WorldWideScience

Sample records for activity emg-based control

  1. FEATURE EXTRACTION FOR EMG BASED PROSTHESES CONTROL

    Directory of Open Access Journals (Sweden)

    R. Aishwarya

    2013-01-01

    Full Text Available The control of prosthetic limb would be more effective if it is based on Surface Electromyogram (SEMG signals from remnant muscles. The analysis of SEMG signals depend on a number of factors, such as amplitude as well as time- and frequency-domain properties. Time series analysis using Auto Regressive (AR model and Mean frequency which is tolerant to white Gaussian noise are used as feature extraction techniques. EMG Histogram is used as another feature vector that was seen to give more distinct classification. The work was done with SEMG dataset obtained from the NINAPRO DATABASE, a resource for bio robotics community. Eight classes of hand movements hand open, hand close, Wrist extension, Wrist flexion, Pointing index, Ulnar deviation, Thumbs up, Thumb opposite to little finger are taken into consideration and feature vectors are extracted. The feature vectors can be given to an artificial neural network for further classification in controlling the prosthetic arm which is not dealt in this paper.

  2. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    Science.gov (United States)

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  3. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Asai

    Full Text Available It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off.

  4. Effects of 4-Week Intensive Active-Resistive Training with an EMG-Based Exoskeleton Robot on Muscle Strength in Older People: A Pilot Study.

    Science.gov (United States)

    Son, Jongsang; Ryu, Jeseong; Ahn, Soonjae; Kim, Eun Joo; Lee, Jung Ah; Kim, Youngho

    2016-01-01

    This study aims to investigate the idea that an active-resistive training with an EMG-based exoskeleton robot could be beneficial to muscle strength and antagonist muscle cocontraction control after 4-week intensive elbow flexion/extension training. Three older people over 65 years participated the training for an hour per session and completed total 20 sessions during four weeks. Outcome measures were chosen as the maximum joint torque and cocontraction ratio between the biceps/triceps brachii muscles at pre-/post-training. The Wilcoxon signed-ranks test was performed to evaluate paired difference for the outcome measures. As a result, there was no significant difference in the maximum flexion or extension torque at pre- and post-training. However, the cocontraction ratio of the triceps brachii muscle as the antagonist was significantly decreased by 9.8% after the 4-week intensive training. The active-resistive training with the exoskeleton robot in the older people yielded a promising result, showing significant changes in the antagonist muscle cocontraction. PMID:27006942

  5. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.

    Science.gov (United States)

    Nam, Yunjun; Koo, Bonkon; Cichocki, Andrzej; Choi, Seungjin

    2014-02-01

    We present a novel human-machine interface, called GOM-Face , and its application to humanoid robot control. The GOM-Face bases its interfacing on three electric potentials measured on the face: 1) glossokinetic potential (GKP), which involves the tongue movement; 2) electrooculogram (EOG), which involves the eye movement; 3) electromyogram, which involves the teeth clenching. Each potential has been individually used for assistive interfacing to provide persons with limb motor disabilities or even complete quadriplegia an alternative communication channel. However, to the best of our knowledge, GOM-Face is the first interface that exploits all these potentials together. We resolved the interference between GKP and EOG by extracting discriminative features from two covariance matrices: a tongue-movement-only data matrix and eye-movement-only data matrix. With the feature extraction method, GOM-Face can detect four kinds of horizontal tongue or eye movements with an accuracy of 86.7% within 2.77 s. We demonstrated the applicability of the GOM-Face to humanoid robot control: users were able to communicate with the robot by selecting from a predefined menu using the eye and tongue movements. PMID:24021635

  6. Improvements on EMG-based handwriting recognition with DTW algorithm.

    Science.gov (United States)

    Li, Chengzhang; Ma, Zheren; Yao, Lin; Zhang, Dingguo

    2013-01-01

    Previous works have shown that Dynamic Time Warping (DTW) algorithm is a proper method of feature extraction for electromyography (EMG)-based handwriting recognition. In this paper, several modifications are proposed to improve the classification process and enhance recognition accuracy. A two-phase template making approach has been introduced to generate templates with more salient features, and modified Mahalanobis Distance (mMD) approach is used to replace Euclidean Distance (ED) in order to minimize the interclass variance. To validate the effectiveness of such modifications, experiments were conducted, in which four subjects wrote lowercase letters at a normal speed and four-channel EMG signals from forearms were recorded. Results of offline analysis show that the improvements increased the average recognition accuracy by 9.20%.

  7. Comparison of an EMG-based and a stress-based method to predict shoulder muscle forces.

    Science.gov (United States)

    Engelhardt, Christoph; Malfroy Camine, Valérie; Ingram, David; Müllhaupt, Philippe; Farron, Alain; Pioletti, Dominique; Terrier, Alexandre

    2015-01-01

    The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior-inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.

  8. Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Luis Manuel Vaca Benitez

    2013-01-01

    Full Text Available The rehabilitation of patients should not only be limited to the first phases during intense hospital care but also support and therapy should be guaranteed in later stages, especially during daily life activities if the patient’s state requires this. However, aid should only be given to the patient if needed and as much as it is required. To allow this, automatic self-initiated movement support and patient-cooperative control strategies have to be developed and integrated into assistive systems. In this work, we first give an overview of different kinds of neuromuscular diseases, review different forms of therapy, and explain possible fields of rehabilitation and benefits of robotic aided rehabilitation. Next, the mechanical design and control scheme of an upper limb orthosis for rehabilitation are presented. Two control models for the orthosis are explained which compute the triggering function and the level of assistance provided by the device. As input to the model fused sensor data from the orthosis and physiology data in terms of electromyography (EMG signals are used.

  9. FMRl analysis for motor paradigms using EMG-Based designs : A validation study

    NARCIS (Netherlands)

    Van Rootselaar, Anne-Fleur; Renken, Remco; De Jong, Bauke M.; Hoogduin, Johannes M.; Tijssen, Marina A. J.; Maurits, Natasha M.

    2007-01-01

    The goal of the present validation study is to show that continuous surface EMG recorded simultaneously with 3T fMRI can be used to identify local brain activity related to (1) motor tasks, and to (2) muscle activity independently of a specific motor task, i.e. spontaneous (abnormal) movements. Five

  10. Trust sensor interface for improving reliability of EMG-based user intent recognition.

    Science.gov (United States)

    Liu, Yuhong; Zhang, Fan; Sun, Yan Lindsay; Huang, He

    2011-01-01

    To achieve natural and smooth control of prostheses, Electromyographic (EMG) signals have been investigated for decoding user intent. However, EMG signals can be easily contaminated by diverse disturbances, leading to errors in user intent recognition and threatening the safety of prostheses users. To address this problem, we propose a trust sensor interface (TSI) that contains 2 modules: (1) abnormality detector that detects diverse disturbances with high accuracy and low latency and (2) trust evaluation that dynamically evaluates the reliability of EMG sensors. Based on the output of the TSI, the user intention recognition (UIR) algorithm is able to dynamically adjust their operations or decisions. Our experiments on an able-bodied subject have demonstrated that the proposed TSI can effectively detect two types of disturbances (i.e. motion artifacts and baseline shifts) and improve the reliability of the UIR.

  11. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  12. Active noise control primer

    CERN Document Server

    Snyder, Scott D

    2000-01-01

    Active noise control - the reduction of noise by generating an acoustic signal that actively interferes with the noise - has become an active area of basic research and engineering applications. The aim of this book is to present all of the basic knowledge one needs for assessing how useful active noise control will be for a given problem and then to provide some guidance for designing, setting up, and tuning an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the book is short and descriptive. It leaves for more advanced texts or research monographs all mathematical details and proofs concerning vibrations, signal processing and the like. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include: basic acoustics; human perception and sound; sound intensity...

  13. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees

    Directory of Open Access Journals (Sweden)

    Jiang Ning

    2012-06-01

    Full Text Available Abstract We propose a method for estimating wrist kinematics during dynamic wrist contractions from multi-channel surface electromyography (EMG. The algorithm extracts features from the surface EMG and uses dedicated multi-layer perceptron networks to estimate individual joint angles of the 3 degrees of freedom (DoFs of the wrist. The method was designed with the aim of proportional and simultaneous control of multiple DoFs of active prostheses by unilateral amputees. Therefore, the proposed approach was tested in both unilateral transradial amputees and in intact-limbed control subjects. It was shown that the joint angles at the 3 DoFs of amputees can be estimated from surface EMG recordings , during mirrored bi-lateral contractions that simultaneously and proportionally articulated the 3 DoFs. The estimation accuracies of amputee subjects with long stumps were 62.5% ± 8.50% across all 3 DoFs, while accuracies of the intact-limbed control subjects were 72.0% ± 8.29%. The estimation results from intact-limbed subjects were consistent with earlier studies. The results from the current study demonstrated the feasibility of the proposed myoelectric control approach to provide a more intuitive myoelectric control strategy for unilateral transradial amputees.

  14. Efficiency in Controlling Activities

    OpenAIRE

    Van Nguyen, Tuyen

    2015-01-01

    Controlling is essential for financial success of corporations. An efficient controlling system should be implemented in order to manage financial performance from income, expense to profitability. The purpose of the thesis is to provide insight knowledge towards corporate accounting management as well as to propose potential improvement for the existing controlling system of the case company, which is Bosch Rexroth Japan. The theoretical framework creates the knowledge foundation for re...

  15. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  16. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the...

  17. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  18. Training-related changes in the EMG-moment relationship during isometric contractions: Further evidence of improved control of muscle activation in strength-trained men?

    Science.gov (United States)

    Amarantini, David; Bru, Bertrand

    2015-08-01

    The possibility of using electromyography (EMG) to track muscle activity has raised the question of its relationship with the effort exerted by the muscles around the joints. However, the EMG-moment relationship is yet to be fully defined, and increasing knowledge of this topic could contribute to research in motor control and to the development of EMG-based algorithms and devices. With regards the training-related adaptations at the peripheral and central level, the present study investigated the effect of strength training on EMG-moment relationship. Our aim was to clarify its nature and gain further understanding of how morphological and neural factors may affect its form. The EMG-moment relationship was determined during knee flexion and extension isometric contractions performed by strength-trained male athletes and untrained male participants. The results showed that strength training induced linearity of the EMG-moment relationship concomitantly with enhanced maximum force production capacity and decreased co-activation of knee agonist-antagonist muscle pair. These results clarified discordant results regarding the linear or curved nature of the EMG-moment in isometric conditions and suggested that the remarkable linearity of the EMG-moment found in trained participants could indicate improved control of muscle activation.

  19. Optical control of antibacterial activity

    Science.gov (United States)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  20. Demonstration of Active Combustion Control

    Science.gov (United States)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  1. ABOUT CONTROLLING OF SCIENTIFIC ACTIVITY

    Directory of Open Access Journals (Sweden)

    Mukhin V. V.

    2014-06-01

    Full Text Available We have selected the new area of controlling - scientific activity controlling. We consider some problems of development in this field, primarily the problem of selection of key performance indicators. It’s been founded that administrative measures stimulated the pursuit of a number of articles published in scientific journals hinders the development of science. Methodological errors - emphasis on citation indexes, impact factors, etc. - lead to wrong management decisions. As the experience of the UK, an expertise should be applied in the management of science. The article briefly discusses some of the drawbacks of the system of scientific specialties. It is proposed to expand research on the science of science and scientific activity controlling. We have also discussed the problems of controlling in applied research organizations

  2. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models......This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model...

  3. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  4. A Digital Controller for Active Aeroelastic Controls

    OpenAIRE

    Ueda, Tetsuhiko; MUROTA, Katsuichi; 上田, 哲彦; 室田, 勝一

    1989-01-01

    A high-speed digital controller for aeroelastic controls was designed and made. The purpose was to minimize adverse phase lag which is inevitably produced by the CPU time of digital processing. The delay deteriorates control performances on rather rapid phenomena like aircraft flutter. With fix-point operation the controller realized 417 microseconds of throughput time including the A/D and D/A conversion. This corresponds to a high sampling rate of 2.4kHz. The controller furnishes two channe...

  5. Active load control using microtabs

    Science.gov (United States)

    Yen, Dora Te-Lun

    2001-11-01

    Micro-electro-mechanical (MEM) translational tabs are introduced for enhancing and controlling the aerodynamic loading on lifting surfaces. These microtabs are mounted near the trailing edge of lifting surfaces, retract and extend approximately normal to the surface and have a maximum deployment height on the order of the boundary-layer thickness. Deployment of the device effectively modifies the camber distribution of the lifting surface and hence, the lift generated. The effect of the microtabs on lift is shown to be as powerful as conventional control surfaces with lift changes of 30%--50% in the linear range of the lift curve using a tab with a height of 1% of airfoil chord placed at 5% of chord upstream of the trailing edge on the lower surface. A multi-disciplinary approach incorporating aspects of experimental and computational aerodynamics, mechanical design and microfabrication techniques has been taken to develop and test a "proof of concept" model. Flow simulations, using a Reynolds-averaged Navier Stokes solver, have been conducted to optimize the size and placement of the devices based on trailing edge volume constraints. Numerical and experimental wind tunnel results are in good agreement, and both confirm that these micro-scale devices create macro-scale changes in aerodynamic loading. Application of this rather simple but innovative lift control system based on microfabrication techniques introduces a robust, dynamic control device and will allow for the miniaturization of conventional high lift and control systems. The result is a significant reduction in typical control system weight, complexity and cost. Also due to the minute size of these tabs, their activation and response times are much faster than that of conventional trailing edge devices. The "proof of concept" tab design, fabrication techniques, computational and experimental setup, and test results using a representative airfoil are presented in this research. (For more information, see

  6. Active interaction control for civil structures

    OpenAIRE

    Wang, Luo-Jia

    1997-01-01

    This thesis presents a civil engineering approach to active control for civil structures. The proposed control technique, termed Active Interaction Control (AIC), utilizes dynamic interactions between different structures, or components of the same structure, to reduce the resonance response of the controlled or primary structure under earthquake excitations. The primary control objective of AIC is to minimize the maximum story drift of the primary structure. This is accomplished by timing th...

  7. Cooperative Control Method of Active and Semiactive Control: New Framework for Vibration Control

    OpenAIRE

    Kazuhiko Hiramoto

    2014-01-01

    A new control design framework for vibration control, the cooperative control of active and semiactive control, is proposed in the paper. In the cooperative control, a structural system having both of an actuator and a semiactive control device, for example, MR damper and so forth, is defined as the control object. In the proposed control approach, the higher control performance is aimed by the cooperative control between the active control with the actuator and the semiactive control with th...

  8. Microglial control of neuronal activity

    Directory of Open Access Journals (Sweden)

    Catherine eBéchade

    2013-03-01

    Full Text Available Fine-tuning of neuronal activity was thought to be a neuron-autonomous mechanism until the discovery that astrocytes are active players of synaptic transmission. The involvement of astrocytes has changed our understanding of the roles of non-neuronal cells and shed new light on the regulation of neuronal activity. Microglial cells are the macrophages of the brain and they have been mostly investigated as immune cells. However recent data discussed in this review support the notion that, similarly to astrocytes, microglia are involved in the regulation of neuronal activity. For instance, in most, if not all, brain pathologies a strong temporal correlation has long been known to exist between the pathological activation of microglia and dysfunction of neuronal activity. Recent studies have convincingly shown that alteration of microglial function is responsible for pathological neuronal activity. This causal relationship has also been demonstrated in mice bearing loss-of-function mutations in genes specifically expressed by microglia. In addition to these long-term regulations of neuronal activity, recent data show that microglia can also rapidly regulate neuronal activity, thereby acting as partners of neurotransmission.

  9. Developing Internal Controls through Activities

    Science.gov (United States)

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  10. Vibration control of active structures an introduction

    CERN Document Server

    Preumont, Andre

    2002-01-01

    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  11. An Improved Production Activity Control Architecture for Shop Floor Control

    Institute of Scientific and Technical Information of China (English)

    SHAHIDIkramullahButt; SUNHou-fang; HAMIDUllahKhanNiazi

    2005-01-01

    This paper presents a further improved Production Activity Control Architecture to deal with the complexity of information by creating Sub-Producers and Sub-Movers which will not only give a better control at workstation level but also reduce load on the Dispatcher. It also makes an analysis of the basic and improved PAC (Production Activity Control) Architecture in the Control System for Integrated Manufacturing. The PAC Architecture and the improvement will further enhance the flexibility and adaptability of the architecture in the ever changing environment of the Shop Floor Control (SFC) Systems.

  12. Optical control of antibacterial activity

    NARCIS (Netherlands)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-01-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desir

  13. Automobile active suspension system with fuzzy control

    Institute of Scientific and Technical Information of China (English)

    刘少军; 黄中华; 陈毅章

    2004-01-01

    A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.

  14. SLIDING MODE CONTROL FOR ACTIVE AUTOMOBILE SUSPENSIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Nonlinear control methods are presented based on theory of sliding mode control (SMC) or variable structure control (VSC) for application to active automobile suspensions. Requirements of reducing manufacturing cost and energy consumption of the active suspension system may be satisfiedby reasonable design of the sliding surface and hydraulic servo system. Emphasis is placed on the study of the discrete sliding mode control method (DSMC) applicable for a new sort of speed on-off solenoid valves of anti-dust capability and low price. Robustness and effectiveness of the feedback linearized controller in typical road conditions are demonstrated by numerical results fora quarter-car suspension model.

  15. Activities of the control services; Activites des services du controle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper summarizes the control activities of the technical service of electric power and big dams: annual examinations, administrative instructions (draining, floods, granting renewal), decennial examinations etc. (J.S.)

  16. Active Control of Fan Noise

    Institute of Scientific and Technical Information of China (English)

    Nobuhiko YAMASAKI; Hirotoshi TAJIMA

    2008-01-01

    In the wake-rotor interaction fan noise, a number of the interacting modes at the blade passing frequency (BPF)and its harmonics are generated which are prescribed by the number of stator and rotor blades etc. In the present study, the dominant mode is tried to be suppressed by the secondary sound from the loudspeaker actuators. One of the novel features of the present system is the adoption of the control board with the Field Programmable Gate Array (FPGA) hardware and the LabVIEW software to synchronize the circumferentially installed loudspeaker actuators with the relative location of rotational blades under arbitrary fan rotational speeds. The experiments were conducted under the conditions of three rotational speeds of 2004, 3150, and 4002 [rpm]. The reduction in the sound pressure level (SPL) was observed for all three rotational speeds. The sound pressure level at the BPF was reduced approximately 13 [dB] for 2004 [rpm] case, but not so large reduction was attained for other cases probably due to the inefficiency of the loudspeaker actuators at high frequencies

  17. Active vibration control of lightweight floor systems

    Science.gov (United States)

    Baader, J.; Fontana, M.

    2016-04-01

    Wide-span and lightweight floors are often prone to structural vibrations due to their low resonance frequency and poor material damping. Their dynamic behaviour can be improved using passive, semi-active or active vibration control devices. The following article proposes a novel method for the controller synthesis for active vibration control. An existing passive TMD (tuned mass damper) is modelled and equipped with an actuator in order to provide more efficient damping. Using an iterative optimization approach under constraints, an optimal controller is found which minimizes a quadratic cost function in frequency domain. A simulation of an existing test bench shows that the active vibration control device is able to provide increased damping compared to the passive TMD.

  18. Electromyographic Control of a Hands-Free Electrolarynx Using Neck Strap Muscles

    Science.gov (United States)

    Kubert, Heather L.; Stepp, Cara E.; Zeitels, Steven M.; Gooey, John E.; Walsh, Michael J.; Prakash, S. R.; Hillman, Robert E.; Heaton, James T.

    2009-01-01

    Three individuals with total laryngectomy were studied for their ability to control a hands-free electrolarynx (EL) using neck surface electromyography (EMG) for on/off and pitch modulation. The laryngectomy surgery of participants was modified to preserve neck strap musculature for EMG-based EL control (EMG-EL), with muscles on one side…

  19. Manually controlled neutron-activation system

    Science.gov (United States)

    Johns, R. A.; Carothers, G. A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates.

  20. Active Noise Control in Propeller Aircraft

    OpenAIRE

    Johansson, Sven; Claesson, Ingvar

    2001-01-01

    A noisy environment dominated by low frequency noise can often be improved through the use of active noise control. This situation arises naturally in propeller aircraft where the propellers induce periodic low frequency noise inside the cabin. The cabin noise is typically rather high, and the passenger flight comfort could be improved considerably if this level were significantly reduced. This paper addresses same design aspects for multiple-reference active noise control systems based on th...

  1. Active load control techniques for wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  2. Semi-active control of dynamically excited structures using active interaction control

    OpenAIRE

    Zhang, Yunfeng

    2001-01-01

    This thesis presents a family of semi-active control algorithms termed Active Interaction Control (AIC) used for response control of dynamically excited structures. The AIC approach has been developed as a semi﷓active means of protecting building structures against large earthquakes. The AIC algorithms include the Active Interface Damping (AID), Optimal Connection Strategy (OCS), and newly developed Tuned Interaction Damping (TID) algorithms. All of the AIC algorithms are founded upon ...

  3. Classifying controllers by activities : An exploratory study

    NARCIS (Netherlands)

    Verstegen, B.; De Loo, I.G.M.; Mol, P.; Slagter, K.; Geerkens, H.

    2007-01-01

    The goal of this paper is to discern variables (triggers) that affect a controller’s role in an organisation. Using survey data, groups of controllers are distinguished based on coherent combinations of activities. We find that controllers either operate as so-called ‘information adapters’ or ‘watch

  4. Active control of vibrations in pedestrian bridges

    OpenAIRE

    Álvaro Cunha; Carlos Moutinho

    1999-01-01

    This paper, apart from making a brief general reference to vibration problems in pedestrian bridges, as well as to the form of modelling of dynamic pedestrian loads, presents the use of a predictive control strategy for the numerical simulation of the dynamic response of actively controlled structures of this type. The consideration of this control strategy permitted the development of a computational model, which was applied to the study of a pedestrian cable-stayed bridge, in order to show ...

  5. Active and passive vibration control of structures

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2014-01-01

    Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory.  Also links between the different applications in structural control are shown.

  6. Control of nucleus accumbens activity with neurofeedback

    OpenAIRE

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be pres...

  7. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    2010-01-01

    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... considered is controlled by an observer-based controller. The method is then based on a number of alternate observers, each designed to be sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the sequence of fault sensitive observers. This is done...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...

  8. THE CONTROL AND EVALUATION OF PROMOTIONAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Felicia Sabou

    2012-01-01

    Full Text Available The paper focused on importance and benefits of control and evaluation of marketing activities. The control of efficiency review the assessment of the resources for marketing activity, checking also the efficiency of the human resources, advertising, promotion activities and distribution activities. In the analyse of human resources the most important ratio are: the average of costumers visits on a day, the number of custom order received from 100 visits, the number of new customers from a period, the number of lost customers from a period, the marketing human expenditures from all the sales.The strategic control is made to check if the objectives and the company strategy are adapted to the marketing environment.

  9. A Real-Time Pinch-to-Zoom Motion Detection by Means of a Surface EMG-Based Human-Computer Interface

    Directory of Open Access Journals (Sweden)

    Jongin Kim

    2014-12-01

    Full Text Available In this paper, we propose a system for inferring the pinch-to-zoom gesture using surface EMG (Electromyography signals in real time. Pinch-to-zoom, which is a common gesture in smart devices such as an iPhone or an Android phone, is used to control the size of images or web pages according to the distance between the thumb and index finger. To infer the finger motion, we recorded EMG signals obtained from the first dorsal interosseous muscle, which is highly related to the pinch-to-zoom gesture, and used a support vector machine for classification between four finger motion distances. The powers which are estimated by Welch’s method were used as feature vectors. In order to solve the multiclass classification problem, we applied a one-versus-one strategy, since a support vector machine is basically a binary classifier. As a result, our system yields 93.38% classification accuracy averaged over six subjects. The classification accuracy was estimated using 10-fold cross validation. Through our system, we expect to not only develop practical prosthetic devices but to also construct a novel user experience (UX for smart devices.

  10. A real-time pinch-to-zoom motion detection by means of a surface EMG-based human-computer interface.

    Science.gov (United States)

    Kim, Jongin; Cho, Dongrae; Lee, Kwang Jin; Lee, Boreom

    2014-12-29

    In this paper, we propose a system for inferring the pinch-to-zoom gesture using surface EMG (Electromyography) signals in real time. Pinch-to-zoom, which is a common gesture in smart devices such as an iPhone or an Android phone, is used to control the size of images or web pages according to the distance between the thumb and index finger. To infer the finger motion, we recorded EMG signals obtained from the first dorsal interosseous muscle, which is highly related to the pinch-to-zoom gesture, and used a support vector machine for classification between four finger motion distances. The powers which are estimated by Welch's method were used as feature vectors. In order to solve the multiclass classification problem, we applied a one-versus-one strategy, since a support vector machine is basically a binary classifier. As a result, our system yields 93.38% classification accuracy averaged over six subjects. The classification accuracy was estimated using 10-fold cross validation. Through our system, we expect to not only develop practical prosthetic devices but to also construct a novel user experience (UX) for smart devices.

  11. Simulation studies for multichannel active vibration control

    Science.gov (United States)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.

    2003-10-01

    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  12. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  13. Active control for performance enhancement of electrically controlled rotor

    Institute of Scientific and Technical Information of China (English)

    Lu Yang; Wang Chao

    2015-01-01

    Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor-mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor perfor-mance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3%rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  14. Active control for performance enhancement of electrically controlled rotor

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2015-10-01

    Full Text Available Electrically controlled rotor (ECR system has the potential to enhance the rotor performance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor performance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3% rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  15. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  16. Actively Controlling Buffet-Induced Excitations

    Science.gov (United States)

    Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.

    2005-01-01

    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.

  17. Jacket Substructure Fatigue Mitigation through Active Control

    DEFF Research Database (Denmark)

    Hanis, Tomas; Natarajan, Anand

    2014-01-01

    to the fatigue design loads on the braces of the jacket. Since large wind turbines of 10MW rating have low rotor speeds (p), the modal frequencies of the sub structures approach 3p at low wind speeds, which leads to a modal coupling and resonance. Therefore an active control system is developed which provides...... sufficient structural damping and consequently a fatigue reduction at the substructure. The resulting reduction in fatigue design loads on the jacket structure based on the active control system is presented....

  18. Active steering control strategy for articulated vehicles

    Institute of Scientific and Technical Information of China (English)

    Kyong-il KIM; Hsin GUAN; Bo WANG; Rui GUO; Fan LIANG

    2016-01-01

    To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator (LQR) theory. First, a three-degree-of-freedom (3-DOF) model of the tractor-trailer with steered trailer axles is built. The simulated annealing particle swarm optimization (SAPSO) algorithm is applied to identify the key parameters of the model under specified vehicle speed and steering wheel angle. Thus, the key pa-rameters of the simplified model can be obtained according to the vehicle conditions using an online look-up table and interpola-tion. Simulation results show that vehicle parameter outputs of the simplified model and TruckSim agree well, thus providing the ideal reference yaw rate for the controller. Then the active steering controller of the tractor and trailer based on LQR is designed to follow the desired yaw rate and minimize their side-slip angle of the center of gravity (CG) at the same time. Finally, simulation tests at both low speed and high speed are conducted based on the TruckSim-Simulink program. The results show significant effects on the active steering controller on improving maneuverability at low speed and lateral stability at high speed for the articulated vehicle. The control strategy is applicable for steering not only along gentle curves but also along sharp curves.

  19. Span of Control and Span of Activity

    OpenAIRE

    Oriana Bandiera; Andrea Prat; Raffaella Sadun; Julie Wulf

    2012-01-01

    For both practitioners and researchers, span of control plays an important role in defining and understanding the role of the CEO. In this paper, we combine organizational chart information for a sample of 65 companies with detailed data on how their CEOs allocate their work time, which we define as their span of activity. Span of activity provides a direct measure of the CEO's management style, including the attention devoted to specific subordinates and functions, the time devoted to indivi...

  20. Capital Control, Debt Financing and Innovative Activity

    OpenAIRE

    Czarnitzki, Dirk; Kraft, Kornelius

    2009-01-01

    "The present paper discusses the effects of dispersed versus concentrated capital ownership on investment into innovative activity. While the market for equity capital might exert insufficient control on top managements’ behavior, this weakness may be mitigated by a suitable degree of debt financing. We report the results of an empirical study on the determinants of innovative activity measured by patent applications. Using a large sample of German manufacturing firms, we find that companies ...

  1. Active Vibration Control of Piezolaminated Smart Beams

    Directory of Open Access Journals (Sweden)

    V. Balamurugan

    2001-04-01

    Full Text Available This paper deals with the active vibration control of beam like structures with distributed piezoelectric sensor and actuator layers bonded on top and bottom surfaces of the beam. A finite element model based on Euler-Bernoulli beam theory has been developed. The contribution of the piezoelectric sensor and actuator layers on the mass and stiffness of the beam is considered. Three types of classical control strategies, namely direct proportional feedback, constant-gain negative velocity feedback and Lyapunov feedback and an optimal control strategy, linear quadratic regulator (LQR scheme are applied to study their control effectiveness. Also, the control performance with different types of loading, such as impulse loading, step loading, harmonic and random loading is studied

  2. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    Science.gov (United States)

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  3. DNA-based control of protein activity.

    Science.gov (United States)

    Engelen, W; Janssen, B M G; Merkx, M

    2016-03-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  4. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...... that these are geometrically well separated. For active vibration control in three-bladed wind turbine rotors the present work presents a resonance-based method for groups of one collective and two whirling modes. The controller is based on the existing resonant format and introduces a dual system targeting the collective...

  5. Active control of transmitted sound in buildings

    Science.gov (United States)

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  6. Active control of multiple resistive wall modes

    International Nuclear Information System (INIS)

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitative agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc x Nc = 4 x 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc x Nc = 4 x 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7-8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback

  7. Active control of multiple resistive wall modes

    Science.gov (United States)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  8. Active vibration control of nonlinear benchmark buildings

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xing-de; CHEN Dao-zheng

    2007-01-01

    The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile,the controllers designed directly by the nonlinear control strategy have a high order, and they are difficult to be applied actually. Therefore, a new active vibration control way which fits the nonlinear buildings is proposed. The idea of the proposed way is based on the model identification and structural model linearization, and exerting the control force to the built model according to the force action principle. This proposed way has a better practicability as the built model can be reduced by the balance reduction method based on the empirical Grammian matrix. A three-story benchmark structure is presented and the simulation results illustrate that the proposed method is viable for the civil engineering structures.

  9. Actively controlled vibration welding system and method

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  10. Control Systems Cyber Security Standards Support Activities

    Energy Technology Data Exchange (ETDEWEB)

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  11. BWR startup and shutdown activity transport control

    International Nuclear Information System (INIS)

    This paper summarizes BWR industry experience on good practices for controlling the transport of corrosion product activity during shutdowns, particularly refueling outages, and for startup chemistry control to minimize IGSCC (intergranular stress corrosion cracking). For shutdown, overall goals are to minimize adverse impacts of crud bursts and the time required to remove activated corrosion products from the reactor coolant during the shutdown process prior to refueling, and to assist plants in predicting and controlling radiation exposure during outages. For startup, the overall goals are to highlight conditions during early heatup and startup when sources of reactor coolant oxidants are high, when there is a greater likelihood for chemical excursions associated with refueling outage work activities, and when hydrogen injection is not available to mitigate IGSCC due to system design limitations. BWR water chemistry has changed significantly in recent years with the adoption of hydrogen water chemistry, zinc addition and noble metal chemical applications. These processes have, in some instances, resulted in significant activity increases during shutdown evolutions, which together with reduced time for cleanup because of shorter outages, has consequently increased outage radiation exposure. A review several recent outages shows that adverse effects from these conditions can be minimized, leading to the set of good practice recommendations for shutdown chemistry control. Most plants lose the majority of their hydrogen availability hours during early startup because feedwater hydrogen injection systems were not originally designed to inject hydrogen below 20% power. Hydrogen availability has improved through modifications to inject hydrogen at lower power levels, some near 5%. However, data indicate that IGSCC is accelerated during early startup, when dissolved oxygen and hydrogen peroxide levels are high and reactor coolant temperatures are in the 300 to 400 oF (

  12. Active Noise Control in Forest Machines

    OpenAIRE

    Forsgren, Fredrik

    2011-01-01

    Achieving a low noise level is of great interest to the forest machine industry. Traditionally this is obtained by using passive noise reduction, i.e. by using materials for sound isolation and sound absorption. Especially designs to attenuate low frequency noise tend to be bulky and impractical from an installation point of view. An alternative solution to the problem is to use active noise control (ANC). The basic principle of ANC is to generate an anti-noise signal designed to destructivel...

  13. Active noise control for high frequencies

    OpenAIRE

    Kaymak, E; Atherton, MA; Rotter, KRG; Millar, B.

    2006-01-01

    There are many applications that can benefit from Active Noise Control (ANC) such as in aircraft cabins and air conditioning ducts, i.e. in situations where technology interferes with human hearing in a harmful way or disrupts communication. Headsets with analogue ANC circuits have been used in the armed forces for attenuating frequencies below 1 kHz, which when combined with passive filtering offers protection across the whole frequency range of human hearing. A dental surgery is also a nois...

  14. Active Control of Shear Thickening in Suspensions

    CERN Document Server

    Lin, Neil Y C; Cates, Michael E; Sun, Jin; Cohen, Itai

    2016-01-01

    Shear thickening, an increase of viscosity with shear rate, is a ubiquitous phenomena in suspended materials that has implications for broad technological applications. Controlling this thickening behavior remains a major challenge and has led to empirical strategies ranging from altering the particle surfaces and shape to modifying the solvent properties. However, none of these methods allow for active control of flow properties during shear itself. Here, we demonstrate that by strategic imposition of a high-frequency and low-amplitude shear perturbation orthogonal to the primary shearing flow, we can largely eradicate shear thickening. The orthogonal shear effectively becomes a regulator for controlling thickening in the suspension, allowing the viscosity to be reduced by up to two decades on demand. In a separate setup, we show that such effects can be induced by simply agitating the sample transversely to the primary shear direction. Overall, the ability of in situ manipulation of shear thickening paves a...

  15. Local flow control for active building facades

    Science.gov (United States)

    Kaligotla, Srikar; Chen, Wayne; Glauser, Mark

    2010-11-01

    Existing building facade designs are for a passive and an impermeable shell to prevent migration of outdoor air into the building and to control heat transfers between the exterior environment and the building interior. An active facade that can respond in real time to changing environmental conditions like wind speed and direction, pollutant load, temperature, humidity and light can lower energy use and maximize occupant comfort. With an increased awareness of cost and environmental effects of energy use, cross or natural ventilation has become an attractive method to lower energy use. Separated flow regions around such buildings are undesirable due to high concentration of pollutants, especially if the vents or dynamic windows for cross ventilation are situated in these regions. Outside pollutant load redistribution through vents can be regulated via flow separation control to minimize transport of pollutants into the building. Flow separation has been substantially reduced with the application of intelligent flow control tools developed at Syracuse University for flow around "silo" (turret) like structures. Similar flow control models can be introduced into buildings with cross ventilation for local external flow separation control. Initial experiments will be performed for turbulent flow over a rectangular block (scaled to be a mid-rise building) that has been configured with dynamic vents and unsteady suction actuators in a wind tunnel at various wind speeds.

  16. Real Time Vibration Control of Active Suspension System with Active Force Control using Iterative Learning Algorithm

    OpenAIRE

    Kalaivani; Lakshmi; Rajeswari

    2013-01-01

    This paper presents concurrent vibration control of a laboratory scaled vibration isolator platform with Active Force Control (AFC) using Iterative Learning Algorithm (ILA). The work investigates the performance of the traditional Proportional Integral Derivative Controller (PIDC) with and without AFC using ILA for vibration suppression. The physical single degree of freedom quarter car has been interfaced with a personal computer using a National Instruments data acquisition card NI USB 6008...

  17. Active optics control development at the LBT

    Science.gov (United States)

    Ashby, David S.; Biddick, Christopher; Hill, John M.

    2014-07-01

    The Large Binocular Telescope (LBT) is built around two 8.4 m-diameter primary mirrors placed with a centerline separation of 14.4 m in a common altitude/azimuth mount. Each side of the telescope can utilize a deployable prime focus instrument; alternatively, the beam can be directed to a Gregorian instrument by utilizing a deployable secondary mirror. The direct-Gregorian beam can be intercepted and redirected to several bent-Gregorian instruments by utilizing a deployable tertiary mirror. Two of the available bent-Gregorian instruments are interferometers, capable of coherently combining the beams from the two sides of the telescope. Active optics can utilize as many as 26 linearly independent degrees of freedom to position the primary, secondary and tertiary mirrors to control optical collimation while the telescope operates in its numerous observing modes. Additionally, by applying differential forces at 160 locations on each primary mirror, active optics controls the primary mirror figure. The authors explore the challenges associated with collimation and primary mirror figure control at the LBT and outline the ongoing related development aimed at optimizing image quality and preparing the telescope for interferometric operations.

  18. Coordinated Voltage Control of Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Xie Jiang

    2016-01-01

    Full Text Available This paper presents a centralized coordinated voltage control method for active distribution network to solve off-limit problem of voltage after incorporation of distributed generation (DG. The proposed method consists of two parts, it coordinated primal-dual interior point method-based voltage regulation schemes of DG reactive powers and capacitors with centralized on-load tap changer (OLTC controlling method which utilizes system’s maximum and minimum voltages, to improve the qualified rate of voltage and reduce the operation numbers of OLTC. The proposed coordination has considered the cost of capacitors. The method is tested using a radial edited IEEE-33 nodes distribution network which is modelled using MATLAB.

  19. Controller modification applied for active fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob; Poulsen, Niels Kjølstad

    2014-01-01

    This paper is focusing on active fault detection (AFD) for parametric faults in closed-loop systems. This auxiliary input applied for the fault detection will also disturb the external output and consequently reduce the performance of the controller. Therefore, only small auxiliary inputs are used...... the feedback controller with a minor effect on the external output in the fault free case. Further, in the faulty case, the signature of the auxiliary input can be optimized. This is obtained by using a band-pass filter for the YJBK parameter that is only effective in a small frequency range where...... the frequency for the auxiliary input is selected. This gives that it is possible to apply an auxiliary input with a reduced amplitude. An example is included to show the results....

  20. Actively-controlled Beds for Ambulances

    Institute of Scientific and Technical Information of China (English)

    Takahiko Ono; Hikaru Inooka

    2009-01-01

    During transportation by ambulance,a patient is exposed to inertial acceleration when an ambulance decelerates or turns a corner.Such acceleration often gives a patient physical stress such as blood pressure variation or body sway,which causes strong pain,feeling of discomfort or sometimes critical damage for seriously injured persons.To reduce this undesirable effect of the acceleration,the authors developed the actively-controlled bed (ACB) which controls the posture of a stretcher in real time to reduce foot-to-head and lateral acceleration acting on a supine person.This paper describes development of the ACB,including control system design and performance evaluation.The control system is designed by Zakian's framework,which comprises the principle of matching and the method of inequalities,so that the design specifications on the tracking error and the motor torque are satisfied.From the results of driving experiments and simulation,it is estimated that the ACB can reduce the acceleration acting on a patient by 65% in the foot-to-head direction and by 75% in the lateral direction.

  1. Active Displacement Control of Active Magnetic Bearing System

    Directory of Open Access Journals (Sweden)

    Kertész Milan

    2014-12-01

    Full Text Available The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES. The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL. APDL is used to create the loops of transient simulations where boundary conditions (BC are updated based upon a “gap sensor” which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  2. Active noise control technology. Active soon seigyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, M.; Kokubo, F.; Tanaka, S.; Yao, K. (Sharp Corp., Osaka (Japan))

    1994-05-10

    The signal processing method of the Active Noise Control (ANC) system was studied. The principle of ANC is to output secondary sound waves having opposite phase, identical amplitude from the control point of the sound wave of the primary sound source, and eliminate the noise by interference. As application fields, there are air conditioner ducts and compressors as one dimensional noise source, and automobile and axial fan as three dimensional noise source. In order to improve the stability of coefficient renewal algorithm of Adaptive Digital Filter (ADF), for generation of opposite phase noise, DC-LMS algorithm which can control the rise in gain of specified frequency zone was proposed. Furthermore, with the purpose of reducing the amount of operation, the introduction of lattice type AR filter was tested for the stability of the filter in IIR-ADF (Infinite Impulse Response Adaptive Digital Filter) and its application process. The applicability studies of these improved methods on the noise inside of ducts were actually measured, and the effect was verified. For the multi-channel control of 3 dimensional noise source, reference scanning method to reduce the filter operation was proposed. In the partial space noise eliminating experiment, it was made clear that it possesses equivalent effect to error scanning method. 11 refs., 14 figs., 1 tab.

  3. Real Time Vibration Control of Active Suspension System with Active Force Control using Iterative Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Kalaivani

    2013-09-01

    Full Text Available This paper presents concurrent vibration control of a laboratory scaled vibration isolator platform with Active Force Control (AFC using Iterative Learning Algorithm (ILA. The work investigates the performance of the traditional Proportional Integral Derivative Controller (PIDC with and without AFC using ILA for vibration suppression. The physical single degree of freedom quarter car has been interfaced with a personal computer using a National Instruments data acquisition card NI USB 6008. The controllers are designed and simulated using LabVIEW simulation software. The results infer that the PIDC with AFC using ILA works superior than the PIDC.

  4. Prediction control of active power filters

    Institute of Scientific and Technical Information of China (English)

    王莉娜; 罗安

    2003-01-01

    A prediction method to obtain harmonic reference for active power filter is presented. It is a new use ofthe adaptive predictive filter based on FIR. The delay inherent in digital controller is successfully compensated by u-sing the proposed method, and the computing load is not very large compared with the conventional method. Moreo-ver, no additional hardware is needed. Its DSP-based realization is also presented, which is characterized by time-va-riant rate sampling, quasi synchronous sampling, and synchronous operation among the line frequency, PWM gener-ating and sampling in A/D unit. Synchronous operation releases the limitation on PWM modulation ratio and guar-antees that the electrical noises resulting from the switching operation of IGBTs do not interfere with the sampledcurrent. The simulation and experimental results verify the satisfactory performance of the proposed method.

  5. Ribosome-dependent activation of stringent control.

    Science.gov (United States)

    Brown, Alan; Fernández, Israel S; Gordiyenko, Yuliya; Ramakrishnan, V

    2016-06-01

    In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a β-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics. PMID:27279228

  6. Actively controlled thin-shell space optics

    Science.gov (United States)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  7. Active controlled studies in antibiotic drug development.

    Science.gov (United States)

    Dane, Aaron

    2011-01-01

    The increasing concern of antibacterial resistance has been well documented, as has the relative lack of antibiotic development. This paradox is in part due to challenges with clinical development of antibiotics. Because of their rapid progression, untreated bacterial infections are associated with significant morbidity and mortality. As a consequence, placebo-controlled studies of new agents are unethical. Rather, pivotal development studies are mostly conducted using non-inferiority designs versus an active comparator. Further, infections because of comparator-resistant isolates must usually be excluded from the trial programme. Unfortunately, the placebo-controlled data classically used in support of non-inferiority designs are largely unavailable for antibiotics. The only available data are from the 1930s and 1940s and their use is associated with significant concerns regarding constancy and assay sensitivity. Extended public debate on this challenge has led to proposed solutions by some in which these concerns are addressed by using very conservative approaches to trial design, endpoints and non-inferiority margins, in some cases leading to potentially impractical studies. To compound this challenge, different Regulatory Authorities seem to be taking different approaches to these key issues. If harmonisation does not occur, antibiotic development will become increasingly challenging, with the risk of further decreases in the amount of antibiotic drug development. However with clarity on Regulatory requirements and an ability to feasibly conduct global development programmes, it should be possible to bring much needed additional antibiotics to patients.

  8. High performance composites with active stiffness control.

    Science.gov (United States)

    Tridech, Charnwit; Maples, Henry A; Robinson, Paul; Bismarck, Alexander

    2013-09-25

    High performance carbon fiber reinforced composites with controllable stiffness could revolutionize the use of composite materials in structural applications. Here we describe a structural material, which has a stiffness that can be actively controlled on demand. Such a material could have applications in morphing wings or deployable structures. A carbon fiber reinforced-epoxy composite is described that can undergo an 88% reduction in flexural stiffness at elevated temperatures and fully recover when cooled, with no discernible damage or loss in properties. Once the stiffness has been reduced, the required deformations can be achieved at much lower actuation forces. For this proof-of-concept study a thin polyacrylamide (PAAm) layer was electrocoated onto carbon fibers that were then embedded into an epoxy matrix via resin infusion. Heating the PAAm coating above its glass transition temperature caused it to soften and allowed the fibers to slide within the matrix. To produce the stiffness change the carbon fibers were used as resistance heating elements by passing a current through them. When the PAAm coating had softened, the ability of the interphase to transfer load to the fibers was significantly reduced, greatly lowering the flexural stiffness of the composite. By changing the moisture content in PAAm fiber coating, the temperature at which the PAAm softens and the composites undergo a reduction in stiffness can be tuned. PMID:23978266

  9. Active control of aerodynamic noise; Active control ni yoru furyoku soon no seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1996-10-01

    This paper introduces summary and examples of active noise control (ANC) and active flow control (AFC) as the aerodynamic noise control techniques. The ANC is a technique to generate noise of a reverse phase which cancels the original noise. Noise reduced especially effectively by the ANC is noise from fans and ducts used for engine air supply and exhaust. The ANC is effective in low frequencies, and when used with a passive method, a compact exhaust silencer can be realized, which has high noise reducing performance over the whole frequency band and has low pressure loss. Signal processing in active noise reduction system is always so adjusted that noise is discharged from a secondary noise source in which signals detected by a detection microphone is given a digital filter treatment, and output from an error microphone is minimized. The AFC has been incapable of realizing a reverse phase over a wide frequency band when depended on analog treatment. However, the authors have developed an adaptive type feedback control system, and verified that the system can be applied to any frequency variation and control it in a stable manner. 15 refs., 9 figs., 1 tab.

  10. Development of a generic activities model of command and control

    OpenAIRE

    Stanton, NA; Baber, C; Walker, GH; Houghton, RJ; McMaster, R.; Stewart, R; Harris, D.; Jenkins, DP; Young, MS; Salmon, PM

    2008-01-01

    This paper reports on five different models of command and control. Four different models are reviewed: a process model, a contextual control model, a decision ladder model and a functional model. Further to this, command and control activities are analysed in three distinct domains: armed forces, emergency services and civilian services. From this analysis, taxonomies of command and control activities are developed that give rise to an activities model of command and control. This model w...

  11. Automotive active noise control (ANC) system. Jidoshayo active noise control (ANC) system

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, S. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1992-11-25

    This paper introduces a successful development of an active noise control (ANC) system that selects and controls noise in an automobile compartment. This is a system that Nissan has developed for practical use for the first time in the world by using an adaptive control theory and a digital signal processor (DSP) that uses ultra-high speed operating elements. The principle for noise silencing in the ANC system utilizes interference of cyclic amplitude of sound with opposite phase. Sounds in an automobile include informative sounds, agreeable sounds, and noise, and combinations of these sounds work complexly on people in a car, of which extent varies depending on individuals. The adaptive control minimizes sounds picked up by a microphone into controlled speaker sound via an multiple error filtered algorithm (MEF-[sub X]LMS) and an adaptive digital filter. Major components of the system include a microphone, a speaker, and a control unit (comprising the adaptive algorithm and the adaptive filter), all having been developed newly. A DSP that operates on ultra-high speed operating elements was used for speedy compliance with complex algorithms, so that the controlled sound combined of engine noise with compartment sound field can be calculated. The noise was reduced by more than 10 dB at maximum. 7 figs.

  12. Optimal designs for dose finding studies with an active control

    OpenAIRE

    Benda, Norbert; Bretz, Frank; Dette, Holger; Kiss , Christine

    2011-01-01

    Dose finding studies often compare several doses of a new compound with a marketed standard treatment as an active control. In the past, however, research has focused mostly on experimental designs for placebo-controlled dose finding studies. To the best of our knowledge, optimal designs for dose finding studies with an active control have not been considered so far. As the statistical analysis for an active controlled dose finding study can be formulated in terms of a mixture ...

  13. Low Activity Waste Feed Process Control Strategy

    International Nuclear Information System (INIS)

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  14. Low Activity Waste Feed Process Control Strategy

    Energy Technology Data Exchange (ETDEWEB)

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  15. Active control of smart structures : an overall approach

    OpenAIRE

    Nestorović Tamara; Trajkov Miroslav

    2010-01-01

    The paper presents active control of smart structures within a focused frame of piezoelectric applications in active vibration and noise attenuation with potentials for the use in mechanical and civil engineering. An overall approach to active control of piezoelectric structures involves subsequent steps of modeling, control, simulation, experimental verification and implementation. Each of these steps is regarded in details. Different application examples showing the feasibility of the activ...

  16. Management Control of Public and Not-for-Profit Activities

    OpenAIRE

    Hofstede, G.

    1981-01-01

    Traditional approaches to management control usually fail for public and not-for-profit activities. The type of control applicable to such activities depends on four criteria: are objectives unambiguous, outputs measurable, effects of interventions known, and is the activity repetitive? Depending on where activities stand with regard to these criteria, the control applicable corresponds to one of six different types: routine, expert, trial-and-error, intuitive, judgemental, or political contr...

  17. DSP Control of Line Hybrid Active Filter

    DEFF Research Database (Denmark)

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.;

    2005-01-01

    Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter...... is studied for current harmonic compensation. The hybrid filter is formed by a single tuned Le filter and a small-rated power active filter, which are directly connected in series without any matching transformer. Thus the required rating of the active filter is much smaller than a conventional standalone...

  18. Magnetic Levitation Technique for Active Vibration Control

    OpenAIRE

    Hoque, Emdadul; Mizuno, Takeshi

    2010-01-01

    A zero-power controlled magnetic levitation system has been presented in this chapter. The unique characteristic of the zero-power control system is that it can generate negative stiffness with zero control current in the steady-state which is realized in this chapter. The detail characteristics of the levitation system are investigated. Moreover, two major contributions, the stiffness adjustment and nonlinear compensation of the suspension system have been introduced elaborately. Often, ther...

  19. Active control design of modular tensegrity structures

    OpenAIRE

    Amouri, Sarah; Averseng, Julien; Dubé, Jean-François

    2013-01-01

    In this paper, a general methodology for the design of modular active tensegrity structures is presented. The objectives are to propose systems such as grids or footbridges that would be able to actively damper their first vibration modes and to adapt their geometry using a small number of activators. This approach is validated experimentally on a plane regular tensegrity grid. Using numerical simulation, an application on the model of a modular tensegrity footbridge is presented.

  20. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  1. Phase and gain control policies for robust active vibration control of flexible structures

    OpenAIRE

    Zhang, Kai; Scorletti, Gérard; Ichchou, Mohamed; Mieyeville, F.

    2013-01-01

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H∞ control: according to the set...

  2. Nonlinear Predictive Control of Semi-Active Landing Gear System

    OpenAIRE

    Wu, Dongsu; Gu, Hongbin; Liu, Hui

    2010-01-01

    The application of model predictive control and constructive nonlinear control methodology to semi-active landing gear system is studied in this paper. A unified shock absorber mathematical model incorporates solenoid valve’s electromechanical and magnetic dynamics is built to facilitate simulation and controller design. Then we propose a hierarchical control structure to deal with the high nonlinearity. A dual mode model predictive controller as an outer loop controller is developed to gen...

  3. Active vibration and noise control by hybrid active acoustic panels

    Energy Technology Data Exchange (ETDEWEB)

    Stoebener, U.; Gaul, L. [Stuttgart Univ. (Germany). Inst. A fuer Mechanik

    2001-07-01

    In the present paper a hybrid passive and active treatment for vibration and noise reduction of plate type structures is proposed. The treatment is manufactured as sandwich structure and is called hybrid active acoustic panel. The passive component is used to reduce the vibration and sound radiation for high frequencies whereas the active part of the system is designed for the low frequency range. By selecting the thickness of the passive damping layer a certain frequency limit is defined, which divides the high and low frequency range. The actuator and sensor layout of the active component is evaluated by using the mode shapes of the low frequency range. According to the evaluated layout a hybrid active acoustic panel is manufactured and experimentally tested. The experimental results validate the proposed concept. (orig.)

  4. Short Horizon Control Strategies for an Alternating Activated Sludge Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard

    1996-01-01

    Three control strategies allowing improved operational flexibility of an alternating type activated sludge process are presented in a unified model based framework. The control handles employed are the addition rate of an external carbon source to denitrification, the cycle length...

  5. Brain-Activity-Driven Real-Time Music Emotive Control

    OpenAIRE

    Giraldo, Sergio; Ramirez, Rafael

    2013-01-01

    Active music listening has emerged as a study field that aims to enable listeners to interactively control music. Most of active music listening systems aim to control music aspects such as playback, equalization, browsing, and retrieval, but few of them aim to control expressive aspects of music to convey emotions. In this study our aim is to enrich the music listening experience by allowing listeners to control expressive parameters in music performances using their perceived emotional stat...

  6. Self-Tuning Active Vibration Control of Flexible Beam Structures

    OpenAIRE

    M.O. Tokhi; Hossain, M A

    1994-01-01

    This paper presents the design and performance evaluation of an adaptive active control mechanism for vibration suppression in flexible beam structures. A cantilever beam system in transverse vibration is considered. First order control finite difference methods are used to study the behaviour of the beam and develop a suitable test and verification platform. An active vibration control algorithm is developed within an adaptive control framework for broadband cancellation of vibration along t...

  7. Active and Passive Flow Control around Simplified Ground Vehicles

    Directory of Open Access Journals (Sweden)

    C.H Bruneau

    2012-01-01

    Full Text Available The aim of this work is to control the flow around ground vehicles by active or/and passive strategies. The active control is achieved by steady, pulsed or closed-loop jets located at the backof the simplified car model. The passive control is performed using porous layers between the solid body and the fluid in order to modify the shear forces. The two previous control methods can be coupled to improve the drag reduction.

  8. Formal Verification of Effectiveness of Control Activities in Business Processes

    Science.gov (United States)

    Arimoto, Yasuhito; Iida, Shusaku; Futatsugi, Kokichi

    It has been an important issue to deal with risks in business processes for achieving companies' goals. This paper introduces a method for applying a formal method to analysis of risks and control activities in business processes in order to evaluate control activities consistently, exhaustively, and to give us potential to have scientific discussion on the result of the evaluation. We focus on document flows in business activities and control activities and risks related to documents because documents play important roles in business. In our method, document flows including control activities are modeled and it is verified by OTS/CafeOBJ Method that risks about falsification of documents are avoided by control activities in the model. The verification is done by interaction between humans and CafeOBJ system with theorem proving, and it raises potential to discuss the result scientifically because the interaction gives us rigorous reasons why the result is derived from the verification.

  9. Active control of radiated sound using nearfield pressure sensing

    Institute of Scientific and Technical Information of China (English)

    CHEN Ke'an; YIN Xuefei

    2004-01-01

    Based on nearfield sound pressure sensing to pick up error information, an approach for constructing active acoustic structure to effectively reduce radiated sound power at low frequency is proposed. The idea is that a nearfield pressure after active control is used as error signals and transformed into an objective function in adaptive active control process.Firstly sound power expression using near-field pressure radiated from a flexible structure is derived, and then three kind of nearfield pressure based active control strategies, I.e. Minimization of radiated sound power, minimization of sound power for dominant radiation modes and minimization of sound power for modified dominant radiation modes are respectively presented and applied to active control of radiated single and broadband noise. Finally computer simulations on sound power reduction under three strategies are conducted and it is shown that the proposed active control strategies are invalid and considerable reduction in radiated sound power can be achieved.

  10. Selective Activation and Disengagement of Moral Control.

    Science.gov (United States)

    Bandura, Albert

    1990-01-01

    Analyzes psychological mechanisms by which moral control is selectively disengaged from inhumane conduct in ordinary and unusual circumstances. Explores the symptoms of moral exclusion as described in the literature. Presents categories that unify theory on moral exclusion and contribute practical classifications for use in empirical studies. (JS)

  11. Orthogonal Control of Antibacterial Activity with Light

    NARCIS (Netherlands)

    Velema, Willem A.; van der Berg, Jan Pieter; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2014-01-01

    Selection of a single bacterial strain out of a mixture of microorganisms is of crucial importance in healthcare and microbiology research. Novel approaches that can externally control bacterial selection are a valuable addition to the microbiology toolbox. In this proof-of-concept, two complementar

  12. Broadband Radiation Modes: Estimation and Active Control

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2002-01-01

    In this paper we give a formulation of the most efficiently radiating vibration patterns of a vibrating body, the radiation modes, in the time domain. The radiation modes can be used to arrive at efficient weighting schemes for an array of sensors in order to reduce the controller dimensionality. Be

  13. An electronic control for an electrohydraulic active control landing gear for the F-4 aircraft

    Science.gov (United States)

    Ross, I.

    1982-01-01

    A controller for an electrohydraulic active control landing gear was developed for the F-4 aircraft. A controller was modified for this application. Simulation results indicate that during landing and rollout over repaired bomb craters the active gear effects a force reduction, relative to the passive gear, or approximately 70%.

  14. Geometric control of active collective motion

    CERN Document Server

    Theillard, Maxime; Saintillan, David

    2016-01-01

    Recent experimental studies have shown that confinement can profoundly affect self-organization in semi-dilute active suspensions, leading to striking features such as the formation of steady and spontaneous vortices in circular domains and the emergence of unidirectional pumping motions in periodic racetrack geometries. Motivated by these findings, we analyze the two-dimensional dynamics in confined suspensions of active self-propelled swimmers using a mean-field kinetic theory where conservation equations for the particle configurations are coupled to the forced Navier-Stokes equations for the self-generated fluid flow. In circular domains, a systematic exploration of the parameter space casts light on three distinct states: equilibrium with no flow, stable vortex, and chaotic motion, and the transitions between these are explained and predicted quantitatively using a linearized theory. In periodic racetracks, similar transitions from equilibrium to net pumping to traveling waves to chaos are observed in ag...

  15. Activity meters permitting direct activity readings for food controls

    International Nuclear Information System (INIS)

    Instruments for total gamma activity measurements can only be used, if the calibration factor is known for the radionuclide mixture to be measured in each case. This is determined using spectroscopes calibrated on the basis of reference samples. Inaccuracies of measurement performed on equal volumes are caused by the fact that specific weights vary between foodstuffs and must therefore be made up for by adequate adjustments. As any radioactivity occurring naturally in the specimens cannot be distinguished from manmade radioactivity, it may be impossible to interpret results lower than some 100 Bq/kg for certain samples influenced by potassium (legume, dry milk) or uranium-radium (soil). The instruments incorporate annular receptacles for the samples and NaI(Tl) detectors for the measurement of gamma-emitting radionuclides in liquids, plant materials and foodstuffs, which have a reading for such activities in Bq/l or Bq/kg (Becquerel monitors). (orig./DG)

  16. A reduced energy supply strategy in active vibration control

    International Nuclear Information System (INIS)

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings

  17. Linear Quadratic Integral Control for the Active Suspension of Vehicle

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The quarter model of an active suspension is established in the form of controllable autoregressive moving average (CARMA) model. An accelerometer can be mounted on the wheel hub for measuring road disturbance; this signal is used to identify the CARMA model parameters by recursive forgetting factors least square method. The linear quadratic integral (LQI) control method for the active suspension is presented. The LQI control algorithm is fit for vehicle suspension control, for the control performance index can comprise multi controlled variables. The simulation results show that the vertical acceleration and suspension travel both are decreased with the LQI control in the low frequency band, and the suspension travel is increased with the LQI control in the middle or high frequency band. The suspension travel is very small in the middle or high frequency band, the suspension bottoming stop will not happen, so the vehicle ride quality can be improved apparently by the LQI control.

  18. Active Vibration Control of Satellite Flexible Structures during Attitude Maneuvers

    OpenAIRE

    Saeed Hemmati; Morteza Shahravi; Keramat Malekzadeh

    2013-01-01

    The purpose of this study is controlling active vibration of satellite flexible structures during attitude maneuvers. A smart structure is a structure which is able to sense and control active reaction to any external factors and stimulation. As it comes from the definition of smart structures, development of this knowledge depends on the materials science development, theories and strategies for control. In materials science, smart materials are developed in such a way that they are able to ...

  19. An active control synchronization for two modified Chua circuits

    Science.gov (United States)

    Li, Guo-Hui

    2005-03-01

    From modern control theory, an active control method to synchronize two modified Chua circuits with each other, which exhibit chaos, is presented. Some sufficient conditions of linear stability of the chaotic synchronization are obtained from rigorous mathematic justification. On the basis of the state-observer, the controller is analytically deduced using the active control. It is shown that this technique can be applied to achieve synchronization of the two systems with each other, whether they are identical or not. Finally, numerical simulations show the effectiveness of the proposed control scheme.

  20. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    The thesis is concerned with the active control of randomly vibrating structures by means of feedback control, with particular emphasis on reducing the sound radiation from such structures. A time domain model of the structural and radiation dynamics of an actively controlled plate has been...... developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...

  1. An active control synchronization for two modified Chua circuits

    Institute of Scientific and Technical Information of China (English)

    Li Guo-Hui

    2005-01-01

    From modern control theory, an active control method to synchronize two modified Chua circuits with each other, which exhibit chaos, is presented. Some sufficient conditions of linear stability of the chaotic synchronization are obtained from rigorous mathematic justification. On the basis of the state-observer, the controller is analytically deduced using the active control. It is shown that this technique can be applied to achieve synchroniztion of the tow systems with each other, whether they are identical or not. Finally, numerical simulations show the effectiveness of the proposed control scheme.

  2. STATISTIC LINEARIZATION CONTROL FOR HYDRAULIC ACTIVE DAMPING SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    Wang Qingfeng; Zhao Ju; Yang Botao

    2000-01-01

    A statistic linearization analysis method of bad nolinear hydraulic active damping suspensiop is provided.Also the optimum control strategy of semi-active suspension and graded control strategy based on it are puted forward.Experimental researches are carried out on a 2 DOF (degree of freedom ) hydraulic active damping suspension test system.The results showed that an excellent control effectiveness could be obtained by using statistic linearization optimum control which unfortunely requests continuously regulationg the damp in an accurate way and costs much in engeering application.On the contrary,the results also showed that graded control is more practicable which has a control effectiveness close to the optimum control and costs less.

  3. Controlling the enzymatic activity of a restriction enzyme by light

    OpenAIRE

    Schierling, Benno; Noël, Ann-Josée; Wende, Wolfgang; Hien, Le Thi; Volkov, Eugeny; Kubareva, Elena; Oretskaya, Tatiana; Kokkinidis, Michael; Römpp, Andreas; Spengler, Bernhard; Pingoud, Alfred

    2009-01-01

    For many applications it would be desirable to be able to control the activity of proteins by using an external signal. In the present study, we have explored the possibility of modulating the activity of a restriction enzyme with light. By cross-linking two suitably located cysteine residues with a bifunctional azobenzene derivative, which can adopt a cis- or trans-configuration when illuminated by UV or blue light, respectively, enzymatic activity can be controlled in a reversible manner. T...

  4. An Overview of Active Structural Control under Seismic Loads

    OpenAIRE

    Soong, T.T.; Masri, S. F.; Housner, G. W.

    1991-01-01

    The concept of active structural control as a means of structural protection against seismic loads, developed over the last 20 years, has received considerable attention in recent years. It has now reached the stage where active systems have been installed in full-scale structures. It is the purpose of this paper to provide an overview of this development with special emphasis placed on laboratory experiments using model structures and on full-scale implementation of some active control syste...

  5. Generalized Internal Model Robust Control for Active Front Steering Intervention

    Institute of Scientific and Technical Information of China (English)

    WU Jian; ZHAO Youqun; JI Xuewu; LIU Yahui; ZHANG Lipeng

    2015-01-01

    Because of the tire nonlinearity and vehicle’s parameters’ uncertainties, robust control methods based on the worst cases, such as H∞, μsynthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters’ uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle’s parameters variations, H∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H∞controller.

  6. Study of tethered satellite active attitude control

    Science.gov (United States)

    Colombo, G.

    1982-01-01

    Existing software was adapted for the study of tethered subsatellite rotational dynamics, an analytic solution for a stable configuration of a tethered subsatellite was developed, the analytic and numerical integrator (computer) solutions for this "test case' was compared in a two mass tether model program (DUMBEL), the existing multiple mass tether model (SKYHOOK) was modified to include subsatellite rotational dynamics, the analytic "test case,' was verified, and the use of the SKYHOOK rotational dynamics capability with a computer run showing the effect of a single off axis thruster on the behavior of the subsatellite was demonstrated. Subroutines for specific attitude control systems are developed and applied to the study of the behavior of the tethered subsatellite under realistic on orbit conditions. The effect of all tether "inputs,' including pendular oscillations, air drag, and electrodynamic interactions, on the dynamic behavior of the tether are included.

  7. Active structural control with stable fuzzy PID techniques

    CERN Document Server

    Yu, Wen

    2016-01-01

    This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...

  8. HYBRID FUZZY CONTROL FOR ELECTRO-HYDRAULIC ACTIVE DAMPING SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new control scheme, the hybrid fuzzy control method, for active damping suspension system is presented. The scheme is the result of effective combination of the statistical optimal control method based on the statistical property of suspension system, with the bang-bang control method based on the real-time characteristics of suspension system. Computer simulations are performed to compare the effectiveness of hybrid fuzzy control scheme with that of optimal damping control, bang-bang control, and passive suspension. It takes the effects of time-variant factors into full account. The superiority of the proposed hybrid fuzzy control scheme for active damping suspension to the passive suspension is verified in the experiment study.

  9. Adaptive Current Control with PI-Fuzzy Compound Controller for Shunt Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2013-01-01

    Full Text Available An adaptive control technology and PI-fuzzy compound control technology are proposed to control an active power filter (APF. AC side current compensation and DC capacitor voltage tracking control strategy are discussed and analyzed. Model reference adaptive controller for the AC side current compensation is derived and established based on Lyapunov stability theory; proportional and integral (PI fuzzy compound controller is designed for the DC side capacitor voltage control. The adaptive current controller based on PI-fuzzy compound system is compared with the conventional PI controller for active power filter. Simulation results demonstrate the feasibility and satisfactory performance of the proposed control strategies. It is shown that the proposed control method has an excellent dynamic performance such as small current tracking error, reduced total harmonic distortion (THD, and strong robustness in the presence of parameters variation and nonlinear load.

  10. Various applications of Active Field Control (AFC)

    Science.gov (United States)

    Watanabe, Takayuki; Miyazaki, Hideo; Kishinaga, Shinji; Kawakami, Fukushi

    2003-10-01

    AFC is an electro-acoustic enhancement system, which has been under development at Yamaha Corporation. In this paper, several types of various AFC applications are discussed, while referring to representative projects for each application in Japan. (1) Realization of acoustics in a huge hall to classical music program, e.g., Tokyo International Forum. This venue is a multipurpose hall with approximately 5000 seats. AFC achieves loudness and reverberance equivalent to those of a hall with 2500 seats or fewer. (2) Optimization of acoustics for a variety of programs, e.g., Arkas Sasebo. AFC is used to create the optimum acoustics for each program, such as reverberance for classical concerts, acoustical support for opera singers, uniformity throughout the hall from the stage to under-balcony area, etc. (3) Control of room shape acoustical effect, e.g., Osaka Central Public Hall: In this renovation project, preservation of historically important architecture in the original form is required. AFC is installed to vary only the acoustical environment without architectural changes. (4) Assistance with crowd enthusiasm for sports entertainment, e.g., Tokyo Metropolitan Gymnasium. In this venue, which is designed as a very absorptive space for speech intelligibility, AFC is installed to enhance the atmosphere of live sports entertainment.

  11. CLP activities and control in Ireland

    Directory of Open Access Journals (Sweden)

    Caroline Walsh

    2011-01-01

    Full Text Available The 10th December 2010 marked a new beginning for Regulation (EC no. 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP in Ireland with the start of its operational phase. It was on this date that the administrative and enforcement provisions for CLP were encompassed in the new Chemicals Amendment Act, 2010. In this Act, the Health and Safety Authority, known as the "the Authority" is named as Competent Authority (CA for CLP, along with the Minister for Agriculture, Fisheries and Food, in respect of pesticides and plant protection products and the Beaumont Hospital Board with responsibility for receiving information relating to emergency health response. In practice, the Authority has been de facto CA for CLP since its publication on the 31st December 2008, given its role in existing classification and labelling regimes. This article focuses on the work undertaken by the Authority on CLP at a National, European and International level including its implementation, training, helpdesk, guidance, enforcement and awareness raising activities.

  12. CLP activities and control in Ireland.

    Science.gov (United States)

    Walsh, Caroline

    2011-01-01

    The 10(th) December 2010 marked a new beginning for Regulation (EC) no. 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP) in Ireland with the start of its operational phase. It was on this date that the administrative and enforcement provisions for CLP were encompassed in the new Chemicals Amendment Act, 2010. In this Act, the Health and Safety Authority, known as the "the Authority" is named as Competent Authority (CA) for CLP, along with the Minister for Agriculture, Fisheries and Food, in respect of pesticides and plant protection products and the Beaumont Hospital Board with responsibility for receiving information relating to emergency health response. In practice, the Authority has been de facto CA for CLP since its publication on the 31(st) December 2008, given its role in existing classification and labelling regimes. This article focuses on the work undertaken by the Authority on CLP at a National, European and International level including its implementation, training, helpdesk, guidance, enforcement and awareness raising activities.

  13. Wireless sensor networks for active vibration control in automobile structures

    Science.gov (United States)

    Mieyeville, Fabien; Ichchou, Mohamed; Scorletti, Gérard; Navarro, David; Du, Wan

    2012-07-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control.

  14. Active Noise Feedback Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Zhang Qizhi

    2001-01-01

    Full Text Available The active noise control (ANC is discussed. Many digital ANC systems often based on the filter-x algorithm for finite impulse response (FIR filter use adaptive filtering techniques. But if the primary noise path is nonlinear, the control system based on adaptive filter technology will be invalid. In this paper, an adaptive active nonlinear noise feedback control approach using a neural network is derived. The feedback control system drives a secondary signal to destructively interfere with the original noise to cut down the noise power. An on-line learning algorithm based on the error gradient descent method was proposed, and the local stability of closed loop system is proved using the discrete Lyapunov function. A nonlinear simulation example shows that the adaptive active noise feedback control method based on a neural network is very effective to the nonlinear noise control.

  15. Wireless sensor networks for active vibration control in automobile structures

    International Nuclear Information System (INIS)

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control. (paper)

  16. Controlled physical activity for functional operability determination

    Directory of Open Access Journals (Sweden)

    Luchenkov А.А.

    2014-06-01

    Full Text Available The aim: to use veloergometry test at patients of high anaeshtesiology-operative risk before traumatic operations for functional operability determination. Material and methods: Randomized prospective research with the double "blind" control has been performed at 95 patients of high risk (ASA>III, undergoing long and traumatic operations on thoracic and abdominal organs. Patients have divided into groups without complications and with complications (51 and 44 patients which one day prior to operation have spent veloergometry test (VEMT. Average dynamic pressure (ADP, the general peripheral resistance of vessels (GPRV, a core index (Cl; arterio-venous (a-v difference on oxygen, oxygen delivery to tissues, consumption of oxygen and coefficients extraction oxygen in tissues; energy consumption have been investigated. Statistics has been done by nonparametric methods. Results. In response to veloergometry test in both groups growth of Cl at the expense of a tachycardia and GPRV fall which in complication group remains above norm is noted. In group without complications coefficients extraction oxygen in tissues were normalised, a-v difference on 02 became above norm, in other group — coefficients extraction oxygen in tissues and a-v difference on 02 began to exceed norm, and oxygen consumption has grown almost in 2 times. After VEMT a-v a difference on О and oxygen consumption were essentially above in group with complications. Under the influence of VEMT markecT stabilization of function of vegetative nervous systems (VNS. The number of complications made 39: intraoperation cardiovascular — 23, postoperative respiratory — 16. Clinically important connection (p=0,069 of perioperative complications with growth a-v differences on oxygen and a power interchanging have been received. Conclusion. Thus, the oxygen-energy exchange and the vegetative status can be referred to clinical functional operability determination.

  17. On-line Monitoring and Active Control for Transformer Noise

    Science.gov (United States)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  18. Indirect control of a single-phase active power filter

    Directory of Open Access Journals (Sweden)

    Mihai CULEA

    2006-12-01

    Full Text Available The control of shunt active power filters using PWM inverters consists in generating a reference by separating, using different methods, the harmonics to be eliminated. The methods used are time-consuming and need dedicated control and signal processing equipments. To avoid these setbacks a new method is proposed in the paper. The active power filter is a current PWM rectifier with voltage output and with a capacitor on the DC side. The PWM rectifier is controlled so that the sum of its current and the load’s current is a sinusoid. The control block as well as simulation results are presented.

  19. Development of Active Noise Control System for Quieting Transformer Noise

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1997-12-31

    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  20. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y.; Hattori, M. Sugisawa, M.; Nishii, M. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  1. Recent results on structural control of an active precision structure

    Science.gov (United States)

    Chu, C. C.; Fanson, J. L.; Smith, R. S.

    1991-01-01

    This paper describes recent results in structural control of an active precision truss structure at JPL. The goal is to develop practical control methodology and to apply to active truss structures intended for high precision space-based optics applications. The active structure considered incorporates piezoelectric active members which apply control forces internal to the structure and thereby improve the structure's dimensional stability. Two approaches to structural control system design were investigated. The first approach uses only noncollocated measurements of acceleration at the location of a simulated optical component to achieve structural stabilization. The second approach is essentially the same as the first one except that a viscous damper was used in place of a truss member on the structure to improve the dampings of selected flexible modes. The corresponding experimental closed-loop results are presented in this paper.

  2. Perception Neural Networks for Active Noise Control Systems

    Directory of Open Access Journals (Sweden)

    Wang Xiaoli

    2012-11-01

    Full Text Available In a response to a growing demand for environments of 70dB or less noise levels, many industrial sectors have focused with some form of noise control system. Active noise control (ANC has proven to be the most effective technology. This paper mainly investigates application of neural network on self-adaptation system in active noise control (ANC. An active silencing control system is made which adopts a motional feedback loudspeaker as not a noise controlling source but a detecting sensor. The working fundamentals and the characteristics of the motional feedback loudspeaker are analyzed in detail. By analyzing each acoustical path, identification based adaptive linear neural network is built. This kind of identifying method can be achieved conveniently. The estimated result of each sound channel matches well with its real sound character, respectively.

  3. Vector disparity sensor with vergence control for active vision systems

    OpenAIRE

    Eduardo Ros; Francisco Barranco; Javier Diaz; Sabatini, Silvio P; Agostino Gibaldi

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that ac...

  4. Active Inference, homeostatic regulation and adaptive behavioural control

    OpenAIRE

    Pezzulo, G; Rigoli, F.; Friston, K.

    2015-01-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a...

  5. Controlling neural activity in Caenorhabditis elegans to evoke chemotactic behavior

    Science.gov (United States)

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V.; Ramanathan, Sharad

    2013-03-01

    Animals locate and track chemoattractive gradients in the environment to find food. With its simple nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behavior. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behavior. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behavior. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair was sufficient to force the animal to locate, turn towards and track virtual light gradients.

  6. Innovation in Active Vibration Control Strategy of Intelligent Structures

    Directory of Open Access Journals (Sweden)

    A. Moutsopoulou

    2014-01-01

    Full Text Available Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a recognizable advance in knowledge of active vibration control in intelligent structures.

  7. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  8. Modeling and Control of Active Suspensions for MDOF Vehicle

    Institute of Scientific and Technical Information of China (English)

    李克强; 郑四发; 杨殿阁; 连小珉; 永井正夫

    2003-01-01

    The conventional method for analyzing active suspension control for a vehicle is only to analyze aquarter or half car with a lower order degree-of freedom (DOF) model, but such models do not actually modelpractical applications. Accurate models of a suspension control system require a multi-degree-of-freedom(MDOF) vehicle model with a detailed model of the controller. An MDOF model was developed including theinfluence of factors such as the engine, the seats, and the passengers to describe vehicle motion using areduced order model of the controller designed by using the H∞ control method. The control systemperformance has been investigated by comparing the H∞ controller with a linear quadratic (LQ) controller.

  9. "Active Flux" DTFC-SVM Sensorless Control of IPMSM

    DEFF Research Database (Denmark)

    Boldea, Ion; Codruta Paicu, Mihaela; Gheorghe-Daniel, Andreescu,;

    2009-01-01

    This paper proposes an implementation of a motionsensorless control system in wide speed range based on "active flux" observer, and direct torque and flux control with space vector modulation (DTFC-SVM) for the interior permanent magnet synchronous motor (IPMSM), without signal injection. The...

  10. Active and passive control of zinc phthalocyanine photodynamics

    NARCIS (Netherlands)

    Sharma, D.; Huijser, J.M.; Savolainen, J.; Steen, G.W.; Herek, J.L.

    2013-01-01

    In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of

  11. Applications of active adaptive noise control to jet engines

    Science.gov (United States)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  12. Smart Materials and Active Noise and Vibration Control in Vehicles

    NARCIS (Netherlands)

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, van M.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are necessa

  13. Finite element models applied in active structural acoustic control

    NARCIS (Netherlands)

    Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll

  14. Active Vibration Control of a Monopile Offshore Structure

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.

    1999-01-01

    In the Danish part of the North Sea monopile platforms with a cylindrical shaft have been used at the exploitation of marginal fields. In the paper a new principle for active vibration control of such structures is suggested. The principle is based on a control of the boundary layer flow around......, where reductions in the vibration level of up to 50% have been registered....

  15. Passive and Active Vibration Control of Renewable Energy Structures

    OpenAIRE

    Zhang, Zili

    2015-01-01

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade vibration and lateral tower vibration, with the main focus on structural control devices. Rigorous theoretical modeling of different dynamic system has been established, based on which detailed design a...

  16. Active vibration control techniques for flexible space structures

    Science.gov (United States)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  17. Improving active space telescope wavefront control using predictive thermal modeling

    Science.gov (United States)

    Gersh-Range, Jessica; Perrin, Marshall D.

    2015-01-01

    Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.

  18. UML activity diagram swimlanes in logic controller design

    Science.gov (United States)

    Grobelny, Michał; Grobelna, Iwona

    2015-12-01

    Logic controller behavior can be specified using various techniques, including UML activity diagrams and control Petri nets. Each technique has its advantages and disadvantages. Application of both specification types in one project allows to take benefits from both of them. Additional elements of UML models make it possible to divide a specification into some parts, considered from other point of view (logic controller, user or system). The paper introduces an idea to use UML activity diagrams with swimlanes to increase the understandability of design models.

  19. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    Science.gov (United States)

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices.

  20. Impact of active controls technology on structural integrity

    Science.gov (United States)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  1. Active Noise Control Experiments using Sound Energy Flu

    Science.gov (United States)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  2. Robust Vehicle Suspension System by Converting Active & Passive Control of a Vehicle to Semi-Active Control System Analytically

    Directory of Open Access Journals (Sweden)

    Hassan Elahi

    2014-12-01

    Full Text Available In this research work a simplified translational model of an automotive suspension system is constructed by only considering the translation motion of one wheel of a car. Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations. The semi-active control is found to control the vibration of suspension system very well.

  3. Robust Vehicle Suspension System by Converting Active & Passive Control of a Vehicle to Semi-Active Control System Analytically

    OpenAIRE

    Hassan Elahi; Dr. Riffat Asim Pasha; Dr. Asif Israr; Dr. M. Zubair Khan

    2014-01-01

    In this research work a simplified translational model of an automotive suspension system is constructed by only considering the translation motion of one wheel of a car. Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations. The semi-active control is found to control the vibration of suspens...

  4. Active structural control by fuzzy logic rules: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y.

    1995-07-01

    An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  5. Active structural control by fuzzy logic rules: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yu [Argonne National Lab., IL (United States). Reactor Engineering Div.; Wu, Kung C. [Texas Univ., El Paso, TX (United States). Dept. of Mechanical and Industrial Engineering

    1996-12-31

    A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  6. Neural Network-Based Active Control for Offshore Platforms

    Institute of Scientific and Technical Information of China (English)

    周亚军; 赵德有

    2003-01-01

    A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.

  7. Active inference and robot control: a case study

    Science.gov (United States)

    Nizard, Ange; Friston, Karl; Pezzulo, Giovanni

    2016-01-01

    Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours. PMID:27683002

  8. The Control of Transmitted Power in an Active Isolation System

    DEFF Research Database (Denmark)

    Elliott, S.J.; Gardonio, P.; Pinnington, R.J.;

    1997-01-01

    more practical control strategy appears to be to minimise the weighted sum of squared forces and velocities below the mounts, which gives near-optimal performance in simulations. These theoretical results are supported by experiments with a real-time control system. The actuator and sensor requirements...... distributed active mounts, and these models can be connected together to produce an overall theoretical description of a realistic active isolation system. Total transmitted power has been found to be an excellent criterion to quantify the effect of various control strategies in this model in which the...... contributions to the transmitted power in the various degrees of freedom can be clearly understood. It has also been found, however, that an active control system which minimises a practical estimate of transmitted power, calculated from the product of the axial forces and velocities under the mounts, can give...

  9. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.

    1998-01-01

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  10. Active structural vibration control: Robust to temperature variations

    Science.gov (United States)

    Gupta, Vivek; Sharma, Manu; Thakur, Nagesh

    2012-11-01

    d-form augmented piezoelectric constitutive equations which take into account temperature dependence of piezoelectric strain coefficient (d31) and permittivity (∈33), are converted into e-form. Using e-form constitutive equations, a finite element model of a smart two dimensional plate instrumented with piezoelectric patches is derived. Equations of motion are derived using Hamilton's variational principle. Coupled equations of motion are uncoupled using modal analysis. Modal state vectors are estimated using the Kalman observer. The first mode of smart cantilevered plate is actively controlled using negative first modal velocity feedback at various temperatures. Total control effort required to do so is calculated using the electro-mechanical impedance method. The temperature dependence of sensor voltage, control voltage, control effort and Kalman observer equations is shown analytically. Simulation results are presented using MATLAB. Variations in (i) peak sensor voltage, (ii) actual and estimated first modal velocities, (iii) peak control voltage, (iv) total control effort and (v) settling time with respect to temperature are presented. Active vibration control performance is not maintained at temperature away from reference temperature when the temperature dependence of piezoelectric stress coefficient ‘e31' and permittivity ‘∈33' is not included in piezoelectric constitutive equations. Active control of vibrations becomes robust to temperature variations when the temperature dependence of ‘e31' and ‘∈33' is included in piezoelectric constitutive equations.

  11. The application of active noise control technology to reduce noise from air pollution control equipment

    Energy Technology Data Exchange (ETDEWEB)

    Depies, C. R.; Kapsos, D. W.

    1996-08-01

    The basic concept of active noise control, i. e. to create a noise field in a space in order to destructively interfere with an existing noise, and in the process create a quieter space, was explained. The manner in which noise control technology can be used in air pollution control equipment was described and guidelines for application were provided. A number of case studies were used to illustrate the suitability of active noise control for low frequency noise problems, especially in the area of air pollution control equipment. Impressive reduction of low frequency noise, energy efficiency, ability to retrofit into an existing duct system, and the hardware`s insensitivity to dirty exhaust environments were cited as the principal reasons for the success of active noise control technology over more traditional in-line passive silencers. 1 ref., 8 figs.

  12. Experimental studies on active vibration control of a smart composite beam using a PID controller

    Science.gov (United States)

    Jovanović, Miroslav M.; Simonović, Aleksandar M.; Zorić, Nemanja D.; Lukić, Nebojša S.; Stupar, Slobodan N.; Ilić, Slobodan S.

    2013-11-01

    This paper presents experimental verification of the active vibration control of a smart cantilever composite beam using a PID controller. In order to prevent negative occurrences in the derivative and integral terms in a PID controller, first-order low-pass filters are implemented in the derivative action and in the feedback of the integral action. The proposed application setup consists of a composite cantilever beam with a fiber-reinforced piezoelectric actuator and strain gage sensors. The beam is modeled using a finite element method based on third-order shear deformation theory. The experiment considers vibration control under periodic excitation and an initial static deflection. A control algorithm was implemented on a PIC32MX440F256H microcontroller. Experimental results corresponding to the proposed PID controller are compared with corresponding results using proportional (P) control, proportional-integral (PI) control and proportional-derivative (PD) control. Experimental results indicate that the proposed PID controller provides 8.93% more damping compared to a PD controller, 14.41% more damping compared to a PI controller and 19.04% more damping compared to a P controller in the case of vibration under periodic excitation. In the case of free vibration control, the proposed PID controller shows better performance (settling time 1.2 s) compared to the PD controller (settling time 1.5 s) and PI controller (settling time 2.5 s).

  13. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention

    Directory of Open Access Journals (Sweden)

    Laura eChaddock-Heyman

    2013-03-01

    Full Text Available This study used functional magnetic resonance imaging (fMRI to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ minutes of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control.

  14. A Semi-active Control System for Wind Turbines

    DEFF Research Database (Denmark)

    Caterino, N.; Georgakis, Christos T.; Trinchillo, F.;

    2014-01-01

    A semi-active (SA) control system based on the use of smart magnetorheological (MR) dampers to control the structural response of a wind turbine is proposed herein. The innovative approach is based on the implementation and use of a variable-properties base restraint. This is able to modify in real...... time its mechanical properties according to the instantaneous decision of a given control logic, the latter addressed to control one or more structural response parameters. The smart base restraint is thought to be a combination of a smooth hinge, elastic springs, large-scale adjustable MR dampers...

  15. Modeling and vibration control of an active membrane mirror

    Science.gov (United States)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  16. Smart materials and active noise and vibration control in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, M. van [TNO Institute of Applied Physics, Delft (Netherlands)

    2001-07-01

    Results are presented for the reduction of sound radiated from a structure using different control methodologies. Two approaches for active structural acoustic control are mentioned to reduce sound radiated by the structure: the acoustic approach or the vibro-acoustic approach. In both cases integrated actuators in structure materials are necessary to realise feasible products. Furthermore the development of an efficient shaker for Active Isolation techniques is described. The prototype of TNO TPD can produce a force of 400 N up to 250 Hz at a good performance-volume ratio. To enhance the robustness of the active control applications, the use of the subspace identification based control methods are developed. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The performed simulations reveal excellent robustness performance under very general noise conditions or during operation of the control system. Furthermore the development of the techniques can be exploited to realise sound comfort requirements to enhance audible communications of vehicle related applications. To anticipate to these developments in the automotive industry, TNO has set up a Sound and Vibrations Research Centre with Twente University and a research program on Smart Panels with the Delft University. To investigate the potential markets and applications for sound comfort in the means of transportation, TNO-TPD and the Institute of Sound and Vibration Research in England (ISVR) have agreed on a cooperative venture to develop and realise 'active control of electroacoustics' (ACE). (orig.)

  17. Active Blade Vibration Control Being Developed and Tested

    Science.gov (United States)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  18. Active vibration control of basic structures using macro fiber composites

    Science.gov (United States)

    Yi, Guo; Wang, Jinming; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2011-03-01

    In the modern naval battle, as the anti-detection technique developing fleetly, enhancing submarine's hidden ability is becoming more and more important. However, in view of the worse control effect at low-frequency and weak adjustability to external influence, conventional passive vibration control can't satisfy the modern naval rigorous demands. Fortunately, active vibration control technology not only monitors the structure's real-time vibration, but also has more remarkable control effects and superior suitability. At the present time, it has a primary application in the vibration damping of ship engineering. In addition, due to functional materials rapidly developing, with the coming of piezoelectric composite materials, the advanced active control techniques have more applicability, lager damp amplitude and wider applied field, which basing on the piezoelectric-effect and inverse- piezoelectric-effect of piezoelectric materials. Especially, in the end of nineties, NASA had successfully manufactured the excellent macro fiber composite (MFC), which assembles actuating and sensing abilities. Comparing with the conventional piezoelectric ceramic materials, it provides the required durability, excellent flexibility, higher electromechanical coupling factors and stronger longitudinal actuating force by using interdigital electrodes. On the basis of the application of cantilever beam' active vibration control by using MFC actuators, this paper started with the mechanical characteristics of its actuating and sensing equations, and then investigated its piezoelectric feedback scale factor when equipped on the honeycomb aluminous panel. Finally, in order to validate the theoretical analysis method, the vibration control experiment of cantilever beam and honeycomb aluminous panel are built and tested with different activating force. The experimental results verify that MFC used in submarine structures' active vibration control are feasible and effective.

  19. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    Science.gov (United States)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  20. Active control of fan noise from a turbofan engine

    Science.gov (United States)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1993-01-01

    A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.

  1. Active Noise Control of the Heavy Truck Interior Cab

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to control the noise of the heavy truck interior cab effectively, the active noise control methods are employed. First, an interior noise field test for the heavy truck is performed, and frequencies of interior noise of this vehicle are analyzed. According to the spectrum analysis of acquired noise signal, it is found out that the main frequencies of interior noise are less than 800Hz. Then the least squares lattice (LSL) algorithm is used as signal processing algorithm of the controller and a closed-loop control DSP system, based on TMS 320VC5416, is developed. The residual signal at driver's ear is used as feedback signal. Lastly, the developed ANC system is loaded into the heavy truck cab, and controlling the noise at driver's ear for that truck at different driving speeds is attempted. The noise control test results indicate that the cab interior noise is reduced averagely by 0.9 dBA at different driving speeds.

  2. Passive and Active Vibration Control of Renewable Energy Structures

    DEFF Research Database (Denmark)

    Zhang, Zili

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade...... vibration and lateral tower vibration, with the main focus on structural control devices. Rigorous theoretical modeling of different dynamic system has been established, based on which detailed design and analysis of the proposed control devices can be carried out. This thesis also explores technical...... solutions for wave energy point absorbers, in order to maximize the mean absorbed power and to deliver more smooth power to the grid. A novel suboptimal causal control law has been established for controlling the motion of the point absorber, and a new type of point absorber has also been proposed with...

  3. Active Power Controls from Wind Power: Bridging the Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  4. Dual Control with Active Learning using Gaussian Process Regression

    CERN Document Server

    Alpcan, Tansu

    2011-01-01

    In many real world problems, control decisions have to be made with limited information. The controller may have no a priori (or even posteriori) data on the nonlinear system, except from a limited number of points that are obtained over time. This is either due to high cost of observation or the highly non-stationary nature of the system. The resulting conflict between information collection (identification, exploration) and control (optimization, exploitation) necessitates an active learning approach for iteratively selecting the control actions which concurrently provide the data points for system identification. This paper presents a dual control approach where the information acquired at each control step is quantified using the entropy measure from information theory and serves as the training input to a state-of-the-art Gaussian process regression (Bayesian learning) method. The explicit quantification of the information obtained from each data point allows for iterative optimization of both identifica...

  5. Control System Design of Shunt Active Power Filter Based on Active Disturbance Rejection and Repetitive Control Techniques

    Directory of Open Access Journals (Sweden)

    Le Ge

    2014-01-01

    Full Text Available To rely on joint active disturbance rejection control (ADRC and repetitive control (RC, in this paper, a compound control law for active power filter (APF current control system is proposed. According to the theory of ADRC, the uncertainties in the model and from the circumstance outside are considered as the unknown disturbance to the system. The extended state observer can evaluate the unknown disturbance. Next, RC is introduced into current loop to improve the steady characteristics. The ADRC is used to get a good dynamic performance, and RC is used to get a good static performance. A good simulation result is got through choosing and changing the parameters, and the feasibility, adaptability, and robustness of the control are testified by this result.

  6. A New Multilevel Active Power Filter Using Switches Meticulously Controlled

    Directory of Open Access Journals (Sweden)

    Zoubir Zahzouh

    2015-03-01

    Full Text Available Shunt active power filter based on multilevel inverter is used to compensate the power factor and to delete the harmonics. This one permits to reduce the inverse voltages applied to the filter switches and their switching frequencies. Nevertheless, the high number of used switches requires a complicated controller and increases the switching losses; where the necessity of finding another resolution system. In this work a new topology of multilevel inverter is proposed as a shunt active power filter using two IGBT transistors in series of opposite sense meticulously controlled by a parallel control algorithm, with the concept of reduced number of six switches which are able to create five levels of the output voltage. This system substute the classical system of eight switches. The harmonic currents identification is carried out using the instantaneous active and reactive power method. The simulation is performed using Matlab/Simulink. The obtained results show that the filtering performances are well enhanced.

  7. Activities of the control services. First quarter 1997; Activites des services du controle. Premier trimestre 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper summarizes the control activities of the technical service of electric power and big dams: annual examinations, administrative instructions (draining, floods, granting renewal), decennial examinations etc. (J.S.)

  8. Actively Controlled Landing Gear for Aircraft Vibration Reduction

    Science.gov (United States)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  9. 3rd Active Flow and Combustion Control Conference

    CERN Document Server

    2015-01-01

    The book reports on the latest theoretical and experimental advances in the  field of active flow and combustion control. It covers new developments in actuator technology and sensing, in robust and optimal open- and closed-loop control, as well as in model reduction for control. It collects contributions presented during the third edition of the Active Flow and Combustion Control conference, held in September 10-12, 2014 at the Technische Universität Berlin (Germany). This conference, as well as the research presented in the book, have been supported by the collaborative research center SFB 1029 -Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics, funded by the DFG (German Research Foundation).

  10. Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions

    Science.gov (United States)

    Ahmadi, G.; Marzocca, P.; Jha, R.; Alstorm, B.; Obied, S.; Kabir, P.; Shahrabi, A.

    2010-01-01

    The main objective is to develop effective control strategies for separation control of an airfoil with a single hinge flap. The specific objectives are: Develop an active control architecture for flow control around an airfoil with flap. Design, fabricate, a wind tunnel test of a high lift wing (with flap) with integrated actuators and sensors. Design, development and fabrication of synthetic jet actuators. Develop appropriate control strategy for application to the airfoil. Wind tunnel testing of the high lift wing at various angles of attack and flap positions with closed loop control.

  11. Finite element models applied in active structural acoustic control

    OpenAIRE

    Oude Nijhuis, Marco H.H.; de Boer; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controller design. The reduced structural model is combined with an acoustic model which uses the radiation mode concept. For a test case consisting of a rectangular plate with one piezo patch the model re...

  12. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  13. A Review of Virtual Sensing Algorithms for Active Noise Control

    Directory of Open Access Journals (Sweden)

    Danielle Moreau

    2008-11-01

    Full Text Available Traditional local active noise control systems minimise the measured acoustic pressure to generate a zone of quiet at the physical error sensor location. The resulting zone of quiet is generally limited in size and this requires the physical error sensor be placed at the desired location of attenuation, which is often inconvenient. To overcome this, a number of virtual sensing algorithms have been developed for active noise control. Using the physical error signal, the control signal and knowledge of the system, these virtual sensing algorithms estimate the error signal at a location that is remote from the physical error sensor, referred to as the virtual location. Instead of minimising the physical error signal, the estimated error signal is minimised with the active noise control system to generate a zone of quiet at the virtual location. This paper will review a number of virtual sensing algorithms developed for active noise control. Additionally, the performance of these virtual sensing algorithms in numerical simulations and in experiments is discussed and compared.

  14. Interaction between functional health literacy, patient activation, and glycemic control

    Directory of Open Access Journals (Sweden)

    Woodard LD

    2014-07-01

    Full Text Available LeChauncy D Woodard, Cassie R Landrum, Amber B Amspoker, David Ramsey, Aanand D Naik Veterans Affairs Health Services Research and Development Center for Innovations in Quality, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center, and Section of Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA Background: Functional health literacy (FHL and patient activation can impact diabetes control through enhanced diabetes self-management. Less is known about the combined effect of these characteristics on diabetes outcomes. Using brief, validated measures, we examined the interaction between FHL and patient activation in predicting glycosylated hemoglobin (HbA1c control among a cohort of multimorbid diabetic patients.Methods: We administered a survey via mail to 387 diabetic patients with coexisting ­hypertension and ischemic heart disease who received outpatient care at one regional VA medical center between November 2010 and December 2010. We identified patients with the study conditions using the International Classification of Diseases-Ninth Revision-Clinical ­Modification (ICD-9-CM diagnoses codes and Current Procedure Terminology (CPT ­procedures codes. Surveys were returned by 195 (50.4% patients. We determined patient activation levels based on participant responses to the 13-item Patient Activation Measure and FHL levels using the single-item screening question, “How confident are you filling out medical forms by yourself?” We reviewed patient medical records to assess glycemic control. We used multiple logistic regression to examine whether activation and FHL were individually or jointly related to HbA1c control.Results: Neither patient activation nor FHL was independently related to glycemic control in the unadjusted main effects model; however, the interaction between the two was significantly associated with glycemic control (odds ratio 1.05 [95% confidence

  15. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing

    2009-02-11

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  16. Enhancing sensorimotor activity by controlling virtual objects with gaze.

    Directory of Open Access Journals (Sweden)

    Cristián Modroño

    Full Text Available This fMRI work studies brain activity of healthy volunteers who manipulated a virtual object in the context of a digital game by applying two different control methods: using their right hand or using their gaze. The results show extended activations in sensorimotor areas, not only when participants played in the traditional way (using their hand but also when they used their gaze to control the virtual object. Furthermore, with the exception of the primary motor cortex, regional motor activity was similar regardless of what the effector was: the arm or the eye. These results have a potential application in the field of the neurorehabilitation as a new approach to generate activation of the sensorimotor system to support the recovery of the motor functions.

  17. Vibration control of flexible beams using an active hinge

    Science.gov (United States)

    Cudney, H. H., Jr.; Inman, D. J.; Horner, G. C.

    1985-01-01

    The use of an active hinge to attenuate the transverse vibrations of a flexible beam is examined. A slender aluminum beam is suspended vertically, cantilevered at the top. An active hinge is placed at the node of the second vibration mode. The active hinge consists of a torque motor, strain gauge, and tachometer. A control law is implemented using both beam-bending strain and the relative angular velocity measured at this hinge, thereby configuring the hinge to act as an active damper. Results from implementing this control law show little improvement in the first mode damping ratio, 130 percent increase in the second mode damping ratio, and 180 percent increase in the third mode damping ratio. The merits of using a motor with a gearbox are discussed.

  18. Passive and active control of boundary layer transition

    Science.gov (United States)

    Nosenchuck, Daniel Mark

    It is well known that laminar-turbulent boundary layer transition is initiated by the formation of Tollmien-Schlichting laminar instability waves. The amplification rates of these waves are strongly dependent on the shape of the boundary layer velocity profile. Consequently, the transition process can be controlled by modifying the velocity profile. This can be accomplished by controlling the pressure gradient (dp/dx), using boundary layer suction, installing surface roughness elements, or by surface heating or cooling. Methods used to modify the transition process through changes in the mean velocity profile are called "passive" in this paper. There exists a large set of experiments and theory on the application of passive methods for boundary layer control. In the present work only surface heating will be addressed.Transition measurements were made on a heated flat plate in water. Results are presented for several plate wall temperature distributions. An increase by a factor of 2.5 in transition Reynolds number was observed for a 5°C isothermal wall overheat. Buoyancy effects on transition were minimal due to the small Richardson and Grashof numbers encountered in the experiments.The amplification of laminar instability waves is comparatively to process, taking place over many boundary layer thicknesses. After the slow amplification of the laminar instability waves, transition occurs by a strong three dimensional dynamic instability. It appears possible to attenuate (or reinforce) the instability waves by introducing amplitude-and phase-controlled perturbations into the laminar boundary layer using feedback control system. This method is called "active" control and forms the larger part of the research reported in this thesis.A combination of sensors, activators and feedback control electronics is required for active control. The sensors used in the experiments are flush-mounted hot film wall shear robes. A new type of activator was developed using thin, flush

  19. Curve Squeal of Train Wheels, Part 3: Active Control

    Science.gov (United States)

    HECKL, MARIA A.; HUANG, X. Y.

    2000-01-01

    This paper presents a new method to annul the squeal noise that is produced by trains traversing a curve. The method is a special form of active control, applied to suppress the bending oscillations of a squealing wheel. It is essentially a feedback system with the following components: sensor, narrowband filter, phase-shifter, amplifier and actuator. The control signal driving the actuator has only a single frequency (set at the filter), and that frequency typically corresponds to one of the bending modes of the wheel. Two versions of the feedback system are considered. In the first version, the actuator exerts a control force on the wheel, and in the second version, the actuator imposes a velocity on the rail. A mathematical model is presented and predictions are made for the performance of both versions. The coupling of the different wheel modes by the control system is discussed. A model rig is described which was used for a practical demonstration of this form of active control. Differences from more conventional forms of active control are pointed out.

  20. Active disturbance rejection control for hydraulic width control system for rough mill

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve fast response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation,compared with classic PI controller.

  1. Human ECG signal parameters estimation during controlled physical activity

    Science.gov (United States)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  2. Controlling Interneuron Activity in Caenorhabditis Elegans to Evoke Chemotactic Behaviour

    OpenAIRE

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V.; Ramanathan, Sharad

    2012-01-01

    Animals locate and track chemoattractive gradients in the environment to find food. With its small nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behaviour. Extensive work on the nematode has identified the neurons that are necessary for the different locomotory behaviours underlying chemotaxis through the use of laser ablation, activity recording in immobilized animals and the study of mutants. Howe...

  3. Transcriptional Regulatory Circuits Controlling Brown Fat Development and Activation

    OpenAIRE

    Seale, Patrick

    2015-01-01

    Brown and beige adipose tissue is specialized for heat production and can be activated to reduce obesity and metabolic dysfunction in animals. Recent studies also have indicated that human brown fat activity levels correlate with leanness. This has revitalized interest in brown fat biology and has driven the discovery of many new regulators of brown fat development and function. This review summarizes recent advances in our understanding of the transcriptional mechanisms that control brown an...

  4. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    OpenAIRE

    Wissam H. Al-Mutar

    2015-01-01

    The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compa...

  5. Active Noise Control for Vehicle Exhaust Noise Reduction

    Institute of Scientific and Technical Information of China (English)

    李克强; 杨殿阁; 郑四发; 连小珉; 田中丈晴

    2003-01-01

    An active noise control (ANC) method was developed for exhaust noise reduction for medium-duty diesel trucks. A modified variable step size least mean squares (LMS) algorithm was used for the controller in a variable environment that considered the vehicle's acceleration characteristics. The variable step size time-based synchronized filtered-x LMS method (SFX-TB) used an adaptive algorithm that was more efficient than the conventional filtered-x LMS algorithm. The simulation and the experimental tests show that the control trackability and stability provided by the algorithm during acceleration enable the ANC system to effectively reduce the vehicle exhaust noise.

  6. Experiments on the active control of transitional boundary layers

    Science.gov (United States)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  7. Researches on active structural acoustic control by radiation modes

    Institute of Scientific and Technical Information of China (English)

    MAO Qibo; JIANG Zhe

    2001-01-01

    Based on the radiation modes, an active control strategy is presented for sound radiation from elastic structures with an example of simply supported rectangular panel. The physical characteristics and mathematical meaning of the radiation modes are analyzed. The radiation efficiency of radiation mode falls off very rapidly with the increase of modes order at low frequency. A new control strategy is developed in which by canceling the adjoint coefficient of the first k radiation modes, the sound powers of the first k radiation modes is zero theoretically. The numerical calculation is made by using point force actuators as control forces.

  8. Taming random lasers through active spatial control of the pump.

    Science.gov (United States)

    Bachelard, N; Andreasen, J; Gigan, S; Sebbah, P

    2012-07-20

    Active control of the spatial pump profile is proposed to exercise control over random laser emission. We demonstrate numerically the selection of any desired lasing mode from the emission spectrum. An iterative optimization method is employed, first in the regime of strong scattering where modes are spatially localized and can be easily selected using local pumping. Remarkably, this method works efficiently even in the weakly scattering regime, where strong spatial overlap of the modes precludes spatial selectivity. A complex optimized pump profile is found, which selects the desired lasing mode at the expense of others, thus demonstrating the potential of pump shaping for robust and controllable single mode operation of a random laser.

  9. Taming random lasers through active spatial control of the pump

    CERN Document Server

    Bachelard, Nicolas; Gigan, Sylvain; Sebbah, Patrick

    2012-01-01

    Active control of the pump spatial profile is proposed to exercise control over random laser emission. We demonstrate numerically the selection of any desired lasing mode from the emission spectrum. An iterative optimization method is employed, first in the regime of strong scattering where modes are spatially localized and can be easily selected using local pumping. Remarkably, this method works efficiently even in the weakly scattering regime, where strong spatial overlap of the modes precludes spatial selectivity. A complex optimized pump profile is found, which selects the desired lasing mode at the expense of others, thus demonstrating the potential of pump shaping for robust and controllable singlemode operation of a random laser.

  10. Vehicle active steering control research based on two-DOF robust internal model control

    Science.gov (United States)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-03-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  11. Vehicle active steering control research based on two-DOF robust internal model control

    Science.gov (United States)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-07-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  12. Vehicle Active Steering Control Research Based on Two-DOF Robust Internal Model Control

    Institute of Scientific and Technical Information of China (English)

    WU Jian; LIU Yahui; WANG Fengbo; BAO Chunjiang; SUN Qun; ZHAO Youqun

    2016-01-01

    Because of vehicle’s external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  13. Control of high frequency microactuators using active structures

    International Nuclear Information System (INIS)

    A fluidically driven microactuator that generates supersonic, pulsed microjets has been implemented with smart materials to actively and precisely control the frequency of the microjets in a closed-loop manner. Since this actuator relies on a number of microscale flow and acoustic phenomena to produce the pulsed microjets, its resonant frequency is determined by its geometry and other flow parameters. The design discussed in this paper integrates piezoelectric stacks by connecting them to movable sidewalls within the actuator such that the microactuator's internal geometry can be controlled by varying the voltage across the piezo-stacks. An open-loop control scheme demonstrates the frequency modulation capabilities that are enabled with this design: very large frequency deviations (up to ±500 Hz) around the actuator design frequency are attained at very high rates (up to 1 kHz). Closed-loop control of the microactuator's frequency was also demonstrated, and the results indicate that (combined with appropriate sensors) this actuator could be used effectively for active, feedback control in high-speed, resonance-dominated flowfields. This proof of concept study clearly illustrates the ability of this robust and compact actuator to produce perturbations that can be modulated and controlled based on the desired control objective. (paper)

  14. An instrumentation for control and measurement of activated mineral samples

    International Nuclear Information System (INIS)

    A description is given of an instrumentation for control of a pneumatic tube system used to transport mineral samples for activation in a reactor and from there to a detector arrangement. A possible content of uranium in the samples can be seen from the radiation measured. The instrumentation includes a PDP-11 computer and a CAMAC crate

  15. Passive stability and active control in a rhythmic task

    NARCIS (Netherlands)

    Wei, Kunlin; Dijkstra, Tjeerd M. H.; Sternad, Dagmar

    2007-01-01

    Rhythmically bouncing a ball with a racket is a task that affords passively stable solutions as demonstrated by stability analyses of a mathematical model of the task. Passive stability implies that no active control is needed as errors die out without requiring corrective actions. Empirical results

  16. Benefits of Improved HP Turbine Active Clearance Control

    Science.gov (United States)

    Ruiz, Rafael; Albers, Bob; Sak, Wojciech; Seitzer, Ken; Steinetz, Bruce M.

    2007-01-01

    As part of the NASA Propulsion 21 program, GE Aircraft Engines was contracted to develop an improved high pressure turbine(HPT) active clearance control (ACC) system. The system is envisioned to minimize blade tip clearances to improve HPT efficiency throughout the engine operation range simultaneously reducing fuel consumption and emissions.

  17. WHEELBASE PREVIEW OPTIMAL CONTROL FOR ACTIVE VEHICLE SUSPENSIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    An algorithm in which the optimal control law takes the advantage of the correlation between front and rear inputs, i.e., wheelbase preview information, for an active vehicle suspension design is described. Based on simulations, the potential improvements from wheelbase preview and the effects of preview time are investigated.

  18. Improving the Dynamics of Suspension Bridges using Active Control Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Improving the dynamics of suspension bridge using active control is discussed in this paper. The main dynamic problem with long suspension bridges is the aeroelastic phenomenon called flutter. Flutter oscillations of a bridge girder is a stability problem and the oscillations are perpendicular...

  19. A model for signal processing and predictive control of semi-active structural control system

    Indian Academy of Sciences (India)

    M-H Shih; W-P Sung; Ching-Jong Wang

    2009-06-01

    The theory for structural control has been well developed and applied to perform excellent energy dissipation using dampers. Both active and semi-active control systems may be used to decide on the optimal switch point of the damper based on the current and past structural responses to the excitation of external forces. However, numerous noises may occur when the control signals are accessed and transported thus causing a delay of the damper. Therefore, a predictive control technique that integrates an improved method of detecting the control signal based on the direction of the structural motion, and a calculator for detecting the velocity using the least-square polynomial regression is proposed in this research. Comparisons of the analytical data and experimental results show that this predictor is effective in switching the moving direction of the semi-active damper. This conclusion is further verified using the component and shaking table test with constant amplitude but various frequencies, and the El Centro earthquake test. All tests confirm that this predictive control technique is effective to alleviate the time delay problem of semi-active dampers. This predictive control technique promotes about 30% to 40% reduction of the structural displacement response and about 35% to 45% reduction of the structural acceleration response.

  20. Review of actuators for high speed active flow control

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO ZhenBing; XIA ZhiXun; LIU Bing; DENG Xiong

    2012-01-01

    Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and maneuverable high speed flight.The development of high speed flight technology promotes the emergence of novel and robust actuators.This review introduces the state of the art in the development of actuators that can be used in high speed active flow control.The classification and different operation criteria of the actuators are discussed.The specifications,mechanisms and applications of various popular actuator types including fluidic,mechanical,and plasma actuators are described.Based on the realistic need of high speed flow control and the existing results of actuators,a new actuator design method is proposed.At last,the merits and drawbacks of the actuators are summarized and some suggestions on the development of active flow control technology are put forward.

  1. An Efficient Modal Control Strategy for the Active Vibration Control of a Truss Structure

    Directory of Open Access Journals (Sweden)

    Ricardo Carvalhal

    2007-01-01

    Full Text Available In this paper an efficient modal control strategy is described for the active vibration control of a truss structure. In this approach, a feedback force is applied to each mode to be controlled according to a weighting factor that is determined by assessing how much each mode is excited by the primary source. The strategy is effective provided that the primary source is at a fixed position on the structure, and that the source is stationary in the statistical sense. To test the effectiveness of the control strategy it is compared with an alternative, established approach namely, Independent Modal Space Control (IMSC. Numerical simulations show that with the new strategy it is possible to significantly reduce the control effort required, with a minimal reduction in control performance.

  2. Active noise and vibration control for vehicular applications

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P.S.; Ellis, S.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project investigated semi-active suspension systems based on real time nonlinear control of magneto-rheological (MR) shock absorbers. This effort was motivated by Laboratory interactions with the automobile industry and with the Defense Department. Background research and a literature search on semi-active suspensions was carried out. Numerical simulations of alternative nonlinear control algorithms were developed and adapted for use with an MR shock absorber. A benchtop demonstration system was designed, including control electronics and a mechanical demonstration fixture to hold the damper/spring assembly. A custom-made MR shock was specified and procured. Measurements were carried out at Los Alamos to characterize the performance of the device.

  3. UML activity diagrams in requirements specification of logic controllers

    Science.gov (United States)

    Grobelna, Iwona; Grobelny, Michał

    2015-12-01

    Logic controller specification can be prepared using various techniques. One of them is the wide understandable and user-friendly UML language and its activity diagrams. Using formal methods during the design phase increases the assurance that implemented system meets the project requirements. In the approach we use the model checking technique to formally verify a specification against user-defined behavioral requirements. The properties are usually defined as temporal logic formulas. In the paper we propose to use UML activity diagrams in requirements definition and then to formalize them as temporal logic formulas. As a result, UML activity diagrams can be used both for logic controller specification and for requirements definition, what simplifies the specification and verification process.

  4. Design and control of hybrid active power filters

    CERN Document Server

    Lam, Chi-Seng

    2014-01-01

    Design and Control of Hybrid Active Power Filters presents an overview of the current quality problems and their compensators. To get a balance between the system cost and performance, hybrid active power filters (HAPFs) are valuable. The book presents the coverage of resonance phenomena prevention capability, filtering performance and system robustness analysis of HAPF; nonlinear inverter current slope characteristics and their linear operation region requirement analysis of the hysteresis PWM for the HAPF; minimum inverter capacity design procedure of HAPF, adaptive dc-link voltage controller for the HAPF and the real design example of a 220V 10kVA HAPF, in which the system performance analysis method, minimum dc voltage deduction concept and adaptive dc voltage idea can be further extended into the other active compensators, such as APF, static synchronous compensator STATCOM, etc. This book will benefit researchers, graduate students, and electrical power engineers in the field of power-quality compensati...

  5. Active Noise Control of Radiated Noise from Jets Originating NASA

    Science.gov (United States)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  6. Disorder-mediated crowd control in an active matter system

    Science.gov (United States)

    Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    2016-03-01

    Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium.

  7. Human-machine interaction system of sEMG based on DBN%基于 DBN 的 sEMG 智能轮椅人机交互系统

    Institute of Scientific and Technical Information of China (English)

    蔡军; 李玉兰

    2015-01-01

    On the basis of intelligent wheelchair controlled by signals from sEMG (surface electromyo-graphy).Firstly,sEMG signals generated by the facial movements were collected and analyzed by u-sing a CyberLink device.DBN (deep belief network)was used to recognize different movement pat-terns of sEMG signal.An information accessibility HMI was designed to map facial movement pat-terns into corresponding control commands.Experiments show that compared to SVM (support vec-tor machine),DBN can effectively deal with a large number of sEMG signal samples,and the highest recognition rate can reach 95.25%,which effectively reduces the processing time of a large amount of data,enhances the real-time of the intelligent wheelchair,and improves recognition rate of the sEMG signal.%设计了基于表面肌电信号的智能轮椅人机交互系统,首先通过 CyberLink 肌电传感器,对面部运动信号进行采集与分析处理,采用了深度信任网络(deep belief network,DBN)算法对肌电信号进行分类,进而用于智能轮椅的运动控制.实验表明:与支持向量机相比,用深度信任网络训练肌电信号,能有效地处理大量的肌电样本信号,并得到最高可达95.25%的识别率,提高了肌电信号的识别率、有效降低了对大量数据的处理时间、增强了智能轮椅响应的实时性.

  8. Structural control by the use of piezoelectric active members

    Science.gov (United States)

    Fanson, J. L.; Chen, J.-C.

    1987-01-01

    Large Space Structures (LSS) exhibit characteristics which make the LSS control problem different form other control problems. LSS will most likely exhibit low frequency, densely spaced and lightly damped modes. In theory, the number of these modes is infinite. Because these structures are flexible, Vibration Suppression (VS) is an important aspect of LSS operation. In terms of VS, the control actuators should be as low mass as possible, have infinite bandwidth, and be electrically powered. It is proposed that actuators be built into the structure as dual purpose structural elements. A piezoelectric active member is proposed for the control of LSS. Such a device would consist of a piezoelectric actuator and sensor for measuring strain, and screwjack actuator in series for use in quasi-static shape control. An experiment simulates an active member using piezoelectric ceramic thin sheet material on a thin, uniform cantilever beam. The feasibility of using the piezoelectric materials for VS on LSS was demonstrated. Positive positive feedback as a VS control strategy was implemented. Multi-mode VS was achieved with dramatic reduction in dynamic response.

  9. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    Directory of Open Access Journals (Sweden)

    Wissam H. Al-Mutar

    2015-07-01

    Full Text Available The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller

  10. Active Flow Effectors for Noise and Separation Control

    Science.gov (United States)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  11. Energy management and control of active distribution systems

    Science.gov (United States)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  12. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval.

    Directory of Open Access Journals (Sweden)

    Yaisa Andrews-Zwilling

    Full Text Available BACKGROUND: Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD, the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. METHODOLOGY AND PRINCIPAL FINDINGS: We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0--a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. CONCLUSIONS AND SIGNIFICANCE: Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.

  13. Active noise control: A tutorial for HVAC designers

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, L.J.

    1997-08-01

    This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrast the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.

  14. Advanced nonlinear control of three phase series active power filter

    Directory of Open Access Journals (Sweden)

    Abouelmahjoub Y.

    2014-01-01

    Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.

  15. Control of programmed cell death by distinct electrical activity patterns.

    Science.gov (United States)

    Golbs, Antje; Nimmervoll, Birgit; Sun, Jyh-Jang; Sava, Irina E; Luhmann, Heiko J

    2011-05-01

    Electrical activity and sufficient supply with survival factors play a major role in the control of apoptosis in the developing cortex. Coherent high-frequency neuronal activity, which efficiently releases neurotrophins, is essential for the survival of immature neurons. We studied the influence of neuronal activity on apoptosis in the developing cortex. Dissociated cultures of the newborn mouse cerebral cortex were grown on multielectrode arrays to determine the activity patterns that promote neuronal survival. Cultures were transfected with a plasmid coding for a caspase-3-sensitive fluorescent protein allowing real-time analysis of caspase-3-dependent apoptosis in individual neurons. Elevated extracellular potassium concentrations (5 and 8 mM), application of 4-aminopyridine or the γ-aminobutyric acid-A receptor antagonist Gabazine induced a shift in the frequency distribution of activity toward high-frequency bursts. Under these conditions, a reduction or delay in caspase-3 activation and an overall increase in neuronal survival could be observed. This effect was dependent on the activity of phosphatidylinositol-3 kinase, as blockade of this enzyme abolished the survival-promoting effect of high extracellular potassium concentrations. Our data indicate that increased network activity can prevent apoptosis in developing cortical neurons.

  16. Validation of reported physical activity for cholesterol control using two different physical activity instruments

    Directory of Open Access Journals (Sweden)

    Amy Z Fan

    2009-08-01

    Full Text Available Amy Z Fan1, Sandra A Ham2, Shravani Reddy Muppidi3, Ali H Mokdad41Behavioral Surveillance Branch, Division of Adult and Community Health, National Center for Chronic Disease Prevention and Health Promotion; 2Physical Activity and Health Branch, Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA; 3College of Public Health, University of Georgia, Athens, GA, USA; 4Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USAAbstract: The National Cholesterol Education Program recommends increasing physical activity to improve cholesterol levels and overall cardiovascular health. We examined whether US adults who reported increasing their physical activity to control or lower blood cholesterol following physician’s advice or on their own efforts had higher levels of physical activity than those who reported that they did not. We used data from the National Health and Nutrition Examination Survey 2003–2004, which implemented two physical activity assessment instruments. The physical activity questionnaire (PAQ assessed self-reported frequency, intensity, and duration of leisure-time, household, and transportation-related physical activity in the past month. Physical movement was objectively monitored using a waist accelerometer that assessed minute-by-minute intensity (counts of movement/minute during waking time over a 7-day period. We adjusted our analysis for age, gender, race/ethnicity, educational attainment, and body mass index. Participants who reported increasing physical activity to control blood cholesterol had more PAQ-assessed physical activity and more accelerometer-assessed active days per week compared to those who did not. However, there were no significant differences in cholesterol levels between comparison groups. These findings suggest that self-report of exercising

  17. Active control of multi-input hydraulic journal bearing system

    Science.gov (United States)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying

    2016-09-01

    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  18. Vector disparity sensor with vergence control for active vision systems.

    Science.gov (United States)

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  19. Vector Disparity Sensor with Vergence Control for Active Vision Systems

    Directory of Open Access Journals (Sweden)

    Eduardo Ros

    2012-02-01

    Full Text Available This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  20. Neural control of glutamine synthetase activity in rat skeletal muscles.

    Science.gov (United States)

    Feng, B; Konagaya, M; Konagaya, Y; Thomas, J W; Banner, C; Mill, J; Max, S R

    1990-05-01

    The mechanism of glutamine synthetase induction in rat skeletal muscle after denervation or limb immobilization was investigated. Adult male rats were subjected to midthigh section of the sciatic nerve. At 1, 2, and 5 h and 1, 2, and 7 days after denervation, rats were killed and denervated, and contralateral control soleus and plantaris muscles were excised, weighted, homogenized, and assayed for glutamine synthetase. Glutamine synthetase activity increased approximately twofold 1 h after denervation in both muscles. By 7 days postdenervation enzyme activity had increased to three times the control level in plantaris muscle and to four times the control level in soleus muscle. Increased enzyme activity after nerve section was associated with increased maximum velocity with no change in apparent Michaelis constant. Immunotitration with an antiglutamine synthetase antibody suggested that denervation caused an increase in the number of glutamine synthetase molecules in muscle. However, Northern-blot analysis revealed no increase in the steady-state level of glutamine synthetase mRNA after denervation. A mixing experiment failed to yield evidence for the presence of a soluble factor involved in regulating the activity of glutamine synthetase in denervated muscle. A combination of denervation and dexamethasone injections resulted in additive increases in glutamine synthetase. Thus the mechanism underlying increased glutamine synthetase after denervation appears to be posttranscriptional and is distinct from that of the glucocorticoid-mediated glutamine synthetase induction previously described by us. PMID:1970709

  1. Baroreflex control of sympathetic activity in experimental hypertension

    Directory of Open Access Journals (Sweden)

    M.C.C. Irigoyen

    1998-09-01

    Full Text Available The arterial baroreceptor reflex system is one of the most powerful and rapidly acting mechanisms for controlling arterial pressure. The purpose of the present review is to discuss data relating sympathetic activity to the baroreflex control of arterial pressure in two different experimental models: neurogenic hypertension by sinoaortic denervation (SAD and high-renin hypertension by total aortic ligation between the renal arteries in the rat. SAD depresses baroreflex regulation of renal sympathetic activity in both the acute and chronic phases. However, increased sympathetic activity (100% was found only in the acute phase of sinoaortic denervation. In the chronic phase of SAD average discharge normalized but the pattern of discharges was different from that found in controls. High-renin hypertensive rats showed overactivity of the renin angiotensin system and a great depression of the baroreflexes, comparable to the depression observed in chronic sinoaortic denervated rats. However, there were no differences in the average tonic sympathetic activity or changes in the pattern of discharges in high-renin rats. We suggest that the difference in the pattern of discharges may contribute to the increase in arterial pressure lability observed in chronic sinoaortic denervated rats.

  2. Modern control techniques in active flutter suppression using a control moment gyro

    Science.gov (United States)

    Buchek, P. M.

    1974-01-01

    Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.

  3. THE CONTROL ACTIVITY EXERCISED BY PERMANENT CONTROL COMPARTIMENTS IN CREDIT INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    CODRUTA DANIELA PAVEL

    2012-05-01

    Full Text Available Permanent control is defined as a permanent means acting and providing knowledge, control and monitoring of risks. Supervision of control permanent compartments includes: constant supervision through a set of dispositions applicable at the operational level to ensure legality, security and validity of transactions; control operational risks, including further activity and management of crisis situations; control of compliance, including know your customer, prevent money laundering and terrorist financing and professional ethics.Among the permanent internal control objectives in the bank network are: exercise proper permanent supervision to the bank network; identification and evaluation of operational risks; strengthening security and improving the quality of operations; respect the program of customer identification, money laundering and combating the use of bank for financing the terrorism.

  4. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  5. Resistive wall mode active control physics design for KSTAR

    Science.gov (United States)

    Park, Y. S.; Sabbagh, S. A.; Bak, J. G.; Bialek, J. M.; Berkery, J. W.; Lee, S. G.; Oh, Y. K.

    2014-01-01

    As KSTAR H-mode operation approaches the region where the resistive wall mode (RWM) can be unstable, an important issue for future long pulse, high beta plasma operation is to evaluate RWM active feedback control performance using a planned active/passive RWM stabilization system on the device. In particular, an optimal design of feedback sensors allows mode stabilization up to the highest achievable βN close to the ideal with-wall limit, βNwall, with reduced control power requirements. The computed ideal n = 1 mode structure from the DCON code has been input to the VALEN-3D code to calculate the projected performance of an active RWM control system in the KSTAR three-dimensional conducting structure device geometry. Control performance with the midplane locked mode detection sensors, off-midplane saddle loops, and magnetic pickup coils is examined. The midplane sensors measuring the radial component of the mode perturbation is found to be strongly affected by the wall eddy current. The off-axis saddle loops with proper compensation of the prompt applied field are computed to provide stabilization at βN up to 86% of βNwall but the low RWM amplitude computed in the off-axis regions near the sensors can produce a low signal-to-noise ratio. The required control power and bandwidth are also estimated with varied noise levels in the feedback sensors. Further improvements have been explored by examining a new RWM sensor design motivated by the off-midplane poloidal magnetic field sensors in NSTX. The new sensors mounted off of the copper passive stabilizer plates near the device midplane show a clear advantage in control performance corresponding to achieving 99% of βNwall without the need of compensation of the prompt field. The result shows a significant improvement of RWM feedback stabilization using the new sensor set which motivates a future feedback sensor upgrade.

  6. Adaptive active control of periodic vibration using maglev actuators

    Science.gov (United States)

    An, Fengyan; Sun, Hongling; Li, Xiaodong

    2012-04-01

    In this paper, active control of periodic vibration is implemented using maglev actuators which exhibit inherent nonlinear behaviors. A multi-channel feedforward control algorithm is proposed to solve these nonlinear problems, in which maglev actuators are treated as single-input-single-output systems with unknown time-varying nonlinearities. A radial basis function network is used by the algorithm as its controller, whose parameters are adapted only with the model of the linear system in the secondary path. Compared with the strategies in the conventional magnetic-levitation system control as well as nonlinear active noise/vibration control, the proposed algorithm has the advantage that the nonlinear modeling procedure of maglev actuators and the usage of displacement sensors could be both avoided. Numerical simulations and real-time experiments are carried out based on a multiple-degree-of-freedom vibration isolation system. The results show that the proposed algorithm not only could efficiently compensate for the actuators' time-varying nonlinearities, but also has the ability to greatly attenuate the energy of periodic vibration.

  7. Low-cost Active Structural Control Space Experiment (LASC)

    Science.gov (United States)

    Robinett, Rush; Bukley, Angelia P.

    1992-01-01

    The DOE Lab Director's Conference identified the need for the DOE National Laboratories to actively and aggressively pursue ways to apply DOE technology to problems of national need. Space structures are key elements of DOD and NASA space systems and a space technology area in which DOE can have a significant impact. LASC is a joint agency space technology experiment (DOD Phillips, NASA Marshall, and DOE Sandia). The topics are presented in viewgraph form and include the following: phase 4 investigator testbed; control of large flexible structures in orbit; INFLEX; Controls, Astrophysics; and structures experiments in space; SARSAT; and LASC mission objectives.

  8. Optimal placement of active elements in control augmented structural synthesis

    Science.gov (United States)

    Sepulveda, A. E.; Jin, I. M.; Schmit, L. A., Jr.

    1992-01-01

    A methodology for structural/control synthesis is presented in which the optimal location of active members is treated in terms of (0,1) variables. Structural member sizes, control gains and (0,1) placement variables are treated simultaneously as design variables. Optimization is carried out by generating and solving a sequence of explicit approximate problems using a branch and bound strategy. Intermediate design variable and intermediate response quantity concepts are used to enhance the quality of the approximate design problems. Numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.

  9. "Active flux" orientation vector sensorless control of IPMSM

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Boldea, I.; Paicu, M.C.;

    2008-01-01

    This paper presents a novel strategy for the vector control of IPMSM, without signal injection. The overall performance of the motion-sensorless control depends strongly on the accuracy of the rotor position and speed estimation. The proposed state observer is based on the concept of the...... ldquoactive fluxrdquo (or ldquotorque producing fluxrdquo), which ldquoturns all the salient-pole rotor ac machines into nonsalient-pole onesrdquo. As well as giving a detailed explanation of the concept, the paper demonstrates, through a wide range of experimental results, the effectiveness of the active...

  10. Active Vibration Control of the Smart Plate Using Artificial Neural Network Controller

    Directory of Open Access Journals (Sweden)

    Mohit

    2015-01-01

    Full Text Available The active vibration control (AVC of a rectangular plate with single input and single output approach is investigated using artificial neural network. The cantilever plate of finite length, breadth, and thickness having piezoelectric patches as sensors/actuators fixed at the upper and lower surface of the metal plate is considered for examination. The finite element model of the cantilever plate is utilized to formulate the whole strategy. The compact RIO and MATLAB simulation software are exercised to get the appropriate results. The cantilever plate is subjected to impulse input and uniform white noise disturbance. The neural network is trained offline and tuned with LQR controller. The various training algorithms to tune the neural network are exercised. The best efficient algorithm is finally considered to tune the neural network controller designed for active vibration control of the smart plate.

  11. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  12. Feedback Linearization Control of a Shunt Active Power Filter Using a Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Tianhua Li

    2013-09-01

    Full Text Available In this paper, a novel feedback linearization based sliding mode controlled parallel active power filter using a fuzzy controller is presented in a three-phase three-wire grid. A feedback linearization control with fuzzy parameter self-tuning is used to implement the DC side voltage regulation while a novel integral sliding mode controller is applied to reduce the total harmonic distortion of the supply current. Since traditional unit synchronous sinusoidal signal calculation methods are not applicable when the supply voltage contains harmonics, a novel unit synchronous sinusoidal signal computing method based on synchronous frame transforming theory is presented to overcome this disadvantage. The simulation results verify that the DC side voltage is very stable for the given value and responds quickly to the external disturbance. A comparison is also made to show the advantages of the novel unit sinusoidal signal calculating method and the super harmonic treatment property of the designed active power filter.

  13. Wind turbine generators with active radar signature control blades

    Science.gov (United States)

    Tennant, Alan; Chambers, Barry

    2004-07-01

    The large radar cross section of wind turbine generator (WTG) blades combined with high tip speeds can produce significant Doppler returns when illuminated by a radar. Normally, an air traffic control radar system will filter out large returns from stationary targets, however the Doppler shifts introduced by the WTG are interpreted as moving aircraft that can confuse radar operators and compromise safety. A possible solution to this problem that we are investigating is to incorporate an active layer into the structure of the WTG blades that can be used to dynamically modulate the RCS of the blade return. The active blade can operate in one of two modes: firstly the blade RCS can be modulated to provide a Doppler return that is outside the detectable range of the radar receiver system so that it is rejected: a second mode of operation is to introduce specific coding on to the Doppler returns so that they may be uniquely identified and rejected. The active layer used in the system consists of a frequency selective surface controlled by semiconductor diodes and is a development of techniques that we have developed for active radar absorbers. Results of experimental work using a 10GHz Doppler radar and scale model WTG with active Doppler imparting blades are presented.

  14. Control of active liquid crystals with a magnetic field.

    Science.gov (United States)

    Guillamat, Pau; Ignés-Mullol, Jordi; Sagués, Francesc

    2016-05-17

    Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix. PMID:27140604

  15. Active Control of Combustor Instability Shown to Help Lower Emissions

    Science.gov (United States)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would

  16. Wind Tunnel Experiments with Active Control of Bridge Section Model

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes results of wind tunnel experiments with a bridge section model where movable flaps are integrated in the bridge girder so each flap is the streamlined part of the edge of the girder. This active control flap system is patented by COWIconsult and may be used to increase the...... flutter wind velocity for future ultra-long span suspension bridges. The purpose of the wind tunnel experiments is to investigate the principle to use this active flap control system. The bridge section model used in the experiments is therefore not a model of a specific bridge but it is realistic...... compared with a real bridge. Five flap configurations are investigated during the wind tunnel experiments and depending on the actual flap configuration it is possible to decrease or increase the flutter wind velocity for the model....

  17. Survey of Active Structural Control and Repair Using Piezoelectric Patches

    OpenAIRE

    Ahmed Abuzaid; Meftah Hrairi; M.S.I. Shaik Dawood

    2015-01-01

    The piezoelectric actuator has gained popularity over the last few years. Attention has been directed towards the study of their electromechanical response in active repair and the control of damaged structures. This has been made possible through the development of various numerical and analytical techniques for such studies. The shift of focus towards the piezoelectric based approaches has been due to their advantages, which include strategic cost benefits in maintenance, as well as an incr...

  18. Global synchronization of two parametrically excited systems using active control

    Energy Technology Data Exchange (ETDEWEB)

    Lei Youming [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)] e-mail: leiyouming@nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)] e-mail: weixu@nwpu.edu.cn; Shen Jianwei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Fang Tong [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2006-04-01

    In this paper, we apply an active control technique to synchronize a kind of two parametrically excited chaotic systems. Based on Lyapunov stability theory and Routh-Hurwitz criteria, some generic sufficient conditions for global asymptotic synchronization are obtained. Illustrative examples on synchronization of two Duffing systems subject to a harmonic parametric excitation and that of two parametrically excited chaotic pendulums are considered here. Numerical simulations show the validity and feasibility of the proposed method.

  19. Improving aerobic capacity through active videogames: A randomized controlled trial

    OpenAIRE

    Jorge Luiz de Brito-Gomes; Raphael José Perrier-Melo; Erik Anders Wikstrom; Manoel da Cunha Costa

    2015-01-01

    AbstractThe rate of peak workload improvement between different types of Active Video Games (AVG) in young sedentary adults was investigated. Aerobic capacity improvement after a 6-week intervention between AVG types was also compared. Twenty participants, after baseline assessments, were randomized into one of three parallel groups: structured AVG (n= 6), unstructured AVG (n= 7) and a control group (n= 7). Participants played their respective AVG 3 times a week for 6-weeks (30 minutes-sessio...

  20. Applications of monolithic fiber interferometers and actively controlled fibers

    OpenAIRE

    Rugeland, Patrik

    2013-01-01

    The objective of this thesis was to develop applications of monolithic fiber devices and actively controlled fibers. A special twin-core fiber known as a ‘Gemini’ fiber was used to construct equal arm-length fiber interferometers, impervious to temperature and mechanical perturbations. A broadband add/drop multiplexer was constructed by inscribing fiber Bragg gratings in the arms of a Gemini Mach-Zehnder interferometer. A broadband interferometric nanosecond switch was constructed from a micr...

  1. Active flow control systems architectures for civil transport aircraft

    OpenAIRE

    Jabbal, M; Liddle, SC; Crowther, WJ

    2010-01-01

    Copyright @ 2010 American Institute of Aeronautics and Astronautics This paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study applicatio...

  2. Adaptive active vibration isolation – A control perspective

    Directory of Open Access Journals (Sweden)

    Landau Ioan Doré

    2015-01-01

    The paper will review a number of recent developments for adaptive feedback compensation of multiple unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Some experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented.

  3. Distributed Model Predictive Control of A Wind Farm for Optimal Active Power Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai;

    2015-01-01

    This paper presents a dynamic discrete-time Piece- Wise Affine (PWA) model of a wind turbine for the optimal active power control of a wind farm. The control objectives include both the power reference tracking from the system operator and the wind turbine mechanical load minimization. Instead of...... partial linearization of the wind turbine model at selected operating points, the nonlinearities of the wind turbine model are represented by a piece-wise static function based on the wind turbine system inputs and state variables. The nonlinearity identification is based on the clustering-based algorithm...... other advanced optimal control applications of a wind farm....

  4. Hybrid Active Noise Control using Adjoint LMS Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Do; Hong, Sik Ki [Dankook University (Korea, Republic of)

    1998-07-01

    A multi-channel hybrid active noise control(MCHANC) is derived by combining hybrid active noise control techniques and adjoint LMS algorithms, and this algorithm is applied to an active noise control system in a three dimensional enclosure. A MCHANC system uses feed forward and feedback filters simultaneously to cancel noises in an enclosure. The adjoint LMs algorithm, in which the error is filtered through an adjoint filter of the secondary channel, is also used to reduce the computational burden of adaptive filters. The overall attenuation performance and convergence characteristics of MCHANC algorithm is better than both multiple-channel feed forward algorithms and multiple-channel feedback algorithms. In a large enclosure, the acoustic reverberation can be very long, which means a very high order feed forward filter must be used to cancel the reverberation noises. Strong reverberation noises are generally narrow band and low frequency, which can be effectively predicted and canceled by a feedback adaptive filters. So lower order feed forward filter taps can be used in MCHANC algorithm which combines advantages of fast convergence and small excess mean square error. In this paper, computer simulations and real time implementations is carried out on a TMS320C31 processor to evaluate the performance of the MCHANC systems. (author). 11 refs., 11 figs., 1 tab.

  5. First Test of Fan Active Noise Control (ANC) Completed

    Science.gov (United States)

    2005-01-01

    With the advent of ultrahigh-bypass engines, the space available for passive acoustic treatment is becoming more limited, whereas noise regulations are becoming more stringent. Active noise control (ANC) holds promise as a solution to this problem. It uses secondary (added) noise sources to reduce or eliminate the offending noise radiation. The first active noise control test on the low-speed fan test bed was a General Electric Company system designed to control either the exhaust or inlet fan tone. This system consists of a "ring source," an induct array of error microphones, and a control computer. Fan tone noise propagates in a duct in the form of spinning waves. These waves are detected by the microphone array, and the computer identifies their spinning structure. The computer then controls the "ring source" to generate waves that have the same spinning structure and amplitude, but 180 out of phase with the fan noise. This computer generated tone cancels the fan tone before it radiates from the duct and is heard in the far field. The "ring source" used in these tests is a cylindrical array of 16 flat-plate acoustic radiators that are driven by thin piezoceramic sheets bonded to their back surfaces. The resulting source can produce spinning waves up to mode 7 at levels high enough to cancel the fan tone. The control software is flexible enough to work on spinning mode orders from -6 to 6. In this test, the fan was configured to produce a tone of order 6. The complete modal (spinning and radial) structure of the tones was measured with two builtin sets of rotating microphone rakes. These rakes provide a measurement of the system performance independent from the control system error microphones. In addition, the far-field noise was measured with a semicircular array of 28 microphones. This test represents the first in a series of tests that demonstrate different active noise control concepts, each on a progressively more complicated modal structure. The tests are

  6. Metabolically active functional food ingredients for weight control.

    Science.gov (United States)

    Kovacs, E M R; Mela, D J

    2006-02-01

    The scale of the obesity epidemic creates a pressing consumer need as well as an enormous business opportunity for successful development and marketing of food products with added benefits for weight control. A number of proposed functional food ingredients have been shown to act post-absorptively to influence substrate utilization or thermogenesis. Characteristics and supporting data on conjugated linoleic acid, diglycerides, medium-chain triglycerides, green tea, ephedrine, caffeine, capsaicin and calcium, are reviewed here, giving examples of how these could act to alter energy expenditure or appetite control. Consideration is also given to other factors, in addition to efficacy, which must be satisfied to get such ingredients into foods. We conclude that, for each of the safe, putatively metabolically active agents, there remain gaps in clinical evidence or knowledge of mechanisms, which need to be addressed in order to specify the dietary conditions and food product compositions where these ingredients could be of most benefit for weight control. PMID:16436103

  7. Active control of an aircraft tail subject to harmonic excitation

    Institute of Scientific and Technical Information of China (English)

    M. Eissa; H. S. Bauomy; Y. A. Amer

    2007-01-01

    Vibration of structures is often an undesirable phenomena and should be avoided or controlled. There are two techniques to control the vibration of a system, that is,active and passive control techniques. In this paper, a negative feedback velocity is applied to a dynamical system, which is represented by two coupled second order nonlinear differ-ential equations having both quadratic and cubic nonlinear-ties. The system describes the vibration of an aircraft tail.The system is subjected to multi-external excitation forces.The method of multiple time scale perturbation is applied to solve the nonlinear differential equations and obtain approx-imate solutions up to third order of accuracy. The stability of the system is investigated applying frequency response equations. The effects of the different parameters are stud-ied numerically. Various resonance cases are investigated. A comparison is made with the available published work.

  8. Actively controlling coolant-cooled cold plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  9. Apparatus and method for gas turbine active combustion control system

    Science.gov (United States)

    Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  10. Mine-Hoist Active Fault Tolerant Control System and Strategy

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-jie; WANG Yao-cai; MENG Jiang; ZHAO Peng-cheng; CHANG Yan-wei

    2005-01-01

    Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies,, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control module (FCM). When a fault is judged from some sensor by FDM, FCM reconfigure the state of MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliability and safety of mine hoist. The simulating result shows that, MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there are quite difference between the real data and the prior fault modes.

  11. Active thermal figure control for the TOPS II primary mirror

    Science.gov (United States)

    Angel, Roger; Kang, Tae; Cuerden, Brian; Guyon, Olivier; Stahl, Phil

    2007-09-01

    TOPS (Telescope to Observe Planetary Systems) is the first coronagraphic telescope concept designed specifically to take advantage of Guyon's method of Phase Induced Amplitude Apodization PIAA).1 The TOPS primary mirror may incorporates active figure control to help achieve the desired wavefront control to approximately 1 angstrom RMS accurate across the spectral bandwidth. Direct correction of the primary figure avoids the need for a separate small deformable mirror. Because of Fresnel propagation, correction at a separate surface can introduce serious chromatic errors unless it is precisely conjugated to the primary. Active primary control also reduces complexity and mass and increases system throughput, and will likely enable a full system test to the 10-10 level in the 1 g environment before launch. We plan to use thermal actuators with no mechanical disturbance, using radiative heating or cooling fingers distributed inside the cells of a honeycomb mirror. The glass would have very small but finite coefficient of expansion of ~ 5x10 -8/C. Low order modes would be controlled by front-to-back gradients and high order modes by local rib expansion and contraction. Finite element models indicate that for a mirror with n cells up to n Zernike modes can be corrected to better than 90% fidelity, with still higher accuracy for the lower modes. An initial demonstration has been made with a borosilicate honeycomb mirror. Interferometric measurements show a single cell influence function with 300 nm stroke and ~5 minute time constant.

  12. Performing Active Noise Control and Acoustic Experiments Remotely

    Directory of Open Access Journals (Sweden)

    Imran Khan

    2012-12-01

    Full Text Available This paper presents a novel and advanced remotely controlled laboratory for conducting Active Noise Control (ANC, acoustic and Digital Signal Processing (DSP experiments. The laboratory facility, recently developed by Blekinge Institute of Technology (BTH Sweden, supports remote learning through internet covering beginners level such as simple experimental measurements to advanced users and even researchers such as algorithm development and their performance evaluation on DSP. The required software development for ANC algorithms and equipment control are carried out anywhere in the world remotely from an internet-connected client PC using a standard web browser. The paper describes in detail how ANC, acoustic and DSP experiments can be performed remotely The necessary steps involved in an ANC experiment such as validity of ANC, forward path estimation and active control applied to a broad band random noise [0-200Hz] in a ventilation duct will be described in detail. The limitations and challenges such as the forward path and nonlinearities pertinent to the remote laboratory setup will be described for the guidance of the user. Based on the acoustic properties of the ventilation duct some of the possible acoustic experiments such as mode shapes analysis and standing waves analysis etc. will also be discussed in the paper.

  13. Active control for pulverised-coal combustion reburn region

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, A.M.; Costen, P.G.; Lockwood, F.C. [Imperial College, London (United Kingdom). Dept. of Mechanical Engineering

    2006-07-01

    This paper presented details of a clean coal technology in-process modification of reburning which used fuzzy logic for its active control. Datasets from re-burn experiments conducted at the Imperial College in the United Kingdom were used to create reburn flow conditions for industrial boilers in a modified furnace. Reburn fuel and the overfire air were introduced through 2 diametrically opposed access ports in their respective furnace sections. Experimental data were collected for horizontal reburn fuel injection nozzles. Data trends suggested that the reburn fuel was transported to the combustor's centre along with a lateral distribution due to reburn jet impingement. Nitric Oxide (NO) was consumed subsequent to the reburn zone. Parameters that affected the reburn process were identified as : reburn fuel properties; injected jet momentum with the primary zone's swirling flow; reburn zone residence time; reburn fuel fraction; and the primary zone NO levels. Reburn dynamics were codified into computable form using fuzzy logic to form a control policy for feedback control. Simulation results suggested that fuzzy logic is a useful tool for translating system dynamics into active-control computational forms. 27 refs., 8 figs.

  14. PLC based control system and maintenance activities at NCAR, Bilaspur

    International Nuclear Information System (INIS)

    A 3.0 MV high current low energy Pelletron Accelerator facility (Model 9SDH-4, NEC, USA) with TORUIS (ion source for H+ and He2+ beam current H+ ion ∼ 50μA @ 6 MeV, He2+ at ∼ 10μA) and SNICS-II ion source for heavy ions has been commissioned as 'National Centre for Accelerator Based Research' in the Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya. In this paper, we detail out the control system developed and implemented at NCAR. The basic idea of controlling the machine is by providing the output signal through PLC to ACPC of accelerator using user interface points provided by the manufacturer. The PLC based system generates output signal once it receives the feedback signals from search and secure switches, door lock switches and scram switches interlocked with PLC. The output is controlled by ladder logic and is activated only when all the radiation monitors are in healthy state and outside radiations monitor having low radiation level. The details of control system and maintenance activities will be discussed in the paper

  15. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future

  16. O the Use of Modern Control Theory for Active Structural Acoustic Control.

    Science.gov (United States)

    Saunders, William Richard

    A modern control theory formulation of Active Structural Acoustic Control (ASAC) of simple structures radiating acoustic energy into light or heavy fluid mediums is discussed in this dissertation. ASAC of a baffled, simply-supported plate subject to mechanical disturbances is investigated. For the case of light fluid loading, a finite element modelling approach is used to extend previous ASAC design methods. Vibration and acoustic controllers are designed for the plate. Comparison of the controller performance shows distinct advantages of the ASAC method for minimizing radiated acoustic power. A novel approach to the modelling of the heavy fluid-loaded plate is developed here. Augmenting structural and acoustic dynamics using state vector formalism allows the design of both vibration and ASAC controllers for the fluid-loaded plate. This modern control approach to active structural acoustic control is unique in its ability to suppress both persistent and transient disturbances on a plate in a heavy fluid. Numerical simulations of the open-loop and closed-loop plate response are provided to support the theoretical developments.

  17. Active noise control: a review of the field.

    Science.gov (United States)

    Gordon, R T; Vining, W D

    1992-11-01

    Active noise control (ANC) is the application of the principle of the superposition of waves to noise attenuation problems. Much progress has been made toward applying ANC to narrow-band, low-frequency noise in confined spaces. During this same period, the application of ANC to broad-band noise or noise in three-dimensional spaces has seen little progress because of the recent quantification of serious physical limitations, most importantly, noncausality, stability, spatial mismatch, and the infinite gain controller requirement. ANC employs superposition to induce destructive interference to affect the attenuation of noise. ANC was believed to utilize the mechanism of phase cancellation to achieve the desired attenuation. However, current literature points to other mechanisms that may be operating in ANC. Categories of ANC are one-dimensional field and duct noise, enclosed spaces and interior noise, noise in three-dimensional spaces, and personal hearing protection. Development of active noise control stems from potential advantages in cost, size, and effectiveness. There are two approaches to ANC. In the first, the original sound is processed and injected back into the sound field in antiphase. The second approach is to synthesize a cancelling waveform. ANC of turbulent flow in pipes and ducts is the largest area in the field. Much work into the actual mechanism involved and the causal versus noncausal aspects of system controllers has been done. Fan and propeller noise can be divided into two categories: noise generated directly as the blade passing tones and noise generated as a result of blade tip turbulence inducing vibration in structures. Three-dimensional spaces present a noise environment where physical limitations are magnified and the infinite gain controller requirement is confronted. Personal hearing protection has been shown to be best suited to the control of periodic, low-frequency noise.

  18. Controlled movement processing: superior colliculus activity associated with countermanded saccades.

    Science.gov (United States)

    Paré, Martin; Hanes, Doug P

    2003-07-23

    We investigated whether the monkey superior colliculus (SC), an important midbrain structure for the regulation of saccadic eye movements, contains neurons with activity patterns sufficient to control both the cancellation and the production of saccades. We used a countermanding task to manipulate the probability that, after the presentation of a stop signal, the monkeys canceled a saccade that was planned in response to an eccentric visual stimulus. By modeling each animal's behavioral responses, with a race between GO and STOP processes leading up to either saccade initiation or cancellation, we estimated that saccade cancellation took on average 110 msec. Neurons recorded in the superior colliculus intermediate layers during this task exhibited the discharge properties expected from neurons closely involved in behavioral control. Both saccade- and fixation-related discharged differently when saccades were counter-manded instead of executed, and the time at which they changed their activity preceded the behavioral estimate of saccade cancellation obtained from the same trials by 10 and 13 msec, respectively. Furthermore, these intervals exceed the minimal amount of time needed for SC activity to influence eye movements. The additional observation that saccade-related neurons discharged significantly less when saccades were countermanded instead of executed suggests that saccades are triggered when these neurons reach a critical activation level. Altogether, these findings provide solid evidence that the superior colliculus contains the necessary neural signals to be directly involved in the decision process that regulates whether a saccade is to be produced. PMID:12878689

  19. Internal models for interpreting neural population activity during sensorimotor control.

    Science.gov (United States)

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-01-01

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects' internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output.

  20. Cholinergic interneurons control local circuit activity and cocaine conditioning.

    Science.gov (United States)

    Witten, Ilana B; Lin, Shih-Chun; Brodsky, Matthew; Prakash, Rohit; Diester, Ilka; Anikeeva, Polina; Gradinaru, Viviana; Ramakrishnan, Charu; Deisseroth, Karl

    2010-12-17

    Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.

  1. EMG-BASED SYSTEM FOR BASIC HAND MOVEMENT RECOGNITION

    Directory of Open Access Journals (Sweden)

    JHONATAN CAMACHO NAVARRO

    2012-01-01

    Full Text Available Este artículo presenta un sistema que permite identificar de forma automática, en sujetos sanos, y haciendo uso de señales electromiográficas superficiales en estado estable, los siguientes movimientos básicos de la mano: apertura, cierre, flexión, extensión, pronación y supinación, incluyendo la condición de reposo. La discriminación de los diferentes movimientos se realiza a partir de una metodología modular de reconocimiento de patrones que incluye el uso de la transformada wavelet discreta, análisis de componentes principales y máquinas de soporte vectorial. La identificación fue realizada off-line cada 256 ms mediante una interfaz hardware-software conformada por un sistema de adquisición de señales de dos canales diferenciales y algoritmos programados en Matlab® y LabVIEW®. El sistema fue entrenado y evaluado para cinco sujetos de diferente género, edad y complexión física, obteniendo tasas de acierto de hasta el 99.25 %.

  2. System ID Modern Control Algorithms for Active Aerodynamic Load Control and Impact on Gearbox Loading

    NARCIS (Netherlands)

    Berg, D.; Wilson, D.; Resor, B.; Berg, J.; Barlas, J.; Crowther, A.; Halse, C.

    2010-01-01

    Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed

  3. Active structural acoustic control of aircraft interior flow noise via the use of active trim panels

    OpenAIRE

    Mahnken, Brian W.

    1996-01-01

    Modem jet aircraft interior noise can be categorized into two main types: tonal noise caused by engine imbalance or blade passage, and mid frequency broadband noise resulting from turbulent flow. This project addresses aircraft interior flow noise caused by a flow separation over the crown of the aircraft. The noise control approach is to mount piezoelectric actuators to the aircraft interior cockpit crown trim panel and use them to actively control aircraft interior noise with...

  4. A predictive control algorithm for an active three-phase power filter

    Directory of Open Access Journals (Sweden)

    R.V. Vlasenko

    2014-09-01

    Full Text Available The paper deals with grid connection circuits for active filters, structures of active power filter control systems, and methods based on full capacity components determination. The existing structures of active power filter control and control algorithm adjustment for valve commutation loss reduction are analyzed. A predictive control algorithm for an active three-phase power filter is introduced.

  5. A predictive control algorithm for an active three-phase power filter

    OpenAIRE

    R.V. Vlasenko; Bialobrzeski, O. V.

    2014-01-01

    The paper deals with grid connection circuits for active filters, structures of active power filter control systems, and methods based on full capacity components determination. The existing structures of active power filter control and control algorithm adjustment for valve commutation loss reduction are analyzed. A predictive control algorithm for an active three-phase power filter is introduced.

  6. Protein kinase C controls activation of the DNA integrity checkpoint

    Science.gov (United States)

    Soriano-Carot, María; Quilis, Inma; Bañó, M. Carmen; Igual, J. Carlos

    2014-01-01

    The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans. PMID:24792164

  7. Latency and activation in the control of TGF-beta

    Science.gov (United States)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The biological activity of the transforming growth factor-beta's (TGF-beta)3 is tightly controlled by their persistence in the extracellular compartment as latent complexes. Each of the three mammalian isoform genes encodes a product that is cleaved intracellularly to form two polypeptides, each of which dimerizes. Mature TGF-beta, a 24 kD homodimer, is noncovalently associated with the 80 kD latency-associated peptide (LAP). LAP is a fundamental component of TGF-beta that is required for its efficient secretion, prevents it from binding to ubiquitous cell surface receptors, and maintains its availability in a large extracellular reservoir that is readily accessed by activation. This latent TGF-beta complex (LTGF-beta) is secreted by all cells and is abundant both in circulating forms and bound to the extracellular matrix. Activation describes the collective events leading to the release of TGF-beta. Despite the importance of TGF-beta regulation of growth and differentiation in physiological and malignant tissue processes, remarkably little is known about the mechanisms of activation in situ. Recent studies of irradiated mammary gland reveal certain features of TGF-beta 1 activation that may shed light on its regulation and potential roles in the normal and neoplastic mammary gland.

  8. Fluidic actuators for active flow control on airframe

    Science.gov (United States)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.

    2016-04-01

    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  9. Sparse matrix approximation method for an active optical control system

    Science.gov (United States)

    Murphy, Timothy P.; Lyon, Richard G.; Dorband, John E.; Hollis, Jan M.

    2001-12-01

    We develop a sparse matrix approximation method to decompose a wave front into a basis set of actuator influence functions for an active optical system consisting of a deformable mirror and a segmented primary mirror. The wave front used is constructed by Zernike polynomials to simulate the output of a phase-retrieval algorithm. Results of a Monte Carlo simulation of the optical control loop are compared with the standard, nonsparse approach in terms of accuracy and precision, as well as computational speed and memory. The sparse matrix approximation method can yield more than a 50-fold increase in the speed and a 20-fold-reduction in matrix size and a commensurate decrease in required memory, with less than 10% degradation in solution accuracy. Our method is also shown to be better than when elements are selected for the sparse matrix on a magnitude basis alone. We show that the method developed is a viable alternative to use of the full control matrix in a phase-retrieval-based active optical control system.

  10. An intelligent active force control algorithm to control an upper extremity exoskeleton for motor recovery

    Science.gov (United States)

    Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.

  11. Active queue management controller design for TCP communication networks: Variable structure control approach

    International Nuclear Information System (INIS)

    On the basis of variable structure control (VSC), an active queue management (AQM) controller is presented for a class of TCP communication networks. In the TCP/IP networks, the packet drop probability is limited between 0 and 1. Therefore, we modeled TCP/AQM as a rate-based non-linear system with a saturated input. The objective of the VSC-based AQM controller is to achieve the desired queue size and to guarantee the asymptotic stability of the closed-loop TCP non-linear system with saturated input. The performance and effectiveness of the proposed control law are then validated for different network scenarios through numerical simulations in both MATLAB and Network Simulator-2 (NS-2). Both sets of simulation results have confirmed that the proposed scheme outperforms other AQM schemes.

  12. Development of a Voice Activity Controlled Noise Canceller

    Directory of Open Access Journals (Sweden)

    Aini Hussain

    2012-05-01

    Full Text Available In this paper, a variable threshold voice activity detector (VAD is developed to control the operation of a two-sensor adaptive noise canceller (ANC. The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods.

  13. Modified active disturbance rejection control for time-delay systems.

    Science.gov (United States)

    Zhao, Shen; Gao, Zhiqiang

    2014-07-01

    Industrial processes are typically nonlinear, time-varying and uncertain, to which active disturbance rejection control (ADRC) has been shown to be an effective solution. The control design becomes even more challenging in the presence of time delay. In this paper, a novel modification of ADRC is proposed so that good disturbance rejection is achieved while maintaining system stability. The proposed design is shown to be more effective than the standard ADRC design for time-delay systems and is also a unified solution for stable, critical stable and unstable systems with time delay. Simulation and test results show the effectiveness and practicality of the proposed design. Linear matrix inequality (LMI) based stability analysis is provided as well.

  14. Active control of magnetoresistance of organic spin valves using ferroelectricity

    Science.gov (United States)

    Shen, Jian

    Organic spintronic devices have been appealing because of the long spin lifetime of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin valves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance. Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer: the magnetoresistance of the spin valve depends strongly on the history of the bias voltage, which is correlated with the polarization of the ferroelectric layer; the magnetoresistance even changes sign when the electric polarization of the ferroelectric layer is reversed. These findings enable active control of resistance using both electric and magnetic fields, opening up possibility for multi-state organic spin valves.

  15. Active Vibration Control of a Monopile Offshore Structure

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.

    1996-01-01

    . This concept has been experimentally investigated with a test model in stationary flow tests. The idea is to have a large drag coefficient when the cylinder moves opposite of the wave direction implying a relatively large damping excitation. When the structure moves in the wave direction a small drag...... with a factor 1.5-2 by blowing air out of the holes in a cylinder vibrating in a stationary water flow....... an active control technique has been proposed in corporation with the consulting company Rambøll, Esbjerg, Denmark. The proposed control technique is based on the relationship between the position of the separation points of the boundary layer flow and the drag term in the wave force on the cylinder...

  16. Sensitivity method for integrated structure/active control law design

    Science.gov (United States)

    Gilbert, Michael G.

    1987-01-01

    The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.

  17. ReflectoActive{trademark} Seals for Materials Control and Accountability

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, G.D.; Younkin, J.R.; Bell, Z.W.

    2002-01-01

    The ReflectoActive{trademark} Seals system, a continuously monitored fiber optic, active seal technology, provides real-time tamper indication for large arrays of storage containers. The system includes a PC running the RFAS software, an Immediate Detection Unit (IDU), an Optical Time Domain Reflectometer (OTDR), links of fiber optic cable, and the methods and devices used to attach the fiber optic cable to the containers. When a breach on any of the attached fiber optic cable loops occurs, the IDU immediately signals the connected computer to control the operations of an OTDR to seek the breach location. The ReflectoActive{trademark} Seals System can be adapted for various types of container closure designs and implemented in almost any container configuration. This automatic protection of valued assets can significantly decrease the time and money required for surveillance. The RFAS software is the multi-threaded, client-server application that monitors and controls the components of the system. The software administers the security measures such as a two-person rule as well as continuous event logging. Additionally the software's architecture provides a secure method by which local or remote clients monitor the system and perform administrative tasks. These features provide the user with a robust system to meet today's material control and accountability needs. A brief overview of the hardware, and different hardware configurations will be given. The architecture of the system software, and its benefits will then be discussed. Finally, the features to be implemented in future versions of the system will be presented.

  18. Active Video Game Exercise Training Improves the Clinical Control of Asthma in Children: Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Evelim L F D Gomes

    Full Text Available The aim of the present study was to determine whether aerobic exercise involving an active video game system improved asthma control, airway inflammation and exercise capacity in children with moderate to severe asthma.A randomized, controlled, single-blinded clinical trial was carried out. Thirty-six children with moderate to severe asthma were randomly allocated to either a video game group (VGG; N = 20 or a treadmill group (TG; n = 16. Both groups completed an eight-week supervised program with two weekly 40-minute sessions. Pre-training and post-training evaluations involved the Asthma Control Questionnaire, exhaled nitric oxide levels (FeNO, maximum exercise testing (Bruce protocol and lung function.No differences between the VGG and TG were found at the baseline. Improvements occurred in both groups with regard to asthma control and exercise capacity. Moreover, a significant reduction in FeNO was found in the VGG (p < 0.05. Although the mean energy expenditure at rest and during exercise training was similar for both groups, the maximum energy expenditure was higher in the VGG.The present findings strongly suggest that aerobic training promoted by an active video game had a positive impact on children with asthma in terms of clinical control, improvement in their exercise capacity and a reduction in pulmonary inflammation.Clinicaltrials.gov NCT01438294.

  19. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Sun, G. M.; Kim, S. H.; Baek, S. Y.; Lim, J. M.; Kim, H. R

    2007-01-15

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future.

  20. Control of pneumatic transfer system for neutron activation analysis

    International Nuclear Information System (INIS)

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  1. Model based active power control of a wind turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad;

    2014-01-01

    technology to increase competitiveness of the wind power plants. One way to increase competitiveness of wind power plants is to offer grid services (also called ancillary services) that are normally offered by traditional power plants. One of the ancillary services is called reserve power. There are instants...... in the electricity market that selling the reserve power is more profitable than producing with the full capacity. Therefore wind turbines can be down-regulated and sell the differential capacity as the reserve power. In this paper we suggest a model based approach to control wind turbines for active power reference...

  2. An active interferometer-stabilization scheme with linear phase control

    DEFF Research Database (Denmark)

    Vardhan Krishnamachari, Vishnu; Andresen, Esben Ravn; Potma, Eric Olaf

    2006-01-01

    We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....

  3. Phasor Representation for Narrowband Active Noise Control Systems

    Directory of Open Access Journals (Sweden)

    Chen Fu-Kun

    2008-01-01

    Full Text Available The phasor representation is introduced to identify the characteristic of the active noise control (ANC systems. The conventional representation, transfer function, cannot explain the fact that the performance will be degraded at some frequency for the narrowband ANC systems. This paper uses the relationship of signal phasors to illustrate geometrically the operation and the behavior of two-tap adaptive filters. In addition, the best signal basis is therefore suggested to achieve a better performance from the viewpoint of phasor synthesis. Simulation results show that the well-selected signal basis not only achieves a better convergence performance but also speeds up the convergence for narrowband ANC systems.

  4. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  5. Phasor Representation for Narrowband Active Noise Control Systems

    Directory of Open Access Journals (Sweden)

    Fu-Kun Chen

    2008-05-01

    Full Text Available The phasor representation is introduced to identify the characteristic of the active noise control (ANC systems. The conventional representation, transfer function, cannot explain the fact that the performance will be degraded at some frequency for the narrowband ANC systems. This paper uses the relationship of signal phasors to illustrate geometrically the operation and the behavior of two-tap adaptive filters. In addition, the best signal basis is therefore suggested to achieve a better performance from the viewpoint of phasor synthesis. Simulation results show that the well-selected signal basis not only achieves a better convergence performance but also speeds up the convergence for narrowband ANC systems.

  6. Active switching in metamaterials using polarization control of light

    CERN Document Server

    Xu, Hua

    2010-01-01

    We demonstrate on-demand control of localized surface plasmons in metamaterials by means of incident light polarization. An asymmetric mode, selectively excited by s-polarized light, interfere destructively with a bright element, thereby allowing the incident light to propagate at a fairly low loss, corresponding to electromagnetically induced transparency (EIT) in an atomic system. In contrast, a symmetric mode, excited by p-polarized light, directly couples with the incident light, which is analogous to the switch-off of EIT. The light polarization-dependent excitation of asymmetric and symmetric plasmon modes holds potential for active switching applications of plasmon hybridization.

  7. Photo-active collagen systems with controlled triple helix architecture

    CERN Document Server

    Tronci, Giuseppe; Wood, David J

    2013-01-01

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, 1H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of fun...

  8. Monitor and control of neuronal activities with femtosecond pulse laser

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei; LIU XiuLi; L(U) XiaoHua; LI JiaSong; LUO QingMing; ZENG ShaoQun

    2008-01-01

    Combined with the fluorescence labeling technique, two-photon microscopy excited with femtosecond pulse laser has become an important tool for neuroscience research. In this research, the calcium signals from neurons in rat cortex slice were monitored by a custom-built two-photon microscopy, and the spontaneous calcium signals and the pharmacological responses as well as the responses to femtosecond pulse laser stimulation were recorded. The results showed that the amplitude of the cal-cium signals increased in direct proportion to the corresponding electrical activities. Glutamate induced a calcium transient, but continuous application resulted in smaller response. Simultaneous monitoring of neuronal populations distinguished the neurons of different microcircuits. The femtosecond pulse laser induced local or global calcium signals in the pyramidal neurons. The approach of interrogation and control of neural activities using femtosecond pulse laser is non-contact, nondestructive, repeatable, and without any additional substrates, which will contribute to the development of neuroscience.

  9. Active Load Control Using a Non-traditional MEMs Approach

    Science.gov (United States)

    Yen Nakafuji, Dora; van Dam, Cornelis

    2001-11-01

    An active load control concept using micro-electro-mechanical (MEM) translational tabs has been undergoing testing and development at the University of California at Davis. The concept utilizes microfabricated sliding components to retract and extend small tabs located near the trailing edge of a lifting surface. The tab assembly, referred to as a microtab, extends approximately normal to the surface and has a maximum deployment height on the order of the boundary-layer thickness. Deployment of these retractable devices on either the suction or pressure side of a lifting surface effectively modifies the camber distribution and changes the lift and moments generated. On the pressure side, the effect of the microtabs on lift is shown to be as powerful as conventional flap-like control surfaces resulting in positive DCl changes of 30conventional control surfaces which typically occupy 20of the lifting surface, these large-scale load changes are achieved using microtabs with heights of 1located 5suction side, these microtabs work by decreasing the lift resulting in negative DCl changes in the linear range of the lift curve. Numerical and experimental wind tunnel results are in good agreement, and both confirm that these micro-scale devices are capable of generating macro-scale changes in the aerodynamic loading. Application of this rather simple but innovative load control system based on microfabrication techniques will allow for miniaturization of conventional systems. With further development and integration with an activation and feedback network, these microtabs may result in significant reductions in typical control system weight, complexity and cost. Due to their minute size, the activation and response times are expected to be much faster than that of conventional trailing edge devices. Using a multi-disciplinary approach incorporating aspects of experimental and computational aerodynamics, mechanical design and microfabrication, the potentials of this concept

  10. Active vibration control of multibody system with quick startup and brake based on active damping

    Institute of Scientific and Technical Information of China (English)

    TANG Hua-ping; TANG Yun-jun; TAO Gong-an

    2006-01-01

    A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.

  11. Human facial neural activities and gesture recognition for machine-interfacing applications

    Directory of Open Access Journals (Sweden)

    Hamedi M

    2011-12-01

    Full Text Available M Hamedi1, Sh-Hussain Salleh2, TS Tan2, K Ismail2, J Ali3, C Dee-Uam4, C Pavaganun4, PP Yupapin51Faculty of Biomedical and Health Science Engineering, Department of Biomedical Instrumentation and Signal Processing, University of Technology Malaysia, Skudai, 2Centre for Biomedical Engineering Transportation Research Alliance, 3Institute of Advanced Photonics Science, Nanotechnology Research Alliance, University of Technology Malaysia (UTM, Johor Bahru, Malaysia; 4College of Innovative Management, Valaya Alongkorn Rajabhat University, Pathum Thani, 5Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, ThailandAbstract: The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human–machine interface (HMI technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2–11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy

  12. Improving aerobic capacity through active videogames: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Jorge Luiz de Brito-Gomes

    2015-09-01

    Full Text Available AbstractThe rate of peak workload improvement between different types of Active Video Games (AVG in young sedentary adults was investigated. Aerobic capacity improvement after a 6-week intervention between AVG types was also compared. Twenty participants, after baseline assessments, were randomized into one of three parallel groups: structured AVG (n= 6, unstructured AVG (n= 7 and a control group (n= 7. Participants played their respective AVG 3 times a week for 6-weeks (30 minutes-session. The control group maintained normal activities. Both structured and unstructured AVG improved peak workload after four weeks but only the structured group maintained this improvement through week five and six. Aerobic capacity improved in the unstructured (Pre: 36.0 ± 5.2ml.kg.min-¹,Post: 39.7 ± 4.9ml.kg.min-¹, p = .038 and structured AVG (Pre: 39.0 ± 5.9ml.kg.min-¹,Post: 47.8 ± 4.3ml.kg.min-¹, p = .006 groups. Structured AVG provide greater health benefits to aerobic capacity and peak workload in young sedentary but otherwise healthy males relative to unstructured AVG.

  13. Overview of modelling activities for Plasma Control Upgrade in JET

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R., E-mail: raffaele.albanese@unina.it [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Ambrosino, G.; Ariola, M.; Artaserse, G.; Bellizio, T. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Coccorese, V. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); EFDA Close Support Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Crisanti, F. [ENEA Fus, EURATOM Assoc, 00040 Frascati (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); De Tommasi, G.; Fresa, R. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Lomas, P.J. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Mattei, M.; Maviglia, F. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Neto, A. [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Piccolo, F. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Pironti, A. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2011-10-15

    The JET enhancement project Plasma Control Upgrade (PCU) aimed at increasing the capabilities of the plasma vertical stabilization (VS) system. One of the activities of this project was devoted to the development of simple but sufficiently accurate models of the VS system so as to address the main design choices, use the simulation tools as reliable test-beds, and provide an adequate support to the engineering design and commissioning of the new Enhanced Radial Field Amplifier (ERFA). This paper illustrates some of the main achievements of the modelling activity, which gave rise to a closed loop model of the VS system, including plasma, PF coils and passive structures. In particular the paper deals with the selection of the set of turns to be used in the control coils and with the estimation of the eddy current effects on the VS system. The latter analysis addressed an upgrade of the converter units of ERFA, successfully implemented during its commissioning on plasma in August 2009.

  14. Performance of active vibration control technology: the ACTEX flight experiments

    Science.gov (United States)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  15. Application of Active Flow Control Technique for Gust Load Alleviation

    Institute of Scientific and Technical Information of China (English)

    XU Xiaoping; ZHU Xiaoping; ZHOU Zhou; FAN Ruijun

    2011-01-01

    A new gust load alleviation technique is presented in this paper based on active flow control.Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi “Global Hawk” airfoil using arrays of jets during the gust process.Based on unsteady Navier-Stokes equations,the grid-velocity method is introduced to simulate the gust influence,and dynamic response in vertical gust flow perturbation is investigated for the airfoil as well.An unsteady surface transpiration boundary condition is enforced over a user specified portion of the airfoil's surface to emulate the time dependent velocity boundary conditions.Firstly,after applying this method to simulate typical NACA0006 airfoil gust response to a step change in the angle of attack,it shows that the indicial responses of the airfoil make good agreement with the exact theoretical values and the calculated values in references.Furthermore,gust response characteristic for the quasi “Global Hawk” airfoil is analyzed.Five kinds of flow control techniques are introduced as steady blowing,steady suction,unsteady blowing,unsteady suction and synthetic jets.The physical analysis of the influence on the effects of gust load alleviation is proposed to provide some guidelines for practice.Numerical results have indicated that active flow control technique,as a new technology of gust load alleviation,can affect and suppress the fluid disturbances caused by gust so as to achieve the purpose of gust load alleviation.

  16. Quantitative control of organ shape by combinatorial gene activity.

    Directory of Open Access Journals (Sweden)

    Min-Long Cui

    Full Text Available The development of organs with particular shapes, like wings or flowers, depends on regional activity of transcription factors and signalling molecules. However, the mechanisms that link these molecular activities to the morphogenetic events underlying shape are poorly understood. Here we describe a combination of experimental and computational approaches that address this problem, applying them to a group of genes controlling flower shape in the Snapdragon (Antirrhinum. Four transcription factors are known to play a key role in the control of floral shape and asymmetry in Snapdragon. We use quantitative shape analysis of mutants for these factors to define principal components underlying flower shape variation. We show that each transcription factor has a specific effect on the shape and size of regions within the flower, shifting the position of the flower in shape space. These shifts are further analysed by generating double mutants and lines that express some of the genes ectopically. By integrating these observations with known gene expression patterns and interactions, we arrive at a combinatorial scheme for how regional effects on shape are genetically controlled. We evaluate our scheme by incorporating the proposed interactions into a generative model, where the developing flower is treated as a material sheet that grows according to how genes modify local polarities and growth rates. The petal shapes generated by the model show a good quantitative match with those observed experimentally for each petal in numerous genotypes, thus validating the hypothesised scheme. This article therefore shows how complex shapes can be accounted for by combinatorial effects of transcription factors on regional growth properties. This finding has implications not only for how shapes develop but also for how they may have evolved through tinkering with transcription factors and their targets.

  17. Survey of Active Structural Control and Repair Using Piezoelectric Patches

    Directory of Open Access Journals (Sweden)

    Ahmed Abuzaid

    2015-05-01

    Full Text Available The piezoelectric actuator has gained popularity over the last few years. Attention has been directed towards the study of their electromechanical response in active repair and the control of damaged structures. This has been made possible through the development of various numerical and analytical techniques for such studies. The shift of focus towards the piezoelectric based approaches has been due to their advantages, which include strategic cost benefits in maintenance, as well as an increase in the life cycle of the repaired structures. Furthermore, adhesively bonded joints are widely used in the manufacturing and repairing of structures in many industries, especially automotive and aerospace engineering. This is due to the requirement for lightweight materials as well as the potential adhesive used to join materials with different characteristics. The piezoelectric actuator has also shown the capacity in controlling and lowering the shear stress concentration and joint edge peel in adhesively bonded joint systems. The structure’s control of stress and repair can generally be viewed as a reinforcement that influences the structure’s damage tolerance. Therefore, the interest of this review is on the applications of the piezoelectric actuators in both structural damage and the bonded adhesive joint system. The specific goal is to recognize the contemporary scientific challenges, including future opportunities.

  18. Tubular dielectric elastomer actuator for active fluidic control

    Science.gov (United States)

    McCoul, David; Pei, Qibing

    2015-10-01

    We report a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ∼3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ∼0 kPa is reached at 2.4 kV. The device is reliable for at least 2000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control.

  19. Active vibration control of spatial flexible multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  20. Fuel quality control: Five years of activity in laboratories

    International Nuclear Information System (INIS)

    A description of how ENEL (Italian National Electricity Board) carries out the activity of fuel quality control is given, and the results of the Round Robin circuit which has been operating for five years in laboratories regulary performing the control analyses of these products are reported. The laboratories taking part in the Round Robin circuit are 41 (out of which 35 are ENEL laboratories and 6 are owned by external companies) and they are situated throughout Italy; the controlled parameters are the following: heat of combustion (PCS), sulphur (S), vanadium (V) and asphaltenes (ASF); the adopted methods are the official ASTM or IP ones. The statistical analysis of the results has permitted, for every parameter, the calculation of the repeatability and the reproducibility which, in most cases, have turned out to be in keeping with the values provided for in the regulations. Among the collateral initiatives promoted in the framework of this Round Robin, the following are reported: preparation of standards of fuel oil with a known content of a sulphur and vanadium; expediting visits to all the ENEL laboratories participating in the RRT; publication of a handbook of the adopted analysis methods (in Italian); definition of guide-lines on the right selection of new automatic equipment

  1. Active shape control of composite structures under thermal loading

    Science.gov (United States)

    Binette, P.; Dano, M.-L.; Gendron, G.

    2009-02-01

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon-epoxy face sheets. Macro-fiber composite (MFC™) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC™ actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC™ actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC™ actuators can compensate thermal distortion at all times, and that this is an efficient methodology.

  2. Active shape control of composite structures under thermal loading

    International Nuclear Information System (INIS)

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon–epoxy face sheets. Macro-fiber composite (MFC(TM)) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC(TM) actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC(TM) actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC(TM) actuators can compensate thermal distortion at all times, and that this is an efficient methodology

  3. Controlling Protein Activity and Degradation Using Blue Light.

    Science.gov (United States)

    Lutz, Anne P; Renicke, Christian; Taxis, Christof

    2016-01-01

    Regulation of protein stability is a fundamental process in eukaryotic cells and pivotal to, e.g., cell cycle progression, faithful chromosome segregation, or protein quality control. Synthetic regulation of protein stability requires conditional degradation sequences (degrons) that induce a stability switch upon a specific signal. Fusion to a selected target protein permits to influence virtually every process in a cell. Light as signal is advantageous due to its precise applicability in time, space, quality, and quantity. Light control of protein stability was achieved by fusing the LOV2 photoreceptor domain of Arabidopsis thaliana phototropin1 with a synthetic degron (cODC1) derived from the carboxy-terminal degron of ornithine decarboxylase to obtain the photosensitive degron (psd) module. The psd module can be attached to the carboxy terminus of target proteins that are localized to the cytosol or nucleus to obtain light control over their stability. Blue light induces structural changes in the LOV2 domain, which in turn lead to activation of the degron and thus proteasomal degradation of the whole fusion protein. Variants of the psd module with diverse characteristics are useful to fine-tune the stability of a selected target at permissive (darkness) and restrictive conditions (blue light). PMID:26965116

  4. RISK ASSESSMENT ACTIVITIES IN COSO INTERNAL CONTROL MODEL

    Directory of Open Access Journals (Sweden)

    Hasan TÜREDİ

    2016-08-01

    Full Text Available The companies pursue their goals and operate their activities in an environment full of risks and uncertainties. One of the major principles in accounting is that the companies to continue indefinitely, which is called “the going concern assumption”. Any company, surrounded by many risks must adapt to the rapidly changing conditions of the business environment, realize and manage those risks and build some core competencies to continue as a going concern. COSO internal control, having practical application tools for companies is one of the generally accepted frameworks that aims enabling the companies to build, manage and develop an internal control structure as a tool to reach sustainable success. One of the five COSO components is “risk assessment” covering the recognition and assessment of the potential risks that the company faces and manage those risk considering their materiality. This study aims to explain the COSO internal control model with its five components as well as stressing the assessment of risks component supported by some examples.

  5. Active Aerothermoelastic Control of Hypersonic Double-wedge Lifting Surface

    Institute of Scientific and Technical Information of China (English)

    Laith K Abbas; Chen Qian; Piergiovanni Marzocca; Gürdal Zafer; Abdalla Mostafa

    2008-01-01

    Designing reentry space vehicles and high-speed aireraft requires special attention to the nonlinear thermoelastic and aerodynamic instability of their structural components. The thermal effects are important since temperature environment brings dramatic influences on the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes and is likely to cause instability, catastrophic failure and oscillations resulting in structural failure due to fatigue. In order to understand the dynamic behaviors of these "hot"structures, a double-wedge lifting surface with combining freeplay and cubic structural nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes has been analyzed. A third order piston theory aerodynamic isused to estimate the applied nonlinear unsteady aerodynamic loads. Also considered is the loss of torsiunal stiffness that may be incurredby lifting surfaces subject to axial stresses induced by aerodynamic heating. The aerodynamic heating effects are estimated based on theadiabatic wall temperature due to high speed airstreams. As a recently emerging technology, the active aerothermoelastic control isaimed at providing solutions to a large number of problems involving the aeronautica Faerospace flight vehicle structures. To preventsuch damaging phenomena from occurring, an application of linear and nonlinear active control methods on both flutter boundary andpost-flutter behavior has been fulfilled. In this paper, modeling issues as well as numerical simulation have been presented and pertinent conclusions outlined. It is evidenced that a serious loss of torsional stiffness may induce the dynamic instability; however active controlcan be used to expand the flutter boundary and convert unstable limit cycle oscillations (LCO) into the stable LCO and/or to shift the transition between these two states toward higher flight Mach numbers.

  6. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.

    Science.gov (United States)

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.

  7. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

    2012-03-01

    As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

  8. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    Science.gov (United States)

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-28

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  9. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    Science.gov (United States)

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  10. A multi-harmonic amplitude and relative-phase controller for active sound quality control

    Science.gov (United States)

    Mosquera-Sánchez, Jaime A.; de Oliveira, Leopoldo P. R.

    2014-04-01

    Current active sound quality control systems aim at dealing with the amplitude level of the primary disturbance, e.g. sound pressure, forces, velocities and/or accelerations, which implicitly leads to Loudness control, regardless of the spectral structure of the disturbance. As far as multi-harmonic disturbances are concerned, auditory Roughness, arguably the most related psychoacoustic metric with rumbling perception in passenger cars, can be tackled not merely by dealing with magnitudes but also with the relative-phase of the narrowband components. This paper presents an adaptive control scheme conceived for dealing with multi-harmonic disturbances, which features the independent amplitude and/or relative-phase control of the input periodic components and an improved robustness to impulsive events. The adaptive control scheme is based on a frequency-domain delayless implementation of the complex-domain, least mean squares algorithm, whereof its convergence process is improved by using a forgetting factor. The control capabilities are evaluated numerically for single- and multiple-harmonic disturbances, including realistic internal combustion engine sound contaminated with noise and by impulsive events. By using long transfer paths obtained from a real vehicle mock-up, sound pressure level reductions of 39 dBSPL and the ability to displacing the relative-phase of a number of narrowband components between [-π,π] are accomplished by the proposed control scheme. The assessment of the results by using Zwicker-Loudness and auditory Roughness models shows that the proposed adaptive algorithm is able to accomplish and stably preserve various sound quality targets, after completion of the robust convergence procedure, regardless of impulsive events that can occur during the system operation.

  11. Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control

    Science.gov (United States)

    Friese, Uwe; Daume, Jonathan; Göschl, Florian; König, Peter; Wang, Peng; Engel, Andreas K.

    2016-01-01

    In this study, we used a novel multisensory attention paradigm to investigate attention-modulated cortical oscillations over a wide range of frequencies using magnetencephalography in healthy human participants. By employing a task that required the evaluation of the congruence of audio-visual stimuli, we promoted the formation of widespread cortical networks including early sensory cortices as well as regions associated with cognitive control. We found that attention led to increased high-frequency gamma-band activity and decreased lower frequency theta-, alpha-, and beta-band activity in early sensory cortex areas. Moreover, alpha-band coherence decreased in visual cortex. Frontal cortex was found to exert attentional control through increased low-frequency phase synchronisation. Crossmodal congruence modulated beta-band coherence in mid-cingulate and superior temporal cortex. Together, these results offer an integrative view on the concurrence of oscillations at different frequencies during multisensory attention. PMID:27604647

  12. Active gate driver for dv/dt control and active voltage clamping in an IGBT stack

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg

    2005-01-01

    For high voltages converters stacks of IGBTs can be used if the static and dynamic voltage sharing among the IGBTs can be applied. dVCE/dt should also be controlled in order not to damage insulation material. This paper describes theory and measurements of an active gate driver for stacking IGBTs....... For the measurements two series connected standard IGBTs made for hard switching applications are used. Problems are shown and proposals for improvements are given....

  13. Active Control of High-Frequency Combustor Instability Demonstrated

    Science.gov (United States)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  14. Active control technique of fractional-order chaotic complex systems

    Science.gov (United States)

    Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.

    2016-06-01

    Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.

  15. Modelling of piezoelectric actuator dynamics for active structural control

    Science.gov (United States)

    Hagood, Nesbitt W.; Chung, Walter H.; Von Flotow, Andreas

    1990-01-01

    The paper models the effects of dynamic coupling between a structure and an electrical network through the piezoelectric effect. The coupled equations of motion of an arbitrary elastic structure with piezoelectric elements and passive electronics are derived. State space models are developed for three important cases: direct voltage driven electrodes, direct charge driven electrodes, and an indirect drive case where the piezoelectric electrodes are connected to an arbitrary electrical circuit with embedded voltage and current sources. The equations are applied to the case of a cantilevered beam with surface mounted piezoceramics and indirect voltage and current drive. The theoretical derivations are validated experimentally on an actively controlled cantilevered beam test article with indirect voltage drive.

  16. Optical Sensor/Actuator Locations for Active Structural Acoustic Control

    Science.gov (United States)

    Padula, Sharon L.; Palumbo, Daniel L.; Kincaid, Rex K.

    1998-01-01

    Researchers at NASA Langley Research Center have extensive experience using active structural acoustic control (ASAC) for aircraft interior noise reduction. One aspect of ASAC involves the selection of optimum locations for microphone sensors and force actuators. This paper explains the importance of sensor/actuator selection, reviews optimization techniques, and summarizes experimental and numerical results. Three combinatorial optimization problems are described. Two involve the determination of the number and position of piezoelectric actuators, and the other involves the determination of the number and location of the sensors. For each case, a solution method is suggested, and typical results are examined. The first case, a simplified problem with simulated data, is used to illustrate the method. The second and third cases are more representative of the potential of the method and use measured data. The three case studies and laboratory test results establish the usefulness of the numerical methods.

  17. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    Energy Technology Data Exchange (ETDEWEB)

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  18. Activity monitor intervention to promote physical activity of physicians-in-training: randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Anne N Thorndike

    Full Text Available BACKGROUND: Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise. METHODS: We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention or to a blinded monitor (control. Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1 median steps/day and 2 proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day. Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses. RESULTS: In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16 and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73. In Phase 2 (team competition, residents recorded more steps/day than during Phase 1 (CONTROL: 7,971 vs. 7,567, p = 0.002; INTERVENTION: 7,832 vs. 7,739, p = 0.13. Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001. Mean systolic blood pressure decreased (p = 0.004 and HDL cholesterol increased (p<0.001 among all participants at end of study compared to baseline. CONCLUSIONS: Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more

  19. Cooperative wireless network control based health and activity monitoring system.

    Science.gov (United States)

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication. PMID:27562484

  20. Telemanipulation - a special activity in remotely controlled operations

    International Nuclear Information System (INIS)

    Work to be done in areas hostile to humans needs special and careful preparation. If short-term entry is possible, groups of men can be trained to do the necessary work. If not, special devices have to be designed, built, and tested on mockups before the real work can be executed. Based on experience gained from maintenance in car production and test programs for a reprocessing facility, it was decided to train a special group of men to do remotely controlled work in hostile areas without endangering them and to use their personal experience as the basis for future work. This is the old-fashioned way of all professions. Some needs to be able to do that remotely controlled work with normally existing operational means and combinations of them like cranes, mechanical and electromechanical master slave manipulators (MMSMs and EMSMs), saws, files, hammer, tig-welding equipment, etc., in air as well as underwater. This paper discusses use of a remote operator manipulator (ROM), remote operator welder (ROW), a test of underwater work, and the repair of two activated jets pumps of a boiling water reactor BWR with a fueling machine, reactor crane, EMSM, and conventional tools

  1. Experimental active control of sound in the ATR 42

    Science.gov (United States)

    Paonessa, A.; Sollo, A.; Paxton, M.; Purver, M.; Ross, C. F.

    Passenger comfort is becoming day by day an important issue for the market of the regional turboprop aircraft and also for the future high speed propeller driven aircraft. In these aircraft the main contribution to the passenger annoyance is due to the propeller noise blade passing frequency (BPF) and its harmonics. In the recent past a detailed theoretical and experimental work has been done by Alenia Aeronautica in order to reduce the noise level in the ATR aircraft passenger cabin by means of conventional passive treatments: synchrophasing of propellers, dynamic vibration absorbers, structural reinforcements, damping materials. The application of these treatments has been introduced on production aircraft with a remarkable improvement of noise comfort but with a significant weight increase. For these reasons, a major technology step is required for reaching passenger comfort comparable to that of jet aircraft with the minimum weight increase. The most suitable approach to this problem has been envisaged in the active noise control which consists in generating an anti-sound field in the passenger cabin to reduce the noise at propeller BPF and its harmonics. The attenuation is reached by means of a control system which acquires information about the cabin noise distribution and the propeller speed during flight and simultaneously generates the signals to drive the speakers.

  2. Cost of Dengue Vector Control Activities in Malaysia.

    Science.gov (United States)

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Inbaraj, Jonathan; Balan, Venugopalan K; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    Dengue fever, an arbovirus disease transmitted by Aedes mosquitoes, has recently spread rapidly, especially in the tropical countries of the Americas and Asia-Pacific regions. It is endemic in Malaysia, with an annual average of 37,937 reported dengue cases from 2007 to 2012. This study measured the overall economic impact of dengue in Malaysia, and estimated the costs of dengue prevention. In 2010, Malaysia spent US$73.5 million or 0.03% of the country's GDP on its National Dengue Vector Control Program. This spending represented US$1,591 per reported dengue case and US$2.68 per capita population. Most (92.2%) of this spending occurred in districts, primarily for fogging. A previous paper estimated the annual cost of dengue illness in the country at US$102.2 million. Thus, the inclusion of preventive activities increases the substantial estimated cost of dengue to US$175.7 million, or 72% above illness costs alone. If innovative technologies for dengue vector control prove efficacious, and a dengue vaccine was introduced, substantial existing spending could be rechanneled to fund them. PMID:26416116

  3. The virtual microphone technique in active sound field control systems

    Science.gov (United States)

    Lampropoulos, Iraklis E.; Shimizu, Yasushi

    2003-04-01

    Active Sound Field Control (AFC) has been proven very useful in reverberation enhancement applications in large rooms. However, feedback control is required in order to eliminate peaks in the frequency response of the system. The present research closely follows the studies of Shimizu in AFC, in which smoothing of the rooms transfer function is achieved by averaging the impulse responses of multiple microphones. ``The virtual or rotating microphone technique'' reduces the number of microphones in the aforementioned AFC technology, while still achieving the same acoustical effects in the room. After the impulse responses at previously specified pairs of microphone positions are measured, the ratio of transfer functions for every pair is calculated, thus yielding a constant K. Next, microphones are removed and their impulse responses are reproduced by processing the incoming signal of each pair through a convolver, where the computed K constants have been previously stored. Band limiting, windowing and time variance effects are critical factors, in order to reduce incoherence effects and yield reliable approximations of inverse filters and consequently calculations of K. The project is implemented in a church lacking low frequency reverberation for music and makes use of 2 physical and 2 virtual microphones.

  4. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

    Science.gov (United States)

    Marcel, Nimi; Sarin, Apurva

    2016-01-01

    Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation. DOI: http://dx.doi.org/10.7554/eLife.14023.001 PMID:27267497

  5. Polymeric surfaces exhibiting photocatalytic activity and controlled anisotropic wettability

    Science.gov (United States)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Papoutsakis, Lampros; Kenanakis, George; Stratakis, Emmanuel; Vamvakaki, Maria; Mountrichas, Grigoris; Pispas, Stergios

    2015-03-01

    In this work we focus on surfaces, which exhibit controlled, switchable wettability in response to one or more external stimuli as well as photocatalytic activity. For this we are inspired from nature to produce surfaces with a dual-scale hierarchical roughness and combine them with the appropriate inorganic and/or polymer coating. The combination of the hierarchical surface with a ZnO coating and a pH- or temperature-responsive polymer results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces. Furthermore, we fabricate surfaces with unidirectional wettability variation. Overall, such complex surfaces require advanced design, combining hierarchically structured surfaces with suitable polymeric materials. Acknowledgment: This research was partially supported by the European Union (European Social Fund, ESF) and Greek national funds through the ``ARISTEIA II'' Action (SMART-SURF) of the Operational Programme ``Education and Lifelong Learning,'' NSRF 2007-2013, via the General Secretariat for Research & Technology, Ministry of Education and Religious Affairs, Greece.

  6. Oceanic Control of Northeast Pacific Hurricane Activity at Interannual Timescales

    Energy Technology Data Exchange (ETDEWEB)

    Balaguru, Karthik; Leung, Lai-Yung R.; Yoon, Jin-Ho

    2013-10-16

    Despite the strong dependence of the Power Dissipation Index (PDI), which is a measure of the intensity of Tropical Cyclone (TC) activity, on tropical sea-surface temperatures (SSTs), the variations in PDI are not completely explained by SST. Here we show, using an analysis of a string of observational data sets, that the variability of the thermocline depth (TD) in the east Pacific exerts a significant degree of control on the variability of PDI in that region. On average, a deep thermocline with a larger reservoir of heat favors TC intensification by reducing SST cooling while a shallow thermocline with a smaller heat reservoir promotes enhanced SST cooling that contributes to TC decay. At interannual time scales, the variability of basin-mean TD accounts for nearly 30% of the variability in the PDI during the TC season. Also, about 20% of the interannual variability in the east Pacific basin-mean TD is due to the El Niño and the Southern Oscillation (ENSO), a dominant climate signal in this region. This study suggests that a better understanding of the factors governing the interannual variability of the TD conditions in the east Pacific and how they may change over time, may lead to an improved projection of future east Pacific TC activity.

  7. Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control

    Directory of Open Access Journals (Sweden)

    Jihan Youssef

    2004-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs were discovered over a decade ago, and were classified as orphan members of the nuclear receptor superfamily. To date, three PPAR subtypes have been discovered and characterized (PPARα, β/δ, γ. Different PPAR subtypes have been shown to play crucial roles in important diseases and conditions such as obesity, diabetes, atherosclerosis, cancer, and fertility. Among the most studied roles of PPARs is their involvement in inflammatory processes. Numerous studies have revealed that agonists of PPARα and PPARγ exert anti-inflammatory effects both in vitro and in vivo. Using the carrageenan-induced paw edema model of inflammation, a recent study in our laboratories showed that these agonists hinder the initiation phase, but not the late phase of the inflammatory process. Furthermore, in the same experimental model, we recently also observed that activation of PPARδ exerted an anti-inflammatory effect. Despite the fact that exclusive dependence of these effects on PPARs has been questioned, the bulk of evidence suggests that all three PPAR subtypes, PPARα,δ,γ, play a significant role in controlling inflammatory responses. Whether these subtypes act via a common mechanism or are independent of each other remains to be elucidated. However, due to the intensity of research efforts in this area, it is anticipated that these efforts will result in the development of PPAR ligands as therapeutic agents for the treatment of inflammatory diseases.

  8. Recent advances in active fiber composites for structural control

    Science.gov (United States)

    Bent, Aaron A.; Pizzochero, Alessandro E.

    2000-06-01

    Active Fiber Composites (AFCs) provide a novel method for large scale actuation and sensing in active structures. The composite comprises unidirectionally aligned piezoelectric fibers, a resin matrix system, and interdigital electrode. AFCs have demonstrated distinct advantages over current monolithic piezoceramic actuators, including: higher planar actuation strain, tailorable orthotropic actuation, robustness to damage, conformability to curved surfaces, and potential for large area distributed actuation/sensing system. This manuscript focuses on recent developments in three key areas. The first area describes the completion of a standard AFC baseline material. The baseline AFC consists of 5.5mil diameter PZT-5A fibers laminated with an epoxy film adhesive and silver screen-printed electrodes. A scalable fabrication process based on lamination industry equipment has been implemented. Baseline AFC performance has been characterized, including free strains and blocked force. The send area describes continued work in developing optimized geometry/materials for future AFCs. AFC performance and efficiency can be affected significantly by changes in electrode pitch and fiber diameter and/or cross- sectional geometry. Various improved design have been identified. Third is review of application demonstration that exploit the benefits of AFCs to solve structural control problems.

  9. Multi Purpose Crew Vehicle Active Thermal Control and Environmental Control and Life Support Development Status

    Science.gov (United States)

    Lewis, John F.; Barido, Richard A.; Boehm, Paul; Cross, Cynthia D.; Rains, George Edward

    2014-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in September of 2014. The development of the Orion Active Thermal Control (ATCS) and Environmental Control and Life Support (ECLS) System, focused on the integrating the components into the EFT1 vehicle and preparing them for launch. Work also has started on preliminary design reviews for the manned vehicle. Additional development work is underway to keep the remaining component progressing towards implementation on the flight tests of EM1 in 2017 and of EM2 in 2020. This paper covers the Orion ECLS development from April 2013 to April 2014

  10. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  11. Determination and control of activity in radioactive waste as part of product control

    International Nuclear Information System (INIS)

    Research and development investigations have been performed for the control of the activity inventory using the following methods and techniques: non-destructive determination of actinide content in waste through passive neutron measurement including the examination of various parameters on detection efficiency; development of dissolution and decomposition techniques for the various waste groups; and development of methods for individual separation of radioisotopes and measurement of selected nuclides with main emphasis to Fe-55, Ni-59, Ni-63, Sr-90, I-129, Ra-226, Ra-228 and actinides. A comprehensive review of published literature concerning active and passive neutron emission as well as prompt and delayed neutron emission; dissolution and decomposition techniques; rapid chemical separation and measurements techniques for the above mentioned radionuclides; and basic radionuclide data is given. (orig.)

  12. Glossary of Terms Related to Healthy Eating, Obesity, Physical Activity, and Weight Control

    Science.gov (United States)

    ... Alternate Language URL Glossary of Terms Related to Healthy Eating, Obesity, Physical Activity, and Weight Control Page Content ... often used when people talk or write about healthy eating, obesity, physical activity, and weight control. The glossary ...

  13. An active attitude control system for a drag sail satellite

    Science.gov (United States)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  14. State of the art of control for magnetic levitation and magnetic bearing and control theory. Active control seigyo riron oyo no saisentan

    Energy Technology Data Exchange (ETDEWEB)

    Nonami, K. (Chiba University, Chiba (Japan). Faculty of Engineering)

    1993-04-10

    From the viewpoint of control theory which was made known mainly through the papers presented in the international active magnetic bearing conference, survey was made of the latest state of active magnetic levitation and bearing system technology. The active magnetic bearing control system is applied to turbo-molecular pumps. They are analog PID-controlled rigid rotor pumps. Many of them are commonly characterized by five-axis controlled suction type active magnetic bearing. For heightening its performance, a further progress is being made in the following items of R and D: Transition from analog control to digital control using the digital signal processor. Transition from PID-controlled stabilization control to advanced control applying the modern control theory, robust control theory, learning control theory, and disturbance compensation control and other system designs. Active magnetic bearing control system with flexible rotors passing through the high order elastic mode. Active magnetic sensorless bearing by which the control is made by assuming the rotor displacement by the observer theory from the electric current in exciting coil. 37 refs., 11 figs.

  15. Activator control of nucleosome occupancy in activation and repression of transcription.

    Directory of Open Access Journals (Sweden)

    Gene O Bryant

    2008-12-01

    Full Text Available The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose and repression (by glucose of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome "remodeler" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the

  16. Nonlinear Mr Model Inversion for Semi-Active Control Enhancement With Open-Loop Force Compensation

    OpenAIRE

    Reader, Daniel Martin

    2009-01-01

    The increased prevalence of semi-active control systems is largely due to the emergence of cost effective commercially available controllable damper technology such as Magneto-Rheological (MR) devices. Unfortunately, MR dampers exhibit highly nonlinear behavior, thus presenting an often over-looked complexity to the control system designer. With regards to controlling dampers, the well-known Skyhook Damping control algorithm has enjoyed great success for both fully active and semi-active co...

  17. Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control

    Science.gov (United States)

    Ullah Khan, Irfan; Wagg, David; Sims, Neil D.

    2016-08-01

    This paper presents a new hybrid active and semi-active control method for vibration suppression in flexible structures. The method uses a combination of a semi-active device and an active control actuator situated elsewhere in the structure to suppress vibrations. The key novelty is to use the hybrid controller to enable the magneto-rheological damper to achieve a performance as close to a fully active device as possible. This is achieved by ensuring that the active actuator can assist the magneto-rheological damper in the regions where energy is required. In addition, the hybrid active and semi-active controller is designed to minimize the switching of the semi-active controller. The control framework used is the immersion and invariance control technique in combination with sliding mode control. A two degree-of-freedom system with lightly damped resonances is used as an example system. Both numerical and experimental results are generated for this system, and then compared as part of a validation study. The experimental system uses hardware-in-the-loop to simulate the effect of both the degrees-of-freedom. The results show that the concept is viable both numerically and experimentally, and improved vibration suppression results can be obtained for the magneto-rheological damper that approach the performance of an active device.

  18. Active control of structures using macro-fiber composite (MFC)

    Energy Technology Data Exchange (ETDEWEB)

    Kovalovs, A; Barkanov, E; Gluhihs, S [Institute of Materials and Structures, Riga Technical University, 16/20 Azenes Str., Riga, LV-1048 (Latvia)

    2007-12-15

    This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.

  19. Active control of structures using macro-fiber composite (MFC)

    Science.gov (United States)

    Kovalovs, A.; Barkanov, E.; Gluhihs, S.

    2007-12-01

    This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.

  20. Active vibration control of a full scale aircraft wing using a reconfigurable controller

    Science.gov (United States)

    Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.

    2016-01-01

    This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.

  1. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Science.gov (United States)

    Wang, Fangfang; Okawa, Hiroko; Kamano, Yuya; Niibe, Kunimichi; Kayashima, Hiroki; Osathanon, Thanaphum; Pavasant, Prasit; Saeki, Makio; Yatani, Hirofumi; Egusa, Hiroshi

    2015-01-01

    Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation

  2. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Directory of Open Access Journals (Sweden)

    Fangfang Wang

    Full Text Available Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR. Expression vectors that contained the Tet operator and amelogenin-coding (Amelx cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx. MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP, osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional

  3. Advanced Control Strategy for Single-Phase Voltage-Source Active Rectifier with Low Harmonic Emission

    Science.gov (United States)

    Blahník, Vojtĕch; Peroutka, Zdenĕk; Talla, Jakub

    2014-03-01

    This paper introduces the advanced control of single-phase voltage-source active rectifier. This control provide direct control of trolley-wire current and active damping of low-frequency disturbances at the converter ac side. Our proposed control strategy combines PR controller with feed-forward model and low-frequency harmonic compensator based on resonant controllers. Achieved experimental results show excellent converter behavior, where converter is fed by strongly distorted supply voltage.

  4. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-01

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.

  5. Active sensing without efference copy: referent control of perception.

    Science.gov (United States)

    Feldman, Anatol G

    2016-09-01

    Although action and perception are different behaviors, they are likely to be interrelated, as implied by the notions of perception-action coupling and active sensing. Traditionally, it has been assumed that the nervous system directly preprograms motor commands required for actions and uses a copy of them called efference copy (EC) to also influence our senses. This review offers a critical analysis of the EC concept by identifying its limitations. An alternative to the EC concept is based on the experimentally confirmed notion that sensory signals from receptors are perceived relative to referent signals specified by the brain. These referents also underlie the control of motor actions by predetermining where, in the spatial domain, muscles can work without preprogramming how they should work in terms of motor commands or EC. This approach helps solve several problems of action and explain several sensory experiences, including position sense and the sense that the world remains stationary despite changes in its retinal image during eye or body motion (visual space constancy). The phantom limb phenomenon and other kinesthetic illusions are also explained within this framework. PMID:27306668

  6. Next-generation electroceramic fibers for active control

    Science.gov (United States)

    Bystricky, Pavel; Pascucci, Marina R.; Strock, Harold B.

    2002-07-01

    Lead-based PMN-31PT and lead-free BNBZT fibers in the 250- 500 micrometer diameter range were produced using CeraNova's proprietary extrusion technology. Various recrystallization approaches were investigated, including seeded solid state conversion and self-seeded texturing, with the goal of obtaining single-crystalline or textured macrocrystalline fibers. Grains in excess of 100 micrometers - and exceeding 1 mm in some cases - with surface and bulk coverage approaching 100 percent, were obtained in a narrow temperature range and under carefully controlled atmosphere conditions. Large grain growth in BNBZT required the presence of BaSrTiO3 or SrTiO3 seeds and temperatures in the 1150-1200 degrees C range. In PMN-31PT, nearly compete recrystalline was observed in unseeded material at relatively low temperature and short time, and improved performance was achieved with a two-step sintering schedule and slightly extended time. While conduction effects have not yet allowed compete assessment of recrystalline BNBZT, PMN-31PT fibers have shown excellent piezoelectric properties with remanent polarization in excess of 30(mu) C/cm2 and coercive field of 4.5kV/cm. When incorporated into active fiber composites, the latter fibers' performance of 2000 microstrain in superior to average PZT-based production composites. Efforts are under way to induce preferred orientation in the large crystal in order to maximize performance.

  7. Active flow control on a 1:4 car model

    Science.gov (United States)

    Heinemann, Till; Springer, Matthias; Lienhart, Hermann; Kniesburges, Stefan; Othmer, Carsten; Becker, Stefan

    2014-05-01

    Lift and drag of a passenger car are strongly influenced by the flow field around its rear end. The bluff body geometry produces a detached, transient flow which induces fluctuating forces on the body, affecting the rear axle, which may distress dynamic stability and comfort significantly. The investigations presented here deal with a 1:4 scale model of a simplified test car geometry that produces fluctuating lift and drag due to its strongly rounded rear geometry. To examine the influence of active flow control on this behavior, steady air jets were realized to exhaust from thin slots across the rear in three different configurations. Investigations were performed at and included the capturing of effective integral lift and drag, velocity measurements in the surrounding flow field with Laser Doppler Anemometry, surface pressure measurements and surface oil flow visualization on the rear. The flow field was found to be dominated by two longitudinal vortices, developing from the detachment of the flow at the upper C-pillar positions, and a recirculating, transverse vortex above the rear window. With an air jet emerging from a slot across the surface right below the rear window section, tangentially directed upstream toward the roof section, total lift could be reduced by more than 7 %, with rear axle lift reduction of about 5 % and negligible drag affection (1 %).

  8. Transcription factor PIF4 controls the thermosensory activation of flowering

    KAUST Repository

    Kumar, S. Vinod

    2012-03-21

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. © 2012 Macmillan Publishers Limited. All rights reserved.

  9. Active Vibration Isolation Control: Comparison of Feedback and Feedforward Control Strategies Applied to Coriolis Mass-Flow Meters (I)

    OpenAIRE

    Ridder, de, J.; Hakvoort, W.B.J.; van Dijk

    2015-01-01

    In this paper we describe the design, implementation and results of multi degree of freedom (DOF) active vibration control for a Coriolis mass-flow meter (CMFM). Without vibration control, environmental vibrational disturbances results in nanometre movement of the fluid-conveying tube which causes erroneous mass-flow measurements. In order to reduce the transmissibility from external vibrations to the internal tube displacement active vibration control is applied. A comparison of a feedback c...

  10. Provision of secondary frequency control via demand response activation on thermostatically controlled loads: Solutions and experiences from Denmark

    DEFF Research Database (Denmark)

    Lakshmanan, Venkatachalam; Marinelli, Mattia; Hu, Junjie;

    2016-01-01

    of household fridge performance in terms of response time and ramp-up rate, as well as the impact on fridge temperature and behaviour after the control period. The experimental results show that TCLs are fast responsive loads for DR activation, with the average control signal response time of 24 s......This paper studies the provision of secondary frequency control in electric power systems based on demand response (DR) activation on thermostatically controlled loads (TCLs) and quantifies the computation resource constraints for the control of large TCL population. Since TCLs are fast responsive...

  11. Optimal Active Power Control of A Wind Farm Equipped with Energy Storage System based on Distributed Model Predictive Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai;

    2016-01-01

    This paper presents the Distributed Model Predictive Control (D-MPC) of a wind farm equipped with fast and short-term Energy Storage System (ESS) for optimal active power control using the fast gradient method via dual decomposition. The primary objective of the D-MPC control of the wind farm...

  12. A Control Source Structure of Single Loudspeaker and Rear Sound Interference for Inexpensive Active Noise Control

    Directory of Open Access Journals (Sweden)

    Yasuhide Kobayashi

    2010-01-01

    phase-lag is imposed by the Swinbanks' source and the rear sound interference. Thirdly, effects on control performances of control source structures are examined by control experiments with robust controllers.

  13. Simulation Model of an Active-stall Fixed-speed Wind Turbine Controller

    DEFF Research Database (Denmark)

    Jauch, Clemens; Hansen, Anca D.; Soerensen, Poul;

    2004-01-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented...... and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented...

  14. Development of semi-active hydraulic damper as active interaction control device to withstand external excitation

    Indian Academy of Sciences (India)

    Ming-Hsiang Shih; Wen-Pei Sung

    2014-02-01

    Semi-automatic control systems have the characteristics of being adaptable and requiring low energy. The objective of this research was to study the performance of an improved DSHD (Displacement Semi-Active Hydraulic Damper) by converting it to AIC (Active Interaction Control Device) with the addition of an accumulator. The prototype was tested using full-scale elements for examining the structural displacement, and typical responses of the interacting interface element developed in this research, the pressure variation of the pressure storage device, and the energy dissipation hysteresis loop when the structure installed with these elements is subjected to external force of various magnitude. The laboratory results confirm that the device developed in this research is capable of applying the energy dissipation characteristics of DSHD so that these elements are appropriate for developing the proposed AIC. The mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.

  15. Active Control of Fan Noise: Feasibility Study. Volume 3; Active Fan Noise Cancellation in the NASA Lewis Active Noise Control Fan Facility

    Science.gov (United States)

    Pla, Frederic G.; Hu, Ziqiang; Sutliff, Daniel L.

    1996-01-01

    This report describes the Active Noise Cancellation (ANC) System designed by General Electric and tested in the NASA Lewis Research Center's (LERC) 48 inch Active Noise Control Fan (ANCF). The goal of this study is to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for global active noise cancellation of fan tones. The GE ANC system is based on a modal control approach. A known acoustic mode propagating in the fan duct is canceled using an array of flush-mounted compact sound sources. The canceling modal signal is generated by a modal controller. Inputs to the controller are signals from a shaft encoder and from a microphone array which senses the residual acoustic mode in the duct. The key results are that the (6,0) was completely eliminated at the 920 Hz design frequency and substantially reduced elsewhere. The total tone power was reduced 6.8 dB (out of a possible 9.8 dB). Farfield reductions of 15 dB (SPL) were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB PWL decrease. The results indicate that global attenuation of PWL at the target frequency was obtained in the aft quadrant using an ANC actuator and sensor system totally contained within the duct. The quality of the results depended on precise mode generation. High spillover into spurious modes generated by the ANC actuator array caused less than optimum levels of PWL reduction. The variation in spillover is believed to be due to calibration procedure, but must be confirmed in subsequent tests.

  16. Control and switching synchronization of fractional order chaotic systems using active control technique

    KAUST Repository

    Radwan, A.G.

    2013-03-13

    This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  17. Control and switching synchronization of fractional order chaotic systems using active control technique

    Directory of Open Access Journals (Sweden)

    A.G. Radwan

    2014-01-01

    Full Text Available This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  18. Analysis and Optimal Condition of the Rear-Sound-Aided Control Source in Active Noise Control

    Directory of Open Access Journals (Sweden)

    Karel Kreuter

    2011-01-01

    Full Text Available An active noise control scenario of simple ducts is considered. The previously suggested technique of using an single loudspeaker and its rear sound to cancel the upstream sound is further examined and compared to the bidirectional solution in order to give theoretical proof of its advantage. Firstly, a model with a new approach for taking damping effects into account is derived based on the electrical transmission line theory. By comparison with the old model, the new approach is validated, and occurring differences are discussed. Moreover, a numerical application with the consideration of damping is implemented for confirmation. The influence of the rear sound strength on the feedback-path system is investigated, and the optimal condition is determined. Finally, it is proven that the proposed source has an advantage of an extended phase lag and a time delay in the feedback-path system by both frequency-response analysis and numerical calculation of the time response.

  19. Innovation in Active Vibration Control Strategy of Intelligent Structures

    OpenAIRE

    A. Moutsopoulou; G. E. Stavroulakis; Pouliezos, A.

    2013-01-01

    Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper ...

  20. Yaw control for active damping of structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Control Engineering Lab.

    1996-12-01

    Yaw torque control for reduction of structural dynamic loads in a two-bladed wind turbine is investigated. The models are obtained using rigid-body mechanics. Linear quadratic control theory is utilized for design and analysis. The analysis of two simple examples, where the teeter angle and the tower lateral bending motion are regarded, shows that a time-varying controller has some advantages compared with a time-invariant controller. 6 refs, 9 figs

  1. Active control of large space structures: An introduction and overview

    Science.gov (United States)

    Doane, G. B., III; Tollison, D. K.; Waites, H. B.

    1985-01-01

    An overview of the large space structure (LSS) control system design problem is presented. The LSS is defined as a class of system, and LSS modeling techniques are discussed. Model truncation, control system objectives, current control law design techniques, and particular problem areas are discussed.

  2. Development of active control technique for engine noise. Engine soon no active seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Nakao, N.; Butsuen, T. (Mazda Motor Corp., Hiroshima (Japan))

    1994-03-31

    As a measure to reduce engine noise in a car, the active noise control (ANC) technique to eliminate noise by another noise of antiphase has been studied. The conventional filtered-x LMS control algorithm has been generally applied to the ANC, but a large quantity of arithmetic operation used for filtering is practically problematic. This paper proposes the new algorithm of which control effects and practicability have been improved by utilizing periodicity of engine noise and by introducing the idea of error scanning. This algorithm requires only 30-50% of the arithmetic operation of the above LMS method. Concerning the actual system structure, arrangement and the number of microphones have been examined based on the detailed measurement results of the spatial distribution of noise in a car. As a result, the suitable arrangement of only three microphones to reduce noise in the whole interior space of a car is found. Through the experiments, maximum noise reduction of 8dB (A scale) has been achieved at each seat position. 7 refs., 9 figs., 1 tab.

  3. Mite-control activities of active constituents isolated from Pelargonium graveolens against house dust mites.

    Science.gov (United States)

    Jeon, Ju-Hyun; Kim, Hyung-Wook; Kim, Min-Gi; Lee, Hoi-Seon

    2008-10-01

    The mite-control activities of materials obtained from Pelargonium graveolens oil against Dermatophagoides farinae and D. pteronyssinus were examined using an impregnated fabric disk bioassay and were compared with those shown by commercial benzyl benzoate and N,N-diethylm- toluamide (DEET). Purification of the biologically active constituents from P. graveolens oil was done by silica gel chromatography and high performance liquid chromatography. The structures of the active components were analyzed by EI/MS, (1)H-NMR, (13)C-NMR, (1)H-(13)C COSYNMR, and DEPT-NMR spectra, and were identified as geraniol (C(10)H(18)O, MW 154.25, trans-3,7-dimethyl-2,6- octadien-1-ol) and beta-citronellol (C(10)H(20)O, MW 156.27, 3,7-dimethyl-6-octen-1-ol). Based on the LD50 values, the most toxic compound was geraniol (0.26 microg/cm(2)), followed by beta-citronellol (0.28 microg/cm(2)), benzyl benzoate (10.03 microg/ cm(2)), and DEET (37.12 microg/cm(2)) against D. farinae. In the case of D. pteronyssinus, geraniol (0.28 microg/cm(2)) was the most toxic, followed by beta-citronellol (0.29 microg/cm(2)), benzyl benzoate (9.58 microg/cm(2)), and DEET (18.23 microg/cm(2)). These results suggest that D. farinae and D. pteronyssinus may be controlled more effectively by the application of geraniol and beta-citronellol than benzyl benzoate and DEET. Furthermore, geraniol and beta-citronellol isolated from P. graveolens could be useful for managing populations of D. farinae and D. pteronyssinus.

  4. Control of an Automotive Semi-Active Suspension

    Directory of Open Access Journals (Sweden)

    Jorge de Jesús Lozoya-Santos

    2012-01-01

    Full Text Available Two controllers for an automotive suspensions with Magneto-Rheological (MR dampers are proposed. One is a model-based using the Linear Parameter Varying (LPV approach, and the other is a model-free controller with a Frequency Estimation Based (FEB principle. The LPV controller includes an experimental nonlinear model of an MR damper using only one scheduling parameter. A comparison with a several semiactive controllers for comfort and road holding is discussed. The FEB controller is the best option based on frequency and time response analysis for comfort (10–20%, suspension deflection (30–50%, and road holding (1–5%.

  5. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    Science.gov (United States)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  6. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.;

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...... for solving the nonconvex optimization problem is proposed in this paper. A simulation using the nonlinear model-based controller to control the temperature levels of an intelligent office building (PowerFlexHouse) is addressed. Its performance is compared with a linear model-based controller. The nonlinear...

  7. Provision of secondary frequency control via demand response activation on thermostatically controlled loads: Solutions and experiences from Denmark

    OpenAIRE

    Lakshmanan, Venkatachalam; Marinelli, Mattia; Hu, Junjie; Bindner, Henrik W.

    2016-01-01

    This paper studies the provision of secondary frequency control in electric power systems based on demand response (DR) activation on thermostatically controlled loads (TCLs) and quantifies the computation resource constraints for the control of large TCL population. Since TCLs are fast responsive loads, they represent a suitable alternative to conventional sources for providing such control. An experimental investigation with domestic fridges representing the TCLs was conducted in an islande...

  8. Anticipated Activities in Maritime Work, Process Control, and Business Processes

    DEFF Research Database (Denmark)

    Andersen, Peter Bøgh

    2004-01-01

    Most activities are anticipated before they are executed. The paper presents methods for describing this anticipated state and the processes that may lead to a new state where the activities are executed. The method builds on linguistic case-theory....

  9. PI, FUZZY and ANFIS Control of 3-Phase Shunt Active Power Filter

    Directory of Open Access Journals (Sweden)

    Brahmaiah.routhu

    2013-06-01

    Full Text Available this paper describes control of 3-phase shunt active filter by using PI, fuzzy and ANFIS controls to improve the power quality and reactive power compensation and harmonic current compensation due to nonlinear loads. The controller is capable of controlling the DC capacitor voltage capable of reference source current. Hysteresis control is used to control the current in PWM inverter. The simulation results reveals that comparative study of all this results shows the advantage anddisadvantages of 3 control strategies.

  10. Protein kinase D activity controls endothelial nitric oxide synthesis

    OpenAIRE

    Aicart-Ramos, Clara; Sánchez-Ruiloba, Lucía; Gómez-Parrizas, Mónica; Zaragoza, Carlos; Iglesias, Teresa; Rodríguez-Crespo, Ignacio

    2014-01-01

    Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase ...

  11. SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO- RHEOLOGICAL DAMPERS: PART Ⅰ-CONTROLLER SYNTHESIS AND EVALUATION

    Institute of Scientific and Technical Information of China (English)

    WANG Enrong; YING Liang; WANG Wanjun; RAKHEJA Subhash; SU Chunyi

    2008-01-01

    A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.

  12. A low T regulatory cell response may contribute to both viral control and generalized immune activation in HIV controllers.

    Directory of Open Access Journals (Sweden)

    Peter W Hunt

    Full Text Available HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+, regulatory (CD4+CD25+CD127(dim, HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed, untreated HIV-infected "non-controllers" with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014. Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P ≤ 0.001. These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion.

  13. Active Fault Tolerant Control of Livestock Stable Ventilation System

    DEFF Research Database (Denmark)

    Gholami, Mehdi

    2011-01-01

    affine (PWA) components such as dead-zones, saturation, etc or contain piecewise nonlinear models which is the case for the climate control systems of the stables. Fault tolerant controller (FTC) is based on a switching scheme between a set of predefined passive fault tolerant controller (PFTC......). In the FTC part of the thesis, first a passive fault tolerant controller (PFTC) based on state feed-back is proposed for discretetime PWA systems. only actuator faults are considered. By dissipativity theory and H1 analysis, the problem is cast as a set of linear matrix inequalities (LMIs). In the next...... are not included, while due to the physical limitation, the input signal can not have any value. In continuing, a passive fault tolerant controller (PFTC) based on state feedback is proposed to track a reference signal while the control inputs are bounded....

  14. Active vibration control of a three-stage tensegrity structure

    Science.gov (United States)

    Chan, Wai Leung; Arbelaez, Diego; Bossens, Frederic; Skelton, Robert E.

    2004-07-01

    This experimental study demonstrates the efficiency of simple control strategies to damp a 3-stage tensegrity tower structure. The tower is mounted on a moving support which is excited with a limited bandwidth random signal (filtered white noise) by a shaker. Our goal is to minimize the tansmissibility between base acceleration and top plate acceleration using piezoelectric displacement actuators and force sensors collocated at the bottom stage of vertical strings. Two types of controllers have been designed, namely, it local integral force feedback control and acceleration feedback control. It can be shown that both controllers can effectively damp the first 2 bending modes by about 20 dB, and the acceleration feedback controller performs even better as it can also reduce the amplitude of the next 2 bending modes by about 5-10 dB.

  15. Active control of space structures: Proof of concept experiment

    Science.gov (United States)

    Breakwell, J. A.

    1982-03-01

    Modern control theory easily works with multiple input/multiple output systems. Two types of systems which fall into this category are flexible systems, where many measurements and several actuators are necessary to provide control over bending behavior, and articulated systems which consist of several rigid bodies connected together by pivoting connections. In this latter case, multiple controls are implemented as torquers at the joints.

  16. The Active Fractional Order Control for Maglev Suspension System

    Directory of Open Access Journals (Sweden)

    Peichang Yu

    2015-01-01

    Full Text Available Maglev suspension system is the core part of maglev train. In the practical application, the load uncertainties, inherent nonlinearity, and misalignment between sensors and actuators are the main issues that should be solved carefully. In order to design a suitable controller, the attention is paid to the fractional order controller. Firstly, the mathematical model of a single electromagnetic suspension unit is derived. Then, considering the limitation of the traditional PD controller adaptation, the fractional order controller is developed to obtain more excellent suspension specifications and robust performance. In reality, the nonlinearity affects the structure and the precision of the model after linearization, which will degrade the dynamic performance. So, a fractional order controller is addressed to eliminate the disturbance by adjusting the parameters which are added by the fractional order controller. Furthermore, the controller based on LQR is employed to compare with the fractional order controller. Finally, the performance of them is discussed by simulation. The results illustrated the validity of the fractional order controller.

  17. Design and control of LCL-filter with active damping for Active Power Filter

    DEFF Research Database (Denmark)

    Zeng, Guohong; Rasmussen, Tonny Wederberg; Ma, L;

    2010-01-01

    In the application of shunt Active Power Filter (APF) to compensate nonlinear load's harmonic, reactive and negative sequence current, it is more effective to use a LCL-filter than an L-filter as an interface between the Voltage Source Converter (VSC) and grid. In this paper, a designing procedure...... or similar inductances, the filter designing become more simple and effective, meanwhile the capacitance requirement is minimized. A pole-zero automatic cancellation phenomenon is discussed in this paper, which can be applied to simplify the current regulator designing. The tuning method is presented, based...... on pole-zero mapping. Some simulation results of APF with LCL-filter are presented to verify the feasibility and stability of the proposed designing method and control strategy....

  18. Active noise control and application; Active soon seigyo gijutsu to sono tekiyorei

    Energy Technology Data Exchange (ETDEWEB)

    Muto, M.; Hayashi, M.; Kawai, T.; Sato, F.; Kanbe, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Inoue, Y.; Takada, K.

    1995-11-01

    The recent rapid progress of electronic devices and signal processing techniques has allowed the practical application of active noise control(ANC) for reduction of noise. The principle of ANC is to cancel a noise by an anti-noise which has the same amplitude of the noise but the inverse phase. For noise reduction in gas ducts, the one dimensional ANC theory can be applied. However, there are still several technical issues particulars to individual plants to be studied and solved. This paper describes the ANC system using the hydraulically actuated speaker which has been developed at IHI, and applications to reduction of low frequency sound emitted at the exit of a stack from a large induction fan. Another application for tractor cabin is also described, indicating successful noise reduction. 6 refs., 12 figs.

  19. Noise-driven activation in human intermittent control: a double-well potential model

    CERN Document Server

    Zgonnikov, Arkady

    2014-01-01

    In controlling unstable systems humans switch intermittently between the passive and active behavior instead of controlling the system in a continuous manner. The notion of noise-driven control activation provides a richer alternative to the conventional threshold-based models of intermittent motor control. The present study represents the control activation as a random walk in a continuously changing double-well potential. The match between the proposed model and the previous data on human balancing of virtual stick prompts that the double-well approach can aid in explaining complex dynamics of human behavior in control processes.

  20. High-density force myography: A possible alternative for upper-limb prosthetic control

    Directory of Open Access Journals (Sweden)

    Ashkan Radmand, PhD

    2016-07-01

    Full Text Available Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates. This work investigates the suitability of using high-density force myography (HD-FMG for prosthetic control. HD-FMG uses a high-density array of pressure sensors to detect changes in the pressure patterns between the residual limb and socket caused by the contraction of the forearm muscles. In this work, HD-FMG outperforms the standard electromyography (EMG-based system in detecting different wrist and hand gestures. With the arm in a fixed, static position, eight hand and wrist motions were classified with 0.33% error using the HD-FMG technique. Comparatively, classification errors in the range of 2.2%–11.3% have been reported in the literature for multichannel EMG-based approaches. As with EMG, position variation in HD-FMG can introduce classification error, but incorporating position variation into the training protocol reduces this effect. Channel reduction was also applied to the HD-FMG technique to decrease the dimensionality of the problem as well as the size of the sensorized area. We found that with informed, symmetric channel reduction, classification error could be decreased to 0.02%.

  1. Active Control of Sound based on Diagonal Recurrent Neural Network

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Xie, Lihua; Yuan, Shuqing

    2002-01-01

    Recurrent neural network has been known for its dynamic mapping and better suited for nonlinear dynamical system. Nonlinear controller may be needed in cases where the actuators exhibit the nonlinear characteristics, or in cases when the structure to be controlled exhibits nonlinear behavior. The fe

  2. Active control of vibration using a neural network.

    Science.gov (United States)

    Snyder, S D; Tanaka, N

    1995-01-01

    Feedforward control of sound and vibration using a neural network-based control system is considered, with the aim being to derive an architecture/algorithm combination which is capable of supplanting the commonly used finite impulse response filter/filtered-x least mean square (LMS) linear arrangement for certain nonlinear problems. An adaptive algorithm is derived which enables stable adaptation of the neural controller for this purpose, while providing the capacity to maintain causality within the control scheme. The algorithm is shown to be simply a generalization of the linear filtered-x LMS algorithm. Experiments are undertaken which demonstrate the utility of the proposed arrangement, showing that it performs as well as a linear control system for a linear control problem and better for a nonlinear control problem. The experiments also lead to the conclusion that more work is required to improve the predictability and consistency of the performance before the neural network controller becomes a practical alternative to the current linear feedforward systems.

  3. ACTIVITY BASED COSTING-A TOOL TO CONTROL THE COST

    OpenAIRE

    CA. Raj Garg*

    2016-01-01

    Activity-based costing (ABC) is a costing methodology that identifies activities in an organization and assigns the cost of each activity with resources to all products and services according to the actual consumption by each. The concept of ABC was first defined in the late 1980s by Robert Kaplan and William Burns. Initially ABC focused on manufacturing industry where technological developments and productivity improvements had reduced the proportion of direct labour and material costs, but ...

  4. Method and System for Active Noise Control of Tiltrotor Aircraft

    Science.gov (United States)

    Betzina, Mark D. (Inventor); Nguyen, Khanh Q. (Inventor)

    2003-01-01

    Methods and systems for reducing noise generated by rotating blades of a tiltrotor aircraft. A rotor-blade pitch angle associated with the tiltrotor aircraft can be controlled utilizing a swashplate connected to rotating blades of the tiltrotor aircraft. One or more Higher Harmonic Control (HHC) signals can be transmitted and input to a swashplate control actuator associated with the swashplate. A particular blade pitch oscillation (e.g., four cycles per revolution) is there-after produced in a rotating frame of reference associated with the rotating blades in response to input of an HHC signal to the swashplate control actuator associated with the swashplate to thereby reduce noise associated with the rotating blades of the tiltrotor aircraft. The HHC signal can be transmitted and input to the swashplate control actuator to reduce noise of the tiltrotor aircraft in response to a user input utilizing an open-loop configuration.

  5. Very low speed performance of active flux based sensorless control: interior permanent magnet synchronous motor vector control versus direct torque and flux control

    DEFF Research Database (Denmark)

    Paicu, M. C.; Boldea, I.; Andreescu, G. D.;

    2009-01-01

    This study is focused on very low speed performance comparison between two sensorless control systems based on the novel ‘active flux' concept, that is, the current/voltage vector control versus direct torque and flux control (DTFC) for interior permanent magnet synchronous motor (IPMSM) drives...

  6. Study on the controllability for active magnetic bearings

    International Nuclear Information System (INIS)

    One of the main challenges in AMB is its controllability which means it is difficult to get a stable spindle and controller. To solve this problem, some methods have been developed previously, but the value of the controllability of AMB was not calculated. The subject of our study is to develop a new method and find a mathematical model that aims to research the controllability of AMB, the status at passing through levitation process, running, a critical speed and achieve high-speed rotation. The stiffness and damping of AMB, which changes randomly along with the rotor running, are determined by the controller system. How to get the relationship between the stiffness and damping with dynamic coefficients of rotor-AMB system is a key problem to get an optimization controller. In this paper, a mathematical model of the relationship is established. Stiffness and damping of AMB can change if the parameter of controller modulated. Based on rotor dynamics theory, the dynamic characteristics of rotors such as critical speeds, system stability and unbalanced excitation are analyzed. Computer simulations are carried out and the effectiveness of the presented procedure is investigated

  7. Water Pollution Scrubber Activity Simulates Pollution Control Devices.

    Science.gov (United States)

    Kennedy, Edward C., III; Waggoner, Todd C.

    2003-01-01

    A laboratory activity caused students to think actively about water pollution. The students realized that it would be easier to keep water clean than to remove pollutants. They created a water scrubbing system allowing them to pour water in one end and have it emerge clean at the other end. (JOW)

  8. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through...

  9. Digitally controlled active noise reduction with integrated speech communication

    NARCIS (Netherlands)

    Steeneken, H.J.M.; Verhave, J.A.

    2004-01-01

    Active noise reduction is a successful addition to passive ear-defenders for improvement of the sound attenuation at low frequencies. Design and assessment methods are discussed, focused on subjective and objective attenuation measurements, stability, and high noise level applications. Active noise

  10. Modeling and Control for Islanding Operation of Active Distribution Systems

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Wu, Qiuwei; Saleem, Arshad;

    2011-01-01

    to stabilize the frequency. Different agents are defined to represent different resources in the distribution systems. A test platform with a real time digital simulator (RTDS), an OPen Connectivity (OPC) protocol server and the multi-agent based intelligent controller is established to test the proposed multi-agent...... based frequency controller. The modeling of different DG is discussed in details. Two distribution systems with DG are used to carry out case studies to illustrate the proposed multi-agent controller....... are able to operate in is-landing operation mode intentionally or unintentionally. In order to smooth the transition from grid connected operation to islanding operation for distribution systems with DG, a multi-agent based controller is proposed to utilize different re-sources in the distribution systems...

  11. Active control of tensegrity structures under random excitation

    Science.gov (United States)

    Ganesh Raja, M.; Narayanan, S.

    2007-06-01

    In this paper we consider vibration control of tensegrity structures under stationary and nonstationary random excitations. These excitations may be representative of many physical loading conditions, such as earthquake, wind, aerodynamic and acoustic excitations. The optimal control theory based on H2 and \\mathrm {H}_{\\infty } controller with full state and limited state feedback is used for the control. The response of the tensegrity structure is represented by the zero lag covariance matrix and the same is obtained by solving the matrix Lyapunov equation. The force generated by the electro-mechanical coupling of the piezoelectric actuator is used in the formulation. A tensegrity structure of class-1 comprising of two modules, with 24 pretension cables and six struts with piezoelectric actuators, is considered.

  12. Aero-Effected Distributed Adaptive Control of Flexible Aircraft Using Active Bleed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research focuses on the development of a new adaptive control methodology for active control of wing aerodynamic shape to effect distributed...

  13. Novel Active Combustion Control Concept for High-Frequency Modulation of Atomized Fuel Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal by Jansen's Aircraft Systems Controls, Inc presents an innovative solution for Active Combustion Control. Relative to the state of the art, this...

  14. Active Flow Control on Bidirectional Rotors for Tidal MHK Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Henry [Research Engineer; van Dam, Cornelis P. [Professor

    2013-08-22

    A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn

  15. Semi-active control of a cable-stayed bridge under multiple-support excitations

    Institute of Scientific and Technical Information of China (English)

    代泽兵; 黄金枝; 王红霞

    2004-01-01

    This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a controllable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations.

  16. Enabling People with Developmental Disabilities to Actively Perform Designated Occupational Activities according to Simple Instructions with a Nintendo Wii Remote Controller by Controlling Environmental Stimulation

    Science.gov (United States)

    Shih, Ching-Hsiang; Wang, Shu-Hui; Chang, Man-Ling; Shih, Ching-Hsiang

    2012-01-01

    The latest researches have adopted software technology, turning the Nintendo Wii Remote Controller into a high performance three-dimensional object orientation detector. This study extended Wii Remote Controller functionality to assess whether two people with developmental disabilities would be able to actively perform designated simple…

  17. Experimental verification of the flow characteristics of an active controlled microfluidic valve with annular boundary

    Science.gov (United States)

    Pan, Chun-Peng; Wang, Dai-Hua

    2014-03-01

    The principle and structural configuration of an active controlled microfluidic valve with annular boundary is presented in this paper. The active controlled flowrate model of the active controlled microfluidic valve with annular boundary is established. The prototypes of the active controlled microfluidic valves with annular boundaries with three different combinations of the inner and outer radii are fabricated and tested on the established experimental setup. The experimental results show that: (1) The active controlled microfluidic valve with annular boundary possesses the on/off switching and the continuous control capability of the fluid with simple structure and easy fabrication processing; (2) When the inner and outer diameters of the annular boundary are 1.5 mm and 3.5 mm, respectively, the maximum flowrate of the valve is 0.14 ml/s when the differential pressure of the inlet and outlet of the valve is 1000 Pa and the voltage applied to circular piezoelectric unimorph actuator is 100 V; (3) The established active controlled flowrate model can accurately predict the controlled flowrate of the active controlled microfluidic valves with the maximum relative error of 6.7%. The results presented in this paper lay the foundation for designing and developing the active controlled microfluidic valves with annular boundary driven by circular piezoelectric unimorph actuators.

  18. H~ Estimation Approach to Active Noise Control: Theory, Algorithm and Real-Time Implementation

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2003-11-01

    Full Text Available This paper presents an H¥ estimation approach to active control of acoustic noise inside an enclosure. It is shown how H¥ filter theory and algorithm can be effectively applied to active noise control to provide important robustness property. Real-time implementation of the algorithm is performed on Digital Signal Processor. Experimental comparison to conventional FxLMS algorithm for active noise control is presented for both single channel and multichannel cases. While providing some new results, this paper also serves as a brief review on H¥ filter theory and on active noise control.

  19. Hierarchical Coordinated Control of Distributed Generators and Active Power Filters to Enhance Power Quality of Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Hashempour, Mohammad M.; Guerrero, Josep M.

    2014-01-01

    includes two control levels: primary control and secondary control. Primary control consists of power controllers, selective virtual impedance loops and proportional-resonant (PR) voltage/current controllers. Secondary control manages the compensation of voltage harmonic distortion of sensitive load bus......This paper addresses the coordinated control of distributed generators (DGs) inverters and active power filters (APFs) to compensate voltage harmonics in microgrids. For this, a hierarchical control system is proposed to mitigate voltage harmonic distortion. The hierarchical control structure...... (SLB). Compensation of SLB harmonics by control of DGs may cause excessive voltage harmonics at the terminal of one or more of DGs interface inverters and/or overloading of the inverters. After occurrence of each of these cases, active power filter (APF) participates in harmonic compensation...

  20. Active control for drag reduction in turbulent channel flow: the opposition control schemes revisited

    Science.gov (United States)

    Wang, Yin-Shan; Huang, Wei-Xi; Xu, Chun-Xiao

    2016-10-01

    The opposition control schemes first proposed by Choi et al (1994 J. Fluid Mech. 262 75) employing wall-normal (v) and spanwise (w) velocity are revisited in the present study by performing direct numerical simulation to turbulent channel flow at R{e}τ = 180. Special attention is paid to the combined control, in which the wall-normal and spanwise velocities are imposed at the wall just instantaneously opposite to those at a small distance to the wall. In comparison to the v- and w-controls, combined-control could achieve the best drag reduction rate and control efficiency, with the greatest suppression of turbulence intensities. The influence of control on the statistical properties of vortices is scrutinized. By control, the numbers of vortices with every circulation and radius apparently decrease at the same normal location near the wall, while the vortex radius scaled by the actual wall-friction velocity almost remains the same. The streamwise vortices and the induced Reynolds shear stress undergo the greatest suppression by combined control. It is shown that combined control achieves a better efficacy, attributed to the co-work of the mechanisms of the v- and w-controls. At a higher Reynolds number R{e}τ = 1000, combined control is also more effective than v- and w-controls. The better suppression effect on the outer large scales is the primary reason for the larger drag reduction rate in combined control.

  1. Experimental Investigation of Active Noise Controller for Internal Combustion Engine Exhaust System

    Science.gov (United States)

    Wu, Jian-Da; Chen, Chih-Keng; Lee, Chun-Ying; Lee, Tian-Hua

    2002-10-01

    Two active noise control (ANC) algorithms for internal combustion engine exhaust systems are developed and their performances are compared in various experiments. The first controller is based on the filtered-x least mean square (FXLMS) algorithm with feedback neutralization, while the second is a fixed controller with a gain-scheduled active control technique for broadband attenuation with thermal effects. Both control algorithms are implemented on a digital signal processing (DSP) platform. Experiments are carried out to evaluate the attenuation performance of the proposed active noise control systems for an engine exhaust system. The results of the experiments indicate that both the adaptive controller and the gain-scheduled controller effectively suppress the noise of engine exhaust systems. The experimental comparison and analysis of the proposed controllers are also described.

  2. Protein kinase D activity controls endothelial nitric oxide synthesis.

    Science.gov (United States)

    Aicart-Ramos, Clara; Sánchez-Ruiloba, Lucía; Gómez-Parrizas, Mónica; Zaragoza, Carlos; Iglesias, Teresa; Rodríguez-Crespo, Ignacio

    2014-08-01

    Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase specifically phosphorylates recombinant eNOS on Ser1179. Treatment of endothelial cells with VEGF or phorbol 12,13-dibutyrate (PDBu) activates PKD and increases eNOS Ser1179 phosphorylation. In addition, pharmacological inhibition of PKD and gene silencing of both PKD1 and PKD2 abrogate VEGF signaling, resulting in a clear diminished migration of endothelial cells in a wound healing assay. Finally, inhibition of PKD in mice results in an almost complete disappearance of the VEGF-induced vasodilatation, as monitored through determination of the diameter of the carotid artery. Hence, our data indicate that PKD is a new regulatory kinase of eNOS in endothelial cells whose activity orchestrates mammalian vascular tone. PMID:24928905

  3. Association between patterns of leisure time physical activity and asthma control in adult patients

    OpenAIRE

    Simon L Bacon; Lemiere, Catherine; Moullec, Gregory; Ninot, Gregory; Pepin, Véronique; Kim L. Lavoie

    2015-01-01

    Background Physical activity has been shown to have various health benefits in patients with asthma, especially in children. However, there are still limited data on the nature of the association between physical activity and asthma control in adults. Objective The objective of the current study was to determine the nature of the association between physical activity and asthma control, with particular emphasis on the intensity of the activity and seasonal variations. Methods 643 adult patien...

  4. Combined MIMO adaptive and decentralized controllers for broadband active noise and vibration control

    NARCIS (Netherlands)

    Berkhoff, A.P.; Wesselink, J.M.

    2011-01-01

    Model errors in multiple-input multiple-output adaptive controllers for reduction of broadband noise and vibrations may lead to unstable systems or increased error signals. In this paper, a combination of high-authority control (HAC) and low-authority control (LAC) is considered for improved perform

  5. A magnetorheological fluid-based controllable active knee brace

    Science.gov (United States)

    Ahmadkhanlou, Farzad; Zite, Jamaal L.; Washington, Gregory N.

    2007-04-01

    High customization costs and reduction of natural mobility put current rehabilitative knee braces at a disadvantage. A resolution to this problem is to integrate a Magnetorheological (MR) fluid-based joint into the system. A MR joint will allow patients to apply and control a resistive torque to knee flexion and extension. The resistance torque can also be continuously adjusted as a function of extension angle and patient strength (or as a function of time), which is currently impossible with state of the art rehabilitative knee braces. A novel MR fluid-based controllable knee brace is designed and prototyped in this research. The device exhibits large resistive torque in the on-state and low resistance in the offstate. The controllable variable stiffness, compactness, and portability of the system make it a proper alternative to current rehabilitative knee braces.

  6. Active Power Control of Wind Turbines for Ancillary Services: A Comparison of Pitch and Torque Control Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Aho, Jacob; Fleming, Paul; Pao, Lucy Y.

    2016-08-01

    As wind energy generation becomes more prevalent in some regions, there is increased demand for wind power plants to provide ancillary services, which are essential for grid reliability. This paper compares two different wind turbine control methodologies to provide active power control (APC) ancillary services, which include derating or curtailing power generation, providing automatic generation control (AGC), and providing primary frequency control (PFC). The torque APC controller provides all power control through the power electronics whereas the pitch APC controller uses the blade pitch actuators as the primary means of power control. These controllers are simulated under various wind conditions with different derating set points and AGC participation levels. The metrics used to compare their performance are the damage equivalent loads (DELs) induced on the structural components and AGC performance metrics, which are used to determine the payments for AGC services by system operators in the United States. The simulation results show that derating the turbine reduces structural loads for both control methods, with the APC pitch control providing larger reductions in DELs, lower AGC performance scores, and higher root-mean-square pitch rates. Providing AGC increases the structural loads when compared to only derating the turbine, but even the AGC DELs are generally lower than those of the baseline control system. The torque APC control methodology also allows for more sustained PFC responses under certain derating conditions.

  7. Application of Adaptive Filters to Active Noise Control

    Institute of Scientific and Technical Information of China (English)

    PEI Bingnan; LI Chuanguang

    2001-01-01

    A modified LMS algorithm for noise-control is suggested after a mathematical model ofsound-cancellation is established, on the basis of thesound wave interference principle and the physicalmodel of progressive waves in a duct. Its applicationin controlling noise with the frequency range from 100to 800 Hz can be implemented by using the adaptivedigital signal processing technique. The experimentson a pink noise, a broadband noise and a noise takenfrom a tank were made, which show that there existsan attenuation of 11 dB at the frequency of 500 Hzor so, and that the proposed adaptive noise controltechnique is very effective and valid.

  8. Active control of structural vibration by piezoelectric stack actuators

    Institute of Scientific and Technical Information of China (English)

    NIU Jun-chuan; ZHAO Guo-qun; HU Xia-xia

    2005-01-01

    This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the model to achieve vibration control of flexible structures, and dynamic characteristics are also investigated. Mobility technique is used to derive the governing equations of the system. The power flow transmitted into the foundation is solved and considered as a cost function to achieve optimal control of vibration isolation. Some numerical simulations revealed that the analytical model is effective as piezoelectric stack actuators can achieve substantial vibration attenuation by selecting proper value of the input voltage.

  9. Combined control effects of brake and active suspension control on the global safety of a full-car nonlinear model

    Science.gov (United States)

    Tchamna, Rodrigue; Youn, Edward; Youn, Iljoong

    2014-05-01

    This paper focuses on the active safety of a full-vehicle nonlinear model during cornering. At first, a previously developed electronic stability controller (ESC) based on vehicle simplified model is applied to the full-car nonlinear model in order to control the vehicle yaw rate and side-slip angle. The ESC system was shown beneficial not only in tracking the vehicle path as close as possible, but it also helped in reducing the vehicle roll angle and influences ride comfort and road-holding capability; to tackle that issue and also to have better attitude motion, making use of optimal control theory the active suspension control gain is developed from a vehicle linear model and used to compute the active suspension control force of the vehicle nonlinear model. The active suspension control algorithm used in this paper includes the integral action of the suspension deflection in order to make zero the suspension deflection steady state and keep the vehicle chassis flat. Keeping the chassis flat reduces the vehicle load transfer and that is helpful for road holding and yaw rate tracking. The effects of the two controllers when they work together are analysed using various computer simulations with different steering wheel manoeuvres.

  10. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Seung-Bok Choi

    2013-02-01

    Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  11. Implementation of skeletal muscle model with advanced activation control

    Directory of Open Access Journals (Sweden)

    Kocková H.

    2009-12-01

    Full Text Available The paper summarizes main principles of an advanced skeletal muscle model. The proposed mathematical model is suitable for a 3D muscle representation. It respects the microstructure of the muscle which is represented by three basic components: active fibers, passive fibers and a matrix. For purposes of presented work the existing material models suitable for the matrix and passive fibers are used and a new active fiber model is proposed. The active fiber model is based on the sliding cross-bridge theory of contraction. This theory is often used in modeling of skeletal and cardiac muscle contractions. In this work, a certain simplification of the cross-bridge distribution function is proposed, so that the 3D computer implementation becomes feasible. The new active fiber model is implemented into our research finite element code. A simple 3D muscle bundle-like model is created and the implemented composite model (involving the matrix, passive and active fibers is used to perform the isometric, concentric and excentric muscle contraction simulations.

  12. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors

    Directory of Open Access Journals (Sweden)

    Anne Teissier

    2015-12-01

    Full Text Available Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.

  13. A new controller for the seni-active suspension system with magnetor heological dampers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new sliding mode controller for semi-active suspension system with magnetorheological (MR) damper is presented in this paper. In the proposed sliding mode controller, a semi-active suspension based on the skyhook damper system is chosen as the reference model to be followed, and the control law is so determined that the asymptotically stable error dynamics occurs between the controlled state and the reference model state. Numerical simulations are carried out to study the performance of the new sliding mode controller. The results show that the proposed controller yields almost perfect tracking to the reference model and has a high robustness against model parameter uncertainties and disturbances.

  14. ACTIVE CONTROL OF A FLEXIBLE CANTILEVER PLATE WITH MULTIPLE TIME DELAYS

    Institute of Scientific and Technical Information of China (English)

    Longxiang Chen; Ji Pan; Guoping Cai

    2008-01-01

    Active control of a flexible cantilever plate with multiple time delays is investigated using the discrete optimal control method.A controller with multiple time delays is presented.In this controller,time delay effect is incorporated in the mathematical model of the dynamic system throughout the control design and no approximations and assumptions are made in the controller derivation,so the system stability is easily guaranteed.Furthermore,this controller is available for both small time delays and large time delays.The feasibility and efficiency of the proposed controller are verified through numerical simulations in the end of this paper.

  15. Numerical simulation and experimental validation of the control mechanism of noise and vibration active control devices by piezoceramic transducers

    Energy Technology Data Exchange (ETDEWEB)

    Miccoli, G. [National Research Council, Cassana (Italy). Earth-Moving Machinery and Off-Road Vehicles Inst.; Concilio, A. [C.I.R.A., Capua (Italy)

    1994-12-31

    The applications till now carried out by this research group in order to actively control structural noise and vibration levels by means of piezoceramic transducers refer to the use and test of simple analogic SISO control systems. These devices work each connected to a couple of sensor/actuator collocated piezoceramics and implement positive feedback control law with self-adaptive variable gain. In order to improve the performance of these control systems and get more insight into their operation, the simulation of the control mechanism itself has been carried out by means of: (a) theoretical analysis of phase and gain characteristics of these devices using finite element (FEM) code (MSC/NASTRAN); (b) experimental validation of the analytical results by means of an on purpose built SISO variable phase and gain control system. On the basis of the experimental results obtained the electronic components of this first SISO control system have been optimized in order to reduce possible instability phenomena.

  16. Guaranteed Cost Active Fault-tolerant Control of Networked Control System with Packet Dropout and Transmission Delay

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Luo; Mei-Jie Shang; Cai-Lian Chen; Xin-Ping Guan

    2010-01-01

    The problem of guaranteed cost active fault-tolerant controller (AFTC) design for networked control systems (NCSs)with both packet dropout and transmission delay is studied in this paper.Considering the packet dropout and transmission delay,a piecewise constant controller is adopted.With a guaranteed cost function,optimal controllers whose number is equal to the number of actuators are designed,and the design process is formulated as a convex optimal problem that can be solved by existing software.The control strategy is proposed as follows:when actuator failures appear,the fault detection and isolation unit sends out the information to the controller choosing strategy,and then the optimal stabilizing controller with the smallest guaranteed cost value is chosen.Two illustrative examples are given to demonstrate the effectiveness of the proposed approach.By comparing with the existing methods,it can be seen that our method has a better performance.

  17. Active control of vibration using a fuzzy control method based on scaling universes of discourse

    Science.gov (United States)

    Si, Hongwei; Li, Dongxu

    2007-06-01

    Large flexible space structures are complex in structural dynamic characteristics. The control method based on custom control theory and modern control theory is difficult to solve for the complex problem. The fuzzy controller is not dependent on the accurate model. But the precision of a conventional fuzzy controller is not good, and the adaptive ability of a conventional fuzzy controller is limited. The fuzzy controller can make the system surge. Scaling universes of discourse is an effective method to improve the performance of the fuzzy controller. This paper is aimed at the difficult problem of designing a stable adaptive controller based on scaling universes of discourse, and letting input membership function and output membership function be denoted as input universes of discourse and the center value of output membership function, respectively. A kind of Lyapunov function, designed as an adaptive law of input universes of discourse and the center value of output membership function, was then adopted. A kind of stable self-adaptive fuzzy controller based on scaling universes of discourse is designed in this paper for the vibration control of a large flexible space truss driven by piezoelectric sensors and actuators (PZTs).

  18. Active Vibration Control of Plate Partly Treated with ACLD Using Hybrid Control

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    2014-01-01

    Full Text Available A finite element model of plate partly treated with ACLD treatments is developed based on the constitutive equations of elastic, piezoelectric, viscoelastic materials and Hamilton’s principle. The Golla-Hughes-Mctavish (GHM method is employed to describe the frequency-dependent characteristics of viscoelastic material (VEM. A model reduction is completed by using iterative dynamic condensation and balance model reduction method to design an effective control system. The emphasis is concerned on hybrid (combined feedback/feedforward control system to attenuate the vibration of plates with ACLD treatments. The optimal linear quadratic Gaussian (LQG controller is considered as a feedback channel and the adaptive filtered-reference LMS (FxLMS controller is used as a feedforward channel. They can be utilized individually or in a hybrid way to suppress the vibration of plate/ACLD system. The results show that the hybrid controller which combines feedback/feedforward together can reduce the displacement amplitude of plate/ACLD system subjected to a complicated disturbance substantially without requiring more control effort. Furthermore, the hybrid controller has more rapid and stable convergence rate than the adaptive feedforward FxLMS controller. Meanwhile, perfect robustness to phase error of the cancellation path in feedforward controller and the weight matrices in feedback LQG controller is demonstrated in proposed hybrid controller. Therefore, its application in structural engineering can be highly appreciated.

  19. Application of High-speed Solenoid Valve to the Semi-active Control of Landing Gear

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Gu Hongbin; Chen Dawei

    2008-01-01

    To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear.Performance of the actuator may directly affect the effectiveness of semi-active control.In this article,parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied.A nonlinear high-speed solenoid valve model is developed with the consideration of magnctic saturation characteristics and verified by test.According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy,a fuzzy PD control rule is designed.By the rule,controller parameters can be self-regulated.The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.

  20. Active chatter control in a milling machine

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L.; Hinnerichs, T.D.; Lauffer, J.P. [and others

    1997-08-01

    The use of active feedback compensation to mitigate cutting instabilities in an advanced milling machine is discussed in this paper. A linear structural model delineating dynamics significant to the onset of cutting instabilities was combined with a nonlinear cutting model to form a dynamic depiction of an existing milling machine. The model was validated with experimental data. Modifications made to an existing machine model were used to predict alterations in dynamics due to the integration of active feedback compensation. From simulations, subcomponent requirements were evaluated and cutting enhancements were predicted. Active compensation was shown to enable more than double the metal removal rate over conventional milling machines. 25 refs., 10 figs., 1 tab.

  1. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L;

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude...

  2. Advanced Control of Active Bearings - Modelling, Design and Experiments

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane

    In all rotating machines relative movements between the stationary parts and the rotating parts imply energy loss and, in many critical cases, vibration problems. This energy loss leads to higher overall energy consumption of the system. Research activities towards the reduction of friction, the ...... in shaft angular velocity, thereby allowing safe operation in and above the regions of the first and second critical speeds.......In all rotating machines relative movements between the stationary parts and the rotating parts imply energy loss and, in many critical cases, vibration problems. This energy loss leads to higher overall energy consumption of the system. Research activities towards the reduction of friction......, the enhancement of damping, the extension of operating range and the minimisation of critical vibrations in machine elements are of fundamental importance. The main component to tackle the energy-loss-related problems is the bearing. The area of design of active bearings, while very promising, is still in its...

  3. Controlling Spatiotemporal Chaos in Active Dissipative-Dispersive Nonlinear Systems

    Science.gov (United States)

    Gomes, Susana; Pradas, Marc; Kalliadasis, Serafim; Papageorgiou, Demetrios; Pavliotis, Grigorios

    2015-11-01

    We present a novel generic methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. The methodology is exemplified with the generalized Kuramoto-Sivashinsky equation, the simplest possible prototype that retains that fundamental elements of any nonlinear process involving wave evolution. The equation is applicable on a wide variety of systems including falling liquid films and plasma waves with dispersion due to finite banana width. We show that applying the appropriate choice of time-dependent feedback controls via blowing and suction, we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, travelling waves and spatiotemporal chaos, but also use the controls obtained to stabilize the solutions to more general long wave models. We acknowledge financial support from Imperial College through a Roth PhD studentship, Engineering and Physical Sciences Research Council of the UK through Grants No. EP/H034587, EP/J009636, EP/K041134, EP/L020564 and EP/L024926 and European Research Council via Advanced Grant No. 247031.

  4. Mosquito Control in Poland: Pro- and Anti-Environmental Activities

    Directory of Open Access Journals (Sweden)

    Gliniewicz Aleksandra

    2014-12-01

    Full Text Available Mosquito control in Poland is still dominated by the use of chemicals. Although it has been 13 years since the flood of the century, only in few cities and towns (Wroclaw, Gorzow Wielkopolski and Torun various methods of mosquito control such as mapping of larvae development and setting time limits for the imagines occur-rence were developed. The problem of mosquito control is not only limited to adult insects, it is also much more a complex issue due to the use of insecticides in the environment that we would rather like to keep unchanged, with a diversity of co-existing species of plants and animals. In addition to eradication of larvae and adult insects, we should also: carry out actions modifying environment so that it becomes less friendly to mosquitoes (e.g. drying wet mead-ows as a result of land reclamation, protect places where people reside - with the use of insecticide lamps and spatial repellents, as well as catchers for aggressive female mosquitoes. Increasing the share of environmental management methods and public education on preventing to form and eliminating existing places of mosquito larvae development in urban green areas (parks, river overflow areas and drainage ditches are still an undervalued element of integrated mosquito control in Poland.

  5. Remote control of molecular motors using light-activated gearshifting

    Science.gov (United States)

    Bryant, Zev

    2013-03-01

    Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in vivo and provide sophisticated components for directed nanoscale transport in vitro. We previously constructed myosin motors that respond to a change in [Ca++] by reversing their direction of motion along the polarized actin filament. To expand the potential applications of controllable molecular motors, we have now developed myosins that shift gears in response to blue light illumination. Light is a versatile control signal that can be readily modulated in time and space, and is generally orthogonal to cellular signaling. Using structure-guided protein engineering, we have incorporated LOV photoreceptor domains into the lever arms of chimeric myosins, resulting in motors that robustly speed up, slow down, or switch directions upon illumination. These genetically encoded motors should be directly deployable inside living cells. Our successful designs include constructs based on two different myosin classes, and we show that optical velocity control can be implemented in motors that move at microns/sec speeds, enabling practical biological and bioengineering applications.

  6. ACTIVE DIMENSIONAL CONTROL OF LARGE-SCALED STEEL STRUCTURES

    OpenAIRE

    Radosław Rutkowski

    2013-01-01

    The article discusses the issues of dimensional control in the construction process of large-scaled steel structures. The main focus is on the analysis of manufacturing tolerances. The article presents the procedure of tolerance analysis usage in process of design and manufacturing of large-scaled steel structures. The proposed solution could significantly improve the manufacturing process.

  7. Wind Tunnel Testing of Active Control System for Bridges

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes preparation of wind tunnel testing of the principle of using flaps to control the motion of suspension bridges. The experiment will take place at the Instituto Superior Technico Lisbon, Portugal. The bridge section model is constructed of foam with an aluminium frame. The flaps...

  8. Active Wake Redirection Control to Improve Energy Yield (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M. J.; Fleming, P.; DeGeorge, E.; Bulder, B; White, S. M.

    2014-10-01

    Wake effects can dramatically reduce the efficiency of waked turbines relative to the unwaked turbines. Wakes can be deflected, or 'redirected,' by applying yaw misalignment to the turbines. Yaw misalignment causes part of the rotor thrust vector to be pointed in the cross-stream direction, deflecting the flow and the wake. Yaw misalignment reduces power production, but the global increase in wind plant power due to decreased wake effect creates a net increase in power production. It is also a fairly simple control idea to implement at existing or new wind plants. We performed high-fidelity computational fluid dynamics simulations of the wake flow of the proposed Fishermen's Atlantic City Windfarm (FACW) that predict that under certain waking conditions, wake redirection can increase plant efficiency by 10%. This means that by applying wake redirection control, for a given watersheet area, a wind plant can either produce more power, or the same amount of power can be produced with a smaller watersheet area. With the power increase may come increased loads, though, due to the yaw misalignment. If misalignment is applied properly, or if layered with individual blade pitch control, though, the load increase can be mitigated. In this talk we will discuss the concept of wake redirection through yaw misalignment and present our CFD results of the FACW project. We will also discuss the implications of wake redirection control on annual energy production, and finally we will discuss plans to implement wake redirection control at FACW when it is operational.

  9. A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement

    Directory of Open Access Journals (Sweden)

    M. K. Aripin

    2014-01-01

    Full Text Available Yaw stability control system plays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control.

  10. Intesrated intelligent control analysis on semi-active structuresby using magnetorheological dampers

    Institute of Scientific and Technical Information of China (English)

    XU ZhaoDong; GUO YingQing

    2008-01-01

    The control strategy is very important for semi-active control or active control systems. An integrated intelligent control strategy for building structures incorpo-rated with magnetorheological (MR) dampers subjected to earthquake excitation is proposed. In this strategy, the time-delay problem is solved by a neural network and the control currents of the MR dampers are determined quickly by a fuzzy controller. Through a numerical example of a three-storey structure with one MR damper installed in the first floor, the seismic responses of the uncontrolled, the intelligently controlled, the passive-on controlled, and the passive-off controlled structures under different earthquake excitations are analyzed. Based on the nu-merical results, it can be found that the time domain and the frequency domain responses are reduced effectively when the MR damper is added in the structure, and the integrated intelligent control strategy has a better earthquake mitigation effect.

  11. Pulp Fibroblasts Control Nerve Regeneration through Complement Activation.

    Science.gov (United States)

    Chmilewsky, F; About, I; Chung, S-H

    2016-07-01

    Dentin-pulp regeneration is closely linked to the presence of nerve fibers in the pulp and to the healing mechanism by sprouting of the nerve fiber's terminal branches beneath the carious injury site. However, little is known about the initial mechanisms regulating this process in carious teeth. It has been recently demonstrated that the complement system activation, which is one of the first immune responses, contributes to tissue regeneration through the local production of anaphylatoxins such as C5a. While few pulp fibroblasts in intact teeth and in untreated fibroblast cultures express the C5a receptor (C5aR), here we show that all dental pulp fibroblasts, localized beneath the carious injury site, do express this receptor. This observation is consistent with our in vitro results, which showed expression of C5aR in lipoteichoic acid-stimulated pulp fibroblasts. The interaction of C5a, produced after complement synthesis and activation from pulp fibroblasts, with the C5aR of these cells mediated the local brain-derived neurotropic factor (BDNF) secretion. Overall, this activation guided the neuronal growth toward the lipoteichoic acid-stimulated fibroblasts. Thus, our findings highlight a new mechanism in one of the initial steps of the dentin-pulp regeneration process, linking pulp fibroblasts to the nerve sprouting through the complement system activation. This may provide a useful future therapeutic tool in targeting the fibroblasts in the dentin-pulp regeneration process. PMID:27053117

  12. Semiotic and Theoretic Control in Argumentation and Proof Activities

    Science.gov (United States)

    Arzarello, Ferdinando; Sabena, Cristina

    2011-01-01

    We present a model to analyze the students' activities of argumentation and proof in the graphical context of Elementary Calculus. The theoretical background is provided by the integration of Toulmin's structural description of arguments, Peirce's notions of sign, diagrammatic reasoning and abduction, and Habermas' model for rational behavior.…

  13. Fuzzy Logic Control for Semi-Active Suspension System of Tracked Vehicle

    Institute of Scientific and Technical Information of China (English)

    管继富; 顾亮; 侯朝桢; 王国丽

    2004-01-01

    The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.

  14. Active RF Pulse Compression using Electrically Controlled Semiconductor Switches

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J.; Tantawi, S.G.; /SLAC

    2008-01-30

    In this paper, we will present our recent results on the research of the ultra-fast high power RF switches based on silicon. We have developed a switch module at X-band which can use a silicon window as the switch. The switching is realized by generation of carriers in the bulk silicon. The carriers can be generated electrically or/and optically. The electrically controlled switches use PIN diodes to inject carrier. We have built the PIN diode switches at X-band, with <300ns switching time. The optically controlled switches use powerful lasers to excite carriers. By combining the laser excitation and electrical carrier generation, significant reduction in the required power of both the laser and the electrical driver is expected. High power test is under going.

  15. Switching teraherz waves with gate-controlled active graphene metamaterials

    CERN Document Server

    Lee, Seung Hoon; Kim, Teun-Teun; Lee, Seungwoo; Liu, Ming; Yin, Xiaobo; Choi, Hong Kyw; Lee, Seung S; Choi, Choon-Gi; Choi, Sung-Yool; Zhang, Xiang; Min, Bumki

    2012-01-01

    The extraordinary electronic properties of graphene, such as its continuously gate-variable ambipolar field effect and the resulting steep change in resistivity, provided the main thrusts for the rapid advance of graphene electronics. The gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of low-energy photons with massless Dirac fermions, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications due to its nonresonant Drude-like behaviour. Here, we experimentally demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional artificial material, referred to as a metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer ...

  16. Muscle networks: Connectivity analysis of EMG activity during postural control

    Science.gov (United States)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  17. Management Control Models in the Activity of Cuban university internationatization

    Directory of Open Access Journals (Sweden)

    Maylin Sacasas López

    2013-06-01

    Full Text Available Higher education can adapt to the new requirements of society and thus help to overcome the currentdisadvantageous position against globalization processes, incorporating international cooperation aspart of their institutional mission and vision. Contribute to the integration and the impact on the threeessential processes: Teaching, Research and Graduate Studies and the University Extension. Theneed to integrate the different systems of management and control stems own organizationaldevelopment and changes in the environment, the tendency is to plan, improve and control processesof the organization. This article aims to make the analysis of various models of management controland the design of a tool to measure the level of integration of research and internationalization process(NINV & int at The Higher Polytechnic Institute "José Antonio Echeverría" (CUJAE. We used differentmethods and techniques within the theoretical methods: analysis and synthesis, induction and deduction,in the empirical: expert consultation, and statistical methods.  

  18. Active subnanometer spectral control of a random laser

    CERN Document Server

    Leonetti, Marco; 10.1063/1.4792759

    2013-01-01

    We demonstrate an experimental technique that allows to achieve a robust control on the emission spectrum of a micro random laser and to select individual modes with sub-nanometer resolution. The presented approach relies on an optimization protocol of the spatial profile of the pump beam. Here we demonstrate not only the possibility to increase the emission at a wavelength, but also that we can isolate an individual peak suppressing unwanted contributions form other modes.

  19. Active Control and Energy Cost Assessment of a Rotating Machine

    OpenAIRE

    Jarir Mahfoud; Yan Skladanek; Johan Der Hagopian

    2011-01-01

    The performances for controlling a rotating machine by using either an Electromagnetic Actuator or a Piezoelectric Actuator are compared in this work. The aim is to establish selection criteria based on environmental impact. Life Cycle Analysis shows that the operating stage has a considerable impact. In this study, only the operating stage is considered. The energy consumed by the actuators seems to be the appropriate indicator for the same "mechanical" performances. Numerical studies are ca...

  20. Aircraft fault tolerant control based on active set method

    OpenAIRE

    Zhong, Lunlong; Mora-Camino, Félix

    2013-01-01

    This communication considers the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform a guidance manoeuver. The problem considered deals with the reassignment of the remaining actuators to continue to perform the maneuver while maintaining the structural integrity of the aircraft. A nonlinear inverse control technique is used to generate online nominal moments along the three main axes of the aircraft. Then, taking into account all material and structura...

  1. Active Position Control of a Flexible Smart Beam Using Internal Model Control

    Science.gov (United States)

    LEE, Y.-S.; ELLIOTT, S. J.

    2001-05-01

    The problem of controlling the position at the tip of a flexible cantilever beam to follow a command signal is considered, by using a pair of piezoelectric actuators at the clamped end. The beam is lightly damped and so the natural transient response is rather long, and also since the sensor and actuator are not collocated, the plant response is non-minimum phase. Two control strategies were investigated. The first involved conventional PID control in which the feedback gains were adjusted to give the fastest closed-loop response to a step input. The second control strategy was based on an internal model control (IMC) architecture. The control filter in the IMC controller was a digital FIR device designed to minimize the expectation of the mean square tracking error. In practice, such smart beams could be exposed to temperature fluctuations and changes in geometry. The effect of these variations on the stability was studied and it is shown that the need for robustness to such variations leads to a limitation in the performance of an IMC controller. The improvement in the stability robustness by incorporating control effort weighting into the cost function being minimized was investigated, as was the incorporation of modelling delay in the design of the IMC control filter. The IMC controller designed for the beam was found to have much reduced settling times to a step input compared with those of the PID controller while maintaining good robustness to changes in temperature. However, the extremely low damping of the experimental beam made it difficult to implement an accurate plant model in practice.

  2. Active Control for Statistically Stationary Turbulent PremixedFlame Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.B.; Day, M.S.; Grcar, J.F.; Lijewski, M.J.

    2005-08-30

    The speed of propagation of a premixed turbulent flame correlates with the intensity of the turbulence encountered by the flame. One consequence of this property is that premixed flames in both laboratory experiments and practical combustors require some type of stabilization mechanism to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. Furthermore, the stabilization introduces additional fluid mechanical complexity into the overall combustion process that can complicate the analysis of fundamental flame properties. To circumvent these difficulties we introduce a feedback control algorithm that allows us to computationally stabilize a turbulent premixed flame in a simple geometric configuration. For the simulations, we specify turbulent inflow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm on methane flames at various equivalence ratios in two dimensions. The simulation data are used to study the local variation in the speed of propagation due to flame surface curvature.

  3. Cortical activation and attentional control in ADAH subtypes

    Directory of Open Access Journals (Sweden)

    Paloma González-Castro

    2010-01-01

    Full Text Available Uno de los trastornos que más condiciona el rendimiento escolar es eldéficit de atención aislado o asociado a hiperactividad o impulsividad. Este trastorno plantea dificultades a los propios estudiantes, tanto en el área verbal como en razonamiento y cálculo, así como también a sus profesores, como consecuencia de los comportamientos disruptivos. Los criterios establecidos por el Manual Diagnóstico y Estadístico de los Trastornos Mentales 4ª edición -revisada son uno de los procedimientos más aceptados para diagnosticar el déficit, distinguiéndose tres subtipos: inatento, hiperactivo-impulsivo y combinado. El objetivo central de la presente investigación ha sido contrastar si existen patrones de activación cortical y control ejecutivo diferenciales para estos tres tipos de sujetos con Trastorno por Déficit de Atención con Híperactividad (TDAH y para el grupo control sin TDAH. La muestra utilizada estaba formada por 220 estudiantes, de edades comprendidas entre 6 y 12 años: 56 grupo control, 54 con predominio de déficit de atención, 57 con déficit de atención e hiperactividad y 53 con predominio de hiperactividad-impulsividad. Los resultados obtenidos muestran que los cuatro grupos de sujetos se diferencian significativamente entre sí en las dos variables de activación cortical evaluadas (central y prefrontal, y en las cinco de control ejecutivo (inatención, impulsividad, tiempo de respuesta, variabilidad e índice general de control ejecutivo. Las comparaciones múltiples entre grupos confirman las hipótesis planteadas. Los resultados obtenidos abren una vía de gran interés cara a una evaluación diagnóstica objetiva y fiable, y a una intervención farmacológica y conductual ajustada a cada situación concreta.

  4. Active dynamic balancing unit for controlled shaking force and shaking moment balancing

    NARCIS (Netherlands)

    Wijk, van der Volkert; Herder, Just L.

    2010-01-01

    For a mechanism with many elements that needs to be shaking-force and shaking-moment balanced with a low addition of mass, a low addition of inertia, and a low addition of complexity, the use of actively computer-controlled balancing elements is promising. With these actively controlled elements the

  5. Active Control of Automotive Intake Noise under Rapid Acceleration using the Co-FXLMS Algorithm

    Science.gov (United States)

    Lee, Hae-Jin; Lee, Gyeong-Tae; Oh, Jae-Eung

    The method of reducing automotive intake noise can be classified by passive and active control techniques. However, passive control has a limited effect of noise reduction at low frequency range (below 500 Hz) and is limited by the space of the engine room. However, active control can overcome these passive control limitations. The active control technique mostly uses the Least-Mean-Square (LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time, particularly when the Filtered-X LMS (FXLMS) algorithm is applied to an active noise control (ANC) system. However, the convergence performance of the LMS algorithm decreases significantly when the FXLMS algorithm is applied to the active control of intake noise under rapidly accelerating driving conditions. Therefore, in this study, the Co-FXLMS algorithm was proposed to improve the control performance of the FXLMS algorithm during rapid acceleration. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. The performance of the Co-FXLMS algorithm is presented in comparison with that of the FXLMS algorithm. Experimental results show that active noise control using Co-FXLMS is effective in reducing automotive intake noise during rapid acceleration.

  6. Fundamental study of noise reduction by active noise control. Active soon seigyo ni yoru soon taisaku no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T.; Naganawa, A. (Chubu Electric Power Co. Inc., Nagoya (Japan))

    1994-05-01

    Fundamental experiments were conducted on active noise control as sound insulation fence. This control method generates a sound source with the same amplitude and opposite phase as noise, and reduces noise through the interference of acoustic wave from the source. However, this method has too many problems with the three-dimensional sound field to be actually exploited in this environment. The following experiments were conducted to apply the active noise control to the sound insulation fence: one method of installing a geometric path along the inner side of the sound insulation fence used the acoustic delay process generated on the source side to attenuate the sound pressure level on top of the fence through interference of routing difference sound. The other method used an additional sound source attached to the bottom of the geometric path above to obtain a higher attenuation than using the simple sound insulation fence. At the second step, the active control duct model was used for the test. Then, the three-dimensional model test was conducted for active control of the sound insulation fence. The results of these fundamental experiments have indicated that each method can reduce the relative sound pressure level and the active noise control system using the acoustic phase difference can effectively reduce noise with dominant components in a low frequency band. There are still several problems with the three-dimensional mock-up model. 4 refs., 18 figs., 2 tabs.

  7. From Concept-to-Flight: An Active Active Fluid Loop Based Thermal Control System for Mars Science Laboratory Rover

    Science.gov (United States)

    Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline

    2012-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.

  8. High order single step time delay compensation algorithm for structural active control

    Institute of Scientific and Technical Information of China (English)

    王焕定; 耿淑伟; 王伟

    2002-01-01

    The optimal instantaneous high order single step algorithm for active control is first discussed andthen, the n + 1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of ntime state vector. An estimating algorithm, is developed from this to solve the problem of active control withtime delay compensation. The estimating algorithm based on this high order single step β method (HSM) foun-dation, is proven by simulation and experiment analysis, to be a valid solution to problem of active control withtime delay compensation.

  9. Integrated Passive and Active Vibration Control of Ultra-precision Lathe

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In ultra-precision cutting process, vibration is one of the key factors affecting the machining quality. In this paper, the damping methods of HCM-I Ultra-precision Lathe are discussed in both complete machine and slide. It is pointed out that integrated passive and active vibration control (IPAVC) by combining passive vibration control (PVC) and active vibration control (AVC) can not only eliminate high frequency vibration but also improve the damping effect to low frequency vibration. Experiment results show the effectiveness of the integrated passive and active vibration control.

  10. Seismic Proofing Capability of the Accumulated Semiactive Hydraulic Damper as an Active Interaction Control Device with Predictive Control

    Directory of Open Access Journals (Sweden)

    Ming-Hsiang Shih

    2016-01-01

    Full Text Available The intensity of natural disasters has increased recently, causing buildings’ damages which need to be reinforced to prevent their destruction. To improve the seismic proofing capability of Accumulated Semiactive Hydraulic Damper, it is converted to an Active Interaction Control device and synchronous control and predictive control methods are proposed. The full-scale shaking table test is used to test and verify the seismic proofing capability of the proposed AIC with these control methods. This study examines the shock absorption of test structure under excitation by external forces, influences of prediction time, stiffness of the auxiliary structure, synchronous switching, and asynchronous switching on the control effects, and the influence of control locations of test structure on the control effects of the proposed AIC. Test results show that, for the proposed AIC with synchronous control and predictive control of 0.10~0.13 seconds, the displacement reduction ratios are greater than 71%, the average acceleration reduction ratios are, respectively, 36.2% and 36.9%, at the 1st and 2nd floors, and the average base shear reduction ratio is 29.6%. The proposed AIC with suitable stiffeners for the auxiliary structure at each floor with synchronous control and predictive control provide high reliability and practicability for seismic proofing of buildings.

  11. Time delay effects on large-scale MR damper based semi-active control strategies

    International Nuclear Information System (INIS)

    This paper presents a detailed investigation on the robustness of large-scale 200 kN MR damper based semi-active control strategies in the presence of time delays in the control system. Although the effects of time delay on stability and performance degradation of an actively controlled system have been investigated extensively by many researchers, degradation in the performance of semi-active systems due to time delay has yet to be investigated. Since semi-active systems are inherently stable, instability problems due to time delay are unlikely to arise. This paper investigates the effects of time delay on the performance of a building with a large-scale MR damper, using numerical simulations of near- and far-field earthquakes. The MR damper is considered to be controlled by four different semi-active control algorithms, namely (i) clipped-optimal control (COC), (ii) decentralized output feedback polynomial control (DOFPC), (iii) Lyapunov control, and (iv) simple-passive control (SPC). It is observed that all controllers except for the COC are significantly robust with respect to time delay. On the other hand, the clipped-optimal controller should be integrated with a compensator to improve the performance in the presence of time delay. (paper)

  12. Using behavioural activation in the treatment of depression: a control theory perspective.

    Science.gov (United States)

    McEvoy, P; Law, A; Bates, R; Hylton, K; Mansell, W

    2013-12-01

    Behavioural activation is an intervention that can be used to counteract the typical patterns of withdrawal, avoidance and inactivity that characterize depression. This paper examines the processes of change that may occur during behavioural activation from the perspective of control theory. Some of the key concepts that are associated with control theory are introduced and the process of change that may occur during behavioural activation is illustrated using two case studies. The case studies provide anecdotal evidence which supports the hypothesis that the effective implementation of behavioural activation may depend upon clients being able to retain or regain the sense of control that they value. The differences between a control-theory-based approach and more orthodox behavioural and cognitive approaches are highlighted and the implications of these differences are discussed. Flexible approaches that are informed by control theory, may offer a useful alternative to the more established behavioural and cognitive approaches towards behavioural activation.

  13. Active Queue Management in TCP Networks Based on Fuzzy-Pid Controller

    Directory of Open Access Journals (Sweden)

    Hossein ASHTIANI

    2012-01-01

    Full Text Available We introduce a novel and robust active queue management (AQM scheme based on a fuzzy controller, called hybrid fuzzy-PID controller. In the TCP network, AQM is important to regulate the queue length by passing or dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for AQM. But these algorithms show weaknesses in the detection and control of congestion under dynamically changing network situations. In this paper a novel Fuzzy-based proportional-integral derivative (PID controller, which acts as an active queue manager (AQM for Internet routers, is proposed. These controllers are used to reduce packet loss and improve network utilization in TCP/IP networks. A new hybrid controller is proposed and compared with traditional RED based controller. Simulations are carried out to demonstrate the effectiveness of the proposed method and show that, the new hybrid fuzzy PID controller provides better performance than random early detection (RED and PID controllers

  14. The Influence of Dopamine on Automatic and Controlled Semantic Activation in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Wendy L. Arnott

    2011-01-01

    Full Text Available Two semantic priming tasks, designed to isolate automatic and controlled semantic activation, were utilized to investigate the impact of dopamine depletion on semantic processing in Parkinson's disease (PD. Seven people with PD (tested whilst on and off levodopa medication and seven healthy adults participated in the study. The healthy adult participants demonstrated intact automatic and controlled semantic activation. Aberrant controlled semantic activation was observed in the PD group on levodopa; however, automatic semantic activation was still evident. In contrast, automatic semantic activation was not evident in the PD group off levodopa. These results further clarify the impact of PD on semantic processing, demonstrating that dopamine depletion can cause disturbances in both automatic and controlled semantic activation.

  15. Semi-Active Control of the Sway Dynamics for Elevator Ropes

    OpenAIRE

    Benosman, Mouhacine

    2015-01-01

    In this work we study the problem of rope sway dynamics control for elevator systems. We choose to actuate the system with a semi-active damper mounted on the top of the elevator car. We propose nonlinear controllers based on Lyapunov theory, to actuate the semi-active damper and stabilize the rope sway dynamics. We study the stability of the proposed controllers, and test their performances on a numerical example.

  16. Development of a Pseudo-Uniform Structural Quantity for the Active Control of Structural Radiation

    OpenAIRE

    Fisher, Jeffrey; Blotter, Jon

    2010-01-01

    Active noise control has been a highly researched field over the past few decades but the active control of the radiating structures has recently excited interest. Multiple structural quantities and their relationships to acoustic radiation are investigated. This paper also looks at the control of a new structural quantity developed taking advantage of the principle of Rayleigh’s integral and radiated power being strongly dependent on volume velocity. The benefit of this new quantity is that ...

  17. Superior decoupled control of active and reactive power for three-phase voltage source converters

    OpenAIRE

    RAHBARIMAGHAM, HESAM; AMIRI, ERFAN MAALI; VAHIDI, Behrooz; GHAREHPETIAN, GEVORG BABAMALEK; Abedi, Mehrdad

    2015-01-01

    This paper presents an active-reactive power control strategy for voltage source converters (VSCs) based on derivation of the direct and quadrature components of the VSC output current. The proposed method utilizes a multivariable proportional-integral controller and provides almost completely decoupled control capability of the active and reactive power with almost full disturbance rejection due to step changes in the power exchanged between the VSC and the grid. It also imposes fast transie...

  18. Multilayer Active Control For Structural Damping And Optical-Path Regulation

    Science.gov (United States)

    Rahman, Zahidul H.; Spanos, John T.; Fanson, James L.

    1995-01-01

    Two active-control concepts incorporated into system for suppression of vibrations in truss structure and regulation of length of optical path on structure to nanometer level. Optical-path-length-control subsystem contains two feedback control loops to obtain active damping in wide amplitude-and-frequency range. Concept described in more detail in number of previous articles, including "Stabilizing Optical-Path Length on a Vibrating Structure" (NPO-19040), "Controllable Optical Delay Line for Stellar Interferometry" (NPO-18686), "Test Bed for Control of Optical-Path Lengths" (NPO-18487).

  19. Development of Control Structure for Hybrid Wind Generators with Active Power Capability

    Directory of Open Access Journals (Sweden)

    Mehdi Niroomand

    2014-01-01

    Full Text Available A hierarchical control structure is proposed for hybrid energy systems (HES which consist of wind energy system (WES and energy storage system (ESS. The proposed multilevel control structure consists of four blocks: reference generation and mode select, power balancing, control algorithms, and switching control blocks. A high performance power management strategy is used for the system. Also, the proposed system is analyzed as an active power filter (APF with ability to control the voltage, to compensate the harmonics, and to deliver active power. The HES is designed with parallel DC coupled structure. Simulation results are shown for verification of the theoretical analysis.

  20. RELIABLE ROBUST CONTROLLER FOR HALF-CAR ACTIVE SUSPENSION SYSTEMS BASED ON HUMAN-BODY DYNAMICS

    Directory of Open Access Journals (Sweden)

    Mohammad Gudarzi

    2016-08-01

    Full Text Available The paper investigates a non-fragile robust control strategy for a half-car active suspension system considering human-body dynamics. A 4-DoF uncertain vibration model of the driver’s body is combined with the car’s model in order to make the controller design procedure more accurate. The desired controller is obtained by solving a linear matrix inequality formulation. Then the performance of the active suspension system with the designed controller is compared to the passive one in both frequency and time domain simulations. Finally, the effect of the controller gain variations on the closed-loop system performance is investigated numerically.

  1. Global Chaos Synchronization between Two New Different Chaotic Systems via Active Control

    Institute of Scientific and Technical Information of China (English)

    SUN Feng-Yun

    2006-01-01

    We present chaos synchronization between two new different chaotic systems by using active control.The proposed controller ensures that the states of the controlled chaotic response system asymptotically synchronizes the states of the drive system.Numerical simulations are shown to verify the result.

  2. Analytical and experimental results for active noise control within cylindrical cavities bounded by elastic adaptive structures

    Energy Technology Data Exchange (ETDEWEB)

    Baier, H.; Dool, T. van den; Haeusler, S.; Faust, M. [Technische Univ. Muenchen (Germany)]|[TNO, Delf (Netherlands)]|[Dornier, Friedrichshafen (Germany)

    1998-10-01

    The feasibility of differnt concepts for active noise control in elastically bounded cylindrical cavities such as in launcher fairings is investigated. Analytical and experimental studies are carried out for feedforward and feedback controllers and different types of actuators and sensors. The feasibility and potential of the approach is demonstrated, but further progress on controller speed and actuator capability has to be made. (orig.)

  3. [Research progress of thermal control system for extravehicular activity space suit].

    Science.gov (United States)

    Wu, Z Q; Shen, L P; Yuan, X G

    1999-08-01

    New research progress of thermal control system for oversea Extravehicular Activity (EVA) space suit is presented. Characteristics of several thermal control systems are analyzed in detail. Some research tendencies and problems are discussed, which are worthwhile to be specially noted. Finally, author's opinion about thermal control system in the future is put forward.

  4. Simulation Study on Active Noise Control for a 4 Tesla MRI Scanner

    Science.gov (United States)

    Li, Mingfeng; Lim, Teik C.; Lee, Jing-Huei

    2008-01-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for MRI acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20 dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction. PMID:18060719

  5. Experimental Comparison of two Active Vibration Control Approaches: Velocity Feedback and Negative Capacitance Shunt Damping

    Science.gov (United States)

    Beck, Benjamin; Schiller, Noah

    2013-01-01

    This paper outlines a direct, experimental comparison between two established active vibration control techniques. Active vibration control methods, many of which rely upon piezoelectric patches as actuators and/or sensors, have been widely studied, showing many advantages over passive techniques. However, few direct comparisons between different active vibration control methods have been made to determine the performance benefit of one method over another. For the comparison here, the first control method, velocity feedback, is implemented using four accelerometers that act as sensors along with an analog control circuit which drives a piezoelectric actuator. The second method, negative capacitance shunt damping, consists of a basic analog circuit which utilizes a single piezoelectric patch as both a sensor and actuator. Both of these control methods are implemented individually using the same piezoelectric actuator attached to a clamped Plexiglas window. To assess the performance of each control method, the spatially averaged velocity of the window is compared to an uncontrolled response.

  6. Contributions to active visual estimation and control of robotic systems

    OpenAIRE

    Spica, Riccardo

    2015-01-01

    As every scientist and engineer knows, running an experiment requires a careful and thorough planning phase. The goal of such a phase is to ensure that the experiment will give the scientist as much information as possible about the process that she/he is observing so as to minimize the experimental effort (in terms of, e.g., number of trials, duration of each experiment and so on) needed to reach a trustworthy conclusion. Similarly, perception is an active process in which the perceiving age...

  7. Control-Self-control Relation during Interconnected Management of Mid-level Specialists Training for Management Activity

    Directory of Open Access Journals (Sweden)

    Elena N. Rozhnova

    2013-01-01

    Full Text Available Modern trends of social development make steep demands to human capital, its competitive grow. Human resources management is one of the most important activity and economic society is in want of junior and mid-level managers. The article deals with the development and organizational issues of interconnected management of students’ preparation for management activity on the basis of updating interconnection between teacher’s control and student’s self-control. Thus, special attention is attached to the didactics and methodology of control and self-control relation in the context of step-by-step complication of professional formation of future specialists in terms of secondary vocational education.

  8. Active harmonic filtering using current-controlled, grid-connected DG units with closed-loop power control

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Blaabjerg, Frede;

    2014-01-01

    The increasing application of nonlinear loads may cause distribution system power quality issues. In order to utilize distributed generation (DG) unit interfacing converters to actively compensate harmonics, this paper proposes an enhanced current control approach, which seamlessly integrates...... voltage detection are not necessary for the proposed harmonic compensation method. Moreover, a closed-loop power control scheme is employed to directly derive the fundamental current reference without using any phase-locked loops (PLL). The proposed power control scheme effectively eliminates the impacts...... of steady-state fundamental current tracking errors in the DG units. Thus, an accurate power control is realized even when the harmonic compensation functions are activated. In addition, this paper also briefly discusses the performance of the proposed method when DG unit is connected to a grid...

  9. Study on semi-active control of mega-sub controlled structure by MR damper subject to random wind loads

    Institute of Scientific and Technical Information of China (English)

    Qin Xiangjun; Zhang Xun'an; Sheldon Cherry

    2008-01-01

    The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-fi'ame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study.

  10. Application of an active controller for reducing small-amplitude vertical vibration in a vehicle seat

    Science.gov (United States)

    Wu, Jian-Da; Chen, Rong-Jun

    2004-07-01

    This report describes the principle and application of active vibration control (AVC) for reducing undesired small-amplitude vertical vibration in the driver's seat of a vehicle. Three different control algorithms are implemented and compared in the experimental investigation. Apart from adaptive control and robust control, a hybrid control algorithm consisting of a combination of an adaptive controller with a filtered-x least mean squares (FXLMS) algorithm and a feedback structure with a robust synthesis theory for obtaining fast convergence and robust performance are proposed. A frequency domain technique is used for achieving the control plant identification and controller design. All of the proposed AVC controllers are implemented in a digital signal processor (DSP) platform, using a finite impulse response (FIR) filter for real-time control. A characteristic analysis and experimental comparison of three control algorithms for reducing the small amplitude vertical vibration in a vehicle seat are also presented in this paper.

  11. An LPV Control Approach for Comfort and Suspension Travel Improvements of Semi-Active Suspension Systems

    OpenAIRE

    Do, Anh Lam; Spelta, Cristiano; Savaresi, Sergio,; Sename, Olivier; Dugard, Luc; Delvecchio, Diego

    2010-01-01

    International audience In this paper, we present a new H¥=LPV control method to improve the trade-off between comfort and suspension travel. Firstly, a semi-active automotive suspension uipped with a nonlinear static semi-active damper is presented. Secondly, the semi-active suspension system is reformulated in the LPV framework which can be handled in a polytopic way. Finally, in numerical analysis, to emphasize the performance of the proposed controller, the end-stop event is introduced....

  12. The Microprocessor controls the activity of mammalian retrotransposons

    DEFF Research Database (Denmark)

    Heras, Sara R.; Macias, Sara; Plass, Mireya;

    2013-01-01

    More than half of the human genome is made of transposable elements whose ongoing mobilization is a driving force in genetic diversity; however, little is known about how the host regulates their activity. Here, we show that the Microprocessor (Drosha-DGCR8), which is required for microRNA biogen......More than half of the human genome is made of transposable elements whose ongoing mobilization is a driving force in genetic diversity; however, little is known about how the host regulates their activity. Here, we show that the Microprocessor (Drosha-DGCR8), which is required for micro......RNA biogenesis, also recognizes and binds RNAs derived from human long interspersed element 1 (LINE-1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions...... of the LINE-1 mRNA can be cleaved in vitro by Drosha. Additionally, we used a cell culture-based assay to show that the Microprocessor negatively regulates LINE-1 and Alu retrotransposition in vivo. Altogether, these data reveal a new role for the Microprocessor as a post-transcriptional repressor...

  13. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  14. Implementation of a Novel Control Strategy Using Fuzzy Logic Controller to Shunt Active Filter for Line Harmonic Reduction

    OpenAIRE

    T Manigandan; N. Senthilnathan

    2012-01-01

    Problem statement: Now days, power quality has been given attention due to the intensive use of power electronic equipments in all types of industries such as steel, paper, textile industries and so on. These power electronic devices induce harmonic distortion into the supply lines which gives rise to many undesirable effects. Approach: This study presents a new method for harmonic and reactive power compensation with a Fuzzy logic controller and a new control algorithm for active power filte...

  15. Design and implementation of linear controllers for the active control of reduced models of thin-walled structures

    OpenAIRE

    Ghareeb, Nader

    2013-01-01

    The main objectives of this work are twofold: 1.) to create reduced models of smart structures that are fully representative and 2.) to design different linear controllers and implement them into the active control of these reduced models. After a short introduction to the theory of piezoelectricity, the reduced model (super element model) is created starting from the finite element model. Damping properties are also calculated and added to the model. The relation between electrical and mecha...

  16. Nuclear Power Plant Control and Instrumentation activities in Czechoslovakia

    International Nuclear Information System (INIS)

    After giving a survey of the Czechoslovak nuclear power plants a description of I and C systems of the operating plants is presented together with a brief outlook for future developments to be implemented at plants which are under construction. Special attention is paid to the adopted techniques for power distribution investigation and control in the WWER 1000 reactor core in the case of load changes. Basic futures of the in-core measurement systems are outlined. Measures implemented in the I and C systems of the operating units to improve their performance are described. Information on the country's approach to NPP personnel training and training aids usage as well as information on development work in the area of surveillance and monitoring systems completes the paper. (author). 9 refs, 1 tab

  17. Active Circulation Control for Horizontal Axis Wind Turbine

    Science.gov (United States)

    Dumitrache, Alexandru; Dumitrescu, Horia; Preotu, Octavian

    2011-09-01

    A based method for modeling the aerodynamics of horizontal axis wind turbine has been developed. Circulation control is implemented by tangentially blowing a small high-velocity jet over a highly curved surface, such as a rounded trailing edge. This causes the boundary layer and the jet sheet to remain attached along the curved surface due to the Coanda effect and causing the jet to turn without separation. This analysis has been validated for the experimental data of a rotor tested at NASA Ames Research Center. Comparisons have been done against measurements for surface pressure distribution, force coefficients normal and tangential to the chord line, torque and root bending moments. This approach for enhancing the circulation around the airfoil sections (and hence L/D and power production) has been examined and found to produce useful increases in power at low wind speeds.

  18. Active control of magneto-hydrodynamic instabilities in hot plasmas

    CERN Document Server

    2015-01-01

    During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity.  However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.

  19. Active control of magneto-hydrodynamic instabilities in hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Igochine, Valentin (ed.) [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2015-04-01

    Written and edited by leading plasma physics researchers. Provides a toolkit for scientists and engineers aiming to optimize plasma performance. Comprehensive treatment of different plasma instabilities. During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity. However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for ''old hands'' and newcomers alike.

  20. Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure

    International Nuclear Information System (INIS)

    A novel active vibration isolation system using negative stiffness structure (active system with NSS) for low excitation frequency ranges (< 5 Hz) is developed successfully. Here, the negative stiffness structure (NSS) is used to minimize the attraction of vibration. Then, the fuzzy sliding mode controller (FSMC) is designed to improve the vibration isolation performance of the active system with NSS. Based on Lyapunov stability theorem, the fuzzy control rules are constructed. Next, the experimental apparatus is built for evaluating the isolation efficiency of the proposed system controlled by the FSMC corresponding to various excitation conditions. In addition, the isolation performance of the active system with NSS, the active system without NSS and the passive the system with NSS is compared. The experimental results confirmed that the active system with NSS gives better isolation efficiency than the active system without NSS and the passive system with NSS in low excitation frequency areas