubes. Taken together, these findings provide ample evidence that the ethanolic extract of A. cepa stimulates glucose transporter typ 4 translocation-mediated glucose uptake by the activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt dependent pathway.

  6. Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK

    Directory of Open Access Journals (Sweden)

    Chiou Shih-Hwa

    2010-07-01

    Full Text Available Abstract Background Islet transplantation provides a promising cure for Type 1 diabetes; however it is limited by a shortage of pancreas donors. Bone marrow-derived multipotent mesenchymal stem cells (MSCs offer renewable cells for generating insulin-producing cells (IPCs. Methods We used a four-stage differentiation protocol, containing neuronal differentiation and IPC-conversion stages, and combined with pellet suspension culture to induce IPC differentiation. Results Here, we report adding extracellular matrix proteins (ECM such as fibronectin (FN or laminin (LAM enhances pancreatic differentiation with increases in insulin and Glut2 gene expressions, proinsulin and insulin protein levels, and insulin release in response to elevated glucose concentration. Adding FN or LAM induced activation of Akt and ERK. Blocking Akt or ERK by adding LY294002 (PI3K specific inhibitor, PD98059 (MEK specific inhibitor or knocking down Akt or ERK failed to abrogate FN or LAM-induced enhancement of IPC differentiation. Only blocking both of Akt and ERK or knocking down Akt and ERK inhibited the enhancement of IPC differentiation by adding ECM. Conclusions These data prove IPC differentiation by MSCs can be modulated by adding ECM, and these stimulatory effects were mediated through activation of Akt and ERK pathways.

  7. Anti-hyperlipidemic and insulin sensitizing activities of fenofibrate reduces aortic lipid deposition in hyperlipidemic Golden Syrian hamster.

    Science.gov (United States)

    Srivastava, Rai Ajit K; He, Shirley

    2010-12-01

    Cholesterol ester transfer protein (CETP) and apolipoprotein (apo) E are important in peroxisome proliferation activated receptor-α (PPAR-α)-mediated regulation of lipoprotein metabolism. Therefore, popularly used apolipoprotein E knockout mice are not suitable to evaluate PPAR-α agonists. In this study, we aimed to: a) evaluate hamster as a model for insulin resistance, hyperlipidemia and atherosclerosis; and b) investigate the effect of a PPAR-α activator, fenofibrate, in this model. A high fat high cholesterol (HFHC) diet increased serum cholesterol and triglycerides, but inclusion of fenofibrate in the diet decreased cholesterol and proatherogenic lipoproteins, VLDL and LDL, in a time-dependent manner. Concomitantly, serum levels of triglycerides also decreased. These reductions were attributed, in part, to the down-regulation of lipogenic genes and upregulation of lipoprotein lipase. The HFHC diet caused body weight gain and mild insulin resistance, both of which were prevented following the treatments with fenofibrate. Insulin resistance was further investigated in high fructose-fed hamsters. Fenofibrate prevented both hyperinsulinemia and hypertriglyceridemia. The insulin sensitizing activity of fenofibrate appeared to occur via reductions in protein tyrosine phophatase-1B. To determine whether lowering of lipids by fenofibrate treatment contributed to the reduced risks of developing atherosclerosis in hyperlipidemic hamsters, we measured lipid deposition in the aorta. Our results showed that fenofibrate treatment reduced aortic lipid deposition by 70%. These findings suggest that hamster may be an adequate animal model to evaluate the efficacy of lipid lowering, insulin sensitizing and antiatherosclerotic agents. We also show that fenofibrate is an effective antiatherosclerotic agent in hyperlipidemic hamster model.

  8. Diet-induced obesity exacerbates metabolic and behavioral effects of polycystic ovary syndrome in a rodent model.

    Science.gov (United States)

    Ressler, Ilana B; Grayson, Bernadette E; Ulrich-Lai, Yvonne M; Seeley, Randy J

    2015-06-15

    Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women of reproductive age. Although a comorbidity of PCOS is obesity, many are lean. We hypothesized that increased saturated fat consumption and obesity would exacerbate metabolic and stress indices in a rodent model of PCOS. Female rats were implanted with the nonaromatizable androgen dihydrotestosterone (DHT) or placebo pellets prior to puberty. Half of each group was maintained ad libitum on either a high-fat diet (HFD; 40% butter fat calories) or nutrient-matched low-fat diet (LFD). Irrespective of diet, DHT-treated animals gained more body weight, had irregular cycles, and were glucose intolerant compared with controls on both diets. HFD/DHT animals had the highest levels of fat mass and insulin resistance. DHT animals demonstrated increased anxiety-related behavior in the elevated plus maze by decreased distance traveled and time in the open arms. HFD consumption increased immobility during the forced-swim test. DHT treatment suppressed diurnal corticosterone measurements in both diet groups. In parallel, DHT treatment significantly dampened stress responsivity to a mild stressor. Brains of DHT animals showed attenuated c-Fos activation in the ventromedial hypothalamus and arcuate nucleus; irrespective of DHT-treatment, however, all HFD animals had elevated hypothalamic paraventricular nucleus c-Fos activation. Whereas hyperandrogenism drives overall body weight gain, glucose intolerance, anxiety behaviors, and stress responsivity, HFD consumption exacerbates the effect of androgens on adiposity, insulin resistance, and depressive behaviors.

  9. Radiation-Induced Esophagitis Exacerbated by Everolimus

    Directory of Open Access Journals (Sweden)

    Yuji Miura

    2013-06-01

    Full Text Available Background: Everolimus, a potent mammalian target of rapamycin (mTOR inhibitor, has shown anticancer activity against various types of cancer, including renal cell carcinoma (RCC; however, little information is available on the efficacy and safety of the combination of everolimus and radiotherapy. We report a case of radiation-induced esophagitis that might have been exacerbated by the sequential administration of everolimus. Case Presentation: A 63-year-old Japanese man with RCC complained of back pain, and magnetic resonance imaging revealed vertebral metastases. He received radiotherapy (30 Gy/10 fractions to the T6-10 vertebrae. Everolimus was administered immediately after the completion of radiotherapy. One week later, he complained of dysphagia, nausea and vomiting. An endoscopic examination of the esophagus showed erosive esophagitis in the middle to lower portions of his thoracic esophagus, corresponding to the irradiation field. Conclusion: Clinicians should be aware that everolimus might lead to the unexpected exacerbation of radiation toxicities.

  10. Glutamine:fructose-6-phosphate amidotransferase activity in cultured human skeletal muscle cells: relationship to glucose disposal rate in control and non-insulin-dependent diabetes mellitus subjects and regulation by glucose and insulin.

    OpenAIRE

    1996-01-01

    We examined the activity of the rate-limiting enzyme for hexosamine biosynthesis, glutamine:fructose-6-phosphate amidotransferase (GFA) in human skeletal muscle cultures (HSMC), from 17 nondiabetic control and 13 subjects with non-insulin-dependent diabetes. GFA activity was assayed from HSMC treated with low (5 mM) or high (20 mM) glucose and low (22 pM) or high (30 microM) concentrations of insulin. In control subjects GFA activity decreased with increasing glucose disposal rate (r = -0.68,...

  11. Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).

    Science.gov (United States)

    Marunaka, Y; Hagiwara, N; Tohda, H

    1992-09-01

    Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.

  12. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    Science.gov (United States)

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  13. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Takenaka

    Full Text Available Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling.

  14. A high-fat diet rich in corn oil reduces spontaneous locomotor activity and induces insulin resistance in mice.

    Science.gov (United States)

    Wong, Chi Kin; Botta, Amy; Pither, Jason; Dai, Chuanbin; Gibson, William T; Ghosh, Sanjoy

    2015-04-01

    Over the last few decades, polyunsaturated fatty acid (PUFA), especially n-6 PUFA, and monounsaturated fatty acid content in 'Western diets' has increased manyfold. Such a dietary shift also parallels rising sedentary behavior and diabetes in the Western world. We queried if a shift in dietary fats could be linked to physical inactivity and insulin insensitivity in mice. Eight-week old female C57/Bl6 mice were fed either high-fat (HF) diets [40% energy corn oil (CO) or isocaloric olive oil (OO) diets] or chow (n=10/group) for 6 weeks, followed by estimation of spontaneous locomotor activity, body composition and in vivo metabolic outcomes. Although lean mass and resting energy expenditure stayed similar in both OO- and CO-fed mice, only CO-fed mice demonstrated reduced spontaneous locomotor activity. Such depressed activity in CO-fed mice was accompanied by a lower respiratory ratio, hyperinsulinemia and impaired glucose disposal following intraperitoneal glucose tolerance and insulin tolerance tests compared to OO-fed mice. Unlike the liver, where both HF diets increased expression of fat oxidation genes like PPARs, the skeletal muscle of CO-fed mice failed to up-regulate such genes, thereby supporting the metabolic insufficiencies observed in these mice. In summary, this study demonstrates a specific contribution of n-6 PUFA-rich oils like CO to the loss of spontaneous physical activity and insulin sensitivity in mice. If these data hold true for humans, this study could provide a novel link between recent increases in dietary n-6 PUFA to sedentary behavior and the development of insulin resistance in the Western world.

  15. Design of an active ultrastable single-chain insulin analog: synthesis, structure, and therapeutic implications.

    Science.gov (United States)

    Hua, Qing-xin; Nakagawa, Satoe H; Jia, Wenhua; Huang, Kun; Phillips, Nelson B; Hu, Shi-quan; Weiss, Michael A

    2008-05-23

    Single-chain insulin (SCI) analogs provide insight into the inter-relation of hormone structure, function, and dynamics. Although compatible with wild-type structure, short connecting segments (design, structure, and function of a single-chain insulin analog (SCI-57) containing a 6-residue linker (GGGPRR). Native receptor-binding affinity (130 +/- 8% relative to the wild type) is achieved as hindrance by the linker is offset by favorable substitutions in the insulin moiety. The thermodynamic stability of SCI-57 is markedly increased (DeltaDeltaG(u) = 0.7 +/- 0.1 kcal/mol relative to the corresponding two-chain analog and 1.9 +/- 0.1 kcal/mol relative to wild-type insulin). Analysis of inter-residue nuclear Overhauser effects demonstrates that a native-like fold is maintained in solution. Surprisingly, the glycine-rich connecting segment folds against the insulin moiety: its central Pro contacts Val(A3) at the edge of the hydrophobic core, whereas the final Arg extends the A1-A8 alpha-helix. Comparison between SCI-57 and its parent two-chain analog reveals striking enhancement of multiple native-like nuclear Overhauser effects within the tethered protein. These contacts are consistent with wild-type crystal structures but are ordinarily attenuated in NMR spectra of two-chain analogs, presumably due to conformational fluctuations. Linker-specific damping of fluctuations provides evidence for the intrinsic flexibility of an insulin monomer. In addition to their biophysical interest, ultrastable SCIs may enhance the safety and efficacy of insulin replacement therapy in the developing world.

  16. AMPK and insulin action

    DEFF Research Database (Denmark)

    Frøsig, Christian; Jensen, Thomas Elbenhardt; Jeppesen, Jacob

    2013-01-01

    The 5'-AMP-activated protein kinase (AMPK) is considered "a metabolic master-switch" in skeletal muscle reducing ATP- consuming processes whilst stimulating ATP regeneration. Within recent years, AMPK has also been proposed as a potential target to attenuate insulin resistance, although the exact...... and insulin stimulated glucose uptake in both the soleus and extensor digitorum longus muscle, coinciding with reduced insulin signaling at the level of Akt (pSer473 and pThr308), TBC1D1 (pThr590) and TBC1D4 (pThr642). In contrast to our hypothesis, the impact of ageing and high fat diet on insulin action...

  17. Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut.

    Science.gov (United States)

    Foronda, David; Weng, Ruifen; Verma, Pushpa; Chen, Ya-Wen; Cohen, Stephen M

    2014-11-01

    Homeostasis of the intestine is maintained by dynamic regulation of a pool of intestinal stem cells. The balance between stem cell self-renewal and differentiation is regulated by the Notch and insulin signaling pathways. Dependence on the insulin pathway places the stem cell pool under nutritional control, allowing gut homeostasis to adapt to environmental conditions. Here we present evidence that miR-305 is required for adaptive homeostasis of the gut. miR-305 regulates the Notch and insulin pathways in the intestinal stem cells. Notably, miR-305 expression in the stem cells is itself under nutritional control via the insulin pathway. This link places regulation of Notch pathway activity under nutritional control. These findings provide a mechanism through which the insulin pathway controls the balance between stem cell self-renewal and differentiation that is required for adaptive homeostasis in the gut in response to changing environmental conditions.

  18. COPD exacerbations, inflammation and treatment

    NARCIS (Netherlands)

    Bathoorn, Derk

    2007-01-01

    This thesis describes investigations into the inflammation in COPD, and its treatment. Inflammation in COPD is a central factor in the onset of the disease and its progression. During acute deteriorations of the disease, exacerbations, the inflammation is more severe, and depending on the cause of t

  19. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2.

    Directory of Open Access Journals (Sweden)

    Cécile Pierre-Eugene

    Full Text Available BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R, present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3 production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in

  20. Fuel-Stimulated Insulin Secretion Depends upon Mitochondria Activation and the Integration of Mitochondrial and Cytosolic Substrate Cycles

    Directory of Open Access Journals (Sweden)

    Gary W. Cline

    2011-10-01

    Full Text Available The pancreatic islet β-cell is uniquely specialized to couple its metabolism and rates of insulin secretion with the levels of circulating nutrient fuels, with the mitochondrial playing a central regulatory role in this process. In the β-cell, mitochondrial activation generates an integrated signal reflecting rates of oxidativephosphorylation, Kreb's cycle flux, and anaplerosis that ultimately determines the rate of insulin exocytosis. Mitochondrial activation can be regulated by proton leak and mediated by UCP2, and by alkalinization to utilize the pH gradient to drive substrate and ion transport. Converging lines of evidence support the hypothesis that substrate cycles driven by rates of Kreb's cycle flux and by anaplerosis play an integral role in coupling responsive changes in mitochondrial metabolism with insulin secretion. The components and mechanisms that account for the integrated signal of ATP production, substrate cycling, the regulation of cellular redox state, and the production of other secondary signaling intermediates are operative in both rodent and human islet β-cells.

  1. Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways

    Directory of Open Access Journals (Sweden)

    Chae Eun Lee

    2012-01-01

    Full Text Available This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda H. Hara on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG, T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation.

  2. Physical activity in overweight and obese pregnant women is associated with higher levels of proinflammatory cytokines and with reduced insulin response through interleukin-6.

    Science.gov (United States)

    van Poppel, Mireille N M; Peinhaupt, Miriam; Eekhoff, Marelise E W; Heinemann, Akos; Oostdam, Nicolette; Wouters, Maurice G A J; van Mechelen, Willem; Desoye, Gernot

    2014-04-01

    OBJECTIVE Previously, we reported the positive association of moderate-to-vigorous physical activity (MVPA) with insulin sensitivity in overweight and obese pregnant women. We sought to assess whether these MVPA-induced changes in insulin sensitivity are mediated by changes in interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and IL-1β. RESEARCH DESIGN AND METHODS A prospective longitudinal study was conducted in 46 overweight and obese women at risk for gestational diabetes mellitus. Objective physical activity measurements and fasting blood samples were taken at 15, 24, and 32 weeks of pregnancy. At 24 and 32 weeks, a 100-g oral glucose test was performed in addition. Cytokines, C-reactive protein, and glucose and insulin levels were measured, and insulin sensitivity and first-phase insulin response were calculated. Relationships between the different parameters were assessed using linear regression models, adjusting for maternal age and BMI. RESULTS All cytokines were elevated in women with higher levels of MVPA at 15 weeks of gestation. Higher IL-6 was related to a lower first-phase insulin response (β -810.5 [95% CI -1,524.5 to -96.5]; P = 0.03). TNF-α and IL-1β had different effects in women with low MVPA (with low IL-6 levels) compared with more active women. CRP was not related to MVPA. CONCLUSIONS The association of MVPA with insulin sensitivity and first-phase insulin response may be (partly) mediated by IL-6, since this cytokine was related to reduced first-phase insulin response. The possible positive effects of the elevated cytokine profile in active obese pregnant women warrant further study.

  3. The relation between platelet activation and hypercoagulability in elderly patients with chronic cor pulmonary exacerbation%血小板活性与老年慢性肺心病高凝状态的关系

    Institute of Scientific and Technical Information of China (English)

    邬伟明; 谭劼; 郭永谊; 黄瑾

    2009-01-01

    Objective:To investigate the relation among platelet activation marker(GPⅡb/Ⅲa,CD62p) and amounts of fibrinogen (FG) and of D-dimer (DD) in elderly patients with chronic cor pulmonale exacerbation.Methods:Subjects were divided into four groups (42 elderly patients with chronic cor pulmonale exacerbation,42 elderly patients with chronic cor pulmonale remission stage,30cases of healthy elderly controls and 30 cases of healthy non-elderly controls).Positive rates of GPⅡb/Ⅲa and CD62p were measured with tricolor flow cytometry.We also determined FG and DD in patients with chronic cor pulmonale and in normal controls.Results:Compared with those of chronic cor pulmonale remission stage group,healthy elderly group and healthy non-elderly group,the levels of GPⅡb/Ⅲa,CD62p,FG and DD increased significantly in elderly patients with chronic cor pulmonale exacerbation (all P<0.001).There was a positive correlation between the amount of GPⅡb/Ⅲa or CD62p and the amount of FG and DD in elderly patients with chronic cor pulmonale exacerbation.Conclusion:There is increased coagulation and platelet activity in elderly patients with chronic cor pulmonale exacerbation,and there is a significant correlation between platelet activity and hypercoagulability.%目的:探讨老年慢性肺心病急性加重期患者血小板膜糖蛋白GPⅡb/Ⅲa、CD62p的变化与纤维蛋白原(FG)、D-二聚体(DD)的关系.方法:用三色全血流式细胞术测定42例老年慢性肺心病急性加重期患者及42例缓解期患者外周血中血小板GPⅡb/Ⅲa、CD62p的表达水平,并检测患者FG、DD水平,与30例老年健康对照者及30例非老年健康对照者比较.结果:老年慢性肺心病急性加重期组GPⅡb/Ⅲa、CD62p、FG、DD均明显高于缓解期组、老年健康对照组及非老年健康对照组(均P<0.001).老年慢性肺心病急性加重期组GPⅡb/Ⅲa、CD62p与FG、DD均呈正相关.结论:老年慢性肺心病急性加重期患

  4. Hepatic histomorphological and biochemical changes following highly active antiretroviral therapy in an experimental animal model: Does Hypoxis hemerocallidea exacerbate hepatic injury?

    Directory of Open Access Journals (Sweden)

    Onyemaechi Okpara Azu

    2016-01-01

    While no mortality was reported, animals treated with adjuvant HAART and AP recorded least% body weight gain. Significant derangements in serum lipid profiles were exacerbated by treatment of with AP as LDL (increased p < 0.03, triglycerides (increased p < 0.03 with no change in total cholesterol levels. Adjuvant AP with HAART caused reduction in LDL (p < 0.05 and 0.03, increased HDL (p < 0.05 and TG (p < 0.05 and 0.001 for AP100 and AP200 doses respectively. Markers of liver injury assayed showed significant increase (p < 0.003, 0.001 in AST in AP alone as well as HAART+ vitamins C and E groups respectively. Adjuvant HAART and AP and vitamins C and E also caused significant declines in ALT and ALP levels. Serum GGT was not markedly altered. Disturbances in histopathology ranged from severe hepatocellular distortions, necrosis and massive fibrosis following co-treatment of HAART with vitamins C and E as well as HAART alone. These results warrant caution on the adjuvant use of AP with HAART by PLWHAs as implications for hepatocellular injuries are suspect with untoward cardiometabolic changes.

  5. Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance.

    Science.gov (United States)

    del Rincon, Juan-Pablo; Iida, Keiji; Gaylinn, Bruce D; McCurdy, Carrie E; Leitner, J Wayne; Barbour, Linda A; Kopchick, John J; Friedman, Jacob E; Draznin, Boris; Thorner, Michael O

    2007-06-01

    Phosphoinositide (PI) 3-kinase is involved in insulin-mediated effects on glucose uptake, lipid deposition, and adiponectin secretion from adipocytes. Genetic disruption of the p85alpha regulatory subunit of PI 3-kinase increases insulin sensitivity, whereas elevated p85alpha levels are associated with insulin resistance through PI 3-kinase-dependent and -independent mechanisms. Adipose tissue plays a critical role in the antagonistic effects of growth hormone (GH) on insulin actions on carbohydrate and lipid metabolism through changes in gene transcription. The objective of this study was to assess the role of the p85alpha subunit of PI 3-kinase and PI 3-kinase signaling in GH-mediated insulin resistance in adipose tissue. To do this, p85alpha mRNA and protein expression and insulin receptor substrate (IRS)-1-associated PI 3-kinase activity were measured in white adipose tissue (WAT) of mice with GH excess, deficiency, and sufficiency. Additional studies using 3T3-F442A cells were conducted to confirm direct effects of GH on free p85alpha protein abundance. We found that p85alpha expression 1) is decreased in WAT from mice with isolated GH deficiency, 2) is increased in WAT from mice with chronic GH excess, 3) is acutely upregulated in WAT from GH-deficient and -sufficient mice after GH administration, and 4) is directly upregulated by GH in 3T3-F442A adipocytes. The insulin-induced increase in PI 3-kinase activity was robust in mice with GH deficiency, but not in mice with GH excess. In conclusion, GH regulates p85alpha expression and PI 3-kinase activity in WAT and provides a potential explanation for 1) the insulin hypersensitivity and associated obesity and hyperadiponectinemia of GH-deficient mice and 2) the insulin resistance and associated reduced fat mass and hypoadiponectinemia of mice with GH excess.

  6. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients

    DEFF Research Database (Denmark)

    Vestergaard, H; Bjørbaek, C; Hansen, T

    1995-01-01

    -phosphate concentrations in muscle have been found in non-insulin-dependent diabetes mellitus (NIDDM) patients when examined during a hyperglycemic hyperinsulinemic clamp. These findings [correction of finding] are consistent with a defect in glucose transport and/or phosphorylation. In the present study...... comprising 29 NIDDM patients and 25 matched controls, we tested the hypothesis that HKII activity and gene expression are impaired in vastus lateralis muscle of NIDDM patients when examined in the fasting state. HKII activity in a supernatant of muscle extract accounted for 28 +/- 5% in NIDDM patients and 40...

  7. Predicting an asthma exacerbation in children 2 to 5 years of age

    DEFF Research Database (Denmark)

    Swern, Arlene S; Tozzi, Carol A; Knorr, Barbara;

    2008-01-01

    an exacerbation. Caregiver-reported information (daytime cough, breathing difficulties, limitation of activity, nighttime cough or awakening, daytime and nighttime beta2-agonist use) were analyzed using general estimating equations with an exchangeable within-subject log odds ratio regression structure...... to identify predictors of an exacerbation. RESULTS: Average symptom scores and beta2-agonist use increased significantly before exacerbation but at different rates. A combination of daytime cough and wheeze and nighttime beta2-agonist use 1 day before the exacerbation was identified as strongly predictive...... of an exacerbation. These methods predicted 149 (66.8%) of the exacerbations with a very low false-positive rate of 14.2%. CONCLUSIONS: No individual symptom was predictive of an imminent asthma exacerbation, but a combination of increased daytime cough, daytime wheeze, and nighttime beta2-agonist use 1 day before...

  8. Insulin induces a transcriptional activation of epiregulin, HB-EGF and amphiregulin, by a PI3K-dependent mechanism: identification of a specific insulin-responsive promoter element

    DEFF Research Database (Denmark)

    Ornskov, Dorthe; Nexo, Ebba; Sørensen, Boe Sandahl

    2007-01-01

    Previously we have shown that insulin-stimulation of RT4 bladder cancer cells leads to increased proliferation, which require HER1 activation, and is accompanied by increased mRNA expression of the EGF-ligands heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR), and epiregulin (EPI...

  9. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Directory of Open Access Journals (Sweden)

    Unger Thomas

    2010-10-01

    Full Text Available Abstract Background Inflammation of adipose tissue (AT has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD develop systemic insulin resistance (IR and glucose intolerance (GI associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.

  10. Antibiotics usefulness and choice in BPCO acute exacerbation

    Directory of Open Access Journals (Sweden)

    Bruno Tartaglino

    2005-10-01

    Full Text Available Although the debate on the role of bacterial infections and antibiotic treatment in AE-COPD remains open, there is evidence that the persistence of bacteria after acute exacerbation (residual bacterial colony influences the frequency and severity of subsequent acute exacerbation and that antibiotic treatment that induces faster and more complete eradication produces better clinical outcomes. New aspects must now be considered, given that COPD is a chronic illness subject to acute exacerbations of varying frequencies and that acute exacerbations correspond to functional respiratory deterioration. One of the parameters that is currently acquiring clinical relevance is the interval free of infection (IFI, the period that elapses between one acute exacerbation and the next, caused by bacterial infection. Another guiding concept in the choice of antibiotic treatment is that not all patients benefit in the same way; those requiring more aggressive treatment are most likely to be those with FEV1 < 50%, frequent exacerbations (> 3/year treated with antibiotics, relevant co-morbidity, under chronic steroid treatment, etc., for these patients it is recommended to administer antibiotics active on the three most common pathogens (in particular H. influenzae, considering the resistance acquired in recent years, and on Pseudomomias aeruginosa.

  11. Insulin Injection

    Science.gov (United States)

    ... or buttocks. Do not inject insulin into muscles, scars, or moles. Use a different site for each ... you are using insulin.Alcohol may cause a decrease in blood sugar. Ask your doctor about the ...

  12. Drosophila insulin and target of rapamycin (TOR pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo

    Directory of Open Access Journals (Sweden)

    Parisi Federica

    2011-09-01

    Full Text Available Abstract Background Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Results Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Conclusions Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At

  13. Exacerbations of asthma during pregnancy

    DEFF Research Database (Denmark)

    Ali, Z; Hansen, A V; Ulrik, C S

    2016-01-01

    that asthma exacerbations during pregnancy increase the risk of pre-eclampsia, gestational diabetes, placental abruption and placenta praevia. Furthermore, these women also have higher risk for breech presentation, haemorrhage, pulmonary embolism, caesarean delivery, maternal admission to the intensive care...... unit and longer postpartum hospital stay. Asthma has been associated with increased risk of intrauterine growth retardation, small-for-gestational age, low birth weight, infant hypoglycaemia and preterm birth, but more recent prospective studies have not revealed significant associations with regard...

  14. Treatment after a COPD exacerbation

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2013-07-01

    Full Text Available No abstract available. Article truncated at 150 words. A couple of years ago I was consulted about a patient at the Phoenix VA who had been admitted for the third time for a COPD exacerbation in two months. Each time the patient was treated with inhaled short-acting bronchodilators, corticosteroids and an antibiotic; rapidly improved; and was discharged after only one or two days in the hospital. The discharge medications were albuterol, ipratropium, and rapidly tapering doses of prednisone. Apparently, no consideration was given to adding long-acting beta agonists (LABA, long-acting muscarinic antagonists (LAMA, and/or inhaled corticosteroids (ICS. These later medications have been shown to reduce exacerbations in most studies (1,2. I was reminded of this incident by a recent article published by Melzer et al. in the Journal of Internal Medicine (3. The authors examined 2760 patients with exacerbations of COPD admitted to hospitals in the VA Northwest Health Network (VISN 20 to determine if a LABA and/or …

  15. Insulin Signalling: The Inside Story.

    Science.gov (United States)

    Posner, Barry I

    2017-02-01

    Insulin signalling begins with binding to its cell surface insulin receptor (IR), which is a tyrosine kinase. The insulin receptor kinase (IRK) is subsequently autophosphorylated and activated to tyrosine phosphorylate key cellular substrates that are essential for entraining the insulin response. Although IRK activation begins at the cell surface, it is maintained and augmented following internalization into the endosomal system (ENS). The peroxovanadium compounds (pVs) were discovered to activate the IRK in the absence of insulin and lead to a full insulin response. Thus, IRK activation is both necessary and sufficient for insulin signalling. Furthermore, this could be shown to occur with activation of only the endosomal IRK. The mechanism of pV action was shown to be the inhibition of IRK-associated phosphotyrosine phosphatases (PTPs). Our studies showed that the duration and intensity of insulin signalling are modulated within ENS by the recruitment of cellular substrates to ENS; intra-endosomal acidification, which promotes dissociation of insulin from the IRK; an endosomal acidic insulinase, which degrades intra-endosomal insulin; and IRK-associated PTPs, which dephosphorylate and, hence, deactivate the IRK. Therefore, the internalization of IRKs is central to insulin signalling and its regulation.

  16. Effects of Acute Pinitol Supplementation on Plasma Pinitol Concentration, Whole Body Glucose Tolerance, and Activation of the Skeletal Muscle Insulin Receptor in Older Humans

    OpenAIRE

    Stull, A. J.; Wood, K V; Thyfault, J. P.; Campbell, W.W.

    2009-01-01

    Limited research with rodents and humans suggests that oral ingestion of pinitol (3-O-methyl-d-chiro-inositol) might positively influence glucose tolerance. This double-blinded, placebo-controlled, and cross-over study assessed the effects of acute pinitol supplementation on plasma pinitol concentration, glucose tolerance, insulin sensitivity, and activation of the skeletal muscle insulin receptor. Fifteen older, nondiabetic subjects (62 ± 1 years, mean ± SEM) completed four, 1-day trials. Su...

  17. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    Science.gov (United States)

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity.

  18. Hypoglycemic activities of lyophilized powder of Gynura divaricata by improving antioxidant potential and insulin signaling in type 2 diabetic mice

    Directory of Open Access Journals (Sweden)

    Bing-Qing Xu

    2015-12-01

    Full Text Available Background: Diabetes mellitus is a serious disease affecting about 5% of people worldwide. Although several studies have indicated hypoglycemic activities of Gynura divaricata (GD, the mechanisms by which GD improves the symptoms of diabetes remain unclear. Objective: The aim of this study was to investigate the potential hypoglycemic effects of GD. Design: The leaves and stems of GD were prepared and lyophilized into a powder, which was added to the diet of mice with type 2 diabetes induced by a high-fat diet in combination with streptozotocin for 4 weeks. During this period, fasting blood glucose (FBG levels and body weight of mice were measured. In addition, at the end of the experiment, a series of assays was performed. Results: GD administration effectively alleviates insulin resistance and induces a decrease in FBG by 59.54% in 1.2% (L GD-treated diabetic group and 56.13% in 4.8% (H GD-treated diabetic group after 4 weeks, respectively, relative to diabetic model mice. The antioxidant capacity was improved by increasing the activities of glutathione peroxidase (GSH-Px and total superoxide dismutase (T-SOD by 64.87% and 53.42% in treatment group H, compared to diabetic model mice, while GD treatment induced a significant decrease in malondialdehyde (MDA level by 50% in treatment group L, compared to the level in diabetic model mice. Furthermore, glucose metabolism was ameliorated by the increased glycogen synthesis in the livers of diabetic mice. In addition, we also demonstrated that the messenger RNA (mRNA and protein expression levels of AKT, PI3K and PDK-1, which are involved in insulin signaling, were significantly increased. Conclusions: Oral administration of the GD-lyophilized powder has been effectively hypoglycemic, which is done by activating insulin signaling and improving antioxidant capacity in mice with type 2 diabetes.

  19. Accelerated extracellular matrix turnover during exacerbations of COPD

    DEFF Research Database (Denmark)

    Sand, Jannie M B; Knox, Alan J; Lange, Peter

    2015-01-01

    BACKGROUND: Exacerbations of chronic obstructive pulmonary disease (COPD) contribute significantly to disease progression. However, the effect on tissue structure and turnover is not well described. There is an urgent clinical need for biomarkers of disease activity associated with disease...... progression. Extracellular matrix (ECM) turnover reflects activity in tissues and consequently assessment of ECM turnover may serve as biomarkers of disease activity. We hypothesized that the turnover of lung ECM proteins were altered during exacerbations of COPD. METHODS: 69 patients with COPD hospitalised......, respectively), and degradation of elastin (ELM7 and EL-NE) and versican (VCANM). RESULTS: Circulating levels of C3M, C4M, C6M, ELM7, and EL-NE were elevated during an exacerbation of COPD as compared to follow-up (all P

  20. Glycoinsulins: dendritic sialyloligosaccharide-displaying insulins showing a prolonged blood-sugar-lowering activity.

    Science.gov (United States)

    Sato, Masaaki; Furuike, Tetsuya; Sadamoto, Reiko; Fujitani, Naoki; Nakahara, Taku; Niikura, Kenichi; Monde, Kenji; Kondo, Hirosato; Nishimura, Shin-Ichiro

    2004-11-03

    Mono-, di-, and trisialyloligosaccharides were introduced to mutant insulins through enzymatic reactions. Sugar chains were sialylated by alpha2,6-sialyltransferase (alpha2,6-SiaT) via an accessible glutamine residue at the N-terminus of the B-chain attached by transglutaminase (TGase). Sia2,6-di-LacNAc-Ins(B-F1Q) and Sia2,6-tri-LacNAc-Ins(B-F1Q), displaying two and three sialyl-N-acetyllactosamines, respectively, were administered to hyperglycemic mice. Both branched glycoinsulins showed prolonged glucose-lowering effects compared to native or lactose-carrying insulins, showing that sialic acid is important in obtaining a prolonged effect. Sia2,6-tri-LacNAc-Ins(B-F1Q), in particular, induced a significant delay in the recovery of glucose levels.

  1. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio.

    Science.gov (United States)

    Liu, Qingqing; Gauthier, Marie-Soleil; Sun, Lei; Ruderman, Neil; Lodish, Harvey

    2010-11-01

    Adiponectin activates AMP-activated protein kinase (AMPK) in adipocytes, but the underlying mechanism remains unclear. Here we tested the hypothesis that AMP, generated in activating fatty acids to their CoA derivatives, catalyzed by acyl-CoA synthetases, is involved in AMPK activation by adiponectin. Moreover, in adipocytes, insulin affects the subcellular localization of acyl-CoA synthetase FATP1. Thus, we also tested whether insulin activates AMPK in these cells and, if so, whether it activates through a similar mechanism. We examined these hypotheses by measuring the AMP/ATP ratio and AMPK activation on adiponectin and insulin stimulation and after knocking down acyl-CoA synthetases in adipocytes. We show that adiponectin activation of AMPK is accompanied by an ∼2-fold increase in the cellular AMP/ATP ratio. Moreover, FATP1 and Acsl1, the 2 major acyl-CoA synthetase isoforms in adipocytes, are essential for AMPK activation by adiponectin. We also show that after 40 min. insulin activated AMPK in adipocytes, which was coupled with a 5-fold increase in the cellular AMP/ATP ratio. Knockdown studies show that FATP1 and Acsl1 are required for these processes, as well as for stimulation of long-chain fatty acid uptake by adiponection and insulin. These studies demonstrate that a change in cellular energy state is associated with AMPK activation by both adiponectin and insulin, which requires the activity of FATP1 and Acsl1.

  2. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states.

    Science.gov (United States)

    Lee, Yun S; Kim, Woo S; Kim, Kang H; Yoon, Myung J; Cho, Hye J; Shen, Yun; Ye, Ji-Ming; Lee, Chul H; Oh, Won K; Kim, Chul T; Hohnen-Behrens, Cordula; Gosby, Alison; Kraegen, Edward W; James, David E; Kim, Jae B

    2006-08-01

    Berberine has been shown to have antidiabetic properties, although its mode of action is not known. Here, we have investigated the metabolic effects of berberine in two animal models of insulin resistance and in insulin-responsive cell lines. Berberine reduced body weight and caused a significant improvement in glucose tolerance without altering food intake in db/db mice. Similarly, berberine reduced body weight and plasma triglycerides and improved insulin action in high-fat-fed Wistar rats. Berberine downregulated the expression of genes involved in lipogenesis and upregulated those involved in energy expenditure in adipose tissue and muscle. Berberine treatment resulted in increased AMP-activated protein kinase (AMPK) activity in 3T3-L1 adipocytes and L6 myotubes, increased GLUT4 translocation in L6 cells in a phosphatidylinositol 3' kinase-independent manner, and reduced lipid accumulation in 3T3-L1 adipocytes. These findings suggest that berberine displays beneficial effects in the treatment of diabetes and obesity at least in part via stimulation of AMPK activity.

  3. Activity-sensitive signaling by muscle-derived insulin-like growth factors in the developing and regenerating neuromuscular system.

    Science.gov (United States)

    Caroni, P

    1993-08-27

    In the nervous system, activity-sensitive retrograde signaling pathways couple the status of postsynaptic activation to elimination of collaterals during development and collateral sprouting in the adult. This article presents evidence supporting the hypothesis that in the neuromuscular system, skeletal muscle fiber derived insulin-like growth factors play a central role in such signaling. This evidence includes (1) timing and activity-sensitive expression of IGFs in skeletal muscle fibers, (2) identification of an IGF- and activity-sensitive retrograde signaling pathway from developing muscle to motoneurons in the spinal cord, (3) demonstration that IGFs in the muscle are both sufficient and necessary to induce interstitial cell proliferation and intramuscular nerve sprouting in adult muscle.

  4. M19 modulates skeletal muscle differentiation and insulin secretion in pancreatic β-cells through modulation of respiratory chain activity.

    Directory of Open Access Journals (Sweden)

    Linda Cambier

    Full Text Available Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion.

  5. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase.

    Directory of Open Access Journals (Sweden)

    Victòria Ceperuelo-Mallafré

    Full Text Available Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes.ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR.ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG.ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.

  6. Mulberry (Morus alba L.) Fruit Extract Containing Anthocyanins Improves Glycemic Control and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic C57BL/Ksj-db/db Mice.

    Science.gov (United States)

    Choi, Kyung Ha; Lee, Hyun Ah; Park, Mi Hwa; Han, Ji-Sook

    2016-08-01

    The effect of mulberry (Morus alba L.) fruit extract (MFE) on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes was evaluated. C57BL/Ksj-diabetic db/db mice were divided into three groups: diabetic control, rosiglitazone, and MFE groups. Blood glucose, plasma insulin, and intraperitoneal glucose were measured, and an insulin tolerance test was performed after MFE supplementation in db/db mice. In addition, the protein levels of various targets of insulin signaling were measured by western blotting. The blood levels of glucose and HbA1c were significantly lower in the MFE-supplemented group than in the diabetic control group. Moreover, glucose and insulin tolerance tests showed that MFE treatment increased insulin sensitivity. The homeostatic index of insulin resistance significantly decreased in the MFE-supplemented group relative to the diabetic control group. MFE supplementation significantly stimulated the levels of phosphorylated (p)-AMP-activated protein kinase (pAMPK) and p-Akt substrate of 160 kDa (pAS160) and enhanced the level of plasma membrane-glucose transporter 4 (GLUT4) in skeletal muscles. Further, dietary MFE significantly increased pAMPK and decreased the levels of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. MFE may improve hyperglycemia and insulin sensitivity via activation of AMPK and AS160 in skeletal muscles and inhibition of gluconeogenesis in the liver.

  7. Insulin allergy.

    Science.gov (United States)

    Ghazavi, Mohammad K; Johnston, Graham A

    2011-01-01

    Insulin reactions occur rarely but are of tremendous clinical importance. The first was reported in 1922 as a callus reaction at the injection site of insufficiently purified bovine insulin. Porcine insulin was subsequently found to be less allergenic than bovine insulin. Increasingly pure insulins have decreased the risk of adverse reactions, and the production of recombinant insulin with the same amino sequence as human insulin saw a large decrease in adverse reactions. Currently, the prevalence of allergic reactions to insulin products appears to be approximately 2%, and less than one-third of these events have been considered related to the insulin itself. Other reactions occur due to the preservatives added to insulin, including zinc, protamine, and meta-cresol. Allergic reactions can be type I or immunoglobulin E-mediated, type III or Arthus, and type IV or delayed-type hypersensitivity reactions. Type I reactions are the most common and can, rarely, cause anaphylaxis. In contrast, type IV reactions can occur after a delay of several days. Investigations include skin prick testing, patch testing, intradermal testing, and occasionally, skin biopsy.

  8. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    Science.gov (United States)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  9. The adipose renin-angiotensin system modulates sysemic markers of insulin sensitivity activates the intrarenal renin-angiotensin system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suyeon [University of Tennessee, Knoxville (UTK); Soltani-Bejnood, Morvarid [University of Tennessee, Knoxville (UTK); Quignard-Boulange, Annie [Centre Biomedical des Cordeliers, Paris, France; Massiera, Florence [Centre de Biochimie, Nice, France; Teboul, Michele [Centre de Biochimie, Nice, France; Ailhaud, Gerard [Centre de Biochimie, Nice, France; Kim, Jung [University of Tennessee, Knoxville (UTK); Moustaid-Moussa, Naima [University of Tennessee, Knoxville (UTK); Voy, Brynn H [ORNL

    2006-07-01

    BACKGROUND: A growing body of data provides increasing evidence that the adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass. Beyond its paracrine actions within adipose tissue, adipocyte-derived angiotensin II (Ang II) may also impact systemic functions such as blood pressure and metabolism. METHODS AND RESULTS: We used a genetic approach to manipulate adipose RAS activity in mice and then study the consequences on metabolic parameters and on feedback regulation of the RAS. The models included deletion of the angiotensinogen (Agt) gene (Agt-KO), its expression solely in adipose tissue under the control of an adipocyte-specific promoter (aP2-Agt/ Agt-KO), and overexpression in adipose tissue of wild type mice (aP2-Agt). Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. Overexpression of Agt in adipose tissue resulted in increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also markedly elevated in kidney of aP2-Agt mice, suggesting that hypertension in these animals may be in part due to stimulation of the intrarenal RAS. CONCLUSIONS: Taken together, the results from this study demonstrate that alterations in adipose RAS activity significantly alter both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  10. Antihyperglycemic Activity of Eucalyptus tereticornis in Insulin-Resistant Cells and a Nutritional Model of Diabetic Mice

    Science.gov (United States)

    Guillén, Alis; Granados, Sergio; Rivas, Kevin Eduardo; Estrada, Omar; Echeverri, Luis Fernando; Balcázar, Norman

    2015-01-01

    Eucalyptus tereticornis is a plant used in traditional medicine to control diabetes, but this effect has not been proved scientifically. Here, we demonstrated through in vitro assays that E. tereticornis extracts increase glucose uptake and inhibit their production in insulin-resistant C2C12 and HepG2 cells, respectively. Furthermore, in a nutritional model using diabetic mice, the administration of ethyl acetate extract of E. tereticornis reduced fasting glycaemia, improved tolerance to glucose, and reduced resistance to insulin. Likewise, this extract had anti-inflammatory effects in adipose tissue when compared to control diabetic mice. Via bioguided assays and sequential purification of the crude extract, a triterpenoid-rich fraction from ethyl acetate extracts was shown to be responsible for the biological activity. Similarly, we identified the main compound responsible for the antihyperglycemic activity in this extract. This study shows that triterpenes found in E. tereticornis extracts act as hypoglycemic/antidiabetic compounds and contribute to the understanding of their use in traditional medicine. PMID:26366171

  11. Antihyperglycemic Activity of Eucalyptus tereticornis in Insulin-Resistant Cells and a Nutritional Model of Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Alis Guillén

    2015-01-01

    Full Text Available Eucalyptus tereticornis is a plant used in traditional medicine to control diabetes, but this effect has not been proved scientifically. Here, we demonstrated through in vitro assays that E. tereticornis extracts increase glucose uptake and inhibit their production in insulin-resistant C2C12 and HepG2 cells, respectively. Furthermore, in a nutritional model using diabetic mice, the administration of ethyl acetate extract of E. tereticornis reduced fasting glycaemia, improved tolerance to glucose, and reduced resistance to insulin. Likewise, this extract had anti-inflammatory effects in adipose tissue when compared to control diabetic mice. Via bioguided assays and sequential purification of the crude extract, a triterpenoid-rich fraction from ethyl acetate extracts was shown to be responsible for the biological activity. Similarly, we identified the main compound responsible for the antihyperglycemic activity in this extract. This study shows that triterpenes found in E. tereticornis extracts act as hypoglycemic/antidiabetic compounds and contribute to the understanding of their use in traditional medicine.

  12. Targeting AMP-activated protein kinase in adipocytes to modulate obesity-related adipokine production associated with insulin resistance and breast cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Grisouard Jean

    2011-07-01

    Full Text Available Abstract Background Adipokines, e.g. TNFα, IL-6 and leptin increase insulin resistance, and consequent hyperinsulinaemia influences breast cancer progression. Beside its mitogenic effects, insulin may influence adipokine production from adipocyte stromal cells and paracrine enhancement of breast cancer cell growth. In contrast, adiponectin, another adipokine is protective against breast cancer cell proliferation and insulin resistance. AMP-activated protein kinase (AMPK activity has been found decreased in visceral adipose tissue of insulin-resistant patients. Lipopolysaccharides (LPS link systemic inflammation to high fat diet-induced insulin resistance. Modulation of LPS-induced adipokine production by metformin and AMPK activation might represent an alternative way to treat both, insulin resistance and breast cancer. Methods Human preadipocytes obtained from surgical biopsies were expanded and differentiated in vitro into adipocytes, and incubated with siRNA targeting AMPKalpha1 (72 h, LPS (24 h, 100 μg/ml and/or metformin (24 h, 1 mM followed by mRNA extraction and analyses. Additionally, the supernatant of preadipocytes or derived-adipocytes in culture for 24 h was used as conditioned media to evaluate MCF-7 breast cancer cell proliferation. Results Conditioned media from preadipocyte-derived adipocytes, but not from undifferentiated preadipocytes, increased MCF-7 cell proliferation (p Conclusions Adipocyte-secreted factors enhance breast cancer cell proliferation, while AMPK and metformin improve the LPS-induced adipokine imbalance. Possibly, AMPK activation may provide a new way not only to improve the obesity-related adipokine profile and insulin resistance, but also to prevent obesity-related breast cancer development and progression.

  13. Torque and Muscle Activation Impairment Along With Insulin Resistance Are Associated With Falls in Women With Fibromyalgia.

    Science.gov (United States)

    Góes, Suelen M; Stefanello, Joice M F; Homann, Diogo; Lodovico, Angélica; Hubley-Kozey, Cheryl L; Rodacki, André L F

    2016-11-01

    Góes, SM, Stefanello, JMF, Homann, D, Lodovico, A, Hubley-Kozey, CL, and Rodacki, ALF. Torque and muscle activation impairment along with insulin resistance are associated with falls in women with fibromyalgia. J Strength Cond Res 30(11): 3155-3164, 2016-Fibromyalgia (FM) is a chronic pain condition associated with reduced muscle strength, which can lead to functional incapacity and higher risk of falls. The purpose of the study was to compare maximal ankle joint torque, muscle activation, and metabolic changes between women with and without FM. In addition, the relationship between those aspects and retrospectively reported falls in women with FM was determined. Twenty-nine middle-aged women with FM and 30 controls were recruited. Fall history, pain intensity, and pain threshold were assessed. Plasma glucose levels and insulin resistance (IR) were determined. Peak torque and rate of torque development (RTD) were calculated, and muscle activation was assessed from maximum isometric voluntary ankle dorsiflexion and plantar flexion contractions. In addition, voluntary muscle activation failure of the anterior tibialis muscle during maximal dorsiflexion was calculated. When compared to controls, women with FM reported higher number of retrospectively reported falls, exhibited higher IR, showed reduced plantar flexion and dorsiflexion RTD, had lower plantar flexion peak torque, and demonstrated more antagonist coactivation and higher muscle activation failure (p ≤ 0.05). Higher muscle activation failure was explained by glucose level and pain intensity (adj R = 0.28; p ≤ 0.05). Reduced plantar flexion and dorsiflexion peak torque explained 80% of retrospectively reported falls variance; also, high antagonist coactivation (odds ratio [OR] = 1.6; p ≤ 0.05) and high IR (OR = 1.8; p ≤ 0.05) increased the chance of falls in the FM group. A combination of metabolic factors and muscle function increased the odds of retrospectively reporting a fall in FM. Both aspects

  14. Regulation of gene expression by glucose in pancreatic beta -cells (MIN6) via insulin secretion and activation of phosphatidylinositol 3'-kinase.

    Science.gov (United States)

    da Silva Xavier, G; Varadi, A; Ainscow, E K; Rutter, G A

    2000-11-17

    Increases in glucose concentration control the transcription of the preproinsulin (PPI) gene and several other genes in the pancreatic islet beta-cell. Although recent data have demonstrated that secreted insulin may regulate the PPI gene (Leibiger, I. B., Leibiger, B., Moede, T., and Berggren, P. O. (1998) Mol. Cell 1, 933-938), the role of insulin in the control of other beta-cell genes is unexplored. To study the importance of insulin secretion in the regulation of the PPI and liver-type pyruvate kinase (L-PK) genes by glucose, we have used intranuclear microinjection of promoter-luciferase constructs into MIN6 beta-cells and photon-counting imaging. The activity of each promoter was increased either by 30 (versus 3) mm glucose or by 1-20 nm insulin. These effects of insulin were not due to enhanced glucose metabolism since culture with the hormone had no impact on the stimulation of increases in intracellular ATP concentration caused by 30 mm glucose. Furthermore, the islet-specific glucokinase promoter and cellular glucokinase immunoreactivity were unaffected by 30 mm glucose or 20 nm insulin. Inhibition of insulin secretion with the Ca(2+) channel blocker verapamil, the ATP-sensitive K(+) channel opener diazoxide, or the alpha(2)-adrenergic agonist clonidine blocked the effects of glucose on L-PK gene transcription. Similarly, 30 mm glucose failed to induce the promoter after inhibition of phosphatidylinositol 3'-kinase activity with LY294002 and the expression of dominant negative-acting phosphatidylinositol 3'-kinase (Deltap85) or the phosphoinositide 3'-phosphatase PTEN (phosphatase and tensin homologue). LY294002 also diminished the activation of the L-PK gene caused by inhibition of 5'-AMP-activated protein kinase with anti-5'-AMP-activated protein kinase alpha2 antibodies. Conversely, stimulation of insulin secretion with 13 mm KCl or 10 microm tolbutamide strongly activated the PPI and L-PK promoters. These data indicate that, in MIN6 beta

  15. Low-Frequency Electroacupuncture Improves Insulin Sensitivity in Obese Diabetic Mice through Activation of SIRT1/PGC-1α in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fengxia Liang

    2011-01-01

    Full Text Available Electroacupuncture (EA has been observed to reduce insulin resistance in obesity and diabetes. However, the biochemical mechanism underlying this effect remains unclear. This study investigated the effects of low-frequency EA on metabolic action in genetically obese and type 2 diabetic db/db mice. Nine-week-old db/m and db/db mice were randomly divided into four groups, namely, db/m, db/m + EA, db/db, and db/db + EA. db/m + EA and db/db + EA mice received 3-Hz electroacupuncture five times weekly for eight consecutive weeks. In db/db mice, EA tempered the increase in fasting blood glucose, food intake, and body mass and maintained insulin levels. In EA-treated db/db mice, improved insulin sensitivity was established through intraperitoneal insulin tolerance test. EA was likewise observed to decrease free fatty acid levels in db/db mice; it increased protein expression in skeletal muscle Sirtuin 1 (SIRT1 and induced gene expression of peroxisome proliferator-activated receptor coactivator (PGC-, nuclear respiratory factor 1 (NRF1, and acyl-CoA oxidase (ACOX. These results indicated that EA offers a beneficial effect on insulin resistance in obese and diabetic db/db mice, at least partly, via stimulation of SIRT1/PGC-, thus resulting in improved insulin signal.

  16. Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells.

    Science.gov (United States)

    Tunduguru, Ragadeepthi; Chiu, Tim T; Ramalingam, Latha; Elmendorf, Jeffrey S; Klip, Amira; Thurmond, Debbie C

    2014-11-15

    Skeletal muscle accounts for ∼ 80% of postprandial glucose clearance, and skeletal muscle glucose clearance is crucial for maintaining insulin sensitivity and euglycemia. Insulin-stimulated glucose clearance/uptake entails recruitment of glucose transporter 4 (GLUT4) to the plasma membrane (PM) in a process that requires cortical F-actin remodeling; this process is dysregulated in Type 2 Diabetes. Recent studies have implicated PAK1 as a required element in GLUT4 recruitment in mouse skeletal muscle in vivo, although its underlying mechanism of action and requirement in glucose uptake remains undetermined. Toward this, we have employed the PAK1 inhibitor, IPA3, in studies using L6-GLUT4-myc muscle cells. IPA3 fully ablated insulin-stimulated GLUT4 translocation to the PM, corroborating the observation of ablated insulin-stimulated GLUT4 accumulation in the PM of skeletal muscle from PAK1(-/-) knockout mice. IPA3-treatment also abolished insulin-stimulated glucose uptake into skeletal myotubes. Mechanistically, live-cell imaging of myoblasts expressing the F-actin biosensor LifeAct-GFP treated with IPA3 showed blunting of the normal insulin-induced cortical actin remodeling. This blunting was underpinned by a loss of normal insulin-stimulated cofilin dephosphorylation in IPA3-treated myoblasts. These findings expand upon the existing model of actin remodeling in glucose uptake, by placing insulin-stimulated PAK1 signaling as a required upstream step to facilitate actin remodeling and subsequent cofilin dephosphorylation. Active, dephosphorylated cofilin then provides the G-actin substrate for continued F-actin remodeling to facilitate GLUT4 vesicle translocation for glucose uptake into the skeletal muscle cell.

  17. Paternal Insulin-like Growth Factor 2 (Igf2 Regulates Stem Cell Activity During Adulthood

    Directory of Open Access Journals (Sweden)

    Vilma Barroca

    2017-02-01

    Full Text Available Insulin-like Growth Factor 2 (IGF2 belongs to the IGF/Insulin pathway, a highly conserved evolutionarily network that regulates growth, aging and lifespan. Igf2 is highly expressed in the embryo and in cancer cells. During mouse development, Igf2 is expressed in all sites where hematopoietic stem cells (HSC successively expand, then its expression drops at weaning and becomes undetectable when adult HSC have reached their niches in bones and start to self-renew. In the present study, we aim to discover the role of IGF2 during adulthood. We show that Igf2 is specifically expressed in adult HSC and we analyze HSC from adult mice deficient in Igf2 transcripts. We demonstrate that Igf2 deficiency avoids the age-related attrition of the HSC pool and that Igf2 is necessary for tissue homeostasis and regeneration. Our study reveals that the expression level of Igf2 is critical to maintain the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSC and their niche. Our data have major clinical interest for transplantation: understanding the changes in adult stem cells and their environments will improve the efficacy of regenerative medicine and impact health- and life-span.

  18. Sustained Action of Ceramide on the Insulin Signaling Pathway in Muscle Cells: IMPLICATION OF THE DOUBLE-STRANDED RNA-ACTIVATED PROTEIN KINASE.

    Science.gov (United States)

    Hage Hassan, Rima; Pacheco de Sousa, Ana Catarina; Mahfouz, Rana; Hainault, Isabelle; Blachnio-Zabielska, Agnieszka; Bourron, Olivier; Koskas, Fabien; Górski, Jan; Ferré, Pascal; Foufelle, Fabienne; Hajduch, Eric

    2016-02-01

    In vivo, ectopic accumulation of fatty acids in muscles leads to alterations in insulin signaling at both the IRS1 and Akt steps. However, in vitro treatments with saturated fatty acids or their derivative ceramide demonstrate an effect only at the Akt step. In this study, we adapted our experimental procedures to mimic the in vivo situation and show that the double-stranded RNA-dependent protein kinase (PKR) is involved in the long-term effects of saturated fatty acids on IRS1. C2C12 or human muscle cells were incubated with palmitate or directly with ceramide for short or long periods, and insulin signaling pathway activity was evaluated. PKR involvement was assessed through pharmacological and genetic studies. Short-term treatments of myotubes with palmitate, a ceramide precursor, or directly with ceramide induce an inhibition of Akt, whereas prolonged periods of treatment show an additive inhibition of insulin signaling through increased IRS1 serine 307 phosphorylation. PKR mRNA, protein, and phosphorylation are increased in insulin-resistant muscles. When PKR activity is reduced (siRNA or a pharmacological inhibitor), serine phosphorylation of IRS1 is reduced, and insulin-induced phosphorylation of Akt is improved. Finally, we show that JNK mediates ceramide-activated PKR inhibitory action on IRS1. Together, in the long term, our results show that ceramide acts at two distinct levels of the insulin signaling pathway (IRS1 and Akt). PKR, which is induced by both inflammation signals and ceramide, could play a major role in the development of insulin resistance in muscle cells.

  19. Effects of acute pinitol supplementation on plasma pinitol concentration, whole body glucose tolerance, and activation of the skeletal muscle insulin receptor in older humans.

    Science.gov (United States)

    Stull, A J; Wood, K V; Thyfault, J P; Campbell, W W

    2009-05-01

    Limited research with rodents and humans suggests that oral ingestion of pinitol (3- O-methyl- D- CHIRO-inositol) might positively influence glucose tolerance. This double-blinded, placebo-controlled, and cross-over study assessed the effects of acute pinitol supplementation on plasma pinitol concentration, glucose tolerance, insulin sensitivity, and activation of the skeletal muscle insulin receptor. Fifteen older, nondiabetic subjects (62+/-1 years, mean+/-SEM) completed four, 1-day trials. Subjects consumed a non-nutritive beverage with nothing (placebo) or 1,000 mg pinitol. Sixty minutes later, the subjects consumed beverages that were either energy- and carbohydrate-free (Sham) or contained 75 g glucose (OGTT). Blood samples were collected frequently over the 240-min testing period. For the OGTT trials only, vastus lateralis samples were obtained before the placebo and pinitol supplementation and 60 min after consuming the 75 g glucose beverage. Plasma pinitol concentration increased and was maintained for 240 min. Pinitol did not influence the fasting state and 180-min area under the curves for plasma glucose and insulin during the Sham and OGTT trials or hepatic (placebo 0.83+/-0.08; pinitol 0.80+/-0.08) and whole-body (placebo 6.10+/-0.54; pinitol 6.22+/-0.52) insulin sensitivities. Activation of the muscle insulin receptor was increased by 140% with glucose ingestion (Pre 0.62+/-0.12; Post 1.49+/-0.35), but pinitol did not influence this response. These results show that the pinitol supplement was quickly absorbed, but did not acutely influence indices of whole-body glucose tolerance and insulin sensitivity, or the activation of the skeletal muscle insulin receptor in older, nondiabetic humans.

  20. AMPK and insulin action

    DEFF Research Database (Denmark)

    Frøsig, Christian; Jensen, Thomas Elbenhardt; Jeppesen, Jacob;

    2013-01-01

    The 5'-AMP-activated protein kinase (AMPK) is considered "a metabolic master-switch" in skeletal muscle reducing ATP- consuming processes whilst stimulating ATP regeneration. Within recent years, AMPK has also been proposed as a potential target to attenuate insulin resistance, although the exact...... role of AMPK is not well understood. Here we hypothesized that mice lacking a2AMPK activity in muscle would be more susceptible to develop insulin resistance associated with ageing alone or in combination with high fat diet. Young (~4 month) or old (~18 month) wild type and muscle specific a2AMPK...... kinase-dead mice on chow diet as well as old mice on 17 weeks of high fat diet were studied for whole body glucose homeostasis (OGTT, ITT and HOMA-IR), insulin signaling and insulin-stimulated glucose uptake in muscle. We demonstrate that high fat diet in old mice results in impaired glucose homeostasis...

  1. Effect of insulin and metformin on methylation and glycolipid metabolism of peroxisome proliferator-activated receptor γcoactivator-1A of rat offspring with gestational diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Ai-Qin Song; Li-Rong Sun; Yan-Xia Zhao; Yan-Hua Gao; Lei Chen

    2016-01-01

    Objective: To discuss the effect of insulin and metformin on amethylation and glycolipid metabolism of peroxisome proliferator-activated receptor γ coactivator-1A (PPARGC1A) ofrat offspring with gestational diabetes mellitus (GDM). Methods: A total of 45 pregnant rats received the intraperitoneal injection of streptozotocin to establish the pregnant rat model of GDM. A total of 21 pregnant rats with GDM were randomly divided into three groups, with 7 rats in each group, namely the insulin group, metformin group and control group. Rats in the insulin group received the abdominal subcutaneous injection of 1 mL/kg recombinant insulin glargine at 18: 00 every day. Rats in the metformin group received the intragastric infusion of metformin hydrochloride at 18: 00 every day, with the first dose of 300 mg/kg. The doses of two groups were adjusted every 3 d to maintain the blood glucose level at 2.65-7.62 mmol/L. Rats in the control group received the intragastric infusion of 1 mL normal saline at 18:00 every day. After the natural delivery of pregnant rats, 10 offspring rats were randomly selected from each group. At birth, 4 wk and 8 wk after the birth of offspring rats, the weight of offspring rats was measured. The blood glucose level of offspring rats was measured at 4 wk and 8 wk, while the level of serum insulin, triglyceride and leptin was measured at 8 wk.Results: The weight of offspring rats at birth in the insulin group and metformin group was significantly lower than the one in the control group (P0.05). The fasting blood glucose and random blood glucose in the insulin group and metformin group at 4 wk and 8 wk were all significantly lower than ones in the control group (P0.05). The expression of PPARGC1A mRNA in the insulin group and metformin group was significantly higher and the methylation level of PPARGC1A was significantly lower than the one in the control group (P0.05). Insulin and leptin at 8 wk in the insulin group and metformin group were

  2. Transcriptome and Proteome Expressions Involved in Insulin Resistance in Muscle and Activated T-Lymphocytes of Patients with Type 2 Diabetes

    Institute of Scientific and Technical Information of China (English)

    Frankie; B.; Stentz; Abbas; E.; Kitabchi

    2007-01-01

    We analyzed the genes expressed (transcriptomes) and the proteins translated (pro- teomes) in muscle tissues and activated CD4+ and CD8+ T-lymphocytes (T-cells) of five Type 2 diabetes (T2DM) subjects using Affymetrix microarrays and mass spectrometry, and compared them with matched non-diabetic controls. Gene ex- pressions of insulin receptor (INSR), vitamin D receptor, insulin degrading enzyme, Akt, insulin receptor substrate-1 (IRS-1), IRS-2, glucose transporter 4 (GLUT4), and enzymes of the glycolytic pathway were decreased at least 50% in T2DM than in controls. However, there was greater than two-fold gene upregulation of plasma cell glycoprotein-1, tumor necrosis factor α (TNFα), and gluconeogenic enzymes in T2DM than in controls. The gene silencing for INSR or TNFα resulted in the inhibition or stimulation of GLUT4, respectively. Proteome profiles correspond- ing to molecular weights of the above translated transcriptomes showed different patterns of changes between T2DM and controls. Meanwhile, changes in tran- scriptomes and proteomes between muscle and activated T-cells of T2DM were comparable. Activated T-cells, analogous to muscle cells, expressed insulin sig- naling and glucose metabolism genes and gene products. In conclusion, T-cells and muscle in T2DM exhibited differences in expression of certain genes and gene products relative to non-diabetic controls. These alterations in transcriptomes and proteomes in T2DM may be involved in insulin resistance.

  3. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats

    DEFF Research Database (Denmark)

    Brandt, Nina; De Bock, Katrien; Richter, Erik

    2010-01-01

    Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptation are not known, and it is also not known whether exercise training can reverse it. Male Wistar rats were assigned...... to 12-wk intervention groups: chow-fed controls (CON), cafeteria diet (CAF), and cafeteria diet plus swimming exercise during the last 4 wk (CAF(TR)). CAF feeding led to increased body weight (16%, P ... was counteracted by training. In the perfused hindlimb, insulin-stimulated glucose transport in red gastrocnemius muscle was completely abolished in CAF and rescued by exercise training. Apart from a tendency toward an approximately 20% reduction in both basal and insulin-stimulated Akt Ser(473) phosphorylation (P...

  4. The Adipose Renin-Angiotensin System Modulates Systemic Markers of Insulin Sensitivity and Activates the Intrarenal Renin-Angiotensin System

    Directory of Open Access Journals (Sweden)

    Suyeon Kim

    2006-01-01

    Full Text Available Background. The adipose tissue renin-angiotensin system (RAS contributes to regulation of fat mass and may also impact systemic functions such as blood pressure and metabolism. Methods and results. A panel of mouse models including mice lacking angiotensinogen, Agt (Agt-KO, mice expressing Agt solely in adipose tissue (aP2-Agt/Agt-KO, and mice overexpressing Agt in adipose tissue (aP2-Agt was studied. Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin, and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. aP2-Agt mice exhibited increased adiposity and plasma leptin and insulin levels compared to wild type (WT controls. Angiotensinogen and type I Ang II receptor protein levels were also elevated in kidney of aP2-Agt mice. Conclusion. These findings demonstrate that alterations in adipose RAS activity significantly impact both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  5. Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion.

    Science.gov (United States)

    Munhoz, Carolina Demarchi; Lepsch, Lucilia B; Kawamoto, Elisa Mitiko; Malta, Marília Brinati; Lima, Larissa de Sá; Avellar, Maria Christina Werneck; Sapolsky, Robert M; Scavone, Cristoforo

    2006-04-01

    Although the anti-inflammatory actions of glucocorticoids (GCs) are well established in the periphery, these stress hormones can increase inflammation under some circumstances in the brain. The transcription factor nuclear factor-kappaB (NF-kappaB), which is inhibited by GCs, regulates numerous genes central to inflammation. In this study, the effects of stress, GCs, and NMDA receptors on lipopolysaccharide (LPS)-induced activation of NF-kappaB in the brain were investigated. One day after chronic unpredictable stress (CUS), nonstressed and CUS rats were treated with saline or LPS and killed 2 h later. CUS potentiated the increase in LPS-induced activation of NF-kappaB in frontal cortex and hippocampus but not in the hypothalamus. This stress effect was blocked by pretreatment of rats with RU-486, an antagonist of the GC receptor. MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate], an NMDA receptor antagonist, also reduced the effect of LPS in all three brain regions. However, the combined antagonism of both GC and NMDA receptors produced no further reduction in NF-kappaB activation when compared with the effect of each treatment alone. Our results indicate that stress, via GC secretion, can increase LPS-induced NF-kappaB activation in the frontal cortex and hippocampus, agreeing with a growing literature demonstrating proinflammatory effects of GCs.

  6. The correlation between CYP2D6 isoenzyme activity and haloperidol efficacy and safety profile in patients with alcohol addiction during the exacerbation of the addiction

    Science.gov (United States)

    Sychev, Dmitry Alekseevich; Zastrozhin, Mikhail Sergeevich; Smirnov, Valery Valerieevich; Grishina, Elena Anatolievna; Savchenko, Ludmila Mikhailovna; Bryun, Evgeny Alekseevich

    2016-01-01

    Background Today, it is proved that isoenzymes CYP2D6 and CYP3A4 are involved in metabolism of haloperidol. In our previous investigation, we found a medium correlation between the efficacy and safety of haloperidol and the activity of CYP3A4 in patients with alcohol abuse. Objective The aim of this study was to evaluate the correlation between the activity of CYP2D6 and the efficacy and safety of haloperidol in patients with diagnosed alcohol abuse. Methods The study involved 70 men (average age: 40.83±9.92 years) with alcohol addiction. A series of psychometric scales were used in the research. The activity of CYP2D6 was evaluated by high-performance liquid chromatography with mass spectrometry using the ratio of 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline to pinoline. Genotyping of CYP2D6 (1846G>A) was performed using real-time polymerase chain reaction. Results According to results of correlation analysis, statistically significant values of Spearman correlation coefficient (rs) between the activity of CYP2D6 and the difference of points in psychometric scale were obtained in patients receiving haloperidol in injection form (Sheehan Clinical Anxiety Rating Scale =−0.721 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.692 [P<0.001]) and in those receiving haloperidol in tablet form (Covi Anxiety Scale =−0.851 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.797 [P<0.001]). Conclusion This study demonstrated the correlations between the activity of CYP2D6 isozyme and the efficacy and safety of haloperidol in patients with alcohol addiction. PMID:27695358

  7. The Drosophila insulin-degrading enzyme restricts growth by modulating the PI3K pathway in a cell-autonomous manner.

    Science.gov (United States)

    Galagovsky, Diego; Katz, Maximiliano J; Acevedo, Julieta M; Sorianello, Eleonora; Glavic, Alvaro; Wappner, Pablo

    2014-03-01

    Mammalian insulin-degrading enzyme (IDE) cleaves insulin, among other peptidic substrates, but its function in insulin signaling is elusive. We use the Drosophila system to define the function of IDE in the regulation of growth and metabolism. We find that either loss or gain of function of Drosophila IDE (dIDE) can restrict growth in a cell-autonomous manner by affecting both cell size and cell number. dIDE can modulate Drosophila insulin-like peptide 2 levels, thereby restricting activation of the phosphatidylinositol-3-phosphate kinase pathway and promoting activation of Drosophila forkhead box, subgroup O transcription factor. Larvae reared in high sucrose exhibit delayed developmental timing due to insulin resistance. We find that dIDE loss of function exacerbates this phenotype and that mutants display increased levels of circulating sugar, along with augmented expression of a lipid biosynthesis marker. We propose that dIDE is a modulator of insulin signaling and that its loss of function favors insulin resistance, a hallmark of diabetes mellitus type II.

  8. Serum and glucocorticoid-regulated kinase Sgk1 inhibits insulin-dependent activation of phosphomannomutase 2 in transfected COS-7 cells.

    Science.gov (United States)

    Menniti, Miranda; Iuliano, Rodolfo; Amato, Rosario; Boito, Rosalia; Corea, Monica; Le Pera, Ilaria; Gulletta, Elio; Fuiano, Giorgio; Perrotti, Nicola

    2005-01-01

    Serum- and glucocorticoid-regulated kinase (Sgk1) is considered to be an essential convergence point for peptide and steroid regulation of ENaC-mediated sodium transport. We tried to identify molecular partners of Sgk1 by yeast two-hybrid screening. Yeast two-hybrid screening showed a specific interaction between Sgk1 and phosphomannomutase (PMM)2, the latter of which is an enzyme involved in the regulation of glycoprotein biosynthesis. The interaction was confirmed in intact cells by coimmunoprecipitation and colocalization detected using confocal microscopy. We were then able to demonstrate that Sgk1 phosphorylated PMM2 in an in vitro assay. In addition, we found that the enzymatic activity of PMM2 is upregulated by insulin treatment and that Sgk1 completely inhibits PMM2 activity both in the absence and in the presence of insulin stimulation. These data provide evidence suggesting that Sgk1 may modulate insulin action on the cotranslational glycosylation of glycoproteins.

  9. The insulin secretory action of novel polycyclic guanidines: discovery through open innovation phenotypic screening, and exploration of structure-activity relationships.

    Science.gov (United States)

    Shaghafi, Michael B; Barrett, David G; Willard, Francis S; Overman, Larry E

    2014-02-15

    We report the discovery of the glucose-dependent insulin secretogogue activity of a novel class of polycyclic guanidines through phenotypic screening as part of the Lilly Open Innovation Drug Discovery platform. Three compounds from the University of California, Irvine, 1-3, having the 3-arylhexahydropyrrolo[1,2-c]pyrimidin-1-amine scaffold acted as insulin secretagogues under high, but not low, glucose conditions. Exploration of the structure-activity relationship around the scaffold demonstrated the key role of the guanidine moiety, as well as the importance of two lipophilic regions, and led to the identification of 9h, which stimulated insulin secretion in isolated rat pancreatic islets in a glucose-dependent manner.

  10. Insulin and insulin mutants stimulate glucose uptake in rat adipocytes

    Institute of Scientific and Technical Information of China (English)

    姚矢音; 张新堂; 许英镐; 张信娜; 朱尚权

    1999-01-01

    A simple method to determine the in vitro biological activity of insulin by measuring glucose uptake in the rat adipocytes is presented here. In the presence of insulin, the glucose uptake is 5-6 times more than the basal control. And the uptake of D-[3-3H]-glucose is linear as the logarithm of insulin concentration from 0.2 μg/L to 1.0 μg/L. Glucose and 3-O-methyl-glucose inhibit D-[3-3H]-glucose uptake into adipocytes. By this method, the in vitro biological activity of [B2-Lys]-insulin and [B3-Lys]-insulin was measured to be 61.6% and 154% respectively, relative to that of insulin.

  11. Linoleic Acid Activates GPR40/FFA1 and Phospholipase C to Increase [Ca2+]i Release and Insulin Secretion in Islet Beta-Cells

    Institute of Scientific and Technical Information of China (English)

    Yi-jun Zhou; Yu-ling Song; Hui Zhou; Yan Li

    2012-01-01

    To elucidate GPR40/FFA 1 and its downstream signaling pathways in regulating insulin secretion.Methods GPR40/FFA 1 expression was detected by immunofluorescence imaging.We employed linoleic acid (LA),a free fatty acid that has a high affinity to the rat GPR40,and examined its effect on cytosolic free calcium concentration ([Ca2+]i) in primary rat β-cells by Fluo-3 intensity under confocal microscopy recording.Downregulation of GPR40/FFA1 expression by antisense oligonucleotides was performed in pancreatic β-cells,and insulin secretion was assessed by enzyme-linked immunosorbent assay.Results LA acutely stimulated insulin secretion from primary cultured rat pancreatic islets.LA induced significant increase of [Ca2+]i in the presence of 5.6 mmol/L and 11.1 mmol/L glucose,which was reflected by increased Fluo-3 intensity under confocal microscopy recording.LA-stimulated increase in [Ca2+]i and insulin secretion were blocked by inhibition of GPR40/FFA1 expression in β-cells after GPR40/FFA1-specific antisense treatment.In addition,the inhibition of phospholipase C (PLC) activity by U73122,PLC inhibitor,also markedly inhibited the LA-induced [Ca2+]i increase.Conclusion LA activates GPR40/FFA1 and PLC to stimulate Ca2+ release,resulting in an increase in [Ca2+]i and insulin secretion in rat islet β-cells.

  12. The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Han Yunkyung

    2012-09-01

    Full Text Available Abstract Background Type 2 diabetes (T2D is a complex metabolic disorder characterized by insulin resistance and hyperglycemia. Peroxisome proliferator-activated receptor gamma (PPARγ is a key transcription factor and plays an important role in the regulation of genes involved in adipogenic differentiation, glucose metabolism and insulin signal transduction. Methods In this study, the effects of the root extract of Atractylodes japonica Koidzumi (Atractylodis Rhizoma Alba, ARA on the differentiation of 3T3-L1 preadipocytes and the possible mechanism of glucose transport were investigated. 3T3-L1 cells were cultured with insulin and ARA extract. Results In 3T3-L1 cells, ARA extract significantly enhanced adipogenic differentiation and upregulated the expression of PPARγ genes and protein in a dose-dependent manner. ARA also promoted glucose transport by increasing the glucose transporter 4 (GLUT-4, phosphatidylinositol 3-kinase (PI3K and insulin receptor substrates-1 (IRS-1 levels. Conclusion Our results suggest that ARA extract may be an attractive therapeutic agent for managing T2D via promoting the differentiation of adipocytes with the upregulation of PPARγ levels and the activation of the insulin signaling pathway.

  13. Assessment of Aerobic Exercise Adverse Effects during COPD Exacerbation Hospitalization

    Directory of Open Access Journals (Sweden)

    Caroline Knaut

    2017-01-01

    Full Text Available Introduction. Aerobic exercise performed after hospital discharge for exacerbated COPD patients is already recommended to improve respiratory and skeletal muscle strength, increase tolerance to activity, and reduce the sensation of dyspnea. Previous studies have shown that anaerobic activity can clinically benefit patients hospitalized with exacerbated COPD. However, there is little information on the feasibility and safety of aerobic physical activity performed by patients with exacerbated COPD during hospitalization. Objective. To evaluate the effects of aerobic exercise on vital signs in hospitalized patients with exacerbated COPD. Patients and Methods. Eleven COPD patients (63% female, FEV1: 34.2 ± 13.9% and age: 65 ± 11 years agreed to participate. Aerobic exercise was initiated 72 hours after admission on a treadmill; speed was obtained from the distance covered in a 6-minute walk test (6MWT. Vital signs were assessed before and after exercise. Results. During the activity systolic blood pressure increased from 125.2 ± 13.6 to 135.8 ± 15.0 mmHg (p=0.004 and respiratory rate from 20.9 ± 4.4 to 24.2 ± 4.5 rpm (p=0.008 and pulse oximetry (SpO2 decreased from 93.8 ± 2.3 to 88.5 ± 5.7% (p<0.001. Aerobic activity was considered intense, heart rate ranged from 99.2 ± 11.5 to 119.1 ± 11.1 bpm at the end of exercise (p=0.092, and patients reached on average 76% of maximum heart rate. Conclusion. Aerobic exercise conducted after 72 hours of hospitalization in patients with exacerbated COPD appears to be safe.

  14. Synthesis, structure-activity relationships and brain uptake of a novel series of benzopyran inhibitors of insulin-regulated aminopeptidase.

    Science.gov (United States)

    Mountford, Simon J; Albiston, Anthony L; Charman, William N; Ng, Leelee; Holien, Jessica K; Parker, Michael W; Nicolazzo, Joseph A; Thompson, Philip E; Chai, Siew Yeen

    2014-02-27

    Peptide inhibitors of insulin-regulated aminopeptidase (IRAP) enhance fear avoidance and spatial memory and accelerate spatial learning in a number of memory paradigms. Using a virtual screening approach, a series of benzopyran compounds was identified that inhibited the catalytic activity of IRAP, ultimately resulting in the identification of potent and specific inhibitors. The present study describes the medicinal chemistry campaign that led to the development of the lead candidate, 3, highlighting the key structural features considered as critical for binding. Furthermore, the in vivo pharmacokinetics and brain uptake of compounds (1 and 3) were assessed in rats and were complemented with in vitro human and rat microsomal stability studies. Following intravenous administration to rodents, 3 exhibits brain exposure, albeit it is rapidly converted to 1, a compound which also exhibits potent inhibition of IRAP.

  15. A defect in the activity of Delta6 and Delta5 desaturases may be a factor predisposing to the development of insulin resistance syndrome.

    Science.gov (United States)

    Das, Undurti N

    2005-05-01

    GLUT-4 (glucose transporter) receptor, tumor necrosis factor-alpha (TNF-alpha), interleukins-6 (IL-6), daf-genes and PPARs (peroxisomal proliferation activator receptors) play a role in the development of insulin resistance syndrome and associated conditions. But, the exact interaction between these molecules/factors and the mechanism(s) by which they produce insulin resistance syndrome is not clear. I propose that a defect in the activity of the enzymes Delta6 and Delta5 desaturases that are essential for the formation of long chain metabolites of essential fatty acids, linoleic acid and alpha-linolenic acid, is a factor in the development of insulin resistance syndrome. Long chain polyunsaturated fatty acids (LCPUFAs) increase cell membrane fluidity and enhance the number of insulin receptors and the affinity of insulin to its receptors; suppress TNF-alpha, IL-6, macrophage migration inhibitory factor (MIF) and leptin synthesis; increase the number of GLUT-4 receptors, serve as endogenous ligands of PPARs, modify lipolysis, and regulate the balance between pro- and anti-oxidants, and thus, play a critical role in the pathogenesis of insulin resistance. In the nematode, Caenorhabditis elegans, the protein encoded by daf-2 is 35% identical to the human insulin receptor; daf-7 codes a transforming growth factor-beta (TGF-beta) type signal and daf-16 enhances superoxide dismutase (SOD) expression. Melatonin has anti-oxidant actions similar to daf-16, TGF-beta and SOD. Calorie restriction enhances the activity of Delta6 and Delta5 desaturases, melatonin production, decreases daf-2 signaling, free radical generation, and augments anti-oxidant defenses that may explain the beneficial effect of diet control in the management of obesity, insulin resistance, and type II diabetes mellitus. These evidences suggest that the activities of Delta6 and Delta5 enzymes play a critical role in the expression and regulation of GLUT-4, TNF-alpha, IL-6, MIF, daf-genes, melatonin, and

  16. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    Science.gov (United States)

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.

  17. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Mirko Lanuti

    Full Text Available The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.

  18. Epigallocatechin gallate exacerbates fluoride-induced oxidative stress mediated testicular toxicity in rats through the activation of Nrf2 signaling pathway

    Institute of Scientific and Technical Information of China (English)

    S. Thangapandiyan; S. Miltonprabu

    2015-01-01

    Objective:To explore the ameliorative potential of epigallocatechin gallate (EGCG) by evaluating markers of oxidative stress, apoptosis, and inflammation and antioxidant competence in Fl intoxicated rats.Methods:The animals were divided in to four groups that is control, EGCG alone, NaF, and EGCG with NaF. Group III animal were exposed to Fl as sodium Fluoride (NaF) (25 mg/kg BW) for 4 weeks. After the completion of the treatment, the testis tissues has been removed and used for the experimental observations.Results:Pre-administration of EGCG to Fl intoxicated rats showed a significant normalization in the levels of steroidogenic enzymes, testosterone, sperm functions, oxidative stress markers and antioxidant status. The altered levels of proinflammatory cytokines and apoptotic markers were also relapsed in close proximity to control. In addition, EGCG significantly improved antioxidant status and reduced the oxidative stress and pathological changes in testes. The mRNA and protein analysis also substantiated that EGCG pre-treatment markedly enhanced the expression of Nrf2 and its target genes HO-1, NQO1 andγGCS and suppressed the expression of Keap1 in testis.Conclusion: Altogether, our findings supports that EGCG attenuates Fl toxicity in testis through Nrf2 activation.

  19. Exacerbating factors of itch in atopic dermatitis

    Directory of Open Access Journals (Sweden)

    Hiroyuki Murota

    2017-01-01

    Full Text Available Atopic dermatitis (AD displays different clinical symptoms, progress, and response to treatment during early infancy and after childhood. After the childhood period, itch appears first, followed by formation of well-circumscribed plaque or polymorphous dermatoses at the same site. When accompanied with dermatitis and dry skin, treatment of skin lesions should be prioritized. When itch appears first, disease history, such as causes and time of appearance of itch should be obtained by history taking. In many cases, itch increases in the evening when the sympathetic nerve activity decreased. Treatment is provided considering that hypersensitivity to various external stimulations can cause itch. Heat and sweating are thought to especially exacerbate itch. Factors causing itch, such as cytokines and chemical messengers, also induce itch mainly by stimulating the nerve. Scratching further aggravates dermatitis. Skin hypersensibility, where other non-itch senses, such as pain and heat, are felt as itch, sometimes occurs in AD. Abnormal elongation of the sensory nerve into the epidermis, as well as sensitizing of the peripheral/central nerve, are possible causes of hypersensitivity, leading to itch. To control itch induced by environmental factors such as heat, treatment for dermatitis is given priority. In the background of itch exacerbated by sweating, attention should be given to the negative impact of sweat on skin homeostasis due to 1 leaving excess sweat on the skin, and 2 heat retention due to insufficient sweating. Excess sweat on the skin should be properly wiped off, and dermatitis should be controlled so that appropriate amount of sweat can be produced. Not only stimulation from the skin surface, but also visual and auditory stimulation can induce new itch. This “contagious itch” can be notably observed in patients with AD. This article reviews and introduces causes of aggravation of itch and information regarding how to cope with such

  20. Clinical characteristics of eosinophilic asthma exacerbations

    DEFF Research Database (Denmark)

    Bjerregaard, Asger; Laing, Ingrid A; Backer, Vibeke;

    2016-01-01

    BACKGROUND AND OBJECTIVE: Airway eosinophilia is associated with an increased risk of asthma exacerbations; however, the impact on the severity of exacerbations is largely unknown. We describe the sputum inflammatory phenotype during asthma exacerbation and correlate it with severity and treatment...... response. METHODS: Patients presenting to hospital with an asthma exacerbation were recruited during a 12-month period and followed up after 4 weeks. Induced sputum was collected at both visits. Patients underwent spirometry, arterial blood gas analysis, fractional exhaled nitric oxide analysis, white...... with a sensitivity of 86% and a specificity of 70%. CONCLUSION: Our findings suggest that eosinophilic asthma exacerbations may be clinically more severe than NEEs, supporting the identification of these higher risk patients for specific interventions....

  1. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose.

    Science.gov (United States)

    Niu, Mengmeng; Lu, Yi; Hovgaard, Lars; Guan, Peipei; Tan, Yanan; Lian, Ruyue; Qi, Jianping; Wu, Wei

    2012-06-01

    Oral delivery of protein or polypeptide drugs remains a challenge due to gastric and enzymatic degradation as well as poor permeation across the intestinal epithelia. In this study, liposomes containing bile salts were developed as a new oral insulin delivery system. The primary goal was to investigate the effect of cholate type, particle size and dosage of the liposomes on the hypoglycemic activity and oral bioavailability. Liposomes containing sodium glycocholate (SGC), sodium taurocholate (STC) or sodium deoxycholate (SDC) were prepared by a reversed-phase evaporation method. After oral administration, all liposomes elicited a certain degree of hypoglycemic effect in parallel with an increase in blood insulin level. The highest oral bioavailability of approximately 8.5% and 11.0% could be observed with subcutaneous insulin as reference for SGC-liposomes in non-diabetic and diabetic rats, respectively. Insulin-loaded liposomes showed slower and sustained action over a period of over 20 h with peak time around 8-12h. SGC-liposomes showed higher oral bioavailability than liposomes containing STC or SDC and conventional liposomes. The hypoglycemic effect was size-dependent with the highest at 150 nm or 400 nm and was proportionally correlated to the administered dose. The results supported the hypothesis of insulin absorption as intact liposomes.

  2. Frequency and perceived burden of diabetes self-management activities in employees with insulin-treated diabetes : relationships with health outcomes

    NARCIS (Netherlands)

    Weijman, [No Value; Ros, WJG; Rutten, GEHM; Schaufeli, WB; Schabracq, MJ; Winnubst, JAM

    2005-01-01

    We explored the relationship between frequency and perceived burden of different self-management activities and HbA(1c)%, symptoms of diabetes, fatigue, depression, and quality of life in 292 employees between 30 and 60 years of age with insulin-treated diabetes. Participants completed questionnaire

  3. Mannose-binding dietary lectins induce adipogenic differentiation of the marrow-derived mesenchymal cells via an active insulin-like signaling mechanism.

    Science.gov (United States)

    Bajaj, Manmohan; Hinge, Ashwini; Limaye, Lalita S; Gupta, Rajesh Kumar; Surolia, Avadhesha; Kale, Vaijayanti P

    2011-04-01

    We have recently demonstrated that the mannose-binding lectins, namely banana lectin (BL) and garlic lectin (GL), interacted with the insulin receptors on M210B4 cells--an established mesenchymal cell line of murine marrow origin--and initiate mitogen-activated protein kinase kinase (MEK)-dependent extracellular signal-regulated kinase (ERK) signaling in them. In this study, we show that this lectin-mediated active ERK signaling culminates into an adipogenic differentiation of these cells. Gene expression studies indicate that the effect takes place at the transcriptional level. Experiments carried out with pharmacological inhibitors show that MEK-dependent ERK and phosphatidylinositol 3-kinase-dependent AKT pathways are positive regulators of the lectin- and insulin-mediated adipogenic differentiation, while stress-activated kinase/c-jun N-terminal kinase pathway acts as a negative one. Since both lectins could efficiently substitute for insulin in the standard adipogenic induction medium, they may perhaps serve as molecular tools to study the mechanistic aspects of the adipogenic process that are independent of cell proliferation. Our study clearly demonstrates the ability of BL and GL to activate insulin-like signaling in the mesenchymal cells in vitro leading to their adipocytic differentiation. The dietary origin of these lectins underscores an urgent need to examine their in vivo effects on tissue homeostasis.

  4. Highly stable hexacoordinated nonoxidovanadium(IV) complexes of sterically constrained ligands: syntheses, structure, and study of antiproliferative and insulin mimetic activity.

    Science.gov (United States)

    Dash, Subhashree P; Pasayat, Sagarika; Bhakat, Saswati; Roy, Satabdi; Dinda, Rupam; Tiekink, Edward R T; Mukhopadhyay, Subhadip; Bhutia, Sujit K; Hardikar, Manasi R; Joshi, Bimba N; Patil, Yogesh P; Nethaji, M

    2013-12-16

    Three highly stable, hexacoordinated nonoxidovanadium(IV), V(IV)(L)2, complexes (1-3) have been isolated and structurally characterized with tridentate aroylhydrazonates containing ONO donor atoms. All the complexes are stable in the open air in the solid state as well as in solution, a phenomenon rarely observed in nonoxidovanadium(IV) complexes. The complexes have good solubility in organic solvents, permitting electrochemical and various spectroscopic investigations. The existence of nonoxidovanadium(IV) complexes was confirmed by elemental analysis, ESI mass spectroscopy, cyclic voltammetry, EPR, and magnetic susceptibility measurements. X-ray crystallography showed the N3O3 donor set to define a trigonal prismatic geometry in each case. All the complexes show in vitro insulin mimetic activity against insulin responsive L6 myoblast cells, with complex 3 being the most potent, which is comparable to insulin at the complex concentration of 4 μM, while the others have moderate insulin mimetic activity. In addition, the in vitro antiproliferative activity of complexes 1-3 against the HeLa cell line was assayed. The cytotoxicity of the complexes is affected by the various functional groups attached to the bezoylhydrazone derivative and 2 showed considerable antiproliferative activity compared to the most commonly used chemotherapeutic drugs.

  5. Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice

    NARCIS (Netherlands)

    Grefhorst, A; van Dijk, TH; Hammer, A; van der Sluijs, FH; Havinga, R; Havekes, LM; Romijn, JA; Groot, PH; Reijngoud, DJ; Kuipers, F

    2005-01-01

    Liver X receptor (LXR) agonists have been proposed to act as anti-diabetic drugs. However, pharmacological LXR activation leads to severe hepatic steatosis, a condition usually associated with insulin resistance and type 2 diabetes mellitus. To address this apparent contradiction, lean and ob/ob mic

  6. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Hyo-Sup Kim

    Full Text Available BACKGROUND: It has been reported that peroxisome proliferator-activated receptor (PPAR-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. METHODS: Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. RESULTS: PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. CONCLUSION: These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.

  7. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  8. Novel Platinum(II) compounds modulate insulin-degrading enzyme activity and induce cell death in neuroblastoma cells.

    Science.gov (United States)

    Tundo, Grazia R; Sbardella, Diego; De Pascali, Sandra A; Ciaccio, Chiara; Coletta, Massimo; Fanizzi, Francesco P; Marini, Stefano

    2015-01-01

    The properties of three novel Platinum(II) compounds toward the insulin-degrading enzyme (IDE) enzymatic activity have been investigated under physiological conditions. The rationale of this study resides on previous observations that these compounds, specifically designed and synthesized by some of us, induce apoptosis in various cancer cell lines, whereas IDE has been proposed as a putative oncogene involved in neuroblastoma onset and progression. Two of these compounds, namely [PtCl(O,O'-acac)(DMSO)] and [Pt(O,O'-acac)(γ-acac)(DMS)], display a modulatory behavior, wherefore activation or inhibition of IDE activity occurs over different concentration ranges (suggesting the existence of two binding sites on the enzyme). On the other hand, [Pt(O,O'-acac)(γ-acac)(DMSO)] shows a typical competitive inhibitory pattern, characterized by a meaningful affinity constant (K i  = 0.95 ± 0.21 μM). Although all three compounds induce cell death in neuroblastoma SHSY5Y cells at concentrations exceeding 2 μM, the two modulators facilitate cells' proliferation at concentrations ≤ 1.5 μM, whereas the competitive inhibitor [Pt(O,O'-acac)(γ-acac)(DMSO)] only shows a pro-apoptotic activity at all investigated concentrations. These features render the [Pt(O,O'-acac)(γ-acac)(DMSO)] a promising "lead compound" for the synthesis of IDE-specific inhibitors (not characterized yet) with therapeutic potentiality.

  9. Dissociation between skeletal muscle inhibitor-{kappa}B kinase/nuclear factor-{kappa}B pathway activity and insulin sensitivity in nondiabetic twins

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Ribel-Madsen, Rasmus; Wojtaszewski, Jørgen

    2010-01-01

    Context: Several studies suggest a link between increased activity of the inflammatory inhibitor-kappaB kinase/nuclear factor-kappaB (IKK/NF-kappaB) pathway in skeletal muscle and insulin resistance. Objective: We aimed to study the regulation of skeletal muscle IKK/NF-kappaB pathway activity...... as well as the association with glucose metabolism and skeletal muscle insulin signaling. Methods: The study population included a metabolically well-characterized cohort of young and elderly predominantly nondiabetic twins (n = 181). Inhibitor-kappaBbeta (IkappaBbeta) protein levels are negatively...... associated with IKK/NF-kappaB pathway activity and were used to evaluate pathway activity with p65 levels included as loading control. This indirect measure for IKK/NF-kappaB pathway activity was validated by a p65 binding assay. Results: Evaluating the effects of heritability, age, sex, obesity, aerobic...

  10. C333H ameliorated insulin resistance through selectively modulating peroxisome proliferator-activated receptor γ in brown adipose tissue of db/db mice.

    Science.gov (United States)

    Zhang, Ning; Chen, Wei; Zhou, Xinbo; Zhou, Xiaolin; Xie, Xinni; Meng, Aimin; Li, Song; Wang, Lili

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a unique target for insulin sensitizer agents. These drugs have been used for the clinical treatment of type 2 diabetes for almost twenty years. However, serious safety issues are associated with the PPARγ agonist thiazolidinediones (TZDs). Selective PPARγ modulators (SPPARMs) which retain insulin sensitization without TZDs-like side effects are emerging as a promising new generation of insulin sensitizers. C333H is a novel structure compound synthesized by our laboratory. In diabetic rodent models, C333H has insulin-sensitizing and glucose-lowering activity comparable to that of TZDs, and causes no significant increase in body weight or adipose tissue weight in db/db mice. In diabetic db/db mice, C333H elevated circulating high molecular weight adiponectin isoforms, decreased PPARγ 273 serine phosphorylation in brown adipose tissue and selectively modulated the expression of a subset of PPARγ target genes in adipose tissue. In vitro, C333H weakly recruited coactivator and weakly dissociated corepressor activity. These findings suggest that C333H has similar properties to SPPARMs and may be a potential therapeutic agent for the treatment of type 2 diabetes.

  11. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan)

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  12. Insulin dependent apolipoprotein B degradation and phosphatidylinositide 3-kinase activation with microsomal translocation are restored in McArdle RH7777 cells following serum deprivation

    Science.gov (United States)

    Sparks, Janet D.; Magra, Amy L.; Chamberlain, Jeffrey M.; O’Dell, Colleen; Sparks, Charles E.

    2015-01-01

    Previous studies in rat hepatocytes demonstrated that insulin-dependent apolipoprotein (apo) B degradation (IDAD) is lost when cells are maintained for 3 d under enriched culture conditions. Loss of IDAD correlates with increased expression of protein tyrosine phosphatase 1B (PTP1B) known to be associated with resistance to insulin signaling in the liver. McArdle RH7777 hepatoma (McA) cells cultured in serum containing medium are resistant to IDAD; demonstrate a 30% increase in apo B secretion, and express increased levels of PTP1B protein and mRNA. In addition, insulin-stimulated Class I phosphatidylinositide 3-kinase (PI3K) activity of anti-pY immunoprecipitates is severely blunted. IDAD resistance in McA cells correlates with diminished translocation of insulin-stimulated pY-IRS1 to intracellular membranes. Incubation of McA cells with RK682, a protein tyrosine phosphatase inhibitor, is sufficient to restore IDAD in resistant McA cells. Overall, results further support the importance of Class I PI3K activity in IDAD, and suggest that loss of this activity is sufficient to cause resistance. Although other factors are involved in downstream events including sortilin binding to apo B, autophagy, and lysosomal degradation, loss of signal generation and reduced localization of Class I PI3K to intracellular membranes plays a significant role in IDAD resistance. PMID:26616056

  13. Protein engineering of insulin: Two novel fast-acting insulins [B16Ala]insulin and [B26Ala]insulin

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Zhou; (张舟); TANG; Yuehua; (唐月华); YAO; Shiyin; (姚矢音); ZHU; Shangquan; (朱尚权); FENG; Youmin; (冯佑民)

    2003-01-01

    Blood glucose lowering assay proved that [B16Ala]insulin and [B26Ala]insulin exhibit potency of acute blood glucose lowering in normal pigs, which demonstrates that they are fast- acting insulin. Single-chain precursor of [B16Ala]insulin and [B26Ala]insulin is [B16Ala]PIP and [B26Ala]PIP, respectively, which are suitable for gene expression. Secretory expression level of the precursors in methylotrophic yeast Pichia pastoris was quite high, 650 mg/L and 130 mg/L, respectively. In vivo biological assay showed that the two fast-acting insulins have full or nearly full biological activity. So both [B16Ala]insulin and [B26Ala]insulin can be well developed as fast-acting insulin for clinic use.

  14. Postprandial improvement in insulin sensitivity after a single exercise session in adolescents with low aerobic fitness and physical activity.

    Science.gov (United States)

    Short, Kevin R; Pratt, Lauren V; Teague, April M; Man, Chiara Dalla; Cobelli, Claudio

    2013-03-01

    The purpose of this study was to determine the acute and residual impact of a single exercise bout on meal glucose control in adolescents with habitually low physical activity. Twelve adolescents (seven females/five males, 14 ± 2 yr) completed three trials. One trial [No Exercise (No Ex)] was completed after refraining from vigorous activity for ≥ 3 d. On the other two trials, a 45-min aerobic exercise bout at 75% peak heart rate was performed either 17-h Prior Day Exercise (Prior Day Ex) trial or 1-h Same Day Exercise (Same Day Ex) trial before consuming the test meal (2803 kJ, 45/40/15% energy as carbohydrate/fat/protein, respectively). Compared to No Ex, insulin sensitivity (SI) (minimal model analysis) was increased by 45% (p postprandial suppression of fatty acids. These results show that SI is improved with a single bout of moderate intensity exercise in adolescents with habitually low physical activity and that the residual beneficial effect of exercise lasts at least 17 h. This finding highlights the plasticity of exercise responses in youth and the importance of daily exercise for metabolic health.

  15. Lung microbiology and exacerbations in COPD

    Directory of Open Access Journals (Sweden)

    Beasley V

    2012-08-01

    Full Text Available Victoria Beasley,2 Priya V Joshi,2 Aran Singanayagam,1,2 Philip L Molyneaux,1,2 Sebastian L Johnston,1,2 Patrick Mallia,1,21National Heart and Lung Institute, Imperial College London, London, UK; 2Imperial College Healthcare NHS Trust, London, UKAbstract: Chronic obstructive pulmonary disease (COPD is the most common chronic respiratory condition in adults and is characterized by progressive airflow limitation that is not fully reversible. The main etiological agents linked with COPD are cigarette smoking and biomass exposure but respiratory infection is believed to play a major role in the pathogenesis of both stable COPD and in acute exacerbations. Acute exacerbations are associated with more rapid decline in lung function and impaired quality of life and are the major causes of morbidity and mortality in COPD. Preventing exacerbations is a major therapeutic goal but currently available treatments for exacerbations are not very effective. Historically, bacteria were considered the main infective cause of exacerbations but with the development of new diagnostic techniques, respiratory viruses are also frequently detected in COPD exacerbations. This article aims to provide a state-of-the art review of current knowledge regarding the role of infection in COPD, highlight the areas of ongoing debate and controversy, and outline emerging technologies and therapies that will influence future diagnostic and therapeutic pathways in COPD.Keywords: COPD, exacerbations, bacteria, viruses

  16. Detecting exacerbations using the Clinical COPD Questionnaire

    Directory of Open Access Journals (Sweden)

    Trappenburg Jaap CA

    2010-09-01

    Full Text Available Abstract Background Early treatment of COPD exacerbations has shown to be important. Despite a non-negligible negative impact on health related quality of life, a large proportion of these episodes is not reported (no change in treatment. Little is known whether (low burden strategies are able to capture these unreported exacerbations. Methods The Clinical COPD Questionnaire (CCQ is a short questionnaire with great evaluative properties in measuring health status. The current explorative study evaluates the discriminative properties of weekly CCQ assessment in detecting exacerbations. Results In a multicentre prospective cohort study, 121 patients, age 67.4 ± 10.5 years, FEV1 47.7 ± 18.5% pred were followed for 6 weeks by daily diary card recording and weekly CCQ assessment. Weeks were retrospectively labeled as stable or exacerbation (onset weeks using the Anthonisen symptom diary-card algorithm. Change in CCQ total scores are significantly higher in exacerbation-onset weeks, 0.35 ± 0.69 compared to -0.04 ± 0.37 in stable weeks (p Conclusions Weekly CCQ assessment is a promising, low burden method to detect unreported exacerbations. Further research is needed to validate discriminative performance and practical implications of the CCQ in detecting exacerbations in daily care.

  17. Asthma exacerbation in children: a practical review.

    Science.gov (United States)

    Fu, Lin-Shien; Tsai, Ming-Chin

    2014-04-01

    Asthma is the most common chronic lower respiratory tract disease in childhood throughout the world. Despite advances in asthma management, acute exacerbations continue to be a major problem in patients and they result in a considerable burden on direct/indirect health care providers. A severe exacerbation occurring within 1 year is an independent risk factor. Respiratory tract viruses have emerged as the most frequent triggers of exacerbations in children. It is becoming increasingly clear that interactions may exist between viruses and other triggers, increasing the likelihood of an exacerbation. In this study, we provide an overview of current knowledge about asthma exacerbations, including its definition, impact on health care providers, and associated factors. Prevention management in intermittent asthma as well as intermittent wheeze in pre-school children and those with persistent asthma are discussed. Our review findings support the importance of controlling persistent asthma, as indicated in current guidelines. In addition, we found that early episodic intervention appeared to be crucial in preventing severe attacks and future exacerbations. Besides the use of medication, timely education after an exacerbation along with a comprehensive plan in follow up is also vitally important.

  18. Association of Aldosterone, Plasma Renin Activity (PRA and Superoxide Dismutase (SOD with Inflammation and Insulin Resistance in Adult Men with Central Obesity

    Directory of Open Access Journals (Sweden)

    Hera Yuliana Intantri

    2011-08-01

    Full Text Available BACKGROUND: Visceral Obesity is related with chronic low grade inflammation, and is the main component of metabolic syndrome (MetS. MetS is associated with increased cardiovascular disease (CVD. Furthermore, superoxide dismutase (SOD is correlated with insulin resistance. Several studies have reported a strong correlation between Renin Angiotensin Aldosterone System (RAAS and CVD, but the association of Aldosterone, Plasma Renin Activity (PRA and SOD with inflammation, insulin resistance and MetS have not been fully elucidated. The aim of this study was to investigate the correlation of Aldosterone, PRA, and SOD with inflammation (high sensitivity c-reactive protein/hsCRP and insulin resistance (homeostasis model assessment-insulin resistance/HOMA-IR in adult men with central obesity. METHODS: This was a cross-sectional study, which was carried out on 80 male subjects with central obesity who were divided into 2 groups: the group of subjects who had fulfilled the MetS criteria and the other group of subjects who did not. After an overnight fasting, blood pressure (BP was measured on all subjects and laboratory examinations were done for measurement of the concentration of fasting glucose, high density lipoprotein cholesterol (HDL-C, triglyceride, hsCRP, insulin, aldosterone, PRA, and SOD. RESULTS: We found aldosterone had positive correlation with PRA (r=0.389; p<0.001 and triglycerides (r=0.234; p=0.036. PRA had positive correlation with SOD (r=0.220; p=0.05 and HDL-C (r=0.273; p=0.014, but not with hsCRP (r=-0.044; p=0.696 and HOMA-IR (r=0.168 p=0.136. PRA correlated with HOMA-IR in MetS (r=0.471; p=0.01. Aldosterone and PRA were correlated with diastolic pressure in those with hypertension (r=0.680; p=0.003 and r=0.608; p=0.01. CONCLUSIONS: There is no direct correlation between aldosterone or SOD and Insulin resistance, and inflammation in men with central obesity. The correlation between PRA and MetS might be through insulin resistance

  19. Anti-insulin antibody test

    Science.gov (United States)

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... You appear to have an allergic response to insulin Insulin no longer seems to control your diabetes

  20. Cardiac Insulin Resistance and MicroRNA Modulators

    Directory of Open Access Journals (Sweden)

    Lakshmi Pulakat

    2012-01-01

    Full Text Available Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS, and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS and angiotensin II (Ang II activate mammalian target for rapamycin (mTOR/p70 S6 kinase (S6K1 signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2, it also renders cardioprotection via increased Ang II receptor 2 (AT2R upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.

  1. O-GlcNAc-selective-N-acetyl-beta-D-glucosaminidase activity and mRNA expression in muscle is related to glucosamine-induced insulin resistance.

    Science.gov (United States)

    Durán-Reyes, Genoveva; Pascoe-Lira, Dalila; García-Macedo, Rebeca; Medina-Navarro, Rafael; Rosales-Torres, Ana María; Vergara-Onofre, Marcela; Foyo-Niembro, Enrique; Gutiérrez-Rodríguez, Margarita Eugenia; García-Gutiérrez, María Trinidad Adriana; Valladares-Salgado, Adán; Kumate, Jesús; Cruz, Miguel

    2010-01-01

    Glucosamine (GlcN)-induced insulin resistance is associated with an increase in O-linked-N-acetylglucosaminylated modified proteins (O-GlcNAcylated proteins). The role played by O-GlcNAc-selective-N-acetyl-beta-D-glucosaminidase (O-GlcNAcase), which removes O-N-acetyl-glucosamine residues from O-GlcNAcylated proteins, has not yet been demonstrated. We investigated whether GlcN-induced whole-body insulin resistance is related to tissue O-GlcNAcase activity and mRNA expression. GlcN (30 mumol/kg/min) or physiological saline (control) was intravenously infused into Sprague-Dawley rats for 2 h. After GlcN treatment, rats were subjected to the following: intravenous glucose tolerance test, insulin tolerance test or removal of the liver, muscle and pancreas. GlcN was found to provoke hyperglycemia compared to control (8.6 +/- 0.41 vs. 4.82 +/- 0.17 mM, p < 0.001). The insulin resistance index (HOMA-IR) increased (15.76 +/- 1.47 vs. 10.14 +/- 1.41, p < 0.001) and the beta-cell function index (HOMA-beta) diminished (182.69 +/- 22.37 vs. 592.01 +/- 103, p < 0.001). Liver glucose concentration was higher in the GlcN group than in the control group (0.37 +/- 0.04 vs. 0.24 +/- 0.038 mmol/g dry weight, p < 0.001). Insulin release index (insulin/glucose) was less in the GlcN group than in the control (2.2 +/- 0.1 vs. 8 +/- 0.8 at 120 min, p < 0.001). In the GlcN group, muscle O-GlcNAcase activity diminished (0.28 +/- 0.019 vs. 0.36 +/- 0.018 nmol of p-nitrophenyl/mg protein/min, p < 0.001), and K(m) increased (1.51 +/- 0.11 vs. 1.12 +/- 0.1 mM, p < 0.001) compared to the control. In the GlcN group, O-GlcNAcase activity/mRNA expression was altered (0.6 +/- 0.07 vs. 1 +/- 0.09 of control, p < 0.05). In conclusion, O-GlcNAcase activity is posttranslationally inhibited during GlcN-induced insulin resistance.

  2. Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Soo Lim

    Full Text Available There is an apparent overlap between areas in the USA where the herbicide, atrazine (ATZ, is heavily used and obesity-prevalence maps of people with a BMI over 30. Given that herbicides act on photosystem II of the thylakoid membrane of chloroplasts, which have a functional structure similar to mitochondria, we investigated whether chronic exposure to low concentrations of ATZ might cause obesity or insulin resistance by damaging mitochondrial function. Sprague-Dawley rats (n = 48 were treated for 5 months with low concentrations (30 or 300 microg kg(-1 day(-1 of ATZ provided in drinking water. One group of animals was fed a regular diet for the entire period, and another group of animals was fed a high-fat diet (40% fat for 2 months after 3 months of regular diet. Various parameters of insulin resistance were measured. Morphology and functional activities of mitochondria were evaluated in tissues of ATZ-exposed animals and in isolated mitochondria. Chronic administration of ATZ decreased basal metabolic rate, and increased body weight, intra-abdominal fat and insulin resistance without changing food intake or physical activity level. A high-fat diet further exacerbated insulin resistance and obesity. Mitochondria in skeletal muscle and liver of ATZ-treated rats were swollen with disrupted cristae. ATZ blocked the activities of oxidative phosphorylation complexes I and III, resulting in decreased oxygen consumption. It also suppressed the insulin-mediated phosphorylation of Akt. These results suggest that long-term exposure to the herbicide ATZ might contribute to the development of insulin resistance and obesity, particularly where a high-fat diet is prevalent.

  3. A Novel Partial Agonist of Peroxisome Proliferator-Activated Receptor γ with Excellent Effect on Insulin Resistance and Type 2 Diabetes.

    Science.gov (United States)

    Liu, Hui-juan; Zhang, Cheng-yu; Song, Fei; Xiao, Ting; Meng, Jing; Zhang, Qiang; Liang, Cai-li; Li, Shan; Wang, Jing; Zhang, Bo; Liu, Yan-rong; Sun, Tao; Zhou, Hong-gang

    2015-06-01

    Partial agonists of peroxisome proliferator-activated receptor γ (PPARγ) reportedly reverse insulin resistance in patients with type 2 diabetes mellitus. In this work, a novel non-thiazolidinedione-partial PPARγ ligand, MDCCCL1636 [N-(4-hydroxyphenethyl)-3-mercapto-2-methylpropanamide], was investigated. The compound displayed partial agonist activity in biochemical and cell-based transactivation assays and reversed insulin resistance. MDCCCL1636 showed a potential antidiabetic effect on an insulin-resistance model of human hepatocarcinoma cells (HepG2). High-fat diet-fed streptozotocin-induced diabetic rats treated with MDCCCL1636 for 56 days displayed reduced fasting serum glucose and reversed dyslipidemia and pancreatic damage without significant weight gain. Furthermore, MDCCCL1636 had lower toxicity in vivo and in vitro than pioglitazone. MDCCCL1636 also potentiated glucose consumption and inhibited the impairment in insulin signaling targets, such as AKT, glycogen synthase kinase 3β, and glycogen synthase, in HepG2 human hepatoma cells. Overall, our results suggest that MDCCCL1636 is a promising candidate for the prevention and treatment of type 2 diabetes mellitus.

  4. Lysosomal proteolysis: effects of aging and insulin.

    Science.gov (United States)

    Gromakova, I A; Konovalenko, O A

    2003-07-01

    Age-related characteristics of the effect of insulin on the activity of lysosomal proteolytic enzymes were studied. The relationship between the insulin effect on protein degradation and insulin degradation was analyzed. The effect of insulin on the activities of lysosomal enzymes was opposite in young and old rats (inhibitory in 3-month-old and stimulatory in 24-month-old animals). The activities of proteolytic enzymes were regulated by insulin in a glucose-independent manner: similar hypoglycemic effects of insulin in animals of different ages were accompanied by opposite changes in the activities of lysosomal enzymes. The inhibition of lysosomal enzymes by insulin in 3-month-old rats is consistent with a notion on the inhibitory effect of insulin on protein degradation. An opposite insulin effect in 24-month-old rats (i.e., stimulation of proteolytic activity by insulin) may be partly associated with attenuation of the degradation of insulin, resulting in disturbances in signaling that mediates the regulatory effects of insulin on protein degradation.

  5. Plasma cholesteryl ester transfer and hepatic lipase activity are related to high-density lipoprotein cholesterol in association with insulin resistance in type 2 diabetic and non-diabetic subjects

    NARCIS (Netherlands)

    Riemens, SC; Van Tol, A; Scheek, LM; Dullaart, RPF

    2001-01-01

    We evaluated the: hypothesis that plasma cholesteryl ester transfer (CET) and lipase activities are influenced by insulin sensitivity and contribute to the low high-density lipoprotein (HDL) cholesterol observed in type 2 diabetic patients and insulin-resistant non-diabetic subjects. Sixteen type 2

  6. Insulin resistance, insulin sensitization and inflammation in polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Dhindsa G

    2004-04-01

    Full Text Available It is estimated that 5-10% of women of reproductive age have polycystic ovarian syndrome (PCOS. While insulin resistance is not part of the diagnostic criteria for PCOS, its importance in the pathogenesis of PCOS cannot be denied. PCOS is associated with insulin resistance independent of total or fat-free body mass. Post-receptor defects in the action of insulin have been described in PCOS which are similar to those found in obesity and type 2 diabetes. Treatment with insulin sensitizers, metformin and thiazolidinediones, improve both metabolic and hormonal patterns and also improve ovulation in PCOS. Recent studies have shown that PCOS women have higher circulating levels of inflammatory mediators like C-reactive protein, tumour necrosis factor- , tissue plasminogen activator and plasminogen activator inhibitor-1 (PAI-1 . It is possible that the beneficial effect of insulin sensitizers in PCOS may be partly due to a decrease in inflammation.

  7. Dexrazoxane exacerbates doxorubicin-induced testicular toxicity.

    Science.gov (United States)

    Levi, Mattan; Tzabari, Moran; Savion, Naphtali; Stemmer, Salomon M; Shalgi, Ruth; Ben-Aharon, Irit

    2015-10-01

    Infertility induced by anti-cancer treatments pose a major concern for cancer survivors. Doxorubicin (DXR) has been previously shown to exert toxic effects on the testicular germinal epithelium. Based upon the cardioprotective traits of dexrazoxane (DEX), we studied its potential effect in reducing DXR-induced testicular toxicity. Male mice were injected with 5  mg/kg DXR, 100  mg/kg DEX, combination of both or saline (control) and sacrificed either 1, 3 or 6 months later. Testes were excised and further processed. Glutathione and apoptosis assays were performed to determine oxidative stress. Immunohistochemistry and confocal microscopy were used to study the effects of the drugs on testicular histology and on spermatogonial reserve. DXR and the combined treatment induced a striking decline in testicular weight. DEX prevented DXR-induced oxidative stress, but enhanced DXR-induced apoptosis within the testes. Furthermore, the combined treatment depleted the spermatogonial reserve after 1 month, with impaired recovery at 3 and 6 months post-treatment. This resulted in compromised sperm parameters, testicular and epididymal weights as well as significantly reduced sperm motility, all of which were more severe than those observed in DXR-treated mice. The activity of DEX in the testis may differ from its activity in cardiomyocytes. Adding DEX to DXR exacerbates DXR-induced testicular toxicity.

  8. Extensive Bilateral Naevus Comedonicus Exacerbating During Pregnancy

    Directory of Open Access Journals (Sweden)

    Rao M.V

    1999-01-01

    Full Text Available Naevus comedonicus is a rare developmental anomaly of the pilosebaceous apparatus. It occurred bilaterally in a 23 year old pregnant woman. She noted exacerbations during two pregnancies, hitherto unreported in the literature.

  9. Role of insulin and insulin receptor in learning and memory.

    Science.gov (United States)

    Zhao, W Q; Alkon, D L

    2001-05-25

    As one of the most extensively studied protein hormones, insulin and its receptor have been known to play key roles in a variety of important biological functions. Until recent years, the functions of insulin and insulin receptor (IR) in the central nervous system (CNS) have largely remained unclear. IR is abundantly expressed in several specific brain regions that govern fundamental behaviors such as food intake, reproduction and high cognition. The IR from the periphery and CNS exhibit differences in both structure and function. In addition to that from the peripheral system, locally synthesized insulin in the brain has also been identified. Accumulated evidence has demonstrated that insulin/IR plays important roles in associative learning, as suggested by results from both interventive and correlative studies. Interruption of insulin production and IR activity causes deficits in learning and memory formation. Abnormal insulin/IR levels and activities are seen in Alzheimer's dementia, whereas administration of insulin significantly improves the cognitive performance of these patients. The synaptic bases for the action of insulin/IR include modifying neurotransmitter release processes at various types of presynaptic terminals and modulating the activities of both excitatory and inhibitory postsynaptic receptors such as NMDA and GABA receptors, respectively. At the molecular level, insulin/IR participates in regulation of learning and memory via activation of specific signaling pathways, one of which is shown to be associated with the formation of long-term memory and is composed of intracellular molecules including the shc, Grb-r/SOS, Ras/Raf, and MEK/MAP kinases. Cross-talk with another IR pathway involving IRS1, PI3 kinase, and protein kinase C, as well as with the non-receptor tyrosine kinase pp60c-src, may also be associated with memory processing.

  10. Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5'-monophosphate-activated protein kinase signaling pathways.

    Science.gov (United States)

    Yuan, Gang; Deng, Juanjuan; Wang, Tao; Zhao, Chunxia; Xu, Xizheng; Wang, Peihua; Voltz, James W; Edin, Matthew L; Xiao, Xiao; Chao, Lee; Chao, Julie; Zhang, Xin A; Zeldin, Darryl C; Wang, Dao Wen

    2007-05-01

    We previously reported that iv delivery of the human tissue kallikrein (HK) gene reduced blood pressure and plasma insulin levels in fructose-induced hypertensive rats with insulin resistance. In the current study, we evaluated the potential of a recombinant adeno-associated viral vector expressing the HK cDNA (rAAV-HK) as a sole, long-term therapy to correct insulin resistance and prevent renal damage in streptozotocin-induced type-2 diabetic rats. Administration of streptozotocin in conjunction with a high-fat diet induced systemic hypertension, diabetes, and renal damage in rats. Delivery of rAAV-HK resulted in a long-term reduction in blood pressure, and fasting plasma insulin was significantly lower in the rAAV-HK group than in the control group. The expression of phosphatidylinositol 3-kinase p110 catalytic subunit and the levels of phosphorylation at residue Thr-308 of Akt, insulin receptor B, and AMP-activated protein kinases were significantly decreased in organs from diabetic animals. These changes were significantly attenuated after rAAV-mediated HK gene therapy. Moreover, rAAV-HK significantly decreased urinary microalbumin excretion, improved creatinine clearance, and increased urinary osmolarity. HK gene therapy also attenuated diabetic renal damage as assessed by histology. Together, these findings demonstrate that rAAV-HK delivery can efficiently attenuate hypertension, insulin resistance, and diabetic nephropathy in streptozotocin-induced diabetic rats.

  11. B22 Glu Des-B30 Insulin: A Novel Monomeric Insulin

    Institute of Scientific and Technical Information of China (English)

    Hai-Juan DU; Jia-Hao SHI; Da-Fu CUI; You-Shang ZHANG

    2006-01-01

    Studies on monomeric insulin with reduced self-association are important in the development of insulin pharmaceutical preparations with rapid hypoglycemic action on patients with diabetes. Here we report a novel monomeric insulin, B22 Glu des-B30 insulin, prepared from a single chain insulin precursor with B22 Arg mutated to Glu, which was expressed in Pichia pastoris and converted to B22 Glu des-B30 insulin by tryptic digestion. It still retains 50% of the in vivo biological activity of porcine insulin and does not form a dimer even at a concentration of 10 mg/ml, showing that B22 Glu plays a key role in reducing the selfassociation of the insulin molecule without greatly reducing its biological activity. This novel monomeric insulin might have potential applications in the clinic.

  12. Acute exacerbations of fibrotic interstitial lung disease.

    Science.gov (United States)

    Churg, Andrew; Wright, Joanne L; Tazelaar, Henry D

    2011-03-01

    An acute exacerbation is the development of acute lung injury, usually resulting in acute respiratory distress syndrome, in a patient with a pre-existing fibrosing interstitial pneumonia. By definition, acute exacerbations are not caused by infection, heart failure, aspiration or drug reaction. Most patients with acute exacerbations have underlying usual interstitial pneumonia, either idiopathic or in association with a connective tissue disease, but the same process has been reported in patients with fibrotic non-specific interstitial pneumonia, fibrotic hypersensitivity pneumonitis, desquamative interstitial pneumonia and asbestosis. Occasionally an acute exacerbation is the initial manifestation of underlying interstitial lung disease. On biopsy, acute exacerbations appear as diffuse alveolar damage or bronchiolitis obliterans organizing pneumonia (BOOP) superimposed upon the fibrosing interstitial pneumonia. Biopsies may be extremely confusing, because the acute injury pattern can completely obscure the underlying disease; a useful clue is that diffuse alveolar damage and organizing pneumonia should not be associated with old dense fibrosis and peripheral honeycomb change. Consultation with radiology can also be extremely helpful, because the fibrosing disease may be evident on old or concurrent computed tomography scans. The aetiology of acute exacerbations is unknown, and the prognosis is poor; however, some patients survive with high-dose steroid therapy.

  13. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  14. Diabetes and Insulin

    Science.gov (United States)

    ... in the abdomen just behind the stomach, produces insulin. Insulin is a hormone that takes glucose from the ... occurs when the pancreas does not produce enough insulin or when the body doesn’t use insulin ...

  15. Social conflict exacerbates an animal model of multiple sclerosis.

    Science.gov (United States)

    Meagher, Mary W; Johnson, Robin R; Vichaya, Elisabeth Good; Young, Erin E; Lunt, Shannon; Welsh, C Jane

    2007-07-01

    A growing body of evidence suggests that social conflict is associated with inflammatory disease onset and exacerbations in multiple sclerosis (MS) patients and in animal models of MS. This review illustrates how animal research can be used to elucidate the biobehavioral mechanisms underlying the adverse health effects of social conflict. The authors review studies indicating that social conflict exacerbates a virally initiated animal model of MS. This research suggests that the deleterious effects of social conflict may be partially mediated by stress-induced increases in pro-inflammatory cytokine levels in the central nervous system. In addition, they provide evidence that the adverse health effects of social conflict can be prevented by blocking the stress-induced increases in cytokine activity. This suggests that interventions designed to prevent or reverse the stress-induced increases in cytokine activity may be able to prevent or reverse some of the negative health effects of social conflict in humans.

  16. Glucose-stimulated insulin secretion does not require activation of pyruvate dehydrogenase: impact of adenovirus-mediated overexpression of PDH kinase and PDH phosphate phosphatase in pancreatic islets.

    Science.gov (United States)

    Nicholls, Linda I; Ainscow, Edward K; Rutter, Guy A

    2002-03-01

    Glucose-stimulated increases in mitochondrial metabolism are generally thought to be important for the activation of insulin secretion. Pyruvate dehydrogenase (PDH) is a key regulatory enzyme, believed to govern the rate of pyruvate entry into the citrate cycle. We show here that elevated glucose concentrations (16 or 30 vs 3 mM) cause an increase in PDH activity in both isolated rat islets, and in a clonal beta-cell line (MIN6). However, increases in PDH activity elicited with either dichloroacetate, or by adenoviral expression of the catalytic subunit of pyruvate dehydrogenase phosphatase, were without effect on glucose-induced increases in mitochondrial pyridine nucleotide levels, or cytosolic ATP concentration, in MIN6 cells, and insulin secretion from isolated rat islets. Similarly, the above parameters were unaffected by blockade of the glucose-induced increase in PDH activity by adenovirus-mediated over-expression of PDH kinase (PDK). Thus, activation of the PDH complex plays an unexpectedly minor role in stimulating glucose metabolism and in triggering insulin release.

  17. Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin.

    Science.gov (United States)

    Reiter, Chad E N; Wu, Xiaohua; Sandirasegarane, Lakshman; Nakamura, Makoto; Gilbert, Kirk A; Singh, Ravi S J; Fort, Patrice E; Antonetti, David A; Gardner, Thomas W

    2006-04-01

    Diabetic retinopathy is characterized by early onset of neuronal cell death. We previously showed that insulin mediates a prosurvival pathway in retinal neurons and that normal retina expresses a highly active basal insulin receptor/Akt signaling pathway that is stable throughout feeding and fasting. Using the streptozotocin-induced diabetic rat model, we tested the hypothesis that diabetes diminishes basal retinal insulin receptor signaling concomitantly with increased diabetes-induced retinal apoptosis. The expression, phosphorylation status, and/or kinase activity of the insulin receptor and downstream signaling proteins were investigated in retinas of age-matched control, diabetic, and insulin-treated diabetic rats. Four weeks of diabetes reduced basal insulin receptor kinase, insulin receptor substrate (IRS)-1/2-associated phosphatidylinositol 3-kinase, and Akt kinase activity without altering insulin receptor or IRS-1/2 expression or tyrosine phosphorylation. After 12 weeks of diabetes, constitutive insulin receptor autophosphorylation and IRS-2 expression were reduced, without changes in p42/p44 mitogen-activated protein kinase or IRS-1. Sustained systemic insulin treatment of diabetic rats prevented loss of insulin receptor and Akt kinase activity, and acute intravitreal insulin administration restored insulin receptor kinase activity. Insulin treatment restored insulin receptor-beta autophosphorylation in rat retinas maintained ex vivo, demonstrating functional receptors and suggesting loss of ligand as a cause for reduced retinal insulin receptor/Akt pathway activity. These results demonstrate that diabetes progressively impairs the constitutive retinal insulin receptor signaling pathway through Akt and suggests that loss of this survival pathway may contribute to the initial stages of diabetic retinopathy.

  18. Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xiuqing Wei

    Full Text Available Insulin degrading enzyme (IDE is a potential drug target in the treatment of type 2 diabetes (T2D. IDE controls circulating insulin through a degradation-dependent clearance mechanism in multiple tissues. However, there is not sufficient information about IDE regulation in obesity. In this study, we test obesity-associated factors and pioglitazone in the regulation of IDE in diet-induced obese (DIO C57BL/6 mice. The enzyme activity and protein level of IDE were increased in the liver of DIO mice. Pioglitazone (10 mg/kg/day administration for 2 months significantly enhanced the enzyme activity (75%, protein (180% and mRNA (100% of IDE in DIO mice. The pioglitazone-induced changes were coupled with 50% reduction in fasting insulin and 20% reduction in fasting blood glucose. The mechanism of IDE regulation in liver was investigated in the mouse hepatoma cell line (Hepa 1c1c7 cells, in which pioglitazone (5 µM increased IDE protein and mRNA in a time-dependent manner in an 8 h study. Free fatty acid (palmitate 300 µM induced IDE protein, but reduced the mRNA. Glucagon induced, and TNF-α decreased IDE protein. Insulin did not exhibit any activity in the same condition. In summary, pioglitazone, FFA and glucagon directly increased, but TNF-α decreased the IDE activity in hepatocytes. The results suggest that IDE activity is regulated in liver by multiple factors in obesity and pioglitazone may induce IDE activity in the control of T2D.

  19. Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity.

    Science.gov (United States)

    Drager, Luciano F; Li, Jianguo; Reinke, Christian; Bevans-Fonti, Shannon; Jun, Jonathan C; Polotsky, Vsevolod Y

    2011-11-01

    Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6-8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity.

  20. Swertiamarin: An Active Lead from Enicostemma littorale Regulates Hepatic and Adipose Tissue Gene Expression by Targeting PPAR-γ and Improves Insulin Sensitivity in Experimental NIDDM Rat Model

    Directory of Open Access Journals (Sweden)

    Tushar P. Patel

    2013-01-01

    Full Text Available Enicostemma littorale (EL Blume is one of the herbs widely used for treating and alleviating the effects of both type I and type II diabetes. However, lack of understanding of mechanism precludes the use of the herb and its molecules. In this study, we attempt to unravel the molecular mechanism of action of swertiamarin, a compound isolated form EL, by comparing its molecular effects with those of aqueous EL extract in alleviating the insulin resistance in type II diabetes. We further investigated hypolipidemic and insulin sensitizing effect of swertiamarin in experimentally induced noninsulin dependent diabetes mellitus (NIDDM in rats. Swertiamarin (50 mg/kg and aqueous extract (15 grams dried plant equivalent extract/kg were administered to rats orally for 40 days and tight regulation of serum glucose, insulin, and lipid profile was found in both groups. Their mode of action was by restoring G6Pase and HMG-CoA reductase activities to normal levels and restoring normal transcriptional levels of PEPCK, GK, Glut 2, PPAR-γ, leptin, adiponectin, LPL, SREBP-1c, and Glut 4 genes. This suggests that both treatments increased insulin sensitivity and regulated carbohydrate and fat metabolism. This is the first report on the role of SM in regulating the PPARγ-mediated regulation of candidate genes involved in metabolism in peripheral tissues in vivo.

  1. Crosstalk between growth hormone and insulin signaling.

    Science.gov (United States)

    Xu, Jie; Messina, Joseph L

    2009-01-01

    Growth Hormone (GH) is a major growth-promoting and metabolic regulatory hormone. Interaction of GH with its cell surface GH receptor (GHR) causes activation of the GHR-associated cytoplasmic tyrosine kinase, JAK2, and activation of several signaling pathways, including the STATs, ERK1/2, and PI3K pathways. Insulin is also a key hormone regulating metabolism and growth. Insulin binding to the insulin receptor (IR) results in phosphorylation/activation of the IR, and activates the PI3K/Akt and ERK1/2 pathways. Due to their important roles in growth and metabolism, GH and insulin can functionally interact with each other, regulating cellular metabolism. In addition, recent data suggests that GH and insulin can directly interact by signaling crosstalk. Insulin regulation of GH signaling depends on the duration of exposure to insulin. Transient insulin exposure enhances GH-induced activation of MEK/ERK pathway through post-GHR mechanisms, whereas prolonged insulin exposure inhibits GH-induced signaling at both receptor and postreceptor levels. Chronic excessive GH interferes with insulin's activation of the IR/IRS/PI3K pathway and several proteins are involved in the mechanisms underlying GH-induced insulin resistance.

  2. Insulin Resistance

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech

    Insulin resistance (IR) is escalating with alarming pace and is no longer restricted to westernized countries. As a forerunner for some of the most serious threats to human health including metabolic syndrome, cardiovascular diseases, and type 2-diabetes, the need for new treatment modalities...... interventions. We further show that improving the inflammatory toning, using fish oil as fat source, protects mice against diet induced obesity and -inflammation while preserving insulin sensitivity, even in the absence of free fatty acid receptor 4. Conversely, HFD-induced intestinal dysbiosis is associated...

  3. Skeletal muscle insulin resistance associated with cholesterol-induced activation of macrophages is prevented by high density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Andrew L Carey

    Full Text Available BACKGROUND: Emerging evidence suggests that high density lipoprotein (HDL may modulate glucose metabolism through multiple mechanisms including pancreatic insulin secretion as well as insulin-independent glucose uptake into muscle. We hypothesized that HDL may also increase skeletal muscle insulin sensitivity via cholesterol removal and anti-inflammatory actions in macrophages associated with excess adiposity and ectopic lipid deposition. METHODS: Human primary and THP-1 macrophages were treated with vehicle (PBS or acetylated low density lipoprotein (acLDL with or without HDL for 18 hours. Treatments were then removed, and macrophages were incubated with fresh media for 4 hours. This conditioned media was then applied to primary human skeletal myotubes derived from vastus lateralis biopsies taken from patients with type 2 diabetes to examine insulin-stimulated glucose uptake. RESULTS: Conditioned media from acLDL-treated primary and THP-1 macrophages reduced insulin-stimulated glucose uptake in primary human skeletal myotubes compared with vehicle (primary macrophages, 168±21% of basal uptake to 104±19%; THP-1 macrophages, 142±8% of basal uptake to 108±6%; P<0.05. This was restored by co-treatment of macrophages with HDL. While acLDL increased total intracellular cholesterol content, phosphorylation of c-jun N-terminal kinase and secretion of pro- and anti-inflammatory cytokines from macrophages, none were altered by co-incubation with HDL. Insulin-stimulated Akt phosphorylation in human skeletal myotubes exposed to conditioned media was unaltered by either treatment condition. CONCLUSION: Inhibition of insulin-stimulated glucose uptake in primary human skeletal myotubes by conditioned media from macrophages pre-incubated with acLDL was restored by co-treatment with HDL. However, these actions were not linked to modulation of common pro- or anti-inflammatory mediators or insulin signaling via Akt.

  4. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice.

    Science.gov (United States)

    Seo, Kwon-Il; Choi, Myung-Sook; Jung, Un Ju; Kim, Hye-Jin; Yeo, Jiyoung; Jeon, Seon-Min; Lee, Mi-Kyung

    2008-09-01

    We investigated the effect of curcumin on insulin resistance and glucose homeostasis in male C57BL/KsJ-db/db mice and their age-matched lean non-diabetic db/+ mice. Both db/+ and db/db mice were fed with or without curcumin (0.02%, wt/wt) for 6 wks. Curcumin significantly lowered blood glucose and HbA 1c levels, and it suppressed body weight loss in db/db mice. Curcumin improved homeostasis model assessment of insulin resistance and glucose tolerance, and elevated the plasma insulin level in db/db mice. Hepatic glucokinase activity was significantly higher in the curcumin-supplemented db/db group than in the db/db group, whereas glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities were significantly lower. In db/db mice, curcumin significantly lowered the hepatic activities of fatty acid synthase, beta-oxidation, 3-hydroxy-3-methylglutaryl coenzyme reductase, and acyl-CoA: cholesterol acyltransferase. Curcumin significantly lowered plasma free fatty acid, cholesterol, and triglyceride concentrations and increased the hepatic glycogen and skeletal muscle lipoprotein lipase in db/db mice. Curcumin normalized erythrocyte and hepatic antioxidant enzyme activities (superoxide dismutase, catalase, gluthathione peroxidase) in db/db mice that resulted in a significant reduction in lipid peroxidation. However, curcumin showed no effect on the blood glucose, plasma insulin, and glucose regulating enzyme activities in db/+ mice. These results suggest that curcumin seemed to be a potential glucose-lowering agent and antioxidant in type 2 diabetic db/db mice, but had no affect in non-diabetic db/+ mice.

  5. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression.

    Directory of Open Access Journals (Sweden)

    Subrata Chowdhury

    Full Text Available We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1, which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents to active cortisol (corticosterone in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion.

  6. Diet-Related Knowledge and Physical Activity in a Large Cohort of Insulin-Treated Type 2 Diabetes Patients: PROGENS ARENA Study

    Directory of Open Access Journals (Sweden)

    Tomasz Klupa

    2016-01-01

    Full Text Available There is no doubt that behavioral intervention is crucial for type 2 diabetes mellitus (T2DM prevention and management. We aimed to estimate dietary habits and diet-oriented knowledge as well as the level of physical activity in 2500 insulin-treated Polish type 2 diabetes mellitus (T2DM patients (55.4% women. The mean age of the study participants was 64.9 ± 9.3 years, mean BMI was 31.4 kg/m2 ± 4.5, mean diabetes duration was 12.4 ± 6.9 years, and mean baseline HbA1c was 8.5%  ± 1.2. At the study onset, all the patients completed a questionnaire concerning health-oriented behavior. Results showed a significant lack of diet-related knowledge. For example, only 37.5% recognized that buckwheat contains carbohydrates; the percentage of correct answers in questions about fruit drinks and pasta was 56.4% and 61.2%, respectively. As for the physical activity, only 57.4% of examined T2DM patients declared any form of deliberate physical activity. To conclude, the cohort of poorly controlled insulin-treated T2DM patients studied by us is characterized by insufficient diet-related knowledge and by a very low level of physical activity. Further studies on other populations of insulin-treated T2DM patients are required to confirm these findings.

  7. Diet-Related Knowledge and Physical Activity in a Large Cohort of Insulin-Treated Type 2 Diabetes Patients: PROGENS ARENA Study

    Science.gov (United States)

    Możdżan, Michał; Kokoszka-Paszkot, Janina; Kubik, Magdalena; Masierek, Małgorzata; Czerwińska, Margerita; Małecki, Maciej T.

    2016-01-01

    There is no doubt that behavioral intervention is crucial for type 2 diabetes mellitus (T2DM) prevention and management. We aimed to estimate dietary habits and diet-oriented knowledge as well as the level of physical activity in 2500 insulin-treated Polish type 2 diabetes mellitus (T2DM) patients (55.4% women). The mean age of the study participants was 64.9 ± 9.3 years, mean BMI was 31.4 kg/m2 ± 4.5, mean diabetes duration was 12.4 ± 6.9 years, and mean baseline HbA1c was 8.5%  ± 1.2. At the study onset, all the patients completed a questionnaire concerning health-oriented behavior. Results showed a significant lack of diet-related knowledge. For example, only 37.5% recognized that buckwheat contains carbohydrates; the percentage of correct answers in questions about fruit drinks and pasta was 56.4% and 61.2%, respectively. As for the physical activity, only 57.4% of examined T2DM patients declared any form of deliberate physical activity. To conclude, the cohort of poorly controlled insulin-treated T2DM patients studied by us is characterized by insufficient diet-related knowledge and by a very low level of physical activity. Further studies on other populations of insulin-treated T2DM patients are required to confirm these findings. PMID:27703476

  8. Physical Activity, Dietary Intake, and the Insulin Resistance Syndrome in Nondiabetic Adults with Mental Retardation.

    Science.gov (United States)

    Draheim, Christopher C.; Williams, Daniel P.; McCubbin, Jeffrey A.

    2002-01-01

    A study identified 145 adults with mild mental retardation and hyperinsulinemia, borderline high triglycerides, low high-density lipoprotein cholesterol, hypertension, and abdominal obesity. Those who participated in more frequent bouts of physical activity or who consumed lower dietary fat intakes were one-third as likely to have hyperinsulinemia…

  9. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans

    Science.gov (United States)

    Apfeld, Javier; O'Connor, Greg; McDonagh, Tom; DiStefano, Peter S.; Curtis, Rory

    2004-01-01

    Although limiting energy availability extends lifespan in many organisms, it is not understood how lifespan is coupled to energy levels. We find that the AMP:ATP ratio, a measure of energy levels, increases with age in Caenorhabditis elegans and can be used to predict life expectancy. The C. elegans AMP-activated protein kinase α subunit AAK-2 is activated by AMP and functions to extend lifespan. In addition, either an environmental stressor that increases the AMP:ATP ratio or mutations that lower insulin-like signaling extend lifespan in an aak-2-dependent manner. Thus, AAK-2 is a sensor that couples lifespan to information about energy levels and insulin-like signals. PMID:15574588

  10. Total and free insulin-like growth factor I, insulin-like growth factor binding protein 3 and acid-labile subunit reflect clinical activity in acromegaly

    DEFF Research Database (Denmark)

    Sneppen, S B; Lange, Merete Wolder; Pedersen, L M;

    2001-01-01

    The aim was to evaluate, markers of disease activity in acromegaly in relation to perceived disease activity. Thirty-seven consecutively treated, acromegalic patients, classified by clinical symptoms as inactive (n=16), slightly active (n=10) and active (n=11), entered the study. When evaluating......-like growth factor binding protein-3 (IGFBP-3) with PV(pos) of 0.69 and 0.71 and PV(neg) of 0.91 and 0.92 respectively. We conclude that free IGF-I is more closely related than total IGF-I to perceived disease activity and is as such useful when evaluating previously treated acromegaly for disease activity...

  11. Insulin signaling meets mitochondria in metabolism.

    Science.gov (United States)

    Cheng, Zhiyong; Tseng, Yolanda; White, Morris F

    2010-10-01

    Insulin controls nutrient and metabolic homeostasis via the IRS-PI3K-AKT signaling cascade that targets FOXO1 and mTOR. Mitochondria, as the prime metabolic platform, malfunction during insulin resistance in metabolic diseases. However, the molecular link between insulin resistance and mitochondrial dysfunction remains undefined. Here we review recent studies on insulin action and the mechanistic association with mitochondrial metabolism. These studies suggest that insulin signaling underpins mitochondrial electron transport chain integrity and activity by suppressing FOXO1/HMOX1 and maintaining the NAD(+)/NADH ratio, the mediator of the SIRT1/PGC1α pathway for mitochondrial biogenesis and function. Mitochondria generate moderately reactive oxygen species (ROS) and enhance insulin sensitivity upon redox regulation of protein tyrosine phosphatase and insulin receptor. However, chronic exposure to high ROS levels could alter mitochondrial function and thereby cause insulin resistance.

  12. Association of β3 Adrenergic Receptor and Peroxisome Proliferator-activated Receptor Gamma 2 Polymorphisms With Insulin Sensitivity: A Twin Study

    Institute of Scientific and Technical Information of China (English)

    TIAN-JIAO CHEN; CHENG-YE JI; XIAO-YING ZHENG; YONG-HUA HU

    2007-01-01

    Objective To study the effect of β3 adrenergic receptor (β3AR) Trp64Arg and peroxisome proliferator activated receptor gamma 2 (PPARγ2) Pro12Ala polymorphisms on insulin resistance. Methods One hundred and eight dizygotic twin pairs were enrolled in this study. Microsatellite polymorphism was used to diagnose zygosity of twins. Insulin sensitivity was estimated with logarithm transformed homeostasis model assessment (HOMA). PCR-RFLP analysis was performed to detect the variants. As a supplement to the sib-pair method, identity by state (IBS) was used to analyze the association of polymorphisms with insulin sensitivity. Results The genotype frequencies of Trp64Trg, Trp64Arg, and Arg64Arg were 72.3%, 23.8%, and 3.9%, respectively, while the genotype frequencies of Pro12Pro, Pro12Ala, and Ala12Ala were 89.9%, 9.6%,and 0.5%, respectively. For β3AR Trp64Arg the interclass co-twin correlations of Waist-to-hip ratio (WHR), blood glucose (GLU), and insulin (INS), homeostasis model assessment insulin resistance index (HOMA-IR) of the twin pairs sharing 2alleles of IBS were greater than those sharing 0-1 allele of IBS, and HOMA-IR had statistic significance. For PPARγ2 Pro12Ala most traits of twin pairs sharing 2 alleles of IBS had greater correlations and statistic significance in body mass index (BMI),WHR, percent of body fat (PBF) and GLU, but there were low correlations of either insulin or HOMA-IR of twin pairs sharing 1 or 2 alleles of IBS. The combined effects of the two variations showed less squared significant twin-pair differences of INS and HOMA-IR among twins sharing 4 alleles of IBS. Conclusions β3AR Trp64Arg and PPARγ2 Pro12Ala polymorphisms might be associated with insulin resistance and obesity, and there might be slight synergistic effects between this two gene loci,and further studies are necessary to confirm this finding.

  13. Activation of α7 nicotinic acetylcholine receptor decreases on-site mortality in crush syndrome through insulin signaling-Na/K-ATPase pathway

    Directory of Open Access Journals (Sweden)

    Bo-Shi eFan

    2016-03-01

    Full Text Available On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with anisodamine decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with anisodamine (20 mg/kg and 28 mg/kg respectively, i.p. 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist and PNU282987 (selective α7nAChR agonist, or in α7nAChR knockout mice. Effect of anisodamine was also appraised in C2C12 myotubes. Anisodamine reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by anisodamine. Phosphorylation of Na/K-ATPase was enhanced by anisodamine in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of anisodamine on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway.

  14. Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle

    OpenAIRE

    He, Weimin; Barak, Yaacov; Hevener, Andrea; Olson, Peter; Liao, Debbie; Le, Jamie; Nelson, Michael; Ong, Estelita; Olefsky, Jerrold M.; Evans, Ronald M

    2003-01-01

    Syndrome X, typified by obesity, insulin resistance (IR), dyslipidemia, and other metabolic abnormalities, is responsive to antidiabetic thiazolidinediones (TZDs). Peroxisome proliferator-activated receptor (PPAR) γ, a target of TZDs, is expressed abundantly in adipocytes, suggesting an important role for this tissue in the etiology and treatment of IR. Targeted deletion of PPARγ in adipose tissue resulted in marked adipocyte hypocellularity and hypertrophy, elevated levels of plasma free fat...

  15. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation.

    Science.gov (United States)

    De Meyts, Pierre

    2015-04-01

    Progress in solving the structure of insulin bound to its receptor has been slow and stepwise, but a milestone has now been reached with a refined structure of a complex of insulin with a "microreceptor" that contains the primary binding site. The insulin receptor is a dimeric allosteric enzyme that belongs to the family of receptor tyrosine kinases. The insulin binding process is complex and exhibits negative cooperativity. Biochemical evidence suggested that insulin, through two distinct binding sites, crosslinks two receptor sites located on each α subunit. The structure of the unliganded receptor ectodomain showed a symmetrical folded-over conformation with an antiparallel disposition. Further work resolved the detailed structure of receptor site 1, both without and with insulin. Recently, a missing piece in the puzzle was added: the C-terminal portion of insulin's B-chain known to be critical for binding and negative cooperativity. Here I discuss these findings and their implications.

  16. Peroxisome proliferator-activated receptor-γ activation enhances insulin-stimulated glucose disposal by reducing ped/pea-15 gene expression in skeletal muscle cells: evidence for involvement of activator protein-1.

    Science.gov (United States)

    Ungaro, Paola; Mirra, Paola; Oriente, Francesco; Nigro, Cecilia; Ciccarelli, Marco; Vastolo, Viviana; Longo, Michele; Perruolo, Giuseppe; Spinelli, Rosa; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2012-12-14

    The gene network responsible for inflammation-induced insulin resistance remains enigmatic. In this study, we show that, in L6 cells, rosiglitazone- as well as pioglitazone-dependent activation of peroxisome proliferator-activated receptor-γ (PPARγ) represses transcription of the ped/pea-15 gene, whose increased activity impairs glucose tolerance in mice and humans. Rosiglitazone enhanced insulin-induced glucose uptake in L6 cells expressing the endogenous ped/pea-15 gene but not in cells expressing ped/pea-15 under the control of an exogenous promoter. The ability of PPARγ to affect ped/pea-15 expression was also lost in cells and in C57BL/6J transgenic mice expressing ped/pea-15 under the control of an exogenous promoter, suggesting that ped/pea-15 repression may contribute to rosiglitazone action on glucose disposal. Indeed, high fat diet mice showed insulin resistance and increased ped/pea-15 levels, although these effects were reduced by rosiglitazone treatment. Both supershift and ChIP assays revealed the presence of the AP-1 component c-JUN at the PED/PEA-15 promoter upon 12-O-tetradecanoylphorbol-13-acetate stimulation of the cells. In these experiments, rosiglitazone treatment reduced c-JUN presence at the PED/PEA-15 promoter. This effect was not associated with a decrease in c-JUN expression. In addition, c-jun silencing in L6 cells lowered ped/pea-15 expression and caused nonresponsiveness to rosiglitazone, although c-jun overexpression enhanced the binding to the ped/pea-15 promoter and blocked the rosiglitazone effect. These results indicate that PPARγ regulates ped/pea-15 transcription by inhibiting c-JUN binding at the ped/pea-15 promoter. Thus, ped/pea-15 is downstream of a major PPARγ-regulated inflammatory network. Repression of ped/pea-15 transcription might contribute to the PPARγ regulation of muscle sensitivity to insulin.

  17. Creatine inhibits adipogenesis by downregulating insulin-induced activation of the phosphatidylinositol 3-kinase signaling pathway.

    Science.gov (United States)

    Lee, Nayeon; Kim, Inhee; Park, Soojeong; Han, Dasol; Ha, Soobong; Kwon, Mookwang; Kim, Juwan; Byun, Sung-Hyun; Oh, Wonil; Jeon, Hong Bae; Kweon, Dae-Hyuk; Cho, Jae Youl; Yoon, Keejung

    2015-04-15

    Creatine is a nitrogenous organic acid known to function in adenosine triphosphate (ATP) metabolism. Recent evidence indicates that creatine regulates the differentiation of mesenchymal stem cells (MSCs) in processes such as osteogenesis and myogenesis. In this study, we show that creatine also has a negative regulatory effect on fat cell formation. Creatine inhibits the accumulation of cytoplasmic triglycerides in a dose-dependent manner irrespective of the adipogenic cell models used, including a C3H10T1/2 MSC line, 3T3-L1 preadipocytes, and primary human MSCs. Consistently, a dramatic reduction in mRNA expression of adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), glucose transporters, 1 and 4 (Glut1, Glut4), and adipocyte markers, aP2 and adipsin, was observed in the presence of creatine. Creatine appears to exert its inhibitory effects on adipogenesis during early differentiation, but not late differentiation, or proliferation stages through inhibition of the PI3K-Akt-PPARγ signaling pathway. In an in vivo model, administration of creatine into mice resulted in body mass increase without fat accumulation. In summary, our results indicate that creatine downregulates adipogenesis through inhibition of phosphatidylinositol 3-kinase (PI3K) activation and imply the potent therapeutic value of creatine in treating obesity and obesity-related metabolic disorders.

  18. Three-chain insulin analogs demonstrate the importance of insulin secondary structure to bioactivity.

    Science.gov (United States)

    Wu, Fangzhou; Chabenne, Joseph R; Gelfanov, Vasily M; Mayer, John P; DiMarchi, Richard D

    2015-03-01

    This report describes the chemical synthesis and biological characterization of novel three-chain insulin analogs with a destabilized secondary structure. The analogs, obtained by chemical synthesis via a single-chain precursor and selective enzymatic digestion, were used to investigate the role of the highly conserved 'insulin fold'. Biological characterization through in vitro biochemical signaling showed extremely low activity at each insulin receptor when compared with native insulin. We conclude that the 'insulin fold' is a structural foundation that supports insulin biological action.

  19. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians

    DEFF Research Database (Denmark)

    Ek, J; Andersen, G; Urhammer, S A;

    2001-01-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin-dependent) dia......We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non...

  20. Insulin Signaling and Heart Failure.

    Science.gov (United States)

    Riehle, Christian; Abel, E Dale

    2016-04-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed.

  1. Newer antibacterial agents and their potential role in cystic fibrosis pulmonary exacerbation management.

    Science.gov (United States)

    Parkins, M D; Elborn, J S

    2010-09-01

    Pulmonary exacerbations in cystic fibrosis (CF) are frequent events and account for a substantial proportion of the burden of morbidity and mortality in this disease. Antibacterial therapies to treat pulmonary exacerbations are instituted empirically and are individualized based on both patient factors (severity of exacerbation, frequency of exacerbation, recent courses of anti-infectives) and pathogen factors (previously isolated pathogens and in vitro predicted susceptibilities). However, the epidemiology of pathogens infecting CF airways is changing, with increased incidence of methicillin-resistant Staphylococcus aureus (MRSA), drug-resistant Pseudomonas aeruginosa and other Gram-negative non-fermenters such as Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Accordingly, a great need for new and novel agents for the management of acute exacerbations in CF exists. While several antibiotics have recently been approved or are close to approval for clinical use, frequently their emphasis has been for Gram-positive, and specifically MRSA-related, disease. Despite this, these agents may have a role in CF-related exacerbations. This article reviews the spectrum of activity, pharmacokinetics and clinical and theoretical evidence for the use of newer agents including tigecycline, doripenem and ceftobiprole in the management of CF pulmonary exacerbations. Appropriate use of these agents in CF will require detailed CF-specific pharmacokinetic and pharmacodynamic data.

  2. Acute Exacerbations of Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Collard, Harold R.; Moore, Bethany B.; Flaherty, Kevin R.; Brown, Kevin K.; Kaner, Robert J.; King, Talmadge E.; Lasky, Joseph A.; Loyd, James E.; Noth, Imre; Olman, Mitchell A.; Raghu, Ganesh; Roman, Jesse; Ryu, Jay H.; Zisman, David A.; Hunninghake, Gary W.; Colby, Thomas V.; Egan, Jim J.; Hansell, David M.; Johkoh, Takeshi; Kaminski, Naftali; Kim, Dong Soon; Kondoh, Yasuhiro; Lynch, David A.; Müller-Quernheim, Joachim; Myers, Jeffrey L.; Nicholson, Andrew G.; Selman, Moisés; Toews, Galen B.; Wells, Athol U.; Martinez, Fernando J.

    2007-01-01

    The natural history of idiopathic pulmonary fibrosis (IPF) has been characterized as a steady, predictable decline in lung function over time. Recent evidence suggests that some patients may experience a more precipitous course, with periods of relative stability followed by acute deteriorations in respiratory status. Many of these acute deteriorations are of unknown etiology and have been termed acute exacerbations of IPF. This perspective is the result of an international effort to summarize the current state of knowledge regarding acute exacerbations of IPF. Acute exacerbations of IPF are defined as acute, clinically significant deteriorations of unidentifiable cause in patients with underlying IPF. Proposed diagnostic criteria include subjective worsening over 30 days or less, new bilateral radiographic opacities, and the absence of infection or another identifiable etiology. The potential pathobiological roles of infection, disordered cell biology, coagulation, and genetics are discussed, and future research directions are proposed. PMID:17585107

  3. Muscleblind-like 1 activates insulin receptor exon 11 inclusion by enhancing U2AF65 binding and splicing of the upstream intron.

    Science.gov (United States)

    Echeverria, Gloria V; Cooper, Thomas A

    2014-02-01

    Alternative splicing regulates developmentally and tissue-specific gene expression programs, disruption of which have been implicated in numerous diseases. Muscleblind-like 1 (MBNL1) regulates splicing transitions, which are disrupted on loss of MBNL1 function in myotonic dystrophy type 1 (DM1). One such event is MBNL1-mediated activation of insulin receptor exon 11 inclusion, which requires an intronic enhancer element downstream of exon 11. The mechanism of MBNL1-mediated activation of exon inclusion is unknown. We developed an in vitro splicing assay, which robustly recapitulates MBNL1-mediated splicing activation of insulin receptor exon 11 and found that MBNL1 activates removal of the intron upstream of exon 11 upon binding its functional response element in the downstream intron. MBNL1 enhances early spliceosome assembly as evidenced by enhanced complex A formation and binding of U2 small nuclear ribonucleoprotein auxiliary factor 65 kDa subunit (U2AF65) on the upstream intron. We demonstrated that neither the 5' splice site nor exon 11 sequences are required for MBNL1-activated U2AF65 binding. Interestingly, the 5' splice site is required for MBNL1-mediated activation of upstream intron removal, although MBNL1 has no effect on U1 snRNA recruitment. These results suggest that MBNL1 directly activates binding of U2AF65 to enhance upstream intron removal to ultimately activate alternative exon inclusion.

  4. c-Jun NH2-terminal kinase activity in subcutaneous adipose tissue but not nuclear factor-kappaB activity in peripheral blood mononuclear cells is an independent determinant of insulin resistance in healthy individuals

    DEFF Research Database (Denmark)

    Sourris, Karly C; Lyons, Jasmine G; de Courten, Maximilian

    2009-01-01

    Chronic low-grade activation of the immune system (CLAIS) predicts type 2 diabetes via a decrease in insulin sensitivity. Our study investigated potential relationships between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK) pathways-two pathways proposed as the link between...

  5. Insulin: pancreatic secretion and adipocyte regulation.

    Science.gov (United States)

    Baumgard, L H; Hausman, G J; Sanz Fernandez, M V

    2016-01-01

    Insulin is the primary acute anabolic coordinator of nutrient partitioning. Hyperglycemia is the main stimulant of insulin secretion, but other nutrients such as specific amino acids, fatty acids, and ketoacids can potentiate pancreatic insulin release. Incretins are intestinal hormones with insulinotropic activity and are secreted in response to food ingestion, thus integrating diet chemical composition with the regulation of insulin release. In addition, prolactin is required for proper islet development, and it stimulates β-cell proliferation. Counterintuitively, bacterial components appear to signal insulin secretion. In vivo lipopolysaccharide infusion acutely increases circulating insulin, which is paradoxical as endotoxemia is a potent catabolic condition. Insulin is a potent anabolic orchestrator of nutrient partitioning, and this is particularly true in adipocytes. Insulin dictates lipid accretion in a dose-dependent manner during preadipocyte development in adipose tissue-derived stromal vascular cell culture. However, in vivo studies focused on insulin's role in regulating adipose tissue metabolism from growing, and market weight pigs are sometimes inconsistent, and this variability appears to be animal, age and depot dependent. Additionally, porcine adipose tissue synthesizes and secretes a number of adipokines (leptin, adiponectin, and so forth) that directly or indirectly influence insulin action. Therefore, because insulin has an enormous impact on agriculturally important phenotypes, it is critical to have a better understanding of how insulin homeostasis is governed.

  6. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  7. Peroxisome Proliferator-Activated Receptor γCoactivator 1 α and Insulin Resistance%PGC-1α与胰岛素抵抗

    Institute of Scientific and Technical Information of China (English)

    马慧娟

    2011-01-01

    Peroxisome proliferator-activated receptor "y coactivator la ( PGC-la) is a nuclear transcription co-activator factor. PGC-la can play different functions when combined with different transcription factors. Additionally, genetic and environmental factors can affect the expression of PGC-la. The expression of PGC-la noticeably decreased in patients with insulin resistance and type 2 diabetes. The expression of PGC-la and insulin sensitivity decreased with high lipid intervention. However, physical exercise can increase the expression and improve insulin resistance. The gene polymorphism of PGC-la is closely related to insulin resistance and type 2 diabetes.%过氧化物酶体增生物激活受体y共激活因子1α(PGC-1α),是一种核转录共激活因子,它与不同的转录因子结合发挥不同的功能.PGC-1α在胰岛素抵抗和2型糖尿病人群的表达下降.环境和遗传因素均可影响PGC-1α的表达,高脂使PGC-1α表达下降,降低胰岛素敏感性,而运动可增加PGC-1α表达,改善胰岛素抵抗.PGC-1α的基因多态性与胰岛素抵抗、2型糖尿病密切相关.

  8. A novel insulin sensitizer (S15511) enhances insulin-stimulated glucose uptake in rat skeletal muscles.

    Science.gov (United States)

    Jessen, N; Selmer Buhl, E; Pold, R; Schmitz, O; Lund, S

    2008-04-01

    Type 2 diabetes is preceded by the presence of skeletal muscle insulin resistance, and drugs that increase insulin sensitivity in skeletal muscle prevent the disease. S15511 is an original compound with demonstrated effects on insulin sensitivity in animal models of insulin resistance. However, the mechanisms behind the insulin-sensitizing effect of S15511 are unknown. The aim of our study was to explore whether S15511 improves insulin sensitivity in skeletal muscles. Insulin sensitivity was assessed in skeletal muscles from S15511-treated rats by measuring intracellular insulin-signaling activity and insulin-stimulated glucose transport in isolated muscles. In addition, GLUT4 expression and glycogen levels were assessed after treatment. S15511 treatment was associated with an increase in insulin-stimulated glucose transport in type IIb fibers, while type I fibers were unaffected. The enhanced glucose transport was mirrored by a fiber type-specific increase in GLUT4 expression, while no improvement in insulin-signaling activity was observed. S15511 is a novel insulin sensitizer that is capable of improving glucose homeostasis in nondiabetic rats. The compound enhances skeletal muscle insulin sensitivity and specifically targets type IIb muscle fibers by increasing GLUT4 expression. Together these data show S15511 to be a potentially promising new drug in the treatment and prevention of type 2 diabetes.

  9. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity.

    Science.gov (United States)

    Choe, Chi-un; Lewerenz, Jan; Fischer, Gerry; Uliasz, Tracy F; Espey, Michael Graham; Hummel, Friedhelm C; King, Stephen Bruce; Schwedhelm, Edzard; Böger, Rainer H; Gerloff, Christian; Hewett, Sandra J; Magnus, Tim; Donzelli, Sonia

    2009-09-01

    Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo.

  10. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E;

    1995-01-01

    converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues...... glucagon-like peptide-1 and pituitary adenylate cyclase-activating polypeptide. Activation of 44-kDa MAP kinase by glucose was dependent on Ca2+ influx and may in part be mediated by MEK-1, a MAP kinase kinase. Stimulation of Ca2+ influx by KCl was in itself sufficient to activate 44-kDa MAP kinase and MEK......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  11. Role of Heme Oxygenase in Inflammation, Insulin-Signalling, Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    Joseph Fomusi Ndisang

    2010-01-01

    Full Text Available Diabetes and obesity are chronic conditions associated with elevated oxidative/inflammatory activities with a continuum of tissue insults leading to more severe cardiometabolic and renal complications including myocardial infarction and end-stage-renal damage. A common denominator of these chronic conditions is the enhanced the levels of cytokines like tumour necrosis factor-alpha (TNF-α, interleukin (IL-6, IL-1β and resistin, which in turn activates the c-Jun-N-terminal kinase (JNK and NF-κB pathways, creating a vicious cycle that exacerbates insulin resistance, type-2 diabetes and related complications. Emerging evidence indicates that heme oxygenase (HO inducers are endowed with potent anti-diabetic and insulin sensitizing effects besides their ability to suppress immune/inflammatory response. Importantly, the HO system abates inflammation through several mechanisms including the suppression of macrophage-infiltration and abrogation of oxidative/inflammatory transcription factors like NF-κB, JNK and activating protein-1. This review highlights the mechanisms by which the HO system potentiates insulin signalling, with particular emphasis on HO-mediated suppression of oxidative and inflammatory insults. The HO system could be explored in the search for novel remedies against cardiometabolic diseases and their complications.

  12. Loss of Sodium/Hydrogen Exchanger NHA2 Exacerbates Obesity- and Aging-Induced Glucose Intolerance in Mice

    Science.gov (United States)

    Deisl, Christine; Anderegg, Manuel; Albano, Giuseppe; Lüscher, Benjamin P.; Cerny, David; Soria, Rodrigo; Bouillet, Elisa; Rimoldi, Stefano; Scherrer, Urs

    2016-01-01

    We previously demonstrated that the sodium/hydrogen exchanger NHA2, also known as NHEDC2 or SLC9B2, is critical for insulin secretion by β–cells. To gain more insights into the role of NHA2 on systemic glucose homeostasis, we studied the impact of loss of NHA2 during the physiological aging process and in the setting of diet-induced obesity. While glucose tolerance was normal at 2 months of age, NHA2 KO mice displayed a significant glucose intolerance at 5 and 12 months of age, respectively. An obesogenic high fat diet further exacerbated the glucose intolerance of NHA2 KO mice. Insulin levels remained similar in NHA2 KO and WT mice during aging and high fat diet, but fasting insulin/glucose ratios were significantly lower in NHA2 KO mice. Peripheral insulin sensitivity, measured by insulin tolerance tests and hyperinsulinemic euglycemic clamps, was unaffected by loss of NHA2 during aging and high fat diet. High fat diet diminished insulin secretion capacity in both WT and NHA2 KO islets and reduced expression of NHA2 in WT islets. In contrast, aging was characterized by a gradual increase of NHA2 expression in islets, paralleled by an increasing difference in insulin secretion between WT and NHA2 KO islets. In summary, our results demonstrate that loss of the sodium/hydrogen exchanger NHA2 exacerbates obesity- and aging-induced glucose intolerance in mice. Furthermore, our data reveal a close link between NHA2 expression and insulin secretion capacity in islets. PMID:27685945

  13. Decreased myo-inositol to chiro-inositol (M/C) ratios and increased M/C epimerase activity in PCOS theca cells demonstrate increased insulin sensitivity compared to controls.

    Science.gov (United States)

    Heimark, Douglas; McAllister, Jan; Larner, Joseph

    2014-01-01

    Previous studies from our and other labs have shown that insulin resistance is associated with an inositol imbalance of excess myo-inositol and deficient chiro-inositol together with a deficiency of myo-inositol to chiro-inositol epimerase in vivo and in vitro. In this report, we utilized well characterized theca cells from normal cycling women, with normal insulin sensitivity, and theca cells from women with polycystic ovary syndrome (PCOS), with increased insulin sensitivity to examine the myo-inositol to chiro-inisitol (M/C) ratio and the myo-inositol to chiro-inositol epimerase activity. PCOS theca cells with increased insulin sensitivity were specifically used to investigate whether the inositol imbalance and myo-inositol to chiro-inositol epimerase are regulated in a similar or the opposite direction than that observed in insulin resistant cells. The results of these studies are the first to demonstrate that in insulin sensitive PCOS theca cells the inositol imbalance goes in the opposite direction to that observed in insulin resistant cells, and there is a decreased M/C ratio and an increased myo-inositol to chiro-inositol epimerase activity. Further biochemical and genetic studies will probe the mechanisms involved.

  14. Alteration in insulin action

    DEFF Research Database (Denmark)

    Tanti, J F; Gual, P; Grémeaux, T;

    2004-01-01

    Insulin resistance, when combined with impaired insulin secretion, contributes to the development of type 2 diabetes. Insulin resistance is characterised by a decrease in insulin effect on glucose transport in muscle and adipose tIssue. Tyrosine phosphorylation of insulin receptor substrate 1 (IR...

  15. Distinct Roles for JNK and IKK Activation in Agouti-Related Peptide Neurons in the Development of Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Eva Tsaousidou

    2014-11-01

    Full Text Available Activation of c-Jun N-terminal kinase 1 (JNK1- and inhibitor of nuclear factor kappa-B kinase 2 (IKK2-dependent signaling plays a crucial role in the development of obesity-associated insulin and leptin resistance not only in peripheral tissues but also in the CNS. Here, we demonstrate that constitutive JNK activation in agouti-related peptide (AgRP-expressing neurons of the hypothalamus is sufficient to induce weight gain and adiposity in mice as a consequence of hyperphagia. JNK activation increases spontaneous action potential firing of AgRP cells and causes both neuronal and systemic leptin resistance. Similarly, activation of IKK2 signaling in AgRP neurons also increases firing of these cells but fails to cause obesity and leptin resistance. In contrast to JNK activation, IKK2 activation blunts insulin signaling in AgRP neurons and impairs systemic glucose homeostasis. Collectively, these experiments reveal both overlapping and nonredundant effects of JNK- and IKK-dependent signaling in AgRP neurons, which cooperate in the manifestation of the metabolic syndrome.

  16. Insulin-like growth factor binding protein-1 activates integrin-mediated intracellular signaling and migration in oligodendrocytes

    NARCIS (Netherlands)

    Chesik, Daniel; De Keyser, Jacques; Bron, Reinier; Fuhler, Gwenny M.

    2010-01-01

    P>In multiple sclerosis (MS), oligodendrocytes in lesions are lost, leaving damaged tissue virtually devoid of these myelin-producing cells. Our group has recently demonstrated enhanced expression of insulin-like growth factor (IGF) binding protein-1 (IGFBP-1) in oligodendrocytes (CNPase+) localized

  17. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Science.gov (United States)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  18. Acute exacerbation of airspace enlargement with fibrosis

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kakugawa

    2014-01-01

    Full Text Available In 2008, Kawabata et al. described a lesion which they termed “airspace enlargement with fibrosis” that could be included on the spectrum of smoking-related interstitial lung diseases. This group also reported that patients with airspace enlargement with fibrosis but without coexisting interstitial pneumonia of another type had no acute exacerbations and favorable prognoses on clinical follow-up. Here we describe the first case, to our knowledge, of acute exacerbation of airspace enlargement with fibrosis without coexisting interstitial pneumonia of another type. An 82-year-old man was referred to our department for worsening dyspnea and new alveolar opacities on chest radiograph following left pulmonary segmentectomy (S6 for cancer. A diagnosis of acute exacerbation of airspace enlargement with fibrosis without coexisting interstitial pneumonia of other types was made, based on pathological evidence of airspace enlargement with fibrosis and organizing diffuse alveolar damage. Treatment with high-dose methylprednisolone followed by tapered oral prednisolone resulted in gradual improvement of the clinical condition and chest radiographic findings. Clinicians should be aware that patients with airspace enlargement with fibrosis may experience acute exacerbation.

  19. Lung microbiome dynamics in COPD exacerbations.

    Science.gov (United States)

    Wang, Zhang; Bafadhel, Mona; Haldar, Koirobi; Spivak, Aaron; Mayhew, David; Miller, Bruce E; Tal-Singer, Ruth; Johnston, Sebastian L; Ramsheh, Mohammadali Yavari; Barer, Michael R; Brightling, Christopher E; Brown, James R

    2016-04-01

    Increasing evidence suggests that the lung microbiome plays an important role in chronic obstructive pulmonary disease (COPD) severity. However, the dynamics of the lung microbiome during COPD exacerbations and its potential role in disease aetiology remain poorly understood.We completed a longitudinal 16S ribosomal RNA survey of the lung microbiome on 476 sputum samples collected from 87 subjects with COPD at four visits defined as stable state, exacerbation, 2 weeks post-therapy and 6 weeks recovery.Our analysis revealed a dynamic lung microbiota where changes appeared to be associated with exacerbation events and indicative of specific exacerbation phenotypes. Antibiotic and steroid treatments appear to have differential effects on the lung microbiome. We depict a microbial interaction network for the lung microbiome and suggest that perturbation of a few bacterial operational taxonomic units, in particular Haemophilus spp., could greatly impact the overall microbial community structure. Furthermore, several serum and sputum biomarkers, in particular sputum interleukin-8, appear to be highly correlated with the structure and diversity of the microbiome.Our study furthers the understanding of lung microbiome dynamics in COPD patients and highlights its potential as a biomarker, and possibly a target, for future respiratory therapeutics.

  20. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2014-12-01

    Full Text Available A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  1. Determining prognosis in acute exacerbation of COPD

    Directory of Open Access Journals (Sweden)

    Flattet Y

    2017-01-01

    Full Text Available Yves Flattet,1 Nicolas Garin,1,2 Jacques Serratrice,1 Arnaud Perrier,1 Jérome Stirnemann,1 Sebastian Carballo1 1Department of Internal Medicine, Service of General Internal Medicine, Geneva University Hospitals, Geneva, 2Service of Internal Medicine, Riviera Chablais Hospital, Monthey, Switzerland Background: Acute exacerbations are the leading causes of hospitalization and mortality in patients with COPD. Prognostic tools for patients with chronic COPD exist, but there are scarce data regarding acute exacerbations. We aimed to identify the prognostic factors of death and readmission after exacerbation of COPD.Methods: This was a retrospective study conducted in the Department of Internal Medicine of Geneva University Hospitals. All patients admitted to the hospital with a diagnosis of exacerbation of COPD between 2008 and 2011 were included. The studied variables included comorbidities, Global Initiative for Chronic Obstructive Lung Disease (GOLD severity classification, and biological and clinical parameters. The main outcome was death or readmission during a 5-year follow-up. The secondary outcome was death. Survival analysis was performed (log-rank and Cox.Results: We identified a total of 359 patients (195 men and 164 women, average age 72 years. During 5-year follow-up, 242 patients died or were hospitalized for the exacerbation of COPD. In multivariate analysis, age (hazard ratio [HR] 1.03, 95% CI 1.02–1.05; P<0.0001, severity of airflow obstruction (forced expiratory volume in 1 s <30%; HR 4.65, 95% CI 1.42–15.1; P=0.01, diabetes (HR 1.47, 95% CI 1.003–2.16; P=0.048, cancer (HR 2.79, 95% CI 1.68–4.64; P<0.0001, creatinine (HR 1.003, 95% CI 1.0004–1.006; P=0.02, and respiratory rate (HR 1.03, 95% CI 1.003–1.05; P=0.028 on admission were significantly associated with the primary outcome. Age, cancer, and procalcitonin were significantly associated with the secondary outcome.Conclusion: COPD remains of ominous prognosis

  2. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle.

    Science.gov (United States)

    He, Weimin; Barak, Yaacov; Hevener, Andrea; Olson, Peter; Liao, Debbie; Le, Jamie; Nelson, Michael; Ong, Estelita; Olefsky, Jerrold M; Evans, Ronald M

    2003-12-23

    Syndrome X, typified by obesity, insulin resistance (IR), dyslipidemia, and other metabolic abnormalities, is responsive to antidiabetic thiazolidinediones (TZDs). Peroxisome proliferator-activated receptor (PPAR) gamma, a target of TZDs, is expressed abundantly in adipocytes, suggesting an important role for this tissue in the etiology and treatment of IR. Targeted deletion of PPARgamma in adipose tissue resulted in marked adipocyte hypocellularity and hypertrophy, elevated levels of plasma free fatty acids and triglyceride, and decreased levels of plasma leptin and ACRP30. In addition, increased hepatic glucogenesis and IR were observed. Despite these defects, blood glucose, glucose and insulin tolerance, and insulin-stimulated muscle glucose uptake were all comparable to those of control mice. However, targeted mice were significantly more susceptible to high-fat diet-induced steatosis, hyperinsulinemia, and IR. Surprisingly, TZD treatment effectively reversed liver IR, whereas it failed to lower plasma free fatty acids. These results suggest that syndrome X may be comprised of separable PPARgamma-dependent components whose origins and therapeutic sites may reside in distinct tissues.

  3. Peroxisome proliferator-activated receptor gamma (PPARγ) in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA expression and transcriptional regulation by insulin in vivo and in vitro.

    Science.gov (United States)

    Zheng, Jia-Lang; Zhuo, Mei-Qin; Luo, Zhi; Pan, Ya-Xiong; Song, Yu-Feng; Huang, Chao; Zhu, Qing-Ling; Hu, Wei; Chen, Qi-Liang

    2015-02-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is ligand-inducible transcription factor and has important roles in lipid metabolism, cell proliferation and inflammation. In the present study, yellow catfish Pelteobagrus fulvidraco PPARγ cDNA was isolated from liver by RT-PCR and RACE, and its molecular characterization and transcriptional regulation by insulin in vivo and in vitro were determined. The generation of PPARγ1 and PPARγ2 was due to alternative promoter of PPARγ gene. PPARγ1 and PPARγ2 mRNA covered 2426 bp and 2537 bp, respectively, with an open reading frame (ORF) of 1584 bp encoding 527 amino acid residues. Yellow catfish PPARγ gene was organized in a manner similar to that of their mammalian homologs, implying a modular organization of the protein's domains. A comparison between the yellow catfish PPARγ amino acid sequence and the correspondent sequences of several other species revealed the identity of 55-76.2%. Two PPARγ transcripts (PPARγ1 and PPARγ2) mRNAs were expressed in a wide range of tissues, but the abundance of each PPARγ mRNA showed the tissue- and developmental stage-dependent expression patterns. Intraperitoneal injection of insulin in vivo significantly stimulated the mRNA expression of total PPARγ and PPARγ1, but not PPARγ2 in the liver of yellow catfish. In contrast, incubation of hepatocytes with insulin in vitro increased the mRNA levels of PPARγ1, PPARγ2 and total PPARγ. To our knowledge, for the first time, the present study provides evidence that PPARγ1 and PPARγ2 are differentially expressed with and among tissues during different developmental stages and also regulated by insulin both in vivo and in vitro, which serves to increase our understanding on PPARγ physiological function in fish.

  4. Insulin-responsiveness of tumor growth.

    Science.gov (United States)

    Chantelau, Ernst

    2009-05-01

    In October 2008, the 2nd International Insulin & Cancer Workshop convened roughly 30 researchers from eight countries in Düsseldorf/Germany. At this meeting, which was industry-independent like the preceding one in 2007, the following issues were discussed a) association between certain cancers and endogenous insulin production in humans, b) growth-promoting effects of insulin in animal experiments, c) mitogenic and anti-apoptotic activity of pharmaceutic insulin and insulin analogues in in vitro experiments, d) potential mechanisms of insulin action on cell growth, mediated by IGF-1 receptor and insulin receptor signaling, and e) IGF-1 receptor targeting for inhibition of tumor growth. It was concluded that further research is necessary to elucidate the clinical effects of these observations, and their potential for human neoplastic disease and treatment.

  5. A simple, economical method of converting gene expression products of insulin into recombinant insulin and its application

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhou; CHEN Hui; TANG Yuehua; FENG Youmin

    2003-01-01

    A method, by which the gene expression product of recombinant single chain insulin can be converted into insulin by directly digesting with trypsin, has been established. This method has been used in process of porcine insulin precursor (PIP), [B16Ala]PIP and [B26Ala]PIP into (desB30)insulin, (desB30)[B16Ala]insulin and (desB30)[B26Ala]insulin, respectively, and all of them retain full biological activity of that of their corresponding parent, recombinant human insulin, [B16Ala]insulin and [B26Ala]insulin. The results further demonstrate that the C-terminal residue of B chain is not necessary for insulin's biological activity. Compared with the method of transpeptidation, this method is simple, with a high yield, and avoids the use of organic reagents, and in comparison with the trypsin/carboxypeptidase method, it omits the use of carboxylpeptidase. Besides, (desB30)[B16Ala]insulin and (desB30)[B26Ala]insulin still remained without self-association property as that of their parents, which demonstrate that they are monomeric insulin. So they can be used for substituting for monomeric insulin, [B16Ala]insulin and [B26Ala]insulin, in clinical applications.

  6. Metabolic regulation of insulin secretion.

    Science.gov (United States)

    Keane, Kevin; Newsholme, Philip

    2014-01-01

    Regulation of metabolic fuel homeostasis is a critical function of β-cells, which are located in the islets of Langerhans of the animal pancreas. Impairment of this β-cell function is a hallmark of pancreatic β-cell failure and may lead to development of type 2 diabetes mellitus. β-Cells are essentially "fuel sensors" that monitor and react to elevated nutrient load by releasing insulin. This response involves metabolic activation and generation of metabolic coupling factors (MCFs) that relay the nutrient signal throughout the cell and induce insulin biosynthesis and secretion. Glucose is the most important insulin secretagogue as it is the primary fuel source in food. Glucose metabolism is central to generation of MCFs that lead to insulin release, most notably ATP. In addition, other classes of nutrients are able to augment insulin secretion and these include members of the lipid and amino acid family of nutrients. Therefore, it is important to investigate the interplay between glucose, lipid, and amino acid metabolism, as it is this mixed nutrient sensing that generate the MCFs required for insulin exocytosis. The mechanisms by which these nutrients are metabolized to generate MCFs, and how they impact on β-cell insulin release and function, are discussed in detail in this article.

  7. A new recombinant pituitary adenylate cyclase-activating peptide-derived peptide efficiently promotes glucose uptake and glucose-dependent insulin secretion

    Institute of Scientific and Technical Information of China (English)

    Yi Ma; Tianjie Luo; Wenna Xu; Zulu Ye; An Hong

    2012-01-01

    The recombinant peptide,DBAYL,a promising therapeutic peptide for type 2 diabetes,is a new,potent,and highly selective agonist for VPAC2 generated through sitedirected mutagenesis based on sequence alignments of pituitary adenylate cyclase-activating peptide (PACAP),vasoactive intestinal peptide (VIP),and related analogs.The recombinant DBAYL was used to evaluate its effect and mechanism in blood glucose metabolism and utilization.As much as 28.9 mg recombinant DBAYL peptide with purity over 98% can be obtained from 1 I of Luria-Bertani medium culture by the method established in this study and the prepared DBAYL with four mutations (N10Q,V18L,N29Q,and M added to the N-terminal)were much more stable than BAY55-9837.The half-life of recombinant DBAYL was about 25 folds compared with that of BAY55-9837 in vitro.The bioactivity assay of DBAYL showed that it displaced [125I]PACAP38 and [125I]VIP from VPAC2 with a half-maximal inhibitory concentration of 48.4 ± 6.9 and 47.1 ± 4.9 nM,respectively,which were significantly lower than that of BAY55-9837,one established VPAC2 agonists.DBAYL enhances the cAMP accumulation in CHO cells expressing human VPAC2 with a half-maximal stimulatory concentration (EC5o) of 0.68 nM,whereas the receptor potency of DBAYL at human VPAC1 (ECso of 737 nM) was only 1/1083of that at human VPAC2,and DBAYL had no activity toward human PAC1 receptor.Western blot analysis of the key proteins of insulin receptor signaling pathway:insulin receptor substrate 1 (IRS-1) and glucose transporter 4(GLUT4) indicated that the DBAYL could significantly induce the insulin-stimulated IRS-1 and GLUT4 expression more efficiently than BAY55-9837 and VIP in adipocytes.Compared with BAY55-9837 and PACAP38,the recombinant peptide DBAYL can more efficiently promote insulin release and decrease plasma glucose level in Institute of Cancer Research (ICR) mice.These results suggested that DBAYL could efficiently improve glucose uptake and glucose-dependent insulin

  8. Insulin glargine overdose

    Directory of Open Access Journals (Sweden)

    Fatma Sari Dogan

    2012-01-01

    Full Text Available Insulin glargine is a long acting novel recombinant human insulin analogue indicated to improve glycemic control, in adults and children with type 1 diabetes mellitus and in adults with type 2 diabetes mellitus. The time course of action of insulins including insulin glargine may vary between individuals and/or within the same individual. Insulin glargine is given as a 24-h dosing regimen and has no documented half-life or peak effect. Hypoglycemia is the most common adverse effect of insulin, including insulin glargine. As with all insulins, the timing of hypoglycemia may differ among various insulin formulations. We present a case of a 76-year-old male insulin-dependent diabetic patient with refractory hypoglycemia secondary to an intentional overdose of insulin glargine. We would like to highlight the necessity of prolonging IV glucose infusion, for a much longer period than expected from pharmacokinetic properties of these insulin analogues after intentional massive overdose.

  9. Insulin Human Inhalation

    Science.gov (United States)

    Insulin inhalation is used in combination with a long-acting insulin to treat type 1 diabetes (condition in which the body does not produce insulin and therefore cannot control the amount of sugar ...

  10. Concentrated insulins: the new basal insulins

    Directory of Open Access Journals (Sweden)

    Lamos EM

    2016-03-01

    Full Text Available Elizabeth M Lamos,1 Lisa M Younk,2 Stephen N Davis3 1Division of Endocrinology, Diabetes and Nutrition, 2Department of Medicine, University of Maryland School of Medicine, 3Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA Introduction: Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered: This review highlights the published reports of the pharmacokinetic (PK and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion: Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration

  11. Altered insulin distribution and metabolism in type I diabetics assessed by (123I)insulin scanning

    Energy Technology Data Exchange (ETDEWEB)

    Hachiya, H.L.; Treves, S.T.; Kahn, C.R.; Sodoyez, J.C.; Sodoyez-Goffaux, F.

    1987-04-01

    Scintigraphic scanning with (/sup 123/I)insulin provides a direct and quantitative assessment of insulin uptake and disappearance at specific organ sites. Using this technique, the biodistribution and metabolism of insulin were studied in type 1 diabetic patients and normal subjects. The major organ of (/sup 123/I)insulin uptake in both diabetic and normal subjects was the liver. After iv injection in normal subjects, the uptake of (/sup 123/I)insulin by the liver was rapid, with peak activity at 7 min. Activity declined rapidly thereafter, consistent with rapid insulin degradation and clearance. Rapid uptake of (/sup 123/I)insulin also occurred in the kidneys, although the uptake of insulin by the kidneys was about 80% of that by liver. In type 1 diabetic patients, uptake of (/sup 123/I)insulin in these organ sites was lower than that in normal subjects; peak insulin uptakes in liver and kidneys were 21% and 40% lower than those in normal subjects, respectively. The kinetics of insulin clearance from the liver was comparable in diabetic and normal subjects, whereas clearance from the kidneys was decreased in diabetics. The plasma clearance of (/sup 123/I)insulin was decreased in diabetic patients, as was insulin degradation, assessed by trichloroacetic acid precipitability. Thirty minutes after injection, 70.9 +/- 3.8% (+/- SEM) of (/sup 123/I)insulin in the plasma of diabetics was trichloroacetic acid precipitable vs. only 53.9 +/- 4.0% in normal subjects. A positive correlation was present between the organ uptake of (123I)insulin in the liver or kidneys and insulin degradation (r = 0.74; P less than 0.001).

  12. The effect of sumac (Rhus coriaria L. powder on insulin resistance, malondialdehyde, high sensitive C-reactive protein and paraoxonase 1 activity in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Seyedeh Tayebeh Rahideh

    2014-01-01

    Full Text Available Background: Sumac (Rhus coriaria L. has been used in traditional treatment of some diseases. The aim of this study was to determine the effect of sumac (R. coriaria L. powder on insulin resistance (IR, malondialdehyde (MDA, high sensitive C-reactive protein (hs-CRP, and paraoxonase 1 (PON1 activity in type 2 diabetic patients. Materials and Methods: A double-blind randomized placebo controlled trial on 41 type 2 diabetic volunteers was conducted. Participants randomly assigned into 3 g per day sumac powder (n = 22 or placebo (n = 19 groups for 3 months. IR was assessed using the homeostatic model assessment of IR (HOMA-IR, which including measurement of insulin by immunoassay method and measurement of glucose by enzymatic method. MDA and PON1 activity were measured colorimetrically, hs-CRP turbidimetrically. Results: There were a significant increase in PON1 activity (from 84.72 ± 30.59 to 92.91 ± 32.63 and significant decrease in insulin (from 7.09 ± 4.28 to 5.32 ± 3.22, HOMA-IR (from 2.56 ± 1.58 to 1.67 ± 0.94, MDA (from 2.71 ± 0.73 to 1.97 ± 0.49, and also hs-CRP (from 18.49 ± 16.96 to 15.89 ± 16.70 in the sumac group at the end of study compared with initial values (P < 0.05. Furthermore, there were significant differences in MDA and PON1 between the two groups at the end of the study (P < 0.05. Furthermore, the mean of differences of insulin, HOMA-IR, MDA, hs-CRP and PON1 activity between groups were significant (P < 0.05. Conclusion: We concluded that daily intake of 3 g sumac for 3 months may be beneficial for diabetic patients to make them less susceptible to cardiovascular disease.

  13. The Gly482Ser Missense Mutation of the Peroxisome Proliferator-Activated Receptor γ Coactivator-1α (PGC-1α Gene Associates with Reduced Insulin Sensitivity in Normal and Glucose-Intolerant Obese Subjects

    Directory of Open Access Journals (Sweden)

    Marzia Fanelli

    2005-01-01

    Full Text Available Among the putative candidate genes for insulin resistance, the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α is a transcriptional coactivator of PPARγ and α, regulating a wide range of processes involved in energy production and utilization, such as thermogenesis, liver gluconeogenesis, glucose uptake in muscle. In population studies a Gly482Ser substitution in PGC-1α has been reported to be associated with increased risk of type diabetes 2 and insulin resistance. In the present study we have analysed the association between the Gly482Ser missense mutation of the PGC-1α gene and insulin sensitivity and glucose tolerance in a population of obese non-diabetic subjects. The Gly482Ser SNPs was detected by PCR-RFLP in a cohort of 358 Caucasian obese subjects (223 with normal glucose tolerance (NGT and 125 with impaired glucose tolerance (IGT. We observed a significant association (p < 0.007 between carriers of the Gly482Ser variant of the PGC-1α gene and insulin resistance measured by HOMAIR. Multivariate analysis confirmed that the Gly482Ser SNP was a significant (p < 0.02 determinant of decreased insulin sensitivity, independently from other well-known modulators of insulin action. In conclusion, we have found significant association between the Gly482Ser variant of the PGC-1α gene and reduced insulin sensitivity in obese subjects. This association resulted independent from all other known modulators of insulin resistance, and suggests a primary role for the PGC-1α gene on the genetic susceptibility to insulin resistance in obesity.

  14. Changes in Cystic Fibrosis Airway Microbiota at Pulmonary Exacerbation

    OpenAIRE

    Carmody, Lisa A.; Zhao, Jiangchao; Patrick D. Schloss; Petrosino, Joseph F.; Murray, Susan; Young, Vincent B.; Jun Z Li; LiPuma, John J.

    2013-01-01

    Rationale: In persons with cystic fibrosis (CF), repeated exacerbations of pulmonary symptoms are associated with a progressive decline in lung function. Changes in the airway microbiota around the time of exacerbations are not well understood.

  15. [Treatment of patients with acute asthma exacerbation].

    Science.gov (United States)

    Ostojić, Jelena; Mose, Jakov

    2009-01-01

    Asthma is a chronic inflammatory disease of the airways. The global prevalence of asthma ranges from 1% to 18% of the population, so it remains a common problem with enormous medical and economic impacts. In majority of patients, asthma can be well controlled with simple regimens of inhaled anti-inflammatory and bronchodilating medications. However, some patients tend to suffer from poorly controlled disease in terms of chronic symptoms with episodic severe exacerbations. Major factors that may be related to the emergency department visits and hospitalisation include prior severe attacks, nonadherence to therapeutic regimens, inadequate use of inhaled corticosteroids, poor self-management skills, frequent use of inhaled short-acting beta-agonists, cigarette smoking, poor socioeconomic status and age over 40 years. Severe exacerbations of asthma are life-threatening medical emergencies and require careful brief assesment, treatment according to current GINA (Global Initiative for Asthma) guidelines with periodic reassesment of patient's response to therapy usually in an emergency department.

  16. Acute Exacerbations of Idiopathic Pulmonary Fibrosis

    OpenAIRE

    Collard, Harold R.; Moore, Bethany B.; Flaherty, Kevin R.; Brown, Kevin K.; Kaner, Robert J.; King, Talmadge E.; Lasky, Joseph A.; Loyd, James E.; Noth, Imre; Olman, Mitchell A.; Raghu, Ganesh; Roman, Jesse; Ryu, Jay H.; Zisman, David A.; Hunninghake, Gary W.

    2007-01-01

    The natural history of idiopathic pulmonary fibrosis (IPF) has been characterized as a steady, predictable decline in lung function over time. Recent evidence suggests that some patients may experience a more precipitous course, with periods of relative stability followed by acute deteriorations in respiratory status. Many of these acute deteriorations are of unknown etiology and have been termed acute exacerbations of IPF. This perspective is the result of an international effort to summariz...

  17. Structure–activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Charton, Julie; Gauriot, Marion; Totobenazara, Jane; Hennuyer, Nathalie; Dumont, Julie; Bosc, Damien; Marechal, Xavier; Elbakali, Jamal; Herledan, Adrien; Wen, Xiaoan; Ronco, Cyril; Gras-Masse, Helene; Heninot, Antoine; Pottiez, Virginie; Landry, Valerie; Staels, Bart; Liang, Wenguang G.; Leroux, Florence; Tang, Wei-Jen; Deprez, Benoit (INSRM-France); (UC); (IP-France)

    2015-10-30

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.

  18. Chest pain and exacerbations of bronchiectasis

    Directory of Open Access Journals (Sweden)

    King PT

    2012-12-01

    Full Text Available Paul T King,1,2 Stephen R Holdsworth,2 Michael Farmer,1 Nicholas J Freezer,1 Peter W Holmes11Department of Respiratory and Sleep Medicine, 2Monash University Department of Medicine, Monash Medical Centre, Melbourne, Victoria, AustraliaBackground: Bronchiectasis is a common disease and a major cause of respiratory morbidity. Chest pain has been described as occurring in the context of bronchiectasis but has not been well characterized. This study was performed to describe the characteristics of chest pain in adult bronchiectasis and to define the relationship of this pain to exacerbations.Subjects and methods: We performed a prospective study of 178 patients who were followed-up for 8 years. Subjects were reviewed on a yearly basis and assessed for the presence of chest pain. Subjects who had chest pain at the time of clinical review by the investigators were included in this study. Forty-four patients (25% described respiratory chest pain at the time of assessment; in the majority of cases 39/44 (89%, this occurred with an exacerbation and two distinct types of chest pain could be described: pleuritic (n = 4 and non-pleuritic (n = 37, with two subjects describing both forms. The non-pleuritic chest pain occurred most commonly over both lower lobes and was mild to moderate in severity. The pain subsided as patients recovered. Conclusion: Non-pleuritic chest pain occurs in subjects with bronchiectasis generally in association with exacerbations.Keywords: sputum, collapse, bronchitis, airway obstruction

  19. Virus Infection-Induced Bronchial Asthma Exacerbation

    Directory of Open Access Journals (Sweden)

    Mutsuo Yamaya

    2012-01-01

    Full Text Available Infection with respiratory viruses, including rhinoviruses, influenza virus, and respiratory syncytial virus, exacerbates asthma, which is associated with processes such as airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. In patients with viral infections and with infection-induced asthma exacerbation, inflammatory mediators and substances, including interleukins (ILs, leukotrienes and histamine, have been identified in the airway secretions, serum, plasma, and urine. Viral infections induce an accumulation of inflammatory cells in the airway mucosa and submucosa, including neutrophils, lymphocytes and eosinophils. Viral infections also enhance the production of inflammatory mediators and substances in airway epithelial cells, mast cells, and other inflammatory cells, such as IL-1, IL-6, IL-8, GM-CSF, RANTES, histamine, and intercellular adhesion molecule-1. Viral infections affect the barrier function of the airway epithelial cells and vascular endothelial cells. Recent reports have demonstrated augmented viral production mediated by an impaired interferon response in the airway epithelial cells of asthma patients. Several drugs used for the treatment of bronchial asthma reduce viral and pro-inflammatory cytokine release from airway epithelial cells infected with viruses. Here, I review the literature on the pathogenesis of the viral infection-induced exacerbation of asthma and on the modulation of viral infection-induced airway inflammation.

  20. New drugs for exacerbations of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Hansel, Trevor T; Barnes, Peter J

    2009-08-29

    Tobacco smoking is the dominant risk factor for chronic obstructive pulmonary disease (COPD), but viral and bacterial infections are the major causes of exacerbations in later stages of disease. Reactive oxygen species (ROS), pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs) activate families of pattern recognition receptors (PRRs) that include the toll-like receptors (TLRs). This understanding has led to the hypothesis that COPD is an archetypal disease of innate immunity. COPD is characterised by abnormal response to injury, with altered barrier function of the respiratory tract, an acute phase reaction, and excessive activation of macrophages, neutrophils, and fibroblasts in the lung. The activated non-specific immune system then mediates the processes of inflammation and repair, fibrosis, and proteolysis. COPD is also associated with corticosteroid resistance, abnormal macrophage and T-cell populations in the airway, autoinflammation and autoimmunity, aberrant fibrosis, accelerated ageing, systemic and concomitant disease, and defective regeneration. Such concepts have been used to generate a range of molecular targets, and clinical trials are taking place to identify effective drugs for the prevention and treatment of COPD exacerbations.

  1. Dietary modulation of erythrocyte insulin receptor interaction and the regulation of adipose tissue pyruvate dehydrogenase enzyme activity in growing rats; a mechanism of action of dietary fiber in metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ogunwole, J.O.A.

    1984-01-01

    The metabolic effects of graded cellulose (a dietary fiber) intake were studied at minimal (10%) and maximal (20%) protein levels in male weanling Sprague Dawley rats. The hypothesis was tested that the hypoglycemic effect of high fiber diets is partly mediated through increased tissue sensitivity to insulin at the cell receptor level. Erythrocyte insulin receptor interaction (IRI) and percent insulin stimulation of adipose tissue pyruvate dehydrogenase (PDH) activity (PDS) were used as indices of tissue sensitivity to insulin. IRI was determined by a standardized radioceptor assay PDS by the rate of oxidation of 1-/sup 14/C-pyruvate to /sup 14/CO/sub 2/ in epidymal fat pads and serum insulin levels by radioimmunoassay. In both protein groups, the addition of fiber in the diet resulted in a significant (P < 0.05) increase in food intake (FI) for calorie compensation. Fiber and protein intake had a significant (P < 0.01) effect on IRI and both basal (PDB) and PDS activities of PDH. At all fiber levels, specific percent /sup 125/I-insulin binding (SIB) was higher in the 20% protein groups while in the fiber-free group, a higher SIB was observed in the 10% protein group.

  2. New ways of insulin delivery.

    Science.gov (United States)

    Heinemann, L

    2011-02-01

    even too short (see postprandial glycaemic excursions with test meals in the publication by Rosenstock et al. in The Lancet (1)). In the end a number of aspects are of relevance for the success of a given product; one key aspect is clearly the price. However, for patients also practical aspects (handling, need for regular pulmonary function test etc.) are of importance. We shall have to see how creatively MannKind will handle all such questions. Until now Al Mann and his colleagues were able to manage a number of challenges during the clinical development process successfully, so one can have hopes for the market success of TI. However, it is clear that at the same time, if TI fails like Exubera did before, this will be the end for pulmonary insulin in general. Not too many original publications presenting data from clinical trials were published in the last year when it comes to oral insulin (OI), nasal insulin or transdermal insulin developments; simply none with transdermal insulin. Also at the last international congresses not many studies about ARIA were presented. At least in part this might be still a reflection of the shockwaves that the failure of Exubera has sent out to pharmaceutical companies and venture capitalists; they are quite reluctant to invest in any of these developments. However, a considerable number of reviews (in some cases more than original papers!) were published about ARIA. These reviews are listed for completeness, but in most cases are not further commented. OI is still the area of research most companies are active in; however, in some cases it is not clear how active they really are (e.g. Diabetology). Nevertheless, at least some companies are quite active and progressed in their clinical development programme close to market approval, e.g. the large Indian company Biocon is in late phase 3 with IN-105 and the small Israel-based company Oramed is in phase 2b. It appears that other interesting OI developments (e.g. Diasome) were not very

  3. New ways of insulin delivery.

    Science.gov (United States)

    Heinemann, L

    2010-02-01

    , especially on clinical studies. However, it is fascinating to see that the imagination about improvements in existing ways to deliver insulin (e.g. insulin pens) and also about novel ways to improve insulin absorption (e.g. local heating of the injection site) is still there. At the same time the above-mentioned considerations (coming more from the viewpoint of pharmaceutical companies and more market oriented) appear not to be the focus of many scientists in pharmacological research institutes. Otherwise it is difficult to understand why every year a number of new oral insulin formulations are published in pharmacological journals, reporting impressive data from animal studies (mainly performed on rats), but only a very limited number of these are transferred to the clinical development process. It is well known that most drugs fail during the clinical development process and the resources of pharmaceutical companies that are willing to invest in, for example, oral insulin are very limited. Small companies tend to make a lot of smoke out of a little fire to gain access to these resources. Unfortunately, the limited financial resources also hamper the design and performance of pre-clinical experiments and clinical studies. The consequence is that many of the study results presented are inconclusive (to phrase it carefully). One good study that proves that a given approach works - or shows convincingly that it does not work - would be much better than a number of small studies. Sometimes one has the impression that this is done on purpose to show some activity and keep the company alive. Without a more stringent approach there is a high risk that many of the current developments will never make it into an available clinical product. These comments are not intended to be destructive but to strengthen a thorough scientific approach and to induce a more realistic view of the prospects: most probably an oral insulin pill will not be on the market next year! Nevertheless, this is

  4. Hyperglycaemia normalises insulin action on glucose metabolism but not the impaired activation of AKT and glycogen synthase in the skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Vind, B F; Birk, Jesper Bratz; Vienberg, Sara Gry;

    2012-01-01

    patients underwent a second isoglycaemic-hyperinsulinaemic clamp maintaining fasting hyperglycaemia. Muscle biopsies from m. vastus lateralis were obtained before and after the clamp for examination of GS and relevant insulin signalling components. RESULTS: During euglycaemia, insulin-stimulated glucose...

  5. Prolonged Activation of the Htr2b Serotonin Receptor Impairs Glucose Stimulated Insulin Secretion and Mitochondrial Function in MIN6 Cells

    Science.gov (United States)

    Cataldo, Luis Rodrigo; Mizgier, María L.; Bravo Sagua, Roberto; Jaña, Fabián; Cárdenas, César; Llanos, Paola; Busso, Dolores; Olmos, Pablo; Galgani, José E.; Santos, José L.; Cortés, Víctor A.

    2017-01-01

    Aims Pancreatic β-cells synthesize and release serotonin (5 hydroxytryptamine, 5HT); however, the role of 5HT receptors on glucose stimulated insulin secretion (GSIS) and the mechanisms mediating this function is not fully understood. The aims of this study were to determine the expression profile of 5HT receptors in murine MIN6 β-cells and to examine the effects of pharmacological activation of 5HT receptor Htr2b on GSIS and mitochondrial function. Materials and Methods mRNA levels of 5HT receptors in MIN6 cells were quantified by RT qPCR. GSIS was assessed in MIN6 cells in response to global serotonergic activation with 5HT and pharmacological Htr2b activation or inhibition with BW723C86 or SB204741, respectively. In response to Htr2b activation also was evaluated the mRNA and protein levels of PGC1α and PPARy by RT-qPCR and western blotting and mitochondrial function by oxygen consumption rate (OCR) and ATP cellular content. Results We found that mRNA levels of most 5HT receptors were either very low or undetectable in MIN6 cells. By contrast, Htr2b mRNA was present at moderate levels in these cells. Preincubation (6 h) of MIN6 cells with 5HT or BW723C86 reduced GSIS and the effect of 5HT was prevented by SB204741. Preincubation with BW723C86 increased PGC1α and PPARy mRNA and protein levels and decreased mitochondrial respiration and ATP content in MIN6 cells. Conclusions Our results indicate that prolonged Htr2b activation in murine β-cells decreases glucose-stimulated insulin secretion and mitochondrial activity by mechanisms likely dependent on enhanced PGC1α/PPARy expression. PMID:28129327

  6. Reduced plasma adiponectin concentrations may contribute to impaired insulin activation of glycogen synthase in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, K.; Frystyk, J.; Levin, K.

    2006-01-01

    AIMS/HYPOTHESIS: Circulating levels of adiponectin are negatively associated with multiple indices of insulin resistance, and the concentration is reduced in humans with insulin resistance and type 2 diabetes. However, the mechanisms by which adiponectin improves insulin sensitivity remain unclea...

  7. Medically treated exacerbations in COPD by GOLD 1-4

    DEFF Research Database (Denmark)

    Ingebrigtsen, Truls S.; Marott, Jacob L.; Lange, Peter;

    2015-01-01

    AIM: We hypothesized that medically treated exacerbations in COPD defined as treatments with oral corticosteroids alone or in combination with antibiotics by register linkage with a nationwide prescription registry is a valid, robust and low-biased measure of exacerbations. METHODS: A total of 13...... definition of exacerbations was robust and without major biases. CONCLUSIONS: Compared to individuals with GOLD 1, the risk of exacerbations was 17-fold for GOLD 4, 5-fold for GOLD 3, and 2-fold for GOLD 2. Medically treated exacerbations defined by register linkage seem a valid, robust, and low-biased...

  8. Management of chronic obstructive pulmonary disease exacerbations in Internal Medicine

    Directory of Open Access Journals (Sweden)

    Gelorma Belmonte

    2013-03-01

    Full Text Available Introduction: Chronic obstructive pulmonary disease (COPD is the second leading cause of hospitalization in Internal Medicine departments in Italy and the fourth leading cause of death all over the word. By 2020, COPD will be the third leading cause of death and the fifth leading cause of disability. It is — along with chronic congestive heart failure — one of the most common causes of unscheduled hospital readmissions, and as such it represents a significant economic burden for the health-care system. Exacerbations of COPD are important events in the natural history of this prevalent condition. Discussion: This review provides a comprehensive state-of-the-art look at prevention and management of COPD exacerbations. Treatment of these episodes has to be tailored to the severity of the clinical presentation. We now have a wide range of therapeutic available options, based on the results of clinical trials. Management of the acute event should include the necessary measures (mainly the administration of inhaled short-acting bronchodilators, inhaled or oral corticosteroids, and antibiotics, with or without oxygen and ventilator support. Conclusions: To improve the management of COPD exacerbations, the focus of care must be shifted from the episodic acute complications to their systematic prevention. The management of COPD, which is often associated with multiple co-morbidities, is complex and requires a tailored, multifaceted and multidisciplinary approach. Integrated care for COPD also requires that patients be informed about their condition, that they participate actively in their care, and that they have easy access to the necessary health-care services.

  9. Osteoarthritis accelerates and exacerbates Alzheimer's disease pathology in mice

    Directory of Open Access Journals (Sweden)

    Yang Meixiang

    2011-09-01

    Full Text Available Abstract Background The purpose of this study was to investigate whether localized peripheral inflammation, such as osteoarthritis, contributes to neuroinflammation and neurodegenerative disease in vivo. Methods We employed the inducible Col1-IL1βXAT mouse model of osteoarthritis, in which induction of osteoarthritis in the knees and temporomandibular joints resulted in astrocyte and microglial activation in the brain, accompanied by upregulation of inflammation-related gene expression. The biological significance of the link between peripheral and brain inflammation was explored in the APP/PS1 mouse model of Alzheimer's disease (AD whereby osteoarthritis resulted in neuroinflammation as well as exacerbation and acceleration of AD pathology. Results Induction of osteoarthritis exacerbated and accelerated the development of neuroinflammation, as assessed by glial cell activation and quantification of inflammation-related mRNAs, as well as Aβ pathology, assessed by the number and size of amyloid plaques, in the APP/PS1; Col1-IL1βXAT compound transgenic mouse. Conclusion This work supports a model by which peripheral inflammation triggers the development of neuroinflammation and subsequently the induction of AD pathology. Better understanding of the link between peripheral localized inflammation, whether in the form of osteoarthritis, atherosclerosis or other conditions, and brain inflammation, may prove critical to our understanding of the pathophysiology of disorders such as Alzheimer's, Parkinson's and other neurodegenerative diseases.

  10. Exacerbation-related impairment of quality of life and work productivity in severe and very severe chronic obstructive pulmonary disease

    Science.gov (United States)

    Solem, Caitlyn T; Sun, Shawn X; Sudharshan, Lavanya; Macahilig, Cynthia; Katyal, Monica; Gao, Xin

    2013-01-01

    Purpose Exacerbation-associated health-related quality of life (HRQoL) in patients with severe and very severe chronic obstructive pulmonary disease (COPD) is ill-defined. This study describes patterns, HRQoL, and the work productivity impact of COPD-related moderate and SEV exacerbations in patients with SEV/VSEV COPD, focusing on the chronic bronchitis subtype. Patients and methods A US sample of SEV and VSEV COPD patients with recent moderate or SEV exacerbation was recruited. Along with the demographic and clinical data collected from medical records, patients reported on exacerbation frequency, health-related quality of life (HRQoL) (using the St George’s Respiratory Questionnaire for COPD [SGRQ-C] and the European Quality of Life-5 Dimensions [EQ-5D]™ index), and work productivity and activity impairment (using the Work Productivity and Activity Impairment Questionnaire – Specific Health Problem [WPAI-SHP]). The HRQoL-related impacts of exacerbation frequency, time since exacerbation, and last exacerbation severity were evaluated via linear regressions. Results A total of 314 patients (190 SEV/124 VSEV, mean age =68.0 years, 51% male, 28% current smokers) were included. In the previous 12 months, patients reported an average of 1.8 moderate exacerbations and 0.9 SEV exacerbations. Overall, 16% of patients were employed and reported a high percentage of overall work impairment (42.4% ± 31.1%). Activity impairment was positively associated with recent exacerbation severity (SEV 64.6% ± 26.8% versus moderate 55.6% ± 28.2%) (P=0.006). The HRQoL was significantly worse for SEV versus VSEV COPD (EQ-5D: 0.62 ± 0.23 versus 0.70 ± 0.17, respectively, and SGRQ-C: 70.1 ± 21.3 versus 61.1 ± 19.0, respectively) (P<0.001). Worse current HRQoL was reported by patients with a SEV versus moderate recent exacerbation (EQ-5D: 0.63 ± 0.21 versus 0.70 ± 0.20, respectively) (P=0.003); SGRQ-C: 70.3 ± 19.9 versus 61.7 ± 20.1, respectively (P<0.001). One additional

  11. Vitamin D inadequacy is widespread in Tunisian active boys and is related to diet but not to adiposity or insulin resistance

    Directory of Open Access Journals (Sweden)

    Ikram Bezrati

    2016-04-01

    Full Text Available Background: Vitamin D inadequacy is widespread in children and adolescents worldwide. The present study was undertaken to assess the vitamin D status in active children living in a sunny climate and to identify the main determinants of the serum concentration of 25-hydroxyvitamin D (25-OHD. Methods: This cross-sectional study included 225 children aged 7–15 years practicing sports in a football academy. Anthropometric measures were performed to calculate body mass index (BMI, fat mass, and maturity status. A nutritional enquiry was performed including 3-day food records and food frequency questionnaire. Plasma 25-OHD and insulin were assessed by immunoenzymatic methods ensuring categorization of vitamin D status and calculation of insulin sensitivity/resistance indexes. A logistic regression model was applied to identify predictors for vitamin D inadequacy. Results: Vitamin D deficiency (25-OHD<12 µg/L was observed in 40.9% of children and insufficiency (12<25-OHD<20 µg/L was observed in 44% of children. In a multivariate analysis, vitamin D deficiency and insufficiency were associated with a lower dietary intake of vitamin D, proteins, milk, red meat, fish, and eggs. However, no significant relationship was observed with maturation status, adiposity, or insulin resistance. Conclusions: Tunisian children and adolescents are exposed to a high risk of vitamin D inadequacy despite living in a sunny climate. Circulating 25-OHD concentrations are related to the intake of vitamin D food sources but not to maturation status or body composition. Ensuring sufficient and safe sun exposure and adequate vitamin D intake may prevent vitamin D inadequacy in children from sunny environments.

  12. Susceptibility to exacerbation in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Hurst, John R; Vestbo, Jørgen; Anzueto, Antonio

    2010-01-01

    of COPD that is independent of disease severity. METHODS: We analyzed the frequency and associations of exacerbation in 2138 patients enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study. Exacerbations were defined as events that led a care provider...... to prescribe antibiotics or corticosteroids (or both) or that led to hospitalization (severe exacerbations). Exacerbation frequency was observed over a period of 3 years. RESULTS: Exacerbations became more frequent (and more severe) as the severity of COPD increased; exacerbation rates in the first year...... be predicted on the basis of the patient's recall of previous treated events. In addition to its association with more severe disease and prior exacerbations, the phenotype was independently associated with a history of gastroesophageal reflux or heartburn, poorer quality of life, and elevated white-cell count...

  13. Clinical definition of COPD exacerbations and classification of their severity.

    Science.gov (United States)

    Caramori, Gaetano; Adcock, Ian M; Papi, Alberto

    2009-03-01

    A standardized definition of chronic obstructive pulmonary disease (COPD) exacerbation still represents an unmet need in respiratory medicine; definitions currently rely on clinical empiricism with little evidence-based scientific support. Exacerbations of COPD are certainly clear events in the mind of practicing physicians. However, when one tries to provide simple concepts such as their definition and classification of severity, one realizes how little we know. Current symptom- and event-based definitions of a COPD exacerbation, as well as the classifications of the severity of COPD exacerbations, all have their own limitations. Efforts to assess the efficacy of new therapies in the treatment and prevention of COPD exacerbations have been hampered by the lack of a widely agreed upon and consistently used definition. There is a need for greater investment in research on COPD exacerbations in order to promote a better understanding of COPD exacerbations.

  14. Cytosolic and Calcium-Independent Phospholipases A2 Activation and Prostaglandins E2 Are Associated with Escherichia coli-Induced Reduction of Insulin Secretion in INS-1E Cells.

    Science.gov (United States)

    Caporarello, Nunzia; Salmeri, Mario; Scalia, Marina; Motta, Carla; Parrino, Cristina; Frittitta, Lucia; Olivieri, Melania; Cristaldi, Martina; Avola, Roberto; Bramanti, Vincenzo; Toscano, Maria Antonietta; Anfuso, Carmelina Daniela; Lupo, Gabriella

    2016-01-01

    It is suspected that microbial infections take part in the pathogenesis of diabetes mellitus type 1 (T1DM). Glucose-induced insulin secretion is accompanied by the release of free arachidonic acid (AA) mainly by cytosolic- and calcium independent phospholipases A2 (cPLA2 and iPLA2). Insulinoma cell line (INS-1E) was infected with E. coli isolated from the blood culture of a patient with sepsis. Invasion assay, Scanning Electron Microscopy and Transmission Electron Microscopy demonstrated the capacity of E. coli to enter cells, which was reduced by PLA2 inhibitors. Glucose-induced insulin secretion was significantly increased after acute infection (8h) but significantly decreased after chronic infection (72h). PLA2 activities, cPLA2, iPLA2, phospho-cPLA2, and COX-2 expressions were increased after acute and, even more, after chronic E. coli infection. The silencing of the two isoforms of PLA2s, with specific cPLA2- or iPLA2-siRNAs, reduced insulin secretion after acute infection and determined a rise in insulin release after chronic infection. Prostaglandins E2 (PGE2) production was significantly elevated in INS-1E after long-term E. coli infection and the restored insulin secretion in presence of L798106, a specific EP3 antagonist, and NS-398, a COX-2 inhibitor, and the reduction of insulin secretion in presence of sulprostone, a specific EP3 agonist, revealed their involvement in the effects triggered by bacterial infection. The results obtained demonstrated that cPLA2 and iPLA2 play a key role in insulin secretion process after E. coli infection. The high concentration of AA released is transformed into PGE2, which could be responsible for the reduced insulin secretion.

  15. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  16. Insulin-releasing and cytotoxic properties of the frog skin peptide, tigerinin-1R: a structure-activity study.

    Science.gov (United States)

    Srinivasan, Dinesh; Ojo, Opeolu O; Abdel-Wahab, Yasser H A; Flatt, Peter R; Guilhaudis, Laure; Conlon, J Michael

    2014-05-01

    The frog skin host-defense peptide tigerinin-1R (RVCSAIPLPICH.NH2) is insulinotropic both in vitro and in vivo. This study investigates the effects on insulin release and cytotoxicity of changes in cationicity and hydrophobicity produced by selected substitutions of amino acids by l-arginine, l-lysine and l-tryptophan. The [A5W], [L8W] and [I10W] analogs produced a significant (Pinsulin release from BRIN-BD11 rat clonal β cells at concentration of 0.01 nM compared with 0.1 nM for tigerinin-1R. The increase in the rate of insulin release produced by a 3 μM concentration of the [S4R], [H12K], and [I10W] analogs from both BRIN-BD11 cells and mouse islets was significantly greater (Pinsulin resistance significantly (Pinsulin release and improved glucose tolerance over a 60 min period following an intraperitoneal glucose load. The study supports the claim that tigerinin-1R shows potential for development into novel therapeutic agents for treatment of type 2 diabetes mellitus.

  17. Effect of dehydroepiandrosterone on insulin action and development of insulin-induced resistance in C2C12 muscle cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Dehydroepiandrosterone (DHEA), a precursor of androgens and estrogens, has been demonstrated to have effect of preventing insulin resistance and development of diabetes mellitus. Administration of testosterone appears to induce a marked insulin resistance. How these two hormones affect insulin resistance through regulation of sensitivity of tissues to insulin deserves further studies. Here, the effects of DHEA and testosterone on response to insulin in C2C12 muscle cells are analyzed. After 24 h of DHEA (10-6 mol/L) treatment, C2C12 cells showed an increased insulin- stimulated glucose uptake and enhanced activities of glycogen synthase (GS), phosphofructokinase (PFK) and pyruvate dehydrogenase (PDH), whereas testosterone gave the opposite effects. Incubation of C2C12 cells with high-dose insulin (5×10-7 mol/L) for 24 hours decreased their sensitivity to insulin and led to a state of resistance as assessed on insulin-stimulated glucose uptake and activities of GS, PFK and PDH. Addition of DHEA to insulin-resistant C2C12 cells could reverse the response of these cells to high-dose insulin, but testosterone could further impair insulin sensitivity in insulin-resistant C2C12 cells. These results suggest that the two hormones may influence the development or inhibition of insulin-resistance in type 2 diabetes through regulating glucose uptake, glycogenesis and glycolysis to some extent.

  18. Do frequent moderate exacerbations contribute to progression of chronic obstructive pulmonary disease in patients who are ex-smokers?

    Directory of Open Access Journals (Sweden)

    Dreyse J

    2015-03-01

    Full Text Available Jorge Dreyse,1 Orlando Díaz,1 Paula Repetto,2 Arturo Morales,1 Fernando Saldías,1 Carmen Lisboa11Department of Pulmonary Diseases, School of Medicine, 2School of Psychology, Pontificia Universidad Católica de Chile, Santiago, ChileBackground: In addition to smoking, acute exacerbations are considered to be a contributing factor to progression of chronic obstructive pulmonary disease (COPD. However, these findings come from studies including active smokers, while results in ex-smokers are scarce and contradictory. The purpose of this study was to evaluate if frequent acute moderate exacerbations are associated with an accelerated decline in forced expiratory volume in one second (FEV1 and impairment of functional and clinical outcomes in ex-smoking COPD patients.Methods: A cohort of 100 ex-smoking patients recruited for a 2-year follow-up study was evaluated at inclusion and at 6-monthly scheduled visits while in a stable condition. Evaluation included anthropometry, spirometry, inspiratory capacity, peripheral capillary oxygen saturation, severity of dyspnea, a 6-minute walking test, BODE (Body mass index, airflow Obstruction, Dyspnea, Exercise performance index, and quality of life (St George’s Respiratory Questionnaire and Chronic Respiratory Disease Questionnaire. Severity of exacerbation was graded as moderate or severe according to health care utilization. Patients were classified as infrequent exacerbators if they had no or one acute exacerbation/year and frequent exacerbators if they had two or more acute exacerbations/year. Random effects modeling, within hierarchical linear modeling, was used for analysis.Results: During follow-up, 419 (96% moderate acute exacerbations were registered. At baseline, frequent exacerbators had more severe disease than infrequent exacerbators according to their FEV1 and BODE index, and also showed greater impairment in inspiratory capacity, forced vital capacity, peripheral capillary oxygen saturation

  19. Brucellosis in spondyloarthritis mimicking an exacerbation.

    Science.gov (United States)

    Garip, Y; Eser, F; Erten, S; Yilmaz, O; Yildirim, P

    2014-01-01

    Spondyloarthritis are a group of chronic inflammatory diseases that affect the axial skeleton, entheses and peripheral joints and may have extraarticular manifestations such as uveitis, psoriasis and inflammatory bowel disease. Brucellosis is a systemic infectious disease, endemic in Middle East, Latin America, and Mediterranean countries, which may present manifestations that resemble other diseases posing serious problems of differential diagnosis. Some hallmarks of Brucellosis may mimic a spondyloarthritis flare. In this paper, authors present a clinical case of brucellosis occurring in a patient with spondyloarthritis. Clinical symptoms initially mimicked exacerbation of spondyloarthritis.

  20. [B17-D-leucine]insulin and [B17-norleucine]insulin: synthesis and biological properties.

    Science.gov (United States)

    Knorr, R; Danho, W; Büllesbach, E E; Gattner, H G; Zahn, H; King, G L; Kahn, C R

    1983-11-01

    The chemical synthesis of two porcine insulin analogues is described. Leucine in position B17 of the native molecule was substituted by its D-enantiomer and by L-norleucine, respectively. Both B-chain derivatives were synthesized by fragment condensation and purified as di-S-sulphonates by gel filtration followed by ion exchange chromatography on SP-Sephadex at pH3. Combination with native sulphhydryl A-chain yielded [DLeuB17]insulin and [NleB17]insulin. Both insulin analogues were isolated by gel filtration followed by ion exchange chromatography on CM-cellulose at pH 4.0. Biological activities of the analogues were determined relative to native pork insulin: 1) glucose oxidation in rat epididymal adipocytes was 6% for [DLeuB17]insulin and 16% for [NleB17]insulin, 2) receptor-binding affinity tested with cultured human fibroblasts and with rat adipocytes was 3% for [DLeuB17]insulin and 26% for [NleB17]insulin, and 3) thymidine incorporation into DNA of human fibroblasts was 35% for [DLeuB17]insulin and 100% for [NleB17]insulin.

  1. Offspring from mothers fed a 'junk food' diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females.

    Science.gov (United States)

    Bayol, S A; Simbi, B H; Bertrand, J A; Stickland, N C

    2008-07-01

    We have shown previously that a maternal junk food diet during pregnancy and lactation plays a role in predisposing offspring to obesity. Here we show that rat offspring born to mothers fed the same junk food diet rich in fat, sugar and salt develop exacerbated adiposity accompanied by raised circulating glucose, insulin, triglyceride and/or cholesterol by the end of adolescence (10 weeks postpartum) compared with offspring also given free access to junk food from weaning but whose mothers were exclusively fed a balanced chow diet in pregnancy and lactation. Results also showed that offspring from mothers fed the junk food diet in pregnancy and lactation, and which were then switched to a balanced chow diet from weaning, exhibited increased perirenal fat pad mass relative to body weight and adipocyte hypertrophy compared with offspring which were never exposed to the junk food diet. This study shows that the increased adiposity was more enhanced in female than male offspring and gene expression analyses showed raised insulin-like growth factor-1 (IGF-1), insulin receptor substrate (IRS)-1, vascular endothelial growth factor (VEGF)-A, peroxisome proliferator-activated receptor-gamma (PPARgamma), leptin, adiponectin, adipsin, lipoprotein lipase (LPL), Glut 1, Glut 3, but not Glut 4 mRNA expression in females fed the junk food diet throughout the study compared with females never given access to junk food. Changes in gene expression were not as marked in male offspring with only IRS-1, VEGF-A, Glut 4 and LPL being up-regulated in those fed the junk food diet throughout the study compared with males never given access to junk food. This study therefore shows that a maternal junk food diet promotes adiposity in offspring and the earlier onset of hyperglycemia, hyperinsulinemia and/or hyperlipidemia. Male and female offspring also display a different metabolic, cellular and molecular response to junk-food-diet-induced adiposity.

  2. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes.

    Science.gov (United States)

    Kurtz, C Lisa; Peck, Bailey C E; Fannin, Emily E; Beysen, Carine; Miao, Ji; Landstreet, Stuart R; Ding, Shengli; Turaga, Vandana; Lund, P Kay; Turner, Scott; Biddinger, Sudha B; Vickers, Kasey C; Sethupathy, Praveen

    2014-09-01

    MicroRNAs (miRNAs) have emerged as biomarkers of metabolic status, etiological factors in complex disease, and promising drug targets. Recent reports suggest that miRNAs are critical regulators of pathways underlying the pathophysiology of type 2 diabetes. In this study, we demonstrate by deep sequencing and real-time quantitative PCR that hepatic levels of Foxa2 mRNA and miR-29 are elevated in a mouse model of diet-induced insulin resistance. We also show that Foxa2 and miR-29 are significantly upregulated in the livers of Zucker diabetic fatty (fa/fa) rats and that the levels of both returned to normal upon treatment with the insulin-sensitizing agent pioglitazone. We present evidence that miR-29 expression in human hepatoma cells is controlled in part by FOXA2, which is known to play a critical role in hepatic energy homeostasis. Moreover, we demonstrate that miR-29 fine-tunes FOXA2-mediated activation of key lipid metabolism genes, including PPARGC1A, HMGCS2, and ABHD5. These results suggest that miR-29 is an important regulatory factor in normal metabolism and may represent a novel therapeutic target in type 2 diabetes and related metabolic syndromes.

  3. Caffeine and contraction synergistically stimulate 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.

    Science.gov (United States)

    Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya

    2015-10-01

    5'-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr(172) phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser(473) phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction.

  4. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling

    Science.gov (United States)

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication. PMID:26986757

  5. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling.

    Directory of Open Access Journals (Sweden)

    Shasha Yang

    Full Text Available Growth factor receptor-bound protein 10 (Grb10 is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R. The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.

  6. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling.

    Science.gov (United States)

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.

  7. Peroral insulin delivery : new concepts and excipients

    NARCIS (Netherlands)

    Sadeghi, Assal M.M.

    2008-01-01

    A number of chitosan derivatives were synthesized and compared to the previously synthesized derivatives for their permeation enhancing activity. Using these derivatives insulin nanoparticles were prepared and their effect was compared to the free polymer and insulin in Caco-2 cells. The results sug

  8. The role of mean platelet volume predicting acute exacerbations of cystic fibrosis in children

    Directory of Open Access Journals (Sweden)

    Pinar Uysal

    2011-01-01

    Full Text Available Objective: The aim of this study is to evaluate the relationship between acute exacerbations and the mean platelet volume (MPV trend in children with cystic fibrosis (CF, to predict the exacerbations. Methods: A total of 46 children with CF and 37 healthy children were enrolled in the study. White blood cell count (WBC, hemoglobin level, platelet count, mean platelet volume (MPV, and mean corpuscular volume (MCV were retrospectively recorded. Results: Our study population consisted of 25 (54.3% males and 21 (45.7% females with CF and 20 (54.0% males and 17 (46.0% females in the healthy control group. The mean age of the CF patients was 6.32 ± 4.9 years and that of the healthy subjects was 7.02 ± 3.15 years. In the acute exacerbation period of CF, the MPV values were lower and WBC and platelet counts were higher than those in the healthy controls (P = 0.00, P = 0.00, P = 0.00, respectively. Besides, in acute exacerbation, the MPV values were lower and the WBC count was higher than the values in the non-exacerbation period (P 0= 0.01, P = 0.00, respectively. In the non-exacerbation period MPV was lower and platelet count was higher when compared to healthy subjects (P = 0.02, P = 0.04, respectively. Conclusion: This study suggests that MPV might be used as a simple, cost effective, diagnostic, predictive indicator for platelet activation in pediatric CF patients related to chronic inflammation, which might be helpful to discriminate or estimate exacerbations.

  9. Intranasal insulin therapy

    DEFF Research Database (Denmark)

    Hilsted, J; Madsbad, S; Hvidberg, A;

    1995-01-01

    To evaluate metabolic control and safety parameters (hypoglycaemia frequency and nasal mucosa physiology), 31 insulin-dependent diabetic patients were treated with intranasal insulin at mealtimes for 1 month and with subcutaneous fast-acting insulin at meals for another month in an open, crossover...... randomized trial. During both treatment periods the patients were treated with intermediate-acting insulin at bedtime. Six of the patients were withdrawn from the study during intranasal insulin therapy due to metabolic dysregulation. Serum insulin concentrations increased more rapidly and decreased more...... quickly during intranasal as compared with subcutaneous insulin administration. Metabolic control deteriorated, as assessed by haemoglobin A1c concentrations, slightly but significantly after intranasal as compared with subcutaneous insulin therapy. The bioavailability of intranasally applied insulin...

  10. Chronic Hepatitis B with Spontaneous Severe Acute Exacerbation

    Directory of Open Access Journals (Sweden)

    Wei-Lun Tsai

    2015-11-01

    Full Text Available Chronic hepatitis B virus (HBV infection is a major global health problem with an estimated 400 million HBV carriers worldwide. In the natural history of chronic hepatitis B (CHB, spontaneous acute exacerbation (AE is not uncommon, with a cumulative incidence of 10%–30% every year. While exacerbations can be mild, some patients may develop hepatic decompensation and even die. The underlying pathogenesis is possibly related to the activation of cytotoxic T lymphocyte-mediated immune response against HBV. An upsurge of serum HBV DNA usually precedes the rise of alanine aminotransferase (ALT and bilirubin. Whether antiviral treatment can benefit CHB with severe AE remains controversial, but early nucleos(tide analogues treatment seemed to be associated with an improved outcome. There has been no randomized study that compared the effects of different nucleos(tide analogues (NA in the setting of CHB with severe AE. However, potent NAs with good resistance profiles are recommended. In this review, we summarized current knowledge regarding the natural history, pathogenetic mechanisms, and therapeutic options of CHB with severe AE.

  11. Acute exacerbation of autoimmune hepatitis induced by Twinrix

    Institute of Scientific and Technical Information of China (English)

    Antal Csepregi; Gerhard Treiber; Christoph R(o)cken; Peter Malfertheiner

    2005-01-01

    We report on a 26-year-old man who presented with severe jaundice and elevated serum liver enzyme activities after having received a dose of Twinrix(○R). In his past medical history, jaundice or abnormal liver function tests were never recorded. Following admission, an elevated immunoglobulin G level and antinuclear antibodies at a titer of 320 with a homogenous pattern were found. Histology of a liver biopsy showed marked bridging liver fibrosis and a chronic inflammation, compatible with autoimmune hepatitis. Treatment was started with budesonide and ursodeoxycholic acid,and led to complete normalization of the pathological liver function tests. We believe that Twinrix(○R) led to an acute exacerbation of an unrecognized autoimmune hepatitis in our patient. The pathogenesis remains to be clarified. It is tempting to speculate that inactivated hepatitis A virus and/or recombinant surface antigen of the hepatitis B virus -as seen in patients with chronic hepatitis C and unrecognized autoimmune hepatitis who were treated with interferon alpha-might have been responsible for disease exacerbation.

  12. Obesity, inflammation, and insulin resistance

    Directory of Open Access Journals (Sweden)

    Luana Mota Martins

    2014-12-01

    Full Text Available White adipose tissue (WAT is considered an endocrine organ. When present in excess, WAT can influence metabolism via biologically active molecules. Following unregulated production of such molecules, adipose tissue dysfunction results, contributing to complications associated with obesity. Previous studies have implicated pro- and anti-inflammatory substances in the regulation of inflammatory response and in the development of insulin resistance. In obese individuals, pro-inflammatory molecules produced by adipose tissue contribute to the development of insulin resistance and increased risk of cardiovascular disease. On the other hand, the molecules with anti-inflammatory action, that have been associated with the improvement of insulin sensitivity, have your decreased production. Imbalance of these substances contributes significantly to metabolic disorders found in obese individuals. The current review aims to provide updated information regarding the activity of biomolecules produced by WAT.

  13. [The effect of N-stearoylethanolamine on the activity of antioxidant enzymes, content of lipid peroxidation products and nitric oxide in the blood plasma and liver of rats with induced insulin-resistance].

    Science.gov (United States)

    Onopchenko, O V; Kosiakova, H V; Horid'ko, T M; Berdyshev, A H; Mehed', O F; Hula, N M

    2013-01-01

    The influence of N-stearoylethanolamine (NSE) on the content of lipid peroxidation products, activity of antioxidant enzymes and the nitric oxide level in the liver and blood plasma of rats with insulin-resistance (IR) state was investigated. IR state was induced in rats by prolonged high-fat diet (58% of energy derived from fat) for 6 months combined with one injection of streptozotocin (15 mg/kg of body weight). The existence of IR state was estimated by results of glucoso-tolerance test and blood plasma insulin content. The level of lipid peroxides products was shown to be higher in the liver of insulin resistant animals as a result of reduced superoxide dismutase and catalase activity, however, glutathione peroxidase activity was increased. The increase of nitric-oxide content in the liver and blood plasma of high-fat diet rats compared with healthy control animals was also observed. The administration of the NSE suspension per os in a dose of 50 mg/kg during 2 weeks to the rats with induced insulin-resistance state contributed to the increase of superoxide dismutase, catalase and glutathione peroxidase activity. In consequence of antioxidant enzymes activation the intensity of POL process was decreased. The NSE administration caused normalization of nitric oxide level, restoring pro-/antioxidant balance in the liver and blood plasma of rats with IR state. In conclusion, the NSE administration to the rats with insulin-resistance state restored pro-/antioxidant balance and enhanced the content of nitric oxide, therefore, improving insulin sensitivity.

  14. The interplay between protein L-isoaspartyl methyltransferase activity and insulin-like signaling to extend lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Shilpi Khare

    Full Text Available The protein L-isoaspartyl-O-methyltransferase functions to initiate the repair of isomerized aspartyl and asparaginyl residues that spontaneously accumulate with age in a variety of organisms. Caenorhabditis elegans nematodes lacking the pcm-1 gene encoding this enzyme display a normal lifespan and phenotype under standard laboratory growth conditions. However, significant defects in development, egg laying, dauer survival, and autophagy have been observed in pcm-1 mutant nematodes when deprived of food and when exposed to oxidative stress. Interestingly, overexpression of this repair enzyme in both Drosophila and C. elegans extends adult lifespan under thermal stress. In this work, we show the involvement of the insulin/insulin-like growth factor-1 signaling (IIS pathway in PCM-1-dependent lifespan extension in C. elegans. We demonstrate that reducing the levels of the DAF-16 downstream transcriptional effector of the IIS pathway by RNA interference reduces the lifespan extension resulting from PCM-1 overexpression. Using quantitative real-time PCR analysis, we show the up-regulation of DAF-16-dependent stress response genes in the PCM-1 overexpressor animals compared to wild-type and pcm-1 mutant nematodes under mild thermal stress conditions. Additionally, similar to other long-lived C. elegans mutants in the IIS pathway, including daf-2 and age-1 mutants, PCM-1 overexpressor adult animals display increased resistance to severe thermal stress, whereas pcm-1 mutant animals survive less long under these conditions. Although we observe a higher accumulation of damaged proteins in pcm-1 mutant nematodes, the basal level of isoaspartyl residues detected in wild-type animals was not reduced by PCM-1 overexpression. Our results support a signaling role for the protein L-isoaspartyl methyltransferase in lifespan extension that involves the IIS pathway, but that may be independent of its function in overall protein repair.

  15. Vaspin association with insulin resistance is related to physical activity and body fat in Brazilian adolescents: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Daniela Pala

    Full Text Available Background: Vaspin is a newly-identified adipocytokine associated with insulin resistance (IR. Objective: The aim of this study was to investigate the correlation between plasma vaspin concentrations and IR and determine whether this association is affected by body composition, physical activity and pubertal stage in adolescents. Methods: Were studied 484 Brazilian adolescents aged 10-14 years whose anthropometric, clinical, biochemical, and lifestyle measurements were analized. We evaluated the correlation between vaspin and risk factors for IR in adolescents with normal and high body fat percentage (%BF and did a logistic regression to calculate the odds ratio for IR according to vaspin quartiles sex specific for the sample. Results: Vaspin was positively correlated with IR in adolescents with high %BF (r = 0.23, p = 0.003. The logistic regression analysis adjusted for sex, age, BMI, and pubertal stage showed that adolescents in the 2nd (OR = 0.43, 95% CI = 0.23-0.80, p = 0.008 and 3rd (OR = 0.46, 95% CI = 0.25-0.85, p = 0.014 quartile of vaspin concentration had a lower risk for IR. When the model was adjusted for %BF and physical activity, the association remained statically significant only for adolescents in the 2nd quartile. Conclusion: Vaspin was correlated positively with risk factors associated with insulin metabolism in adolescents with high %BF. Vaspin was associated with a reduced risk of IR independently of BMI and pubertal stage and the association was influenced by body fat and physical activity in these adolescents.

  16. Androgen Deficiency Exacerbates High-Fat Diet-Induced Metabolic Alterations in Male Mice.

    Science.gov (United States)

    Dubois, Vanessa; Laurent, Michaël R; Jardi, Ferran; Antonio, Leen; Lemaire, Katleen; Goyvaerts, Lotte; Deldicque, Louise; Carmeliet, Geert; Decallonne, Brigitte; Vanderschueren, Dirk; Claessens, Frank

    2016-02-01

    Androgen deficiency is associated with obesity, metabolic syndrome, and type 2 diabetes mellitus in men, but the mechanisms behind these associations remain unclear. In this study, we investigated the combined effects of androgen deficiency and high-fat diet (HFD) on body composition and glucose homeostasis in C57BL/6J male mice. Two models of androgen deficiency were used: orchidectomy (ORX) and androgen receptor knockout mice. Both models displayed higher adiposity and serum leptin levels upon HFD, whereas no differences were seen on a regular diet. Fat accumulation in HFD ORX animals was accompanied by increased sedentary behavior and occurred in spite of reduced food intake. HFD ORX mice showed white adipocyte hypertrophy, correlated with decreased mitochondrial content but not function as well as increased lipogenesis and decreased lipolysis suggested by the up-regulation of fatty acid synthase and the down-regulation of hormone-sensitive lipase. Both ORX and androgen receptor knockout exacerbated HFD-induced glucose intolerance by impairing insulin action in liver and skeletal muscle, as evidenced by the increased triglyceride and decreased glycogen content in these tissues. In addition, serum IL-1β levels were elevated, and pancreatic insulin secretion was impaired after ORX. Testosterone but not dihydrotestosterone supplementation restored the castration effects on body composition and glucose homeostasis. We conclude that sex steroid deficiency in combination with HFD exacerbates adiposity, insulin resistance, and β-cell failure in 2 preclinical male mouse models. Our findings stress the importance of a healthy diet in a clinical context of androgen deficiency and may have implications for the prevention of metabolic alterations in hypogonadal men.

  17. Advanced Glycation End Products Impair Glucose-Stimulated Insulin Secretion of a Pancreatic β-Cell Line INS-1-3 by Disturbance of Microtubule Cytoskeleton via p38/MAPK Activation

    Directory of Open Access Journals (Sweden)

    Jia You

    2016-01-01

    Full Text Available Advanced glycation end products (AGEs are believed to be involved in diverse complications of diabetes mellitus. Overexposure to AGEs of pancreatic β-cells leads to decreased insulin secretion and cell apoptosis. Here, to understand the cytotoxicity of AGEs to pancreatic β-cells, we used INS-1-3 cells as a β-cell model to address this question, which was a subclone of INS-1 cells and exhibited high level of insulin expression and high sensitivity to glucose stimulation. Exposed to large dose of AGEs, even though more insulin was synthesized, its secretion was significantly reduced from INS-1-3 cells. Further, AGEs treatment led to a time-dependent increase of depolymerized microtubules, which was accompanied by an increase of activated p38/MAPK in INS-1-3 cells. Pharmacological inhibition of p38/MAPK by SB202190 reversed microtubule depolymerization to a stabilized polymerization status but could not rescue the reduction of insulin release caused by AGEs. Taken together, these results suggest a novel role of AGEs-induced impairment of insulin secretion, which is partially due to a disturbance of microtubule dynamics that resulted from an activation of the p38/MAPK pathway.

  18. Insulin signaling pathways in lepidopteran steroidogenesis

    Directory of Open Access Journals (Sweden)

    Wendy eSmith

    2014-02-01

    Full Text Available Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori, the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx , the neuropeptide prothoracicotropic hormone (PTTH appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K, LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the effects of nutritionally-sensitive hormones such as insulin on ecdysone secretion and molting.

  19. cGMP and NHR signaling co-regulate expression of insulin-like peptides and developmental activation of infective larvae in Strongyloides stercoralis.

    Science.gov (United States)

    Stoltzfus, Jonathan D; Bart, Stephen M; Lok, James B

    2014-07-01

    The infectious form of the parasitic nematode Strongyloides stercoralis is a developmentally arrested third-stage larva (L3i), which is morphologically similar to the developmentally arrested dauer larva in the free-living nematode Caenorhabditis elegans. We hypothesize that the molecular pathways regulating C. elegans dauer development also control L3i arrest and activation in S. stercoralis. This study aimed to determine the factors that regulate L3i activation, with a focus on G protein-coupled receptor-mediated regulation of cyclic guanosine monophosphate (cGMP) pathway signaling, including its modulation of the insulin/IGF-1-like signaling (IIS) pathway. We found that application of the membrane-permeable cGMP analog 8-bromo-cGMP potently activated development of S. stercoralis L3i, as measured by resumption of feeding, with 85.1 ± 2.2% of L3i feeding in 200 µM 8-bromo-cGMP in comparison to 0.6 ± 0.3% in the buffer diluent. Utilizing RNAseq, we examined L3i stimulated with DMEM, 8-bromo-cGMP, or the DAF-12 nuclear hormone receptor (NHR) ligand Δ7-dafachronic acid (DA)--a signaling pathway downstream of IIS in C. elegans. L3i stimulated with 8-bromo-cGMP up-regulated transcripts of the putative agonistic insulin-like peptide (ILP) -encoding genes Ss-ilp-1 (20-fold) and Ss-ilp-6 (11-fold) in comparison to controls without stimulation. Surprisingly, we found that Δ7-DA similarly modulated transcript levels of ILP-encoding genes. Using the phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitor LY294002, we demonstrated that 400 nM Δ7-DA-mediated activation (93.3 ± 1.1% L3i feeding) can be blocked using this IIS inhibitor at 100 µM (7.6 ± 1.6% L3i feeding). To determine the tissues where promoters of ILP-encoding genes are active, we expressed promoter::egfp reporter constructs in transgenic S. stercoralis post-free-living larvae. Ss-ilp-1 and Ss-ilp-6 promoters are active in the hypodermis and neurons and the Ss-ilp-7 promoter is active in the intestine

  20. Do frequent moderate exacerbations contribute to progression of chronic obstructive pulmonary disease in patients who are ex-smokers?

    Science.gov (United States)

    Dreyse, Jorge; Díaz, Orlando; Repetto, Paula B; Morales, Arturo; Saldías, Fernando; Lisboa, Carmen

    2015-01-01

    Background In addition to smoking, acute exacerbations are considered to be a contributing factor to progression of chronic obstructive pulmonary disease (COPD). However, these findings come from studies including active smokers, while results in ex-smokers are scarce and contradictory. The purpose of this study was to evaluate if frequent acute moderate exacerbations are associated with an accelerated decline in forced expiratory volume in one second (FEV1) and impairment of functional and clinical outcomes in ex-smoking COPD patients. Methods A cohort of 100 ex-smoking patients recruited for a 2-year follow-up study was evaluated at inclusion and at 6-monthly scheduled visits while in a stable condition. Evaluation included anthropometry, spirometry, inspiratory capacity, peripheral capillary oxygen saturation, severity of dyspnea, a 6-minute walking test, BODE (Body mass index, airflow Obstruction, Dyspnea, Exercise performance) index, and quality of life (St George’s Respiratory Questionnaire and Chronic Respiratory Disease Questionnaire). Severity of exacerbation was graded as moderate or severe according to health care utilization. Patients were classified as infrequent exacerbators if they had no or one acute exacerbation/year and frequent exacerbators if they had two or more acute exacerbations/year. Random effects modeling, within hierarchical linear modeling, was used for analysis. Results During follow-up, 419 (96% moderate) acute exacerbations were registered. At baseline, frequent exacerbators had more severe disease than infrequent exacerbators according to their FEV1 and BODE index, and also showed greater impairment in inspiratory capacity, forced vital capacity, peripheral capillary oxygen saturation, 6-minute walking test, and quality of life. However, no significant difference in FEV1 decline over time was found between the two groups (54.7±13 mL/year versus 85.4±15.9 mL/year in frequent exacerbators and infrequent exacerbators, respectively

  1. Metabolic acidosis-induced insulin resistance and cardiovascular risk.

    Science.gov (United States)

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús; Adeva, Maria M

    2011-08-01

    Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosis worsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance.

  2. Fibrinogen and alpha(1)-antitrypsin in COPD exacerbations

    DEFF Research Database (Denmark)

    Sylvan Ingebrigtsen, Truls; Marott, J. L.; Rode, L.

    2015-01-01

    Background We tested the hypotheses that fibrinogen and alpha(1)-antitrypsin are observationally and genetically associated with exacerbations in COPD. Methods We studied 13 591 individuals with COPD from the Copenhagen General Population Study (2003-2013), of whom 6857 were genotyped for FGB -455...... and exacerbations in instrumental variable analyses. Results Elevated fibrinogen and alpha(1)-antitrypsin levels were associated with increased risk of exacerbations in COPD, HR=1.14 (1.07 to 1.22, p...

  3. Erdosteine reduces inflammation and time to first exacerbation postdischarge in hospitalized patients with AECOPD

    Directory of Open Access Journals (Sweden)

    Moretti M

    2015-10-01

    Full Text Available Maurizio Moretti,1 Stefano Fagnani2 1Respiratory Unit, Massa-Carrara Hospital and University of Pisa, Pisa, Italy; 2Medical Department, Edmond Pharma Srl, Paderno Dugnano, Milan, Italy Purpose: Mucolytics can improve disease outcome in patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD. The objectives of this study were to investigate the effects of erdosteine (ER, a mucolytic agent with antioxidant activity, on systemic inflammation, symptoms, recurrence of exacerbation, and time to first exacerbation postdischarge in hospitalized patients with AECOPD. Patients and methods: Patients admitted to hospital with AECOPD were randomized to receive either ER 900 mg daily (n=20 or a matching control (n=20. Treatment was continued for 10 days until discharge. Patients also received standard treatment with steroids, nebulized bronchodilators, and antibiotics as appropriate. Serum C-reactive protein levels, lung function, and breathlessness–cough–sputum scale were measured on hospital admission and thereafter at days 10 and 30 posttreatment. Recurrence of AECOPD-requiring antibiotics and/or oral steroids and time to first exacerbation in the 2 months (days 30 and 60 postdischarge were also assessed. Results: Mean serum C-reactive protein levels were lower in both groups at days 10 and 30, compared with those on admission, with significantly lower levels in the ER group at day 10. Improvements in symptom score and forced expiratory volume in 1 second were greater in the ER than the control group, which reached statistical significance on day 10. ER was associated with a 39% lower risk of exacerbations and a significant delay in time to first exacerbation (log-rank test P=0.009 and 0.075 at days 30 and 60, respectively compared with controls. Conclusion: Results confirm that the addition of ER (900 mg/d to standard treatment improves outcomes in patients with AECOPD. ER significantly reduced airway inflammation, improved

  4. Complement activation pathways associated with islet cell surface antibody (ICSA derived from child patients with insulin-dependent diabetes mellitus (IDDM.

    Directory of Open Access Journals (Sweden)

    Okada,Soji

    1991-06-01

    Full Text Available We studied the pathways of complement activation associated with the islet cell surface antibody (ICSA obtained from sera of 7 patients (age less than 15 years with insulin dependent diabetes mellitus (IDDM. The target cells were 51CR labelled rat islet cells and the complement source was human AB serum. Complement-dependent antibody mediated cytotoxicity (CAMC activity was obtained using the percentage of cytotoxicity. CAMC activity of untreated sera was significantly inhibited by treating with EGTA or EDTA (p less than 0.001. The CAMC activity of EDTA-treated sera was significantly lower than that of EGTA-treated sera (p less than 0.001. In the inactivated human AB serum, it was lower than that of EGTA-treated sera (p less than 0.05, but not different from that of EDTA-treated sera. These results show that the complement activation associated with ICSA in patients occurred not only via the classical pathway but also via the alternative pathway.

  5. Tissue Kallikrein Reverses Insulin Resistance and Attenuates Nephropathy in Diabetic Rats by Activation of PI3 kinase/Akt and AMPK Signaling Pathways

    OpenAIRE

    Yuan, Gang; Deng, Juanjuan; Wang, Tao; Zhao, Chunxia; Xu, Xizheng; Wang, Peihua; Voltz, James W.; Edin, Matthew L.; Xiao, Xiao; Chao, Lee; Chao, Julie; Zhang, Xin A.; Zeldin, Darryl C.; Wang, Dao Wen

    2007-01-01

    We previously reported that intravenous delivery of the human tissue kallikrein (HK) gene reduced blood pressure and plasma insulin levels in fructose-induced hypertensive rats with insulin resistance. In the current study, we evaluated the potential of a recombinant adeno-associated viral vector expressing the HK cDNA (rAAV·HK) as a sole, long term therapy to correct insulin resistance and prevent renal damage in streptozotocin-induced type-2 diabetic rats. Administration of streptozotocin i...

  6. Insulin, insulin analogues and diabetic retinopathy.

    Science.gov (United States)

    Chantelau, Ernst; Kimmerle, Renate; Meyer-Schwickerath, Rolf

    2008-02-01

    Insulin is absolutely vital for living beings. It is not only involved in metabolism, but also in the regulation of growth factors, e.g. IGF-1. In this review we address the role insulin has in the natural evolution of diabetic retinopathy. On the one hand, chronic deficiency of insulin and IGF-1 at the retina is thought to cause capillary degeneration, with subsequent ischaemia. On the other hand, acute abundance of (exogenously administered) insulin and IGF-1 enhances ischaemia-induced VEGF expression. A critical ratio of tissue VEGF-susceptibility: VEGF-availability triggers vascular proliferation (i.e. of micro-aneurysms and/or abnormal vessels). The patent-protected insulin analogues Lispro, Glulisine, Aspart, Glargine and Detemir are artificial insulin derivatives with altered biological responses compared to natural insulin (e.g. divergent insulin and /or IGF-1 receptor-binding characteristics, signalling patterns, and mitogenicity). Their safety profiles concerning diabetic retinopathy remain to be established by randomised controlled trials. Anecdotal reports and circumstantial evidence suggest that Lispro and Glargine might worsen diabetic retinopathy.

  7. Exacerbation of tracheobronchitis due to nontoxigenic Corynebacterium diphtheriae

    OpenAIRE

    Shinagawa, Shunji; Fujimura, Masaki; Mizuhashi, Keiichi; Takahashi, Shigeo; Noda, Yatsugi; Hirose, Takae; Matsuda, Tamotsu

    1996-01-01

    This is the first case report of exacerbation of tracheobronchitis due to nontoxigenic Corynebacterium diphtheriae in which tracheal pseudomembrane was identified and oral erythromycine therapy was very successful.

  8. Redox regulation of insulin degradation by insulin-degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Crystal M Cordes

    Full Text Available Insulin-degrading enzyme (IDE is a thiol sensitive peptidase that degrades insulin and amyloid β, and has been linked to type 2 diabetes mellitus and Alzheimer's disease. We examined the thiol sensitivity of IDE using S-nitrosoglutathione, reduced glutathione, and oxidized glutathione to distinguish the effects of nitric oxide from that of the redox state. The in vitro activity of IDE was studied using either partially purified cytosolic enzyme from male Sprague-Dawley rats, or purified rat recombinant enzyme. We confirm that nitric oxide inhibits the degrading activity of IDE, and that it affects proteasome activity through this interaction with IDE, but does not affect the proteasome directly. Oxidized glutathione inhibits IDE through glutathionylation, which was reversible by dithiothreitol but not by ascorbic acid. Reduced glutathione had no effect on IDE, but reacted with partially degraded insulin to disrupt its disulfide bonds and accelerate its breakdown to trichloroacetic acid soluble fragments. Our results demonstrate the sensitivity of insulin degradation by IDE to the redox environment and suggest another mechanism by which the cell's oxidation state may contribute to the development of, and the link between, type 2 diabetes and Alzheimer's disease.

  9. Glycosphingolipids and insulin resistance

    NARCIS (Netherlands)

    M. Langeveld; J.F.M.G. Aerts

    2009-01-01

    Obesity is associated with an increased risk for insulin resistance, a state characterized by impaired responsiveness of liver, muscle and adipose tissue to insulin. One class of lipids involved in the development of insulin resistance are the (glyco)sphingolipids. Ceramide, the most simple sphingol

  10. Carcinogenicity of insulin analogues

    NARCIS (Netherlands)

    Braak, Sebastiaan Johannes ter

    2015-01-01

    There is epidemiological evidence that the use of some insulin analogues by diabetic patients is correlated with an increased cancer risk. In vitro exposure experiments revealed that insulin glargine (LANTUS) was the only commercial insulin analogue with an increased mitogenic potential. In the huma

  11. Altered Daytime Fluctuation Pattern of Plasminogen Activator Inhibitor 1 in Type 2 Diabetes Patients with Coronary Artery Disease: A Strong Association with Persistently Elevated Plasma Insulin, Increased Insulin Resistance, and Abdominal Obesity

    Directory of Open Access Journals (Sweden)

    Katarina Lalić

    2015-01-01

    Full Text Available This study was aimed at investigating daily fluctuation of PAI-1 levels in relation to insulin resistance (IR and daily profile of plasma insulin and glucose levels in 26 type 2 diabetic (T2D patients with coronary artery disease (CAD (group A, 10 T2D patients without CAD (group B, 12 nondiabetics with CAD (group C, and 12 healthy controls (group D. The percentage of PAI-1 decrease was lower in group A versus group B (4.4 ± 2.7 versus 35.0 ± 5.4%; P<0.05 and in C versus D (14.0 ± 5.8 versus 44.7 ± 3.1%; P<0.001. HOMA-IR was higher in group A versus group B (P<0.05 and in C versus D (P<0.01. Simultaneously, AUCs of PAI-1 and insulin were higher in group A versus group B (P<0.05 and in C versus D (P<0.01, while AUC of glucose did not differ between groups. In multiple regression analysis waist-to-hip ratio and AUC of insulin were independent determinants of decrease in PAI-1. The altered diurnal fluctuation of PAI-1, especially in T2D with CAD, might be strongly influenced by a prolonged exposure to hyperinsulinemia in the settings of increased IR and abdominal obesity, facilitating altogether an accelerated atherosclerosis.

  12. Effects of insulin detemir and NPH insulin on body weight and appetite-regulating brain regions in human type 1 diabetes: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Larissa W van Golen

    Full Text Available Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference, while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula. Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003. Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli.ClinicalTrials.gov NCT00626080.

  13. Adrenocortical tumors and insulin resistance: What is the first step?

    Science.gov (United States)

    Altieri, Barbara; Tirabassi, Giacomo; Della Casa, Silvia; Ronchi, Cristina L; Balercia, Giancarlo; Orio, Francesco; Pontecorvi, Alfredo; Colao, Annamaria; Muscogiuri, Giovanna

    2016-06-15

    The pathogenetic mechanisms underlying the onset of adrenocortical tumors (ACTs) are still largely unknown. Recently, more attention has been paid to the role of insulin and insulin-like growth factor (IGF) system on general tumor development and progression. Increased levels of insulin, IGF-1 and IGF-2 are associated with tumor cell growth and increased risk of cancer promotion and progression in patients with type 2 diabetes. Insulin resistance and compensatory hyperinsulinemia may play a role in adrenal tumor growth through the activation of insulin and IGF-1 receptors. Interestingly, apparently non-functioning ACTs are often associated with a high prevalence of insulin resistance and metabolic syndrome. However, it is unclear if ACT develops from a primary insulin resistance and compensatory hyperinsulinemia or if insulin resistance is only secondary to the slight cortisol hypersecretion by ACT. The aim of this review is to summarize the current evidence regarding the relationship between hyperinsulinemia and adrenocortical tumors.

  14. Wingless-type family member 3A triggers neuronal polarization via cross-activation of the insulin-like growth factor-1 receptor pathway

    Directory of Open Access Journals (Sweden)

    Maria Eugenia Bernis

    2013-10-01

    Full Text Available Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r and the phosphatidylinositol 3 kinase (PI3k pathway. Wingless-type family growth factors (Wnts have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and the establishment of neuronal polarity. We used cultured hippocampal neurons and growth cone particles (GCPs isolated from fetal rat brain to show that stimulation with the wingless family factor 3A (Wnt3a was sufficient to promote neuronal polarization in the absence of IGF-1 or high insulin. We also show that Wnt3a triggered a strong activation of IGF-1r, PI3k and Akt in developmental Stage 2 neurons and that the presence of activatable IGF-1r and PI3k activation were necessary for Wnt3a polarizing effects. Surface plasmon resonance (SPR experiments show that Wnt3a did not bind specifically to the IGF-1r. Using crosslinking and immuno-precipitation experiments, we show that stimulation with Wnt3a triggered the formation of a complex including IGF-1r-Wnt3a-Frizzled-7. We conclude that Wnt3a triggers polarization of neurons via cross-activation of the IGF-1r/PI3k pathway upon binding to Fz7.

  15. Insulin-Like Growth Factor-I Induces Arginase Activity in Leishmania amazonensis Amastigote-Infected Macrophages through a Cytokine-Independent Mechanism

    Directory of Open Access Journals (Sweden)

    Celia Maria Vieira Vendrame

    2014-01-01

    Full Text Available Leishmania (Leishmania amazonensis exhibits peculiarities in its interactions with hosts. Because amastigotes are the primary form associated with the progression of infection, we studied the effect of insulin-like growth factor (IGF-I on interactions between L. (L. amazonensis amastigotes and macrophages. Upon stimulation of infected macrophages with IGF-I, we observed decreased nitric oxide production but increased arginase expression and activity, which lead to increased parasitism. However, stimulation of amastigote-infected macrophages with IGF-I did not result in altered cytokine levels compared to unstimulated controls. Because IGF-I is present in tissue fluids and also within macrophages, we examined the possible effect of this factor on phosphatidylserine (PS exposure on amastigotes, seen previously in tissue-derived amastigotes leading to increased parasitism. Stimulation with IGF-I induced PS exposure on amastigotes but not on promastigotes. Using a PS-liposome instead of amastigotes, we observed that the PS-liposome but not the control phosphatidylcholine-liposome led to increased arginase activity in macrophages, and this process was not blocked by anti-TGF-β antibodies. Our results suggest that in L. (L. amazonensis amastigote-infected macrophages, IGF-I induces arginase activity directly in amastigotes and in macrophages through the induction of PS exposure on amastigotes in the latter, which could lead to the alternative activation of macrophages through cytokine-independent mechanisms.

  16. Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    Marina Ciarallo Calixto

    Full Text Available A positive relationship between obesity and asthma has been well documented. The AMP-activated protein kinase (AMPK activator metformin reverses obesity-associated insulin resistance (IR and inhibits different types of inflammatory responses. This study aimed to evaluate the effects of metformin on the exacerbation of allergic eosinophilic inflammation in obese mice. Male C57BL6/J mice were fed for 10 weeks with high-fat diet (HFD to induce obesity. The cell infiltration and inflammatory markers in bronchoalveolar lavage (BAL fluid and lung tissue were evaluated at 48 h after ovalbumin (OVA challenge. HFD obese mice displayed peripheral IR that was fully reversed by metformin (300 mg/kg/day, two weeks. OVA-challenge resulted in higher influx of total cell and eosinophils in lung tissue of obese mice compared with lean group. As opposed, the cell number in BAL fluid of obese mice was reduced compared with lean group. Metformin significantly reduced the tissue eosinophil infiltration and prevented the reduction of cell counts in BAL fluid. In obese mice, greater levels of eotaxin, TNF-α and NOx, together with increased iNOS protein expression were observed, all of which were normalized by metformin. In addition, metformin nearly abrogated the binding of NF-κB subunit p65 to the iNOS promoter gene in lung tissue of obese mice. Lower levels of phosphorylated AMPK and its downstream target acetyl CoA carboxylase (ACC were found in lung tissue of obese mice, which were restored by metformin. In separate experiments, the selective iNOS inhibitor aminoguanidine (20 mg/kg, 3 weeks and the anti-TNF-α mAb (2 mg/kg significantly attenuated the aggravation of eosinophilic inflammation in obese mice. In conclusion, metformin inhibits the TNF-α-induced inflammatory signaling and NF-κB-mediated iNOS expression in lung tissue of obese mice. Metformin may be a good pharmacological strategy to control the asthma exacerbation in obese individuals.

  17. Angiotensin receptor blockade recovers hepatic UCP2 expression and aconitase and SDH activities and ameliorates hepatic oxidative damage in insulin resistant rats.

    Science.gov (United States)

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A; Viscarra, José A; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2012-12-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity.

  18. Incidence and risk factors for exacerbations of asthma during pregnancy

    Directory of Open Access Journals (Sweden)

    Ali Z

    2013-05-01

    Full Text Available Zarqa Ali, Charlotte Suppli UlrikDepartment of Pulmonary Medicine, Hvidovre Hospital and University of Copenhagen, Copenhagen, DenmarkBackground: Asthma is one of the most common chronic diseases among pregnant women. Acute exacerbations of asthma during pregnancy have an unfavorable impact on pregnancy outcome. This review provides an overview of current knowledge of incidence, mechanisms, and risk factors for acute exacerbations of asthma during pregnancy.Methods: A narrative literature review was carried out using the PubMed database.Results: During pregnancy, up to 6% of women with asthma are hospitalized for an acute exacerbation. The maternal immune system is characterized by a very high T-helper-2:T-helper-1 cytokine ratio during pregnancy and thereby provides an environment essential for fetal survival but one that may aggravate asthma. Cells of the innate immune system such as monocytes and neutrophils are also increased during pregnancy, and this too can exacerbate maternal asthma. Severe or difficult-to-control asthma appears to be the major risk factor for exacerbations during pregnancy, but studies also suggest that nonadherence with controller medication and viral infections are important triggers of exacerbations during pregnancy. So far, inconsistent findings have been reported regarding the effect of fetal sex on exacerbations during pregnancy. Other risk factors for exacerbation during pregnancy include obesity, ethnicity, and reflux, whereas atopy does not appear to be a risk factor.Discussion: The incidence of asthma exacerbations during pregnancy is disturbingly high. Severe asthma – better described as difficult-to-control asthma – nonadherence with controller therapy, viral infections, obesity, and ethnicity are likely to be important risk factors for exacerbations of asthma during pregnancy, whereas inconsistent findings have been reported with regard to the importance of sex of the fetus.Keywords: acute exacerbations

  19. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  20. Exacerbation of diabetic renal alterations in mice lacking vasohibin-1.

    Directory of Open Access Journals (Sweden)

    Norikazu Hinamoto

    Full Text Available Vasohibin-1 (VASH1 is a unique endogenous inhibitor of angiogenesis that is induced in endothelial cells by pro-angiogenic factors. We previously reported renoprotective effect of adenoviral delivery of VASH1 in diabetic nephropathy model, and herein investigated the potential protective role of endogenous VASH1 by using VASH1-deficient mice. Streptozotocin-induced type 1 diabetic VASH1 heterozygous knockout mice (VASH1(+/- or wild-type diabetic mice were sacrificed 16 weeks after inducing diabetes. In the diabetic VASH1(+/- mice, albuminuria were significantly exacerbated compared with the diabetic wild-type littermates, in association with the dysregulated distribution of glomerular slit diaphragm related proteins, nephrin and ZO-1, glomerular basement membrane thickening and reduction of slit diaphragm density. Glomerular monocyte/macrophage infiltration and glomerular nuclear translocation of phosphorylated NF-κB p65 were significantly exacerbated in the diabetic VASH1(+/- mice compared with the diabetic wild-type littermates, accompanied by the augmentation of VEGF-A, M1 macrophage-derived MCP-1 and phosphorylation of IκBα, and the decrease of angiopoietin-1/2 ratio and M2 macrophage-derived Arginase-1. The glomerular CD31(+ endothelial area was also increased in the diabetic VASH1(+/- mice compared with the diabetic-wild type littermates. Furthermore, the renal and glomerular hypertrophy, glomerular accumulation of mesangial matrix and type IV collagen and activation of renal TGF-β1/Smad3 signaling, a key mediator of renal fibrosis, were exacerbated in the diabetic VASH1(+/- mice compared with the diabetic wild-type littermates. In conditionally immortalized mouse podocytes cultured under high glucose condition, transfection of VASH1 small interfering RNA (siRNA resulted in the reduction of nephrin, angiopoietin-1 and ZO-1, and the augmentation of VEGF-A compared with control siRNA. These results suggest that endogenous VASH1 may

  1. Mathematical model of the glucose–insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyungreem [College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Kang, Hyuk [National Institute for Mathematical Sciences, Daejeon 305-340 (Korea, Republic of); Choi, M.Y., E-mail: mychoi@snu.ac.kr [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Jinwoong, E-mail: jwkim@snu.ac.kr [College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Myung-Shik [Department of Medicine, Samsung Medical Center, and School of Medicine, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2012-10-01

    A theoretical approach to the glucose–insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca{sup 2+} concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose–insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination. -- Highlights: ► We present a mathematical model for the glucose–insulin regulatory system. ► This model combines the microscopic insulin secretion mechanism in a pancreatic β-cell and macroscopic glucose dynamics at the whole-body level. ► This work is expected to provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  2. Metformin and insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific /sup 125/I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific /sup 125/I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded.

  3. A peptide from Porphyra yezoensis stimulates the proliferation of IEC-6 cells by activating the insulin-like growth factor I receptor signaling pathway.

    Science.gov (United States)

    Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2015-02-01

    Porphyra yezoensis (P. yezoensis) is the most noteworthy red alga and is mainly consumed in China, Japan and Korea. In the present study, the effects of a P. yezoensis peptide (PY‑PE) on cell proliferation and the associated signaling pathways were examined in IEC‑6 rat intestinal epithelial cells. First, the MTS assay showed that PY‑PE induced cell proliferation in a dose‑dependent manner. Subsequently, the mechanism behind the proliferative activity induced by PY‑PE was determined. The insulin‑like growth factor‑I receptor (IGF‑IR) signaling pathway was the main focus as it plays an important role in the regulation of cell growth and proliferation. PY‑PE increased the protein and mRNA expression of IGF‑IR, insulin receptor substrate‑1, Shc and PY‑99. In addition, PY‑PE stimulated extracellular signal‑regulated kinase phosphorylation and phosphatidylinositol 3‑kinase/Akt activation but inhibited p38 and c‑Jun N‑terminal kinase phosphorylation. Furthermore, PY‑PE treatment increased protein and mRNA expression levels of activator protein‑1, which regulates cell proliferation and survival, in the nuclear fraction. These results have significant implications for understanding the role of cell proliferation signaling pathways in intestinal epithelial cells.

  4. Disruption of the cereblon gene enhances hepatic AMPK activity and prevents high-fat diet-induced obesity and insulin resistance in mice.

    Science.gov (United States)

    Lee, Kwang Min; Yang, Seung-Joo; Kim, Yong Deuk; Choi, Yoo Duk; Nam, Jong Hee; Choi, Cheol Soo; Choi, Hueng-Sik; Park, Chul-Seung

    2013-06-01

    A nonsense mutation in cereblon (CRBN) causes a mild type of mental retardation in humans. An earlier study showed that CRBN negatively regulates the functional activity of AMP-activated protein kinase (AMPK) in vitro by binding directly to the α1-subunit of the AMPK complex. However, the in vivo role of CRBN was not studied. For elucidation of the physiological functions of Crbn, a mouse strain was generated in which the Crbn gene was deleted throughout the whole body. In Crbn-deficient mice fed a normal diet, AMPK in the liver showed hyperphosphorylation, which indicated the constitutive activation of AMPK. Since Crbn-deficient mice showed significantly less weight gain when fed a high-fat diet and their insulin sensitivity was considerably improved, the functions of Crbn in the liver were primarily investigated. These results provide the first in vivo evidence that Crbn is a negative modulator of AMPK, which suggests that Crbn may be a potential target for metabolic disorders of the liver.

  5. Cinnamon extract exhibits insulin-like and independent effects on gene expression in adipocytes

    Science.gov (United States)

    Cinnamon is beneficial to people with insulin resistance due in part to the insulin-like activity of the cinnamon extract (CE). Molecular effects of CE are limited. This study tested the hypothesis that CE has insulin-like and insulin-independent effects at the molecular level. Quantitative real-tim...

  6. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    Science.gov (United States)

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  7. Formation of insulin fragments by insulin-degrading enzyme: the role of zinc(II) and cystine bridges.

    Science.gov (United States)

    Bellia, Francesco; Pietropaolo, Adriana; Grasso, Giuseppe

    2013-02-01

    Insulin is the hormone mainly involved in widespread diseases such as diabetes mellitus. It is widely recognized that metal ions such as zinc(II) as well as insulin degradation and insulin fragments are inexplicably linked to the hormone action. Insulin-degrading enzyme (IDE) has been identified as the main factor of insulin degradation, but it is still unknown the exact way and location at which IDE action toward insulin occurs and how metal ions can modulate this interaction. Interestingly, some insulin fragments have different biological activity from the intact hormone, and it is not clear how they can be generated from insulin. In this work, the role of zinc(II) and cystine bridges in the degradation of insulin by IDE are investigated by high-performance liquid chromatography-mass spectrometry (HPLC-MS), and the experimental conditions at which peculiar insulin fragments having biological activity are formed by the action of IDE are found and discussed. Docking simulations of IDE/insulin A and B chains are in good accordance with the insulin fragments detected by HPLC-MS.

  8. Incidence and risk factors for exacerbations of asthma during pregnancy

    DEFF Research Database (Denmark)

    Ali, Zarqa; Ulrik, Charlotte Suppli

    2013-01-01

    Asthma is one of the most common chronic diseases among pregnant women. Acute exacerbations of asthma during pregnancy have an unfavorable impact on pregnancy outcome. This review provides an overview of current knowledge of incidence, mechanisms, and risk factors for acute exacerbations of asthma...... during pregnancy....

  9. Increased systemic inflammation is a risk factor for COPD exacerbations

    NARCIS (Netherlands)

    K.H. Groenewegen (Karin); D.S. Postma (Dirkje); W.C.J. Hop (Wim); P.L.M.L. Wielders (Pascal); N.J.J. Schlösser (Noel); E.F.M. Wouters (Emiel)

    2008-01-01

    textabstractBackground: COPD is characterized by episodic increases in respiratory symptoms, so-called exacerbations. COPD exacerbations are associated with an increase in local and systemic inflammation. Data of a previously published study in a well-characterized COPD cohort were analyzed to defin

  10. Increased systemic inflammation is a risk factor for COPD exacerbations

    NARCIS (Netherlands)

    Groenewegen, Karin H.; Postma, Dirkje S.; Hop, Wim C. J.; Wielders, Pascal L. M. L.; Schlosser, Noel J. J.; Wouters, Entiel F. M.

    2008-01-01

    Background: COPD is characterized by episodic increases in respiratory symptoms, so-called exacerbations. COPD exacerbations are associated with an increase in local and systemic inflammation. Data of a previously published study in a well-characterized COPD cohort were analyzed to define predictive

  11. Acute exacerbations and pulmonary hypertension in advanced idiopathic pulmonary fibrosis.

    LENUS (Irish Health Repository)

    Judge, Eoin P

    2012-07-01

    The aim of this study was to evaluate the risk factors for and outcomes of acute exacerbations in patients with advanced idiopathic pulmonary fibrosis (IPF), and to examine the relationship between disease severity and neovascularisation in explanted IPF lung tissue. 55 IPF patients assessed for lung transplantation were divided into acute (n=27) and non-acute exacerbation (n=28) groups. Haemodynamic data was collected at baseline, at the time of acute exacerbation and at lung transplantation. Histological analysis and CD31 immunostaining to quantify microvessel density (MVD) was performed on the explanted lung tissue of 13 transplanted patients. Acute exacerbations were associated with increased mortality (p=0.0015). Pulmonary hypertension (PH) at baseline and acute exacerbations were associated with poor survival (p<0.01). PH at baseline was associated with a significant risk of acute exacerbations (HR 2.217, p=0.041). Neovascularisation (MVD) was significantly increased in areas of cellular fibrosis and significantly decreased in areas of honeycombing. There was a significant in