WorldWideScience

Sample records for activity emg-based control

  1. Multi-subject/daily-life activity EMG-based control of mechanical hands

    Directory of Open Access Journals (Sweden)

    Fiorilla Angelo

    2009-11-01

    Full Text Available Abstract Background Forearm surface electromyography (EMG has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB, as well as a multifingered, multi-degree-of-freedom mechanical hand such as the DLR II. In this paper we extend previous work and investigate the robustness of such fine control possibilities, in two ways: firstly, we conduct an analysis on data obtained from 10 healthy subjects, trying to assess the general applicability of the technique; secondly, we compare the baseline controlled condition (arm relaxed and still on a table with a "Daily-Life Activity" (DLA condition in which subjects walk, raise their hands and arms, sit down and stand up, etc., as an experimental proxy of what a patient is supposed to do in real life. We also propose a cross-subject model analysis, i.e., training a model on a subject and testing it on another one. The use of pre-trained models could be useful in shortening the time required by the subject/patient to become proficient in using the hand. Results A standard machine learning technique was able to achieve a real-time grip posture classification rate of about 97% in the baseline condition and 95% in the DLA condition; and an average correlation to the target of about 0.93 (0.90 while reconstructing the required force. Cross-subject analysis is encouraging although not definitive in its present state. Conclusion Performance figures obtained here are in the same order of magnitude of those obtained in previous work about healthy subjects in controlled conditions and/or amputees, which lets us claim that this technique can be used by reasonably any subject, and in DLA situations. Use of previously trained models is not fully assessed here, but more recent work indicates it is a promising way ahead.

  2. FEATURE EXTRACTION FOR EMG BASED PROSTHESES CONTROL

    Directory of Open Access Journals (Sweden)

    R. Aishwarya

    2013-01-01

    Full Text Available The control of prosthetic limb would be more effective if it is based on Surface Electromyogram (SEMG signals from remnant muscles. The analysis of SEMG signals depend on a number of factors, such as amplitude as well as time- and frequency-domain properties. Time series analysis using Auto Regressive (AR model and Mean frequency which is tolerant to white Gaussian noise are used as feature extraction techniques. EMG Histogram is used as another feature vector that was seen to give more distinct classification. The work was done with SEMG dataset obtained from the NINAPRO DATABASE, a resource for bio robotics community. Eight classes of hand movements hand open, hand close, Wrist extension, Wrist flexion, Pointing index, Ulnar deviation, Thumbs up, Thumb opposite to little finger are taken into consideration and feature vectors are extracted. The feature vectors can be given to an artificial neural network for further classification in controlling the prosthetic arm which is not dealt in this paper.

  3. Surface EMG based muscle activity analysis for aerobic cyclist.

    Science.gov (United States)

    Balasubramanian, Venkatesh; Jayaraman, Srinivasan

    2009-01-01

    In this study, we determined the muscle activity of aerobic cyclist on biceps brachii medial, trapezius medial, latissimus dorsi medial, and erector spinae muscles bilaterally during 30 min of cycling. Thirteen male volunteers were chosen and placed in two groups (with and without low back pain (LBP)). Surface electromyography (sEMG) was recorded bilaterally from selected muscle groups for 30 min of cycling for each subject. Statistical tests were performed to determine the difference in fatigue, using mean power frequency difference. LBP group showed a significantly higher fatigue (p<0.05) in left biceps brachii medial when compared to the control group. High fatigue in the back muscles in the LBP group was not found; however, when linear regression was performed for these individuals, the data showed a possibility of worsening in their condition due to 30 min of cycling.

  4. EMG-Based Neural Network Control of Transhumeral Prostheses

    OpenAIRE

    Pulliam, Christopher L.; Lambrecht, Joris M.; Kirsch, Robert F.

    2011-01-01

    Upper-limb amputation can cause a great deal of functional impairment for patients, particularly for those with amputation at or above the elbow. Our long-term objective is to improve functional outcomes for patients with amputation by integrating a fully implanted electromyographic (EMG) recording system with a wireless telemetry system that communicates with the patient’s prosthesis. We believe that this should generate a scheme that will allow patients to robustly control multiple degrees ...

  5. Task discrimination from myoelectric activity: a learning scheme for EMG-based interfaces.

    Science.gov (United States)

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2013-06-01

    A learning scheme based on Random Forests is used to discriminate the task to be executed using only myoelectric activity from the upper limb. Three different task features can be discriminated: subspace to move towards, object to be grasped and task to be executed (with the object). The discrimination between the different reach to grasp movements is accomplished with a random forests classifier, which is able to perform efficient features selection, helping us to reduce the number of EMG channels required for task discrimination. The proposed scheme can take advantage of both a classifier and a regressor that cooperate advantageously to split the task space, providing better estimation accuracy with task-specific EMG-based motion decoding models, as reported in [1] and [2]. The whole learning scheme can be used by a series of EMG-based interfaces, that can be found in rehabilitation cases and neural prostheses.

  6. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    Science.gov (United States)

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  7. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    Science.gov (United States)

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  8. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Asai

    Full Text Available It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off.

  9. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.

    Science.gov (United States)

    Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin

    2013-01-01

    It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off.

  10. An EMG-based robot control scheme robust to time-varying EMG signal features.

    Science.gov (United States)

    Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2010-05-01

    Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.

  11. Effects of 4-Week Intensive Active-Resistive Training with an EMG-Based Exoskeleton Robot on Muscle Strength in Older People: A Pilot Study.

    Science.gov (United States)

    Son, Jongsang; Ryu, Jeseong; Ahn, Soonjae; Kim, Eun Joo; Lee, Jung Ah; Kim, Youngho

    2016-01-01

    This study aims to investigate the idea that an active-resistive training with an EMG-based exoskeleton robot could be beneficial to muscle strength and antagonist muscle cocontraction control after 4-week intensive elbow flexion/extension training. Three older people over 65 years participated the training for an hour per session and completed total 20 sessions during four weeks. Outcome measures were chosen as the maximum joint torque and cocontraction ratio between the biceps/triceps brachii muscles at pre-/post-training. The Wilcoxon signed-ranks test was performed to evaluate paired difference for the outcome measures. As a result, there was no significant difference in the maximum flexion or extension torque at pre- and post-training. However, the cocontraction ratio of the triceps brachii muscle as the antagonist was significantly decreased by 9.8% after the 4-week intensive training. The active-resistive training with the exoskeleton robot in the older people yielded a promising result, showing significant changes in the antagonist muscle cocontraction.

  12. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.

    Science.gov (United States)

    Nam, Yunjun; Koo, Bonkon; Cichocki, Andrzej; Choi, Seungjin

    2014-02-01

    We present a novel human-machine interface, called GOM-Face , and its application to humanoid robot control. The GOM-Face bases its interfacing on three electric potentials measured on the face: 1) glossokinetic potential (GKP), which involves the tongue movement; 2) electrooculogram (EOG), which involves the eye movement; 3) electromyogram, which involves the teeth clenching. Each potential has been individually used for assistive interfacing to provide persons with limb motor disabilities or even complete quadriplegia an alternative communication channel. However, to the best of our knowledge, GOM-Face is the first interface that exploits all these potentials together. We resolved the interference between GKP and EOG by extracting discriminative features from two covariance matrices: a tongue-movement-only data matrix and eye-movement-only data matrix. With the feature extraction method, GOM-Face can detect four kinds of horizontal tongue or eye movements with an accuracy of 86.7% within 2.77 s. We demonstrated the applicability of the GOM-Face to humanoid robot control: users were able to communicate with the robot by selecting from a predefined menu using the eye and tongue movements.

  13. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats

    Directory of Open Access Journals (Sweden)

    Gad Parag

    2012-06-01

    Full Text Available Abstract Background A complete spinal cord transection results in loss of all supraspinal motor control below the level of the injury. The neural circuitry in the lumbosacral spinal cord, however, can generate locomotor patterns in the hindlimbs of rats and cats with the aid of motor training, epidural stimulation and/or administration of monoaminergic agonists. We hypothesized that there are patterns of EMG signals from the forelimbs during quadrupedal locomotion that uniquely represent a signal for the “intent” to step with the hindlimbs. These observations led us to determine whether this type of “indirect” volitional control of stepping can be achieved after a complete spinal cord injury. The objective of this study was to develop an electronic bridge across the lesion of the spinal cord to facilitate hindlimb stepping after a complete mid-thoracic spinal cord injury in adult rats. Methods We developed an electronic spinal bridge that can detect specific patterns of EMG activity from the forelimb muscles to initiate electrical-enabling motor control (eEmc of the lumbosacral spinal cord to enable quadrupedal stepping after a complete spinal cord transection in rats. A moving window detection algorithm was implemented in a small microprocessor to detect biceps brachii EMG activity bilaterally that then was used to initiate and terminate epidural stimulation in the lumbosacral spinal cord. We found dominant frequencies of 180–220 Hz in the EMG of the forelimb muscles during active periods, whereas these frequencies were between 0–10 Hz when the muscles were inactive. Results and conclusions Once the algorithm was validated to represent kinematically appropriate quadrupedal stepping, we observed that the algorithm could reliably detect, initiate, and facilitate stepping under different pharmacological conditions and at various treadmill speeds.

  14. A Study on EMG-based Biometrics

    Directory of Open Access Journals (Sweden)

    Jin Su Kim

    2017-05-01

    Full Text Available Biometrics is a technology that recognizes user's information by using unique physical features of his or her body such as face, fingerprint, and iris. It also uses behavioral features such as signature, electrocardiogram (ECG, electromyogram (EMG, and electroencephalogram (EEG. Among them, the EMG signal is a sign generated when the muscles move, which can be used in various fields such as motion recognition, personal identification, and disease diagnosis. In this paper, we analyze EMG-based biometrics and implement a motion recognition and personal identification system. The system extracted features using non-uniform filter bank and Waveform Length (WL, and reduces the dimension using Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA. Afterward, it classified the features using Euclidean Distance (ED, Support Vector Machine (SVM and K Nearest Neighbors (KNN. As a result of the motion recognition experiment, 95% of acquired EMG data and 84.66% of UCI data were obtained and as a result of the personal recognition experiment, 85% of acquired EMG data and 88.66% of UCI data were obtained.

  15. Classifying sEMG-based Hand Movements by Means of Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    M. S. Isaković

    2015-06-01

    Full Text Available In order to improve surface electromyography (sEMG based control of hand prosthesis, we applied Principal Component Analysis (PCA for feature extraction. The sEMG data from a group of healthy subjects (downloaded from free Ninapro database comprised the following sets: three grasping, eight wrist, and eleven finger movements. We tested the accuracy of a simple quadratic classifier for two sets of features derived from PCA. Preliminary results suggest that the first two principal components do not guarantee successful hand movement classification. The hand movement classification accuracy significantly increased with using three instead of two features, in all three sets of movements and throughout all subjects.

  16. Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation.

    Science.gov (United States)

    Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Geng, Weidong

    2017-02-24

    High-density surface electromyography (HD-sEMG) is to record muscles' electrical activity from a restricted area of the skin by using two dimensional arrays of closely spaced electrodes. This technique allows the analysis and modelling of sEMG signals in both the temporal and spatial domains, leading to new possibilities for studying next-generation muscle-computer interfaces (MCIs). sEMG-based gesture recognition has usually been investigated in an intra-session scenario, and the absence of a standard benchmark database limits the use of HD-sEMG in real-world MCI. To address these problems, we present a benchmark database of HD-sEMG recordings of hand gestures performed by 23 participants, based on an 8 × 16 electrode array, and propose a deep-learning-based domain adaptation framework to enhance sEMG-based inter-session gesture recognition. Experiments on NinaPro, CSL-HDEMG and our CapgMyo dataset validate that our approach outperforms state-of-the-arts methods on intra-session and effectively improved inter-session gesture recognition.

  17. Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation

    Science.gov (United States)

    Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Geng, Weidong

    2017-01-01

    High-density surface electromyography (HD-sEMG) is to record muscles’ electrical activity from a restricted area of the skin by using two dimensional arrays of closely spaced electrodes. This technique allows the analysis and modelling of sEMG signals in both the temporal and spatial domains, leading to new possibilities for studying next-generation muscle-computer interfaces (MCIs). sEMG-based gesture recognition has usually been investigated in an intra-session scenario, and the absence of a standard benchmark database limits the use of HD-sEMG in real-world MCI. To address these problems, we present a benchmark database of HD-sEMG recordings of hand gestures performed by 23 participants, based on an 8 × 16 electrode array, and propose a deep-learning-based domain adaptation framework to enhance sEMG-based inter-session gesture recognition. Experiments on NinaPro, CSL-HDEMG and our CapgMyo dataset validate that our approach outperforms state-of-the-arts methods on intra-session and effectively improved inter-session gesture recognition. PMID:28245586

  18. Improvements on EMG-based handwriting recognition with DTW algorithm.

    Science.gov (United States)

    Li, Chengzhang; Ma, Zheren; Yao, Lin; Zhang, Dingguo

    2013-01-01

    Previous works have shown that Dynamic Time Warping (DTW) algorithm is a proper method of feature extraction for electromyography (EMG)-based handwriting recognition. In this paper, several modifications are proposed to improve the classification process and enhance recognition accuracy. A two-phase template making approach has been introduced to generate templates with more salient features, and modified Mahalanobis Distance (mMD) approach is used to replace Euclidean Distance (ED) in order to minimize the interclass variance. To validate the effectiveness of such modifications, experiments were conducted, in which four subjects wrote lowercase letters at a normal speed and four-channel EMG signals from forearms were recorded. Results of offline analysis show that the improvements increased the average recognition accuracy by 9.20%.

  19. Tackling speaking mode varieties in EMG-based speech recognition.

    Science.gov (United States)

    Wand, Michael; Janke, Matthias; Schultz, Tanja

    2014-10-01

    An electromyographic (EMG) silent speech recognizer is a system that recognizes speech by capturing the electric potentials of the human articulatory muscles, thus enabling the user to communicate silently. After having established a baseline EMG-based continuous speech recognizer, in this paper, we investigate speaking mode variations, i.e., discrepancies between audible and silent speech that deteriorate recognition accuracy. We introduce multimode systems that allow seamless switching between audible and silent speech, investigate different measures which quantify speaking mode differences, and present the spectral mapping algorithm, which improves the word error rate (WER) on silent speech by up to 14.3% relative. Our best average silent speech WER is 34.7%, and our best WER on audibly spoken speech is 16.8%.

  20. Comparison of an EMG-based and a stress-based method to predict shoulder muscle forces.

    Science.gov (United States)

    Engelhardt, Christoph; Malfroy Camine, Valérie; Ingram, David; Müllhaupt, Philippe; Farron, Alain; Pioletti, Dominique; Terrier, Alexandre

    2015-01-01

    The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior-inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.

  1. Optimal tracking of a sEMG based force model for a prosthetic hand.

    Science.gov (United States)

    Potluri, Chandrasekhar; Anugolu, Madhavi; Yihun, Yimesker; Jensen, Alex; Chiu, Steve; Schoen, Marco P; Naidu, D Subbaram

    2011-01-01

    This paper presents a surface electromyographic (sEMG)-based, optimal control strategy for a prosthetic hand. System Identification (SI) is used to obtain the dynamic relation between the sEMG and the corresponding skeletal muscle force. The input sEMG signal is preprocessed using a Half-Gaussian filter and fed to a fusion-based Multiple Input Single Output (MISO) skeletal muscle force model. This MISO system model provides the estimated finger forces to be produced as input to the prosthetic hand. Optimal tracking method has been applied to track the estimated force profile of the Fusion based sEMG-force model. The simulation results show good agreement between reference force profile and the actual force.

  2. fMRI analysis for motor paradigms using EMG-based designs: a validation study.

    Science.gov (United States)

    van Rootselaar, Anne-Fleur; Renken, Remco; de Jong, Bauke M; Hoogduin, Johannes M; Tijssen, Marina A J; Maurits, Natasha M

    2007-11-01

    The goal of the present validation study is to show that continuous surface EMG recorded simultaneously with 3T fMRI can be used to identify local brain activity related to (1) motor tasks, and to (2) muscle activity independently of a specific motor task, i.e. spontaneous (abnormal) movements. Five healthy participants performed a motor task, consisting of posture (low EMG power), and slow (medium EMG power) and fast (high EMG power) wrist flexion-extension movements. Brain activation maps derived from a conventional block design analysis (block-only design) were compared with brain activation maps derived using EMG-based regressors: (1) using the continuous EMG power as a single regressor of interest (EMG-only design) to relate motor performance and brain activity, and (2) using EMG power variability as an additional regressor in the fMRI block design analysis to relate movement variability and brain activity (mathematically) independent of the motor task. The agreement between the identified brain areas for the block-only design and the EMG-only design was excellent for all participants. Additionally, we showed that EMG power variability correlated well with activity in brain areas known to be involved in movement modulation. These innovative EMG-fMRI analysis techniques will allow the application of novel motor paradigms. This is an important step forward in the study of both the normally functioning motor system and the pathophysiological mechanisms in movement disorders.

  3. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    Science.gov (United States)

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  4. A learning scheme for reach to grasp movements: on EMG-based interfaces using task specific motion decoding models.

    Science.gov (United States)

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S

    2013-09-01

    A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.

  5. Power independent EMG based gesture recognition for robotics.

    Science.gov (United States)

    Li, Ling; Looney, David; Park, Cheolsoo; Rehman, Naveed U; Mandic, Danilo P

    2011-01-01

    A novel method for detecting muscle contraction is presented. This method is further developed for identifying four different gestures to facilitate a hand gesture controlled robot system. It is achieved based on surface Electromyograph (EMG) measurements of groups of arm muscles. The cross-information is preserved through a simultaneous processing of EMG channels using a recent multivariate extension of Empirical Mode Decomposition (EMD). Next, phase synchrony measures are employed to make the system robust to different power levels due to electrode placements and impedances. The multiple pairwise muscle synchronies are used as features of a discrete gesture space comprising four gestures (flexion, extension, pronation, supination). Simulations on real-time robot control illustrate the enhanced accuracy and robustness of the proposed methodology.

  6. A Study of an EMG-Based Exoskeletal Robot for Human Shoulder Motion Support

    Science.gov (United States)

    Kiguchi, Kazuo; Iwami, Koya; Watanabe, Keigo; Fukuda, Toshio

    We have been developing exoskeletal robots in order to realize the human motion support (especially for physically weak people). In this paper, we propose a 2-DOF exoskeletal robot and its method of control to support the human shoulder motion. In this exoskeletal robot, the flexion-extension and abduction-adduction motions of the shoulder are supported by activating the arm holder of the robot, which is atached to the upper arm of the human subject, using wires driven by DC motors. A fuzzy-neuro controller is designed to control the robot according to the skin surface electromyogram(EMG) signals in which the intention of the human subject is reflected. The proposed controller controls the flexion-extension and abduction-adduction motion of the human subject. The effectiveness of the proposed exoskeletal robot has been evaluated experimentally.

  7. Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Luis Manuel Vaca Benitez

    2013-01-01

    Full Text Available The rehabilitation of patients should not only be limited to the first phases during intense hospital care but also support and therapy should be guaranteed in later stages, especially during daily life activities if the patient’s state requires this. However, aid should only be given to the patient if needed and as much as it is required. To allow this, automatic self-initiated movement support and patient-cooperative control strategies have to be developed and integrated into assistive systems. In this work, we first give an overview of different kinds of neuromuscular diseases, review different forms of therapy, and explain possible fields of rehabilitation and benefits of robotic aided rehabilitation. Next, the mechanical design and control scheme of an upper limb orthosis for rehabilitation are presented. Two control models for the orthosis are explained which compute the triggering function and the level of assistance provided by the device. As input to the model fused sensor data from the orthosis and physiology data in terms of electromyography (EMG signals are used.

  8. FMRl analysis for motor paradigms using EMG-Based designs : A validation study

    NARCIS (Netherlands)

    Van Rootselaar, Anne-Fleur; Renken, Remco; De Jong, Bauke M.; Hoogduin, Johannes M.; Tijssen, Marina A. J.; Maurits, Natasha M.

    2007-01-01

    The goal of the present validation study is to show that continuous surface EMG recorded simultaneously with 3T fMRI can be used to identify local brain activity related to (1) motor tasks, and to (2) muscle activity independently of a specific motor task, i.e. spontaneous (abnormal) movements. Five

  9. Trust sensor interface for improving reliability of EMG-based user intent recognition.

    Science.gov (United States)

    Liu, Yuhong; Zhang, Fan; Sun, Yan Lindsay; Huang, He

    2011-01-01

    To achieve natural and smooth control of prostheses, Electromyographic (EMG) signals have been investigated for decoding user intent. However, EMG signals can be easily contaminated by diverse disturbances, leading to errors in user intent recognition and threatening the safety of prostheses users. To address this problem, we propose a trust sensor interface (TSI) that contains 2 modules: (1) abnormality detector that detects diverse disturbances with high accuracy and low latency and (2) trust evaluation that dynamically evaluates the reliability of EMG sensors. Based on the output of the TSI, the user intention recognition (UIR) algorithm is able to dynamically adjust their operations or decisions. Our experiments on an able-bodied subject have demonstrated that the proposed TSI can effectively detect two types of disturbances (i.e. motion artifacts and baseline shifts) and improve the reliability of the UIR.

  10. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  11. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction

    Science.gov (United States)

    Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-01-01

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient’s upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision. PMID:28671632

  12. Active noise control primer

    CERN Document Server

    Snyder, Scott D

    2000-01-01

    Active noise control - the reduction of noise by generating an acoustic signal that actively interferes with the noise - has become an active area of basic research and engineering applications. The aim of this book is to present all of the basic knowledge one needs for assessing how useful active noise control will be for a given problem and then to provide some guidance for designing, setting up, and tuning an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the book is short and descriptive. It leaves for more advanced texts or research monographs all mathematical details and proofs concerning vibrations, signal processing and the like. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include: basic acoustics; human perception and sound; sound intensity...

  13. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees.

    Science.gov (United States)

    Jiang, Ning; Vest-Nielsen, Johnny L G; Muceli, Silvia; Farina, Dario

    2012-06-28

    We propose a method for estimating wrist kinematics during dynamic wrist contractions from multi-channel surface electromyography (EMG). The algorithm extracts features from the surface EMG and uses dedicated multi-layer perceptron networks to estimate individual joint angles of the 3 degrees of freedom (DoFs) of the wrist. The method was designed with the aim of proportional and simultaneous control of multiple DoFs of active prostheses by unilateral amputees. Therefore, the proposed approach was tested in both unilateral transradial amputees and in intact-limbed control subjects. It was shown that the joint angles at the 3 DoFs of amputees can be estimated from surface EMG recordings , during mirrored bi-lateral contractions that simultaneously and proportionally articulated the 3 DoFs. The estimation accuracies of amputee subjects with long stumps were 62.5% ± 8.50% across all 3 DoFs, while accuracies of the intact-limbed control subjects were 72.0% ± 8.29%. The estimation results from intact-limbed subjects were consistent with earlier studies. The results from the current study demonstrated the feasibility of the proposed myoelectric control approach to provide a more intuitive myoelectric control strategy for unilateral transradial amputees.

  14. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees

    Directory of Open Access Journals (Sweden)

    Jiang Ning

    2012-06-01

    Full Text Available Abstract We propose a method for estimating wrist kinematics during dynamic wrist contractions from multi-channel surface electromyography (EMG. The algorithm extracts features from the surface EMG and uses dedicated multi-layer perceptron networks to estimate individual joint angles of the 3 degrees of freedom (DoFs of the wrist. The method was designed with the aim of proportional and simultaneous control of multiple DoFs of active prostheses by unilateral amputees. Therefore, the proposed approach was tested in both unilateral transradial amputees and in intact-limbed control subjects. It was shown that the joint angles at the 3 DoFs of amputees can be estimated from surface EMG recordings , during mirrored bi-lateral contractions that simultaneously and proportionally articulated the 3 DoFs. The estimation accuracies of amputee subjects with long stumps were 62.5% ± 8.50% across all 3 DoFs, while accuracies of the intact-limbed control subjects were 72.0% ± 8.29%. The estimation results from intact-limbed subjects were consistent with earlier studies. The results from the current study demonstrated the feasibility of the proposed myoelectric control approach to provide a more intuitive myoelectric control strategy for unilateral transradial amputees.

  15. Active Flow Control

    Science.gov (United States)

    FFOWCS WILLIAMS, J. E.

    2001-01-01

    This paper considers the two-dimensional problem of a plane vortex sheet disturbed by an impulsive line source. A previous incorrect treatment of this problem is examined in detail. Instabilities of the vortex sheet are triggered by the source and grow exponentially in space and time. The Green function is constructed for the problem and it is shown that a point source properly positioned and delayed will induce a field that cancels the unstable growing modes. The resulting displacement of the vortex sheet is expressed in simple terms. The instabilities are checked by the anti-source which combines with the field of the primary source into a vortex sheet response which decays with time at large time. This paper is a contribution to the study of active control of shear layer instabilities, the main contribution being to clear up a previous paper with peculiar results that are, in fact, wrong.

  16. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  17. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the...

  18. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the operational...

  19. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  20. Preliminary study on proportional and simultaneous estimation of hand posture using surface EMG based on synergy concept.

    Science.gov (United States)

    Li, Shunchong; Chen, Xingyu; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Most of current myoelectric prostheses are using sequential and on-off control strategy within pattern classification framework, which is of robustness. But it is not a natural neuromuscular control scheme. On the other hand, there are two difficulties to control the prosthesis proportionally and simultaneously. First, human hand is high dimensional with more than 20 degrees-of-freedom (DOFs); Second, extracting such control information from EMG is hard due to signal crosstalk and noises. This paper is aimed at proposing a new method for proportional and simultaneous myoelectric control, taking advantage of synergy concept. The hand motion and corresponding forearm EMG signals were collected simultaneously. Principal component analysis (PCA) is used to reduce hand motion dimension. And support vector regression (SVR) is adopted to build the connection between hand posture and EMG. Offline analysis validated the effectiveness of this method, and preliminary and positive results have been obtained.

  1. Automaticity or active control

    DEFF Research Database (Denmark)

    Tudoran, Ana Alina; Olsen, Svein Ottar

    This study addresses the quasi-moderating role of habit strength in explaining action loyalty. A model of loyalty behaviour is proposed that extends the traditional satisfaction–intention–action loyalty network. Habit strength is conceptualised as a cognitive construct to refer to the psychologic......, respectively, between intended loyalty and action loyalty. At high levels of habit strength, consumers are more likely to free up cognitive resources and incline the balance from controlled to routine and automatic-like responses.......This study addresses the quasi-moderating role of habit strength in explaining action loyalty. A model of loyalty behaviour is proposed that extends the traditional satisfaction–intention–action loyalty network. Habit strength is conceptualised as a cognitive construct to refer to the psychological...... aspects of the construct, such as routine, inertia, automaticity, or very little conscious deliberation. The data consist of 2962 consumers participating in a large European survey. The results show that habit strength significantly moderates the association between satisfaction and action loyalty, and...

  2. EMG-Based Continuous and Simultaneous Estimation of Arm Kinematics in Able-Bodied Individuals and Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-08-01

    Full Text Available Among the potential biological signals for human-machine interactions (brain, nerve, and muscle signals, electromyography (EMG widely used in clinical setting can be obtained non-invasively as motor commands to control movements. The aim of this study was to develop a model for continuous and simultaneous decoding of multi-joint dynamic arm movements based on multi-channel surface EMG signals crossing the joints, leading to application of myoelectrically controlled exoskeleton robots for upper-limb rehabilitation. Twenty subjects were recruited for this study including 10 stroke subjects and 10 able-bodied subjects. The subjects performed free arm reaching movements in the horizontal plane with an exoskeleton robot. The shoulder, elbow and wrist movements and surface EMG signals from six muscles crossing the three joints were recorded. A non-linear autoregressive exogenous (NARX model was developed to continuously decode the shoulder, elbow and wrist movements based solely on the EMG signals. The shoulder, elbow and wrist movements were decoded accurately based only on the EMG inputs in all the subjects, with the variance accounted for (VAF > 98% for all three joints. The proposed approach is capable of simultaneously and continuously decoding multi-joint movements of the human arm by taking into account the non-linear mappings between the muscle EMGs and joint movements, which may provide less effortful control of robotic exoskeletons for rehabilitation training of individuals with neurological disorders and arm impairment.

  3. Training-related changes in the EMG-moment relationship during isometric contractions: Further evidence of improved control of muscle activation in strength-trained men?

    Science.gov (United States)

    Amarantini, David; Bru, Bertrand

    2015-08-01

    The possibility of using electromyography (EMG) to track muscle activity has raised the question of its relationship with the effort exerted by the muscles around the joints. However, the EMG-moment relationship is yet to be fully defined, and increasing knowledge of this topic could contribute to research in motor control and to the development of EMG-based algorithms and devices. With regards the training-related adaptations at the peripheral and central level, the present study investigated the effect of strength training on EMG-moment relationship. Our aim was to clarify its nature and gain further understanding of how morphological and neural factors may affect its form. The EMG-moment relationship was determined during knee flexion and extension isometric contractions performed by strength-trained male athletes and untrained male participants. The results showed that strength training induced linearity of the EMG-moment relationship concomitantly with enhanced maximum force production capacity and decreased co-activation of knee agonist-antagonist muscle pair. These results clarified discordant results regarding the linear or curved nature of the EMG-moment in isometric conditions and suggested that the remarkable linearity of the EMG-moment found in trained participants could indicate improved control of muscle activation.

  4. Demonstration of Active Combustion Control

    Science.gov (United States)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  5. Fractional active disturbance rejection control.

    Science.gov (United States)

    Li, Dazi; Ding, Pan; Gao, Zhiqiang

    2016-05-01

    A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme.

  6. Voluntary control of electrogastric activity.

    Science.gov (United States)

    Walker, B B; Lawton, C A; Sandman, C A

    1978-12-01

    The tonic component of the electrogastrogram (EGG) has been shown to differentiate duodenal ulcer patients from healthy individuals (15). It has therefore been of considerable interest to investigate the possibility that individuals can learn to modify electrogastric activity. Using a discriminative conditioning paradigm with analogue feedback (Experiment I), subjects were generally unsuccessful at controlling tonic EGG activity. However, when the conditioning paradigm was altered (Experiment II) it was clear that subjects were able to modify specific electrogastric changes. In addition to EGG, heart rate, respiration, abdominal muscle activity, and digital blood flow were measured in order to assess the physiological concomitants of learned control of gastrointestinal activity. Subjects who evidenced discriminative control also showed the least amount of abdominal muscle activity and reported being the most relaxed. The results of these studies suggest that exploration of the physiological processes underlying the electrical activity of the gastrointestinal system and the ability of individuals to modify this activity may lead to significant clinical and theoretical advances.

  7. Extended Active Disturbance Rejection Controller

    Science.gov (United States)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  8. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model...... validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models...

  9. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  10. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  11. Developing Internal Controls through Activities

    Science.gov (United States)

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  12. Developing Internal Controls through Activities

    Science.gov (United States)

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  13. Active Control of Open Cavities

    Science.gov (United States)

    UKeiley, Lawrence

    2010-01-01

    Open loop edge blowing was demonstrated as an effective method for reducing the broad band and tonal components of the fluctuating surface pressure in open cavities. Closed loop has been successfully applied to low Mach number open cavities. Need to push actuators that are viable for closed loop control in bandwidth and output. Need a better understanding of the effects of control on the flow through detailed measurements so better actuation strategies can be developed.

  14. Vibration control of active structures an introduction

    CERN Document Server

    Preumont, Andre

    2002-01-01

    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  15. Active Compliance And Damping In Telemanipulator Control

    Science.gov (United States)

    Kim, Won S.; Bejczy, Antal K.; Hannaford, Blake

    1991-01-01

    Experimental telemanipulator system of force-reflecting-hand-controller type provides for active compliance and damping in remote, robotic manipulator hand. Distributed-computing and -control system for research in various combinations of force-reflecting and active-compliance control regimes. Shared compliance control implemented by low-pass-filtered force/torque feedback. Variable simulated springs and shock absorbers soften collisions and increase dexterity.

  16. An Improved Production Activity Control Architecture for Shop Floor Control

    Institute of Scientific and Technical Information of China (English)

    SHAHIDIkramullahButt; SUNHou-fang; HAMIDUllahKhanNiazi

    2005-01-01

    This paper presents a further improved Production Activity Control Architecture to deal with the complexity of information by creating Sub-Producers and Sub-Movers which will not only give a better control at workstation level but also reduce load on the Dispatcher. It also makes an analysis of the basic and improved PAC (Production Activity Control) Architecture in the Control System for Integrated Manufacturing. The PAC Architecture and the improvement will further enhance the flexibility and adaptability of the architecture in the ever changing environment of the Shop Floor Control (SFC) Systems.

  17. Automobile active suspension system with fuzzy control

    Institute of Scientific and Technical Information of China (English)

    刘少军; 黄中华; 陈毅章

    2004-01-01

    A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.

  18. SLIDING MODE CONTROL FOR ACTIVE AUTOMOBILE SUSPENSIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Nonlinear control methods are presented based on theory of sliding mode control (SMC) or variable structure control (VSC) for application to active automobile suspensions. Requirements of reducing manufacturing cost and energy consumption of the active suspension system may be satisfiedby reasonable design of the sliding surface and hydraulic servo system. Emphasis is placed on the study of the discrete sliding mode control method (DSMC) applicable for a new sort of speed on-off solenoid valves of anti-dust capability and low price. Robustness and effectiveness of the feedback linearized controller in typical road conditions are demonstrated by numerical results fora quarter-car suspension model.

  19. Activities of the control services; Activites des services du controle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper summarizes the control activities of the technical service of electric power and big dams: annual examinations, administrative instructions (draining, floods, granting renewal), decennial examinations etc. (J.S.)

  20. Active Control of Fan Noise

    Institute of Scientific and Technical Information of China (English)

    Nobuhiko YAMASAKI; Hirotoshi TAJIMA

    2008-01-01

    In the wake-rotor interaction fan noise, a number of the interacting modes at the blade passing frequency (BPF)and its harmonics are generated which are prescribed by the number of stator and rotor blades etc. In the present study, the dominant mode is tried to be suppressed by the secondary sound from the loudspeaker actuators. One of the novel features of the present system is the adoption of the control board with the Field Programmable Gate Array (FPGA) hardware and the LabVIEW software to synchronize the circumferentially installed loudspeaker actuators with the relative location of rotational blades under arbitrary fan rotational speeds. The experiments were conducted under the conditions of three rotational speeds of 2004, 3150, and 4002 [rpm]. The reduction in the sound pressure level (SPL) was observed for all three rotational speeds. The sound pressure level at the BPF was reduced approximately 13 [dB] for 2004 [rpm] case, but not so large reduction was attained for other cases probably due to the inefficiency of the loudspeaker actuators at high frequencies

  1. Active load control techniques for wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  2. Classifying controllers by activities : An exploratory study

    NARCIS (Netherlands)

    Verstegen, B.; De Loo, I.G.M.; Mol, P.; Slagter, K.; Geerkens, H.

    2007-01-01

    The goal of this paper is to discern variables (triggers) that affect a controller’s role in an organisation. Using survey data, groups of controllers are distinguished based on coherent combinations of activities. We find that controllers either operate as so-called ‘information adapters’ or ‘watch

  3. Active and passive vibration control of structures

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2014-01-01

    Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory.  Also links between the different applications in structural control are shown.

  4. Foundations of Active Control - Active Noise Reduction Helmets

    DEFF Research Database (Denmark)

    Elmkjær, Torsten Haaber Leth

    2008-01-01

    This Ph.D. thesis includes fundamental considerations about topologies, algorithms, implementations, methods etc., that can enter in the next generation of active control (AC) systems. Specifically, a new variant of feedforward control referred to as confined feedforward active control (CFFAC......-output (MIMO) system that facilitates both feedforward and feedback control. The general system is then referred to as hybrid MIMO confined-feedforward feedback (HMIMOCFFFB) active noise reduction (ANR) system. The investigation of a multi-channel ANR system with hybrid feedforward and feedback topologies...... be computational intensive takes place at an even slower sampling rate hereby relaxing the requirements on a high bandwidth. It is demonstrated that computational savings as high as 40% can be achieved in a 192, 24, 3 kHz triple-rate system as compared with a 24 kHz single-rate system without sacrificing the ANR...

  5. THE CONTROL AND EVALUATION OF PROMOTIONAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Felicia Sabou

    2012-01-01

    Full Text Available The paper focused on importance and benefits of control and evaluation of marketing activities. The control of efficiency review the assessment of the resources for marketing activity, checking also the efficiency of the human resources, advertising, promotion activities and distribution activities. In the analyse of human resources the most important ratio are: the average of costumers visits on a day, the number of custom order received from 100 visits, the number of new customers from a period, the number of lost customers from a period, the marketing human expenditures from all the sales.The strategic control is made to check if the objectives and the company strategy are adapted to the marketing environment.

  6. Active control of robot manipulator compliance

    Science.gov (United States)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  7. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  8. Simulation studies for multichannel active vibration control

    Science.gov (United States)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.

    2003-10-01

    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  9. Active control for performance enhancement of electrically controlled rotor

    Institute of Scientific and Technical Information of China (English)

    Lu Yang; Wang Chao

    2015-01-01

    Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor-mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor perfor-mance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3%rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  10. Electromyographic Control of a Hands-Free Electrolarynx Using Neck Strap Muscles

    Science.gov (United States)

    Kubert, Heather L.; Stepp, Cara E.; Zeitels, Steven M.; Gooey, John E.; Walsh, Michael J.; Prakash, S. R.; Hillman, Robert E.; Heaton, James T.

    2009-01-01

    Three individuals with total laryngectomy were studied for their ability to control a hands-free electrolarynx (EL) using neck surface electromyography (EMG) for on/off and pitch modulation. The laryngectomy surgery of participants was modified to preserve neck strap musculature for EMG-based EL control (EMG-EL), with muscles on one side…

  11. Electromyographic Control of a Hands-Free Electrolarynx Using Neck Strap Muscles

    Science.gov (United States)

    Kubert, Heather L.; Stepp, Cara E.; Zeitels, Steven M.; Gooey, John E.; Walsh, Michael J.; Prakash, S. R.; Hillman, Robert E.; Heaton, James T.

    2009-01-01

    Three individuals with total laryngectomy were studied for their ability to control a hands-free electrolarynx (EL) using neck surface electromyography (EMG) for on/off and pitch modulation. The laryngectomy surgery of participants was modified to preserve neck strap musculature for EMG-based EL control (EMG-EL), with muscles on one side…

  12. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  13. Smart actuators for active vibration control

    Science.gov (United States)

    Pourboghrat, Farzad; Daneshdoost, Morteza

    1998-07-01

    In this paper, the design and implementation of smart actuators for active vibration control of mechanical systems are considered. A smart actuator is composed of one or several layers of piezo-electric materials which work both as sensors and actuators. Such a system also includes micro- electronic or power electronic amplifiers, depending on the power requirements and applications, as well as digital signal processing systems for digital control implementation. In addition, PWM type micro/power amplifiers are used for control implementation. Such amplifiers utilize electronic switching components that allow for miniaturization, thermal efficiency, cost reduction, and precision controls that are robust to disturbances and modeling errors. An adaptive control strategy is then developed for vibration damping and motion control of cantilever beams using the proposed smart self-sensing actuators.

  14. JCMT active surface control system: implementation

    Science.gov (United States)

    Smith, Ian A.

    1998-05-01

    The James Clerk Maxwell Telescope on the summit of Mauna Kea in Hawaii is a 15 meter sub-millimeter telescope which operates in the 350 microns to 2 millimeter region. The primary antenna surface consists of 276 panels, each of which is positioned by 3 stepper motors. In order to achieve the highest possible surface accuracy we are embarking upon a project to actively control the position of the panels adjuster system is based on a 6809 micro connected to the control computer by a GPIB interface. This system is slow and inflexible and it would prove difficult to build an active surface control system with it. Part of the upgrade project is to replace the existing micro with a 68060 VME micro. The poster paper will describe how the temperature of the antenna is monitored with the new system, how a Finite Element Analyses package transforms temperature changes into a series of panel adjuster moves, and how these moves are then applied to the surface. The FEA package will run on a high end Sun workstation. A series of DRAMA tasks distributed between the workstation and the Baja 68060 VxWorks Active Surface Control System micro will control the temperature monitoring, FEA and panel adjustment activities. Users can interact with the system via a Tcl/TK based GUI.

  15. Active steering control strategy for articulated vehicles

    Institute of Scientific and Technical Information of China (English)

    Kyong-il KIM; Hsin GUAN; Bo WANG; Rui GUO; Fan LIANG

    2016-01-01

    To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator (LQR) theory. First, a three-degree-of-freedom (3-DOF) model of the tractor-trailer with steered trailer axles is built. The simulated annealing particle swarm optimization (SAPSO) algorithm is applied to identify the key parameters of the model under specified vehicle speed and steering wheel angle. Thus, the key pa-rameters of the simplified model can be obtained according to the vehicle conditions using an online look-up table and interpola-tion. Simulation results show that vehicle parameter outputs of the simplified model and TruckSim agree well, thus providing the ideal reference yaw rate for the controller. Then the active steering controller of the tractor and trailer based on LQR is designed to follow the desired yaw rate and minimize their side-slip angle of the center of gravity (CG) at the same time. Finally, simulation tests at both low speed and high speed are conducted based on the TruckSim-Simulink program. The results show significant effects on the active steering controller on improving maneuverability at low speed and lateral stability at high speed for the articulated vehicle. The control strategy is applicable for steering not only along gentle curves but also along sharp curves.

  16. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  17. Piezoelectric Power Requirements for Active Vibration Control

    Science.gov (United States)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  18. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    2010-01-01

    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...

  19. A real-time pinch-to-zoom motion detection by means of a surface EMG-based human-computer interface.

    Science.gov (United States)

    Kim, Jongin; Cho, Dongrae; Lee, Kwang Jin; Lee, Boreom

    2014-12-29

    In this paper, we propose a system for inferring the pinch-to-zoom gesture using surface EMG (Electromyography) signals in real time. Pinch-to-zoom, which is a common gesture in smart devices such as an iPhone or an Android phone, is used to control the size of images or web pages according to the distance between the thumb and index finger. To infer the finger motion, we recorded EMG signals obtained from the first dorsal interosseous muscle, which is highly related to the pinch-to-zoom gesture, and used a support vector machine for classification between four finger motion distances. The powers which are estimated by Welch's method were used as feature vectors. In order to solve the multiclass classification problem, we applied a one-versus-one strategy, since a support vector machine is basically a binary classifier. As a result, our system yields 93.38% classification accuracy averaged over six subjects. The classification accuracy was estimated using 10-fold cross validation. Through our system, we expect to not only develop practical prosthetic devices but to also construct a novel user experience (UX) for smart devices.

  20. A Real-Time Pinch-to-Zoom Motion Detection by Means of a Surface EMG-Based Human-Computer Interface

    Directory of Open Access Journals (Sweden)

    Jongin Kim

    2014-12-01

    Full Text Available In this paper, we propose a system for inferring the pinch-to-zoom gesture using surface EMG (Electromyography signals in real time. Pinch-to-zoom, which is a common gesture in smart devices such as an iPhone or an Android phone, is used to control the size of images or web pages according to the distance between the thumb and index finger. To infer the finger motion, we recorded EMG signals obtained from the first dorsal interosseous muscle, which is highly related to the pinch-to-zoom gesture, and used a support vector machine for classification between four finger motion distances. The powers which are estimated by Welch’s method were used as feature vectors. In order to solve the multiclass classification problem, we applied a one-versus-one strategy, since a support vector machine is basically a binary classifier. As a result, our system yields 93.38% classification accuracy averaged over six subjects. The classification accuracy was estimated using 10-fold cross validation. Through our system, we expect to not only develop practical prosthetic devices but to also construct a novel user experience (UX for smart devices.

  1. Active Noise Control for Dishwasher noise

    Science.gov (United States)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  2. Active vibration isolation by adaptive proportional control

    Science.gov (United States)

    Liu, Yun-Hui; Wu, Wei-Hao; Chu, Chih-Liang

    2013-01-01

    An active vibration isolation system that applies proportional controller incorporated with an adaptive filter to reduce the transmission of base excitations to a precision instrument is proposed in this work. The absolute vibration velocity signal acquired from an accelerator and being processed through an integrator is input to the controller as a feedback signal, and the controller output signal drives the voice coil actuator to produce a sky-hook damper force. In practice, the phase response of integrator at low frequency such as 2~5 Hz deviate from the 90 degree which is the exact phase difference between the vibration velocity and acceleration. Therefore, an adaptive filter is used to compensate the phase error in this paper. An analysis of this active vibration isolation system is presented, and model predictions are compared to experimental results. The results show that the proposed method significantly reduces transmissibility at resonance without the penalty of increased transmissibility at higher frequencies.

  3. Active control of multiple resistive wall modes

    Science.gov (United States)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  4. Controller modification applied for active fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob; Poulsen, Niels Kjølstad

    2014-01-01

    This paper is focusing on active fault detection (AFD) for parametric faults in closed-loop systems. This auxiliary input applied for the fault detection will also disturb the external output and consequently reduce the performance of the controller. Therefore, only small auxiliary inputs are used...... with the result that the detection and isolation time can be long. In this paper it will be shown, that this problem can be handled by using a modification of the feedback controller. By applying the YJBK-parameterization (after Youla, Jabr, Bongiorno and Kucera) for the controller, it is possible to modify...... the feedback controller with a minor effect on the external output in the fault free case. Further, in the faulty case, the signature of the auxiliary input can be optimized. This is obtained by using a band-pass filter for the YJBK parameter that is only effective in a small frequency range where...

  5. Control Systems Cyber Security Standards Support Activities

    Energy Technology Data Exchange (ETDEWEB)

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  6. Active vibration control of nonlinear benchmark buildings

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xing-de; CHEN Dao-zheng

    2007-01-01

    The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile,the controllers designed directly by the nonlinear control strategy have a high order, and they are difficult to be applied actually. Therefore, a new active vibration control way which fits the nonlinear buildings is proposed. The idea of the proposed way is based on the model identification and structural model linearization, and exerting the control force to the built model according to the force action principle. This proposed way has a better practicability as the built model can be reduced by the balance reduction method based on the empirical Grammian matrix. A three-story benchmark structure is presented and the simulation results illustrate that the proposed method is viable for the civil engineering structures.

  7. Dynamic Discontinuous Control for Active Control of Mechanical Vibrations

    Directory of Open Access Journals (Sweden)

    Orestes Llanes Santiago

    2010-02-01

    Full Text Available This article shows the use of the discontinuous control using dynamic sliding modes for the active isolation of vibrations in mechanical systems. This type of control law constitutes a robust feedback control policy due to its insensitivity to external disturbance inputs, certain immunity to model parameter variations, within known bounds, and to the ever present modelling errors.  The whole theoretical analysis is applied to a lineal model of two degrees of freedom of the vehicle's suspension where the irregularities of the land represent of direct  way the external interferences to the system . To carry out the isolation an electro-hydraulic operator it is used. Simulations are performed which validate the proposed approach.

  8. Active vibration control using DEAP actuators

    Science.gov (United States)

    Sarban, Rahimullah; Jones, Richard W.

    2010-04-01

    Dielectric electro-active polymer (DEAP) is a new type of smart material, which has the potential to be used to provide effective actuation for a wide range of applications. The properties of DEAP material place it somewhere between those of piezoceramics and shape memory alloys. Of the range of DEAP-based actuators that have been developed those having a cylindrical configuration are among the most promising. This contribution introduces the use of a tubular type DEAP actuator for active vibration control purposes. Initially the DEAP-based tubular actuator to be used in this study, produced by Danfoss PolyPower A/S, is introduced along with the static and dynamic characteristics. Secondly an electromechanical model of the tubular actuator is briefly reviewed and its ability to model the actuator's hysteresis characteristics for a range of periodic input signals at different frequencies demonstrated. The model will be used to provide hysteresis compensation in future vibration isolation studies. Experimental active vibration control using the actuator is then examined, specifically active vibration isolation of a 250 g mass subject to shaker generated 'ground vibration'. An adaptive feedforward control strategy is used to achieve this. The ability of the tubular actuator to reject both tonal and broadband random vibratory disturbances is then demonstrated.

  9. Robust Active Damping Control of LCL Filtered Grid Connected Converter Based Active Disturbance Rejection Control

    DEFF Research Database (Denmark)

    Abdeldjabar, Benrabah; Xu, Dianguo; Wang, Xiongfei;

    2016-01-01

    This paper deals with the problem of LCL filter resonance in grid connected inverter control. The system equations are reformulated to allow the application of the active disturbance rejection control (ADRC). The resonance, assumed unknown, is treated as a disturbance, then estimated and mitigated....... By using this new robust control, a high level of performance is achieved with a minimum complexity in the controller design, and without any adaptive algorithm. It is demonstrated that the true quality of the control system is obtained by the proposed solution. Furthermore, it is shown that this control...... is robust against parameter variations and disturbances....

  10. Jacket Substructure Fatigue Mitigation through Active Control

    DEFF Research Database (Denmark)

    Hanis, Tomas; Natarajan, Anand

    2014-01-01

    As offshore wind farms are being installed farther and in deeper waters offshore, new, and more sophisticated marine substructures such as jackets need to be used. Herein, a 10MW wind turbine mounted on a jacket sub structure at a mean water depth of 50 meters is investigated with regards...... to the fatigue design loads on the braces of the jacket. Since large wind turbines of 10MW rating have low rotor speeds (p), the modal frequencies of the sub structures approach 3p at low wind speeds, which leads to a modal coupling and resonance. Therefore an active control system is developed which provides...... sufficient structural damping and consequently a fatigue reduction at the substructure. The resulting reduction in fatigue design loads on the jacket structure based on the active control system is presented....

  11. Internal Model Based Active Disturbance Rejection Control

    OpenAIRE

    Pan, Jinwen; Wang, Yong

    2016-01-01

    The basic active disturbance rejection control (BADRC) algorithm with only one order higher extended state observer (ESO) proves to be robust to both internal and external disturbances. An advantage of BADRC is that in many applications it can achieve high disturbance attenuation level without requiring a detailed model of the plant or disturbance. However, this can be regarded as a disadvantage when the disturbance characteristic is known since the BADRC algorithm cannot exploit such informa...

  12. NANOROBOTS CONTROL ACTIVATION FOR STENOSED CORONARY OCCLUSION

    OpenAIRE

    Christo Ananth; R.K. Shunmuga Priya; T.Rashmi Anns; S.Kadhirunnisa

    2017-01-01

    This paper presents the study of nanorobots control activation for stenosed coronary occlusion, with the practical use of chemical and thermal gradients for biomedical problems. The recent developments on nanotechnology new materials allied with electronics device miniaturization may enable nanorobots for the next few years. New possibilities for medicine are expected with the development of nanorobots. It may help to advance the treatment of a wide number ...

  13. Active Control of Shear Thickening in Suspensions

    CERN Document Server

    Lin, Neil Y C; Cates, Michael E; Sun, Jin; Cohen, Itai

    2016-01-01

    Shear thickening, an increase of viscosity with shear rate, is a ubiquitous phenomena in suspended materials that has implications for broad technological applications. Controlling this thickening behavior remains a major challenge and has led to empirical strategies ranging from altering the particle surfaces and shape to modifying the solvent properties. However, none of these methods allow for active control of flow properties during shear itself. Here, we demonstrate that by strategic imposition of a high-frequency and low-amplitude shear perturbation orthogonal to the primary shearing flow, we can largely eradicate shear thickening. The orthogonal shear effectively becomes a regulator for controlling thickening in the suspension, allowing the viscosity to be reduced by up to two decades on demand. In a separate setup, we show that such effects can be induced by simply agitating the sample transversely to the primary shear direction. Overall, the ability of in situ manipulation of shear thickening paves a...

  14. Control of ovarian primordial follicle activation

    Science.gov (United States)

    2012-01-01

    The ovarian follicles develop initially from primordial follicles. The majority of ovarian primordial follicles are maintained quiescently as a reserve for the reproductive life span. Only a few of them are activated and develop to an advanced follicular stage. The maintenance of dormancy and activation of primordial follicles are controlled by coordinated actions of a suppressor/activator with close communications with somatic cells and intra-oocyte signaling pathways. Many growth factors and signaling pathways have been identified and the transforming growth factor-beta superfamily plays important roles in early folliculogenesis. However, the mechanism of maintaining the dormancy and survival of primordial follicles has remained unknown for decades. Recently, since the first finding that all primordial follicles are activated prematurely in mice deficient forkhead box O3a, phosphatidylinositol 3 kinase/phosphatase and tensin homolog (PTEN) signaling pathway was reported to be important in the regulation of dormancy and initial follicular activation. With these informations on early folliculogenesis, clinical application can be expected such as in vitro maturation of immature oocytes or in vitro activation of follicles by PTEN inhibitor in cryopreserved ovarian cortical tissues for fertility preservation. PMID:22563545

  15. Local flow control for active building facades

    Science.gov (United States)

    Kaligotla, Srikar; Chen, Wayne; Glauser, Mark

    2010-11-01

    Existing building facade designs are for a passive and an impermeable shell to prevent migration of outdoor air into the building and to control heat transfers between the exterior environment and the building interior. An active facade that can respond in real time to changing environmental conditions like wind speed and direction, pollutant load, temperature, humidity and light can lower energy use and maximize occupant comfort. With an increased awareness of cost and environmental effects of energy use, cross or natural ventilation has become an attractive method to lower energy use. Separated flow regions around such buildings are undesirable due to high concentration of pollutants, especially if the vents or dynamic windows for cross ventilation are situated in these regions. Outside pollutant load redistribution through vents can be regulated via flow separation control to minimize transport of pollutants into the building. Flow separation has been substantially reduced with the application of intelligent flow control tools developed at Syracuse University for flow around "silo" (turret) like structures. Similar flow control models can be introduced into buildings with cross ventilation for local external flow separation control. Initial experiments will be performed for turbulent flow over a rectangular block (scaled to be a mid-rise building) that has been configured with dynamic vents and unsteady suction actuators in a wind tunnel at various wind speeds.

  16. Active Displacement Control of Active Magnetic Bearing System

    Directory of Open Access Journals (Sweden)

    Kertész Milan

    2014-12-01

    Full Text Available The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES. The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL. APDL is used to create the loops of transient simulations where boundary conditions (BC are updated based upon a “gap sensor” which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  17. Active Displacement Control of Active Magnetic Bearing System

    Science.gov (United States)

    Kertész, Milan; Kozakovič, Radko; Magdolen, Luboš; Masaryk, Michal

    2014-12-01

    The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES). The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL). APDL is used to create the loops of transient simulations where boundary conditions (BC) are updated based upon a "gap sensor" which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  18. Control concepts for active magnetic bearings

    Science.gov (United States)

    Siegwart, Roland; Vischer, D.; Larsonneur, R.; Herzog, R.; Traxler, Alfons; Bleuler, H.; Schweitzer, G.

    1992-01-01

    Active Magnetic Bearings (AMB) are becoming increasingly significant for various industrial applications. Examples are turbo-compressors, centrifuges, high speed milling and grinding spindles, vibration isolation, linear guides, magnetically levitated trains, vacuum and space applications. Thanks to the rapid progress and drastic cost reduction in power- and micro-electronics, the number of AMB applications is growing very rapidly. Industrial uses of AMBs leads to new requirements for AMB-actuators, sensor systems, and rotor dynamics. Especially desirable are new and better control concepts to meet demand such as low cost AMB, high stiffness, high performance, high robustness, high damping up to several kHz, vibration isolation, force-free rotation, and unbalance cancellation. This paper surveys various control concepts for AMBs and discusses their advantages and disadvantages. Theoretical and experimental results are presented.

  19. Active Control of Long Bridges Using Flaps

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle

    The main problem in designing ultra-long span suspension bridges is flutter. A solution to this problem might be to introduce an active flap control system to increase the flutter wind velocity. The investigated flap control system consists of flaps integrated in the bridge girder so each flap...... is the streamlined part of the edge of the girder. Additional aerodynamic derivatives are shown for the flaps and it is shown how methods already developed can be used to estimate the flutter wind velocity for a bridge section with flaps. As an example, the flutter wind velocity is calculated for different flap...... configurations for a bridge section model by using aerodynamic derivatives for a flat plate. The example shows that different flap configurations can either increase or decrease the flutter wind velocity. for optimal flap configurations flutter will not occur....

  20. Coordinated Voltage Control of Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Xie Jiang

    2016-01-01

    Full Text Available This paper presents a centralized coordinated voltage control method for active distribution network to solve off-limit problem of voltage after incorporation of distributed generation (DG. The proposed method consists of two parts, it coordinated primal-dual interior point method-based voltage regulation schemes of DG reactive powers and capacitors with centralized on-load tap changer (OLTC controlling method which utilizes system’s maximum and minimum voltages, to improve the qualified rate of voltage and reduce the operation numbers of OLTC. The proposed coordination has considered the cost of capacitors. The method is tested using a radial edited IEEE-33 nodes distribution network which is modelled using MATLAB.

  1. Active noise control technology. Active soon seigyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, M.; Kokubo, F.; Tanaka, S.; Yao, K. (Sharp Corp., Osaka (Japan))

    1994-05-10

    The signal processing method of the Active Noise Control (ANC) system was studied. The principle of ANC is to output secondary sound waves having opposite phase, identical amplitude from the control point of the sound wave of the primary sound source, and eliminate the noise by interference. As application fields, there are air conditioner ducts and compressors as one dimensional noise source, and automobile and axial fan as three dimensional noise source. In order to improve the stability of coefficient renewal algorithm of Adaptive Digital Filter (ADF), for generation of opposite phase noise, DC-LMS algorithm which can control the rise in gain of specified frequency zone was proposed. Furthermore, with the purpose of reducing the amount of operation, the introduction of lattice type AR filter was tested for the stability of the filter in IIR-ADF (Infinite Impulse Response Adaptive Digital Filter) and its application process. The applicability studies of these improved methods on the noise inside of ducts were actually measured, and the effect was verified. For the multi-channel control of 3 dimensional noise source, reference scanning method to reduce the filter operation was proposed. In the partial space noise eliminating experiment, it was made clear that it possesses equivalent effect to error scanning method. 11 refs., 14 figs., 1 tab.

  2. Actively-controlled Beds for Ambulances

    Institute of Scientific and Technical Information of China (English)

    Takahiko Ono; Hikaru Inooka

    2009-01-01

    During transportation by ambulance,a patient is exposed to inertial acceleration when an ambulance decelerates or turns a corner.Such acceleration often gives a patient physical stress such as blood pressure variation or body sway,which causes strong pain,feeling of discomfort or sometimes critical damage for seriously injured persons.To reduce this undesirable effect of the acceleration,the authors developed the actively-controlled bed (ACB) which controls the posture of a stretcher in real time to reduce foot-to-head and lateral acceleration acting on a supine person.This paper describes development of the ACB,including control system design and performance evaluation.The control system is designed by Zakian's framework,which comprises the principle of matching and the method of inequalities,so that the design specifications on the tracking error and the motor torque are satisfied.From the results of driving experiments and simulation,it is estimated that the ACB can reduce the acceleration acting on a patient by 65% in the foot-to-head direction and by 75% in the lateral direction.

  3. Active Aircraft Pylon Noise Control System

    Science.gov (United States)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elmiligui, Alaa A. (Inventor)

    2017-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  4. Real Time Vibration Control of Active Suspension System with Active Force Control using Iterative Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Kalaivani

    2013-09-01

    Full Text Available This paper presents concurrent vibration control of a laboratory scaled vibration isolator platform with Active Force Control (AFC using Iterative Learning Algorithm (ILA. The work investigates the performance of the traditional Proportional Integral Derivative Controller (PIDC with and without AFC using ILA for vibration suppression. The physical single degree of freedom quarter car has been interfaced with a personal computer using a National Instruments data acquisition card NI USB 6008. The controllers are designed and simulated using LabVIEW simulation software. The results infer that the PIDC with AFC using ILA works superior than the PIDC.

  5. Satellite cascade attitude control via fuzzy PD controller with active force control under momentum dumping

    Science.gov (United States)

    Ismail, Z.; Varatharajoo, R.

    2016-10-01

    In this paper, fuzzy proportional-derivative (PD) controller with active force control (AFC) scheme is studied and employed in the satellite attitude control system equipped with reaction wheels. The momentum dumping is enabled via proportional integral (PI) controller as the system is impractical without momentum dumping control. The attitude controllers are developed together with their governing equations and evaluated through numerical treatment with respect to a reference satellite mission. From the results, it is evident that the three axis attitudes accuracies can be improved up to ±0.001 degree through the fuzzy PD controller with AFC scheme for the attitude control. In addition, the three-axis wheel angular momentums are well maintained during the attitude control tasks.

  6. Prediction control of active power filters

    Institute of Scientific and Technical Information of China (English)

    王莉娜; 罗安

    2003-01-01

    A prediction method to obtain harmonic reference for active power filter is presented. It is a new use ofthe adaptive predictive filter based on FIR. The delay inherent in digital controller is successfully compensated by u-sing the proposed method, and the computing load is not very large compared with the conventional method. Moreo-ver, no additional hardware is needed. Its DSP-based realization is also presented, which is characterized by time-va-riant rate sampling, quasi synchronous sampling, and synchronous operation among the line frequency, PWM gener-ating and sampling in A/D unit. Synchronous operation releases the limitation on PWM modulation ratio and guar-antees that the electrical noises resulting from the switching operation of IGBTs do not interfere with the sampledcurrent. The simulation and experimental results verify the satisfactory performance of the proposed method.

  7. Active controlled studies in antibiotic drug development.

    Science.gov (United States)

    Dane, Aaron

    2011-01-01

    The increasing concern of antibacterial resistance has been well documented, as has the relative lack of antibiotic development. This paradox is in part due to challenges with clinical development of antibiotics. Because of their rapid progression, untreated bacterial infections are associated with significant morbidity and mortality. As a consequence, placebo-controlled studies of new agents are unethical. Rather, pivotal development studies are mostly conducted using non-inferiority designs versus an active comparator. Further, infections because of comparator-resistant isolates must usually be excluded from the trial programme. Unfortunately, the placebo-controlled data classically used in support of non-inferiority designs are largely unavailable for antibiotics. The only available data are from the 1930s and 1940s and their use is associated with significant concerns regarding constancy and assay sensitivity. Extended public debate on this challenge has led to proposed solutions by some in which these concerns are addressed by using very conservative approaches to trial design, endpoints and non-inferiority margins, in some cases leading to potentially impractical studies. To compound this challenge, different Regulatory Authorities seem to be taking different approaches to these key issues. If harmonisation does not occur, antibiotic development will become increasingly challenging, with the risk of further decreases in the amount of antibiotic drug development. However with clarity on Regulatory requirements and an ability to feasibly conduct global development programmes, it should be possible to bring much needed additional antibiotics to patients.

  8. Active control of aerodynamic noise; Active control ni yoru furyoku soon no seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1996-10-01

    This paper introduces summary and examples of active noise control (ANC) and active flow control (AFC) as the aerodynamic noise control techniques. The ANC is a technique to generate noise of a reverse phase which cancels the original noise. Noise reduced especially effectively by the ANC is noise from fans and ducts used for engine air supply and exhaust. The ANC is effective in low frequencies, and when used with a passive method, a compact exhaust silencer can be realized, which has high noise reducing performance over the whole frequency band and has low pressure loss. Signal processing in active noise reduction system is always so adjusted that noise is discharged from a secondary noise source in which signals detected by a detection microphone is given a digital filter treatment, and output from an error microphone is minimized. The AFC has been incapable of realizing a reverse phase over a wide frequency band when depended on analog treatment. However, the authors have developed an adaptive type feedback control system, and verified that the system can be applied to any frequency variation and control it in a stable manner. 15 refs., 9 figs., 1 tab.

  9. System identification and control of the JPL active structure

    Science.gov (United States)

    Fanson, J. L.; Lurie, B. J.; O'Brien, J. F.; Chu, C.-C.; Smith, R. S.

    1991-01-01

    This paper describes recent advances in structural quieting technology as applied to active truss structures intended for high precision space based optics applications. Collocated active damping control loops are designed in order to impedance match piezoelectric active members to the structure. Noncollocated control loops are also studied in relation to controlling lightly damped structures.

  10. Automotive active noise control (ANC) system. Jidoshayo active noise control (ANC) system

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, S. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1992-11-25

    This paper introduces a successful development of an active noise control (ANC) system that selects and controls noise in an automobile compartment. This is a system that Nissan has developed for practical use for the first time in the world by using an adaptive control theory and a digital signal processor (DSP) that uses ultra-high speed operating elements. The principle for noise silencing in the ANC system utilizes interference of cyclic amplitude of sound with opposite phase. Sounds in an automobile include informative sounds, agreeable sounds, and noise, and combinations of these sounds work complexly on people in a car, of which extent varies depending on individuals. The adaptive control minimizes sounds picked up by a microphone into controlled speaker sound via an multiple error filtered algorithm (MEF-[sub X]LMS) and an adaptive digital filter. Major components of the system include a microphone, a speaker, and a control unit (comprising the adaptive algorithm and the adaptive filter), all having been developed newly. A DSP that operates on ultra-high speed operating elements was used for speedy compliance with complex algorithms, so that the controlled sound combined of engine noise with compartment sound field can be calculated. The noise was reduced by more than 10 dB at maximum. 7 figs.

  11. Improving Myoelectric Control for Amputees through Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Pan, Lizhi; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2015-08-01

    Most prosthetic myoelectric control studies have shown good performance for unimpaired subjects. However, performance is generally unacceptable for amputees. The primary problem is the poor quality of electromyography (EMG) signals of amputees compared with healthy individuals. To improve clinical performance of myoelectric control, this study explored transcranial direct current stimulation (tDCS) to modulate brain activity and enhance EMG quality. We tested six unilateral transradial amputees by applying active and sham anodal tDCS separately on two different days. Surface EMG signals were acquired from the affected and intact sides for 11 hand and wrist motions in the pre-tDCS and post-tDCS sessions. Autoregression coefficients and linear discriminant analysis classifiers were used to process the EMG data for pattern recognition of the 11 motions. For the affected side, active anodal tDCS significantly reduced the average classification error rate (CER) by 10.1%, while sham tDCS had no such effect. For the intact side, the average CER did not change on the day of sham tDCS but increased on the day of active tDCS. These results demonstrated that tDCS could modulate brain function and improve EMG-based classification performance for amputees. It has great potential in dramatically reducing the length of learning process of amputees for effectively using myoelectrically controlled multifunctional prostheses.

  12. Optimal Control of Active Recoil Mechanisms

    Science.gov (United States)

    1977-02-01

    pressures in different chambers, rod pull are available and can be plotted. A linear state feedback control system is proposed to adapt this...desirable. A linear state feedback control system with variable gains is proposed in the report. A separate control law is designed for each...optimization algorithm to choose a feasible solution. 27 3.3 Results for M-37 Recoil Mechanism The linear state feedback control system and

  13. Active Vibration Control of a Flexible Structure Using Piezoceramic Actuators

    Directory of Open Access Journals (Sweden)

    J. Fei

    2008-03-01

    Full Text Available Considerable attention has been devoted recently to active vibration control using intelligent materials as actuators. This paper presents results on active control schemes for vibration suppression of flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible steel cantilever beam is derived. Active vibration control methods, strain rate feedback control (SRF, positive position feedback control (PPF are investigated and implemented using xPC Target real-time system. Experimental results demonstrate that the SRF control and PPF control achieve effective vibration suppression results of steel cantilever beam.

  14. Active control of transient rotordynamic vibration by optimal control methods

    Science.gov (United States)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.

    1988-01-01

    Although considerable effort has been put into the study of steady state vibration control, there are few methods applicable to transient vibration control of rotorbearing systems. In this paper optimal control theory has been adopted to minimize rotor vibration due to sudden imbalance, e.g., blade loss. The system gain matrix is obtained by choosing the weighting matrices and solving the Riccati equation. Control forces are applied to the system via a feedback loop. A seven mass rotor system is simulated for illustration. A relationship between the number of sensors and the number of modes used in the optimal control model is investigated. Comparisons of responses are made for various configurations of modes, sensors, and actuators. Furthermore, spillover effect is examined by comparing results from collocated and noncollocated sensor configurations. Results show that shaft vibration is significantly attenuated in the closed loop system.

  15. Low Activity Waste Feed Process Control Strategy

    Energy Technology Data Exchange (ETDEWEB)

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  16. DSP Control of Line Hybrid Active Filter

    DEFF Research Database (Denmark)

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.;

    2005-01-01

    Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter ...

  17. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  18. Active vibration and noise control by hybrid active acoustic panels

    Energy Technology Data Exchange (ETDEWEB)

    Stoebener, U.; Gaul, L. [Stuttgart Univ. (Germany). Inst. A fuer Mechanik

    2001-07-01

    In the present paper a hybrid passive and active treatment for vibration and noise reduction of plate type structures is proposed. The treatment is manufactured as sandwich structure and is called hybrid active acoustic panel. The passive component is used to reduce the vibration and sound radiation for high frequencies whereas the active part of the system is designed for the low frequency range. By selecting the thickness of the passive damping layer a certain frequency limit is defined, which divides the high and low frequency range. The actuator and sensor layout of the active component is evaluated by using the mode shapes of the low frequency range. According to the evaluated layout a hybrid active acoustic panel is manufactured and experimentally tested. The experimental results validate the proposed concept. (orig.)

  19. Nitrate control strategies in an activated sludge wastewater treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenhao; Tao, Erpan; Chen, Xiaoquan; Liu, Dawei [South China University of Technology, Guangzhou (China); Liu, Hongbin [Kyung Hee University, Yongin (Korea, Republic of)

    2014-03-15

    We studied nitrate control strategies in an activated sludge wastewater treatment process (WWTP) based on the activated sludge model. Two control strategies, back propagation for proportional-integral-derivative (BP-PID) and adaptive-network based fuzzy inference systems (ANFIS), are applied in the WWTP. The simulation results show that the simple local constant setpoint control has poor control effects on the nitrate concentration control. However, the ANFIS (4*1) controller, which considers not only the local constant setpoint control of the nitrate concentration, but also three important indices in the effluent--ammonia concentration, total suspended sludge concentration and total nitrogen concentration--demonstrates good control performance. The results also prove that ANFIS (4*1) controller has better control performance than that of the controllers PI, BP-PID and ANFIS (2*1), and that the ANFIS (4*1) controller is effective in improving the effluent quality and maintaining the stability of the effluent quality.

  20. Active magnetic bearing system based on sliding mode control

    Science.gov (United States)

    Zhang, Yanhong

    2017-07-01

    A new sliding mode variable structure control algorithm suitable for active magnetic bearing is proposed, which is widely used for nonlinear control system. The model and controller is designed, simulation and experimental parts are also made, according to the switching function and the sliding mode control law. The current of electromagnet is adjusted to realize stable levitation of the rotor. The experimental result shows that the sliding mode variable structure controller is an effective way for magnetic bearing control, and the active magnetic bearing system is a highly nonlinear and advanced control method that can reduce the setting time and the cost.

  1. Active chatter control in a milling machine

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L.; Hinnerichs, T.D.; Lauffer, J.P. [and others

    1997-08-01

    The use of active feedback compensation to mitigate cutting instabilities in an advanced milling machine is discussed in this paper. A linear structural model delineating dynamics significant to the onset of cutting instabilities was combined with a nonlinear cutting model to form a dynamic depiction of an existing milling machine. The model was validated with experimental data. Modifications made to an existing machine model were used to predict alterations in dynamics due to the integration of active feedback compensation. From simulations, subcomponent requirements were evaluated and cutting enhancements were predicted. Active compensation was shown to enable more than double the metal removal rate over conventional milling machines. 25 refs., 10 figs., 1 tab.

  2. Digitally Controlled ’Programmable’ Active Filters.

    Science.gov (United States)

    1985-12-01

    Mitra, S. K., Analysis and Synthesis of Linear Active .. Networks, Wiley, New York, 1969. * 6. Sedra , A. S. and Smith , K. C., "A Second-Generation...Current Conveyor and its Applications," IEEE Trans. Circuit Theory, Vol. CT-17, pp. 132-134, 1970. 7. Sedra , A. S., "A New Approach to Active Network...CT-18, pp. 358-361, May 1971. 27. Hamilton, T. A., and Sedra , A. S., "Some New IJ Configurations for Active Filters," IEEE Trans. Circuit Tehory, Vol

  3. Controlling postoperative ileus by vagal activation

    Institute of Scientific and Technical Information of China (English)

    Tim; Lubbers; Wim; Buurman; Misha; Luyer

    2010-01-01

    Postoperative ileus is a frequently occurring surgical complication, leading to increased morbidity and hospital stay. Abdominal surgical interventions are known to result in a protracted cessation of bowel movement. Activation of inhibitory neural pathways by nociceptive stimuli leads to an inhibition of propulsive activity, which resolves shortly after closure of the abdomen. The subsequent formation of an inflammatory infiltrate in the muscular layers of the intestine results in a more prolonged phase of...

  4. Active Noise Feedback Control Using a Neural Network

    OpenAIRE

    Zhang Qizhi; Jia Yongle

    2001-01-01

    The active noise control (ANC) is discussed. Many digital ANC systems often based on the filter-x algorithm for finite impulse response (FIR) filter use adaptive filtering techniques. But if the primary noise path is nonlinear, the control system based on adaptive filter technology will be invalid. In this paper, an adaptive active nonlinear noise feedback control approach using a neural network is derived. The feedback control system drives a secondary signal to destructively interfere with ...

  5. Power active filter control based on a resonant disturbance observer

    OpenAIRE

    Ramos Fuentes, German A.; Cortés Romero, John Alexander; Zou, Zhixiang; Costa Castelló, Ramon; Zhou, Keliang

    2015-01-01

    Active filters are power electronics devices used to eliminate harmonics from the distribution network. This article presents an active disturbance rejection control scheme for active filters. The controller is based on a linear disturbance observer combined with a disturbance rejection scheme. The parameter tuning is based on a combined pole placement and an optimal estimation based on Kalman-Bucy filter. Proposed scheme is validated through simulation and experimental work in an active filter.

  6. Experimental investigation of active machine tool vibration control

    Science.gov (United States)

    Rojas, J.; Liang, Chen; Geng, Zheng J.

    1996-05-01

    The successful vibration reduction of machine tools during machining process can improve productivity, increase quality, and reduce tool wear. This paper will present our initial investigation in the application of smart material technologies in machine tool vibration control using magnetostrictive actuators and electrorheological elastomer dampers on an industrial Sheldon horizontal lathe. The dynamics of the machining process are first studied, which reveals the complexity in the machine tool vibration response and the challenge to the active control techniques. The active control experiment shows encouraging results. The use of electrorheological elastomer damping device for active/passive vibration control provides significant vibration reduction in the high frequency range and great improvement in the workpiece surface finishing. The research presented in this paper demonstrates that the combination of active and active/passive vibration control techniques is very promising for successful machine tool vibration control.

  7. Active control of radiated sound using nearfield pressure sensing

    Institute of Scientific and Technical Information of China (English)

    CHEN Ke'an; YIN Xuefei

    2004-01-01

    Based on nearfield sound pressure sensing to pick up error information, an approach for constructing active acoustic structure to effectively reduce radiated sound power at low frequency is proposed. The idea is that a nearfield pressure after active control is used as error signals and transformed into an objective function in adaptive active control process.Firstly sound power expression using near-field pressure radiated from a flexible structure is derived, and then three kind of nearfield pressure based active control strategies, I.e. Minimization of radiated sound power, minimization of sound power for dominant radiation modes and minimization of sound power for modified dominant radiation modes are respectively presented and applied to active control of radiated single and broadband noise. Finally computer simulations on sound power reduction under three strategies are conducted and it is shown that the proposed active control strategies are invalid and considerable reduction in radiated sound power can be achieved.

  8. Limited Investigation of Active Feel Control Stick System (Active Stick)

    Science.gov (United States)

    2009-06-01

    at VCORNER .............. 15 Figure 12: Pitch Rate Response to 1.5 g Commanded Force PTI at VHI ......................... 16 Figure 13: Pitch Angle...Response to 1.5 g Commanded Force PTI at VHI ...................... 17 Figure 14: Flight Control System Stick Attributes at VLO...23 Figure 19: Cooper-Harper Ratings for Head Down Display Task ( VHI ) ......................... 24 Figure 20: Fine

  9. Selective Activation and Disengagement of Moral Control.

    Science.gov (United States)

    Bandura, Albert

    1990-01-01

    Analyzes psychological mechanisms by which moral control is selectively disengaged from inhumane conduct in ordinary and unusual circumstances. Explores the symptoms of moral exclusion as described in the literature. Presents categories that unify theory on moral exclusion and contribute practical classifications for use in empirical studies. (JS)

  10. Broadband Radiation Modes: Estimation and Active Control

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2002-01-01

    In this paper we give a formulation of the most efficiently radiating vibration patterns of a vibrating body, the radiation modes, in the time domain. The radiation modes can be used to arrive at efficient weighting schemes for an array of sensors in order to reduce the controller dimensionality. Be

  11. Orthogonal Control of Antibacterial Activity with Light

    NARCIS (Netherlands)

    Velema, Willem A.; van der Berg, Jan Pieter; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2014-01-01

    Selection of a single bacterial strain out of a mixture of microorganisms is of crucial importance in healthcare and microbiology research. Novel approaches that can externally control bacterial selection are a valuable addition to the microbiology toolbox. In this proof-of-concept, two complementar

  12. Active Flap Control of the SMART Rotor for Vibration Reduction

    Science.gov (United States)

    Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.

    2009-01-01

    Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.

  13. Genetic control of active neural circuits

    Directory of Open Access Journals (Sweden)

    Leon Reijmers

    2009-12-01

    Full Text Available The use of molecular tools to study the neurobiology of complex behaviors has been hampered by an inability to target the desired changes to relevant groups of neurons. Specific memories and specific sensory representations are sparsely encoded by a small fraction of neurons embedded in a sea of morphologically and functionally similar cells. In this review we discuss genetics techniques that are being developed to address this difficulty. In several studies the use of promoter elements that are responsive to neural activity have been used to drive long lasting genetic alterations into neural ensembles that are activated by natural environmental stimuli. This approach has been used to examine neural activity patterns during learning and retrieval of a memory, to examine the regulation of receptor trafficking following learning and to functionally manipulate a specific memory trace. We suggest that these techniques will provide a general approach to experimentally investigate the link between patterns of environmentally activated neural firing and cognitive processes such as perception and memory.

  14. Active damping based on decoupled collocated control

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Auer, Frank; Gardonio, P.; Rafaely, B.

    2002-01-01

    High-precision machines typically suffer from small but persistent vibrations. As it is difficult to damp these vibrations by passive means, research at the Drebbel Institute at the University of Twente is aimed at the development of an active structural element that can be used for vibration

  15. Geometric Variational Methods for Controlled Active Vision

    Science.gov (United States)

    2006-08-01

    Kantorovich mass transfer problem,” Numerische Mathematik 84 (2000), pp. 375-393. [14] A. Blake and M. Isard , Active Contours, Springer-Verlag, New York...flow,” Artificial Intelligence, 23:185– 203, 1981. [59] M. Isard and A. Blake, ”CONDENSATION – conditional density propagation for visual tracking

  16. Control System Design of Shunt Active Power Filter Based on Active Disturbance Rejection and Repetitive Control Techniques

    OpenAIRE

    Le Ge; Xiaodong Yuan; Zhong Yang

    2014-01-01

    To rely on joint active disturbance rejection control (ADRC) and repetitive control (RC), in this paper, a compound control law for active power filter (APF) current control system is proposed. According to the theory of ADRC, the uncertainties in the model and from the circumstance outside are considered as the unknown disturbance to the system. The extended state observer can evaluate the unknown disturbance. Next, RC is introduced into current loop to improve the steady characteristics. Th...

  17. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    The thesis is concerned with the active control of randomly vibrating structures by means of feedback control, with particular emphasis on reducing the sound radiation from such structures. A time domain model of the structural and radiation dynamics of an actively controlled plate has been...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...

  18. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    The thesis is concerned with the active control of randomly vibrating structures by means of feedback control, with particular emphasis on reducing the sound radiation from such structures. A time domain model of the structural and radiation dynamics of an actively controlled plate has been...... developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...

  19. Active control of flexural vibrations in beams

    Science.gov (United States)

    Gerhold, Carl H.; Rocha, Rodney

    1989-01-01

    An analytical model of the feedback control system which estimates the voltage generated by the piezoelectric sensor as a function of the dynamic stress at the sensor location and the force exerted by the driver piezoelectric as a function of signal gain is developed. The analytical results are compared to measured results for a cantilever beam excited to vibrate in its first natural mode. The estimated increase in the first mode damping factor is in good agreement with the measured results.

  20. Understanding the brain by controlling neural activity

    OpenAIRE

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been...

  1. Electromyographic control of a hands-free electrolarynx using neck strap muscles

    OpenAIRE

    Kubert, Heather L.; Stepp, Cara E.; Zeitels, Steven M.; Gooey, John E.; Walsh, Michael J.; Prakash, S. R.; Hillman, Robert E.; Heaton, James T.

    2009-01-01

    Three individuals with total laryngectomy were studied for their ability to control a hands-free electrolarynx (EL) using neck surface electromyography (EMG) for on/off and pitch modulation. The laryngectomy surgery of participants was modified to preserve neck strap musculature for EMG-based EL control (EMG-EL), with muscles on one side maintaining natural innervation and those on the other side receiving a transferred recurrent laryngeal nerve (RLN). EMG from each side of the neck controlle...

  2. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    are assumed to be proportional to the relative inflow angle, which also gives a linear form with equivalent stiffness and damping terms. Geometric stiffness effects including the important stiffening from tensile axial stresses in equilibrium with centrifugal forces are included via an initial stress......This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...

  3. Geometric control of active collective motion

    CERN Document Server

    Theillard, Maxime; Saintillan, David

    2016-01-01

    Recent experimental studies have shown that confinement can profoundly affect self-organization in semi-dilute active suspensions, leading to striking features such as the formation of steady and spontaneous vortices in circular domains and the emergence of unidirectional pumping motions in periodic racetrack geometries. Motivated by these findings, we analyze the two-dimensional dynamics in confined suspensions of active self-propelled swimmers using a mean-field kinetic theory where conservation equations for the particle configurations are coupled to the forced Navier-Stokes equations for the self-generated fluid flow. In circular domains, a systematic exploration of the parameter space casts light on three distinct states: equilibrium with no flow, stable vortex, and chaotic motion, and the transitions between these are explained and predicted quantitatively using a linearized theory. In periodic racetracks, similar transitions from equilibrium to net pumping to traveling waves to chaos are observed in ag...

  4. An electronic control for an electrohydraulic active control landing gear for the F-4 aircraft

    Science.gov (United States)

    Ross, I.

    1982-01-01

    A controller for an electrohydraulic active control landing gear was developed for the F-4 aircraft. A controller was modified for this application. Simulation results indicate that during landing and rollout over repaired bomb craters the active gear effects a force reduction, relative to the passive gear, or approximately 70%.

  5. Controllability and hippocampal activation during pain expectation in fibromyalgia syndrome.

    Science.gov (United States)

    González-Roldán, Ana María; Bomba, Isabelle C; Diesch, Eugen; Montoya, Pedro; Flor, Herta; Kamping, Sandra

    2016-12-01

    To examine the role of perceived control in pain perception, fibromyalgia patients and healthy controls participated in a reaction time experiment under different conditions of pain controllability. No significant differences between groups were found in pain intensity and unpleasantness ratings. However, during the expectation of uncontrollable pain, patients compared to controls showed higher hippocampal activation. In addition, hippocampal activity during the pain expectation period predicted activation of the posterior cingulate cortex (PCC), precuneus and hippocampus during pain stimulation in fibromyalgia patients. The increased activation of the hippocampus during pain expectation and subsequent activation of the PCC/precuneus during the lack of control phase points towards an influence of pain perception through heightening of alertness and anxiety responses to pain in fibromyalgia patients.

  6. Orthogonal control of antibacterial activity with light.

    Science.gov (United States)

    Velema, Willem A; van der Berg, Jan Pieter; Szymanski, Wiktor; Driessen, Arnold J M; Feringa, Ben L

    2014-09-19

    Selection of a single bacterial strain out of a mixture of microorganisms is of crucial importance in healthcare and microbiology research. Novel approaches that can externally control bacterial selection are a valuable addition to the microbiology toolbox. In this proof-of-concept, two complementary antibiotics are protected with photocleavable groups that can be orthogonally addressed with different wavelengths of light. This allows for the light-triggered selection of a single bacterial strain out of a mixture of multiple strains, by choosing the right wavelength. Further improvement toward additional orthogonally addressable antibiotics might ultimately lead to a novel methodology for bacterial selection in complex populations.

  7. Elements of active vibration control for rotating machinery

    Science.gov (United States)

    Ulbrich, Heinz

    1990-01-01

    The success or failure of active vibration control is determined by the availability of suitable actuators, modeling of the entire system including all active elements, positioning of the actuators and sensors, and implementation of problem-adapted control concepts. All of these topics are outlined and their special problems are discussed in detail. Special attention is given to efficient modeling of systems, especially for considering the active elements. Finally, design methods for and the application of active vibration control on rotating machinery are demonstrated by several real applications.

  8. Linear Quadratic Integral Control for the Active Suspension of Vehicle

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The quarter model of an active suspension is established in the form of controllable autoregressive moving average (CARMA) model. An accelerometer can be mounted on the wheel hub for measuring road disturbance; this signal is used to identify the CARMA model parameters by recursive forgetting factors least square method. The linear quadratic integral (LQI) control method for the active suspension is presented. The LQI control algorithm is fit for vehicle suspension control, for the control performance index can comprise multi controlled variables. The simulation results show that the vertical acceleration and suspension travel both are decreased with the LQI control in the low frequency band, and the suspension travel is increased with the LQI control in the middle or high frequency band. The suspension travel is very small in the middle or high frequency band, the suspension bottoming stop will not happen, so the vehicle ride quality can be improved apparently by the LQI control.

  9. A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings

    Science.gov (United States)

    Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.

    1996-01-01

    A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.

  10. Active Disturbance Rejection Control of a Heat Integrated Distillation Column

    DEFF Research Database (Denmark)

    Al-Kalbani, Fahad; Zhang, Jie; Bisgaard, Thomas;

    2016-01-01

    pressure. However, the control of some HiDC processesis generally difficult due to the strong control loop interaction, high purity of the components and undesired disturbances. Active disturbance rejection control (ADRC) is used in this paperto control a simulated HiDC for separating benzene......-toluene mixture. The efficiency of the ADRC technique is demonstrated by comparing with the conventional PI controller in terms of set-point trackingand external disturbance rejection capability. The results show that the ADRC gives much improved control performance than the PID control....

  11. Hybrid active vibration control of rotorbearing systems using piezoelectric actuators

    Science.gov (United States)

    Palazzolo, A. B.; Jagannathan, S.; Kascak, A. F.; Montague, G. T.; Kiraly, L. J.

    1993-01-01

    The vibrations of a flexible rotor are controlled using piezoelectric actuators. The controller includes active analog components and a hybrid interface with a digital computer. The computer utilizes a grid search algorithm to select feedback gains that minimize a vibration norm at a specific operating speed. These gains are then downloaded as active stillnesses and dampings with a linear fit throughout the operating speed range to obtain a very effective vibration control.

  12. Neuro-fuzzy based Controller for Solving Active Power Filter

    Directory of Open Access Journals (Sweden)

    Homayoun Ebrahimian

    2016-03-01

    Full Text Available In this paper, two soft computing techniques by fuzzy logic, neural network are used to design alternative control schemes for switching the APF active power filter (APF. The control of a shunt active power filter designed for harmonic and reactive current mitigation. Application of the mentioned model has been combined by an intelligent algorithm for improving the efficiency of proposed controller. Effectiveness of the proposed method has been applied over test case and shows the validity of proposed model.

  13. An active control synchronization for two modified Chua circuits

    Institute of Scientific and Technical Information of China (English)

    Li Guo-Hui

    2005-01-01

    From modern control theory, an active control method to synchronize two modified Chua circuits with each other, which exhibit chaos, is presented. Some sufficient conditions of linear stability of the chaotic synchronization are obtained from rigorous mathematic justification. On the basis of the state-observer, the controller is analytically deduced using the active control. It is shown that this technique can be applied to achieve synchroniztion of the tow systems with each other, whether they are identical or not. Finally, numerical simulations show the effectiveness of the proposed control scheme.

  14. Experience with ActiveX control for simple channel access

    Energy Technology Data Exchange (ETDEWEB)

    Timossi, C.; Nishimura, H.; McDonald, J.

    2003-05-15

    Accelerator control system applications at Berkeley Lab's Advanced Light Source (ALS) are typically deployed on operator consoles running Microsoft Windows 2000 and utilize EPICS[2]channel access for data access. In an effort to accommodate the wide variety of Windows based development tools and developers with little experience in network programming, ActiveX controls have been deployed on the operator stations. Use of ActiveX controls for use in the accelerator control environment has been presented previously[1]. Here we report on some of our experiences with the use and development of these controls.

  15. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR...

  16. STATISTIC LINEARIZATION CONTROL FOR HYDRAULIC ACTIVE DAMPING SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    Wang Qingfeng; Zhao Ju; Yang Botao

    2000-01-01

    A statistic linearization analysis method of bad nolinear hydraulic active damping suspensiop is provided.Also the optimum control strategy of semi-active suspension and graded control strategy based on it are puted forward.Experimental researches are carried out on a 2 DOF (degree of freedom ) hydraulic active damping suspension test system.The results showed that an excellent control effectiveness could be obtained by using statistic linearization optimum control which unfortunely requests continuously regulationg the damp in an accurate way and costs much in engeering application.On the contrary,the results also showed that graded control is more practicable which has a control effectiveness close to the optimum control and costs less.

  17. Enhancing Sensorimotor Activity by Controlling Virtual Objects with Gaze

    OpenAIRE

    2015-01-01

    This fMRI work studies brain activity of healthy volunteers who manipulated a virtual object in the context of a digital game by applying two different control methods: using their right hand or using their gaze. The results show extended activations in sensorimotor areas, not only when participants played in the traditional way (using their hand) but also when they used their gaze to control the virtual object. Furthermore, with the exception of the primary motor cortex, regional motor activ...

  18. Control of an extending nonlinear elastic cable with an active vibration control strategy

    Science.gov (United States)

    Dai, L.; Sun, L.; Chen, C.

    2014-10-01

    An active control strategy based on the fuzzy sliding mode control (FSMC) is developed in this research for controlling the large-amplitude vibrations of an extending nonlinear elastic cable. The geometric nonlinearity of the cable and the fixed-fixed boundary of the cable are considered. For effectively and accurately control the motion of the cable with the active control strategy developed, the governing equation of the elastic cable is established and transformed into a multi-dimensional dynamic system with the 3rd order Galerkin method. The active control strategy is developed on the basis of the dynamic system, and the control strategy is applicable to multi-dimensional dynamic systems. In the numerical simulation, large-amplitude vibrations of the cable are effectively controlled with the control strategy. The results of the research demonstrate significances for controlling the cable vibrations of an elevator in practice.

  19. Active control system for high speed windmills

    Science.gov (United States)

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  20. Combustion diagnostic for active engine feedback control

    Science.gov (United States)

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  1. Semi Active Control of Civil Structures, Analytical and Numerical Studies

    Science.gov (United States)

    Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.

    Structural control for civil structures was born out of a need to provide safer and more efficient designs with the reality of limited resources. The purpose of structural control is to absorb and to reflect the energy introduced by dynamic loads such as winds, waves, earthquakes, and traffic. Today, the protection of civil structures from severe dynamic loading is typically achieved by allowing the structures to be damaged. Semi-active control devices, also called "smart" control devices, assume the positive aspects of both the passive and active control devices. A semi-active control strategy is similar to the active control strategy. Only here, the control actuator does not directly apply force to the structure, but instead it is used to control the properties of a passive energy device, a controllable passive damper. Semi-active control strategies can be used in many of the same civil applications as passive and active control. One method of operating smart cable dampers is in a purely passive capacity, supplying the dampers with constant optimal voltage. The advantages to this strategy are the relative simplicity of implementing the control strategy as compared to a smart or active control strategy and that the dampers are more easily optimally tuned in- place, eliminating the need to have passive dampers with unique optimal damping coefficients. This research investigated semi-active control of civil structures for natural hazard mitigation. The research has two components, the seismic protection of buildings and the mitigation of wind-induced vibration in structures. An ideal semi-active motion equation of a composite beam that consists of a cantilever beam bonded with a PZT patch using Hamilton's principle and Galerkin's method was treated. A series R-L and a parallel R-L shunt circuits are coupled into the motion equation respectively by means of the constitutive relation of piezoelectric material and Kirchhoff's law to control the beam vibration. A

  2. Distributed Model Predictive Control for Active Power Control of Wind Farm

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard;

    2014-01-01

    This paper presents the active power control of a wind farm using the Distributed Model Predictive Controller (D- MPC) via dual decomposition. Different from the conventional centralized wind farm control, multiple objectives such as power reference tracking performance and wind turbine load can......-scale wind farm control....

  3. HYBRID FUZZY CONTROL FOR ELECTRO-HYDRAULIC ACTIVE DAMPING SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new control scheme, the hybrid fuzzy control method, for active damping suspension system is presented. The scheme is the result of effective combination of the statistical optimal control method based on the statistical property of suspension system, with the bang-bang control method based on the real-time characteristics of suspension system. Computer simulations are performed to compare the effectiveness of hybrid fuzzy control scheme with that of optimal damping control, bang-bang control, and passive suspension. It takes the effects of time-variant factors into full account. The superiority of the proposed hybrid fuzzy control scheme for active damping suspension to the passive suspension is verified in the experiment study.

  4. Active structural control with stable fuzzy PID techniques

    CERN Document Server

    Yu, Wen

    2016-01-01

    This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...

  5. Various applications of Active Field Control (AFC)

    Science.gov (United States)

    Watanabe, Takayuki; Miyazaki, Hideo; Kishinaga, Shinji; Kawakami, Fukushi

    2003-10-01

    AFC is an electro-acoustic enhancement system, which has been under development at Yamaha Corporation. In this paper, several types of various AFC applications are discussed, while referring to representative projects for each application in Japan. (1) Realization of acoustics in a huge hall to classical music program, e.g., Tokyo International Forum. This venue is a multipurpose hall with approximately 5000 seats. AFC achieves loudness and reverberance equivalent to those of a hall with 2500 seats or fewer. (2) Optimization of acoustics for a variety of programs, e.g., Arkas Sasebo. AFC is used to create the optimum acoustics for each program, such as reverberance for classical concerts, acoustical support for opera singers, uniformity throughout the hall from the stage to under-balcony area, etc. (3) Control of room shape acoustical effect, e.g., Osaka Central Public Hall: In this renovation project, preservation of historically important architecture in the original form is required. AFC is installed to vary only the acoustical environment without architectural changes. (4) Assistance with crowd enthusiasm for sports entertainment, e.g., Tokyo Metropolitan Gymnasium. In this venue, which is designed as a very absorptive space for speech intelligibility, AFC is installed to enhance the atmosphere of live sports entertainment.

  6. CLP activities and control in Ireland.

    Science.gov (United States)

    Walsh, Caroline

    2011-01-01

    The 10(th) December 2010 marked a new beginning for Regulation (EC) no. 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP) in Ireland with the start of its operational phase. It was on this date that the administrative and enforcement provisions for CLP were encompassed in the new Chemicals Amendment Act, 2010. In this Act, the Health and Safety Authority, known as the "the Authority" is named as Competent Authority (CA) for CLP, along with the Minister for Agriculture, Fisheries and Food, in respect of pesticides and plant protection products and the Beaumont Hospital Board with responsibility for receiving information relating to emergency health response. In practice, the Authority has been de facto CA for CLP since its publication on the 31(st) December 2008, given its role in existing classification and labelling regimes. This article focuses on the work undertaken by the Authority on CLP at a National, European and International level including its implementation, training, helpdesk, guidance, enforcement and awareness raising activities.

  7. Nonlinear terahertz metamaterials with active electrical control

    Science.gov (United States)

    Keiser, G. R.; Karl, N.; Liu, P. Q.; Tulloss, C.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Reno, J. L.; Mittleman, D. M.

    2017-09-01

    We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.

  8. CLP activities and control in Ireland

    Directory of Open Access Journals (Sweden)

    Caroline Walsh

    2011-01-01

    Full Text Available The 10th December 2010 marked a new beginning for Regulation (EC no. 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP in Ireland with the start of its operational phase. It was on this date that the administrative and enforcement provisions for CLP were encompassed in the new Chemicals Amendment Act, 2010. In this Act, the Health and Safety Authority, known as the "the Authority" is named as Competent Authority (CA for CLP, along with the Minister for Agriculture, Fisheries and Food, in respect of pesticides and plant protection products and the Beaumont Hospital Board with responsibility for receiving information relating to emergency health response. In practice, the Authority has been de facto CA for CLP since its publication on the 31st December 2008, given its role in existing classification and labelling regimes. This article focuses on the work undertaken by the Authority on CLP at a National, European and International level including its implementation, training, helpdesk, guidance, enforcement and awareness raising activities.

  9. Control of sound radiation with active/adaptive structures

    Science.gov (United States)

    Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.

    1992-01-01

    Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.

  10. Numerical evaluation of the performance of active noise control systems

    Science.gov (United States)

    Mollo, C. G.; Bernhard, R. J.

    1990-01-01

    This paper presents a generalized numerical technique for evaluating the optimal performance of active noise controllers. In this technique, the indirect BEM numerical procedures are used to derive the active noise controllers for optimal control of enclosed harmonic sound fields where the strength of the noise sources or the description of the enclosure boundary may not be known. The performance prediction for a single-input single-output system is presented, together with the analysis of the stability and observability of an active noise-control system employing detectors. The numerical procedures presented can be used for the design of both the physical configuration and the electronic components of the optimal active noise controller.

  11. Active control of transmission loss with smart foams.

    Science.gov (United States)

    Kundu, Abhishek; Berry, Alain

    2011-02-01

    Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.

  12. Adaptive Current Control with PI-Fuzzy Compound Controller for Shunt Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2013-01-01

    Full Text Available An adaptive control technology and PI-fuzzy compound control technology are proposed to control an active power filter (APF. AC side current compensation and DC capacitor voltage tracking control strategy are discussed and analyzed. Model reference adaptive controller for the AC side current compensation is derived and established based on Lyapunov stability theory; proportional and integral (PI fuzzy compound controller is designed for the DC side capacitor voltage control. The adaptive current controller based on PI-fuzzy compound system is compared with the conventional PI controller for active power filter. Simulation results demonstrate the feasibility and satisfactory performance of the proposed control strategies. It is shown that the proposed control method has an excellent dynamic performance such as small current tracking error, reduced total harmonic distortion (THD, and strong robustness in the presence of parameters variation and nonlinear load.

  13. Active Noise Feedback Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Zhang Qizhi

    2001-01-01

    Full Text Available The active noise control (ANC is discussed. Many digital ANC systems often based on the filter-x algorithm for finite impulse response (FIR filter use adaptive filtering techniques. But if the primary noise path is nonlinear, the control system based on adaptive filter technology will be invalid. In this paper, an adaptive active nonlinear noise feedback control approach using a neural network is derived. The feedback control system drives a secondary signal to destructively interfere with the original noise to cut down the noise power. An on-line learning algorithm based on the error gradient descent method was proposed, and the local stability of closed loop system is proved using the discrete Lyapunov function. A nonlinear simulation example shows that the adaptive active noise feedback control method based on a neural network is very effective to the nonlinear noise control.

  14. Wireless sensor networks for active vibration control in automobile structures

    Science.gov (United States)

    Mieyeville, Fabien; Ichchou, Mohamed; Scorletti, Gérard; Navarro, David; Du, Wan

    2012-07-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control.

  15. Gravimetric control of active volcanic processes

    Science.gov (United States)

    Saltogianni, Vasso; Stiros, Stathis

    2017-04-01

    Volcanic activity includes phases of magma chamber inflation and deflation, produced by movement of magma and/or hydrothermal processes. Such effects usually leave their imprint as deformation of the ground surfaces which can be recorded by GNSS and other methods, on one hand, and on the other hand they can be modeled as elastic deformation processes, with deformation produced by volcanic masses of finite dimensions such as spheres, ellipsoids and parallelograms. Such volumes are modeled on the basis of inversion (non-linear, numerical solution) of systems of equations relating the unknown dimensions and location of magma sources with observations, currently mostly GNSS and INSAR data. Inversion techniques depend on the misfit between model predictions and observations, but because systems of equations are highly non-linear, and because adopted models for the geometry of magma sources is simple, non-unique solutions can be derived, constrained by local extrema. Assessment of derived magma models can be provided by independent observations and models, such as micro-seismicity distribution and changes in geophysical parameters. In the simplest case magmatic intrusions can be modeled as spheres with diameters of at least a few tens of meters at a depth of a few kilometers; hence they are expected to have a gravimetric signature in permanent recording stations on the ground surface, while larger intrusions may also have an imprint in sensors in orbit around the earth or along precisely defined air paths. Identification of such gravimetric signals and separation of the "true" signal from the measurement and ambient noise requires fine forward modeling of the wider areas based on realistic simulation of the ambient gravimetric field, and then modeling of its possible distortion because of magmatic anomalies. Such results are useful to remove ambiguities in inverse modeling of ground deformation, and also to detect magmatic anomalies offshore.

  16. On-line Monitoring and Active Control for Transformer Noise

    Science.gov (United States)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  17. [Actuator placement for active sound and vibration control

    Science.gov (United States)

    1997-01-01

    Two refereed journal publications and ten talks given at conferences, seminars, and colloquia resulted from research supported by NASA. They are itemized in this report. The two publications were entitled "Reactive Tabu and Search Sensor Selection in Active Structural Acoustic Control Problems" and "Quelling Cabin Noise in Turboprop Aircraft via Active Control." The conference presentations covered various aspects of actuator placement, including location problems, for active sound and vibration control of cylinders, of commuter jets, of propeller driven or turboprop aircraft, and for quelling aircraft cabin or interior noise.

  18. Development of Active Noise Control System for Quieting Transformer Noise

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1997-12-31

    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  19. Indirect control of a single-phase active power filter

    Directory of Open Access Journals (Sweden)

    Mihai CULEA

    2006-12-01

    Full Text Available The control of shunt active power filters using PWM inverters consists in generating a reference by separating, using different methods, the harmonics to be eliminated. The methods used are time-consuming and need dedicated control and signal processing equipments. To avoid these setbacks a new method is proposed in the paper. The active power filter is a current PWM rectifier with voltage output and with a capacitor on the DC side. The PWM rectifier is controlled so that the sum of its current and the load’s current is a sinusoid. The control block as well as simulation results are presented.

  20. Development of Active Noise Control System for Quieting Transformer Noise

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1997-12-31

    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  1. Experimental active control results from the SPICES smart structure demonstrations

    Science.gov (United States)

    Flamm, David S.; Toth, G. K.; Chou, Kenneth C.; Heck, Larry P.; Nowlin, William C.; Titterton, Paul J., Sr.

    1996-05-01

    The final demonstrations of the ARPA SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) program test the control of two active vibration mounts manufactured from composites with embedded actuators and sensors. Both mount demonstrations address wide band control problems for real disturbances, one at low frequency and the other at high frequency. The control systems for both are two-level hierarchies, with an inner active damping augmentation loop and an outer vibration control loop. We first review the control design requirements for the demonstration and summarize our control design approach. Then we focus on presenting the experimental results of the final demonstrations. For the low frequency demonstration, two alternative control approaches were demonstrated, one involving finite impulse response modeling and the other state space modeling. For the high frequency demonstration only the finite impulse response modeling approach was used because of computational limitations due to the complex system dynamics.

  2. Novel active noise-reducing headset using earshell vibration control.

    Science.gov (United States)

    Rafaely, Boaz; Carrilho, Joao; Gardonio, Paolo

    2002-10-01

    Active noise-reducing (ANR) headsets are available commercially in applications varying from aviation communication to consumer audio. Current ANR systems use passive attenuation at high frequencies and loudspeaker-based active noise control at low frequencies to achieve broadband noise reduction. This paper presents a novel ANR headset in which the external noise transmitted to the user's ear via earshell vibration is reduced by controlling the vibration of the earshell using force actuators acting against an inertial mass or the earshell headband. Model-based theoretical analysis using velocity feedback control showed that current piezoelectric actuators provide sufficient force but require lower stiffness for improved low-frequency performance. Control simulations based on experimental data from a laboratory headset showed that good performance can potentially be achieved in practice by a robust feedback controller, while a single-frequency real-time control experiment verified that noise reduction can be achieved using earshell vibration control.

  3. Light-Activated Ion Channels for Remote Control of Neural Activity

    OpenAIRE

    Chambers, James J.; Richard H Kramer

    2008-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neu...

  4. Adaptive Current Control Method for Hybrid Active Power Filter

    Science.gov (United States)

    Chau, Minh Thuyen

    2016-09-01

    This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.

  5. Active Disturbance Rejection Approach for Robust Fault-Tolerant Control via Observer Assisted Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    John Cortés-Romero

    2013-01-01

    Full Text Available This work proposes an active disturbance rejection approach for the establishment of a sliding mode control strategy in fault-tolerant operations. The core of the proposed active disturbance rejection assistance is a Generalized Proportional Integral (GPI observer which is in charge of the active estimation of lumped nonlinear endogenous and exogenous disturbance inputs related to the creation of local sliding regimes with limited control authority. Possibilities are explored for the GPI observer assisted sliding mode control in fault-tolerant schemes. Convincing improvements are presented with respect to classical sliding mode control strategies. As a collateral advantage, the observer-based control architecture offers the possibility of chattering reduction given that a significant part of the control signal is of the continuous type. The case study considers a classical DC motor control affected by actuator faults, parametric failures, and perturbations. Experimental results and comparisons with other established sliding mode controller design methodologies, which validate the proposed approach, are provided.

  6. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y.; Hattori, M. Sugisawa, M.; Nishii, M. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  7. Concurrent mechatronic design approach for active control of cavity noise

    Science.gov (United States)

    de Oliveira, L. P. R.; da Silva, M. M.; Sas, P.; Van Brussel, H.; Desmet, W.

    2008-07-01

    Active control is a potential solution to many noise and vibration problems for improving the low-frequency performance. Cavity noise reduction as encountered for instance in aircraft cabins and vehicle interiors is a typical example. However, the conventional design of these active solutions may lead to suboptimal products, since the interaction between the vibro-acoustic plant dynamics and control dynamics is usually not considered. A proper way to design such active systems would be considering control and plant parameters concurrently. To cope with this approach, a methodology to derive a fully coupled mechatronic model that deals with both the vibro-acoustic plant dynamics as well as the control parameters is proposed. The inclusion of sensor and actuator models is investigated, since it contributes to the model accuracy as it can confer frequency, phase or amplitude limitations to the control performance. The proposed methodology provides a reduced state-space model derived from a fully coupled vibro-acoustic finite element model. Experimental data on a vibro-acoustic vehicle cabin mock-up are used to validate the model reduction procedure. Regarding noise reduction, optimization results are presented considering both vibro-acoustic plant features, such as thicknesses, and control parameters, such as sensor and actuator placement and control gains. A collocated sensor/actuator pair is considered in a velocity feedback control strategy. The benefits of a concurrent mechatronic design when dealing with active structural-acoustic control solutions are addressed, illustrated and experimentally validated.

  8. An active vibration control method of bridge structures by the ...

    African Journals Online (AJOL)

    An active vibration control method of bridge structures by the linearization of ... zones due to economic requirements, and with occurrence of seismic events in ... linearization proportionality coefficients are constantly modified to optimal values.

  9. Perception Neural Networks for Active Noise Control Systems

    Directory of Open Access Journals (Sweden)

    Wang Xiaoli

    2012-11-01

    Full Text Available In a response to a growing demand for environments of 70dB or less noise levels, many industrial sectors have focused with some form of noise control system. Active noise control (ANC has proven to be the most effective technology. This paper mainly investigates application of neural network on self-adaptation system in active noise control (ANC. An active silencing control system is made which adopts a motional feedback loudspeaker as not a noise controlling source but a detecting sensor. The working fundamentals and the characteristics of the motional feedback loudspeaker are analyzed in detail. By analyzing each acoustical path, identification based adaptive linear neural network is built. This kind of identifying method can be achieved conveniently. The estimated result of each sound channel matches well with its real sound character, respectively.

  10. Active Vibration Control of a Monopile Offshore Structure

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.

    1996-01-01

    , it can be necessary to use an active or a passive vibration control system. However, for a monopile with severe space problems it can be difficult to locate a passive control system such as e.g. a tuned mass damper. Therefore, in order to active control wave introduced vibrations of a monopile structure...... an active control technique has been proposed in corporation with the consulting company Rambøll, Esbjerg, Denmark. The proposed control technique is based on the relationship between the position of the separation points of the boundary layer flow and the drag term in the wave force on the cylinder......In the Danish part of the North Sea it has been found that marginal fields can be exploited using monopile offshore platforms which present significant advantages with respect to the costs involved in fabrication and installation and can therefore tip the economic balance favourably. Monopile...

  11. Improved Control Strategy for Active Bouncers used in Klystron Modulators

    CERN Document Server

    Aguglia, D; Benedetti, M; Garcia Retegui, R; Maestri, S; Nisbet, D

    2012-01-01

    This paper introduces a closed-loop control system for klystron modulators. The system is based on the discharge of a capacitor into a step-up voltage transformer and an active bouncer implemented with a multiphase buck converter. In order to obtain a constant Klystron voltage at the at-top, the active bouncer must compensate both the capacitor discharge and the pulse transformer characteristic. The proposed control includes an inner voltage regulation loop that controls the active bouncer output voltage and an outer one that controls the klystron voltage. The primary side current and main capacitor voltage are included in the regulation loops to simplify the controllers. Simulations demonstrate that the strategy adopted allows to obtain a precision better than 0:1% on a 110 kV klystron. Experimental tests have shown that the multiphase converter is able to track a high dynamics reference even under variable output voltage conditions.

  12. Robust control design techniques for active flutter suppression

    Science.gov (United States)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  13. Mechanisms of active control for noise inside a vibrating cylinder

    Science.gov (United States)

    Lester, Harold C.; Fuller, Chris R.

    1987-01-01

    The active control of propeller-induced noise fields inside a flexible cylinder is studied with attention given to the noise reduction mechanisms inherent in the present coupled acoustic shell model. The active noise control model consists of an infinitely long aluminum cylinder with a radius of 0.4 m and a thickness of 0.001 m. Pressure maps are shown when the two external sources are driven in-phase at a frequency corresponding to Omega = 0.22.

  14. Piezoelectric pushers for active vibration control of rotating machinery

    Science.gov (United States)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.

  15. Controlling neural activity in Caenorhabditis elegans to evoke chemotactic behavior

    Science.gov (United States)

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V.; Ramanathan, Sharad

    2013-03-01

    Animals locate and track chemoattractive gradients in the environment to find food. With its simple nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behavior. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behavior. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behavior. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair was sufficient to force the animal to locate, turn towards and track virtual light gradients.

  16. Innovation in Active Vibration Control Strategy of Intelligent Structures

    Directory of Open Access Journals (Sweden)

    A. Moutsopoulou

    2014-01-01

    Full Text Available Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a recognizable advance in knowledge of active vibration control in intelligent structures.

  17. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  18. Quality control of the documentation process in electronic economic activities

    Directory of Open Access Journals (Sweden)

    Krutova A.S.

    2017-06-01

    Full Text Available It is proved that the main tool that will provide adequate information resources e economic activities of social and economic relations are documenting quality control processes as the basis of global information space. Directions problems as formation evaluation information resources in the process of documentation, namely development tools assess the efficiency of the system components – qualitative assessment; development of mathematical modeling tools – quantitative evaluation. A qualitative assessment of electronic documentation of economic activity through exercise performance, efficiency of communication; document management efficiency; effectiveness of flow control operations; relationship management effectiveness. The concept of quality control process documents electronically economic activity to components which include: the level of workflow; forms adequacy of information; consumer quality documents; quality attributes; type of income data; condition monitoring systems; organizational level process documentation; attributes of quality, performance quality consumer; type of management system; type of income data; condition monitoring systems. Grounded components of the control system electronic document subjects of economic activity. Detected components IT-audit management system economic activity: compliance audit; audit of internal control; detailed multilevel analysis; corporate risk assessment methodology. The stages and methods of processing electronic transactions economic activity during condition monitoring of electronic economic activity.

  19. Feedforward control of sound transmission using an active acoustic metamaterial

    Science.gov (United States)

    Cheer, Jordan; Daley, Stephen; McCormick, Cameron

    2017-02-01

    Metamaterials have received significant interest in recent years due to their potential ability to exhibit behaviour not found in naturally occurring materials. This includes the generation of band gaps, which are frequency regions with high levels of wave attenuation. In the context of acoustics, these band gaps can be tuned to occur at low frequencies where the acoustic wavelength is large compared to the material, and where the performance of traditional passive noise control treatments is limited. Therefore, such acoustic metamaterials have been shown to offer a significant performance advantage compared to traditional passive control treatments, however, due to their resonant behaviour, the band gaps tend to occur over a relatively narrow frequency range. A similar long wavelength performance advantage can be achieved using active noise control, but the systems in this case do not rely on resonant behaviour. This paper demonstrates how the performance of an acoustic metamaterial, consisting of an array of Helmholtz resonators, can be significantly enhanced by the integration of an active control mechanism that is facilitated by embedding loudspeakers into the resonators. Crucially, it is then also shown how the active acoustic metamaterial significantly outperforms an equivalent traditional active noise control system. In both cases a broadband feedforward control strategy is employed to minimise the transmitted pressure in a one-dimensional acoustic control problem and a new method of weighting the control effort over a targeted frequency range is described.

  20. Finite element models applied in active structural acoustic control

    NARCIS (Netherlands)

    Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll

  1. Active and passive control of zinc phthalocyanine photodynamics

    NARCIS (Netherlands)

    Sharma, D.; Huijser, J.M.; Savolainen, J.; Steen, G.W.; Herek, J.L.

    2013-01-01

    In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of

  2. Applications of active adaptive noise control to jet engines

    Science.gov (United States)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  3. Smart Materials and Active Noise and Vibration Control in Vehicles

    NARCIS (Netherlands)

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, van M.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are necessa

  4. Smart Materials and Active Noise and Vibration Control in Vehicles

    NARCIS (Netherlands)

    Doppenberg, E.J.J.; Berkhoff, Arthur P.; van Overbeek, M.; Gissinger, G.L.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are

  5. Modeling and Control of Active Suspensions for MDOF Vehicle

    Institute of Scientific and Technical Information of China (English)

    李克强; 郑四发; 杨殿阁; 连小珉; 永井正夫

    2003-01-01

    The conventional method for analyzing active suspension control for a vehicle is only to analyze aquarter or half car with a lower order degree-of freedom (DOF) model, but such models do not actually modelpractical applications. Accurate models of a suspension control system require a multi-degree-of-freedom(MDOF) vehicle model with a detailed model of the controller. An MDOF model was developed including theinfluence of factors such as the engine, the seats, and the passengers to describe vehicle motion using areduced order model of the controller designed by using the H∞ control method. The control systemperformance has been investigated by comparing the H∞ controller with a linear quadratic (LQ) controller.

  6. Passive and Active Vibration Control of Renewable Energy Structures

    OpenAIRE

    Zhang, Zili

    2015-01-01

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade vibration and lateral tower vibration, with the main focus on structural control devices. Rigorous theoretical modeling of different dynamic system has been established, based on which detailed design a...

  7. Active vibration control techniques for flexible space structures

    Science.gov (United States)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  8. Combined Active and Reactive Power Control of Wind Farms based on Model Predictive Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Wang, Jianhui;

    2017-01-01

    This paper proposes a combined wind farm controller based on Model Predictive Control (MPC). Compared with the conventional decoupled active and reactive power control, the proposed control scheme considers the significant impact of active power on voltage variations due to the low X=R ratio...... of wind farm collector systems. The voltage control is improved. Besides, by coordination of active and reactive power, the Var capacity is optimized to prevent potential failures due to Var shortage, especially when the wind farm operates close to its full load. An analytical method is used to calculate...... the sensitivity coefficients to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both normal and emergency conditions. A wind farm with 20 wind turbines was used to verify the proposed combined control scheme....

  9. Off-axis Modal Active Vibration Control Of Rotational Vibrations

    NARCIS (Netherlands)

    Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.

    Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the

  10. Composition for the controlled release of active compounds

    NARCIS (Netherlands)

    Hovens, I.A.P.; Jongboom, R.O.J.; Stuut, P.I.

    1999-01-01

    The invention provides a composition for the controlled release of one or more biologically active substances encapsulated in a degradable biopolymer matrix, consisting of a thermoplastic and/or partly crystalline inulin. A plasticiser such as glycerol, and an emulsifier may be present. The active s

  11. Active Disturbance Rejection Approach for Robust Fault-Tolerant Control via Observer Assisted Sliding Mode Control

    OpenAIRE

    John Cortés-Romero; Harvey Rojas-Cubides; Horacio Coral-Enriquez; Hebertt Sira-Ramírez; Alberto Luviano-Juárez

    2013-01-01

    This work proposes an active disturbance rejection approach for the establishment of a sliding mode control strategy in fault-tolerant operations. The core of the proposed active disturbance rejection assistance is a Generalized Proportional Integral (GPI) observer which is in charge of the active estimation of lumped nonlinear endogenous and exogenous disturbance inputs related to the creation of local sliding regimes with limited control authority. Possibilities are explored for the GPI obs...

  12. Human facial neural activities and gesture recognition for machine-interfacing applications.

    Science.gov (United States)

    Hamedi, M; Salleh, Sh-Hussain; Tan, T S; Ismail, K; Ali, J; Dee-Uam, C; Pavaganun, C; Yupapin, P P

    2011-01-01

    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human-machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2-11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers.

  13. A new approach of active compliance control via fuzzy logic control for multifingered robot hand

    Science.gov (United States)

    Jamil, M. F. A.; Jalani, J.; Ahmad, A.

    2016-07-01

    Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.

  14. Improving active space telescope wavefront control using predictive thermal modeling

    Science.gov (United States)

    Gersh-Range, Jessica; Perrin, Marshall D.

    2015-01-01

    Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.

  15. Control of guanylate cyclase activity in the rod outer segment.

    Science.gov (United States)

    Pannbacker, R G

    1973-12-14

    Mammalian photoreceptors contain a guanylate cyclase which has a high specific activity and is inhibited by exposure of the rod outer segment to light. Several minutes are required for this inhibition to take effect, indicating that it is not a step in visual excitation. The activity of the enzyme is sensitive to the concentration of calcium ion in the medium, suggesting that light-induced changes in calcium distribution in the photoreceptor could control guanylate cyclase activity.

  16. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    Science.gov (United States)

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices.

  17. UML activity diagram swimlanes in logic controller design

    Science.gov (United States)

    Grobelny, Michał; Grobelna, Iwona

    2015-12-01

    Logic controller behavior can be specified using various techniques, including UML activity diagrams and control Petri nets. Each technique has its advantages and disadvantages. Application of both specification types in one project allows to take benefits from both of them. Additional elements of UML models make it possible to divide a specification into some parts, considered from other point of view (logic controller, user or system). The paper introduces an idea to use UML activity diagrams with swimlanes to increase the understandability of design models.

  18. Impact of active controls technology on structural integrity

    Science.gov (United States)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  19. Active member bridge feedback control for damping augmentation

    Science.gov (United States)

    Chen, Gun-Shing; Lurie, Boris J.

    1992-01-01

    An active damping augmentation approach using active members in a structural system is described. The problem of maximizing the vibration damping in a lightly damped structural system is considered using the analogy of impedance matching between the load and source impedances in an electrical network. The proposed active damping augmentation approach therefore consists of finding the desired active member impedances that maximize the vibration damping, and designing a feedback control in order to achieve desired active member impedances. This study uses a bridge feedback concept that feeds back a combination of signals from sensors of the axial force and relative velocity across the active member to realize the desired active member impedance. The proposed active damping augmentation approach and bridge feedback concept were demonstrated on a three-longeron softly suspended truss structure.

  20. Robust Vehicle Suspension System by Converting Active & Passive Control of a Vehicle to Semi-Active Control System Analytically

    Directory of Open Access Journals (Sweden)

    Hassan Elahi

    2014-12-01

    Full Text Available In this research work a simplified translational model of an automotive suspension system is constructed by only considering the translation motion of one wheel of a car. Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations. The semi-active control is found to control the vibration of suspension system very well.

  1. Active inference and robot control: a case study

    Science.gov (United States)

    Nizard, Ange; Friston, Karl; Pezzulo, Giovanni

    2016-01-01

    Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours. PMID:27683002

  2. Active inference and robot control: a case study.

    Science.gov (United States)

    Pio-Lopez, Léo; Nizard, Ange; Friston, Karl; Pezzulo, Giovanni

    2016-09-01

    Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours.

  3. Neural Network-Based Active Control for Offshore Platforms

    Institute of Scientific and Technical Information of China (English)

    周亚军; 赵德有

    2003-01-01

    A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.

  4. Active structural control by fuzzy logic rules: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y.

    1995-07-01

    An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  5. Active structural control by fuzzy logic rules: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yu [Argonne National Lab., IL (United States). Reactor Engineering Div.; Wu, Kung C. [Texas Univ., El Paso, TX (United States). Dept. of Mechanical and Industrial Engineering

    1996-12-31

    A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  6. Active disturbance rejection control for fractional-order system.

    Science.gov (United States)

    Li, Mingda; Li, Donghai; Wang, Jing; Zhao, Chunzhe

    2013-05-01

    Fractional-order proportional-integral (PI) and proportional-integral-derivative (PID) controllers are the most commonly used controllers in fractional-order systems. However, this paper proposes a simple integer-order control scheme for fractional-order system based on active disturbance rejection method. By treating the fractional-order dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. External disturbance, sensor noise, and parameter disturbance are also estimated using extended state observer. The ADRC stability of rational-order model is analyzed. Simulation results on three typical fractional-order systems are provided to demonstrate the effectiveness of the proposed method.

  7. Experimental evaluation of active-member control of precision structures

    Science.gov (United States)

    Fanson, James; Blackwood, Gary; Chu, Cheng-Chih

    1989-01-01

    The results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure are described. These experiments are directed toward the development of high-performance structural systems as part of the Control/Structure Interaction (CSI) program at JPL. The focus of CSI activity at JPL is to develop the technology necessary to accurately control both the shape and vibration levels in the precision structures from which proposed large space-based observatories will be built. Structural error budgets for these types of structures will likely be in the sub-micron regime; optical tolerances will be even tighter. In order to achieve system level stability and local positioning at this level, it is generally expected that some form of active control will be required.

  8. Developing active noise control systems for noise attenuation in ducts

    Science.gov (United States)

    Campos, Rosely V.; Ivo, Rodrigo C.; Medeiros, Eduardo B.

    2002-11-01

    The present work describes some of the research effort on Active Noise Control (ANC) being jointly developed by the Catholic University of Minas Gerais (PUC-MINAS) and the Federal University of Minas Gerais (UFMG). Considerations about the implementation of Digital Signal Processing for noise control in ducts has been presented. The objective is to establish a study on Active Noise Control in ducts combining geometry and acoustic parameters modification together with adaptive digital filtering implementation. Both algorithm and digital signal processing details are also discussed. The main results for a typical application where real attenuation has been obtained are presented and considered according to their use in developing real applications. The authors also believe that the present text should provide an interesting overview for both designers and students concerned about Active Noise Control in ducts. (To be presented in Portuguese.)

  9. "Active Flux" DTFC-SVM Sensorless Control of IPMSM

    DEFF Research Database (Denmark)

    Boldea, Ion; Codruta Paicu, Mihaela; Gheorghe-Daniel, Andreescu,

    2009-01-01

    . The concept of "active flux" (or "torque producing flux") turns all the rotor salient-pole ac machines into fully nonsalient-pole ones. A new function for Lq inductance depending on torque is introduced to model the magnetic saturation. Notable simplification in the rotor position and speed estimation...... is obtained, because the active flux position is identical with the rotor position. Extensive experimental results are presented to verify the principles and to demonstrate the effectiveness of the proposed sensorless control system. With the active flux observer, the IPMSM drive system operates from very low......This paper proposes an implementation of a motionsensorless control system in wide speed range based on "active flux" observer, and direct torque and flux control with space vector modulation (DTFC-SVM) for the interior permanent magnet synchronous motor (IPMSM), without signal injection...

  10. Active Fault Tolerant Control of Livestock Stable Ventilation System

    DEFF Research Database (Denmark)

    Gholami, Mehdi

    2011-01-01

    of fault. Designing a fault tolerant control scheme for the climate control system. In the first step, a conceptual multi-zone model for climate control of a live-stock building is derived. The model is a nonlinear hybrid model. Hybrid systems contain both discrete and continuous components. The parameters......Modern stables and greenhouses are equipped with different components for providing a comfortable climate for animals and plant. A component malfunction may result in loss of production. Therefore, it is desirable to design a control system, which is stable, and is able to provide an acceptable...... degraded performance even in the faulty case. In this thesis, we have designed such controllers for climate control systems for livestock buildings in three steps: Deriving a model for the climate control system of a pig-stable. Designing a active fault diagnosis (AFD) algorithm for different kinds...

  11. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.

    1998-01-01

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  12. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.

    1998-01-01

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  13. Grey forecasting model for active vibration control systems

    Science.gov (United States)

    Lihua, Zou; Suliang, Dai; Butterworth, John; Ma, Xing; Dong, Bo; Liu, Aiping

    2009-05-01

    Based on the grey theory, a GM(1,1) forecasting model and an optimal GM(1,1) forecasting model are developed and assessed for use in active vibration control systems for earthquake response mitigation. After deriving equations for forecasting the control state vector, design procedures for an optimal active control method are proposed. Features of the resulting vibration control and the influence on it of time-delay based on different sampling intervals of seismic ground motion are analysed. The numerical results show that the forecasting models based on the grey theory are reliable and practical in structural vibration control fields. Compared with the grey forecasting model, the optimal forecasting model is more efficient in reducing the influences of time-delay and disturbance errors.

  14. Active structural vibration control: Robust to temperature variations

    Science.gov (United States)

    Gupta, Vivek; Sharma, Manu; Thakur, Nagesh

    2012-11-01

    d-form augmented piezoelectric constitutive equations which take into account temperature dependence of piezoelectric strain coefficient (d31) and permittivity (∈33), are converted into e-form. Using e-form constitutive equations, a finite element model of a smart two dimensional plate instrumented with piezoelectric patches is derived. Equations of motion are derived using Hamilton's variational principle. Coupled equations of motion are uncoupled using modal analysis. Modal state vectors are estimated using the Kalman observer. The first mode of smart cantilevered plate is actively controlled using negative first modal velocity feedback at various temperatures. Total control effort required to do so is calculated using the electro-mechanical impedance method. The temperature dependence of sensor voltage, control voltage, control effort and Kalman observer equations is shown analytically. Simulation results are presented using MATLAB. Variations in (i) peak sensor voltage, (ii) actual and estimated first modal velocities, (iii) peak control voltage, (iv) total control effort and (v) settling time with respect to temperature are presented. Active vibration control performance is not maintained at temperature away from reference temperature when the temperature dependence of piezoelectric stress coefficient ‘e31' and permittivity ‘∈33' is not included in piezoelectric constitutive equations. Active control of vibrations becomes robust to temperature variations when the temperature dependence of ‘e31' and ‘∈33' is included in piezoelectric constitutive equations.

  15. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention

    Directory of Open Access Journals (Sweden)

    Laura eChaddock-Heyman

    2013-03-01

    Full Text Available This study used functional magnetic resonance imaging (fMRI to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ minutes of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control.

  16. Active vibrations and noise control for turboprop application research program activities

    Science.gov (United States)

    Paonessa, A.; Concilio, A.; Lecce, Leonardo V.

    1992-01-01

    The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.

  17. The application of active noise control technology to reduce noise from air pollution control equipment

    Energy Technology Data Exchange (ETDEWEB)

    Depies, C. R.; Kapsos, D. W.

    1996-08-01

    The basic concept of active noise control, i. e. to create a noise field in a space in order to destructively interfere with an existing noise, and in the process create a quieter space, was explained. The manner in which noise control technology can be used in air pollution control equipment was described and guidelines for application were provided. A number of case studies were used to illustrate the suitability of active noise control for low frequency noise problems, especially in the area of air pollution control equipment. Impressive reduction of low frequency noise, energy efficiency, ability to retrofit into an existing duct system, and the hardware`s insensitivity to dirty exhaust environments were cited as the principal reasons for the success of active noise control technology over more traditional in-line passive silencers. 1 ref., 8 figs.

  18. Passive, Active and Semi-Active Control Systems in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Septimiu-George Luca

    2005-01-01

    Full Text Available In the recent years many techniques has been developed to reduce the vibration response in civil structure, such as tall buildings and long bridges. Attention of this paper is focused on the difference among passive, active and semi-active control systems. If passive control systems are used enhancing structural damping, stiffness or strength, the other control techniques employ controllable forces to add or dissipate, or both, energy in a structure due to the specific devices integrated with sensors, controllers and real-time processes to operating. Some applications will be proposed and applied to single degree of freedom systems in vertical working conditions.

  19. Modeling and vibration control of an active membrane mirror

    Science.gov (United States)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  20. The Control of Transmitted Power in an Active Isolation System

    DEFF Research Database (Denmark)

    Elliott, S.J.; Gardonio, P.; Pinnington, R.J.

    1997-01-01

    The isolation of vibration through a system with multiple active mounts is discussed, in which each of the mounts can transmit vibration in several degrees of freedom. Theoretical models of the various parts of this system have been developed which include a flexible receiving structure and distr...... of such an active vibration control system are also discussed.......The isolation of vibration through a system with multiple active mounts is discussed, in which each of the mounts can transmit vibration in several degrees of freedom. Theoretical models of the various parts of this system have been developed which include a flexible receiving structure...... and distributed active mounts, and these models can be connected together to produce an overall theoretical description of a realistic active isolation system. Total transmitted power has been found to be an excellent criterion to quantify the effect of various control strategies in this model in which...

  1. Development of magnetostrictive active members for control of space structures

    Science.gov (United States)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-01-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  2. Accelerometer Quantification of Physical Activity and Activity Patterns in Patients with Ankylosing Spondylitis and Population Controls

    NARCIS (Netherlands)

    van Genderen, Simon; Boonen, Annelies; van der Heijde, Desiree; Heuft, Liesbeth; Luime, Jolanda; Spoorenberg, Anneke; Arends, Suzanne; Landewe, Robert; Plasqui, Guy

    2015-01-01

    Objective. To compare the total amount of physical activity (TPA) and time spent in various activity intensities of patients with ankylosing spondylitis (AS) and population controls, and to explore factors related to physical activity (PA). Methods. Subjects were asked to wear a triaxial

  3. Control of active reflector system for radio telescope

    Science.gov (United States)

    Zhou, Guo-hua; Li, Guo-ping; Zhang, Yong; Zhang, Zhen-chao

    2016-10-01

    According to the control requirements of the active reflector surface in the 110 m radio telescope at QiTai(QTT) Xinjiang, a new displacement actuator and a new displacement control system were designed and manufactured and then their characteristics were tested by a dual-frequency laser interferometer in the micro-displacement laboratory. The displacement actuator was designed by a scheme of high precision worm and roller screw structures, and the displacement control system was based on a ARM micro-processor. Finally, the S curve acceleration control methods were used to design the hardware platform and software algorithm for the active reflection surface of the control system. The test experiments were performed based on the laser metrology system on an active reflector close-loop antenna prototype for large radio telescope. Experimental results indicate that it achieves a 30 mm working stroke and 5 μm RMS motion resolution. The accuracy (standard deviation) is 3.67 mm, and the error between the determined and theoretical values is 0.04% when the rated load is 300 kg, the step is 2 mm and the stroke is 30mm. Furthermore, the active reflector integrated system was tested by the laser sensors with the accuracy of 0.25 μm RMS on 4-panel radio telescope prototype, the measurement results show that the integrated precision of the active reflector closed-loop control system is less than 5 μm RMS, and well satisfies the technical requirements of active reflector control system of the QTT radio telescope in 3 mm wavelength.

  4. Exercising self-control increases relative left frontal cortical activation.

    Science.gov (United States)

    Schmeichel, Brandon J; Crowell, Adrienne; Harmon-Jones, Eddie

    2016-02-01

    Self-control refers to the capacity to override or alter a predominant response tendency. The current experiment tested the hypothesis that exercising self-control temporarily increases approach motivation, as revealed by patterns of electrical activity in the prefrontal cortex. Participants completed a writing task that did vs did not require them to exercise self-control. Then they viewed pictures known to evoke positive, negative or neutral affect. We assessed electroencephalographic (EEG) activity while participants viewed the pictures, and participants reported their trait levels of behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivity at the end of the study. We found that exercising (vs not exercising) self-control increased relative left frontal cortical activity during picture viewing, particularly among individuals with relatively higher BAS than BIS, and particularly during positive picture viewing. A similar but weaker pattern emerged during negative picture viewing. The results suggest that exercising self-control temporarily increases approach motivation, which may help to explain the aftereffects of self-control (i.e. ego depletion).

  5. Smart materials and active noise and vibration control in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, M. van [TNO Institute of Applied Physics, Delft (Netherlands)

    2001-07-01

    Results are presented for the reduction of sound radiated from a structure using different control methodologies. Two approaches for active structural acoustic control are mentioned to reduce sound radiated by the structure: the acoustic approach or the vibro-acoustic approach. In both cases integrated actuators in structure materials are necessary to realise feasible products. Furthermore the development of an efficient shaker for Active Isolation techniques is described. The prototype of TNO TPD can produce a force of 400 N up to 250 Hz at a good performance-volume ratio. To enhance the robustness of the active control applications, the use of the subspace identification based control methods are developed. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The performed simulations reveal excellent robustness performance under very general noise conditions or during operation of the control system. Furthermore the development of the techniques can be exploited to realise sound comfort requirements to enhance audible communications of vehicle related applications. To anticipate to these developments in the automotive industry, TNO has set up a Sound and Vibrations Research Centre with Twente University and a research program on Smart Panels with the Delft University. To investigate the potential markets and applications for sound comfort in the means of transportation, TNO-TPD and the Institute of Sound and Vibration Research in England (ISVR) have agreed on a cooperative venture to develop and realise 'active control of electroacoustics' (ACE). (orig.)

  6. Active control of nano dimers response using piezoelectric effect

    Science.gov (United States)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  7. Active Blade Vibration Control Being Developed and Tested

    Science.gov (United States)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  8. Switching Control of Wind Turbine Sub-Controllers Based on an Active Disturbance Rejection Technique

    Directory of Open Access Journals (Sweden)

    Yancai Xiao

    2016-10-01

    Full Text Available Wind power generation systems require complex control systems with multiple working conditions and multiple controllers. Under different operating conditions, switching without disturbancebetweenthesub-controllersplaysacriticalroleinensuringthestabilityofpowersystems. The sub-controllers of two typical cases in the permanent magnet direct drive (PMDD wind turbine running process are studied, one is the proportional integral (PI controller in the maximum power points tracking (MPPT stage, the other is the fuzzy pitch angle controller in the constant power stage. The switching strategy of the two sub-controllers is the emphasis in this research. Based on the active disturbance rejection control (ADRC, the switching mode of the sub-controllers is proposed, which can effectively restrain the sudden changes of the rotor current during the switching process, and improve the quality of power generation. The feasibility and effectiveness of the sub-controller switching strategy is verified by Matlab/Simulink simulation for a 2 MW PMDD wind turbine.

  9. Dual Control with Active Learning using Gaussian Process Regression

    CERN Document Server

    Alpcan, Tansu

    2011-01-01

    In many real world problems, control decisions have to be made with limited information. The controller may have no a priori (or even posteriori) data on the nonlinear system, except from a limited number of points that are obtained over time. This is either due to high cost of observation or the highly non-stationary nature of the system. The resulting conflict between information collection (identification, exploration) and control (optimization, exploitation) necessitates an active learning approach for iteratively selecting the control actions which concurrently provide the data points for system identification. This paper presents a dual control approach where the information acquired at each control step is quantified using the entropy measure from information theory and serves as the training input to a state-of-the-art Gaussian process regression (Bayesian learning) method. The explicit quantification of the information obtained from each data point allows for iterative optimization of both identifica...

  10. Passive and Active Vibration Control of Renewable Energy Structures

    DEFF Research Database (Denmark)

    Zhang, Zili

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade...... vibration and lateral tower vibration, with the main focus on structural control devices. Rigorous theoretical modeling of different dynamic system has been established, based on which detailed design and analysis of the proposed control devices can be carried out. This thesis also explores technical...... solutions for wave energy point absorbers, in order to maximize the mean absorbed power and to deliver more smooth power to the grid. A novel suboptimal causal control law has been established for controlling the motion of the point absorber, and a new type of point absorber has also been proposed...

  11. Active Noise Control of the Heavy Truck Interior Cab

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to control the noise of the heavy truck interior cab effectively, the active noise control methods are employed. First, an interior noise field test for the heavy truck is performed, and frequencies of interior noise of this vehicle are analyzed. According to the spectrum analysis of acquired noise signal, it is found out that the main frequencies of interior noise are less than 800Hz. Then the least squares lattice (LSL) algorithm is used as signal processing algorithm of the controller and a closed-loop control DSP system, based on TMS 320VC5416, is developed. The residual signal at driver's ear is used as feedback signal. Lastly, the developed ANC system is loaded into the heavy truck cab, and controlling the noise at driver's ear for that truck at different driving speeds is attempted. The noise control test results indicate that the cab interior noise is reduced averagely by 0.9 dBA at different driving speeds.

  12. Active Power Controls from Wind Power: Bridging the Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fleming, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Y. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singh, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muljadi, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scholbrook, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aho, J. [Univ. of Colorado, Boulder, CO (United States); Buckspan, A. [Univ. of Colorado, Boulder, CO (United States); Pao, L. [Univ. of Colorado, Boulder, CO (United States); Singhvi, V. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Tuohy, A. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pourbeik, P. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Brooks, D. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Bhatt, N. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  13. Control System Design of Shunt Active Power Filter Based on Active Disturbance Rejection and Repetitive Control Techniques

    Directory of Open Access Journals (Sweden)

    Le Ge

    2014-01-01

    Full Text Available To rely on joint active disturbance rejection control (ADRC and repetitive control (RC, in this paper, a compound control law for active power filter (APF current control system is proposed. According to the theory of ADRC, the uncertainties in the model and from the circumstance outside are considered as the unknown disturbance to the system. The extended state observer can evaluate the unknown disturbance. Next, RC is introduced into current loop to improve the steady characteristics. The ADRC is used to get a good dynamic performance, and RC is used to get a good static performance. A good simulation result is got through choosing and changing the parameters, and the feasibility, adaptability, and robustness of the control are testified by this result.

  14. Machine modification for active MHD control in RFX

    Energy Technology Data Exchange (ETDEWEB)

    Sonato, P. E-mail: sonato@igi.pd.cnr.it; Chitarin, G.; Zaccaria, P.; Gnesotto, F.; Ortolani, S.; Buffa, A.; Bagatin, M.; Baker, W.R.; Dal Bello, S.; Fiorentin, P.; Grando, L.; Marchiori, G.; Marcuzzi, D.; Masiello, A.; Peruzzo, S.; Pomaro, N.; Serianni, G

    2003-09-01

    Recent studies on RFP and Tokamak devices call for an active control of the MHD and resistive wall modes to induce plasma mode rotation and to prevent mode phase locking. The results obtained on RFX, where slow rotation of phase locked modes has been induced, support the possibility of extending active MHD mode control through a substantial modification of the device. A new first wall with an integrated system of electric and magnetic transducers has been realised. A close fitting 3 mm thick Cu shell replaces the 65 mm Al shell. A toroidal support structure (TSS) made of stainless steel replaces the shell in supporting all the forces acting on the torus. A system of 192 saddle coils is provided to actively control the MHD modes. This system completely surrounds the toroidal surface and allows the generation of harmonic fields with m=0 and m=1 poloidal wave number and with a toroidal spectrum up to n=24.

  15. Online identification of active absorbers in automotive vibration control

    Energy Technology Data Exchange (ETDEWEB)

    Buttelmann, M.; Lohmann, B.; Vinogradski, M.; Nedeljkovic, N. [Bremen Univ. (Germany). Inst. fuer Automatisierungstechnik; Marienfeld, P. [ContiTech Vibration Control GmbH, Hannover (Germany); Svaricek, F. [Continental Gummi-Werke AG, Hannover (Germany)

    2001-07-01

    In the past, engine-related noise and vibration in the vehicle cabin was exclusively reduced by passive absorption. Today, modern actuators and control systems make an active noise reduction possible by introducing counteracting vibration at 180 degrees phase lag. Within a cooperation of the Institute of Automation Systems and Continental AG, an approach using active absorbers at the engine mounts is investigated. As the dynamic behaviour of the active absorbers and other elements in the secondary path are time-variant (depending on temperature, age and other factors), an online identification is carried out. By this, the implemented feedforward control strategy is supported on a precise and frequently updated model of the secondary path. The chosen approaches to online and offline identification are presented together with first results achieved in online identification and with the overall control system. (orig.)

  16. Activities of the control services. First quarter 1997; Activites des services du controle. Premier trimestre 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper summarizes the control activities of the technical service of electric power and big dams: annual examinations, administrative instructions (draining, floods, granting renewal), decennial examinations etc. (J.S.)

  17. 3rd Active Flow and Combustion Control Conference

    CERN Document Server

    2015-01-01

    The book reports on the latest theoretical and experimental advances in the  field of active flow and combustion control. It covers new developments in actuator technology and sensing, in robust and optimal open- and closed-loop control, as well as in model reduction for control. It collects contributions presented during the third edition of the Active Flow and Combustion Control conference, held in September 10-12, 2014 at the Technische Universität Berlin (Germany). This conference, as well as the research presented in the book, have been supported by the collaborative research center SFB 1029 -Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics, funded by the DFG (German Research Foundation).

  18. Strain-optic active control for quantum integrated photonics

    CERN Document Server

    Humphreys, Peter C; Spring, Justin B; Moore, Merritt; Salter, Patrick S; Booth, Martin J; Kolthammer, W Steven; Walmsley, Ian A

    2014-01-01

    We present a practical method for active phase control on a photonic chip that has immediate applications in quantum photonics. Our approach uses strain-optic modification of the refractive index of individual waveguides, effected by a millimeter-scale mechanical actuator. The resulting phase change of propagating optical fields is rapid and polarization-dependent, enabling quantum applications that require active control and polarization encoding. We demonstrate strain-optic control of non-classical states of light in silica, showing the generation of 2-photon polarisation N00N states by manipulating Hong-Ou-Mandel interference. We also demonstrate switching times of a few microseconds, which are sufficient for silica-based feed-forward control of photonic quantum states.

  19. Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions

    Science.gov (United States)

    Ahmadi, G.; Marzocca, P.; Jha, R.; Alstorm, B.; Obied, S.; Kabir, P.; Shahrabi, A.

    2010-01-01

    The main objective is to develop effective control strategies for separation control of an airfoil with a single hinge flap. The specific objectives are: Develop an active control architecture for flow control around an airfoil with flap. Design, fabricate, a wind tunnel test of a high lift wing (with flap) with integrated actuators and sensors. Design, development and fabrication of synthetic jet actuators. Develop appropriate control strategy for application to the airfoil. Wind tunnel testing of the high lift wing at various angles of attack and flap positions with closed loop control.

  20. Vibration control of flexible beams using an active hinge

    Science.gov (United States)

    Cudney, H. H., Jr.; Inman, D. J.; Horner, G. C.

    1985-01-01

    The use of an active hinge to attenuate the transverse vibrations of a flexible beam is examined. A slender aluminum beam is suspended vertically, cantilevered at the top. An active hinge is placed at the node of the second vibration mode. The active hinge consists of a torque motor, strain gauge, and tachometer. A control law is implemented using both beam-bending strain and the relative angular velocity measured at this hinge, thereby configuring the hinge to act as an active damper. Results from implementing this control law show little improvement in the first mode damping ratio, 130 percent increase in the second mode damping ratio, and 180 percent increase in the third mode damping ratio. The merits of using a motor with a gearbox are discussed.

  1. Enhancing sensorimotor activity by controlling virtual objects with gaze.

    Directory of Open Access Journals (Sweden)

    Cristián Modroño

    Full Text Available This fMRI work studies brain activity of healthy volunteers who manipulated a virtual object in the context of a digital game by applying two different control methods: using their right hand or using their gaze. The results show extended activations in sensorimotor areas, not only when participants played in the traditional way (using their hand but also when they used their gaze to control the virtual object. Furthermore, with the exception of the primary motor cortex, regional motor activity was similar regardless of what the effector was: the arm or the eye. These results have a potential application in the field of the neurorehabilitation as a new approach to generate activation of the sensorimotor system to support the recovery of the motor functions.

  2. Active Vibration Control of a Thin Steel Sheet

    OpenAIRE

    Yohji Okada; Ken-Ichi Matsuda; Junji Tani

    1995-01-01

    The commercial rolling process used in the steel industry to manufacture thin steel sheets tends to cause plate vibrations that lower the quality of the surface finish. This article introduces a noncontact method of active vibration control for reducing the flexural vibrations of a thin steel sheet. The proposed electromagnetic method of control has been implemented in a simple experimental setup where the signal from a motion sensor regulates the attractive force of the magnets that produce ...

  3. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing

    2009-02-11

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  4. PASSIVE-ACTIVE CONTROL OF A FLEXIBLE ISOLATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Song Kongjie; Zhang Bing; Sun Lingling; Sun Yuguo

    2003-01-01

    Passive-active control of a flexible isolation system is investigated from the viewpoint of power flow. Dynamic transfer equations of the system are deduced based on a matrix method which uses mobility or impedance representations of three substructures: the source of vibration, the receiver and the mounting system which connects the source to the receiver. The cancellation of axial input forces to the receiver is considered as the active control strategy and its effects are discussed. The results of the study show that the strategy adopted herein can effectively reduce the power transmitted to the receiver.

  5. Goal-congruent default network activity facilitates cognitive control.

    Science.gov (United States)

    Spreng, R Nathan; DuPre, Elizabeth; Selarka, Dhawal; Garcia, Juliana; Gojkovic, Stefan; Mildner, Judith; Luh, Wen-Ming; Turner, Gary R

    2014-10-15

    Substantial neuroimaging evidence suggests that spontaneous engagement of the default network impairs performance on tasks requiring executive control. We investigated whether this impairment depends on the congruence between executive control demands and internal mentation. We hypothesized that activation of the default network might enhance performance on an executive control task if control processes engage long-term memory representations that are supported by the default network. Using fMRI, we scanned 36 healthy young adult humans on a novel two-back task requiring working memory for famous and anonymous faces. In this task, participants (1) matched anonymous faces interleaved with anonymous face, (2) matched anonymous faces interleaved with a famous face, or (3) matched a famous faces interleaved with an anonymous face. As predicted, we observed a facilitation effect when matching famous faces, compared with anonymous faces. We also observed greater activation of the default network during these famous face-matching trials. The results suggest that activation of the default network can contribute to task performance during an externally directed executive control task. Our findings provide evidence that successful activation of the default network in a contextually relevant manner facilitates goal-directed cognition.

  6. A Review of Virtual Sensing Algorithms for Active Noise Control

    Directory of Open Access Journals (Sweden)

    Danielle Moreau

    2008-11-01

    Full Text Available Traditional local active noise control systems minimise the measured acoustic pressure to generate a zone of quiet at the physical error sensor location. The resulting zone of quiet is generally limited in size and this requires the physical error sensor be placed at the desired location of attenuation, which is often inconvenient. To overcome this, a number of virtual sensing algorithms have been developed for active noise control. Using the physical error signal, the control signal and knowledge of the system, these virtual sensing algorithms estimate the error signal at a location that is remote from the physical error sensor, referred to as the virtual location. Instead of minimising the physical error signal, the estimated error signal is minimised with the active noise control system to generate a zone of quiet at the virtual location. This paper will review a number of virtual sensing algorithms developed for active noise control. Additionally, the performance of these virtual sensing algorithms in numerical simulations and in experiments is discussed and compared.

  7. Interaction between functional health literacy, patient activation, and glycemic control

    Directory of Open Access Journals (Sweden)

    Woodard LD

    2014-07-01

    Full Text Available LeChauncy D Woodard, Cassie R Landrum, Amber B Amspoker, David Ramsey, Aanand D Naik Veterans Affairs Health Services Research and Development Center for Innovations in Quality, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center, and Section of Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA Background: Functional health literacy (FHL and patient activation can impact diabetes control through enhanced diabetes self-management. Less is known about the combined effect of these characteristics on diabetes outcomes. Using brief, validated measures, we examined the interaction between FHL and patient activation in predicting glycosylated hemoglobin (HbA1c control among a cohort of multimorbid diabetic patients.Methods: We administered a survey via mail to 387 diabetic patients with coexisting ­hypertension and ischemic heart disease who received outpatient care at one regional VA medical center between November 2010 and December 2010. We identified patients with the study conditions using the International Classification of Diseases-Ninth Revision-Clinical ­Modification (ICD-9-CM diagnoses codes and Current Procedure Terminology (CPT ­procedures codes. Surveys were returned by 195 (50.4% patients. We determined patient activation levels based on participant responses to the 13-item Patient Activation Measure and FHL levels using the single-item screening question, “How confident are you filling out medical forms by yourself?” We reviewed patient medical records to assess glycemic control. We used multiple logistic regression to examine whether activation and FHL were individually or jointly related to HbA1c control.Results: Neither patient activation nor FHL was independently related to glycemic control in the unadjusted main effects model; however, the interaction between the two was significantly associated with glycemic control (odds ratio 1.05 [95% confidence

  8. Active vibration control for flexible rotor by optimal direct-output feedback control

    Science.gov (United States)

    Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  9. Control of chaotic oscillators via a class of model free active controller: Suppresion and synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, Ricardo [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, 02200, Azcapotzalco, Mexico D.F. (Mexico)], E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV-IPN, Apartado Postal 14-740, 07360 Mexico D.F. (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx

    2008-10-15

    The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators.

  10. A Quarter Active Suspension System Based Ground-Hook Controller

    OpenAIRE

    Turnip Arjon

    2016-01-01

    An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with ...

  11. Human ECG signal parameters estimation during controlled physical activity

    Science.gov (United States)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  12. Active-passive integrated vibration control for control moment gyros and its application to satellites

    Science.gov (United States)

    Zhang, Yao; Zang, Yue; Li, Mou; Wang, Youyi; Li, Wenbo

    2017-04-01

    The strategy of active-passive integrated vibration control on the truss enveloping control moment gyroscopes (CMGs) is presented and its characteristics of time domain and frequency domain are analyzed. Truss enveloping CMGs contains pyramid-type CMGs, which are enveloped by multiple struts. These struts can be employed to realize the active-passive integrated vibration control. In addition, the struts of the trusses can maintain the working space of CMGs. Firstly, the disturbance characteristics of CMGs are analyzed considering static and dynamic imbalances of the CMG's rotor; then, an active-passive integrated vibration isolation truss structure is developed based on its characteristics. This structure can restrain the CMG vibration as much as possible and reduce its influence on the photographic quality of optical payloads. Next, the dynamic model of the active-passive vibration isolation truss structure is established. The frequency domain analysis of this model shows that the active-passive integrated vibration control method can restrain the high-frequency vibration and also improve the characteristics of low-frequency vibration. Finally, the dynamic model for the whole satellite is built with this type of CMGs. The time domain simulations of satellite attitude control verify the attitude control improvements resulting from the CMGs vibration control strategy.

  13. Satellite Dynamic Damping via Active Force Control Augmentation

    Science.gov (United States)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  14. Active disturbance rejection control for hydraulic width control system for rough mill

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve fast response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation,compared with classic PI controller.

  15. A new robust adaptive controller for vibration control of active engine mount subjected to large uncertainties

    Science.gov (United States)

    Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun

    2015-04-01

    This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation.

  16. Active disturbance rejection control of temperature for ultrastable optical cavities.

    Science.gov (United States)

    Pizzocaro, Marco; Calonico, Davide; Calosso, Claudio; Clivati, Cecilia; Costanzo, Giovanni A; Levi, Filippo; Mura, Alberto

    2013-02-01

    This paper describes the application of a novel active disturbance rejection control (ADRC) to the stabilization of the temperature of two ultra-stable Fabry-Perot cavities. The cavities are 10 cm long and entirely made of ultralow- expansion glass. The control is based on a linear extended state observer that estimates and compensates the disturbance in the system in real time. The resulting control is inherently robust and easy to tune. A digital implementation of ADRC gives a temperature instability of 200 μK at one day of integration time.

  17. Active Noise Control for Vehicle Exhaust Noise Reduction

    Institute of Scientific and Technical Information of China (English)

    李克强; 杨殿阁; 郑四发; 连小珉; 田中丈晴

    2003-01-01

    An active noise control (ANC) method was developed for exhaust noise reduction for medium-duty diesel trucks. A modified variable step size least mean squares (LMS) algorithm was used for the controller in a variable environment that considered the vehicle's acceleration characteristics. The variable step size time-based synchronized filtered-x LMS method (SFX-TB) used an adaptive algorithm that was more efficient than the conventional filtered-x LMS algorithm. The simulation and the experimental tests show that the control trackability and stability provided by the algorithm during acceleration enable the ANC system to effectively reduce the vehicle exhaust noise.

  18. Researches on active structural acoustic control by radiation modes

    Institute of Scientific and Technical Information of China (English)

    MAO Qibo; JIANG Zhe

    2001-01-01

    Based on the radiation modes, an active control strategy is presented for sound radiation from elastic structures with an example of simply supported rectangular panel. The physical characteristics and mathematical meaning of the radiation modes are analyzed. The radiation efficiency of radiation mode falls off very rapidly with the increase of modes order at low frequency. A new control strategy is developed in which by canceling the adjoint coefficient of the first k radiation modes, the sound powers of the first k radiation modes is zero theoretically. The numerical calculation is made by using point force actuators as control forces.

  19. Taming random lasers through active spatial control of the pump.

    Science.gov (United States)

    Bachelard, N; Andreasen, J; Gigan, S; Sebbah, P

    2012-07-20

    Active control of the spatial pump profile is proposed to exercise control over random laser emission. We demonstrate numerically the selection of any desired lasing mode from the emission spectrum. An iterative optimization method is employed, first in the regime of strong scattering where modes are spatially localized and can be easily selected using local pumping. Remarkably, this method works efficiently even in the weakly scattering regime, where strong spatial overlap of the modes precludes spatial selectivity. A complex optimized pump profile is found, which selects the desired lasing mode at the expense of others, thus demonstrating the potential of pump shaping for robust and controllable single mode operation of a random laser.

  20. Taming random lasers through active spatial control of the pump

    CERN Document Server

    Bachelard, Nicolas; Gigan, Sylvain; Sebbah, Patrick

    2012-01-01

    Active control of the pump spatial profile is proposed to exercise control over random laser emission. We demonstrate numerically the selection of any desired lasing mode from the emission spectrum. An iterative optimization method is employed, first in the regime of strong scattering where modes are spatially localized and can be easily selected using local pumping. Remarkably, this method works efficiently even in the weakly scattering regime, where strong spatial overlap of the modes precludes spatial selectivity. A complex optimized pump profile is found, which selects the desired lasing mode at the expense of others, thus demonstrating the potential of pump shaping for robust and controllable singlemode operation of a random laser.

  1. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    OpenAIRE

    Wissam H. Al-Mutar

    2015-01-01

    The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compa...

  2. Control law design to meet constraints using SYNPAC-synthesis package for active controls

    Science.gov (United States)

    Adams, W. M., Jr.; Tiffany, S. H.

    1982-01-01

    Major features of SYNPAC (Synthesis Package for Active Controls) are described. SYNPAC employs constrained optimization techniques which allow explicit inclusion of design criteria (constraints) in the control law design process. Interrelationships are indicated between this constrained optimization approach, classical and linear quadratic Gaussian design techniques. Results are presented that were obtained by applying SYNPAC to the design of a combined stability augmentation/gust load alleviation control law for the DAST ARW-2.

  3. Active control of combustors after twenty years' efforts

    Science.gov (United States)

    Culick, F. E. C.; Palm, S.

    2009-09-01

    Active control of combustion was proposed by Bollay [1]. Following that idea, Tsien [2] worked out an analysis of controlling low-frequency oscillations in a liquid rocket but no successful experimental results followed. More than thirty years passed before the first laboratory demonstrations were performed at Cambridge University. Interest grew rapidly in the 1990s due to potentially wonderful applications to practical combustion systems including liquid and solid rockets, gas turbines, and thrust augmentors. Dreams have not materialized: There are presently no operational control systems, despite considerable efforts, and examples of partially controlled phenomena. Only one practical installation for control of oscillations has been documented, for a large Siemens machine [3]. Its use has been rendered unnecessary by further experimental work leading to development of successful passive control with modifications of hardware [4]. The purpose of this paper is to examine briefly some of the reasons that active control of combustion has failed to become the panacea widely anticipated two decades ago. The authors' view is that the subject is far from exhausted, but rather requires carefully planned research to understand the basis of successful applications.

  4. Vehicle active steering control research based on two-DOF robust internal model control

    Science.gov (United States)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-07-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  5. A Semi-active Control System for Wind Turbines

    DEFF Research Database (Denmark)

    Caterino, N.; Georgakis, Christos T.; Trinchillo, F.

    2014-01-01

    A semi-active (SA) control system based on the use of smart magnetorheological (MR) dampers to control the structural response of a wind turbine is proposed herein. The innovative approach is based on the implementation and use of a variable-properties base restraint. This is able to modify in real......, and a control algorithm that instantaneously commands the latter during the motion, making them to modulate the reactive force as needed to achieve the performance goals. The design and operation of such a system are shown with reference to a case study consisting of an almost 100 m tall wind turbine, realized...... time its mechanical properties according to the instantaneous decision of a given control logic, the latter addressed to control one or more structural response parameters. The smart base restraint is thought to be a combination of a smooth hinge, elastic springs, large-scale adjustable MR dampers...

  6. Development and evaluation of a generic active helicopter vibration controller

    Science.gov (United States)

    Davis, M. W.

    1984-01-01

    A computerized generic active controller is developed, which alleviates helicopter vibration by closed-loop implementation of higher harmonic control (HHC). In the system, the higher harmonic blade pitch is input through a standard helicopter swashplate; for a four-blade helicopter rotor the 4/rev vibration in the rotorcraft is minimized by inducing cyclic pitch motions at 3, 4, and 5/rev in the rotating system. The controller employs the deterministic, cautious, and dual control approaches and two linear system models (local and global), as well as several methods of limiting control. Based on model testing, performed at moderate to high values of forward velocity and rotor thrust, reductions in the rotor test apparatus vibration from 75 to 95 percent are predicted, with HHC pitch amplitudes of less than one degree. Good performance is also noted for short-duration maneuvers.

  7. A Quarter Active Suspension System Based Ground-Hook Controller

    Directory of Open Access Journals (Sweden)

    Turnip Arjon

    2016-01-01

    Full Text Available An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with semi-active suspension.

  8. Design Method of Active Disturbance Rejection Variable Structure Control System

    Directory of Open Access Journals (Sweden)

    Yun-jie Wu

    2015-01-01

    Full Text Available Based on lines cluster approaching theory and inspired by the traditional exponent reaching law method, a new control method, lines cluster approaching mode control (LCAMC method, is designed to improve the parameter simplicity and structure optimization of the control system. The design guidelines and mathematical proofs are also given. To further improve the tracking performance and the inhibition of the white noise, connect the active disturbance rejection control (ADRC method with the LCAMC method and create the extended state observer based lines cluster approaching mode control (ESO-LCAMC method. Taking traditional servo control system as example, two control schemes are constructed and two kinds of comparison are carried out. Computer simulation results show that LCAMC method, having better tracking performance than the traditional sliding mode control (SMC system, makes the servo system track command signal quickly and accurately in spite of the persistent equivalent disturbances and ESO-LCAMC method further reduces the tracking error and filters the white noise added on the system states. Simulation results verify the robust property and comprehensive performance of control schemes.

  9. Active structural acoustic control of helicopter interior multifrequency noise using input-output-based hybrid control

    Science.gov (United States)

    Ma, Xunjun; Lu, Yang; Wang, Fengjiao

    2017-09-01

    This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.

  10. Active Control Analysis for Aeroelastic Instabilities in Turbomachines

    Science.gov (United States)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Turbomachines onboard aircraft operate in a highly complex and harsh environment. The unsteady flowfield inherent to turbomachines leads to several problems associated with safety, stability, performance and noise. In-flight surge or flutter incidents could be catastrophic and impact the safety and reliability of the aircraft. High-Cycle-Fatigue (HCF), on the other hand, can significantly impact safety, readiness and maintenance costs. To avoid or minimize these problems generally a more conservative design method must be initiated which results in thicker blades and a loss of performance. Actively controlled turbomachines have the potential to reduce or even eliminate the instabilities by impacting the unsteady aerodynamic characteristics. By modifying the unsteady aerodynamics, active control may significantly improve the safety and performance especially at off-design conditions, reduce noise, and increase the range of operation of the turbomachine. Active control can also help improve reliability for mission critical applications such as the Mars Flyer. In recent years, HCF has become one of the major issues concerning the cost of operation for current turbomachines. HCF alone accounts for roughly 30% of maintenance cost for the United States Air-Force. Other instabilities (flutter, surge, rotating-stall, etc.) are generally identified during the design and testing phase. Usually a redesign overcomes these problems, often reducing performance and range of operation, and resulting in an increase in the development cost and time. Despite a redesign, the engines do not have the capabilities or means to cope with in-flight unforeseen vibration, stall, flutter or surge related instabilities. This could require the entire fleet worldwide to be stood down for expensive modifications. These problems can be largely overcome by incorporating active control within the turbomachine and its design. Active control can help in maintaining the integrity of the system in

  11. Controlling the enzymatic activity of a restriction enzyme by light.

    Science.gov (United States)

    Schierling, Benno; Noël, Ann-Josée; Wende, Wolfgang; Hien, Le Thi; Volkov, Eugeny; Kubareva, Elena; Oretskaya, Tatiana; Kokkinidis, Michael; Römpp, Andreas; Spengler, Bernhard; Pingoud, Alfred

    2010-01-26

    For many applications it would be desirable to be able to control the activity of proteins by using an external signal. In the present study, we have explored the possibility of modulating the activity of a restriction enzyme with light. By cross-linking two suitably located cysteine residues with a bifunctional azobenzene derivative, which can adopt a cis- or trans-configuration when illuminated by UV or blue light, respectively, enzymatic activity can be controlled in a reversible manner. To determine which residues when cross-linked show the largest "photoswitch effect," i.e., difference in activity when illuminated with UV vs. blue light, > 30 variants of a single-chain version of the restriction endonuclease PvuII were produced, modified with azobenzene, and tested for DNA cleavage activity. In general, introducing single cross-links in the enzyme leads to only small effects, whereas with multiple cross-links and additional mutations larger effects are observed. Some of the modified variants, which carry the cross-links close to the catalytic center, can be modulated in their DNA cleavage activity by a factor of up to 16 by illumination with UV (azobenzene in cis) and blue light (azobenzene in trans), respectively. The change in activity is achieved in seconds, is fully reversible, and, in the case analyzed, is due to a change in V(max) rather than K(m).

  12. Should Ecosystem Management Involve Active Control of Species Abundances?

    Directory of Open Access Journals (Sweden)

    Timothy E. Essington

    2005-12-01

    Full Text Available We review four case studies in which there is a risk of extinction or severe reduction in highly valued species if we ignore either, or both, of two ecosystem control options. “Symptomatic control” implies direct control of extinction risk through direct harvesting or culling of competitors and predators. “Systemic control” implies treating the causes of the problem that led to an unnaturally high abundance in the first place. We demonstrate, with a discussion of historically observed population trends, how surprising trophic interactions can emerge as a result of alterations to a system. Simulation models were developed for two of the case studies as aids to adaptive policy design, to expose possible abundance changes caused by trophic interactions and to highlight key uncertainties about possible responses to ecosystem management policies involving active intervention to control abundances. With reasonable parameter values, these models predict a wide range of possible responses given available data, but do indicate a good chance that active control would reverse declines and reverse extinction risks. We find that controlling seal (Phoca vitulina populations in the Georgia Strait increases juvenile survival rates of commercial salmon (Oncorhynchus spp. species, but that commensurate increases in hake populations from decreased seal predation could be a compensatory source of predation on juvenile salmon. We also show that wolf (Canis lupus control and moose (Alces alces harvest bring about a recovery in caribou (Rangifer tarandus caribou populations, where simple habitat protection policies fail to recover caribou before wolf predation causes severe declines. The results help address a common problem in disturbed ecosystems, where controlling extinction risks can mean choosing between active control of species abundance or establishing policies of protection, and allowing threatened species to recover naturally.

  13. Wind Turbine Control with Active Damage Reduction through Energy Dissipation

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Jayawardhana, Bayu; Wisniewski, Rafał

    2016-01-01

    In this paper we propose an active damage reduction control strategy for wind turbines based on dissipated energy. To this end we rely on the equivalences relating both damage in the rainflow counting sense and dissipated energy to the variations of Preisach hysteresis operators. Since dissipation

  14. Active control of one or more EGR loops

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Michael J.; Cunningham, Michael J.; Henry, Cary A.

    2017-08-08

    Active control of one or more exhaust gas recirculation loops is provided to manage and EGR fraction in the charge flow to produce desired operating conditions and/or provide diagnostics in response to at least one of an oxygen concentration and a NOx concentration in the charge flow and in the exhaust flow.

  15. Improving the Dynamics of Suspension Bridges using Active Control Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Improving the dynamics of suspension bridge using active control is discussed in this paper. The main dynamic problem with long suspension bridges is the aeroelastic phenomenon called flutter. Flutter oscillations of a bridge girder is a stability problem and the oscillations are perpendicular...

  16. Model based active power control of a wind turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad;

    2014-01-01

    in the electricity market that selling the reserve power is more profitable than producing with the full capacity. Therefore wind turbines can be down-regulated and sell the differential capacity as the reserve power. In this paper we suggest a model based approach to control wind turbines for active power reference...

  17. Children's and Adults' Judgments of the Controllability of Cognitive Activities

    Science.gov (United States)

    Pillow, Bradford H.; Pearson, RaeAnne M.

    2015-01-01

    Two experiments investigated 1st-, 3rd-, and 5th-grade children's and adults' judgments related to the controllability of cognitive activities, including object recognition, inferential reasoning, counting, and pretending. In Experiment 1, fifth-grade children and adults rated transitive inference and interpretation of ambiguous pictures as more…

  18. WHEELBASE PREVIEW OPTIMAL CONTROL FOR ACTIVE VEHICLE SUSPENSIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    An algorithm in which the optimal control law takes the advantage of the correlation between front and rear inputs, i.e., wheelbase preview information, for an active vehicle suspension design is described. Based on simulations, the potential improvements from wheelbase preview and the effects of preview time are investigated.

  19. Multi-channel Kalman filters for active noise control

    NARCIS (Netherlands)

    Ophem, S. van; Berkhoff, A.P.

    2013-01-01

    By formulating the feed-forward broadband active noise control problem as a state estimation problem it is possible to achieve a faster rate of convergence than the filtered reference least mean squares algorithm and possibly also a better tracking performance. A multiple input/multiple output

  20. Multi-channel Kalman filters for active noise control

    NARCIS (Netherlands)

    van Ophem, S.; Berkhoff, Arthur P.

    By formulating the feed-forward broadband active noise control problem as a state estimation problem it is possible to achieve a faster rate of convergence than the filtered reference least mean squares algorithm and possibly also a better tracking performance. A multiple input/multiple output

  1. Passive stability and active control in a rhythmic task

    NARCIS (Netherlands)

    Wei, Kunlin; Dijkstra, Tjeerd M. H.; Sternad, Dagmar

    2007-01-01

    Rhythmically bouncing a ball with a racket is a task that affords passively stable solutions as demonstrated by stability analyses of a mathematical model of the task. Passive stability implies that no active control is needed as errors die out without requiring corrective actions. Empirical results

  2. Review of actuators for high speed active flow control

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO ZhenBing; XIA ZhiXun; LIU Bing; DENG Xiong

    2012-01-01

    Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and maneuverable high speed flight.The development of high speed flight technology promotes the emergence of novel and robust actuators.This review introduces the state of the art in the development of actuators that can be used in high speed active flow control.The classification and different operation criteria of the actuators are discussed.The specifications,mechanisms and applications of various popular actuator types including fluidic,mechanical,and plasma actuators are described.Based on the realistic need of high speed flow control and the existing results of actuators,a new actuator design method is proposed.At last,the merits and drawbacks of the actuators are summarized and some suggestions on the development of active flow control technology are put forward.

  3. Improving wind turbine array efficiency through active flow control

    Science.gov (United States)

    Velarde, John-Michael; Wang, Guannan; Shea, Patrick; Glauser, Mark; Castillo, Luciano

    2013-11-01

    We attempted to demonstrate the capability of instrumenting three wind turbine blades with an air delivery system that provided active flow control in an effort to improve turbine performance in the presence of the wake turbulence that is inherent in a turbine array. Presently, turbines are being designed for set conditions, such as steady incoming wind and a set velocity profile, however conditions can be drastically different in the field - thus causing poor performance from the turbines. The blades were instrumented with pressure transducers which measured the suction surface pressure; the sensor setup was such that three unique blade configurations existed: spanwise sensors, chord-wise sensors, and a reference sensor. The compressed air was delivered through a rotary union connected to the turbine hub with tubing attached to the suction side of the blades. The primary purpose of this test was to demonstrate the ability to deliver air to a rotating frame for active flow control. We collected data under three test conditions using an open-section wind tunnel, courtesy of Texas Tech University: static with no flow control, rotation with no flow control, and rotation with active flow control.

  4. A model for signal processing and predictive control of semi-active structural control system

    Indian Academy of Sciences (India)

    M-H Shih; W-P Sung; Ching-Jong Wang

    2009-06-01

    The theory for structural control has been well developed and applied to perform excellent energy dissipation using dampers. Both active and semi-active control systems may be used to decide on the optimal switch point of the damper based on the current and past structural responses to the excitation of external forces. However, numerous noises may occur when the control signals are accessed and transported thus causing a delay of the damper. Therefore, a predictive control technique that integrates an improved method of detecting the control signal based on the direction of the structural motion, and a calculator for detecting the velocity using the least-square polynomial regression is proposed in this research. Comparisons of the analytical data and experimental results show that this predictor is effective in switching the moving direction of the semi-active damper. This conclusion is further verified using the component and shaking table test with constant amplitude but various frequencies, and the El Centro earthquake test. All tests confirm that this predictive control technique is effective to alleviate the time delay problem of semi-active dampers. This predictive control technique promotes about 30% to 40% reduction of the structural displacement response and about 35% to 45% reduction of the structural acceleration response.

  5. Neural activity of orbitofrontal cortex contributes to control of waiting.

    Science.gov (United States)

    Xiao, Xiong; Deng, Hanfei; Wei, Lei; Huang, Yanwang; Wang, Zuoren

    2016-09-01

    The willingness to wait for delayed reward and information is of fundamental importance for deliberative behaviors. The orbitofrontal cortex (OFC) is thought to be a core component of the neural circuitry underlying the capacity to control waiting. However, the neural correlates of active waiting and the causal role of the OFC in the control of waiting still remain largely unknown. Here, we trained rats to perform a waiting task (waiting for a pseudorandom time to obtain the water reward), and recorded neuronal ensembles in the OFC throughout the task. We observed that subset OFC neurons exhibited ramping activities throughout the waiting process. Receiver operating characteristic analysis showed that neural activities during the waiting period even predicted the trial outcomes (patient vs. impatient) on a trial-by-trial basis. Furthermore, optogenetic activation of the OFC during the waiting period improved the waiting performance, but did not influence rats' movement to obtain the reward. Taken together, these findings reveal that the neural activity in the OFC contributes to the control of waiting.

  6. Adaptive and robust active vibration control methodology and tests

    CERN Document Server

    Landau, Ioan Doré; Castellanos-Silva, Abraham; Constantinescu, Aurelian

    2017-01-01

    This book approaches the design of active vibration control systems from the perspective of today’s ideas of computer control. It formulates the various design problems encountered in the active management of vibration as control problems and searches for the most appropriate tools to solve them. The experimental validation of the solutions proposed on relevant tests benches is also addressed. To promote the widespread acceptance of these techniques, the presentation eliminates unnecessary theoretical developments (which can be found elsewhere) and focuses on algorithms and their use. The solutions proposed cannot be fully understood and creatively exploited without a clear understanding of the basic concepts and methods, so these are considered in depth. The focus is on enhancing motivations, algorithm presentation and experimental evaluation. MATLAB®routines, Simulink® diagrams and bench-test data are available for download and encourage easy assimilation of the experimental and exemplary material. Thre...

  7. Active noise and vibration control for vehicular applications

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P.S.; Ellis, S.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project investigated semi-active suspension systems based on real time nonlinear control of magneto-rheological (MR) shock absorbers. This effort was motivated by Laboratory interactions with the automobile industry and with the Defense Department. Background research and a literature search on semi-active suspensions was carried out. Numerical simulations of alternative nonlinear control algorithms were developed and adapted for use with an MR shock absorber. A benchtop demonstration system was designed, including control electronics and a mechanical demonstration fixture to hold the damper/spring assembly. A custom-made MR shock was specified and procured. Measurements were carried out at Los Alamos to characterize the performance of the device.

  8. UML activity diagrams in requirements specification of logic controllers

    Science.gov (United States)

    Grobelna, Iwona; Grobelny, Michał

    2015-12-01

    Logic controller specification can be prepared using various techniques. One of them is the wide understandable and user-friendly UML language and its activity diagrams. Using formal methods during the design phase increases the assurance that implemented system meets the project requirements. In the approach we use the model checking technique to formally verify a specification against user-defined behavioral requirements. The properties are usually defined as temporal logic formulas. In the paper we propose to use UML activity diagrams in requirements definition and then to formalize them as temporal logic formulas. As a result, UML activity diagrams can be used both for logic controller specification and for requirements definition, what simplifies the specification and verification process.

  9. Design and control of hybrid active power filters

    CERN Document Server

    Lam, Chi-Seng

    2014-01-01

    Design and Control of Hybrid Active Power Filters presents an overview of the current quality problems and their compensators. To get a balance between the system cost and performance, hybrid active power filters (HAPFs) are valuable. The book presents the coverage of resonance phenomena prevention capability, filtering performance and system robustness analysis of HAPF; nonlinear inverter current slope characteristics and their linear operation region requirement analysis of the hysteresis PWM for the HAPF; minimum inverter capacity design procedure of HAPF, adaptive dc-link voltage controller for the HAPF and the real design example of a 220V 10kVA HAPF, in which the system performance analysis method, minimum dc voltage deduction concept and adaptive dc voltage idea can be further extended into the other active compensators, such as APF, static synchronous compensator STATCOM, etc. This book will benefit researchers, graduate students, and electrical power engineers in the field of power-quality compensati...

  10. Active Noise Control of Radiated Noise from Jets Originating NASA

    Science.gov (United States)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  11. Development of universal antidotes to control aptamer activity.

    Science.gov (United States)

    Oney, Sabah; Lam, Ruby T S; Bompiani, Kristin M; Blake, Charlene M; Quick, George; Heidel, Jeremy D; Liu, Joanna Yi-Ching; Mack, Brendan C; Davis, Mark E; Leong, Kam W; Sullenger, Bruce A

    2009-10-01

    With an ever increasing number of people taking numerous medications, the need to safely administer drugs and limit unintended side effects has never been greater. Antidote control remains the most direct means to counteract acute side effects of drugs, but, unfortunately, it has been challenging and cost prohibitive to generate antidotes for most therapeutic agents. Here we describe the development of a set of antidote molecules that are capable of counteracting the effects of an entire class of therapeutic agents based upon aptamers. These universal antidotes exploit the fact that, when systemically administered, aptamers are the only free extracellular oligonucleotides found in circulation. We show that protein- and polymer-based molecules that capture oligonucleotides can reverse the activity of several aptamers in vitro and counteract aptamer activity in vivo. The availability of universal antidotes to control the activity of any aptamer suggests that aptamers may be a particularly safe class of therapeutics.

  12. An Efficient Modal Control Strategy for the Active Vibration Control of a Truss Structure

    Directory of Open Access Journals (Sweden)

    Ricardo Carvalhal

    2007-01-01

    Full Text Available In this paper an efficient modal control strategy is described for the active vibration control of a truss structure. In this approach, a feedback force is applied to each mode to be controlled according to a weighting factor that is determined by assessing how much each mode is excited by the primary source. The strategy is effective provided that the primary source is at a fixed position on the structure, and that the source is stationary in the statistical sense. To test the effectiveness of the control strategy it is compared with an alternative, established approach namely, Independent Modal Space Control (IMSC. Numerical simulations show that with the new strategy it is possible to significantly reduce the control effort required, with a minimal reduction in control performance.

  13. Nonlinear control of an activated sludge aeration process: use of fuzzy techniques for tuning PID controllers.

    Science.gov (United States)

    Rodrigo, M A; Seco, A; Ferrer, J; Penya-roja, J M; Valverde, J L

    1999-01-01

    In this paper, several tuning algorithms, specifically ITAE, IMC and Cohen and Coon, were applied in order to tune an activated sludge aeration PID controller. Performance results of these controllers were compared by simulation with those obtained by using a nonlinear fuzzy PID controller. In order to design this controller, a trial and error procedure was used to determine, as a function of error at current time and at a previous time, sets of parameters (including controller gain, integral time and derivative time) which achieve satisfactory response of a PID controller actuating over the aeration process. Once these sets of data were obtained, neural networks were used to obtain fuzzy membership functions and fuzzy rules of the fuzzy PID controller.

  14. A novel technique for active vibration control, based on optimal tracking control

    Indian Academy of Sciences (India)

    BEHROUZ KHEIRI SARABI; MANU SHARMA; DAMANJEET KAUR

    2017-08-01

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously tracking zero references for modes of vibration. To illustrate the technique, a two-degrees of freedom spring-mass-dampersystem is considered as a test system. The mathematical model of the system is derived and then converted into a state-space model. A linear quadratic tracking control law is then used to make the disturbed system track zero references.

  15. Distributed Model Predictive Control of A Wind Farm for Optimal Active Power Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai;

    2015-01-01

    This paper presents a dynamic discrete-time Piece- Wise Affine (PWA) model of a wind turbine for the optimal active power control of a wind farm. The control objectives include both the power reference tracking from the system operator and the wind turbine mechanical load minimization. Instead......, which combines the clustering, linear identification and pattern recognition techniques. The developed model, consisting of 47 affine dynamics, is verified by the comparison with a widely-used nonlinear wind turbine model. It can be used as a predictive model for the Model Predictive Control (MPC......) or other advanced optimal control applications of a wind farm....

  16. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    Directory of Open Access Journals (Sweden)

    Wissam H. Al-Mutar

    2015-07-01

    Full Text Available The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller

  17. A novel technique for active vibration control, based on optimal tracking control

    Science.gov (United States)

    Kheiri Sarabi, Behrouz; Sharma, Manu; Kaur, Damanjeet

    2017-08-01

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously tracking zero references for modes of vibration. To illustrate the technique, a two-degrees of freedom spring-mass-damper system is considered as a test system. The mathematical model of the system is derived and then converted into a state-space model. A linear quadratic tracking control law is then used to make the disturbed system track zero references.

  18. Dynamic behavior of time-delayed acceleration feedback controller for active vibration control of flexible structures

    Science.gov (United States)

    An, Fang; Chen, Wei-dong; Shao, Min-qiang

    2014-09-01

    This paper addresses the design problem of the controller with time-delayed acceleration feedback. On the basis of the reduction method and output state-derivative feedback, a time-delayed acceleration feedback controller is proposed. Stability boundaries of the closed-loop system are determined by using Hurwitz stability criteria. Due to the introduction of time delay into the controller with acceleration feedback, the proposed controller has the feature of not only changing the mass property but also altering the damping property of the controlled system in the sense of equivalent structural modification. With this feature, the closed-loop system has a greater logarithmic decrement than the uncontrolled one, and in turn, the control behavior can be improved. In this connection, the time delay in the acceleration feedback control is a positive factor when satisfying some given conditions and it could be actively utilized. On the ground of the analysis, the developed controller is implemented on a cantilever beam for different controller gain-delay combinations, and the control performance is evaluated with the comparison to that of pure acceleration feedback controller. Simulation and experimental results verify the ability of the controller to attenuate the vibration resulting from the dominant mode.

  19. Energy management and control of active distribution systems

    Science.gov (United States)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  20. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval.

    Directory of Open Access Journals (Sweden)

    Yaisa Andrews-Zwilling

    Full Text Available BACKGROUND: Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD, the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. METHODOLOGY AND PRINCIPAL FINDINGS: We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0--a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. CONCLUSIONS AND SIGNIFICANCE: Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.

  1. Validation of reported physical activity for cholesterol control using two different physical activity instruments

    Directory of Open Access Journals (Sweden)

    Amy Z Fan

    2009-08-01

    Full Text Available Amy Z Fan1, Sandra A Ham2, Shravani Reddy Muppidi3, Ali H Mokdad41Behavioral Surveillance Branch, Division of Adult and Community Health, National Center for Chronic Disease Prevention and Health Promotion; 2Physical Activity and Health Branch, Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA; 3College of Public Health, University of Georgia, Athens, GA, USA; 4Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USAAbstract: The National Cholesterol Education Program recommends increasing physical activity to improve cholesterol levels and overall cardiovascular health. We examined whether US adults who reported increasing their physical activity to control or lower blood cholesterol following physician’s advice or on their own efforts had higher levels of physical activity than those who reported that they did not. We used data from the National Health and Nutrition Examination Survey 2003–2004, which implemented two physical activity assessment instruments. The physical activity questionnaire (PAQ assessed self-reported frequency, intensity, and duration of leisure-time, household, and transportation-related physical activity in the past month. Physical movement was objectively monitored using a waist accelerometer that assessed minute-by-minute intensity (counts of movement/minute during waking time over a 7-day period. We adjusted our analysis for age, gender, race/ethnicity, educational attainment, and body mass index. Participants who reported increasing physical activity to control blood cholesterol had more PAQ-assessed physical activity and more accelerometer-assessed active days per week compared to those who did not. However, there were no significant differences in cholesterol levels between comparison groups. These findings suggest that self-report of exercising

  2. Adaptive control of an active magnetic bearing with external disturbance.

    Science.gov (United States)

    Dong, Lili; You, Silu

    2014-09-01

    Adaptive back stepping control (ABC) is originally applied to a linearized model of an active magnetic bearing (AMB) system. Our control goal is to regulate the deviation of the magnetic bearing from its equilibrium position in the presence of an external disturbance and system uncertainties. Two types of ABC methods are developed on the AMB system. One is based on full state feedback, for which displacement, velocity, and current states are assumed available. The other one is adaptive observer based back stepping controller (AOBC) where only displacement output is measurable. An observer is designed for AOBC to estimate velocity and current states of AMB. Lyapunov approach proves the stabilities of both regular ABC and AOBC. Simulation results demonstrate the effectiveness and robustness of two controllers. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Short Horizon Control Strategies for an Alternating Activated Sludge Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard

    1996-01-01

    determined. The effects of the strategies on short term nitrogen dynamics are explained in terms of the potential and capacity of denitrification. The relative effectiveness of the strategies are compared and where the strategies would be located in a hierarchical control structure is discussed. Copyright (C......Three control strategies allowing improved operational flexibility of an alternating type activated sludge process are presented in a unified model based framework. The control handles employed are the addition rate of an external carbon source to denitrification, the cycle length......, and the dissolved oxygen level during aerobic periods. All three strategies attempt to satisfy a common control criterion representing optimal performance over the time length of one process cycle (typically I to 3 hours) and are based on models developed from simple mass balances or which have been experimentally...

  4. Active Control Strategy for Offshore Structures Accounting for AMD Constraints

    Institute of Scientific and Technical Information of China (English)

    Ji Chunyan(嵇春艳); Li Huajun; Meng Qingmin

    2004-01-01

    Most of active mass damper systems are designed or installed for the onshore structural response reduction to quite small earthquake or strong wind excitation. When they are applied to offshore structures, they will stop their operations during severe sea state (including strong wind, wave and fluid). For controlling the excessive vibration of offshore structure excited by wave loading, this paper presents a methodology keeping AMD operations even in severe sea state. And the controller was designed by LQG control algorithm accounting for the limits of AMD stroke and control input force. In order to investigate the feasibility and effectiveness of the proposed method, a numerical example applied to an offshore platform is presented in this paper. The numerical results demonstrate that the proposed algorithm is effective in reducing the vibration of offshore structure by choosing appropriate feedback gain among several gain candidates based on the AMD limits.

  5. Orexin-A controls sympathetic activity and eating behavior.

    Science.gov (United States)

    Messina, Giovanni; Dalia, Carmine; Tafuri, Domenico; Monda, Vincenzo; Palmieri, Filomena; Dato, Amelia; Russo, Angelo; De Blasio, Saverio; Messina, Antonietta; De Luca, Vincenzo; Chieffi, Sergio; Monda, Marcellino

    2014-01-01

    It is extremely important for the health to understand the regulatory mechanisms of energy expenditure. These regulatory mechanisms play a central role in the pathogenesis of body weight alteration. The hypothalamus integrates nutritional information derived from all peripheral organs. This region of the brain controls hormonal secretions and neural pathways of the brainstem. Orexin-A is a hypothalamic neuropeptide involved in the regulation of feeding behavior, sleep-wakefulness rhythm, and neuroendocrine homeostasis. This neuropeptide is involved in the control of the sympathetic activation, blood pressure, metabolic status, and blood glucose level. This minireview focuses on relationship between the sympathetic nervous system and orexin-A in the control of eating behavior and energy expenditure. The "thermoregulatory hypothesis" of food intake is analyzed, underlining the role played by orexin-A in the control of food intake related to body temperature. Furthermore, the paradoxical eating behavior induced orexin-A is illustrated in this minireview.

  6. Active noise control: A tutorial for HVAC designers

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, L.J.

    1997-08-01

    This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrast the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.

  7. Advanced nonlinear control of three phase series active power filter

    Directory of Open Access Journals (Sweden)

    Abouelmahjoub Y.

    2014-01-01

    Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.

  8. Experimental demonstration of active vibration control for flexible structures

    Science.gov (United States)

    Phillips, Douglas J.; Hyland, David C.; Collins, Emmanuel G., Jr.

    1990-01-01

    Active vibration control of flexible structures for future space missions is addressed. Three experiments that successfully demonstrate control of flexible structures are described. The first is the pendulum experiment. The structure is a 5-m compound pendulum and was designed as an end-to-end test bed for a linear proof mass actuator and its supporting electronics. Experimental results are shown for a maximum-entropy/optimal-projection controller designed to achieve 5 percent damping in the first two pendulum modes. The second experiment was based upon the Harris Multi-Hex prototype experiment (MHPE) apparatus. This is a large optical reflector structure comprising a seven-panel array and supporting truss which typifies a number of generic characteristics of large space systems. The third experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center. The authors conclude with some remarks on the lessons learned from conducting these experiments.

  9. Active control of radiated pressure of a submarine hull

    Science.gov (United States)

    Pan, Xia; Tso, Yan; Juniper, Ross

    2008-03-01

    A theoretical analysis of the active control of low-frequency radiated pressure from submarine hulls is presented. Two typical hull models are examined in this paper. Each model consists of a water-loaded cylindrical shell with a hemispherical shell at one end and conical shell at the other end, which forms a simple model of a submarine hull. The conical end is excited by an axial force to simulate propeller excitations while the other end is free. The control action is implemented through a Tee-sectioned circumferential stiffener driven by pairs of PZT stack actuators. These actuators are located under the flange of the stiffener and driven out of phase to produce a control moment. A number of cost functions for minimizing the radiated pressure are examined. In general, it was found that the control system was capable of reducing more than half of the total radiated pressure from each of the submarine hull for the first three axial modes.

  10. Active Power Control of Waked Wind Farms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    Active power control can be used to balance the total power generated by wind farms with the power consumed on the electricity grid. With the increasing penetration levels of wind energy, there is an increasing need for this ancillary service. In this paper, we show that the tracking of a certain power reference signal provided by the transmission system operator can be significantly improved by using feedback control at the wind farm level. We propose a simple feedback control law that significantly improves the tracking behavior of the total power output of the farm, resulting in higher performance scores. The effectiveness of the proposed feedback controller is demonstrated using high-fidelity computational fluid dynamics simulations of a small wind farm.

  11. Orexin-A controls sympathetic activity and eating behavior

    Directory of Open Access Journals (Sweden)

    Giovanni eMessina

    2014-09-01

    Full Text Available It is extremely important for the health to understand the regulatory mechanisms of energy expenditure. These regulatory mechanisms play a central role in the pathogenesis of body weight alteration. The hypothalamus integrates nutritional information derived from all peripheral organs. This region of the brain controls hormonal secretions and neural pathways of the brainstem. Orexin-A is a hypothalamic neuropeptide involved in the regulation of feeding behavior, sleep-wakefulness rhythm, and neuroendocrine homeostasis. This neuropeptide is involved in the control of the sympathetic activation, blood pressure, metabolic status, and blood glucose level. This minireview focuses on relationship between the sympathetic nervous system and orexin-A in the control of eating behavior and energy expenditure. The thermoregulatory hypothesis of food intake is analyzed, underlining the role played by orexin-A in the control of food intake related to body temperature. Furthermore, the paradoxical eating behavior induced orexin-A is illustrated in this minireview.

  12. Control of programmed cell death by distinct electrical activity patterns.

    Science.gov (United States)

    Golbs, Antje; Nimmervoll, Birgit; Sun, Jyh-Jang; Sava, Irina E; Luhmann, Heiko J

    2011-05-01

    Electrical activity and sufficient supply with survival factors play a major role in the control of apoptosis in the developing cortex. Coherent high-frequency neuronal activity, which efficiently releases neurotrophins, is essential for the survival of immature neurons. We studied the influence of neuronal activity on apoptosis in the developing cortex. Dissociated cultures of the newborn mouse cerebral cortex were grown on multielectrode arrays to determine the activity patterns that promote neuronal survival. Cultures were transfected with a plasmid coding for a caspase-3-sensitive fluorescent protein allowing real-time analysis of caspase-3-dependent apoptosis in individual neurons. Elevated extracellular potassium concentrations (5 and 8 mM), application of 4-aminopyridine or the γ-aminobutyric acid-A receptor antagonist Gabazine induced a shift in the frequency distribution of activity toward high-frequency bursts. Under these conditions, a reduction or delay in caspase-3 activation and an overall increase in neuronal survival could be observed. This effect was dependent on the activity of phosphatidylinositol-3 kinase, as blockade of this enzyme abolished the survival-promoting effect of high extracellular potassium concentrations. Our data indicate that increased network activity can prevent apoptosis in developing cortical neurons.

  13. Vector disparity sensor with vergence control for active vision systems.

    Science.gov (United States)

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  14. Vector Disparity Sensor with Vergence Control for Active Vision Systems

    Directory of Open Access Journals (Sweden)

    Eduardo Ros

    2012-02-01

    Full Text Available This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  15. Active control of multi-input hydraulic journal bearing system

    Science.gov (United States)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying

    2016-09-01

    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  16. Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages.

    Science.gov (United States)

    Filardy, A A; He, J; Bennink, J; Yewdell, J; Kelsall, B L

    2016-07-01

    Colonic macrophages (cMPs) are important for intestinal homeostasis as they kill microbes and yet produce regulatory cytokines. Activity of the NLRP3 (nucleotide-binding leucine-rich repeat-containing pyrin receptor 3) inflammasome, a major sensor of stress and microorganisms that results in pro-inflammatory cytokine production and cell death, must be tightly controlled in the intestine. We demonstrate that resident cMPs are hyporesponsive to NLRP3 inflammasome activation owing to a remarkable level of posttranscriptional control of NLRP3 and pro-interleukin-1β (proIL-1β) protein expression, which was also seen for tumor necrosis factor-α and IL-6, but lost during experimental colitis. Resident cMPs rapidly degraded NLRP3 and proIL-1β proteins by the ubiquitin/proteasome system. Finally, blocking IL-10R-signaling in vivo enhanced NLRP3 and proIL-1β protein but not mRNA levels in resident cMPs, implicating a role for IL-10 in environmental conditioning of cMPs. These data are the first to show dramatic posttranscriptional control of inflammatory cytokine production by a relevant tissue-derived macrophage population and proteasomal degradation of proIL-1β and NLRP3 as a mechanism to control inflammasome activation, findings which have broad implications for our understanding of intestinal and systemic inflammatory diseases.

  17. Baroreflex control of sympathetic activity in experimental hypertension

    Directory of Open Access Journals (Sweden)

    M.C.C. Irigoyen

    1998-09-01

    Full Text Available The arterial baroreceptor reflex system is one of the most powerful and rapidly acting mechanisms for controlling arterial pressure. The purpose of the present review is to discuss data relating sympathetic activity to the baroreflex control of arterial pressure in two different experimental models: neurogenic hypertension by sinoaortic denervation (SAD and high-renin hypertension by total aortic ligation between the renal arteries in the rat. SAD depresses baroreflex regulation of renal sympathetic activity in both the acute and chronic phases. However, increased sympathetic activity (100% was found only in the acute phase of sinoaortic denervation. In the chronic phase of SAD average discharge normalized but the pattern of discharges was different from that found in controls. High-renin hypertensive rats showed overactivity of the renin angiotensin system and a great depression of the baroreflexes, comparable to the depression observed in chronic sinoaortic denervated rats. However, there were no differences in the average tonic sympathetic activity or changes in the pattern of discharges in high-renin rats. We suggest that the difference in the pattern of discharges may contribute to the increase in arterial pressure lability observed in chronic sinoaortic denervated rats.

  18. Development of a Practical Broadband Active Vibration Control System

    Science.gov (United States)

    Schiller, Noah H.; Perey, Daniel F.; Cabell, Randolph H.

    2011-01-01

    The goal of this work is to develop robust, lightweight, and low-power control units that can be used to suppress structural vibration in flexible aerospace structures. In particular, this paper focuses on active damping, which is implemented using compact decentralized control units distributed over the structure. Each control unit consists of a diamond-shaped piezoelectric patch actuator, three miniature accelerometers, and analog electronics. The responses from the accelerometers are added together and then integrated to give a signal proportional to velocity. The signal is then inverted, amplified, and applied to the actuator, which generates a control force that is out of phase with the measured velocity. This paper describes the development of the control system, including a detailed description of the control and power electronics. The paper also presents experimental results acquired on a Plexiglas window blank. Five identical control units installed around the perimeter of the window achieved 10 dB peak reductions and a 2.4 dB integrated reduction of the spatially averaged velocity of the window between 500 and 3000 Hz.

  19. Active sway control of a gantry crane using hybrid input shaping and PID control schemes

    Science.gov (United States)

    Mohd Tumari, M. Z.; Shabudin, L.; Zawawi, M. A.; Shah, L. H. Ahmad

    2013-12-01

    This project presents investigations into the development of hybrid input-shaping and PID control schemes for active sway control of a gantry crane system. The application of positive input shaping involves a technique that can reduce the sway by creating a common signal that cancels its own vibration and used as a feed-forward control which is for controlling the sway angle of the pendulum, while the proportional integral derivative (PID) controller is used as a feedback control which is for controlling the crane position. The PID controller was tuned using Ziegler-Nichols method to get the best performance of the system. The hybrid input-shaping and PID control schemes guarantee a fast input tracking capability, precise payload positioning and very minimal sway motion. The modeling of gantry crane is used to simulate the system using MATLAB/SIMULINK software. The results of the response with the controllers are presented in time domains and frequency domains. The performances of control schemes are examined in terms of level of input tracking capability, sway angle reduction and time response specification.

  20. Resistive wall mode active control physics design for KSTAR

    Science.gov (United States)

    Park, Y. S.; Sabbagh, S. A.; Bak, J. G.; Bialek, J. M.; Berkery, J. W.; Lee, S. G.; Oh, Y. K.

    2014-01-01

    As KSTAR H-mode operation approaches the region where the resistive wall mode (RWM) can be unstable, an important issue for future long pulse, high beta plasma operation is to evaluate RWM active feedback control performance using a planned active/passive RWM stabilization system on the device. In particular, an optimal design of feedback sensors allows mode stabilization up to the highest achievable βN close to the ideal with-wall limit, βNwall, with reduced control power requirements. The computed ideal n = 1 mode structure from the DCON code has been input to the VALEN-3D code to calculate the projected performance of an active RWM control system in the KSTAR three-dimensional conducting structure device geometry. Control performance with the midplane locked mode detection sensors, off-midplane saddle loops, and magnetic pickup coils is examined. The midplane sensors measuring the radial component of the mode perturbation is found to be strongly affected by the wall eddy current. The off-axis saddle loops with proper compensation of the prompt applied field are computed to provide stabilization at βN up to 86% of βNwall but the low RWM amplitude computed in the off-axis regions near the sensors can produce a low signal-to-noise ratio. The required control power and bandwidth are also estimated with varied noise levels in the feedback sensors. Further improvements have been explored by examining a new RWM sensor design motivated by the off-midplane poloidal magnetic field sensors in NSTX. The new sensors mounted off of the copper passive stabilizer plates near the device midplane show a clear advantage in control performance corresponding to achieving 99% of βNwall without the need of compensation of the prompt field. The result shows a significant improvement of RWM feedback stabilization using the new sensor set which motivates a future feedback sensor upgrade.

  1. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  2. Experimental study on active vibration control of a gearbox system

    Science.gov (United States)

    Guan, Yuan H.; Lim, Teik C.; Steve Shepard, W.

    2005-04-01

    An active internal gearbox structure is developed and evaluated experimentally to suppress gear pair vibration due to transmission error excitation. The approach is based on an active shaft transverse vibration control concept that was theoretically analyzed in an earlier study and determined to be one of the most feasible methods. The system comprises of a piezoelectric stack actuator for applying control forces to the shaft via a rolling element-bearing, and a highly efficient, enhanced delayed-x LMS control algorithm to generate the appropriate control signals. To avoid the aliasing effects of higher frequency signals and reduce the phase delay of conventional filters, a multi-rate minimum-phase low-pass digital filter is also integrated into the controller. The experimental results yield 8-13 dB attenuation in the gearbox housing vibration levels and correspondingly 5-8 dB reduction in measured gear whine noise levels at the first and second operating gear mesh frequencies.

  3. THE CONTROL ACTIVITY EXERCISED BY PERMANENT CONTROL COMPARTIMENTS IN CREDIT INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    CODRUTA DANIELA PAVEL

    2012-05-01

    Full Text Available Permanent control is defined as a permanent means acting and providing knowledge, control and monitoring of risks. Supervision of control permanent compartments includes: constant supervision through a set of dispositions applicable at the operational level to ensure legality, security and validity of transactions; control operational risks, including further activity and management of crisis situations; control of compliance, including know your customer, prevent money laundering and terrorist financing and professional ethics.Among the permanent internal control objectives in the bank network are: exercise proper permanent supervision to the bank network; identification and evaluation of operational risks; strengthening security and improving the quality of operations; respect the program of customer identification, money laundering and combating the use of bank for financing the terrorism.

  4. Synchronization of uncertain chaotic systems using active sliding mode control

    Energy Technology Data Exchange (ETDEWEB)

    Haeri, Mohammad [Advanced Control System Lab, Electrical Engineering Department, Sharif University of Technology, Azadi Avenue, 11365-9363 Tehran (Iran, Islamic Republic of)]. E-mail: haeri@sina.sharif.edu; Tavazoei, Mohammad Saleh [Advanced Control System Lab, Electrical Engineering Department, Sharif University of Technology, Azadi Avenue, 11365-9363 Tehran (Iran, Islamic Republic of); Naseh, Majid Reza [Electrical Engineering Department, Islamic Azad University of Birjand, Birjand (Iran, Islamic Republic of)

    2007-08-15

    We apply the active sliding mode controller to synchronize two uncertain chaotic systems. Uncertainties are considered both in linear and nonlinear parts of the system dynamics. We have also studied the case that the signals are contaminated by measuring channel noise. It is shown that having some conditions on the uncertainties and noise magnitude, the closed loop stability can be guaranteed. The synchronization errors are shown to be confined into some bounded value. Numerical simulations are presented to evaluate the analysis and effectiveness of the controller.

  5. Active Vibration Control of a Thin Steel Sheet

    Directory of Open Access Journals (Sweden)

    Yohji Okada

    1995-01-01

    Full Text Available The commercial rolling process used in the steel industry to manufacture thin steel sheets tends to cause plate vibrations that lower the quality of the surface finish. This article introduces a noncontact method of active vibration control for reducing the flexural vibrations of a thin steel sheet. The proposed electromagnetic method of control has been implemented in a simple experimental setup where the signal from a motion sensor regulates the attractive force of the magnets that produce a damping force on the steel sheet.

  6. Dual-Actuator Active Vibration-Control System

    Science.gov (United States)

    Kascak, Albert F.; Kiraly, Louis J.; Montague, Gerald T.; Palazzolo, Alan B.; Manchala, Daniel

    1994-01-01

    Dual-actuator active vibration-control (DAAVC) system is developmental system of type described in "Active Vibration Dampers for Rotating Machinery" (LEW-15427). System features sensors and actuators positioned and oriented at bearings to measure and counteract vibrations of shaft along either of two axes perpendicular to axis of rotation. Effective in damping vibrations of helicopter-engine test stand, making it safer to operate engine at speeds near and above first resonance of engine/test-stand system. Opens new opportunities for engine designers to draw more power from engine, and concept applicable to other rotating machines.

  7. Active route learning in virtual environments: disentangling movement control from intention, instruction specificity, and navigation control.

    Science.gov (United States)

    von Stülpnagel, Rul; Steffens, Melanie C

    2013-09-01

    Active navigation research examines how physiological and psychological involvement in navigation benefits spatial learning. However, existing conceptualizations of active navigation comprise separable, distinct factors. This research disentangles the contributions of movement control (i.e., self-contained vs. observed movement) as a central factor from learning intention (Experiment 1), instruction specificity and instruction control (Experiment 2), as well as navigation control (Experiment 3) to spatial learning in virtual environments. We tested the effects of these factors on landmark recognition (landmark knowledge), tour-integration and route navigation (route knowledge). Our findings suggest that movement control leads to robust advantages in landmark knowledge as compared to observed movement. Advantages in route knowledge do not depend on learning intention, but on the need to elaborate spatial information. Whenever the necessary level of elaboration is assured for observed movement, too, the development of route knowledge is not inferior to that for self-contained movement.

  8. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  9. Active Vibration Control of the Smart Plate Using Artificial Neural Network Controller

    Directory of Open Access Journals (Sweden)

    Mohit

    2015-01-01

    Full Text Available The active vibration control (AVC of a rectangular plate with single input and single output approach is investigated using artificial neural network. The cantilever plate of finite length, breadth, and thickness having piezoelectric patches as sensors/actuators fixed at the upper and lower surface of the metal plate is considered for examination. The finite element model of the cantilever plate is utilized to formulate the whole strategy. The compact RIO and MATLAB simulation software are exercised to get the appropriate results. The cantilever plate is subjected to impulse input and uniform white noise disturbance. The neural network is trained offline and tuned with LQR controller. The various training algorithms to tune the neural network are exercised. The best efficient algorithm is finally considered to tune the neural network controller designed for active vibration control of the smart plate.

  10. Lowering physical activity impairs glycemic control in healthy volunteers.

    Science.gov (United States)

    Mikus, Catherine R; Oberlin, Douglas J; Libla, Jessica L; Taylor, Angelina M; Booth, Frank W; Thyfault, John P

    2012-02-01

    Postprandial glucose (PPG) is an independent predictor of cardiovascular events and death, regardless of diabetes status. Whereas changes in physical activity produce changes in insulin sensitivity, it is not clear whether changes in daily physical activity directly affect PPG in healthy free-living persons. We used continuous glucose monitors to measure PPG and PPG excursions (ΔPPG, postmeal - premeal blood glucose) at 30-min increments after meals in healthy habitually active volunteers (n = 12, age = 29 ± 1 yr, body mass index = 23.6 ± 0.9 kg·m(-2), VO2max = 53.6 ± 3.0 mL·kg(-1)·min(-1)) during 3 d of habitual (≥10,000 steps per day) and reduced (physical activity. Diets were standardized across monitoring periods, and fasting-state oral glucose tolerance tests (OGTT) were performed on the fourth day of each monitoring period. During 3 d of reduced physical activity (12,956 ± 769 to 4319 ± 256 steps per day), PPG increased at 30 and 60 min after a meal (6.31 ± 0.19 to 6.68 ± 0.23 mmol·L(-1) and 5.75 ± 0.16 to 6.26 ± 0.28 mmol·L(-1), P active time point), and ΔPPG increased by 42%, 97%, and 33% at 30, 60, and 90 min after a meal, respectively (P activity (P physical activity in otherwise healthy free-living individuals. These data indicate that daily physical activity is an important mediator of glycemic control, even among healthy individuals, and reinforce the utility of physical activity in preventing pathologies associated with elevated PPG.

  11. Active vibration control activities at the LaRC - Present and future

    Science.gov (United States)

    Newsom, J. R.

    1990-01-01

    The NASA Controls-Structures-Interaction (CSI) program is presented with a description of the ground testing element objectives and approach. The goal of the CSI program is to develop and validate the technology required to design, verify and operate space systems in which the structure and the controls interact beneficially to meet the needs of future NASA missions. The operational Mini-Mast ground testbed and some sample active vibration control experimental results are discussed along with a description of the CSI Evolutionary Model testbed presently under development. Initial results indicate that embedded sensors and actuators are effective in controlling a large truss/reflector structure.

  12. Active control strategy on a catenary-pantograph validated model

    Science.gov (United States)

    Sanchez-Rebollo, C.; Jimenez-Octavio, J. R.; Carnicero, A.

    2013-04-01

    Dynamic simulation methods have become essential in the design process and control of the catenary-pantograph system, overall since high-speed trains and interoperability criteria are getting very trendy. This paper presents an original hardware-in-the-loop (HIL) strategy aimed at integrating a multicriteria active control within the catenary-pantograph dynamic interaction. The relevance of HIL control systems applied in the frame of the pantograph is undoubtedly increasing due to the recent and more demanding requirements for high-speed railway systems. Since the loss of contact between the catenary and the pantograph leads to arcing and electrical wear, and too high contact forces cause mechanical wear of both the catenary wires and the strips of the pantograph, not only prescribed but also economic and performance criteria ratify such a relevance. Different configurations of the proportional-integral-derivative (PID) controller are proposed and applied to two different plant systems. Since this paper is mainly focused on the control strategy, both plant systems are simulation models though the methodology is suitable for a laboratory bench. The strategy of control involves a multicriteria optimisation of the contact force and the consumption of the energy supplied by the control force, a genetic algorithm has been applied for this purpose. Thus, the PID controller is fitted according to these conflicting objectives and tested within a nonlinear lumped model and a nonlinear finite element model, being the last one validated against the European Standard EN 50318. Finally, certain tests have been accomplished in order to analyse the robustness of the control strategy. Particularly, the relevance or the plant simulation, the running speed and the instrumentation time delay are studied in this paper.

  13. Evaluation of control parameters of the activated sludge process

    Energy Technology Data Exchange (ETDEWEB)

    Stall, T.R.; Sherrard, J.H.

    1978-03-01

    The evaluation of control parameters of the activated sludge process was effected with a laboratory-scale, completely mixed process employing internal cell recycle and an artificial wasterwater over a wide spectrum of conditions at full-scale facilities. The parameters: food-microorganism ratio, specific utilization rate, COD or BOD sludge age, and aeration and total system mean cell residence time can all be used to control an activated sludge wastewater treatment plant. Because of the sensitivity of the COD or BOD sludge age (when compared with measures of mean cell residence time), its use may be of limited value. The aeration basin cell residence time may be favored over the total system mean cell residence time because of the ease in measuring aeration basin solids and the difficulty in measuring solids concentration at the bottom of the secondary clarifier and in the recycle line.

  14. Closed-Loop and Activity-Guided Optogenetic Control

    Science.gov (United States)

    Grosenick, Logan; Marshel, James H.; Deisseroth, Karl

    2016-01-01

    Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490

  15. Wind Tunnel Experiments with Active Control of Bridge Section Model

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    the flutter wind velocity for future ultra-long span suspension bridges. The purpose of the wind tunnel experiments is to investigate the principle to use this active flap control system. The bridge section model used in the experiments is therefore not a model of a specific bridge but it is realistic......This paper describes results of wind tunnel experiments with a bridge section model where movable flaps are integrated in the bridge girder so each flap is the streamlined part of the edge of the girder. This active control flap system is patented by COWIconsult and may be used to increase...... compared with a real bridge. Five flap configurations are investigated during the wind tunnel experiments and depending on the actual flap configuration it is possible to decrease or increase the flutter wind velocity for the model....

  16. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    Science.gov (United States)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  17. Rotors on Active Magnetic Bearings: Modeling and Control Techniques

    OpenAIRE

    Tonoli, Andrea; Bonfitto, Angelo; Silvagni, Mario; Suarez, Lester D.

    2012-01-01

    In the last decades the deeper and more detailed understanding of rotating machinery dynamic behavior facilitated the study and the design of several devices aiming at friction reduction, vibration damping and control, rotational speed increase and mechanical design optimization. Among these devices a promising technology is represented by active magnetic actuators which found a great spread in rotordynamics and in high precision applications due to (a) the absence of all fatigue and tribolog...

  18. Global synchronization of two parametrically excited systems using active control

    Energy Technology Data Exchange (ETDEWEB)

    Lei Youming [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)] e-mail: leiyouming@nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)] e-mail: weixu@nwpu.edu.cn; Shen Jianwei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Fang Tong [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2006-04-01

    In this paper, we apply an active control technique to synchronize a kind of two parametrically excited chaotic systems. Based on Lyapunov stability theory and Routh-Hurwitz criteria, some generic sufficient conditions for global asymptotic synchronization are obtained. Illustrative examples on synchronization of two Duffing systems subject to a harmonic parametric excitation and that of two parametrically excited chaotic pendulums are considered here. Numerical simulations show the validity and feasibility of the proposed method.

  19. Applications of monolithic fiber interferometers and actively controlled fibers

    OpenAIRE

    Rugeland, Patrik

    2013-01-01

    The objective of this thesis was to develop applications of monolithic fiber devices and actively controlled fibers. A special twin-core fiber known as a ‘Gemini’ fiber was used to construct equal arm-length fiber interferometers, impervious to temperature and mechanical perturbations. A broadband add/drop multiplexer was constructed by inscribing fiber Bragg gratings in the arms of a Gemini Mach-Zehnder interferometer. A broadband interferometric nanosecond switch was constructed from a micr...

  20. Adaptive active vibration isolation – A control perspective

    Directory of Open Access Journals (Sweden)

    Landau Ioan Doré

    2015-01-01

    The paper will review a number of recent developments for adaptive feedback compensation of multiple unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Some experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented.

  1. Exosome-mediated quality control : substrate recruitment and molecular activity

    OpenAIRE

    Lebreton, Alice; Séraphin, Bertrand

    2008-01-01

    International audience; The eukaryotic exosome is a multisubunit complex that is mainly responsible for 3'-5' exonucleolytic degradation of RNAs, both in the nucleus and the cytoplasm. In this review we summarize the recent experiments that have provided information on the organisation, structure and activity of this large assembly. Interestingly, eukaryotic exosomes have been implicated in a large number of RNA degradation pathways including recently discovered RNA quality control mechanisms...

  2. Application of constrained optimization to active control of aeroelastic response

    Science.gov (United States)

    Newsom, J. R.; Mukhopadhyay, V.

    1981-01-01

    Active control of aeroelastic response is a complex in which the designer usually tries to satisfy many criteria which are often conflicting. To further complicate the design problem, the state space equations describing this type of control problem are usually of high order, involving a large number of states to represent the flexible structure and unsteady aerodynamics. Control laws based on the standard Linear-Quadratic-Gaussian (LQG) method are of the same high order as the aeroelastic plant. To overcome this disadvantage of the LQG mode, an approach developed for designing low order optimal control laws which uses a nonlinear programming algorithm to search for the values of the control law variables that minimize a composite performance index, was extended to the constrained optimization problem. The method involves searching for the values of the control law variables that minimize a basic performance index while satisfying several inequality constraints that describe the design criteria. The method is applied to gust load alleviation of a drone aircraft.

  3. Design and fuzzy logic control of an active wrist orthosis.

    Science.gov (United States)

    Kilic, Ergin; Dogan, Erdi

    2017-08-01

    People who perform excessive wrist movements throughout the day because of their professions have a higher risk of developing lateral and medial epicondylitis. If proper precautions are not taken against these diseases, serious consequences such as job loss and early retirement can occur. In this study, the design and control of an active wrist orthosis that is mobile, powerful and lightweight is presented as a means to avoid the occurrence and/or for the treatment of repetitive strain injuries in an effective manner. The device has an electromyography-based control strategy so that the user's intention always comes first. In fact, the device-user interaction is mainly activated by the electromyography signals measured from the forearm muscles that are responsible for the extension and flexion wrist movements. Contractions of the muscles are detected using surface electromyography sensors, and the desired quantity of the velocity value of the wrist is extracted from a fuzzy logic controller. Then, the actuator system of the device comes into play by conveying the necessary motion support to the wrist. Experimental studies show that the presented device actually reduces the demand on the muscles involved in repetitive strain injuries while performing challenging daily life activities including extension and flexion wrist motions.

  4. Hybrid Active Noise Control using Adjoint LMS Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Do; Hong, Sik Ki [Dankook University (Korea, Republic of)

    1998-07-01

    A multi-channel hybrid active noise control(MCHANC) is derived by combining hybrid active noise control techniques and adjoint LMS algorithms, and this algorithm is applied to an active noise control system in a three dimensional enclosure. A MCHANC system uses feed forward and feedback filters simultaneously to cancel noises in an enclosure. The adjoint LMs algorithm, in which the error is filtered through an adjoint filter of the secondary channel, is also used to reduce the computational burden of adaptive filters. The overall attenuation performance and convergence characteristics of MCHANC algorithm is better than both multiple-channel feed forward algorithms and multiple-channel feedback algorithms. In a large enclosure, the acoustic reverberation can be very long, which means a very high order feed forward filter must be used to cancel the reverberation noises. Strong reverberation noises are generally narrow band and low frequency, which can be effectively predicted and canceled by a feedback adaptive filters. So lower order feed forward filter taps can be used in MCHANC algorithm which combines advantages of fast convergence and small excess mean square error. In this paper, computer simulations and real time implementations is carried out on a TMS320C31 processor to evaluate the performance of the MCHANC systems. (author). 11 refs., 11 figs., 1 tab.

  5. First Test of Fan Active Noise Control (ANC) Completed

    Science.gov (United States)

    2005-01-01

    With the advent of ultrahigh-bypass engines, the space available for passive acoustic treatment is becoming more limited, whereas noise regulations are becoming more stringent. Active noise control (ANC) holds promise as a solution to this problem. It uses secondary (added) noise sources to reduce or eliminate the offending noise radiation. The first active noise control test on the low-speed fan test bed was a General Electric Company system designed to control either the exhaust or inlet fan tone. This system consists of a "ring source," an induct array of error microphones, and a control computer. Fan tone noise propagates in a duct in the form of spinning waves. These waves are detected by the microphone array, and the computer identifies their spinning structure. The computer then controls the "ring source" to generate waves that have the same spinning structure and amplitude, but 180 out of phase with the fan noise. This computer generated tone cancels the fan tone before it radiates from the duct and is heard in the far field. The "ring source" used in these tests is a cylindrical array of 16 flat-plate acoustic radiators that are driven by thin piezoceramic sheets bonded to their back surfaces. The resulting source can produce spinning waves up to mode 7 at levels high enough to cancel the fan tone. The control software is flexible enough to work on spinning mode orders from -6 to 6. In this test, the fan was configured to produce a tone of order 6. The complete modal (spinning and radial) structure of the tones was measured with two builtin sets of rotating microphone rakes. These rakes provide a measurement of the system performance independent from the control system error microphones. In addition, the far-field noise was measured with a semicircular array of 28 microphones. This test represents the first in a series of tests that demonstrate different active noise control concepts, each on a progressively more complicated modal structure. The tests are

  6. Active control of road booming noise in automotive interiors.

    Science.gov (United States)

    Oh, Shi-Hwan; Kim, Hyoun-suk; Park, Youngjin

    2002-01-01

    An active feedforward control system has been developed to reduce the road booming noise that has strong nonlinear characteristics. Four acceleration transducers were attached to the suspension system to detect reference vibration and two loudspeakers were used to attenuate the noise near the headrests of two front seats. A leaky constraint multiple filtered-X LMS algorithm with an IIR-based filter that has fast convergence speed and frequency selective controllability was proposed to increase the control efficiency in computing power and memory usage. During the test drive on the rough asphalt and turtle-back road at a constant speed of 60 km/h, we were able to achieve a reduction of around 6 dB of A-weighted sound pressure level in the road booming noise range with the proposed algorithm, which could not be obtained with the conventional multiple filtered-X LMS algorithm.

  7. Active control of an aircraft tail subject to harmonic excitation

    Institute of Scientific and Technical Information of China (English)

    M. Eissa; H. S. Bauomy; Y. A. Amer

    2007-01-01

    Vibration of structures is often an undesirable phenomena and should be avoided or controlled. There are two techniques to control the vibration of a system, that is,active and passive control techniques. In this paper, a negative feedback velocity is applied to a dynamical system, which is represented by two coupled second order nonlinear differ-ential equations having both quadratic and cubic nonlinear-ties. The system describes the vibration of an aircraft tail.The system is subjected to multi-external excitation forces.The method of multiple time scale perturbation is applied to solve the nonlinear differential equations and obtain approx-imate solutions up to third order of accuracy. The stability of the system is investigated applying frequency response equations. The effects of the different parameters are stud-ied numerically. Various resonance cases are investigated. A comparison is made with the available published work.

  8. Apparatus and method for gas turbine active combustion control system

    Science.gov (United States)

    Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  9. Actively controlling coolant-cooled cold plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  10. Mine-Hoist Active Fault Tolerant Control System and Strategy

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-jie; WANG Yao-cai; MENG Jiang; ZHAO Peng-cheng; CHANG Yan-wei

    2005-01-01

    Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies,, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control module (FCM). When a fault is judged from some sensor by FDM, FCM reconfigure the state of MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliability and safety of mine hoist. The simulating result shows that, MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there are quite difference between the real data and the prior fault modes.

  11. Four experimental demonstrations of active vibration control for flexible structures

    Science.gov (United States)

    Phillips, Doug; Collins, Emmanuel G., Jr.

    1990-01-01

    Laboratory experiments designed to test prototype active-vibration-control systems under development for future flexible space structures are described, summarizing previously reported results. The control-synthesis technique employed for all four experiments was the maximum-entropy optimal-projection (MEOP) method (Bernstein and Hyland, 1988). Consideration is given to: (1) a pendulum experiment on large-amplitude LF dynamics; (2) a plate experiment on broadband vibration suppression in a two-dimensional structure; (3) a multiple-hexagon experiment combining the factors studied in (1) and (2) to simulate the complexity of a large space structure; and (4) the NASA Marshall ACES experiment on a lightweight deployable 45-foot beam. Extensive diagrams, drawings, graphs, and photographs are included. The results are shown to validate the MEOP design approach, demonstrating that good performance is achievable using relatively simple low-order decentralized controllers.

  12. Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm

    Science.gov (United States)

    Yang, Don-Ho; Shin, Ji-Hwan; Lee, HyunWook; Kim, Seoug-Ki; Kwak, Moon K.

    2017-03-01

    In this study, an Active Mass Damper (AMD) consisting of an AC servo motor, a movable mass connected to the AC servo motor by a ball-screw mechanism, and an accelerometer as a sensor for vibration measurement were considered. Considering the capability of the AC servo motor which can follow the desired displacement accurately, the Negative Acceleration Feedback (NAF) control algorithm which uses the acceleration signal directly and produces the desired displacement for the active mass was proposed. The effectiveness of the NAF control was proved theoretically using a single-degree-of-freedom (SDOF) system. It was found that the stability condition for the NAF control is static and it can effectively increase the damping of the target natural mode without causing instability in the low frequency region. Based on the theoretical results of the SDOF system, the Multi-Modal NAF (MMNAF) control is proposed to suppress the many natural modes of multi-degree-of-freedom (MDOF) systems using a single AMD. It was proved both theoretically and experimentally that the MMNAF control can suppress vibrations of the MDOF system.

  13. Performing Active Noise Control and Acoustic Experiments Remotely

    Directory of Open Access Journals (Sweden)

    Imran Khan

    2012-12-01

    Full Text Available This paper presents a novel and advanced remotely controlled laboratory for conducting Active Noise Control (ANC, acoustic and Digital Signal Processing (DSP experiments. The laboratory facility, recently developed by Blekinge Institute of Technology (BTH Sweden, supports remote learning through internet covering beginners level such as simple experimental measurements to advanced users and even researchers such as algorithm development and their performance evaluation on DSP. The required software development for ANC algorithms and equipment control are carried out anywhere in the world remotely from an internet-connected client PC using a standard web browser. The paper describes in detail how ANC, acoustic and DSP experiments can be performed remotely The necessary steps involved in an ANC experiment such as validity of ANC, forward path estimation and active control applied to a broad band random noise [0-200Hz] in a ventilation duct will be described in detail. The limitations and challenges such as the forward path and nonlinearities pertinent to the remote laboratory setup will be described for the guidance of the user. Based on the acoustic properties of the ventilation duct some of the possible acoustic experiments such as mode shapes analysis and standing waves analysis etc. will also be discussed in the paper.

  14. Implementation of CPFD to Control Active and Passive Airfoil Propulsion

    Science.gov (United States)

    Young, Jay; Asselin, Daniel; Williamson, Charles

    2016-11-01

    The fluid dynamics of biologically-inspired flapping propulsion provides a fertile testing ground for the field of unsteady aerodynamics, serving as important groundwork for the design and development of fast, mobile underwater vehicles and flapping-wing micro air vehicles (MAVs). There has been a recent surge of interest in these technologies as they provide low cost, compact, and maneuverable means for terrain mapping, search and rescue operations, and reconnaissance. Propulsion by unsteady motions has been fundamentally modeled with an airfoil that heaves and pitches, and previous work has been done to show that actively controlling these motions can generate high thrust and efficiency (Read, Hover & Triantafyllou 2003). In this study, we examine the performance of an airfoil with an actuated heave motion coupled with a passively controlled pitch motion created by simulating the presence of a torsional spring using our cyber-physical fluid dynamics (CPFD) approach (Mackowski & Williamson 2011, 2015, 2016). By using passively controlled pitch, we have effectively eliminated an actuator, decreasing cost and mass, an important step for developing efficient vehicles. In many cases, we have achieved comparable or superior thrust and efficiency values to those obtained using two actively controlled degrees of freedom. This work was supported by the National Science Foundation and the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  15. Simulation research of discrete sliding mode control for active powerfilter

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-feng; SUN Bao; YANG Zhen; LI Jian

    2011-01-01

    Because of the widely-used nonlinear loads,the problems of harmonics and low power factor in power systems are becoming more and more serious.In view of the above problems,a shunt three-phase active power filter(SAPF)based on discrete sliding mode control to suppress the harmonics was designed and the power factor improved.First,built the mathematical model of SAPF.Then,controlled the switch through analyzing the harmonic current that was controlled signal using discrete sliding mode control.Through simulation using MATLAB,verified the validity of the algorithm.By the simulation waveforms,it can be found that after the load current containing a large number of harmonics passes the active power filter,the waveform of the power current approximately becomes a sine wave and the harmonics is significantly reduced.As a result,it plays a good role in purifying power systems.Moreover,from the waveforms of harmonic current and power current,it can be found that the algorithm has a faster tracking speed.The waveform can be stably tracked in the half cycle and real-time if the algorithm is perfect.

  16. Active thermal figure control for the TOPS II primary mirror

    Science.gov (United States)

    Angel, Roger; Kang, Tae; Cuerden, Brian; Guyon, Olivier; Stahl, Phil

    2007-09-01

    TOPS (Telescope to Observe Planetary Systems) is the first coronagraphic telescope concept designed specifically to take advantage of Guyon's method of Phase Induced Amplitude Apodization PIAA).1 The TOPS primary mirror may incorporates active figure control to help achieve the desired wavefront control to approximately 1 angstrom RMS accurate across the spectral bandwidth. Direct correction of the primary figure avoids the need for a separate small deformable mirror. Because of Fresnel propagation, correction at a separate surface can introduce serious chromatic errors unless it is precisely conjugated to the primary. Active primary control also reduces complexity and mass and increases system throughput, and will likely enable a full system test to the 10-10 level in the 1 g environment before launch. We plan to use thermal actuators with no mechanical disturbance, using radiative heating or cooling fingers distributed inside the cells of a honeycomb mirror. The glass would have very small but finite coefficient of expansion of ~ 5x10 -8/C. Low order modes would be controlled by front-to-back gradients and high order modes by local rib expansion and contraction. Finite element models indicate that for a mirror with n cells up to n Zernike modes can be corrected to better than 90% fidelity, with still higher accuracy for the lower modes. An initial demonstration has been made with a borosilicate honeycomb mirror. Interferometric measurements show a single cell influence function with 300 nm stroke and ~5 minute time constant.

  17. Active noise control: a review of the field.

    Science.gov (United States)

    Gordon, R T; Vining, W D

    1992-11-01

    Active noise control (ANC) is the application of the principle of the superposition of waves to noise attenuation problems. Much progress has been made toward applying ANC to narrow-band, low-frequency noise in confined spaces. During this same period, the application of ANC to broad-band noise or noise in three-dimensional spaces has seen little progress because of the recent quantification of serious physical limitations, most importantly, noncausality, stability, spatial mismatch, and the infinite gain controller requirement. ANC employs superposition to induce destructive interference to affect the attenuation of noise. ANC was believed to utilize the mechanism of phase cancellation to achieve the desired attenuation. However, current literature points to other mechanisms that may be operating in ANC. Categories of ANC are one-dimensional field and duct noise, enclosed spaces and interior noise, noise in three-dimensional spaces, and personal hearing protection. Development of active noise control stems from potential advantages in cost, size, and effectiveness. There are two approaches to ANC. In the first, the original sound is processed and injected back into the sound field in antiphase. The second approach is to synthesize a cancelling waveform. ANC of turbulent flow in pipes and ducts is the largest area in the field. Much work into the actual mechanism involved and the causal versus noncausal aspects of system controllers has been done. Fan and propeller noise can be divided into two categories: noise generated directly as the blade passing tones and noise generated as a result of blade tip turbulence inducing vibration in structures. Three-dimensional spaces present a noise environment where physical limitations are magnified and the infinite gain controller requirement is confronted. Personal hearing protection has been shown to be best suited to the control of periodic, low-frequency noise.

  18. A Decoupling Control Algorithm for Unwinding Tension System Based on Active Disturbance Rejection Control

    Directory of Open Access Journals (Sweden)

    Shanhui Liu

    2013-01-01

    Full Text Available This paper presents a new control methodology based on active disturbance rejection control (ADRC for designing the tension decoupling controller of the unwinding system in a gravure printing machine. The dynamic coupling can be actively estimated and compensated in real time, which makes feedback control an ideal approach to designing the decoupling controller of the unwinding system. This feature is unique to ADRC. In this study, a nonlinear mathematical model is established according to the working principle of the unwinding system. A decoupling model is also constructed to determine the order and decoupling plant of the unwinding system. Based on the order and decoupling plant, an ADRC decoupling control methodology is designed to enhance the tension stability in the unwinding system. The effectiveness and capability of the proposed methodology are verified through simulation and experiments. The results show that the proposed strategy not only realises a decoupling control for the unwinding system but also has an effective antidisturbance capability and is robust.

  19. Active prospective control is required for effective sensorimotor learning.

    Directory of Open Access Journals (Sweden)

    Winona Snapp-Childs

    Full Text Available Passive modeling of movements is often used in movement therapy to overcome disabilities caused by stroke or other disorders (e.g. Developmental Coordination Disorder or Cerebral Palsy. Either a therapist or, recently, a specially designed robot moves or guides the limb passively through the movement to be trained. In contrast, action theory has long suggested that effective skill acquisition requires movements to be actively generated. Is this true? In view of the former, we explicitly tested the latter. Previously, a method was developed that allows children with Developmental Coordination Disorder to produce effective movements actively, so as to improve manual performance to match that of typically developing children. In the current study, we tested practice using such active movements as compared to practice using passive movement. The passive movement employed, namely haptic tracking, provided a strong test of the comparison, one that showed that the mere inaction of the muscles is not the problem. Instead, lack of prospective control was. The result was no effective learning with passive movement while active practice with prospective control yielded significant improvements in performance.

  20. Active prospective control is required for effective sensorimotor learning.

    Science.gov (United States)

    Snapp-Childs, Winona; Casserly, Elizabeth; Mon-Williams, Mark; Bingham, Geoffrey P

    2013-01-01

    Passive modeling of movements is often used in movement therapy to overcome disabilities caused by stroke or other disorders (e.g. Developmental Coordination Disorder or Cerebral Palsy). Either a therapist or, recently, a specially designed robot moves or guides the limb passively through the movement to be trained. In contrast, action theory has long suggested that effective skill acquisition requires movements to be actively generated. Is this true? In view of the former, we explicitly tested the latter. Previously, a method was developed that allows children with Developmental Coordination Disorder to produce effective movements actively, so as to improve manual performance to match that of typically developing children. In the current study, we tested practice using such active movements as compared to practice using passive movement. The passive movement employed, namely haptic tracking, provided a strong test of the comparison, one that showed that the mere inaction of the muscles is not the problem. Instead, lack of prospective control was. The result was no effective learning with passive movement while active practice with prospective control yielded significant improvements in performance.

  1. COMPENSATED INVERSE PID CONTROLLER FOR ACTIVE VIBRATION CONTROL WITH PIEZOELECTRIC PATCHES: MODELING, SIMULATION AND IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Asan Gani

    2010-09-01

    Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB

  2. Cholinergic interneurons control local circuit activity and cocaine conditioning.

    Science.gov (United States)

    Witten, Ilana B; Lin, Shih-Chun; Brodsky, Matthew; Prakash, Rohit; Diester, Ilka; Anikeeva, Polina; Gradinaru, Viviana; Ramakrishnan, Charu; Deisseroth, Karl

    2010-12-17

    Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.

  3. Internal models for interpreting neural population activity during sensorimotor control.

    Science.gov (United States)

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-01-01

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects' internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output.

  4. Advanced Control of Active Bearings - Modelling, Design and Experiments

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane

    In all rotating machines relative movements between the stationary parts and the rotating parts imply energy loss and, in many critical cases, vibration problems. This energy loss leads to higher overall energy consumption of the system. Research activities towards the reduction of friction......, the enhancement of damping, the extension of operating range and the minimisation of critical vibrations in machine elements are of fundamental importance. The main component to tackle the energy-loss-related problems is the bearing. The area of design of active bearings, while very promising, is still in its...... the critical speeds. The feedback control law is preferably designed from a simple model, which captures the dominant dynamics of the machine in the frequency range of interest. This thesis offers two main original contributions in the field of active bearings. First, an experimental technique is proposed...

  5. Active control of shocks and sonic boom ground signal

    Science.gov (United States)

    Yagiz, Bedri

    The manipulation of a flow field to obtain a desired change is a much heightened subject. Active flow control has been the subject of the major research areas in fluid mechanics for the past two decades. It offers new solutions for mitigation of shock strength, sonic boom alleviation, drag minimization, reducing blade-vortex interaction noise in helicopters, stall control and the performance maximization of existing designs to meet the increasing requirements of the aircraft industries. Despite the wide variety of the potential applications of active flow control, the majority of studies have been performed at subsonic speeds. The active flow control cases were investigated in transonic speed in this study. Although the active flow control provides significant improvements, the sensibility of aerodynamic performance to design parameters makes it a nontrivial and expensive problem, so the designer has to optimize a number of different parameters. For the purpose of gaining understanding of the active flow control concepts, an automated optimization cycle process was generated. Also, the optimization cycle reduces cost and turnaround time. The mass flow coefficient, location, width and angle were chosen as design parameters to maximize the aerodynamic performance of an aircraft. As the main contribution of this study, a detailed parametric study and optimization process were presented. The second step is to appraise the practicability of weakening the shock wave and thereby reducing the wave drag in transonic flight regime using flow control devices such as two dimensional contour bump, individual jet actuator, and also the hybrid control which includes both control devices together, thereby gaining the desired improvements in aerodynamic performance of the air-vehicle. After this study, to improve the aerodynamic performance, the flow control and shape parameters are optimized separately, combined, and in a serial combination. The remarkable part of all these

  6. System ID Modern Control Algorithms for Active Aerodynamic Load Control and Impact on Gearbox Loading

    NARCIS (Netherlands)

    Berg, D.; Wilson, D.; Resor, B.; Berg, J.; Barlas, J.; Crowther, A.; Halse, C.

    2010-01-01

    Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed

  7. System ID Modern Control Algorithms for Active Aerodynamic Load Control and Impact on Gearbox Loading

    NARCIS (Netherlands)

    Berg, D.; Wilson, D.; Resor, B.; Berg, J.; Barlas, J.; Crowther, A.; Halse, C.

    2010-01-01

    Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed

  8. Constrained optimization techniques for active control of aeroelastic response

    Science.gov (United States)

    Mukhopadhyay, Vivekananda

    1987-01-01

    Active control of aeroelastic response is a complex problem in which the designer usually tries to satisfy many design criteria which are often conflicting in nature. To further complicate the design problem, the state space equations describing this type of control problem are usually of high order, involving a large number of states to represent the flexible structure and unsteady aerodynamics. Control laws based on the standard Linear - Quadratic - Gaussian method are of the same high order as the aeroelastic plant and may be difficult to implement in the flight computer. To overcome this disadvantage a new approach was developed for designing low-order optimized robust control laws. In this approach, a nonlinear programming algorithm is used to search for the values of control law design variables that minimize a performance index while satisfying several inequality constraints that describe the design criteria on the stability robustness and responses. The method is applied to a gust load alleviation problem and a stability robustness improvement problem of a drone aircraft.

  9. Latency and activation in the control of TGF-beta

    Science.gov (United States)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The biological activity of the transforming growth factor-beta's (TGF-beta)3 is tightly controlled by their persistence in the extracellular compartment as latent complexes. Each of the three mammalian isoform genes encodes a product that is cleaved intracellularly to form two polypeptides, each of which dimerizes. Mature TGF-beta, a 24 kD homodimer, is noncovalently associated with the 80 kD latency-associated peptide (LAP). LAP is a fundamental component of TGF-beta that is required for its efficient secretion, prevents it from binding to ubiquitous cell surface receptors, and maintains its availability in a large extracellular reservoir that is readily accessed by activation. This latent TGF-beta complex (LTGF-beta) is secreted by all cells and is abundant both in circulating forms and bound to the extracellular matrix. Activation describes the collective events leading to the release of TGF-beta. Despite the importance of TGF-beta regulation of growth and differentiation in physiological and malignant tissue processes, remarkably little is known about the mechanisms of activation in situ. Recent studies of irradiated mammary gland reveal certain features of TGF-beta 1 activation that may shed light on its regulation and potential roles in the normal and neoplastic mammary gland.

  10. Predictive current control of permanent magnet synchronous motor based on linear active disturbance rejection control

    Science.gov (United States)

    Li, Kunpeng

    2017-01-01

    The compatibility problem between rapidity and overshooting in the traditional predictive current control structure is inevitable and difficult to solve by reason of using PI controller. A novel predictive current control (PCC) algorithm for permanent magnet synchronous motor (PMSM) based on linear active disturbance rejection control (LADRC) is presented in this paper. In order to displace PI controller, the LADRC strategy which consisted of linear state error feedback (LSEF) control algorithm and linear extended state observer (LESO), is designed based on the mathematic model of PMSM. The purpose of LSEF is to make sure fast response to load mutation and system uncertainties, and LESO is designed to estimate the uncertain disturbances. The principal structures of the proposed system are speed outer loop based on LADRC and current inner loop based on predictive current control. Especially, the instruction value of qaxis current in inner loop is derived from the control quantity which is designed in speed outer loop. The simulation is carried out in Matlab/Simulink software, and the results illustrate that the dynamic and static performances of proposed system are satisfied. Moreover the robust against model parameters mismatch is enhanced obviously.

  11. An active vibration isolation system using adaptive proportional control method

    Science.gov (United States)

    Liu, Yun-Hui; Hsieh, Hung-En; Wu, Wei-Hao

    2014-03-01

    This paper is concerned with a six-degree-of-freedom active vibration isolation system using voice coil actuators with absolute velocity feedback control for highly sensitive measurement equipment, e.g. atomic force microscopes, suffering from building vibration. The main differences between this type of system and traditional isolator, is that there are no isolator resonance. The absolute vibration velocity signal acquired from an accelerator and being processed through an integrator is input to the controller as a feedback signal, and the controller output signal drives the voice coil actuator to produce a sky-hook damper force. In practice, the phase response of integrator at low frequency such as 2~6 Hz deviate from the 90 degree which is the exact phase difference between the vibration velocity and acceleration. Therefore, an adaptive filter is used to compensate the phase error in this paper. An analysis of this active vibration isolation system is presented, and model predictions are compared to experimental results. The results show that the proposed method significantly reduces transmissibility at resonance without the penalty of increased transmissibility at higher frequencies.

  12. Fluidic actuators for active flow control on airframe

    Science.gov (United States)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.

    2016-04-01

    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  13. Active Control Does Not Eliminate Motion-Induced Illusory Displacement

    Directory of Open Access Journals (Sweden)

    Ian M. Thornton

    2011-05-01

    Full Text Available When the sine-wave grating of a Gabor patch drifts to the left or right, the perceived position of the entire object is shifted in the direction of local motion. In the current work we explored whether active control of the physical position of the patch overcomes such motion induced illusory displacement. In Experiment 1 we created a simple computer game and asked participants to continuously guide a Gabor patch along a randomly curving path using a joystick. When the grating inside the Gabor patch was stationary, participants could perform this task without error. When the grating drifted to either left or right, we observed systematic errors consistent with previous reports of motion-induced illusory displacement. In Experiment 2 we created an iPad application where the built-in accelerometer tilt control was used to steer the patch through as series of “gates”. Again, we observed systematic guidance errors that depended on the direction and speed of local motion. In conclusion, we found no evidence that participants could adapt or compensate for illusory displacement given active control of the target.

  14. Catalytic Activity Control via Crossover between Two Different Microstructures

    KAUST Repository

    Zhou, Yuheng

    2017-09-08

    Metal nanocatalysts hold great promise for a wide range of heterogeneous catalytic reactions, while the optimization strategy of catalytic activity is largely restricted by particle size or shape control. Here, we demonstrate that a reversible microstructural control through the crossover between multiply-twinned nanoparticle (MTP) and single crystal (SC) can be readily achieved by solvent post-treatment on gold nanoparticles (AuNPs). Polar solvents (e.g. water, methanol) direct the transformation from MTP to SC accompanied by the disappearance of twinning and stacking faults. A reverse transformation from SC to MTP is achieved in non-polar solvent (e.g. toluene) mixed with thiol ligands. The transformation between two different microstructures is directly observed by in-situ TEM and leads to a drastic modulation of catalytic activity towards the gas-phase selective oxidation of alcohols. There is a quasi-linear relationship between TOFs and MTP concentrations. Based on the combined experimental and theoretical investigations of alcohol chemisorption on these nanocatalysts, we propose that the exposure of {211}-like microfacets associated with twin boundaries and stack faults accounts for the strong chemisorption of alcohol molecules on MTP AuNPs and thus the exceptionally high catalytic activity.

  15. The effect of musculoskeletal pain on motor activity and control.

    Science.gov (United States)

    Sterling, M; Jull, G; Wright, A

    2001-06-01

    Aberrant movement patterns and postures are obvious to clinicians managing patients with musculoskeletal pain. However, some changes in motor function that occur in the presence of pain are less apparent. Clinical and basic science investigations have provided evidence of the effects of nociception on aspects of motor function. Both increases and decreases in muscle activity have been shown, along with alterations in neuronal control mechanisms, proprioception, and local muscle morphology. Various models have been proposed in an attempt to provide an explanation for some of these changes. These include the vicious cycle and pain adaptation models. Recent research has seen the emergence of a new model in which patterns of muscle activation and recruitment are altered in the presence of pain (neuromuscular activation model). These changes seem to particularly affect the ability of muscles to perform synergistic functions related to maintaining joint stability and control. These changes are believed to persist into the period of chronicity. This review shows current knowledge of the effect of musculoskeletal pain on the motor system and presents the various proposed models, in addition to other shown effects not covered by these models. The relevance of these models to both acute and chronic pain is considered. It is apparent that people experiencing musculoskeletal pain exhibit complex motor responses that may show some variation with the time course of the disorder.

  16. An intelligent active force control algorithm to control an upper extremity exoskeleton for motor recovery

    Science.gov (United States)

    Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.

  17. Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper

    Science.gov (United States)

    Weber, F.

    2014-09-01

    The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.

  18. Active gate driver for dv/dt control and active voltage clamping in an IGBT stack

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg

    2005-01-01

    For high voltages converters stacks of IGBTs can be used if the static and dynamic voltage sharing among the IGBTs can be applied. dVCE/dt should also be controlled in order not to damage insulation material. This paper describes theory and measurements of an active gate driver for stacking IGBTs...

  19. Stability investigation of an airfoil section with active flap control

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac

    2010-01-01

    This work presents a method to determine flutter and divergence instability limits for a two-dimensional (2-D) airfoil section fitted with an actively controlled trailing edge flap. This flap consists of a deformable trailing edge, which deformation is governed by control algorithms based...... for fatigue load alleviation. The structural model of the 2-D airfoil section contains three degrees of freedom: heave translation, pitch rotation and flap deflection. A potential flow model provides the aerodynamic forces and their distribution. The unsteady aerodynamics are described using an indicial...... function approximation. Stability of the full aeroservoelastic system is determined through eigenvalue analysis by state-space formulation of the indicial approximation. Validation is carried out against an implementation of the recursive method by Theodorsen and Garrick for flexure-torsion-aileron flutter...

  20. A new approach to active control of rotorcraft vibration

    Science.gov (United States)

    Gupta, N. K.; Du Val, R. W.; Fuller, J.

    1980-01-01

    A state-variable feedback approach is utilized for active control of rotorcraft vibration. Fuselage accelerations are passed through undamped second-order filters with resonant frequencies at N/rev. The resulting outputs contain predominantly the N/rev vibration components, phase shifted by 180 deg, and are used to drive the blade pitch to cancel this component of fuselage vibration. The linear-quadratic-gaussian (LQG) method is used to design a feedback control system utilizing these filtered accelerations. The design is based on a nine-degree-of-freedom linear model of the Rotor System Research Aircraft (RSRA) in hover and is evaluated on a nonlinear blade-element simulation of the RSRA for this flight condition. The system is shown to essentially eliminate vibrations at N/rev in all axes. The required blade-pitch amplitude is within the capability of conventional actuators at the N/rev frequency.

  1. Active vibration control based on piezoelectric smart composite

    Science.gov (United States)

    Gao, Le; Lu, Qingqing; Fei, Fan; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2013-12-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology.

  2. Modified active disturbance rejection control for time-delay systems.

    Science.gov (United States)

    Zhao, Shen; Gao, Zhiqiang

    2014-07-01

    Industrial processes are typically nonlinear, time-varying and uncertain, to which active disturbance rejection control (ADRC) has been shown to be an effective solution. The control design becomes even more challenging in the presence of time delay. In this paper, a novel modification of ADRC is proposed so that good disturbance rejection is achieved while maintaining system stability. The proposed design is shown to be more effective than the standard ADRC design for time-delay systems and is also a unified solution for stable, critical stable and unstable systems with time delay. Simulation and test results show the effectiveness and practicality of the proposed design. Linear matrix inequality (LMI) based stability analysis is provided as well.

  3. Active control of the jet in coaxial arrangement

    Directory of Open Access Journals (Sweden)

    Šafařík P.

    2013-04-01

    Full Text Available An axisymmetric jet flow, issuing as a fully developed flow from a long straight pipe at Re = 1600 and 5500, was actively controlled by an annular synthetic jet. The Pitot tube, hot-wire anemometry (CTA and flow visualization were used for an experimental investigation of the flow control. The working fluid was air. The effect of varying Strouhal number (St = (0.18÷1.94 on a width and entrainment of the main jet flow was studied. It was found that the main jet is the most sensitive to the actuation at St = 0.28÷0.60 and St = 0.18, for Re = 1600 and Re = 5500, respectively.

  4. Development of a Voice Activity Controlled Noise Canceller

    Directory of Open Access Journals (Sweden)

    Aini Hussain

    2012-05-01

    Full Text Available In this paper, a variable threshold voice activity detector (VAD is developed to control the operation of a two-sensor adaptive noise canceller (ANC. The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods.

  5. An Improved Force Feedback Control Algorithm for Active Tendons

    Directory of Open Access Journals (Sweden)

    Ligang Cai

    2012-08-01

    Full Text Available An active tendon, consisting of a displacement actuator and a co-located force sensor, has been adopted by many studies to suppress the vibration of large space flexible structures. The damping, provided by the force feedback control algorithm in these studies, is small and can increase, especially for tendons with low axial stiffness. This study introduces an improved force feedback algorithm, which is based on the idea of velocity feedback. The algorithm provides a large damping ratio for space flexible structures and does not require a structure model. The effectiveness of the algorithm is demonstrated on a structure similar to JPL-MPI. The results show that large damping can be achieved for the vibration control of large space structures.

  6. ReflectoActive{trademark} Seals for Materials Control and Accountability

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, G.D.; Younkin, J.R.; Bell, Z.W.

    2002-01-01

    The ReflectoActive{trademark} Seals system, a continuously monitored fiber optic, active seal technology, provides real-time tamper indication for large arrays of storage containers. The system includes a PC running the RFAS software, an Immediate Detection Unit (IDU), an Optical Time Domain Reflectometer (OTDR), links of fiber optic cable, and the methods and devices used to attach the fiber optic cable to the containers. When a breach on any of the attached fiber optic cable loops occurs, the IDU immediately signals the connected computer to control the operations of an OTDR to seek the breach location. The ReflectoActive{trademark} Seals System can be adapted for various types of container closure designs and implemented in almost any container configuration. This automatic protection of valued assets can significantly decrease the time and money required for surveillance. The RFAS software is the multi-threaded, client-server application that monitors and controls the components of the system. The software administers the security measures such as a two-person rule as well as continuous event logging. Additionally the software's architecture provides a secure method by which local or remote clients monitor the system and perform administrative tasks. These features provide the user with a robust system to meet today's material control and accountability needs. A brief overview of the hardware, and different hardware configurations will be given. The architecture of the system software, and its benefits will then be discussed. Finally, the features to be implemented in future versions of the system will be presented.

  7. One active debris removal control system design and error analysis

    Science.gov (United States)

    Wang, Weilin; Chen, Lei; Li, Kebo; Lei, Yongjun

    2016-11-01

    The increasing expansion of debris presents a significant challenge to space safety and sustainability. To address it, active debris removal, usually involving a chaser performing autonomous rendezvous with targeted debris to be removed is a feasible solution. In this paper, we explore a mid-range autonomous rendezvous control system based on augmented proportional navigation (APN), establishing a three-dimensional kinematic equation set constructed in a rotating coordinate system. In APN, feedback control is applied in the direction of line of sight (LOS), thus analytical solutions of LOS rate and relative motion are expectedly obtained. To evaluate the effectiveness of the control system, we adopt Zero-Effort-Miss (ZEM) in this research as the index, the uncertainty of which is directly determined by that of LOS rate. Accordingly, we apply covariance analysis (CA) method to analyze the propagation of LOS rate uncertainty. Consequently, we find that the accuracy of the control system can be verified even with uncertainty and the CA method is drastically more computationally efficient compared with nonlinear Monte-Carlo method. Additionally, to justify the superiority of the system, we further discuss more simulation cases to show the robustness and feasibility of APN proposed in the paper.

  8. Sensitivity method for integrated structure/active control law design

    Science.gov (United States)

    Gilbert, Michael G.

    1987-01-01

    The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.

  9. Active Thermal Control Experiments for LISA Ground Verification Testing

    Science.gov (United States)

    Higuchi, Sei; DeBra, Daniel B.

    2006-11-01

    The primary mission goal of LISA is detecting gravitational waves. LISA uses laser metrology to measure the distance between proof masses in three identical spacecrafts. The total acceleration disturbance to each proof mass is required to be below 3 × 10-15 m/s2√Hz . Optical path length variations on each optical bench must be kept below 40 pm/√Hz over 1 Hz to 0.1 mHz. Thermal variations due to, for example, solar radiation or temperature gradients across the proof mass housing will distort the spacecraft causing changes in the mass attraction and sensor location. We have developed a thermal control system developed for the LISA gravitational reference sensor (GRS) ground verification testing which provides thermal stability better than 1 mK/√Hz to f control for the LISA spacecraft to compensate solar irradiation. Thermally stable environment is very demanded for LISA performance verification. In a lab environment specifications can be met with considerable amount of insulation and thermal mass. For spacecraft, the very limited thermal mass calls for an active control system which can meet disturbance rejection and stability requirements simultaneously in the presence of long time delay. A simple proportional plus integral control law presently provides approximately 1 mK/√Hz of thermal stability for over 80 hours. Continuing development of a model predictive feed-forward algorithm will extend performance to below 1 mK/√Hz at f < 1 mHz and lower.

  10. Photo-active collagen systems with controlled triple helix architecture

    CERN Document Server

    Tronci, Giuseppe; Wood, David J

    2013-01-01

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, 1H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of fun...

  11. Active switching in metamaterials using polarization control of light

    CERN Document Server

    Xu, Hua

    2010-01-01

    We demonstrate on-demand control of localized surface plasmons in metamaterials by means of incident light polarization. An asymmetric mode, selectively excited by s-polarized light, interfere destructively with a bright element, thereby allowing the incident light to propagate at a fairly low loss, corresponding to electromagnetically induced transparency (EIT) in an atomic system. In contrast, a symmetric mode, excited by p-polarized light, directly couples with the incident light, which is analogous to the switch-off of EIT. The light polarization-dependent excitation of asymmetric and symmetric plasmon modes holds potential for active switching applications of plasmon hybridization.

  12. Phasor Representation for Narrowband Active Noise Control Systems

    Directory of Open Access Journals (Sweden)

    Chen Fu-Kun

    2008-01-01

    Full Text Available The phasor representation is introduced to identify the characteristic of the active noise control (ANC systems. The conventional representation, transfer function, cannot explain the fact that the performance will be degraded at some frequency for the narrowband ANC systems. This paper uses the relationship of signal phasors to illustrate geometrically the operation and the behavior of two-tap adaptive filters. In addition, the best signal basis is therefore suggested to achieve a better performance from the viewpoint of phasor synthesis. Simulation results show that the well-selected signal basis not only achieves a better convergence performance but also speeds up the convergence for narrowband ANC systems.

  13. Active current control in wind power plants during grid faults

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Phillip C.; Rodriguez, Pedro

    2010-01-01

    , wind turbines usually have solutions that enable the turbines to control the generation of reactive power during faults. This paper addresses the importance of using an optimal injection of active current during faults in order to fulfil these grid codes. This is of relevant importance for severe......Modern wind power plants are required and designed to ride through faults in electrical networks, subject to fault clearing. Wind turbine fault current contribution is required from most countries with a high amount of wind power penetration. In order to comply with such grid code requirements...

  14. Phasor Representation for Narrowband Active Noise Control Systems

    Directory of Open Access Journals (Sweden)

    Fu-Kun Chen

    2008-05-01

    Full Text Available The phasor representation is introduced to identify the characteristic of the active noise control (ANC systems. The conventional representation, transfer function, cannot explain the fact that the performance will be degraded at some frequency for the narrowband ANC systems. This paper uses the relationship of signal phasors to illustrate geometrically the operation and the behavior of two-tap adaptive filters. In addition, the best signal basis is therefore suggested to achieve a better performance from the viewpoint of phasor synthesis. Simulation results show that the well-selected signal basis not only achieves a better convergence performance but also speeds up the convergence for narrowband ANC systems.

  15. An active interferometer-stabilization scheme with linear phase control

    DEFF Research Database (Denmark)

    Vardhan Krishnamachari, Vishnu; Andresen, Esben Ravn; Potma, Eric Olaf

    2006-01-01

    We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....

  16. Active vibration control of multibody system with quick startup and brake based on active damping

    Institute of Scientific and Technical Information of China (English)

    TANG Hua-ping; TANG Yun-jun; TAO Gong-an

    2006-01-01

    A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.

  17. Active Video Game Exercise Training Improves the Clinical Control of Asthma in Children: Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Evelim L F D Gomes

    Full Text Available The aim of the present study was to determine whether aerobic exercise involving an active video game system improved asthma control, airway inflammation and exercise capacity in children with moderate to severe asthma.A randomized, controlled, single-blinded clinical trial was carried out. Thirty-six children with moderate to severe asthma were randomly allocated to either a video game group (VGG; N = 20 or a treadmill group (TG; n = 16. Both groups completed an eight-week supervised program with two weekly 40-minute sessions. Pre-training and post-training evaluations involved the Asthma Control Questionnaire, exhaled nitric oxide levels (FeNO, maximum exercise testing (Bruce protocol and lung function.No differences between the VGG and TG were found at the baseline. Improvements occurred in both groups with regard to asthma control and exercise capacity. Moreover, a significant reduction in FeNO was found in the VGG (p < 0.05. Although the mean energy expenditure at rest and during exercise training was similar for both groups, the maximum energy expenditure was higher in the VGG.The present findings strongly suggest that aerobic training promoted by an active video game had a positive impact on children with asthma in terms of clinical control, improvement in their exercise capacity and a reduction in pulmonary inflammation.Clinicaltrials.gov NCT01438294.

  18. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method

    Science.gov (United States)

    Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di

    2017-04-01

    This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.

  19. Active Control of Engine Dynamics (Le controle actif pour la dynamique des moteurs)

    Science.gov (United States)

    2002-11-01

    actif , associé à des capteurs sans fil et à des actionneurs répartis, est appelé à jouer un rôle habilitant dans le développement futur des...SEINE CEDEX, FRANCE RTO EDUCATIONAL NOTES 20 Active Control of Engine Dynamics (Le contrôle actif pour la dynamique des moteurs) The material in this...Control of Engine Dynamics (Le contrôle actif pour la dynamique des moteurs) The material in this publication was assembled to Support a RTO/VKI

  20. Development of a concept-based EMG-based speller

    Directory of Open Access Journals (Sweden)

    Robertas Damasevicius

    2015-01-01

    Full Text Available La computación fisiológica es un p aradigma de la computación qu e usa los datos de los usuarios como entradas durante las tarea s computacionales en un Ambiente de vidacotidianasoportado po rco mputadores (AAL. Monitoreando, an alizando y respondiendo a dic has entradas, los Sistemas de Computación Fisiológica pueden respon der al estado cognitivo, emocional y físico de los usuarios. Un caso particular es el de la interface de Computación Neuronal (NCI, que usa señales eléctricas para manejar la actividad muscular del usuario establecioendo una comunicación d irecta entre el usuario y el c omputador. Se present una taxonomía de parametros de aplicación de deletreo, proponiendo un modelo de PCS y describiendo el desarr ollo de un deletreador basado en EMG. Se analiza y desarrolla unaaplicación con un sistema basa do en letras tradicionales y u na interfaz visual. Finalmente, se evalua el desempeño y usabil idad del sistemadesarrollado.

  1. EMG-BASED SYSTEM FOR BASIC HAND MOVEMENT RECOGNITION

    Directory of Open Access Journals (Sweden)

    JHONATAN CAMACHO NAVARRO

    2012-01-01

    Full Text Available Este artículo presenta un sistema que permite identificar de forma automática, en sujetos sanos, y haciendo uso de señales electromiográficas superficiales en estado estable, los siguientes movimientos básicos de la mano: apertura, cierre, flexión, extensión, pronación y supinación, incluyendo la condición de reposo. La discriminación de los diferentes movimientos se realiza a partir de una metodología modular de reconocimiento de patrones que incluye el uso de la transformada wavelet discreta, análisis de componentes principales y máquinas de soporte vectorial. La identificación fue realizada off-line cada 256 ms mediante una interfaz hardware-software conformada por un sistema de adquisición de señales de dos canales diferenciales y algoritmos programados en Matlab® y LabVIEW®. El sistema fue entrenado y evaluado para cinco sujetos de diferente género, edad y complexión física, obteniendo tasas de acierto de hasta el 99.25 %.

  2. Active control of bias for the control of posture and movement.

    Science.gov (United States)

    Guigon, Emmanuel

    2010-08-01

    Posture and movement are fundamental, intermixed components of motor coordination. Current approaches consider either that 1) movement is an active, anticipatory process and posture is a passive feedback process or 2) movement and posture result from a common passive process. In both cases, the presence of a passive component renders control scarcely robust and stable in the face of transmission delays and low feedback gains. Here we show in a model that posture and movement could result from the same active process: an optimal feedback control that drives the body from its estimated state to its goal in a given (planning) time by acting through muscles on the insertion position (bias) of compliant linkages (tendons). Computer simulations show that iteration of this process in the presence of noise indifferently produces realistic postural sway, fast goal-directed movements, and natural transitions between posture and movement.

  3. Improving aerobic capacity through active videogames: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Jorge Luiz de Brito-Gomes

    2015-09-01

    Full Text Available AbstractThe rate of peak workload improvement between different types of Active Video Games (AVG in young sedentary adults was investigated. Aerobic capacity improvement after a 6-week intervention between AVG types was also compared. Twenty participants, after baseline assessments, were randomized into one of three parallel groups: structured AVG (n= 6, unstructured AVG (n= 7 and a control group (n= 7. Participants played their respective AVG 3 times a week for 6-weeks (30 minutes-session. The control group maintained normal activities. Both structured and unstructured AVG improved peak workload after four weeks but only the structured group maintained this improvement through week five and six. Aerobic capacity improved in the unstructured (Pre: 36.0 ± 5.2ml.kg.min-¹,Post: 39.7 ± 4.9ml.kg.min-¹, p = .038 and structured AVG (Pre: 39.0 ± 5.9ml.kg.min-¹,Post: 47.8 ± 4.3ml.kg.min-¹, p = .006 groups. Structured AVG provide greater health benefits to aerobic capacity and peak workload in young sedentary but otherwise healthy males relative to unstructured AVG.

  4. Overview of modelling activities for Plasma Control Upgrade in JET

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R., E-mail: raffaele.albanese@unina.it [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Ambrosino, G.; Ariola, M.; Artaserse, G.; Bellizio, T. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Coccorese, V. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); EFDA Close Support Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Crisanti, F. [ENEA Fus, EURATOM Assoc, 00040 Frascati (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); De Tommasi, G.; Fresa, R. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Lomas, P.J. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Mattei, M.; Maviglia, F. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Neto, A. [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Piccolo, F. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Pironti, A. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2011-10-15

    The JET enhancement project Plasma Control Upgrade (PCU) aimed at increasing the capabilities of the plasma vertical stabilization (VS) system. One of the activities of this project was devoted to the development of simple but sufficiently accurate models of the VS system so as to address the main design choices, use the simulation tools as reliable test-beds, and provide an adequate support to the engineering design and commissioning of the new Enhanced Radial Field Amplifier (ERFA). This paper illustrates some of the main achievements of the modelling activity, which gave rise to a closed loop model of the VS system, including plasma, PF coils and passive structures. In particular the paper deals with the selection of the set of turns to be used in the control coils and with the estimation of the eddy current effects on the VS system. The latter analysis addressed an upgrade of the converter units of ERFA, successfully implemented during its commissioning on plasma in August 2009.

  5. Performance of active vibration control technology: the ACTEX flight experiments

    Science.gov (United States)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  6. Application of Active Flow Control Technique for Gust Load Alleviation

    Institute of Scientific and Technical Information of China (English)

    XU Xiaoping; ZHU Xiaoping; ZHOU Zhou; FAN Ruijun

    2011-01-01

    A new gust load alleviation technique is presented in this paper based on active flow control.Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi “Global Hawk” airfoil using arrays of jets during the gust process.Based on unsteady Navier-Stokes equations,the grid-velocity method is introduced to simulate the gust influence,and dynamic response in vertical gust flow perturbation is investigated for the airfoil as well.An unsteady surface transpiration boundary condition is enforced over a user specified portion of the airfoil's surface to emulate the time dependent velocity boundary conditions.Firstly,after applying this method to simulate typical NACA0006 airfoil gust response to a step change in the angle of attack,it shows that the indicial responses of the airfoil make good agreement with the exact theoretical values and the calculated values in references.Furthermore,gust response characteristic for the quasi “Global Hawk” airfoil is analyzed.Five kinds of flow control techniques are introduced as steady blowing,steady suction,unsteady blowing,unsteady suction and synthetic jets.The physical analysis of the influence on the effects of gust load alleviation is proposed to provide some guidelines for practice.Numerical results have indicated that active flow control technique,as a new technology of gust load alleviation,can affect and suppress the fluid disturbances caused by gust so as to achieve the purpose of gust load alleviation.

  7. Quantitative control of organ shape by combinatorial gene activity.

    Directory of Open Access Journals (Sweden)

    Min-Long Cui

    Full Text Available The development of organs with particular shapes, like wings or flowers, depends on regional activity of transcription factors and signalling molecules. However, the mechanisms that link these molecular activities to the morphogenetic events underlying shape are poorly understood. Here we describe a combination of experimental and computational approaches that address this problem, applying them to a group of genes controlling flower shape in the Snapdragon (Antirrhinum. Four transcription factors are known to play a key role in the control of floral shape and asymmetry in Snapdragon. We use quantitative shape analysis of mutants for these factors to define principal components underlying flower shape variation. We show that each transcription factor has a specific effect on the shape and size of regions within the flower, shifting the position of the flower in shape space. These shifts are further analysed by generating double mutants and lines that express some of the genes ectopically. By integrating these observations with known gene expression patterns and interactions, we arrive at a combinatorial scheme for how regional effects on shape are genetically controlled. We evaluate our scheme by incorporating the proposed interactions into a generative model, where the developing flower is treated as a material sheet that grows according to how genes modify local polarities and growth rates. The petal shapes generated by the model show a good quantitative match with those observed experimentally for each petal in numerous genotypes, thus validating the hypothesised scheme. This article therefore shows how complex shapes can be accounted for by combinatorial effects of transcription factors on regional growth properties. This finding has implications not only for how shapes develop but also for how they may have evolved through tinkering with transcription factors and their targets.

  8. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    Science.gov (United States)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  9. RISK ASSESSMENT ACTIVITIES IN COSO INTERNAL CONTROL MODEL

    Directory of Open Access Journals (Sweden)

    Hasan TÜREDİ

    2016-08-01

    Full Text Available The companies pursue their goals and operate their activities in an environment full of risks and uncertainties. One of the major principles in accounting is that the companies to continue indefinitely, which is called “the going concern assumption”. Any company, surrounded by many risks must adapt to the rapidly changing conditions of the business environment, realize and manage those risks and build some core competencies to continue as a going concern. COSO internal control, having practical application tools for companies is one of the generally accepted frameworks that aims enabling the companies to build, manage and develop an internal control structure as a tool to reach sustainable success. One of the five COSO components is “risk assessment” covering the recognition and assessment of the potential risks that the company faces and manage those risk considering their materiality. This study aims to explain the COSO internal control model with its five components as well as stressing the assessment of risks component supported by some examples.

  10. A portable integrated system to control an active needle

    Science.gov (United States)

    Konh, Bardia; Motalleb, Mahdi; Ashrafiuon, Hashem

    2017-04-01

    The primary objective of this work is to introduce an integrated portable system to operate a flexible active surgical needle with actuation capabilities. The smart needle uses the robust actuation capabilities of the shape memory alloy wires to drastically improve the accuracy of in medical procedures such as brachytherapy. This, however, requires an integrated system aimed to control the insertion of the needle via a linear motor and its deflection by the SMA wire in real-time. The integrated system includes a flexible needle prototype, a Raspberry Pi computer, a linear stage motor, an SMA wire actuator, a power supply, electromagnetic tracking system, and various communication supplies. The linear stage motor guides the needle into tissue. The power supply provides appropriate current to the SMA actuator. The tracking system measures tip movement for feedback, The Raspberry Pi is the central tool that receives the tip movement feedback and controls the linear stage motor and the SMA actuator via the power supply. The implemented algorithms required for communication and feedback control are also described. This paper demonstrates that the portable integrated system may be a viable solution for more effective procedures requiring surgical needles.

  11. Switching terahertz waves with gate-controlled active graphene metamaterials.

    Science.gov (United States)

    Lee, Seung Hoon; Choi, Muhan; Kim, Teun-Teun; Lee, Seungwoo; Liu, Ming; Yin, Xiaobo; Choi, Hong Kyw; Lee, Seung S; Choi, Choon-Gi; Choi, Sung-Yool; Zhang, Xiang; Min, Bumki

    2012-11-01

    The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics. In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour. Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial. Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (metamaterial, can modulate both the amplitude of the transmitted wave by up to 47% and its phase by 32.2° at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects.

  12. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-08-26

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks\\' surroundings\\' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  13. Active vibration control of spatial flexible multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  14. Vibration control of cylindrical shells using active constrained layer damping

    Science.gov (United States)

    Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.

    1997-05-01

    The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  15. Mission Operations Control Room Activities during STS-2 mission

    Science.gov (United States)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. Overall view of the MOCR in the Johnson Space Center's Mission Control Center. At far right is Eugene F. Kranz, Deputy Director of Flight Operations. At the flight director console in front of Kranz's FOD console are Flight Directors M.P. Frank, Neil B. Hutchinson and Donald R. Puddy as well as others (39506); Wide-angle view of flight controllers in the MOCR. Clifford E. Charlesworth, JSC Deputy Director, huddles with several flight directors for STS-2 at the flight director console. Kranz, is at far right of frame (39507); Dr. Christopher C. Kraft, Jr., JSC Director, center, celebrates successful flight and landing of STS-2 with a cigar in the MOCR. He is flanked by Dr. Maxime A Faget, left, Director of Engineering and Development, and Thomas L. Moser, of the Structures and Mechanics Division (39508); Flight Director Donald R. Puddy, near right, holds replica of the STS-2 insignia. Insignias on the opposite wall

  16. Survey of Active Structural Control and Repair Using Piezoelectric Patches

    Directory of Open Access Journals (Sweden)

    Ahmed Abuzaid

    2015-05-01

    Full Text Available The piezoelectric actuator has gained popularity over the last few years. Attention has been directed towards the study of their electromechanical response in active repair and the control of damaged structures. This has been made possible through the development of various numerical and analytical techniques for such studies. The shift of focus towards the piezoelectric based approaches has been due to their advantages, which include strategic cost benefits in maintenance, as well as an increase in the life cycle of the repaired structures. Furthermore, adhesively bonded joints are widely used in the manufacturing and repairing of structures in many industries, especially automotive and aerospace engineering. This is due to the requirement for lightweight materials as well as the potential adhesive used to join materials with different characteristics. The piezoelectric actuator has also shown the capacity in controlling and lowering the shear stress concentration and joint edge peel in adhesively bonded joint systems. The structure’s control of stress and repair can generally be viewed as a reinforcement that influences the structure’s damage tolerance. Therefore, the interest of this review is on the applications of the piezoelectric actuators in both structural damage and the bonded adhesive joint system. The specific goal is to recognize the contemporary scientific challenges, including future opportunities.

  17. A Simulative Study on Active Disturbance Rejection Control (ADRC as a Control Tool for Practitioners

    Directory of Open Access Journals (Sweden)

    Gernot Herbst

    2013-08-01

    Full Text Available As an alternative to both classical PID-type and modern model-based approaches to solving control problems, active disturbance rejection control (ADRC has gained significant traction in recent years. With its simple tuning method and robustness against process parameter variations, it puts itself forward as a valuable addition to the toolbox of control engineering practitioners. This article aims at providing a single-source introduction and reference to linear ADRC with this audience in mind. A simulative study is carried out using generic first- and second-order plants to enable a quick visual assessment of the abilities of ADRC. Finally, a modified form of the discrete-time case is introduced to speed up real-time implementations as necessary in applications with high dynamic requirements.

  18. Active Aerothermoelastic Control of Hypersonic Double-wedge Lifting Surface

    Institute of Scientific and Technical Information of China (English)

    Laith K Abbas; Chen Qian; Piergiovanni Marzocca; Gürdal Zafer; Abdalla Mostafa

    2008-01-01

    Designing reentry space vehicles and high-speed aireraft requires special attention to the nonlinear thermoelastic and aerodynamic instability of their structural components. The thermal effects are important since temperature environment brings dramatic influences on the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes and is likely to cause instability, catastrophic failure and oscillations resulting in structural failure due to fatigue. In order to understand the dynamic behaviors of these "hot"structures, a double-wedge lifting surface with combining freeplay and cubic structural nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes has been analyzed. A third order piston theory aerodynamic isused to estimate the applied nonlinear unsteady aerodynamic loads. Also considered is the loss of torsiunal stiffness that may be incurredby lifting surfaces subject to axial stresses induced by aerodynamic heating. The aerodynamic heating effects are estimated based on theadiabatic wall temperature due to high speed airstreams. As a recently emerging technology, the active aerothermoelastic control isaimed at providing solutions to a large number of problems involving the aeronautica Faerospace flight vehicle structures. To preventsuch damaging phenomena from occurring, an application of linear and nonlinear active control methods on both flutter boundary andpost-flutter behavior has been fulfilled. In this paper, modeling issues as well as numerical simulation have been presented and pertinent conclusions outlined. It is evidenced that a serious loss of torsional stiffness may induce the dynamic instability; however active controlcan be used to expand the flutter boundary and convert unstable limit cycle oscillations (LCO) into the stable LCO and/or to shift the transition between these two states toward higher flight Mach numbers.

  19. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages.

    Directory of Open Access Journals (Sweden)

    Aline Cristina Abreu Moreira-Souza

    Full Text Available Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane--subdivided into P2Y and P2X subfamilies--whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection.

  20. Fbxw7 controls angiogenesis by regulating endothelial Notch activity.

    Directory of Open Access Journals (Sweden)

    Nanae Izumi

    Full Text Available Notch signaling controls fundamental aspects of angiogenic blood vessel growth including the selection of sprouting tip cells, endothelial proliferation and arterial differentiation. The E3 ubiquitin ligase Fbxw7 is part of the SCF protein complex responsible for the polyubiquitination and thereby proteasomal degradation of substrates such as Notch, c-Myc and c-Jun. Here, we show that Fbxw7 is a critical regulator of angiogenesis in the mouse retina and the zebrafish embryonic trunk, which we attribute to its role in the degradation of active Notch. Growth of retinal blood vessel was impaired and the Notch ligand Dll4, which is also a Notch target, upregulated in inducible and endothelial cell-specific Fbxw7(iECKO mutant mice. The stability of the cleaved and active Notch intracellular domain was increased after siRNA knockdown of the E3 ligase in cultured human endothelial cells. Injection of fbxw7 morpholinos interfered with the sprouting of zebrafish intersegmental vessels (ISVs. Arguing strongly that Notch and not other Fbxw7 substrates are primarily responsible for these phenotypes, the genetic inactivation of Notch pathway components reversed the impaired ISV growth in the zebrafish embryo as well as sprouting and proliferation in the mouse retina. Our findings establish that Fbxw7 is a potent positive regulator of angiogenesis that limits the activity of Notch in the endothelium of the growing vasculature.

  1. Photo-active collagen systems with controlled triple helix architecture.

    Science.gov (United States)

    Tronci, Giuseppe; Russell, Stephen J; Wood, David J

    2013-08-14

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, (1)H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of functionalized collagen precursors. Photo-activated hydrogels demonstrated an increased denaturation temperature (DSC) with respect to native collagen, suggesting that the formation of the covalent network successfully stabilized collagen triple helices. Moreover, biocompatibility and mechanical competence of obtained hydrogels were successfully demonstrated under physiologically-relevant conditions. These results demonstrate that this novel synthetic approach enabled the formation of biocompatible collagen systems with defined network architecture and programmable macroscopic properties, which can only partially be obtained with current synthetic methods.

  2. Design and control of LCL-filter with active damping for Active Power Filter

    DEFF Research Database (Denmark)

    Zeng, Guohong; Rasmussen, Tonny Wederberg; Ma, L

    2010-01-01

    In the application of shunt Active Power Filter (APF) to compensate nonlinear load's harmonic, reactive and negative sequence current, it is more effective to use a LCL-filter than an L-filter as an interface between the Voltage Source Converter (VSC) and grid. In this paper, a designing procedure...... of LCL-filter for APF is introduced, which is aimed for simplified the implementation. To suppress the resonance that may be excited in the system, which brings in stability problems, an active damping control strategy using the current feed-back of the filter capacitor is adopted. By selecting two equal...

  3. Simulation Model of an Active-stall Fixed-speed Wind Turbine Controller

    DEFF Research Database (Denmark)

    Jauch, Clemens; Hansen, Anca D.; Soerensen, Poul

    2004-01-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and ev...

  4. Exercise training and habitual physical activity: a randomized controlled trial.

    Science.gov (United States)

    Swift, Damon L; Johannsen, Neil M; Tudor-Locke, Catrine; Earnest, Conrad P; Johnson, William D; Blair, Steven N; Sénéchal, Martin; Church, Timothy S

    2012-12-01

    Exercise training reduces adiposity and risk of cardiovascular disease. However, the combined effects of habitual free-living physical activity and aerobic training on waist circumference, weight, fitness, and blood pressure in postmenopausal women are unknown. To evaluate the effects of habitual physical activity levels during aerobic training on weight, waist circumference, fitness, and blood pressure. Secondary analysis of an RCT. Original data collected April 2001 to June 2005 and analyzed in 2012. Postmenopausal women in a supervised exercise trial. Women (n=325) were randomized to 4, 8, or 12 kcal/kg per week of aerobic training or a control group for 6 months. All outcome measures were collected at baseline and follow-up. Changes in dependent variables within each training group were evaluated across tertiles of pedometer-determined habitual physical activity outside exercise training sessions. Changes in waist circumference and weight. Reductions in waist circumference were significantly greater with higher steps/day accumulated outside exercise training compared to lower levels in the 4 (high: -4.8 cm vs low: -1.4 cm, p=0.03); 8 (high: -4.2 cm vs low: -0.4 cm, p=0.03), and 12 kcal/kg per week groups (high: -4.1 cm vs low: -0.7 cm, p=0.05). For all groups, p-trend≤0.03. A trend was observed for greater weight reduction with higher steps/day in the 4 kcal/kg per week group (p-trend=0.04) but not for the other exercise doses. No effects were observed for blood pressure or fitness measures (all p>0.05). In postmenopausal women, higher habitual physical activity while participating in aerobic training was associated with greater reductions in central adiposity, and was supportive of weight loss compared to lower levels. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    Science.gov (United States)

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-28

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  6. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

    2012-03-01

    As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

  7. Robust Motion Control for Mobile Manipulator Using Resolved Acceleration and Proportional-Integral Active Force Control

    Directory of Open Access Journals (Sweden)

    Musa Mailah

    2005-06-01

    Full Text Available A resolved acceleration control (RAC and proportional-integral active force control (PIAFC is proposed as an approach for the robust motion control of a mobile manipulator (MM comprising a differentially driven wheeled mobile platform with a two-link planar arm mounted on top of the platform. The study emphasizes on the integrated kinematic and dynamic control strategy in which the RAC is used to manipulate the kinematic component while the PIAFC is implemented to compensate the dynamic effects including the bounded known/unknown disturbances and uncertainties. The effectivenss and robustness of the proposed scheme are investigated through a rigorous simulation study and later complemented with experimental results obtained through a number of experiments performed on a fully developed working prototype in a laboratory environment. A number of disturbances in the form of vibratory and impact forces are deliberately introduced into the system to evaluate the system performances. The investigation clearly demonstrates the extreme robustness feature of the proposed control scheme compared to other systems considered in the study.

  8. Exploring active flow control for efficient control of separation on an Ahmed model

    Science.gov (United States)

    McNally, Jonathan; Alvi, Farrukh

    2016-11-01

    Active flow control is applied to an Ahmed model with a rear slant angle of 25°, where a typical flow field consists of a three-dimensional separation region on the rear slant of the bluff body. Linear arrays of discrete microjets, previously proven to effectively control this separation, are investigated further. A principal aim of this experimental study is to examine the sensitivity of control as the actuator location is shifted with respect to the separation location. Aerodynamic force and surface pressure measurements, combined with the velocity field obtained using particle image velocimetry, provide a measure of control efficacy and insight into the interaction of jet arrays with the local flow field, including the separating shear layer. An energy balance is conducted to characterize control efficiency for multiple positions over a range of microjet array blowing conditions. Results show that moving the actuator array further into the separation region requires higher microjet momentum to obtain a desired aerodynamic benefit. An empirical relationship is also developed for determining the required jet velocity as a function of position by relating the jet penetration distance to local flow features and length scales. Partial support by FCAAP and NSF.

  9. Active Vibration Control in a Rotor System by an Active Suspension with Linear Actuators

    Directory of Open Access Journals (Sweden)

    M. Arias-Montiel

    2014-10-01

    Full Text Available In this paper the problem of modeling, analysis and unbalance response control of a rotor system with two disks in an asymmetrical configuration is treated. The Finite Element Method (FEM is used to get the system model including the gyroscopic effects and then, the obtained model is experimentally validated. Rotordynamic analysis is carried out using the finite element model obtaining the Campbell diagram, the natural frequencies and the critical speeds of the rotor system. An asymptotic observer is designed to estimate the full state vector which is used to synthesize a Linear Quadratic Regulator (LQR to reduce the vibration amplitudes when the system passes through the first critical speed. Some numerical simulations are carried out to verify the closed-loop system behavior. The active vibration control scheme is experimentally validated using an active suspension with electromechanical linear actuators, obtaining significant reductions in the resonant peak.

  10. Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control

    Science.gov (United States)

    Friese, Uwe; Daume, Jonathan; Göschl, Florian; König, Peter; Wang, Peng; Engel, Andreas K.

    2016-01-01

    In this study, we used a novel multisensory attention paradigm to investigate attention-modulated cortical oscillations over a wide range of frequencies using magnetencephalography in healthy human participants. By employing a task that required the evaluation of the congruence of audio-visual stimuli, we promoted the formation of widespread cortical networks including early sensory cortices as well as regions associated with cognitive control. We found that attention led to increased high-frequency gamma-band activity and decreased lower frequency theta-, alpha-, and beta-band activity in early sensory cortex areas. Moreover, alpha-band coherence decreased in visual cortex. Frontal cortex was found to exert attentional control through increased low-frequency phase synchronisation. Crossmodal congruence modulated beta-band coherence in mid-cingulate and superior temporal cortex. Together, these results offer an integrative view on the concurrence of oscillations at different frequencies during multisensory attention. PMID:27604647

  11. A multi-harmonic amplitude and relative-phase controller for active sound quality control

    Science.gov (United States)

    Mosquera-Sánchez, Jaime A.; de Oliveira, Leopoldo P. R.

    2014-04-01

    Current active sound quality control systems aim at dealing with the amplitude level of the primary disturbance, e.g. sound pressure, forces, velocities and/or accelerations, which implicitly leads to Loudness control, regardless of the spectral structure of the disturbance. As far as multi-harmonic disturbances are concerned, auditory Roughness, arguably the most related psychoacoustic metric with rumbling perception in passenger cars, can be tackled not merely by dealing with magnitudes but also with the relative-phase of the narrowband components. This paper presents an adaptive control scheme conceived for dealing with multi-harmonic disturbances, which features the independent amplitude and/or relative-phase control of the input periodic components and an improved robustness to impulsive events. The adaptive control scheme is based on a frequency-domain delayless implementation of the complex-domain, least mean squares algorithm, whereof its convergence process is improved by using a forgetting factor. The control capabilities are evaluated numerically for single- and multiple-harmonic disturbances, including realistic internal combustion engine sound contaminated with noise and by impulsive events. By using long transfer paths obtained from a real vehicle mock-up, sound pressure level reductions of 39 dBSPL and the ability to displacing the relative-phase of a number of narrowband components between [-π,π] are accomplished by the proposed control scheme. The assessment of the results by using Zwicker-Loudness and auditory Roughness models shows that the proposed adaptive algorithm is able to accomplish and stably preserve various sound quality targets, after completion of the robust convergence procedure, regardless of impulsive events that can occur during the system operation.

  12. Human facial neural activities and gesture recognition for machine-interfacing applications

    Directory of Open Access Journals (Sweden)

    Hamedi M

    2011-12-01

    Full Text Available M Hamedi1, Sh-Hussain Salleh2, TS Tan2, K Ismail2, J Ali3, C Dee-Uam4, C Pavaganun4, PP Yupapin51Faculty of Biomedical and Health Science Engineering, Department of Biomedical Instrumentation and Signal Processing, University of Technology Malaysia, Skudai, 2Centre for Biomedical Engineering Transportation Research Alliance, 3Institute of Advanced Photonics Science, Nanotechnology Research Alliance, University of Technology Malaysia (UTM, Johor Bahru, Malaysia; 4College of Innovative Management, Valaya Alongkorn Rajabhat University, Pathum Thani, 5Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, ThailandAbstract: The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human–machine interface (HMI technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2–11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy

  13. Activity monitor intervention to promote physical activity of physicians-in-training: randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Anne N Thorndike

    Full Text Available BACKGROUND: Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise. METHODS: We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention or to a blinded monitor (control. Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1 median steps/day and 2 proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day. Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses. RESULTS: In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16 and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73. In Phase 2 (team competition, residents recorded more steps/day than during Phase 1 (CONTROL: 7,971 vs. 7,567, p = 0.002; INTERVENTION: 7,832 vs. 7,739, p = 0.13. Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001. Mean systolic blood pressure decreased (p = 0.004 and HDL cholesterol increased (p<0.001 among all participants at end of study compared to baseline. CONCLUSIONS: Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more

  14. First Attempts at using Active Halo Control at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Joschka [CERN; Bruce, Roderik [CERN; Garcia Morales, Hector [CERN; Höfle, Wolfgang [CERN; Kotzian, Gerd [CERN; Kwee-Hinzmann, Regina [CERN; Langner, Andy [CERN; Mereghetti, Alessio [CERN; Quaranta, Elena [CERN; Redaelli, Stefano [CERN; Rossi, Adriana [CERN; Salvachua, Belen [CERN; Stancari, Giulio [Fermilab; Tomás, Rogelio [CERN; Valentino, Gianluca [CERN; Valuch, Daniel [CERN

    2016-06-01

    The beam halo population is a non-negligible factor for the performance of the LHC collimation system and the machine protection. In particular this could become crucial for aiming at stored beam energies of 700 MJ in the High Luminosity (HL-LHC) project, in order to avoid beam dumps caused by orbit jitter and to ensure safety during a crab cavity failure. Therefore several techniques to safely deplete the halo, i.e. active halo control, are under development. In a first attempt a novel way for safe halo depletion was tested with particle narrow-band excitation employing the LHC Transverse Damper (ADT). At an energy of 450 GeV a bunch selective beam tail scraping without affecting the core distribution was attempted. This paper presents the first measurement results, as well as a simple simulation to model the underlying dynamics.

  15. Actively controlling coolant-cooled cold plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  16. Active vibration control of structures undergoing bending vibrations

    Science.gov (United States)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  17. Active-control headset protector using piezoceramic material actuator

    Science.gov (United States)

    Brissaud, Michel; Gonnard, Paul; Bera, Jean-Christophe; Sunyach, Michel

    1996-04-01

    This paper describes the achievement of active control headset protector using piezoceramic actuators leading to a noise attenuation of about 20 dB within a 1 kHz frequency span located at around 1 to 2 kHz. To this end, several types of piezoceramic transducers or actuators have been designed and tested. They are based on flexural modes of bimorphs constituted by a thin piezoelectric ceramic disk cemented on a metallic plate. The main problems encountered are the spurious frequency regenerations which mask the noise reduction in the expected frequency range. Thus only a few of them meet the above specifications and can be used for reducing the noise inside the headset protector.

  18. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    Energy Technology Data Exchange (ETDEWEB)

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  19. The Active Mirror Control of the MAGIC Telescope

    CERN Document Server

    Biland, A; Anderhub, H; Danielyan, V; Hakobyan, D; Lorenz, E; Mirzoyan, R

    2007-01-01

    One of the main design goals of the MAGIC telescopes is the very fast repositioning in case of Gamma Ray Burst (GRB) alarms, implying a low weight of the telescope dish. This is accomplished by using a space frame made of carbon fiber epoxy tubes, resulting in a strong but not very rigid support structure. Therefore it is necessary to readjust the individual mirror tiles to correct for deformations of the dish under varying gravitational load while tracking an object. We present the concept of the Active Mirror Control (AMC) as implemented in the MAGIC telescopes and the actual performance reached. Additionally we show that also telescopes using a stiff structure can benefit from using an AMC.

  20. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

    Science.gov (United States)

    Marcel, Nimi; Sarin, Apurva

    2016-01-01

    Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation. DOI: http://dx.doi.org/10.7554/eLife.14023.001 PMID:27267497

  1. Cost of Dengue Vector Control Activities in Malaysia.

    Science.gov (United States)

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Inbaraj, Jonathan; Balan, Venugopalan K; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    Dengue fever, an arbovirus disease transmitted by Aedes mosquitoes, has recently spread rapidly, especially in the tropical countries of the Americas and Asia-Pacific regions. It is endemic in Malaysia, with an annual average of 37,937 reported dengue cases from 2007 to 2012. This study measured the overall economic impact of dengue in Malaysia, and estimated the costs of dengue prevention. In 2010, Malaysia spent US$73.5 million or 0.03% of the country's GDP on its National Dengue Vector Control Program. This spending represented US$1,591 per reported dengue case and US$2.68 per capita population. Most (92.2%) of this spending occurred in districts, primarily for fogging. A previous paper estimated the annual cost of dengue illness in the country at US$102.2 million. Thus, the inclusion of preventive activities increases the substantial estimated cost of dengue to US$175.7 million, or 72% above illness costs alone. If innovative technologies for dengue vector control prove efficacious, and a dengue vaccine was introduced, substantial existing spending could be rechanneled to fund them.

  2. Predictive active disturbance rejection control for processes with time delay.

    Science.gov (United States)

    Zheng, Qinling; Gao, Zhiqiang

    2014-07-01

    Active disturbance rejection control (ADRC) has been shown to be an effective tool in dealing with real world problems of dynamic uncertainties, disturbances, nonlinearities, etc. This paper addresses its existing limitations with plants that have a large transport delay. In particular, to overcome the delay, the extended state observer (ESO) in ADRC is modified to form a predictive ADRC, leading to significant improvements in the transient response and stability characteristics, as shown in extensive simulation studies and hardware-in-the-loop tests, as well as in the frequency response analysis. In this research, it is assumed that the amount of delay is approximately known, as is the approximated model of the plant. Even with such uncharacteristic assumptions for ADRC, the proposed method still exhibits significant improvements in both performance and robustness over the existing methods such as the dead-time compensator based on disturbance observer and the Filtered Smith Predictor, in the context of some well-known problems of chemical reactor and boiler control problems.

  3. A phosphorylation cascade controls the degradation of active SREBP1.

    Science.gov (United States)

    Bengoechea-Alonso, Maria T; Ericsson, Johan

    2009-02-27

    Sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors that regulates cholesterol and lipid metabolism. The active forms of these transcription factors are targeted by a number of post-translational modifications, including phosphorylation. Phosphorylation of Thr-426 and Ser-430 in SREBP1a creates a docking site for the ubiquitin ligase Fbw7, resulting in the degradation of the transcription factor. Here, we identify a novel phosphorylation site in SREBP1a, Ser-434, which regulates the Fbw7-dependent degradation of SREBP1. We demonstrate that both SREBP1a and SREBP1c are phosphorylated on this residue (Ser-410 in SREBP1c). Importantly, we demonstrate that the mature form of endogenous SREBP1 is phosphorylated on Ser-434. Glycogen synthase kinase-3 phosphorylates Ser-434, and the phosphorylation of this residue is attenuated in response to insulin signaling. Interestingly, phosphorylation of Ser-434 promotes the glycogen synthase kinase-3-dependent phosphorylation of Thr-426 and Ser-430 and destabilizes SREBP1. Consequently, mutation of Ser-434 blocks the interaction between SREBP1 and Fbw7 and attenuates Fbw7-dependent degradation of SREBP1. Importantly, insulin fails to enhance the levels of mature SREBP1 in cells lacking Fbw7. Thus, the degradation of mature SREBP1 is controlled by cross-talk between multiple phosphorylated residues in its C-terminal domain and the phosphorylation of Ser-434 could function as a molecular switch to control these processes.

  4. Experimental active control of sound in the ATR 42

    Science.gov (United States)

    Paonessa, A.; Sollo, A.; Paxton, M.; Purver, M.; Ross, C. F.

    Passenger comfort is becoming day by day an important issue for the market of the regional turboprop aircraft and also for the future high speed propeller driven aircraft. In these aircraft the main contribution to the passenger annoyance is due to the propeller noise blade passing frequency (BPF) and its harmonics. In the recent past a detailed theoretical and experimental work has been done by Alenia Aeronautica in order to reduce the noise level in the ATR aircraft passenger cabin by means of conventional passive treatments: synchrophasing of propellers, dynamic vibration absorbers, structural reinforcements, damping materials. The application of these treatments has been introduced on production aircraft with a remarkable improvement of noise comfort but with a significant weight increase. For these reasons, a major technology step is required for reaching passenger comfort comparable to that of jet aircraft with the minimum weight increase. The most suitable approach to this problem has been envisaged in the active noise control which consists in generating an anti-sound field in the passenger cabin to reduce the noise at propeller BPF and its harmonics. The attenuation is reached by means of a control system which acquires information about the cabin noise distribution and the propeller speed during flight and simultaneously generates the signals to drive the speakers.

  5. Oceanic Control of Northeast Pacific Hurricane Activity at Interannual Timescales

    Energy Technology Data Exchange (ETDEWEB)

    Balaguru, Karthik; Leung, Lai-Yung R.; Yoon, Jin-Ho

    2013-10-16

    Despite the strong dependence of the Power Dissipation Index (PDI), which is a measure of the intensity of Tropical Cyclone (TC) activity, on tropical sea-surface temperatures (SSTs), the variations in PDI are not completely explained by SST. Here we show, using an analysis of a string of observational data sets, that the variability of the thermocline depth (TD) in the east Pacific exerts a significant degree of control on the variability of PDI in that region. On average, a deep thermocline with a larger reservoir of heat favors TC intensification by reducing SST cooling while a shallow thermocline with a smaller heat reservoir promotes enhanced SST cooling that contributes to TC decay. At interannual time scales, the variability of basin-mean TD accounts for nearly 30% of the variability in the PDI during the TC season. Also, about 20% of the interannual variability in the east Pacific basin-mean TD is due to the El Niño and the Southern Oscillation (ENSO), a dominant climate signal in this region. This study suggests that a better understanding of the factors governing the interannual variability of the TD conditions in the east Pacific and how they may change over time, may lead to an improved projection of future east Pacific TC activity.

  6. Optofluidics incorporating actively controlled micro- and nano-particles

    Science.gov (United States)

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  7. Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control

    Directory of Open Access Journals (Sweden)

    Jihan Youssef

    2004-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs were discovered over a decade ago, and were classified as orphan members of the nuclear receptor superfamily. To date, three PPAR subtypes have been discovered and characterized (PPARα, β/δ, γ. Different PPAR subtypes have been shown to play crucial roles in important diseases and conditions such as obesity, diabetes, atherosclerosis, cancer, and fertility. Among the most studied roles of PPARs is their involvement in inflammatory processes. Numerous studies have revealed that agonists of PPARα and PPARγ exert anti-inflammatory effects both in vitro and in vivo. Using the carrageenan-induced paw edema model of inflammation, a recent study in our laboratories showed that these agonists hinder the initiation phase, but not the late phase of the inflammatory process. Furthermore, in the same experimental model, we recently also observed that activation of PPARδ exerted an anti-inflammatory effect. Despite the fact that exclusive dependence of these effects on PPARs has been questioned, the bulk of evidence suggests that all three PPAR subtypes, PPARα,δ,γ, play a significant role in controlling inflammatory responses. Whether these subtypes act via a common mechanism or are independent of each other remains to be elucidated. However, due to the intensity of research efforts in this area, it is anticipated that these efforts will result in the development of PPAR ligands as therapeutic agents for the treatment of inflammatory diseases.

  8. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  9. Air traffic control activity increases attention capacity in air traffic controllers

    Directory of Open Access Journals (Sweden)

    Valdenilson Ribeiro Ribas

    Full Text Available Abstract Air traffic controllers simultaneously develop complex and multiple tasks in the course of their activities. In this context, concern is raised over the high level of attention needed by these professionals which can ultimately be affected by stress and fatigue. Objectives: The objective of this study was to assess attention level in air traffic controllers (ATCo. Methods: 45 flight protection professionals were evaluated, comprising 30 ATCo, subdivided into ATCo with ten or more years in the profession (ATCo³10, n=15 and ATCo with less than ten years in the profession (ATCo <10, n=15 and 15 aeronautical information services operators (AIS, subdivided into AIS with ten years or more in the profession (AIS³10, n=8 and AIS with less than ten years in the profession (AIS <10, n=7, who were included as the control group. The digit symbol, d2 (the individual marks the letter d on a specific form containing 14 lines with 47 letters in each, maintaining focus on letter d followed by two dashes, forward digit span, backward digit span and PASAT (paced auditory serial addition test attention tests were used. Kruskal-Wallis was used and data expressed as Median (Minimum and Maximum with p<0.05. Results: The ATCo³10 presented greater focus of attention, sustained attention, mental manipulation and resistance to interference capacity compared to the AIS³10. Comparison of ATCo³10 to the AIS<10 showed they presented only greater resistance to interference, and when compared to the ATCo<10 presented lower focus. Conclusions: The air traffic control activity after ten years may be associated with a high level of attention.

  10. Actuator placement for active sound and vibration control of cylinders

    Science.gov (United States)

    Kincaid, Rex K.

    1995-01-01

    Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The cylinder is excited by an exterior noise source -- an acoustic monopole -- located near the outside of the cylinder wall. The goal is to determine the force inputs and sites for the piezoelectric actuators so that (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. We studied external monopole excitations at two frequencies. A cylinder resonance of 100 Hz, where the interior acoustic field is driven in multiple, off-resonance cylinder cavity modes, and a cylinder resonance of 200 Hz are characterized by both near and off-resonance cylinder vibration modes which couple effectively with a single, dominant, low-order acoustic cavity mode at resonance. Previous work has focused almost exclusively on meeting objective (1) and solving a complex least-squares problem to arrive at an optimal force vector for a given set of actuator sites. In addition, it has been noted that when the cavity mode couples with cylinder vibration modes (our 200 Hz case) control spillover may occur in higher order cylinder shell vibrational modes. How to determine the best set of actuator sites to meet objectives (1)-(3) is the main contribution of our research effort. The selection of the best set of actuator sites from a set of potential sites is done via two metaheuristics -- simulated annealing and tabu search. Each of these metaheuristics partitions the set of potential actuator sites into two disjoint sets: those that are selected to control the noise (on) and those that are not (off). Next, each metaheuristic attempts to

  11. An active attitude control system for a drag sail satellite

    Science.gov (United States)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  12. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.

    Directory of Open Access Journals (Sweden)

    Marco Gazzoni

    Full Text Available The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1 the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2 the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1 it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2 hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.

  13. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.

    Science.gov (United States)

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.

  14. Is baroreflex control of sympathetic activity and heart rate active in the preterm fetal sheep?

    Science.gov (United States)

    Booth, Lindsea C; Malpas, Simon C; Barrett, Carolyn J; Guild, Sarah-Jane; Gunn, Alistair J; Bennet, Laura

    2009-03-01

    The arterial baroreflex is a fundamental reflex that buffers rapid changes in arterial blood pressure (BP) via regulation of the heart rate and sympathetic nerve activity to the vasculature. In adults a sigmoidal relationship between BP and both heart rate and sympathetic nerve activity is well documented. Its role in blood pressure control before birth is unclear. Preterm babies have a high incidence of low BP, especially in the first few days of life, which could be related, in part, to immaturity of the baroreflex. In the present study, we investigated the baroreflex control of fetal heart rate and renal sympathetic nerve activity (RSNA) in preterm fetal sheep in utero (102 +/- 1 days of gestation; term 140 days). Phenylephrine was associated with a significant increase in BP from 38 +/- 2 to 58 +/- 3 mmHg and a decrease in heart rate (HR) from 177 +/- 4 to 116 +/- 8 beats per minute (bpm). Sodium nitroprusside was associated with a significant fall in BP from 38 +/- 2 to 26 +/- 1 mmHg and an increase in HR from 182 +/- 4 to 274 +/- 8 bpm. However, the time between the 50% changes in BP and HR was significantly greater after hypotension than hypertension (31 +/- 8 s vs. 14 +/- 5 s, P < 0.05). No significant changes in RSNA occurred with either stimulus. This suggests that there are different maturational tempos for the components of the central autonomic response to altered blood pressure.

  15. Active control of the spatial MRI phase distribution with optimal control theory

    Science.gov (United States)

    Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin

    2017-08-01

    This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.

  16. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Science.gov (United States)

    Wang, Fangfang; Okawa, Hiroko; Kamano, Yuya; Niibe, Kunimichi; Kayashima, Hiroki; Osathanon, Thanaphum; Pavasant, Prasit; Saeki, Makio; Yatani, Hirofumi; Egusa, Hiroshi

    2015-01-01

    Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation

  17. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Directory of Open Access Journals (Sweden)

    Fangfang Wang

    Full Text Available Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR. Expression vectors that contained the Tet operator and amelogenin-coding (Amelx cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx. MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP, osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional

  18. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin

    Science.gov (United States)

    Wang, Fangfang; Okawa, Hiroko; Kamano, Yuya; Niibe, Kunimichi; Kayashima, Hiroki; Osathanon, Thanaphum; Pavasant, Prasit; Saeki, Makio; Yatani, Hirofumi; Egusa, Hiroshi

    2015-01-01

    Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation

  19. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.

  20. Nursing activity recognition using an inexpensive game controller: An application to infection control.

    Science.gov (United States)

    Momen, Kaveh; Fernie, Geoff R

    2010-01-01

    It is estimated that 10% of the patients admitted to North American hospitals die of hospital acquired infections. Approximately half of these are thought to be a consequence of poor hand hygiene practices by the hospital staff. Electronic hand washing reminders that prompt caregivers to wash their hands before and after the patient/patient's environment contact may help to increase the hand hygiene compliance rate. However, the current systems fail to identify the nursing procedures happening around the patient to issue proper hand hygiene prompt. In this research we used the hardware of a low-cost wireless Sony game controller, which included a 3-axis accelerometer, to identify six nursing activities happening around a patient. We attached five sensors to eight nurses' left and right wrists, left and right upper arms, and the backs. Each nurse performed 10 trials of each nursing activity in sequence, followed by a combined nursing activities trial. We extracted mean, standard deviation, energy, and correlation among axes per sensor and compared the results of 1-Nearest Neighbour (1-NN), Decision Tree (J48), and Naïve Bayes classifiers. 1-NN classifier had the best performance and on average regardless of the sensor locations, we achieved 84% ± 2% accuracy.

  1. Active flow control for a NACA-0012 Profile: Part II

    Science.gov (United States)

    Oualli, H.; Makadem, M.; Ouchene, H.; Ferfouri, A.; Bouabdallah, A.; Gad-El-Hak, M.

    2016-11-01

    Active flow control is applied to a NACA-0012 profile. The experiments are conducted in a wind tunnel. Using a high-resolution visible-light camera and tomography, flow visualizations are carried out. LES finite-volume 3D code is used to complement the physical experiments. The symmetric wing is clipped into two parts, and those parts extend and retract along the chord according to the same sinusoidal law we optimized last year for the same profile but clipped at an angle of 60 deg, instead of the original 90 deg. The Reynolds number range is extended to 500,000, thus covering the flying regimes of micro-UAVs, UAVs, as well as small aircraft. When the nascent cavity is open and the attack angle is 30 deg, the drag coefficient is increased by 1,300%, as compared to the uncontrolled case. However, when the cavity is covered and Re <=105 , a relatively small frequency, f <= 30 Hz, is required for the drag coefficient to drop to negative values. At the maximum Reynolds number, thrust is generated but only at much higher frequencies, 12 <= f <= 16 kHz.

  2. Next-generation electroceramic fibers for active control

    Science.gov (United States)

    Bystricky, Pavel; Pascucci, Marina R.; Strock, Harold B.

    2002-07-01

    Lead-based PMN-31PT and lead-free BNBZT fibers in the 250- 500 micrometer diameter range were produced using CeraNova's proprietary extrusion technology. Various recrystallization approaches were investigated, including seeded solid state conversion and self-seeded texturing, with the goal of obtaining single-crystalline or textured macrocrystalline fibers. Grains in excess of 100 micrometers - and exceeding 1 mm in some cases - with surface and bulk coverage approaching 100 percent, were obtained in a narrow temperature range and under carefully controlled atmosphere conditions. Large grain growth in BNBZT required the presence of BaSrTiO3 or SrTiO3 seeds and temperatures in the 1150-1200 degrees C range. In PMN-31PT, nearly compete recrystalline was observed in unseeded material at relatively low temperature and short time, and improved performance was achieved with a two-step sintering schedule and slightly extended time. While conduction effects have not yet allowed compete assessment of recrystalline BNBZT, PMN-31PT fibers have shown excellent piezoelectric properties with remanent polarization in excess of 30(mu) C/cm2 and coercive field of 4.5kV/cm. When incorporated into active fiber composites, the latter fibers' performance of 2000 microstrain in superior to average PZT-based production composites. Efforts are under way to induce preferred orientation in the large crystal in order to maximize performance.

  3. Transcription factor PIF4 controls the thermosensory activation of flowering

    KAUST Repository

    Kumar, S. Vinod

    2012-03-21

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. © 2012 Macmillan Publishers Limited. All rights reserved.

  4. Provision of secondary frequency control via demand response activation on thermostatically controlled loads: Solutions and experiences from Denmark

    DEFF Research Database (Denmark)

    Lakshmanan, Venkatachalam; Marinelli, Mattia; Hu, Junjie;

    2016-01-01

    of household fridge performance in terms of response time and ramp-up rate, as well as the impact on fridge temperature and behaviour after the control period. The experimental results show that TCLs are fast responsive loads for DR activation, with the average control signal response time of 24 s......This paper studies the provision of secondary frequency control in electric power systems based on demand response (DR) activation on thermostatically controlled loads (TCLs) and quantifies the computation resource constraints for the control of large TCL population. Since TCLs are fast responsive...

  5. Active Dihedral Control System for a Torisionally Flexible Wing

    Science.gov (United States)

    Kendall, Greg T. (Inventor); Lisoski, Derek L. (Inventor); Morgan, Walter R. (Inventor); Griecci, John A. (Inventor)

    2015-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  6. A Control Source Structure of Single Loudspeaker and Rear Sound Interference for Inexpensive Active Noise Control

    Directory of Open Access Journals (Sweden)

    Yasuhide Kobayashi

    2010-01-01

    phase-lag is imposed by the Swinbanks' source and the rear sound interference. Thirdly, effects on control performances of control source structures are examined by control experiments with robust controllers.

  7. Development of semi-active hydraulic damper as active interaction control device to withstand external excitation

    Indian Academy of Sciences (India)

    Ming-Hsiang Shih; Wen-Pei Sung

    2014-02-01

    Semi-automatic control systems have the characteristics of being adaptable and requiring low energy. The objective of this research was to study the performance of an improved DSHD (Displacement Semi-Active Hydraulic Damper) by converting it to AIC (Active Interaction Control Device) with the addition of an accumulator. The prototype was tested using full-scale elements for examining the structural displacement, and typical responses of the interacting interface element developed in this research, the pressure variation of the pressure storage device, and the energy dissipation hysteresis loop when the structure installed with these elements is subjected to external force of various magnitude. The laboratory results confirm that the device developed in this research is capable of applying the energy dissipation characteristics of DSHD so that these elements are appropriate for developing the proposed AIC. The mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.

  8. Active Control of Fan Noise: Feasibility Study. Volume 3; Active Fan Noise Cancellation in the NASA Lewis Active Noise Control Fan Facility

    Science.gov (United States)

    Pla, Frederic G.; Hu, Ziqiang; Sutliff, Daniel L.

    1996-01-01

    This report describes the Active Noise Cancellation (ANC) System designed by General Electric and tested in the NASA Lewis Research Center's (LERC) 48 inch Active Noise Control Fan (ANCF). The goal of this study is to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for global active noise cancellation of fan tones. The GE ANC system is based on a modal control approach. A known acoustic mode propagating in the fan duct is canceled using an array of flush-mounted compact sound sources. The canceling modal signal is generated by a modal controller. Inputs to the controller are signals from a shaft encoder and from a microphone array which senses the residual acoustic mode in the duct. The key results are that the (6,0) was completely eliminated at the 920 Hz design frequency and substantially reduced elsewhere. The total tone power was reduced 6.8 dB (out of a possible 9.8 dB). Farfield reductions of 15 dB (SPL) were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB PWL decrease. The results indicate that global attenuation of PWL at the target frequency was obtained in the aft quadrant using an ANC actuator and sensor system totally contained within the duct. The quality of the results depended on precise mode generation. High spillover into spurious modes generated by the ANC actuator array caused less than optimum levels of PWL reduction. The variation in spillover is believed to be due to calibration procedure, but must be confirmed in subsequent tests.

  9. Hybrid sliding mode control of semi-active suspension systems

    Science.gov (United States)

    Assadsangabi, Babak; Eghtesad, Mohammad; Daneshmand, Farhang; Vahdati, Nader

    2009-12-01

    In order to design a controller which can take both ride comfort and road holding into consideration, a hybrid model reference sliding mode controller (HMRSMC) is proposed. The controller includes two separate model reference sliding mode controllers (MRSMC). One of the controllers is designed so as to force the plant to follow the ideal Sky-hook model and the other is to force the plant to follow the ideal Ground-hook model; then the outputs of these two controllers are linearly combined and applied to the plant as the input. Also, since the designed controller requires a knowledge of the terrain input, this input is approximated by the unsprung mass displacement. Finally, in the simulation section of this study, the effect of the relative ratio between the two MRSMCs and the knowledge of the terrain on the performance of the controller is numerically investigated for both steady-state and transient cases.

  10. Control and switching synchronization of fractional order chaotic systems using active control technique

    KAUST Repository

    Radwan, A.G.

    2013-03-13

    This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  11. Control and switching synchronization of fractional order chaotic systems using active control technique

    Directory of Open Access Journals (Sweden)

    A.G. Radwan

    2014-01-01

    Full Text Available This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  12. Analysis and Optimal Condition of the Rear-Sound-Aided Control Source in Active Noise Control

    Directory of Open Access Journals (Sweden)

    Karel Kreuter

    2011-01-01

    Full Text Available An active noise control scenario of simple ducts is considered. The previously suggested technique of using an single loudspeaker and its rear sound to cancel the upstream sound is further examined and compared to the bidirectional solution in order to give theoretical proof of its advantage. Firstly, a model with a new approach for taking damping effects into account is derived based on the electrical transmission line theory. By comparison with the old model, the new approach is validated, and occurring differences are discussed. Moreover, a numerical application with the consideration of damping is implemented for confirmation. The influence of the rear sound strength on the feedback-path system is investigated, and the optimal condition is determined. Finally, it is proven that the proposed source has an advantage of an extended phase lag and a time delay in the feedback-path system by both frequency-response analysis and numerical calculation of the time response.

  13. Yaw control for active damping of structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Control Engineering Lab.

    1996-12-01

    Yaw torque control for reduction of structural dynamic loads in a two-bladed wind turbine is investigated. The models are obtained using rigid-body mechanics. Linear quadratic control theory is utilized for design and analysis. The analysis of two simple examples, where the teeter angle and the tower lateral bending motion are regarded, shows that a time-varying controller has some advantages compared with a time-invariant controller. 6 refs, 9 figs

  14. Active Nonlinear Feedback Control for Aerospace Systems. Processor

    Science.gov (United States)

    1990-12-01

    Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply Existence of a Linear Stabilizing Control ," IEEE Trans...799-802, 1985. 13. I. R. Petersen, "Quadratic Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply...Existence of a Linear Stabilizing Control ," IEEE Trans. Autom. Contr., Vol. AC-30, pp. 291-293, 1985. 14. B. R. Barmish and A. R. Galimidi

  15. Development of active control technique for engine noise. Engine soon no active seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Nakao, N.; Butsuen, T. (Mazda Motor Corp., Hiroshima (Japan))

    1994-03-31

    As a measure to reduce engine noise in a car, the active noise control (ANC) technique to eliminate noise by another noise of antiphase has been studied. The conventional filtered-x LMS control algorithm has been generally applied to the ANC, but a large quantity of arithmetic operation used for filtering is practically problematic. This paper proposes the new algorithm of which control effects and practicability have been improved by utilizing periodicity of engine noise and by introducing the idea of error scanning. This algorithm requires only 30-50% of the arithmetic operation of the above LMS method. Concerning the actual system structure, arrangement and the number of microphones have been examined based on the detailed measurement results of the spatial distribution of noise in a car. As a result, the suitable arrangement of only three microphones to reduce noise in the whole interior space of a car is found. Through the experiments, maximum noise reduction of 8dB (A scale) has been achieved at each seat position. 7 refs., 9 figs., 1 tab.

  16. Mite-control activities of active constituents isolated from Pelargonium graveolens against house dust mites.

    Science.gov (United States)

    Jeon, Ju-Hyun; Kim, Hyung-Wook; Kim, Min-Gi; Lee, Hoi-Seon

    2008-10-01

    The mite-control activities of materials obtained from Pelargonium graveolens oil against Dermatophagoides farinae and D. pteronyssinus were examined using an impregnated fabric disk bioassay and were compared with those shown by commercial benzyl benzoate and N,N-diethylm- toluamide (DEET). Purification of the biologically active constituents from P. graveolens oil was done by silica gel chromatography and high performance liquid chromatography. The structures of the active components were analyzed by EI/MS, (1)H-NMR, (13)C-NMR, (1)H-(13)C COSYNMR, and DEPT-NMR spectra, and were identified as geraniol (C(10)H(18)O, MW 154.25, trans-3,7-dimethyl-2,6- octadien-1-ol) and beta-citronellol (C(10)H(20)O, MW 156.27, 3,7-dimethyl-6-octen-1-ol). Based on the LD50 values, the most toxic compound was geraniol (0.26 microg/cm(2)), followed by beta-citronellol (0.28 microg/cm(2)), benzyl benzoate (10.03 microg/ cm(2)), and DEET (37.12 microg/cm(2)) against D. farinae. In the case of D. pteronyssinus, geraniol (0.28 microg/cm(2)) was the most toxic, followed by beta-citronellol (0.29 microg/cm(2)), benzyl benzoate (9.58 microg/cm(2)), and DEET (18.23 microg/cm(2)). These results suggest that D. farinae and D. pteronyssinus may be controlled more effectively by the application of geraniol and beta-citronellol than benzyl benzoate and DEET. Furthermore, geraniol and beta-citronellol isolated from P. graveolens could be useful for managing populations of D. farinae and D. pteronyssinus.

  17. Vibration Control in Turbomachinery Using Active Magnetic Journal Bearings

    Science.gov (United States)

    Knight, Josiah D.

    1996-01-01

    The effective use of active magnetic bearings for vibration control in turbomachinery depends on an understanding of the forces available from a magnetic bearing actuator. The purpose of this project was to characterize the forces as functions shaft position. Both numerical and experimental studies were done to determine the characteristics of the forces exerted on a stationary shaft by a magnetic bearing actuator. The numerical studies were based on finite element computations and included both linear and nonlinear magnetization functions. Measurements of the force versus position of a nonrotating shaft were made using two separate measurement rigs, one based on strain gage measurement of forces, the other based on deflections of a calibrated beam. The general trends of the measured principal forces agree with the predictions of the theory while the magnitudes of forces are somewhat smaller than those predicted. Other aspects of theory are not confirmed by the measurements. The measured forces in the normal direction are larger than those predicted by theory when the rotor has a normal eccentricity. Over the ranges of position examined, the data indicate an approximately linear relationship between the normal eccentricity of the shaft and the ratio of normal to principal force. The constant of proportionality seems to be larger at lower currents, but for all cases examined its value is between 0.14 and 0.17. The nonlinear theory predicts the existence of normal forces, but has not predicted such a large constant of proportionality for the ratio. The type of coupling illustrated by these measurements would not tend to cause whirl, because the coupling coefficients have the same sign, unlike the case of a fluid film bearing, where the normal stiffness coefficients often have opposite signs. They might, however, tend to cause other self-excited behavior. This possibility must be considered when designing magnetic bearings for flexible rotor applications, such as gas

  18. Control of an Automotive Semi-Active Suspension

    Directory of Open Access Journals (Sweden)

    Jorge de Jesús Lozoya-Santos

    2012-01-01

    Full Text Available Two controllers for an automotive suspensions with Magneto-Rheological (MR dampers are proposed. One is a model-based using the Linear Parameter Varying (LPV approach, and the other is a model-free controller with a Frequency Estimation Based (FEB principle. The LPV controller includes an experimental nonlinear model of an MR damper using only one scheduling parameter. A comparison with a several semiactive controllers for comfort and road holding is discussed. The FEB controller is the best option based on frequency and time response analysis for comfort (10–20%, suspension deflection (30–50%, and road holding (1–5%.

  19. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    Science.gov (United States)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  20. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...... for solving the nonconvex optimization problem is proposed in this paper. A simulation using the nonlinear model-based controller to control the temperature levels of an intelligent office building (PowerFlexHouse) is addressed. Its performance is compared with a linear model-based controller. The nonlinear...