Directory of Open Access Journals (Sweden)
P. Kumar
2008-09-01
Full Text Available Dust and black carbon aerosol have long been known to have potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of such particles, and ignore interactions of the insoluble fraction with water vapor (even if known to be hydrophilic. To address this gap, we develop a new parameterization framework that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable particles mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler Theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frankel-Halsey-Hill (FHH adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory, and i find combinations of the adsorption parameters A_{FHH}, B_{FHH} for which activation into cloud droplets is not possible, and, ii express activation properties (critical supersaturation that follow a simple power law with respect to dry particle diameter.
Parameterization formulations are developed for sectional and lognormal aerosol size distribution functions. The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R^{2} ~0.98.
Directory of Open Access Journals (Sweden)
P. Kumar
2009-04-01
Full Text Available Dust and black carbon aerosol have long been known to exert potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of these particles, and overlook interactions of the insoluble fraction with water vapor (even if known to be hydrophilic. To address this gap, we developed a new parameterization that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable particles externally mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frenkel-Halsey-Hill (FHH adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory to i find combinations of the adsorption parameters A_{FHH}, B_{FHH} which yield atmospherically-relevant behavior, and, ii express activation properties (critical supersaturation that follow a simple power law with respect to dry particle diameter.
The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R^{2}~0.98. A preliminary sensitivity study suggests that the sublinear response of droplet number to Köhler particle concentration is not as strong for FHH particles.
International Nuclear Information System (INIS)
Document available in extended abstract form only. An in-situ test in the Opalinus Clay formation, termed pore water Chemistry (PC) experiment, was run for a period of five years. It was based on the concept of diffusive equilibration whereby traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed off borehole. The main original focus was to obtain reliable data on the pH/pCO2 of the pore water, but because of unexpected microbially- induced redox reactions, the objective was then changed to elucidate the biogeochemical processes happening in the borehole and to understand their impact on pH/pCO2 and pH in the low permeability clay formation. The biologically perturbed chemical evolution of the PC experiment was simulated with reactive transport models. The aim of this modelling exercise was to develop a 'minimal-' model able to reproduce the chemical evolution of the PC experiment, i.e. the chemical evolution of solute inorganic and organic compounds (organic carbon, dissolved inorganic carbon etc...) that are coupled with each other through the simultaneous occurrence of biological transformation of solute or solid compounds, in-diffusion and out-diffusion of solute species and precipitation/dissolution of minerals (in the borehole and in the formation). An accurate description of the initial chemical conditions in the surrounding formation together with simplified kinetics rule mimicking the different phases of bacterial activities allowed reproducing the evolution of all main measured parameters (e.g. pH, TOC). Analyses from the overcoring and these simulations evidence the high buffer capacity of Opalinus clay regarding chemical perturbations due to bacterial activity. This pH buffering capacity is mainly attributed to the carbonate system as well as to the clay surfaces reactivity. Glycerol leaching from the pH-electrode might be the primary organic source responsible for
International Nuclear Information System (INIS)
Highlights: • A CFD model of a ventilated active façade with PCM was developed. • Results were validated against real-scale experimental data. • Convection effects within PCM can be neglected in for the façade under study. • DO radiation model and RNG k–ε showed accurate results for air turbulent flow regime. • k–ω models showed better accuracy than the RNG k–ε model for transitional air flows. - Abstract: This article describes the development of a CFD 2D model of a new type of ventilated active façade which includes a PCM (Phase Change Material) in its outer layer. The model was carried out using the software Fluent. The numerical results were compared against experimental data obtained by means of a real-scale PASLINK test facility. Two different approaches were tested to model the PCM. To model the radiation, S2S and DO sub-models were tested. RNG k–ε, Standard k–ω and SST k–ω turbulence models were compared to model the air flow inside the ventilated layer. The results showed that for the geometry under consideration it was suitable to consider the PCM to be a solid material with variable Cp. The DO model accurately reproduced the radiation phenomena. For an air flow rate that resulted in a turbulent regime inside the air chamber, the RNG k–ε model showed good agreement between the experimental data and the simulated results. The developed model can be considered suitable for the simulation and optimization of the fa ade under turbulent flow conditions. Further research should be conducted to improve the accuracy of the model for low-Reynolds-number turbulence conditions
Van Zandt, Noah R.; McCrae, Jack E.; Fiorino, Steven T.
2013-05-01
Aimpoint acquisition and maintenance is critical to high energy laser (HEL) system performance. This study demonstrates the development by the AFIT/CDE of a physics-based modeling package, PITBUL, for tracking airborne targets for HEL applications, including atmospheric and sensor effects and active illumination, which is a focus of this work. High-resolution simulated imagery of the 3D airborne target in-flight as seen from the laser position is generated using the HELSEEM model, and includes solar illumination, laser illumination, and thermal emission. Both CW and pulsed laser illumination are modeled, including the effects of illuminator scintillation, atmospheric backscatter, and speckle, which are treated at a first-principles level. Realistic vertical profiles of molecular and aerosol absorption and scattering, as well as optical turbulence, are generated using AFIT/CDE's Laser Environmental Effects Definition and Reference (LEEDR) model. The spatially and temporally varying effects of turbulence are calculated and applied via a fast-running wave optical method known as light tunneling. Sensor effects, for example blur, sampling, read-out noise, and random photon arrival, are applied to the imagery. Track algorithms, including centroid and Fitts correlation, as a part of a closed loop tracker are applied to the degraded imagery and scored, to provide an estimate of overall system performance. To gauge performance of a laser system against a UAV target, tracking results are presented as a function of signal to noise ratio. Additionally, validation efforts to date involving comparisons between simulated and experimental tracking of UAVs are presented.
Deckmyn, Gabrielle; Campioli, M.; Muys, B.; Kraigher, Hojka
2011-01-01
A soil module was developed to improve on the ecosystem-scale simulations of forest models. The module includes simulations of bacteria, mycorrhizal and non-mycorrhizal fungi. The inclusion of these soil organisms allows for the simulation of several soil biological processes in a more mechanistic way. In this paper the soil module is used in combination with the forest model ANAFORE (ANAlysing Forest Ecosystems) a stand-scale forest model that simulates wood tissue development, carbon (C) an...
International Nuclear Information System (INIS)
Full text: Hybrid scenario is an operational regime designed to achieve a long pulse operation with a combination of inductive and non-inductive current drive. It was suggested for the operation of ITER to allow high fusion power in long pulse operations over 1000 s at a plasma current lower than the inductive reference scenario. Engineering tests of reactor-relevant components, such as breeding blankets are planned to perform in this scenario. Here, we report integrated simulation results of ITER hybrid scenario including momentum transport, neoclassical tearing mode (NTM), and edge localised mode (ELM). In this work, ASTRA is used for integrated simulations of plasma equilibrium, transport, heating and current drive, and magnetic island evolution, self-consistently. Firstly, the effect of toroidal rotation to confinement is addressed by solving the momentum transport equation including inward pinch, turbulent transport and residual stress. Secondly, the ELM activities are simulated and the pedestal height of ITER hybrid scenario is predicted. Lastly, the NTM activities are simulated and the capability of the ECH upper launcher is evaluated. The methodology of simulations presented can be applied to design feedback controllers for ELMs and NTMs in ITER. (author)
ESPOSITO GABRIELE; VAN BAVEL Rene; Baranowski, Tom; DUCH BROWN NESTOR
2016-01-01
The theory of planned behaviour (TPB) has received its fair share of criticism lately, including calls for it to retire. We contribute to improving the theory by testing extensions such as the model of goal-directed behaviour (MGDB, which adds desire and anticipated positive and negative emotions) applied to physical activity (PA) intention. We also test the inclusion of a descriptive norm construct as an addition to the subjective norms construct, also applied to PA, resulting in two additio...
Esposito, Gabriele; van Bavel, René; Baranowski, Tom; Duch-Brown, Néstor
2016-08-01
The theory of planned behavior (TPB) has received its fair share of criticism lately, including calls for it to retire. We contribute to improving the theory by testing extensions such as the model of goal-directed behavior (MGDB, which adds desire and anticipated positive and negative emotions) applied to physical activity (PA) intention. We also test the inclusion of a descriptive norms construct as an addition to the subjective norms construct, also applied to PA, resulting in two additional models: TPB including descriptive norms (TPB + DN) and MGDB including descriptive norms (MGDB + DN). The study is based on an online survey of 400 young adult Internet users, previously enrolled in a subject pool. Confirmatory factor analysis (CFA) showed that TPB and TPB + DN were not fit for purpose, while MGDB and MGDB + DN were. Structural equation modelling (SEM) conducted on MGDB and MGDB + DN showed that the inclusion of descriptive norms took over the significance of injunctive norms, and increased the model's account of total variance in intention to be physically active. PMID:27229344
Including excitons in semiconductor solar cell modelling
Burgelman, Marc; Minnaert, Ben
2005-01-01
Excitons are marginally important in classical semiconductor device physics, and their treatment is not included in standard solar cell modelling. However, in organic semiconductors and solar cells, the role of excitons is essential, as the primary effect of light absorption is exciton generation, and free electrons and holes are created by exciton dissociation. First steps to include excitons in solar cell modelling were presented by Green 1996 and Zhang 1998. Their model was restricted to a...
An Integrated Biochemistry Laboratory, Including Molecular Modeling
Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.
1996-11-01
) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay
Model for safety reports including descriptive examples
International Nuclear Information System (INIS)
Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository
SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE
Energy Technology Data Exchange (ETDEWEB)
C. Tsang
2004-09-22
The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to
Seepage Model for PA Including Drift Collapse
International Nuclear Information System (INIS)
The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to
Enhanced battery model including temperature effects
Rosca, B.; Wilkins, S.
2013-01-01
Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a dy
Energy transport modelling including ergodic effects
Energy Technology Data Exchange (ETDEWEB)
McTaggart, N.; Bonnin, X.; Runov, A.; Schneider, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Zagorski, R. [Institute of Plasma Physics and Laser Microfusion, P.O.Box 49, Warsaw (Poland)
2004-04-01
The effect of ergodization (either by additional coils like in TEXTOR-DED or by intrinsic plasma effects like in W7-X) defines the need for transport models being able to describe this properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the full respective metric tensor has to be known. To study the energy transport in complex edge geometries (in particular for W7-X) we use a finite difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates. This grid is generated by field line tracing to guarantee an exact discretization of the dominant parallel transport (this also minimizes the numerical diffusion problem). The perpendicular fluxes are interpolated on cross-sectional planes (toroidal cuts), where a quasi-isotropic problem is solved by a constrained Delaunay triangulation (preserving magnetic surfaces where they exist), and discretization. All terms involving toroidal terms are discretized by finite differences. The first tests for W7X and NCSX were successfully performed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy transport modelling including ergodic effects
International Nuclear Information System (INIS)
The effect of ergodization (either by additional coils like in TEXTOR-DED or by intrinsic plasma effects like in W7-X) defines the need for transport models being able to describe this properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the full respective metric tensor has to be known. To study the energy transport in complex edge geometries (in particular for W7-X) we use a finite difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates. This grid is generated by field line tracing to guarantee an exact discretization of the dominant parallel transport (this also minimizes the numerical diffusion problem). The perpendicular fluxes are interpolated on cross-sectional planes (toroidal cuts), where a quasi-isotropic problem is solved by a constrained Delaunay triangulation (preserving magnetic surfaces where they exist), and discretization. All terms involving toroidal terms are discretized by finite differences. The first tests for W7X and NCSX were successfully performed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Modeling heart rate variability including the effect of sleep stages
Soliński, Mateusz; Gierałtowski, Jan; Żebrowski, Jan
2016-02-01
We propose a model for heart rate variability (HRV) of a healthy individual during sleep with the assumption that the heart rate variability is predominantly a random process. Autonomic nervous system activity has different properties during different sleep stages, and this affects many physiological systems including the cardiovascular system. Different properties of HRV can be observed during each particular sleep stage. We believe that taking into account the sleep architecture is crucial for modeling the human nighttime HRV. The stochastic model of HRV introduced by Kantelhardt et al. was used as the initial starting point. We studied the statistical properties of sleep in healthy adults, analyzing 30 polysomnographic recordings, which provided realistic information about sleep architecture. Next, we generated synthetic hypnograms and included them in the modeling of nighttime RR interval series. The results of standard HRV linear analysis and of nonlinear analysis (Shannon entropy, Poincaré plots, and multiscale multifractal analysis) show that—in comparison with real data—the HRV signals obtained from our model have very similar properties, in particular including the multifractal characteristics at different time scales. The model described in this paper is discussed in the context of normal sleep. However, its construction is such that it should allow to model heart rate variability in sleep disorders. This possibility is briefly discussed.
Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling
Energy Technology Data Exchange (ETDEWEB)
Karvonen, T. [WaterHope, Helsinki (Finland)
2013-11-15
Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from
Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling
International Nuclear Information System (INIS)
Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from
Modeling Electric Double-Layers Including Chemical Reaction Effects
DEFF Research Database (Denmark)
Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.;
2014-01-01
A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and...... potential are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...
Modeling of Electric Double-Layers Including Chemical Reaction Effects
International Nuclear Information System (INIS)
A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential are determined by the surface reactions, and therefore they depend on the bulk solution composition and concentration
Everglades National Park Including Biscayne National Park. Activity Book.
Ruehrwein, Dick
Intended to help elementary school children learn about the resources of the Everglades and Biscayne National Parks, this activity book includes information, puzzles, games, and quizzes. The booklet deals with concepts related to: (1) the seasons; (2) fire ecology; (3) water; (4) fish; (5) mammals; (6) mosquitos; (7) birds; (8) venomous snakes;…
Novel model for wine fermentation including the yeast dying phase
Borzì, Alfio; Merger, Juri; Müller, Jonas; Rosch, Achim; Schenk, Christina; Schmidt, Dominik; Schmidt, Stephan; Schulz, Volker; Velten, Kai; von Wallbrunn, Christian; Zänglein, Michael
2014-01-01
This paper presents a novel model for wine fermentation including a death phase for yeast and the influence of oxygen on the process. A model for the inclusion of the yeast dying phase is derived and compared to a model taken from the literature. The modeling ability of the several models is analyzed by comparing their simulation results.
Stochastic modelling of two-phase flows including phase change
International Nuclear Information System (INIS)
Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)
Dynamic hysteresis modeling including skin effect using diffusion equation model
Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader
2016-07-01
An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.
Including investment risk in large-scale power market models
DEFF Research Database (Denmark)
Lemming, Jørgen Kjærgaard; Meibom, P.
2003-01-01
Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate the...... analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice of...
Ueda, Yoshihiro; Akiyama, Masayuki; Hasinger, Günther; Miyaji, Takamitsu; Watson, Michael G.
2014-05-01
We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ~ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ≈0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.
International Nuclear Information System (INIS)
We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ∼ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ≈0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.
Ueda, Yoshihiro; Hasinger, Guenther; Miyaji, Takamitsu; Watson, Michael G
2014-01-01
We present the most up-to-date X-ray luminosity function (XLF) and absorption function of Active Galactic Nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5--2 keV) and/or hard ($>2$ keV) band. We utilize a maximum likelihood method to reproduce the count-rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broad band spectra of AGNs including reflection components from tori based on the luminosity and redshift dependent unified scheme. We find that the shape of the XLF at $z \\sim 1-3$ is significantly different from that in the local universe, for which the luminosity dependent density evolution model gives much better description...
Numerical modelling of coal spontaneous combustion with moisture included
Energy Technology Data Exchange (ETDEWEB)
Arisoy, A. [Istanbul Technical University, Istanbul (Turkey). Mechanical Engineering Faculty
2005-07-01
A mathematical model for spontaneous combustion of coal with moisture included is presented. The one-dimensional unsteady state model consists of conservation equations for oxygen, water vapour and inherent moisture of coal and energy for both gaseous and solid phases. A first order Arrhenius reaction rate for oxidation under both pore diffusion and chemically controlled reaction regime is considered. The rate of evaporation or condensation is also considered as a function of temperature of coal, water content of coal and gas streams. The equation of the model is solved numerically by the finite difference technique. Influences of different parameters on the process of spontaneous combustion can be examined by using this model. Also the model can be used to simulate full-scale storage conditions. 4 refs., 5 figs., 1 tab.
Conventional radiometric methods of analysis including neutron activation
International Nuclear Information System (INIS)
The chapter aims primarily to provide a reference with which the various mass spectrometric methods may be compared. The fundamental problems created by low specific activity in the measurement of very long-lived radionuclides using radiometric techniques are noted and discussed in terms of the different types of decay, background count rates, source weight and spectral interferences. An attempt is made to identify typical detection limits for the radiometric determination of the various long-lived radionuclides. The use of neutron activation as a means of enhancing sensitivity or convenience of measurement for long-lived radionuclides is described with appropriate illustrations. Mass spectrometry and radiometry are seen as complementary, not competitive techniques for the measurement of radioactive materials, each with its own advantages and disadvantages. (author). 21 refs, 2 figs, 6 tabs
Goldilocks Models of Higher-Dimensional Inflation (including modulus stabilization)
Burgess, C P; Hayman, Peter; Patil, Subodh P
2016-01-01
We explore the mechanics of inflation in simplified extra-dimensional models involving an inflaton interacting with the Einstein-Maxwell system in two extra dimensions. The models are Goldilocks-like in that they are just complicated enough to include a mechanism to stabilize the extra-dimensional size, yet simple enough to solve the full 6D field equations using basic tools. The solutions are not limited to the effective 4D regime with H m_KK, but when they do standard 4D fluctuation calculations need not apply. When in a 4D regime the solutions predict eta ~ 0 hence n_s ~ 0.96 and r ~ 0.096 and so are ruled out if tensor modes remain unseen. Analysis of general parameters is difficult without a full 6D fluctuation calculation.
Kinetic models of gene expression including non-coding RNAs
Energy Technology Data Exchange (ETDEWEB)
Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r
2011-03-15
In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.
Kinetic models of gene expression including non-coding RNAs
Zhdanov, Vladimir P.
2011-03-01
In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.
Kinetic models of gene expression including non-coding RNAs
International Nuclear Information System (INIS)
In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.
Progress Towards an LES Wall Model Including Unresolved Roughness
Craft, Kyle; Redman, Andrew; Aikens, Kurt
2015-11-01
Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
Modeling potentiometric measurements in topological insulators including parallel channels
Hong, Seokmin; Diep, Vinh; Datta, Supriyo; Chen, Yong P.
2012-08-01
The discovery of spin-polarized states at the surface of three-dimensional topological insulators (TI) like Bi2Te3 and Bi2Se3 motivates intense interests in possible electrical measurements demonstrating unique signatures of these unusual states. Here we show that a three-terminal potentiometric set-up can be used to probe them by measuring the voltage change of a detecting magnet upon reversing its magnetization. We present numerical results using a nonequilibrium Green's function (NEGF)-based model to show the corresponding signal quantitatively in various transport regimes. We then provide an analytical expression for the resistance (the measured voltage difference divided by an applied current) that agrees with NEGF results well in both ballistic and diffusive limits. This expression is applicable to TI surface states, two-dimensional electrons with Rashba spin-split bands, and any combination of multiple channels, including bulk parallel states in TI, which makes it useful in analyzing experimental results.
Configuration based Collisional-Radiative Model including configuration interaction
Busquet, Michel
2007-11-01
Atomic levels mixing through Configuration Interaction (CI) yields important effects. It transfers oscillator strengthes from allowed lines to forbidden lines, and produces strong shift and broadening of line arrays, although the total emissivity is almost insensitive to CI, being proportional to the average wave number. However for hi Z material, like Xe or Sn (potential xuv-ray source for micro-lithography), a non-LTE calculation accounting for all relevant levels wiill be untractable with billions of states. The model we constructed, CAVCRM (caf'e-crème), is a non-LTE C.R.M. where states are configurations but it includes C.I. to give full richness of spectral quantities, using the latest version of the HULLAC-v9 suite of codes and our newly developped algorithm for large set of states with as many as 50,000 states [1]. [1] M.Klapisch et al, this conference
Directory of Open Access Journals (Sweden)
Jelena Jovanović
2010-03-01
Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.
Energy loss in a partonic transport model including bremsstrahlung processes
International Nuclear Information System (INIS)
A detailed investigation of the energy loss of gluons that traverse a thermal gluonic medium simulated within the perturbative QCD-based transport model BAMPS (a Boltzmann approach to multiparton scatterings) is presented in the first part of this work. For simplicity the medium response is neglected in these calculations. The energy loss from purely elastic interactions is compared with the case where radiative processes are consistently included based on the matrix element by Gunion and Bertsch. From this comparison, gluon multiplication processes gg→ggg are found to be the dominant source of energy loss within the approach employed here. The consequences for the quenching of gluons with high transverse momentum in fully dynamic simulations of Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) energy of √(s)=200A GeV are discussed in the second major part of this work. The results for central collisions as discussed in a previous publication are revisited, and first results on the nuclear modification factor RAA for noncentral Au+Au collisions are presented. They show a decreased quenching compared to central collisions while retaining the same shape. The investigation of the elliptic flow v2 is extended up to nonthermal transverse momenta of 10 GeV, exhibiting a maximum v2 at roughly 4 to 5 GeV and a subsequent decrease. Finally the sensitivity of the aforementioned results on the specific implementation of the effective modeling of the Landau-Pomeranchuk-Migdal (LPM) effect via a formation-time-based cutoff is explored.
Constraints on Dark Energy Models Including Gamma Ray Bursts
Li, H; Fan, Z; Dai, Z; Zhang, X; Li, Hong; Su, Meng; Fan, Zuhui; Dai, Zigao; Zhang, Xinmin
2008-01-01
In this paper we analyze the constraints on the property of dark energy from cosmological observations. We include 52 long Gamma-Ray Bursts (GRBs) data in our study. Together with SNe Ia Gold sample, WMAP, SDSS and 2dFGRS data, we perform global fitting using Markov Chain Monte Carlo (MCMC) technique. Dark energy perturbations are explicitly considered. We pay particular attention to the time evolution of the equation of state of dark energy parameterized as w_{DE}=w_o+w_a(1-a) with a the scale factor of the universe, emphasizing the complementarity of high redshift GRBs to other cosmological probes. It is found that the constraints on dark energy become stringent by taking into account high redshift GRBs, especially for w_a, which delineates the evolution of dark energy. The best fitting dark energy model has w_0=-1.09 and w_a=0.89. The cosmological constant with w_0=-1 and w_a=0 is well within 2\\sigma range.
A Discrete Velocity Traffic Kinetic Model Including Desired Speed
Directory of Open Access Journals (Sweden)
Shoufeng Lu
2013-05-01
Full Text Available We introduce the desired speed variable into the table of games and formulate a new table of games and the corresponding discrete traffic kinetic model. We use the hybrid programming technique of VB and MATLAB to develop the program. Lastly, we compared the proposed model result and the detector data. The results show that the proposed model can describe the traffic flow evolution.
Including UPFC dynamic phasor model into transient stability program
Ni, Y; Liu, H.; Zhu, H; Li, Y
2005-01-01
In this paper a novel time simulation approach is introduced to implement transient stability analysis with FACTS devices, in which FACTS devices will use dynamic phasor models and interface properly with conventional electromechanical transient-model-based stability program. The unified power flow controller (UPFC) is used as an example to demo the realization of the approach. In the paper, the UPFC dynamic phasor model and control scheme are presented first and followed by the interface for...
Togelius, Julian; Shaker, Noor; Yannakakis, Georgios N.
2013-01-01
We argue for the use of active learning methods for player modelling. In active learning, the learning algorithm chooses where to sample the search space so as to optimise learning progress. We hypothesise that player modelling based on active learning could result in vastly more efficient learning, but will require big changes in how data is collected. Some example active player modelling scenarios are described. A particular form of active learning is also equivalent to an influential forma...
A unitarized meson model including color Coulomb interaction
International Nuclear Information System (INIS)
Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs
Global atmospheric model for mercury including oxidation by bromine atoms
Directory of Open Access Journals (Sweden)
C. D. Holmes
2010-12-01
Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg^{0} to Hg^{II} and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg^{0} oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg^{0} oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O_{3} model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O_{3} models, we add an aqueous photochemical reduction of Hg^{II} in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O_{3} models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of Hg^{II} deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a^{−1}. Summertime events of depleted Hg^{0} at Antarctic sites due to subsidence are much better simulated by
An Intracellular Calcium Oscillations Model Including Mitochondrial Calcium Cycling
Institute of Scientific and Technical Information of China (English)
SHI Xiao-Min; LIU Zeng-Rong
2005-01-01
@@ Calcium is a ubiquitous second messenger. Mitochondria contributes significantly to intracellular Ca2+ dynamics.The experiment of Kaftan et al. [J. Biol. Chem. 275(2000) 25465] demonstrated that inhibiting mitochondrial Ca2+ uptake can reduce the frequency of cytosolic Ca2+ concentration oscillations of gonadotropes. By considering the mitochondrial Ca2+ cycling we develop a three-variable model of intracellular Ca2+ oscillations based on the models of Atri et al. [Biophys. J. 65 (1993) 1727] and Falcke et al. [Biophys. J. 77 (1999) 37]. The model reproduces the fact that mitochondrial Ca2+ cycling increases the frequency of cytosolic Ca2+ oscillations, which accords with Kaftan's results. Moreover the model predicts that when the mitochondria overload with Ca2+, the cytosolic Ca2+ oscillations vanish, which may trigger apoptosis.
A Model of the Universe including dark Energy
Cardenas, Rolando; Gonzalez, Tame; Martin, Osmel; Quiros, Israel
2002-01-01
In this work we explore a model of the universe in which dark energy is modelled explicitely with both a dynamical quintessence field (with a double exponential self-interaction potential) and a cosmological constant. For a given region of the parameter space, our results confirm the possibility of a collapsing universe, which is necessary for an adequate definition of both perturbative quantum field and string theories. We have also reproduced the measurements of modulus distance from supern...
Modeling Insurgent Dynamics Including Heterogeneity. A Statistical Physics Approach
Johnson, Neil F.; Manrique, Pedro; Hui, Pak Ming
2013-05-01
Despite the myriad complexities inherent in human conflict, a common pattern has been identified across a wide range of modern insurgencies and terrorist campaigns involving the severity of individual events—namely an approximate power-law x - α with exponent α≈2.5. We recently proposed a simple toy model to explain this finding, built around the reported loose and transient nature of operational cells of insurgents or terrorists. Although it reproduces the 2.5 power-law, this toy model assumes every actor is identical. Here we generalize this toy model to incorporate individual heterogeneity while retaining the model's analytic solvability. In the case of kinship or team rules guiding the cell dynamics, we find that this 2.5 analytic result persists—however an interesting new phase transition emerges whereby this cell distribution undergoes a transition to a phase in which the individuals become isolated and hence all the cells have spontaneously disintegrated. Apart from extending our understanding of the empirical 2.5 result for insurgencies and terrorism, this work illustrates how other statistical physics models of human grouping might usefully be generalized in order to explore the effect of diverse human social, cultural or behavioral traits.
Premixed turbulent combustion modelling with FGM including preferential diffusion effects
Energy Technology Data Exchange (ETDEWEB)
Goey, L.P.H. de; Oijen, J.A. van; Bastiaans, R.J.M. [Eindhoven University of Technology (Netherlands). Mechanical Engineering Dept.
2009-07-01
The FGM technique is a new method to reduce chemical kinetics. It has already proven to be accurate for modelling (partially-) premixed flames in DNS, LES and RANS settings. Previous research has focussed on flames with unit Lewis number transport models, thereby neglecting preferential diffusion effects. The method is extended in the present contribution by introducing an additional mixing parameter W in the manifold, describing the combined fluctuations in enthalpy and element mass fractions due to flame stretch and preferential diffusion. The resulting 2D FGM is used in 2D DNS of a circular flame and compared with detailed chemistry. The agreement is near perfect thereby opening the way to model 3D turbulent CH{sub 4}-H{sub 2}-air flames on a slot burner with realistic non-unit Lewis numbers. A significant increase in flame wrinkling occurs due to local changes in burning intensity. (orig.)
Including lateral interactions into microkinetic models of catalytic reactions
DEFF Research Database (Denmark)
Hellman, Anders; Honkala, Johanna Karoliina
2007-01-01
In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....
Constraints on Dark Energy Models Including Gamma Ray Bursts
Li, Hong; SU, MENG; Fan, Zuhui; Dai, Zigao; Zhang, Xinmin
2006-01-01
In this paper we analyze the constraints on the property of dark energy from cosmological observations. Together with SNe Ia Gold sample, WMAP, SDSS and 2dFGRS data, we include 69 long Gamma-Ray Bursts (GRBs) data in our study and perform global fitting using Markov Chain Monte Carlo (MCMC) technique. Dark energy perturbations are explicitly considered. We pay particular attention to the time evolution of the equation of state of dark energy parameterized as $w_{DE}=w_0+w_a(1-a)$ with $a$ the...
Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces
Energy Technology Data Exchange (ETDEWEB)
Lomov, I; Antoun, T; Vorobiev, O
2009-12-16
Accurate representation of discontinuities such as joints and faults is a key ingredient for high fidelity modeling of shock propagation in geologic media. The following study was done to improve treatment of discontinuities (joints) in the Eulerian hydrocode GEODYN (Lomov and Liu 2005). Lagrangian methods with conforming meshes and explicit inclusion of joints in the geologic model are well suited for such an analysis. Unfortunately, current meshing tools are unable to automatically generate adequate hexahedral meshes for large numbers of irregular polyhedra. Another concern is that joint stiffness in such explicit computations requires significantly reduced time steps, with negative implications for both the efficiency and quality of the numerical solution. An alternative approach is to use non-conforming meshes and embed joint information into regular computational elements. However, once slip displacement on the joints become comparable to the zone size, Lagrangian (even non-conforming) meshes could suffer from tangling and decreased time step problems. The use of non-conforming meshes in an Eulerian solver may alleviate these difficulties and provide a viable numerical approach for modeling the effects of faults on the dynamic response of geologic materials. We studied shock propagation in jointed/faulted media using a Lagrangian and two Eulerian approaches. To investigate the accuracy of this joint treatment the GEODYN calculations have been compared with results from the Lagrangian code GEODYN-L which uses an explicit treatment of joints via common plane contact. We explore two approaches to joint treatment in the code, one for joints with finite thickness and the other for tight joints. In all cases the sliding interfaces are tracked explicitly without homogenization or blending the joint and block response into an average response. In general, rock joints will introduce an increase in normal compliance in addition to a reduction in shear strength. In the
Double pendulum model for tennis stroke including a collision process
Youn, Sun-Hyun
2015-01-01
By means of adding a collision process between the ball and racket in double pendulum model, we analyzed the tennis stroke. It is possible that the speed of the rebound ball does not simply depend on the angular velocity of the racket, and higher angular velocity sometimes gives lower ball speed. We numerically showed that the proper time lagged racket rotation increases the speed of the rebound ball by 20%. We also showed that the elbow should move in order to add the angular velocity of the...
Double pendulum model for tennis stroke including a collision process
Youn, Sun-Hyun
2015-01-01
By means of adding a collision process between the ball and racket in double pendulum model, we analyzed the tennis stroke. It is possible that the speed of the rebound ball does not simply depend on the angular velocity of the racket, and higher angular velocity sometimes gives lower ball speed. We numerically showed that the proper time lagged racket rotation increases the speed of the rebound ball by 20%. We also showed that the elbow should move in order to add the angular velocity of the racket.
Modelling of Dual-Junction Solar Cells including Tunnel Junction
Directory of Open Access Journals (Sweden)
Abdelaziz Amine
2013-01-01
Full Text Available Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The purpose of this work is to contribute to the investigation of the tunnel electrical resistance of such a multi-junction cell through the analysis of the current-voltage (J-V characteristics under illumination. Our approach is based on an equivalent circuit model of a diode for each subcell. We examine the effect of tunnel resistance on the performance of a multi-junction cell using minimization of the least squares technique.
Modeling the (upper) solar atmosphere including the magnetic field
Peter, H
2007-01-01
The atmosphere of the Sun is highly structured and dynamic in nature. From the photosphere and chromosphere into the transition region and the corona plasma-$\\beta$ changes from above to below one, i.e. while in the lower atmosphere the energy density of the plasma dominates, in the upper atmosphere the magnetic field plays the governing role -- one might speak of a ``magnetic transition''. Therefore the dynamics of the overshooting convection in the photosphere, the granulation, is shuffling the magnetic field around in the photosphere. This leads not only to a (re-)structuring of the magnetic field in the upper atmosphere, but induces also the dynamic reaction of the coronal plasma e.g. due to reconnection events. Therefore the (complex) structure and the interaction of various magnetic patches is crucial to understand the structure, dynamics and heating of coronal plasma as well as its acceleration into the solar wind. The present article will emphasize the need for three-dimensional modeling accounting fo...
Active seat suspension for a small vehicle: considerations for control system including observer
Katsumata, Hiroyuki; Shiino, Hiroshi; Oshinoya, Yasuo; Ishibashi, Kazuhisa; Ozaki, Koichi; Ogino, Hirohiko
2007-12-01
We have examined the improvement of ride quality and the reduction of riding fatigue brought about by the active control of the seat suspension of small vehicles such as one-seater electric automobiles. A small active seat suspension, which is easy to install, was designed and manufactured for one-seater electric automobiles. For the actuator, a maintenance-free voice coil motor used as a direct drive was adopted. For fundamental considerations, we designed a one-degree-of-freedom model for the active seat suspension system. Then, we designed a disturbance cancellation control system that includes the observer for a two-degree-of-freedom model. In an actual driving test, a test road, in which the concavity and convexity of an actual road surface were simulated using hard rubber, was prepared and the control performance of vertical vibrations of the seat surface during driving was examined. As a result, in comparison with the one-degree-of-freedom control system, it was confirmed that the control performance was improved by the two-degree-of-freedom control system that includes the observer.
7 CFR 981.441 - Credit for market promotion activities, including paid advertising.
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Credit for market promotion activities, including paid... promotion activities, including paid advertising. (a) In order for a handler to receive credit for his/her... each activity shall be to promote the sale, consumption or use of California almonds, and...
International Nuclear Information System (INIS)
Natural radionuclides are part of the human environment and of the raw materials used. Technical processes may cause their accumulation in residues, and the result will be so-called NORM materials (Naturally occurring radioactive material). The amended Radiation Protection Ordinance (StrlSchV 2001) specifies how the public should be protected, but there are also residues dating back before the issuing of the StrlSchV 2001, the so-called NORM residues. The project intended to assess the risks resulting from these residues. It comprises four parts. Part 1 was for clarification of the radiological relevance of NORM residues and for the development of concepts to detect them. The criterion for their radiological relevance was their activity per mass unit and the material volume accumulated through the centuries. The former was calculated from a wide bibliographic search in the relevant literature on radiation protection, while the mass volume was obtained by a detailed historical search of the consumption of materials that may leave NORM residues. These are, in particular, residues from coal and ore mining and processing. To identify concrete sites, relevant data sources were identified, and a concept for identification of concrete NORM residues was developed on this basis. (orig.)
MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering
Directory of Open Access Journals (Sweden)
M. Proksch
2015-08-01
Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.
MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering
Directory of Open Access Journals (Sweden)
M. Proksch
2015-03-01
Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like and cross polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoids fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in MATLAB and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.
MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering
Proksch, M.; Mätzler, C.; Wiesmann, A.; Lemmetyinen, J.; Schwank, M.; Löwe, H.; Schneebeli, M.
2015-08-01
The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5-100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.
A structural model for the in vivo human cornea including collagen-swelling interaction.
Cheng, Xi; Petsche, Steven J; Pinsky, Peter M
2015-08-01
A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299
Taber, L A; Shi, Y; Yang, L; Bayly, P V
2011-01-01
Much is known about the biophysical mechanisms involved in cell crawling, but how these processes are coordinated to produce directed motion is not well understood. Here, we propose a new hypothesis whereby local cytoskeletal contraction generates fluid flow through the lamellipodium, with the pressure at the front of the cell facilitating actin polymerization which pushes the leading edge forward. The contraction, in turn, is regulated by stress in the cytoskeleton. To test this hypothesis, finite element models for a crawling cell are presented. These models are based on nonlinear poroelasticity theory, modified to include the effects of active contraction and growth, which are regulated by mechanical feedback laws. Results from the models agree reasonably well with published experimental data for cell speed, actin flow, and cytoskeletal deformation in migrating fish epidermal keratocytes. The models also suggest that oscillations can occur for certain ranges of parameter values. PMID:21765817
A full model for simulation of electrochemical cells including complex behavior
Energy Technology Data Exchange (ETDEWEB)
Esperilla, J.J.; Felez, J.; Romero, G.; Carretero, A. [ETS Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2, 28006 Madrid (Spain)
2007-02-25
This communication presents a model of electrochemical cells developed in order to simulate their electrical, chemical and thermal behavior showing the differences when thermal effects are or not considered in the charge-discharge process. The work presented here has been applied to the particular case of the Pb,PbSO{sub 4}H{sub 2}SO{sub 4} (aq)PbO{sub 2},Pb cell, which forms the basis of the lead-acid batteries so widely used in the automotive industry and as traction batteries in electric or hybrid vehicles. Each half-cell is considered independently in the model. For each half-cell, in addition to the main electrode reaction, a secondary reaction is considered: the hydrogen evolution reaction in the negative electrode and the oxygen evolution reaction in the positive. The equilibrium potential is calculated with the Nernst equation, in which the activity coefficients are fitted to an exponential function using experimental data. On the other hand, the two main mechanisms that produce the overpotential are considered, that is the activation or charge transfer and the diffusion mechanisms. First, an isothermal model has been studied in order to show the behavior of the main phenomena. A more complex model has also been studied including thermal behavior. This model is very useful in the case of traction batteries in electric and hybrid vehicles where high current intensities appear. Some simulation results are also presented in order to show the accuracy of the proposed models. (author)
Modeling and controller design of a wind energy conversion system including a matrix converter
Barakati, S. Masoud
In this thesis, a grid-connected wind-energy converter system including a matrix converter is proposed. The matrix converter, as a power electronic converter, is used to interface the induction generator with the grid and control the wind turbine shaft speed. At a given wind velocity, the mechanical power available from a wind turbine is a function of its shaft speed. Through the matrix converter, the terminal voltage and frequency of the induction generator is controlled, based on a constant V/f strategy, to adjust the turbine shaft speed and accordingly, control the active power injected into the grid to track maximum power for all wind velocities. The power factor at the interface with the grid is also controlled by the matrix converter to either ensure purely active power injection into the grid for optimal utilization of the installed wind turbine capacity or assist in regulation of voltage at the point of connection. Furthermore, the reactive power requirements of the induction generator are satisfied by the matrix converter to avoid use of self-excitation capacitors. The thesis addresses two dynamic models: a comprehensive dynamic model for a matrix converter and an overall dynamical model for the proposed wind turbine system. The developed matrix converter dynamic model is valid for both steady-state and transient analyses, and includes all required functions, i.e., control of the output voltage, output frequency, and input displacement power factor. The model is in the qdo reference frame for the matrix converter input and output voltage and current fundamental components. The validity of this model is confirmed by comparing the results obtained from the developed model and a simplified fundamental-frequency equivalent circuit-based model. In developing the overall dynamic model of the proposed wind turbine system, individual models of the mechanical aerodynamic conversion, drive train, matrix converter, and squirrel-cage induction generator are developed
Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi
2016-08-01
Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff. PMID:27317615
Unified theory of dislocation motion including thermal activation and inertial effects
International Nuclear Information System (INIS)
Transition-state rate theory has generally been used to explain the temperature dependence of the flow stress of a crystal. However, the existence of a change in the flow stress during the superconducting transition indicates the presence of inertial effects in which dislocations overcome obstacles mechanically rather than thermally. It is shown here that the thermally activated and the inertial overcoming of obstacles are not unrelated but can both be derived from principles of stochastic motion. This leads to a theory of dislocation motion that includes both thermal activation and inertial effects. It is also shown that a distribution of activation energies must be considered to account for the experimental data
Van Dijk, Martin; De Groot, Renate; Van Acker, Frederik; Savelberg, Hans; Kirschner, Paul A.
2013-01-01
Van Dijk, M. L., De Groot, R. H. M., Van Acker, F. H. M., Savelberg, H. C. M., & Kirschner, P. A. (2013, 25 May). Physical activity before school, including active commuting to school: associations with cognition and academic achievement in adolescents. Poster presentation at the ISBNPA conference 2013, Ghent, Belgium.
Van Dijk, Martin; De Groot, Renate; Van Acker, Frederik; Savelberg, Hans; Kirschner, Paul A.
2013-01-01
Van Dijk, M. L., De Groot, R. H. M., Van Acker, F. H. M., Savelberg, H. C. M., & Kirschner, P. A. (2013, 25 May). Physical activity before school, including active commuting to school: associations with cognition and academic achievement in adolescents. Poster presentation at the ISBNPA conference 2
Modeling of a Diesel Engine with VGT and EGR including Oxygen Mass Fraction
Wahlström, Johan; Eriksson, Lars
2006-01-01
A mean value model of a diesel engine with VGT and EGR and that includes oxygen mass fraction is developed and validated. The intended model applications are system analysis, simulation, and development of model-based control systems. Model equations and tuning methods are described for each subsystem in the model. In order to decrease the amount of tuning parameters, flows and efficiencies are modeled using physical relationships and parametric models instead of look-up tables. The static mo...
Podziemski, Piotr; Żebrowski, Jan J.
2013-01-01
Existing atrial models with detailed anatomical structure and multi-variable cardiac transmembrane current models are too complex to allow to combine an investigation of long time dycal properties of the heart rhythm with the ability to effectively simulate cardiac electrical activity during arrhythmia. Other ways of modeling need to be investigated. Moreover, many state-of-the-art models of the right atrium do not include an atrioventricular node (AVN) and only rarely—the sinoatrial node (SA...
Effects of neurosteroids on a model membrane including cholesterol: A micropipette aspiration study.
Balleza, Daniel; Sacchi, Mattia; Vena, Giulia; Galloni, Debora; Puia, Giulia; Facci, Paolo; Alessandrini, Andrea
2015-05-01
Amphiphilic molecules supposed to affect membrane protein activity could strongly interact also with the lipid component of the membrane itself. Neurosteroids are amphiphilic molecules that bind to plasma membrane receptors of cells in the central nervous system but their effect on membrane is still under debate. For this reason it is interesting to investigate their effects on pure lipid bilayers as model systems. Using the micropipette aspiration technique (MAT), here we studied the effects of a neurosteroid, allopregnanolone (3α,5α-tetrahydroprogesterone or Allo) and of one of its isoforms, isoallopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), on the physical properties of pure lipid bilayers composed by DOPC/bSM/chol. Allo is a well-known positive allosteric modulator of GABAA receptor activity while isoAllo acts as a non-competitive functional antagonist of Allo modulation. We found that Allo, when applied at nanomolar concentrations (50-200 nM) to a lipid bilayer model system including cholesterol, induces an increase of the lipid bilayer area and a decrease of the mechanical parameters. Conversely, isoAllo, decreases the lipid bilayer area and, when applied, at the same nanomolar concentrations, it does not affect significantly its mechanical parameters. We characterized the kinetics of Allo uptake by the lipid bilayer and we also discussed its aspects in relation to the slow kinetics of Allo gating effects on GABAA receptors. The overall results presented here show that a correlation exists between the modulation of Allo and isoAllo of GABAA receptor activity and their effects on a lipid bilayer model system containing cholesterol. PMID:25660752
Triple Active Antiretroviral Regimen Including Enfuvirtide Via the Biojector is Effective and Safe
Directory of Open Access Journals (Sweden)
Mona Loutfy
2007-01-01
Full Text Available For full HIV virological suppression, three fully active antiretroviral agents are required. New drug classes should be included to ensure that agents are fully active. The addition of enfuvirtide and efavirenz to the present patient’s new antiretroviral regimen ensured that two fully active agents were in use in the setting of a moderate degree of nucleoside resistance and a high level of protease resistance, and where non-nucleoside reverse transcriptase inhibitors were still fully active. Both viral load and CD4 count responded favourably to this regimen. The patient received support from physicians and clinic staff in the introduction and use of enfuvirtide. To reduce injection site reactions, a needle-free injection system (Biojector proved effective.
Bilibin, Ilya; Capitanescu, Florin; Sachau, Jürgen
2013-01-01
This paper focuses on the real-time overloads management in active radial distribution systems that host a significant amount of distributed generators (DGs). In order to possibly reduce the amount of generation curtailed to remove congestion, and hence harvest as much renewable energy as possible, we propose a centralized optimization approach that includes the option to use remotely controlled grid switches and breakers so as to transfer distributed generation between feeders. To mitigate t...
High-Resolution Panchromatic Spectral Models of Galaxies including Photoionisation and Dust
Jonsson, Patrik; Groves, Brent; Cox, T. J.
2009-01-01
An updated version of the dust radiation transfer code Sunrise, including models for star-forming regions and a self-consistent calculation of the spatially dependent dust and PAH emission, is presented. Given a hydrodynamic simulation of a galaxy, this model can calculate a realistic 2-dimensional ultraviolet--submillimeter spectral energy distribution of the galaxy, including emission lines from HII regions, from any viewpoint. To model the emission from star-forming regions, the MAPPINGSII...
International Nuclear Information System (INIS)
The present CD-ROM summarizes some activities carried out by the Departments of Nuclear Energy and Nuclear Safety and Security in the area of nuclear knowledge management in the period 2003-2005. It comprises, as open resource, most of the relevant documents in full text, including policy level documents, reports, presentation material by Member States and meeting summaries. The collection starts with a reprint of the report to the IAEA General Conference 2004 on Nuclear Knowledge [GOV/2004/56-GC(48)/12] summarizing the developments in nuclear knowledge management since the 47th session of the General Conference in 2003 and covers Managing Nuclear Knowledge including safety issues and Information and Strengthening Education and Training for Capacity Building. It contains an excerpt on Nuclear Knowledge from the General Conference Resolution [GC(48)/RES/13] on Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications. On the CD-ROM itself, all documents can easily be accessed by clicking on their titles on the subject pages (also printed at the end of this Working Material). Part 1 of the CD-ROM covers the activities in the period 2003-2005 and part 2 presents a resource material full text CD-ROM on Managing Nuclear Knowledge issued in October 2003
On the importance of including vegetation dynamics in Budyko's hydrological model
Directory of Open Access Journals (Sweden)
R. J. Donohue
2007-01-01
Full Text Available The Budyko curve describes the patterns observed between between climate, evapotranspiration and run-off and has proven to be a useful model for predicting catchment energy and water balances. In this paper we review the Budyko curve's underlying framework and, based on the literature, present an argument for why it is important to include vegetation dynamics into the framework for some purposes. The Budyko framework assumes catchments are at steady-state and are driven by the macro-climate, two conditions dependent on the scales of application, such that the framework's reliability is greatest when applied using long-term averages (≫1 year and to large catchments (>10 000 km2. At these scales previous experience has shown that the hydrological role of vegetation does not need to be explicitly considered within the framework. By demonstrating how dynamics in the leaf area, photosynthetic capacity and rooting depth of vegetation affect not only annual and seasonal vegetation water use, but also steady-state conditions, we argue that it is necessary to explicitly include vegetation dynamics into the Budyko framework before it is applied at small scales. Such adaptations would extend the framework not only to applications at small timescales and/or small catchments but to operational activities relating to vegetation and water management.
Energy Technology Data Exchange (ETDEWEB)
Bergami, L.; Gaunaa, M.
2012-02-15
The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)
International Nuclear Information System (INIS)
This paper describes an optimization model to be used by System Operators in order to validate the economic schedules obtained by Market Operators together with the injections from Bilateral Contracts. These studies will be performed off-line in the day before operation and the developed model is based on adjustment bids submitted by generators and loads and it is used by System Operators if that is necessary to enforce technical or security constraints. This model corresponds to an enhancement of an approach described in a previous paper and it now includes discrete components as transformer taps and reactor and capacitor banks. The resulting mixed integer formulation is solved using Simulated Annealing, a well known metaheuristic specially suited for combinatorial problems. Once the Simulated Annealing converges and the values of the discrete variables are fixed, the resulting non-linear continuous problem is solved using Sequential Linear Programming to get the final solution. The developed model corresponds to an AC version, it includes constraints related with the capability diagram of synchronous generators and variables allowing the computation of the active power required to balance active losses. Finally, the paper includes a Case Study based on the IEEE 118 bus system to illustrate the results that it is possible to obtain and their interest. (author)
Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene
Goto, Daisuke; Takemura, Toshihiko; Nakajima, Teruyuki
2008-01-01
A global three-dimensional aerosol transport-radiation model, coupled to an atmospheric general circulation model (AGCM), has been extended to improve the model process for organic aerosols, particularly secondary organic aerosols (SOA), and to estimate SOA contributions to direct and indirect radiative effects. Because the SOA formation process is complicated and unknown, the results in different model simulations include large differences. In this work, we simulate SOA production assuming v...
Adarkwah, Charles Christian; Sadoghi, Amirhossein; Gandjour, Afschin
2016-02-01
There has been a debate on whether cost-effectiveness analysis should consider the cost of consumption and leisure time activities when using the quality-adjusted life year as a measure of health outcome under a societal perspective. The purpose of this study was to investigate whether the effects of ill health on consumptive activities are spontaneously considered in a health state valuation exercise and how much this matters. The survey enrolled patients with inflammatory bowel disease in Germany (n = 104). Patients were randomized to explicit and no explicit instruction for the consideration of consumption and leisure effects in a time trade-off (TTO) exercise. Explicit instruction to consider non-health-related utility in TTO exercises did not influence TTO scores. However, spontaneous consideration of non-health-related utility in patients without explicit instruction (60% of respondents) led to significantly lower TTO scores. Results suggest an inclusion of consumption costs in the numerator of the cost-effectiveness ratio, at least for those respondents who spontaneously consider non-health-related utility from treatment. Results also suggest that exercises eliciting health valuations from the general public may include a description of the impact of disease on consumptive activities. PMID:25684073
A Verilog-A large signal model for InP DHBT including thermal effects
Institute of Scientific and Technical Information of China (English)
Shi Yuxia; Jin Zhi; Pan Zhijian; Su Yongbo; Cao Yuxiong; Wang Yan
2013-01-01
A large signal model for InP/InGaAs double heterojunction bipolar transistors including thermal effects has been reported,which demonstrated good agreements of simulations with measurements.On the basis of the previous model in which the double heterojunction effect,current blocking effect and high current effect in current expression are considered,the effect of bandgap narrowing with temperature has been considered in transport current while a formula for model parameters as a function of temperature has been developed.This model is implemented by Verilog-A and embedded in ADS.The proposed model is verified with DC and large signal measurements.
A roller chain drive model including contact with guide-bars
DEFF Research Database (Denmark)
Pedersen, Sine Leergaard; Hansen, John Michael; Ambrósio, J. A. C.
2004-01-01
A model of a roller chain drive is developed and applied to the simulation and analysis of roller chain drives of large marine diesel engines. The model includes the impact with guide-bars that are the motion delimiter components on the chain strands between the sprockets. The main components of...... the roller chain drive model include the sprockets with different sizes and the chain made of rollers and links, which are represented by rigid bodies, mass particles and springs - damper assemblies respectively. The guide-bars are modelled as rigid bodies with a roller-guide contact representation as...... force method, an arc of circle approximates the geometry of the tooth profile. In both models it is assumed that all the rollers of a chain strand are not in contact with any particular sprocket. The contact between the rollers of the chain strands and the guide-bars is modelled with the continuous...
Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2
International Nuclear Information System (INIS)
A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)
Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model
Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.
2015-06-01
Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.
Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model
Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.
2015-11-01
In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.
Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model
Directory of Open Access Journals (Sweden)
M. Fader
2015-06-01
Full Text Available Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL: nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry, and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.
Naghavi, Nadia; Hosseini, Farideh S; Sardarabadi, Mohammad; Kalani, Hadi
2016-09-01
In this paper, an adaptive model for tumor induced angiogenesis is developed that integrates generation and diffusion of a growth factor originated from hypoxic cells, adaptive sprouting from a parent vessel, blood flow and structural adaptation. The proposed adaptive sprout spacing model (ASS) determines position, time and number of sprouts which are activated from a parent vessel and also the developed vascular network is modified by a novel sprout branching prediction algorithm. This algorithm couples local vascular endothelial growth factor (VEGF) concentrations, stresses due to the blood flow and stochastic branching to the structural reactions of each vessel segment in response to mechanical and biochemical stimuli. The results provide predictions for the time-dependent development of the network structure, including the position and diameters of each segment and the resulting distributions of blood flow and VEGF. Considering time delays between sprout progressions and number of sprouts activated at different time durations provides information about micro-vessel density in the network. Resulting insights could be useful for motivating experimental investigations of vascular pattern in tumor induced angiogenesis and development of therapies targeting angiogenesis. PMID:27179697
Atmosphere-soil-vegetation model including CO2 exchange processes; SOLVEG2
永井 晴康
2004-01-01
A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO2 exchanges among the atmosphere, soil, and vegetation. The model can be also used by coupling with a three-d...
Institute of Scientific and Technical Information of China (English)
何雪松; 王旭永; 冯正进; 章志新; 杨钦廉
2003-01-01
A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.
Including operational data in QMRA model: development and impact of model inputs.
Jaidi, Kenza; Barbeau, Benoit; Carrière, Annie; Desjardins, Raymond; Prévost, Michèle
2009-03-01
A Monte Carlo model, based on the Quantitative Microbial Risk Analysis approach (QMRA), has been developed to assess the relative risks of infection associated with the presence of Cryptosporidium and Giardia in drinking water. The impact of various approaches for modelling the initial parameters of the model on the final risk assessments is evaluated. The Monte Carlo simulations that we performed showed that the occurrence of parasites in raw water was best described by a mixed distribution: log-Normal for concentrations > detection limit (DL), and a uniform distribution for concentrations parasite = log spores), 1.58E-05 (log parasite = 1.7 x log spores) or 9.33E-03 (regulatory credits based on the turbidity measurement in filtered water). Using full scale validated SCADA data, the simplified calculation of CT performed at the plant was shown to largely underestimate the risk relative to a more detailed CT calculation, which takes into consideration the downtime and system failure events identified at the plant (1.46E-03 vs. 3.93E-02 for the mean risk). PMID:18957777
An integrated computable general equilibrium model including multiple types and uses of water
Luckmann, Jonas Jens
2015-01-01
Water is a scarce resource in many regions of the world and competition for water is an increasing problem. To countervail this trend policies are needed regulating supply and demand for water. As water is used in many economic activities, water related management decisions usually have complex implications. Economic simulation models have been proven useful to ex-ante assess the consequences of policy changes. Specifically, Computable General Equilibrium (CGE) models are very suitable to ana...
Modification of TOUGH2 to Include the Dusty Gas Model for Gas Diffusion; TOPICAL
International Nuclear Information System (INIS)
The GEO-SEQ Project is investigating methods for geological sequestration of CO(sub 2). This project, which is directed by LBNL and includes a number of other industrial, university, and national laboratory partners, is evaluating computer simulation methods including TOUGH2 for this problem. The TOUGH2 code, which is a widely used code for flow and transport in porous and fractured media, includes simplified methods for gas diffusion based on a direct application of Fick's law. As shown by Webb (1998) and others, the Dusty Gas Model (DGM) is better than Fick's Law for modeling gas-phase diffusion in porous media. In order to improve gas-phase diffusion modeling for the GEO-SEQ Project, the EOS7R module in the TOUGH2 code has been modified to include the Dusty Gas Model as documented in this report. In addition, the liquid diffusion model has been changed from a mass-based formulation to a mole-based model. Modifications for separate and coupled diffusion in the gas and liquid phases have also been completed. The results from the DGM are compared to the Fick's law behavior for TCE and PCE diffusion across a capillary fringe. The differences are small due to the relatively high permeability (k= 10(sup -11) m(sup 2)) of the problem and the small mole fraction of the gases. Additional comparisons for lower permeabilities and higher mole fractions may be useful
International Nuclear Information System (INIS)
A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.
Computational Models for Analysis of Illicit Activities
DEFF Research Database (Denmark)
Nizamani, Sarwat
devise policies to minimize them. These activities include cybercrimes, terrorist attacks or violent actions in response to certain world issues. Beside such activities, there are several other related activities worth analyzing, for which computational models have been presented in this thesis....... These models include a model for analyzing evolution of terrorist networks; a text classification model for detecting suspicious text and identification of suspected authors of anonymous emails; and a semantic analysis model for news reports, which may help analyze the illicit activities in certain area...... with location and temporal information. For the network evolution, the hierarchical agglomerative clustering approach has been applied to terrorist networks as case studies. The networks' evolutions show that how individual actors who are initially isolated from each other are converted in small groups, which...
International Nuclear Information System (INIS)
Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given
Energy Technology Data Exchange (ETDEWEB)
Gleeson, Michael R.; Sheridan, John T. [UCD School of Electrical, Electronic and Mechanical Engineering, UCD Optoelectronic Research Centre, and The SFI-Strategic Research Cluster in Solar Energy Conversion, College of Engineering, Mathematical and Physical Sciences, University College Dublin, Belfield, Dublin 4 (Ireland)
2009-09-15
The photochemical processes present during free-radical-based holographic grating formation are examined. A kinetic model is presented, which includes, in a more nearly complete and physically realistic way, most of the major photochemical and nonlocal photopolymerization-driven diffusion effects. These effects include: (i) non-steady-state kinetics (ii) spatially and temporally nonlocal polymer chain growth (iii) time varying photon absorption (iv) diffusion controlled viscosity effects (v) multiple termination mechanisms, and (vi) inhibition. The convergence of the predictions of the resulting model is then examined. Comparisons with experimental results are carried out in Part II of this series of papers [J. Opt. Soc. Am. B 26, 1746 (2009)].
International Nuclear Information System (INIS)
The photochemical processes present during free-radical-based holographic grating formation are examined. A kinetic model is presented, which includes, in a more nearly complete and physically realistic way, most of the major photochemical and nonlocal photopolymerization-driven diffusion effects. These effects include: (i) non-steady-state kinetics (ii) spatially and temporally nonlocal polymer chain growth (iii) time varying photon absorption (iv) diffusion controlled viscosity effects (v) multiple termination mechanisms, and (vi) inhibition. The convergence of the predictions of the resulting model is then examined. Comparisons with experimental results are carried out in Part II of this series of papers [J. Opt. Soc. Am. B 26, 1746 (2009)].
Gleeson, M. R.; Sheridan, John T.
2009-01-01
The photochemical processes present during free-radical-based holographic grating formation are examined. A kinetic model is presented, which includes, in a more nearly complete and physically realistic way, most of the major photochemical and nonlocal photopolymerization-driven diffusion effects. These effects include: (i) nonsteady-state kinetics (ii) spatially and temporally nonlocal polymer chain growth (iii) time varying photon absorption (iv) diffusion controlled viscosity effects (v) m...
Including an ocean carbon cycle model into iLOVECLIM (v1.0)
N. Bouttes; Roche, D. M.; V. Mariotti; L. Bopp
2015-01-01
The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a climate model to understand and simulate past and future changes of the carbon cycle. In particular, natural variations of atmospheric CO2 have happened in the past, while anthropogenic...
Including an ocean carbon cycle model into iLOVECLIM (v1.0)
N. Bouttes; Roche, D. M.; V. Mariotti; L. Bopp
2015-01-01
The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a climate model to understand and simulate past and future changes of the carbon cycle. In particular, natural variations of atmospheric CO2 have happened in the past, while anthropogenic...
Habitability of Super-Earth Planets around Other Suns: Models including Red Giant Branch Evolution
von Bloh, W.; Cuntz, M.; Schroeder, K. -P.; C. Bounama; Franck, S.
2008-01-01
The unexpected diversity of exoplanets includes a growing number of super- Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production taking into account a variety of climatological, biogeochemical, and geodynamical p...
Target echo strength modelling at FOI, including results from the BeTSSi II workshop
Östberg, Martin
2016-01-01
An overview of the target echo strength (TS) modelling capacity at the Swedish Defense Research Agency (FOI) is presented. The modelling methods described range from approximate ones, such as raytracing and Kirchhoff approximation codes, to high accuracy full field codes including boundary integral equation methods and finite elements methods. Illustrations of the applicability of the codes are given for a few simple cases tackled during the BeTTSi II (Benchmark Target Echo Strength Simulation) workshop held in Kiel 2014.
Entekhabi, D.; Eagleson, P. S.
1989-01-01
Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.
Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling
Energy Technology Data Exchange (ETDEWEB)
Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)
2015-05-15
The conventional PSA techniques cannot adequately evaluate all events. The conventional PSA models usually focus on single internal events such as DBAs, the external hazards such as fire, seismic. However, the Fukushima accident of Japan in 2011 reveals that very rare event is necessary to be considered in the PSA model to prevent the radioactive release to environment caused by poor treatment based on lack of the information, and to improve the emergency operation procedure. Especially, the results from PSA can be used to decision making for regulators. Moreover, designers can consider the weakness of plant safety based on the quantified results and understand accident sequence based on human actions and system availability. This study is for PSA modeling of combined accidents including total loss of feedwater (TLOFW) accident. The TLOFW accident is a representative accident involving the failure of cooling through secondary side. If the amount of heat transfer is not enough due to the failure of secondary side, the heat will be accumulated to the primary side by continuous core decay heat. Transients with loss of feedwater include total loss of feedwater accident, loss of condenser vacuum accident, and closure of all MSIVs. When residual heat removal by the secondary side is terminated, the safety injection into the RCS with direct primary depressurization would provide alternative heat removal. This operation is called feed and bleed (F and B) operation. Combined accidents including TLOFW accident are very rare event and partially considered in conventional PSA model. Since the necessity of F and B operation is related to plant conditions, the PSA modeling for combined accidents including TLOFW accident is necessary to identify the design and operational vulnerabilities.The PSA is significant to assess the risk of NPPs, and to identify the design and operational vulnerabilities. Even though the combined accident is very rare event, the consequence of combined
Hincapié, Doracelly; Ospina, Juan
2014-06-01
Recently, a mathematical model of pandemic influenza was proposed including typical control strategies such as antivirals, vaccination and school closure; and considering explicitly the effects of immunity acquired from the early outbreaks on the ulterior outbreaks of the disease. In such model the algebraic expression for the basic reproduction number (without control strategies) and the effective reproduction number (with control strategies) were derived and numerically estimated. A drawback of this model of pandemic influenza is that it ignores the effects of the differential susceptibility due to immunosuppression and the effects of the complexity of the actual contact networks between individuals. We have developed a generalized model which includes such effects of heterogeneity. Specifically we consider the influence of the air network connectivity in the spread of pandemic influenza and the influence of the immunosuppresion when the population is divided in two immune classes. We use an algebraic expression, namely the Tutte polynomial, to characterize the complexity of the contact network. Until now, The influence of the air network connectivity in the spread of pandemic influenza has been studied numerically, but not algebraic expressions have been used to summarize the level of network complexity. The generalized model proposed here includes the typical control strategies previously mentioned (antivirals, vaccination and school closure) combined with restrictions on travel. For the generalized model the corresponding reproduction numbers will be algebraically computed and the effect of the contact network will be established in terms of the Tutte polynomial of the network.
Performance of cement solidification with barium for high activity liquid waste including sulphate
International Nuclear Information System (INIS)
The target liquid waste to be solidified is generated from PWR primary loop spent resin treatment with sulphate acid, so, its main constituent is sodium sulphate and the activity of this liquid is relatively high. Waste form of this liquid waste is considered to be a candidate for the subsurface disposal. The disposed waste including sulphate is anticipated to rise a concentration of sulphate ion in the ground water around the disposal facility and it may cause degradation of materials such as cement and bentonite layer and comprise the disposal facility. There could be two approaches to avoid this problem, the strong design of the disposal facility and the minimization of sulphaste ion migration from the solidified waste. In this study, the latter approach was examined. In order to keep the low concentration of sulphate ion in the ground water, it is effective to make barium sulphate by adding barium compound into the liquid waste in solidification. However, adding equivalent amount of barium compound with sulphate ion causes difficulty of mixing, because production of barium sulphate causes high viscosity. In this study, mixing condition after and before adding cement into the liquid waste was estimated. The mixing condition was set with consideration to keep anion concentration low in the ground water and of mixing easily enough in practical operation. Long term leaching behavior of the simulated solidified waste was also analyzed by PHREEQC. And the concentration of the constitution affected to the disposal facility was estimated be low enough in the ground water. (author)
DEFF Research Database (Denmark)
Bækgaard, Lars
2004-01-01
We present and discuss a modeling approach that supports event-based modeling of information and activity in information systems. Interacting human actors and IT-actors may carry out such activity. We use events to create meaningful relations between information structures and the related...
The No-Core Gamow Shell Model: Including the continuum in the NCSM
Barrett, B R; Michel, N; Płoszajczak, M
2015-01-01
We are witnessing an era of intense experimental efforts that will provide information about the properties of nuclei far from the line of stability, regarding resonant and scattering states as well as (weakly) bound states. This talk describes our formalism for including these necessary ingredients into the No-Core Shell Model by using the Gamow Shell Model approach. Applications of this new approach, known as the No-Core Gamow Shell Model, both to benchmark cases as well as to unstable nuclei will be given.
2010-10-01
... Program Design and Operations § 287.130 Can NEW Program activities include job market assessments, job... 45 Public Welfare 2 2010-10-01 2010-10-01 false Can NEW Program activities include job market assessments, job creation and economic development activities? 287.130 Section 287.130 Public...
International Nuclear Information System (INIS)
By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property
Dynamics Analysis of an HIV Infection Model including Infected Cells in an Eclipse Stage
Directory of Open Access Journals (Sweden)
Shengyu Zhou
2013-01-01
Full Text Available In this paper, an HIV infection model including an eclipse stage of infected cells is considered. Some quicker cells in this stage become productively infected cells, a portion of these cells are reverted to the uninfected class, and others will be latent down in the body. We consider CTL-response delay in this model and analyze the effect of time delay on stability of equilibrium. It is shown that the uninfected equilibrium and CTL-absent infection equilibrium are globally asymptotically stable for both ODE and DDE model. And we get the global stability of the CTL-present equilibrium for ODE model. For DDE model, we have proved that the CTL-present equilibrium is locally asymptotically stable in a range of delays and also have studied the existence of Hopf bifurcations at the CTL-present equilibrium. Numerical simulations are carried out to support our main results.
A statistical model including age to predict passenger postures in the rear seats of automobiles.
Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J
2016-06-01
Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations. PMID:26328769
Isospin mixing within relativistic mean-field models including the delta meson
International Nuclear Information System (INIS)
Full text: We investigate isospin mixing effects in the asymmetry as obtained in parity-violating electron scattering for selected spherical nuclei ranging from 4He to 208Pb. The scattering analysis is developed within plane and distorted wave Born approximations (PWBA and DWBA) accounting for nucleon form factors, which are given by the Galster parametrization. We use Walecka's Model (QHD), including the σ, ω, ρ and δ mesons as well as the electromagnetic interaction. The ρ meson effects are specially interesting once it should add a contribution for isospin mixing together with the electromagnetic and meson fields. Our model includes Lagrangians with non-linear terms as well as Lagrangians including density dependent couplings. The model is solved in a Hartree approximation with spherical symmetry using a self-consistent calculation by means of an expansion of the nuclear wave functions and potentials in an harmonic oscillator basis. For each kind of Lagrangian we use two different parametrizations, one including the ρ meson and another in which it is not included. In this way, the effects of the inclusion of that meson can be inferred. For non-linear Lagrangians, the NL3 and NLδparameter sets are used. For Lagrangians with density dependent couplings, the TW and a reparametrization of the DDHδ, modified to better reproduce the main nuclear properties, are used. (author)
Fusion rules for the logarithmic $N=1$ superconformal minimal models II: including the Ramond sector
Canagasabey, Michael
2015-01-01
The Virasoro logarithmic minimal models were intensively studied by several groups over the last ten years with much attention paid to the fusion rules and the structures of the indecomposable representations that fusion generates. The analogous study of the fusion rules of the $N=1$ superconformal logarithmic minimal models was initiated in arXiv:1504.03155 as a continuum counterpart to the lattice explorations of arXiv:1312.6763. These works restricted fusion considerations to Neveu-Schwarz representations. Here, this is extended to include the Ramond sector. Technical advances that make this possible include a fermionic Verlinde formula applicable to logarithmic conformal field theories and a twisted version of the fusion algorithm of Nahm and Gaberdiel-Kausch. The results include the first construction and detailed analysis of logarithmic structures in the Ramond sector.
High-Resolution Panchromatic Spectral Models of Galaxies including Photoionisation and Dust
Jonsson, Patrik; Cox, T J
2009-01-01
An updated version of the dust radiation transfer code Sunrise, including models for star-forming regions and a self-consistent calculation of the spatially dependent dust and PAH emission, is presented. Given a hydrodynamic simulation of a galaxy, this model can calculate a realistic 2-dimensional ultraviolet--submillimeter spectral energy distribution of the galaxy, including emission lines from HII regions, from any viewpoint. To model the emission from star-forming regions, the MAPPINGSIII photoionization code is used. The high wavelength resolution (~ 1000 wavelengths) is made possible by the polychromatic Monte-Carlo algorithm employed by Sunrise. From the 2-D spectral energy distributions, images in any filter bands or integrated galaxy SEDs can be created. Using a suite of hydrodynamic simulations of disc galaxies, the output broad-band images and spectral energy distributions are compared with observed galaxies from the multiwavelength SINGS and SLUGS galaxy surveys. Overall, the output spectral ener...
Markovits, Henry; Benenson, Joyce F; Kramer, Donald L
2003-01-01
This study examined internal representations of food sharing in 589 children and adolescents (8-19 years of age). Questionnaires, depicting a variety of contexts in which one person was asked to share a resource with another, were used to examine participants' expectations of food-sharing behavior. Factors that were varied included the value of the resource, the relation between the two depicted actors, the quality of this relation, and gender. Results indicate that internal models of food-sharing behavior showed systematic patterns of variation, demonstrating that individuals have complex contextually based internal models at all ages, including the youngest. Examination of developmental changes in use of individual patterns is consistent with the idea that internal models reflect age-specific patterns of interactions while undergoing a process of progressive consolidation. PMID:14669890
Kelly, Jeff; Betts, Juan Fernando; Fuller, Chris
2000-01-01
The study of normal impedance of perforated plate acoustic liners including the effect of bias flow was studied. Two impedance models were developed by modeling the internal flows of perforate orifices as infinite tubes with the inclusion of end corrections to handle finite length effects. These models assumed incompressible and compressible flows, respectively, between the far field and the perforate orifice. The incompressible model was used to predict impedance results for perforated plates with percent open areas ranging from 5% to 15%. The predicted resistance results showed better agreement with experiments for the higher percent open area samples. The agreement also tended to deteriorate as bias flow was increased. For perforated plates with percent open areas ranging from 1% to 5%, the compressible model was used to predict impedance results. The model predictions were closer to the experimental resistance results for the 2% to 3% open area samples. The predictions tended to deteriorate as bias flow was increased. The reactance results were well predicted by the models for the higher percent open area, but deteriorated as the percent open area was lowered (5%) and bias flow was increased. A fit was done on the incompressible model to the experimental database. The fit was performed using an optimization routine that found the optimal set of multiplication coefficients to the non-dimensional groups that minimized the least squares slope error between predictions and experiments. The result of the fit indicated that terms not associated with bias flow required a greater degree of correction than the terms associated with the bias flow. This model improved agreement with experiments by nearly 15% for the low percent open area (5%) samples when compared to the unfitted model. The fitted model and the unfitted model performed equally well for the higher percent open area (10% and 15%).
Activity transport models for PWR primary circuits
International Nuclear Information System (INIS)
The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR's. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.)
International Nuclear Information System (INIS)
This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables
Safe distance car-following model including backward-looking and its stability analysis
Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin
2013-03-01
The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.
Institute of Scientific and Technical Information of China (English)
Nan Liang; Pu-Xun Wua; Zong-Hong Zhu
2011-01-01
We constrain the Cardassian expansion models from the latest observations,including the updated Gamma-ray bursts (GRBs),which are calibrated using a cosmology independent method from the Union2 compilation of type Ia supernovae (SNe Ia).By combining the GRB data with the joint observations from the Union2SNe Ia set,along with the results from the Cosmic Microwave Background radiation observation from the seven-year Wilkinson Microwave Anisotropy Probe and the baryonic acoustic oscillation observation galaxy sample from the spectroscopic Sloan Digital Sky Survey Data Release,we find significant constraints on the model parameters of the original Cardassian model ΩM0=n 282+0.015-0.014,n=0.03+0.05-0.05;and n = -0.16+0.25-3.26,β=-0.76+0.34-0.58 of the modified polytropic Cardassian model,which are consistent with the ACDM model in a l-σ confidence region.From the reconstruction of the deceleration parameter q(z) in Cardassian models,we obtain the transition redshift ZT = 0.73 ± 0.04 for the original Cardassian model and ZT = 0.68 ± 0.04 for the modified polytropic Cardassian model.
Groleau, Julie; Marecaux, Christophe; Payrard, Natacha; Segaud, Brice; Rochette, Michel; Perrier, Pascal; Payan, Yohan
2008-01-01
A 3D biomechanical finite element model of the face is presented. Muscles are represented by piece-wise uniaxial tension cable elements linking the insertion points. Such insertion points are specific entities differing from nodes of the finite element mesh, which makes possible to change either the mesh or the muscle implementation totally independently of each other. Lip/teeth and upper lip/lower lip contacts are also modeled. Simulations of smiling and of an Orbicularis Oris activation are presented and interpreted. The importance of a proper account of contacts and of an accurate anatomical description is shown
A Three-Dimensional Thermal Model Including Thermal Boundary Conditions for High Power IGBT Modules
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Ghimire, Pramod;
2016-01-01
Accurate thermal dynamics of high power IGBT modules is important information for the reliability analysis and thermal design of the power electronics system. However, the existing thermal models have their limits to correctly predict these complicated thermal behaviors in the IGBTs: The typically...... used thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of converter cannot be adapted. On the other hand, the more advanced three...... the critical thermal distribution under long-term analysis. Meanwhile the boundary conditions for thermal analysis are modelled and included, which can be adapted to different real field applications of power electronic converter. Finally, the accuracy of the proposed thermal model is verified by both...
Bryant, Diane Pedrotty; Bryant, Brian R.
1998-01-01
Discusses a process for integrating technology adaptations for students with learning disabilities into cooperative-learning activities in terms of three components: (1) selecting adaptations; (2) monitoring use of adaptations during cooperative-learning activities; and (3) evaluating the adaptations' effectiveness. Barriers to and support systems…
Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics
DEFF Research Database (Denmark)
Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.; Olesen, Kim
2005-01-01
including realistic device and user terminal antenna configurations. The radio channel measurements have been performed in the lower UWB frequency band of 3GHz to 5GHz with a 2x4 MIMO antenna configuration. Several environments, user scenarios and two types of user terminals have been used. The developed......In this paper we propose a SISO UWB radio channel model for short-range radio link scenarios between a fixed device and a dynamic user hand-held device. The channel model is derived based on novel experimental UWB radio propagation investigations carried out in typical indoor PAN scenarios...
Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models
Brown, Clifford A.
2016-01-01
The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.
Gasheva, L. M.; Kalinkova, G.; Minkov, E.; Krestev, V.
1984-03-01
Employing IR spectroscopy some technological models of amoxicillin trihydrate, included in ethyl-, methyl-, carboxymethyl- and methylhydroxyethyl-cellulose have been studied. Interactions were established only between amoxicillin trihydrate and ethylcellulose. The IR absorption spectra suggest a H-bonded antibiotic with hydroxyl groups in the ethylcellulose molecule. The IR spectral differences observed are not due to polymorphic transformation; this was proved by X-ray powder diffraction.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-01
Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository.
A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning
Energy Technology Data Exchange (ETDEWEB)
Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics
2016-08-09
An anisotropic, rate-dependent, single-crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.
EXACT SOLUTIONS FOR NONLINEAR TRANSIENT FLOW MODEL INCLUDING A QUADRATIC GRADIENT TERM
Institute of Scientific and Technical Information of China (English)
曹绪龙; 同登科; 王瑞和
2004-01-01
The models of the nonlinear radial flow for the infinite and finite reservoirs including a quadratic gradient term were presented. The exact solution was given in real space for flow equation including quadratic gradiet term for both constant-rate and constant pressure production cases in an infinite system by using generalized Weber transform. Analytical solutions for flow equation including quadratic gradient term were also obtained by using the Hankel transform for a finite circular reservoir case. Both closed and constant pressure outer boundary conditions are considered. Moreover, both constant rate and constant pressure inner boundary conditions are considered. The difference between the nonlinear pressure solution and linear pressure solution is analyzed. The difference may be reached about 8% in the long time. The effect of the quadratic gradient term in the large time well test is considered.
RELAP5-3D Code Includes ATHENA Features and Models
International Nuclear Information System (INIS)
Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, SF6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper. (authors)
RELAP5-3D Code Includes Athena Features and Models
Energy Technology Data Exchange (ETDEWEB)
Richard A. Riemke; Cliff B. Davis; Richard R. Schultz
2006-07-01
Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.
Double-gate junctionless transistor model including short-channel effects
Paz, B. C.; Ávila-Herrera, F.; Cerdeira, A.; Pavanello, M. A.
2015-05-01
This work presents a physically based model for double-gate junctionless transistors (JLTs), continuous in all operation regimes. To describe short-channel transistors, short-channel effects (SCEs), such as increase of the channel potential due to drain bias, carrier velocity saturation and mobility degradation due to vertical and longitudinal electric fields, are included in a previous model developed for long-channel double-gate JLTs. To validate the model, an analysis is made by using three-dimensional numerical simulations performed in a Sentaurus Device Simulator from Synopsys. Different doping concentrations, channel widths and channel lengths are considered in this work. Besides that, the series resistance influence is numerically included and validated for a wide range of source and drain extensions. In order to check if the SCEs are appropriately described, besides drain current, transconductance and output conductance characteristics, the following parameters are analyzed to demonstrate the good agreement between model and simulation and the SCEs occurrence in this technology: threshold voltage (VTH), subthreshold slope (S) and drain induced barrier lowering.
International Nuclear Information System (INIS)
An appropriate theoretical model for fission fragment mass distribution (FFMD) of a highly excited heavy nucleus involves multidimensional Langevin dynamical calculations. Though a full Langevin simulation provides a more accurate description of fission dynamics, it is often replaced by a combined dynamical and statistical model (CDSM). This is essentially done because the demand on computer time for a full Langevin calculation is very large. In CDSM, the Langevin dynamical computation is pursued for a time interval during which the initial transients are settled and the fission width has reached a stationary value. The decay of the compound nucleus in subsequent times is followed treating fission at par with other decay channels, such as particle and γ emission channels which are already included in the calculation from the beginning, and using statistical methods. Evidently, CDSM takes less computer time than full dynamical model simulation
Directory of Open Access Journals (Sweden)
R. J. Wichink Kruit
2012-04-01
Full Text Available A large shortcoming of current chemistry transport models for simulating the fate of ammonia in the atmosphere is the lack of a description of the bi-directional surface-atmosphere exchange. In this paper, results of an update of the dry deposition module DEPAC in the LOTOS-EUROS model are discussed. It is shown that with the new description, which includes bi-directional surface-atmosphere exchange, the modeled ammonia concentrations increase almost everywhere, in particular in agricultural source areas. The reason is that by using a compensation point the ammonia life time and transport distance is increased. As a consequence, deposition of ammonia and ammonium decreases in agricultural source areas, while it increases in large nature areas and remote regions especially in Southern Scandinavia. The inclusion of a compensation point for water reduces the dry deposition over sea and allows reproducing the observed marine background concentrations at coastal locations to a better extend. A comparison with measurements shows that the model results better represent the measured ammonia concentrations. The concentrations in nature areas are slightly overestimated, while the concentrations in agricultural source areas are still underestimated. Although the introduction of the compensation point improves the model performance, the modeling of ammonia remains challenging. Important aspects are emission patterns in space and time as well as a proper approach to deal with the high concentration gradients in relation to model resolution. In short, the inclusion of a bi-directional surface atmosphere exchange is a significant step forward for modeling ammonia.
Ordway, Diane; Viveiros, Miguel; Leandro, Clara; Arroz, Maria Jorge; Amaral, Leonard
2002-07-01
The effect of thioridazine (TZ) was studied on the killing activity of human peripheral blood monocyte derived macrophages (HPBMDM) and of human macrophage cell line THP-1 at extracellular concentrations below those achievable clinically. These macrophages have nominal killing activity against bacteria and therefore, would not influence any activity that the compounds may have against intracellular localised Staphylococcus aureus. The results indicated that whereas TZ has an in vitro minimum inhibitory concentration (MIC) against the strains of S. aureus of 18, 0.1 mg/l of TZ in the medium completely inhibits the growth of S. aureus that has been phagocytosed by macrophages. The latter concentration was non-toxic to macrophages, did not cause cellular expression of activation marker CD69 nor induction of CD3+ T cell production of IFN-gamma, but blocked cellular proliferation and down-regulated the production of T cell-derived cytokines (IFN-gamma, IL-5). These results suggest that TZ induces intracellular bactericidal activities independent of the capacity to generate Type 1 responses against S. aureus. PMID:12127709
Active control: Wind turbine model
DEFF Research Database (Denmark)
Bindner, H.
1999-01-01
This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch...
International Nuclear Information System (INIS)
The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with
International Nuclear Information System (INIS)
Software and data for nuclear energy applications are acquired, tested and distributed by several information centres; in particular, relevant computer codes are distributed internationally by the OECD/NEA Data Bank (France) and by ESTSC and EPIC/RSIC (United States). This activity is coordinated among the centres and is extended outside the OECD area through an arrangement with the IAEA. This article proposes more specifically a scheme for acquiring, storing and distributing atmospheric tracer experiment data (ATE) required for verification of atmospheric dispersion models especially the most advanced ones including topographic effects and specific to the local and meso-scale. These well documented data sets will form a valuable complement to the set of atmospheric dispersion computer codes distributed internationally. Modellers will be able to gain confidence in the predictive power of their models or to verify their modelling skills. (au)
Modelling activity transport behavior in PWR plant
International Nuclear Information System (INIS)
The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)
International Nuclear Information System (INIS)
A new in-vessel fission product release model has been developed and implemented to perform best-estimate calculations of realistic source terms including fuel morphology effects. The proposed bulk mass transfer correlation determines the product of fission product release and equiaxed grain size as a function of the inverse fuel temperature. The model accounts for the fuel-cladding interaction over the temperature range between 770 K and 3000 K in the steam environment. A separate driver has been developed for the in-vessel thermal hydraulic and fission product behavior models that were developed by the Department of Energy for the Modular Accident Analysis Package (MAAP). Calculational results of these models have been compared to the results of the Power Burst Facility Severe Fuel Damage tests. The code predictions utilizing the mass transfer correlation agreed with the experimentally determined fractional release rates during the course of the heatup, power hold, and cooldown phases of the high temperature transients. Compared to such conventional literature correlations as the steam oxidation model and the NUREG-0956 correlation, the mass transfer correlation resulted in lower and less rapid releases in closer agreement with the on-line and grab sample data from the Severe Fuel Damage tests. The proposed mass transfer correlation can be applied for best-estimate calculations of fission products release from the UO2 fuel in both nominal and severe accident conditions. 15 refs., 10 figs., 2 tabs
Stolarski, R. S.; Douglass, A. R.
1986-01-01
Models of stratospheric photochemistry are generally tested by comparing their predictions for the composition of the present atmosphere with measurements of species concentrations. These models are then used to make predictions of the atmospheric sensitivity to perturbations. Here the problem of the sensitivity of such a model to chlorine perturbations ranging from the present influx of chlorine-containing compounds to several times that influx is addressed. The effects of uncertainties in input parameters, including reaction rate coefficients, cross sections, solar fluxes, and boundary conditions, are evaluated using a Monte Carlo method in which the values of the input parameters are randomly selected. The results are probability distributions for present atmosheric concentrations and for calculated perturbations due to chlorine from fluorocarbons. For more than 300 Monte Carlo runs the calculated ozone perturbation for continued emission of fluorocarbons at today's rates had a mean value of -6.2 percent, with a 1-sigma width of 5.5 percent. Using the same runs but only allowing the cases in which the calculated present atmosphere values of NO, NO2, and ClO at 25 km altitude fell within the range of measurements yielded a mean ozone depletion of -3 percent, with a 1-sigma deviation of 2.2 percent. The model showed a nonlinear behavior as a function of added fluorocarbons. The mean of the Monte Carlo runs was less nonlinear than the model run using mean value of the input parameters.
International Nuclear Information System (INIS)
A new description of the hexadecapole degree of freedom in the medium and heavy mass region in the framework of the Fermion Dynamical Symmetry Model (FDSM) is proposed. The k-active case is discussed in detail, in which the pairing and multipole operators generate SP10 group. The energy spectra are derived for two limits of the pairing, quadrupole and hexadecapole strength. Finally, the spectra of 204Pb are fitted and compared with the experimental values and the results obtained from sdg IMB
G pair included fermion dynamical symmetry model for medium and heavy mass nuclei
International Nuclear Information System (INIS)
A new description of the hexadecapole degree of freedom in the medium and heavy mass region in the framework of the fermion dynamical symmetry model is proposed. In this letter, the k-active case is discussed in detail, in which the pairing and multipole operators generate Sp10 group. The energy spectra are derived for two limiting cases. The results show that these limits and those in the s.d.g IBM have one to one correspondence when N1 (= N boson number in the s.d.g IBM) ≤ Ω1/5
Kirk, Stacie M.; Kirk, Erik P.
2016-01-01
Background: The effects of increases in physical activity (PA) on early literacy skills in preschool children are not known. Methods: Fifty-four African-American preschool children from a low socioeconomic urban Head Start participated over 8 months. A 2-group, quasi-experimental design was used with one preschool site participating in the PA…
Beyond Right or Wrong: Challenges of Including Creative Design Activities in the Classroom
Brennan, Karen
2015-01-01
In this article, we explore challenges encountered by K-12 educators in establishing classroom cultures that support creative learning activities with the Scratch programming language. Providing opportunities for students to understand and to build capacities for creative work was described by many of the teachers that we interviewed as a central…
DEFF Research Database (Denmark)
Lindblom, Erik Ulfson; Press-Kristensen, Kåre; Vanrolleghem, P.A.;
2009-01-01
endocrine disrupting XOC bisphenol-A (BPA) in an activated sludge process with real wastewater were used to hypothesize an ASM-based process model including aerobic growth of a specific BPA-degrading microorganism and sorption of BPA to sludge. A parameter estimation method was developed, which...
Photonuclear Activation Analysis of Biological Materials for Various Elements, including Fluorine
International Nuclear Information System (INIS)
Photonuclear activation analysis (PNAA) studies of a number of kinds of biological and non-biological materials have been carried out at these laboratories, in addition to highflux thermal-neutron and moderate-flux 14-MeV neutron activation analyses of the same materials. The photonuclear studies are carried out with the two high-current electron linear accelerators at the laboratory - machines of 17 MeV and 45 MeV maximum energies. These accelerators can be operated at electron energies anywhere from 2 MeV up to the maximum, and at integrated beam currents up to 0.5 mA. The partially diffused electron beam is absorbed in a water-cooled tungsten converter, to produce an intense bremsstrahlung beam. Samples are irradiated in a pneumatic tube just in front of the converter, or in a spinning multi-sample rack just beyond the pneumatic tube. Some of the advantages of high-flux PNAA, as compared with high-flux thermal-neutron activation analysis, in certain instances are: (1) some elements, such as C, N, and O, can be determined more sensitively, (2) the 24Na interference encountered in the thermal-neutron activation of many biological samples is eliminated, (3) many interfering activities can be eliminated by adjustment of the electron energy to values below the thresholds of interfering reactions, (4) alternate products, in some cases of more convenient half-lives or gamma-ray energies than those produced by (n, γ) reactions, can be formed, and (5) the problem of self-shielding is eliminated. The high penetrability of the bremsstrahlung photons makes the method more generally useful than charged-particle activation analysis. The experimentally determined limits of detection of some 40 elements studied, mostly by the (γ, γ') and (γ, n) reactions, will be reported, as well as photonuclear results on samples of hair, blood, urine, whisky, wood, tobacco and green plants. Detailed studies of the determination of fluorine in biological samples, by the 19F(γ, n)18F
International Nuclear Information System (INIS)
FISPACT 2010 was released by Culham Centre for Fusion Energy (CCFE). The EAF-2010 library, which has energy range 10-5 eV . 60 MeV, can be used in FISPACT 2010 code. In this study, the FISPACT 2010 code was modified to consider spallation products for the high energy particle activations. In the modified FISPACT 2010, the 'elast', 'resid', and 'gas' files are automatically collapsed and used as the FISPACT activation data file. The results compared with experiment results give good agreements within 200 %. Also, for the validation, the inter-comparison of the other codes was performed. The analysis shows that the modified FISPACT 2010 code can solve the decay channel problem generated in SP-FISPACT 2003 code analysis
Status of the Consolidation project including the SPC White Paper Consolidation Activities
Baird, S
2008-01-01
This note outlines the current status of the AB Consolidation project and compares the currently planned budget profile with the MTP figures for the period 2008-2011. Concerning the New Consolidation program, the resources, as well as the risk and impact analyses of the activities, initially proposed for the SPC White Paper [1], have been reviewed and updated. The revised list of items that will be undertaken is given, along with the corresponding resource profile for the period 2008-2011.
Status of the consolidation project including the SPC white paper on consolidation activities
Baird, Simon
2008-01-01
This note outlines the current status of the AB Consolidation project and compares the currently planned budget profile with the MTP figures for the period 2008-2011. Concerning the New Consolidation program, the resources, as well as the risk and impact analyses of the activities, initially proposed for the SPC White Paper [1], have been reviewed and updated. The revised list of items that will be undertaken is given, along with the corresponding resource profile for the period 2008-2011.
Bouza, Emilio; Burillo, Almudena
2010-01-01
Abstract Oritavancin is a glycolipopeptide antibiotic under investigation for the treatment of serious infections caused by Gram-positive bacteria. Oritavancin has demonstrated rapid dose-dependent bactericidal activity towards vancomycin-susceptible and -resistant enterococci, meticillin-susceptible and -resistant Staphylococcus aureus, vancomycin-intermediate S. aureus (VISA), heteroresistant VISA (hVISA), vancomycin-resistant S. aureus (VRSA) and small-colony variants of S. aure...
Nonlinear Acoustics FDTD method including Frequency Power Law Attenuation for Soft Tissue Modeling
Jiménez, Noé; Sánchez-Morcillo, Víctor; Camarena, Francisco; Hou, Yi; Konofagou, Elisa E
2014-01-01
This paper describes a model for nonlinear acoustic wave propagation through absorbing and weakly dispersive media, and its numerical solution by means of finite differences in time domain method (FDTD). The attenuation is based on multiple relaxation processes, and provides frequency dependent absorption and dispersion without using computational expensive convolutional operators. In this way, by using an optimization algorithm the coefficients for the relaxation processes can be obtained in order to fit a frequency power law that agrees the experimentally measured attenuation data for heterogeneous media over the typical frequency range for ultrasound medical applications. Our results show that two relaxation processes are enough to fit attenuation data for most soft tissues in this frequency range including the fundamental and the first ten harmonics. Furthermore, this model can fit experimental attenuation data that do not follow exactly a frequency power law over the frequency range of interest. The main...
Interior Models of Saturn: Including the Uncertainties in Shape and Rotation
Helled, Ravit
2013-01-01
The accurate determination of Saturn's gravitational coefficients by Cassini could provide tighter constrains on Saturn's internal structure. Also, occultation measurements provide important information on the planetary shape which is often not considered in structure models. In this paper we explore how wind velocities and internal rotation affect the planetary shape and the constraints on Saturn's interior. We show that within the geodetic approach (Lindal et al., 1985, ApJ, 90, 1136) the derived physical shape is insensitive to the assumed deep rotation. Saturn's re-derived equatorial and polar radii at 100 mbar are found to be 54,445 $\\pm$10 km and 60,365$\\pm$10 km, respectively. To determine Saturn's interior we use {\\it 1 D} three-layer hydrostatic structure models, and present two approaches to include the constraints on the shape. These approaches, however, result in only small differences in Saturn's derived composition. The uncertainty in Saturn's rotation period is more significant: with Voyager's ...
Free, April M.; Flowers, George T.; Trent, Victor S.
1993-01-01
Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.
Novel Modeling and Control Strategies for a HVAC System Including Carbon Dioxide Control
Directory of Open Access Journals (Sweden)
Chang-Soon Kang
2014-06-01
Full Text Available Conventional heating, ventilating, and air conditioning (HVAC systems have traditionally used the temperature and the humidity ratio as the quantitative indices of comfort in a room. Recently, the carbon dioxide (CO2 concentration has also been recognized as having an important contribution to room comfort. This paper presents the modeling of an augmented HVAC system including CO2 concentration, and its control strategies. Because the proposed augmented HVAC system is multi-input multi-output (MIMO and has no relative degree problem, the dynamic extension algorithm can be employed; then, a feedback linearization technique is applied. A linear-quadratic regulator (LQR is designed to optimize control performance and to stabilize the proposed HVAC system. Simulation results are provided to validate the proposed system model, as well as its linearized control system.
International Nuclear Information System (INIS)
The interactions of ions and neutral atoms with surfaces are important for all edge plasma calculations. However, current models treat surfaces as virtually flat two-dimensional objects. To solve this problem in a realistic manner, surface roughness has been added into the TRIM and Embedded Atom Method (EAM) computer codes through the use of fractals. A fractal is a geometric construct with noninteger dimension. Real surfaces have fractal dimensions betwen 2 and 3 which can be determined experimentally by using the BET gas adsorption method. Inclusion of surface roughness is particularly important at energies below 100 eV and at grazing angles of incidence. Results show that at grazing incidence the particle number and energy reflection coefficients are reduced by a factor of approximately two when even small amounts of surface roughness are included in the models. (orig.)
Effect of including decay chains on predictions of equilibrium-type terrestrial food chain models
International Nuclear Information System (INIS)
Equilibrium-type food chain models are commonly used for assessing the radiological impact to man from environmental releases of radionuclides. Usually these do not take into account build-up of radioactive decay products during environmental transport. This may be a potential source of underprediction. For estimating consequences of this simplification, the equations of an internationally recognised terrestrial food chain model have been extended to include decay chains of variable length. Example calculations show that for releases from light water reactors as expected both during routine operation and in the case of severe accidents, the build-up of decay products during environmental transport is generally of minor importance. However, a considerable number of radionuclides of potential radiological significance have been identified which show marked contributions of decay products to calculated contamination of human food and resulting radiation dose rates. (author)
A model for Huanglongbing spread between citrus plants including delay times and human intervention
Vilamiu, Raphael G. d'A.; Ternes, Sonia; Braga, Guilherme A.; Laranjeira, Francisco F.
2012-09-01
The objective of this work was to present a compartmental deterministic mathematical model for representing the dynamics of HLB disease in a citrus orchard, including delay in the disease's incubation phase in the plants, and a delay period on the nymphal stage of Diaphorina citri, the most important HLB insect vector in Brazil. Numerical simulations were performed to assess the possible impacts of human detection efficiency of symptomatic plants, as well as the influence of a long incubation period of HLB in the plant.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich; Christiansen, Peter Leth
A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...... thermoviscous shock solution is derived. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation, the model equation considered here is capable to describe waves propagating in opposite directions. Studies of head on...
A transient energy function for power systems including the induction motor model
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A construction method for power system transient energy function is studied in the paper, which is simple and universal, and can unify the forms of some current energy functions. A transient energy function including the induction motor model is derived using the method. The unintegrable term is dealt with to get an approximate energy function. Simulations in a 3-bus system and in the WSCC 4-generator system verify the validity of the proposed energy function. The function can be applied to direct transient stability analysis of multi-machine large power systems and provides a tool for analysis of the interaction between the generator angle stability and the load voltage stability.
A generalized model for optimal transport of images including dissipation and density modulation
Maas, Jan
2015-11-01
© EDP Sciences, SMAI 2015. In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the non-viscous case with source term existence of geodesic paths is proven in the space of measures. The proposed model is explored on the range from merely optimal transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals. These functionals are defined on corresponding pairs of intensity functions and on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated. Furthermore, a finite element implementation is proposed and applied to instructive test cases and to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and Brenier including a discretization of the source term. Finally, the model is generalized to define discrete weighted barycentres with applications to textures and objects.
Modeling Students' Units Coordinating Activity
Boyce, Steven James
2014-01-01
Primarily via constructivist teaching experiment methodology, units coordination (Steffe, 1992) has emerged as a useful construct for modeling students' psychological constructions pertaining to several mathematical domains, including counting sequences, whole number multiplicative conceptions, and fractions schemes. I describe how consideration of units coordination as a Piagetian (1970b) structure is useful for modeling units coordination across contexts. In this study, I extend teaching ...
Antioxidant activity of sugar molasses, including protective effect against DNA oxidative damage
Guimarães, Carla M.; Maria S. Gião; Martinez, Sidónia S.; Pintado, Ana I.; Pintado, Manuela E.; Bento, Luís S.; Malcata, F. Xavier
2007-01-01
Extracts were obtained from molasses, a byproduct of the sugar industry, via a number of chromatographic steps. Their antioxidant capacity was studied, including the inhibitory effect upon DNA oxidative damage;the phenolic compound profile there of was ascertained as well. Two extracts exhibited significant antioxidant features, expressed by their capacity to decolorize ABTS radical cation and to scavenge hydroxyl free radicals (via deoxyribose assay). Those 2 extracts also brought abou...
Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS
Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.
2010-12-01
With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific
Directory of Open Access Journals (Sweden)
Harold J G Meijer
Full Text Available In eukaryotes phospholipase D (PLD is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, and type A and B sPLD-likes. Since the latter have signal peptides we developed a method using metabolically labelled phospholipids to monitor if P. infestans secretes PLD. In extracellular medium of ten P. infestans strains PLD activity was detected as demonstrated by the production of phosphatidic acid and the PLD specific marker phosphatidylalcohol.
Gall, Elliott T; Siegel, Jeffrey A; Corsi, Richard L
2015-04-01
We develop an ozone transport and reaction model to determine reaction probabilities and assess the importance of physical properties such as porosity, pore diameter, and material thickness on reactive uptake of ozone to five materials. The one-dimensional model accounts for molecular diffusion from bulk air to the air-material interface, reaction at the interface, and diffusive transport and reaction through material pore volumes. Material-ozone reaction probabilities that account for internal transport and internal pore area, γ(ipa), are determined by a minimization of residuals between predicted and experimentally derived ozone concentrations. Values of γ(ipa) are generally less than effective reaction probabilities (γ(eff)) determined previously, likely because of the inclusion of diffusion into substrates and reaction with internal surface area (rather than the use of the horizontally projected external material areas). Estimates of γ(ipa) average 1 × 10(-7), 2 × 10(-7), 4 × 10(-5), 2 × 10(-5), and 4 × 10(-7) for two types of cellulose paper, pervious pavement, Portland cement concrete, and an activated carbon cloth, respectively. The transport and reaction model developed here accounts for observed differences in ozone removal to varying thicknesses of the cellulose paper, and estimates a near constant γ(ipa) as material thickness increases from 0.02 to 0.16 cm. PMID:25748309
In vitro activity of Inula helenium against clinical Staphylococcus aureus strains including MRSA.
LENUS (Irish Health Repository)
O'Shea, S
2009-01-01
The present study aims to investigate the bactericidal activity (specifically antistaphylococcal) of Inula helenium. The antimicrobial activity of the extract is tested against 200 clinically significant Irish Staphylococcus aureus isolates consisting of methicillin-resistant (MRSA) and -sensitive (MSSA) S. aureus using a drop test method and a microbroth dilution method. The antibacterial effect is evaluated by measuring the area of the inhibition zone against the isolates. Results proved I. helenium to be 100% effective against the 200 staphylococci tested, with 93% of isolates falling within the ++ and +++ groups. The minimum bactericidal concentration of I. helenium was examined on a subset of isolates and values ranged from 0.9 mg\\/mL to 9.0 mg\\/mL. The extract was equally effective against antibiotic-resistant and -sensitive strains. This plant therefore possesses compounds with potent antistaphylococcal properties, which in the future could be used to complement infection control policies and prevent staphylococcal infection and carriage. This research supports other studies wherein herbal plants exhibiting medicinal properties are being examined to overcome the problems of antibiotic resistance and to offer alternatives in the treatment and control of infectious diseases.
Energy Technology Data Exchange (ETDEWEB)
Michael Kruzic
2007-09-01
Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.
International Nuclear Information System (INIS)
Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D and D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release
International Nuclear Information System (INIS)
The paper describes present of physical protection of nuclear facilities and materials in the Czech Republic; the basic concept and regulation in physical protection and the effort made to strengthen the national regulatory programmes; the role of the police as a response force and the role of the new private security companies; the upgrading of the physical protection systems at the different types of the nuclear installations to fulfill the more strict requirements of the new Atomic Law No. 18/1997 Coll. and Regulation No. 144/1997 Coll., on physical protection of nuclear materials and nuclear facilities; activities carried out in connection with governmental decision No. 479 dated 19 May 2004 on National action plan to combat terrorism. (author)
Boundary element modeling of earthquake site effects including the complete incident wavefield
Kim, Kyoung-Tae
Numerical modeling of earthquake site effects in realistic, three-dimensional structures, including high frequencies, low surface velocities and surface topography, has not been possible simply because the amount of computer memory constrains the number of grid points available. In principle, this problem is reduced in the Boundary Element Method (BEM) since only the surface of the velocity discontinuity is discretized; wave propagation both inside and outside this boundary is computed analytically. Equivalent body forces are determined on the boundary by solving a matrix equation containing frequency-domain displacement and stress Green's functions from every point on the boundary to every other point. This matrix problem has imposed a practical limit on the size or maximum frequency of previous BEM models. Although the matrix can be quite large, it also seems to be fairly sparse. We have used iterative matrix algorithms of the PETSc package and direct solution algorithms of the ScaLAPACK on the massively parallel supercomputers at Cornell, San Diego and Michigan. Preconditioning has been applied using blockwise ILU decomposition for the iterative approach or LU decomposition for the direct approach. The matrix equation is solved using the GMRES method for the iterative approach and a tri-diagonal solver for the direct approach. Previous BEM applications typically have assumed a single, incident plane wave. However, it is clear that for more realistic ground motion simulations, we need to consider the complete incident wavefield. If we assume that the basin or three-dimensional structure of interest is embedded in a surrounding plane-layered medium, we may use the propagator matrix method to solve for the displacements and stresses at depth on the boundary. This is done in the frequency domain with integration over wavenumber so that all P, S, mode conversions, reverberations and surface waves are included. The Boundary Element Method succeeds in modeling
Jet Noise Modeling for Coannular Nozzles Including the Effects of Chevrons
Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.
2003-01-01
Development of good predictive models for jet noise has always been plagued by the difficulty in obtaining good quality data over a wide range of conditions in different facilities.We consider such issues very carefully in selecting data to be used in developing our model. Flight effects are of critical importance, and none of the means of determining them are without significant problems. Free-jet flight simulation facilities are very useful, and can provide meaningful data so long as they can be analytically transformed to the flight frame of reference. In this report we show that different methodologies used by NASA and industry to perform this transformation produce very different results, especially in the rear quadrant; this compels us to rely largely on static data to develop our model, but we show reasonable agreement with simulated flight data when these transformation issues are considered. A persistent problem in obtaining good quality data is noise generated in the experimental facility upstream of the test nozzle: valves, elbows, obstructions, and especially the combustor can contribute significant noise, and much of this noise is of a broadband nature, easily confused with jet noise. Muffling of these sources is costly in terms of size as well as expense, and it is particularly difficult in flight simulation facilities, where compactness of hardware is very important, as discussed by Viswanathan (Ref. 13). We feel that the effects of jet density on jet mixing noise may have been somewhat obscured by these problems, leading to the variable density exponent used in most jet noise prediction procedures including our own. We investigate this issue, applying Occam s razor, (e.g., Ref. 14), in a search for the simplest physically meaningful model that adequately describes the observed phenomena. In a similar vein, we see no reason to reject the Lighthill approach; it provides a very solid basis upon which to build a predictive procedure, as we believe we
Dynamic modelling and analysis of multi-machine power systems including wind farms
Tabesh, Ahmadreza
2005-11-01
This thesis introduces a small-signal dynamic model, based on a frequency response approach, for the analysis of a multi-machine power system with special focus on an induction machine based wind farm. The proposed approach is an alternative method to the conventional eigenvalue analysis method which is widely employed for small-signal dynamic analyses of power systems. The proposed modelling approach is successfully applied and evaluated for a power system that (i) includes multiple synchronous generators, and (ii) a wind farm based on either fixed-speed, variable-speed, or doubly-fed induction machine based wind energy conversion units. The salient features of the proposed method, as compared with the conventional eigenvalue analysis method, are: (i) computational efficiency since the proposed method utilizes the open-loop transfer-function matrix of the system, (ii) performance indices that are obtainable based on frequency response data and quantitatively describe the dynamic behavior of the system, and (iii) capability to formulate various wind energy conversion unit, within a wind farm, in a modular form. The developed small-signal dynamic model is applied to a set of multi-machine study systems and the results are validated based on comparison (i) with digital time-domain simulation results obtained from PSCAD/EMTDC software tool, and (ii) where applicable with eigenvalue analysis results.
A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE
Directory of Open Access Journals (Sweden)
Giuliana Zanchi
2016-03-01
Full Text Available The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters.
Computational models of epileptiform activity.
Wendling, Fabrice; Benquet, Pascal; Bartolomei, Fabrice; Jirsa, Viktor
2016-02-15
We reviewed computer models that have been developed to reproduce and explain epileptiform activity. Unlike other already-published reviews on computer models of epilepsy, the proposed overview starts from the various types of epileptiform activity encountered during both interictal and ictal periods. Computational models proposed so far in the context of partial and generalized epilepsies are classified according to the following taxonomy: neural mass, neural field, detailed network and formal mathematical models. Insights gained about interictal epileptic spikes and high-frequency oscillations, about fast oscillations at seizure onset, about seizure initiation and propagation, about spike-wave discharges and about status epilepticus are described. This review shows the richness and complementarity of the various modeling approaches as well as the fruitful contribution of the computational neuroscience community in the field of epilepsy research. It shows that models have progressively gained acceptance and are now considered as an efficient way of integrating structural, functional and pathophysiological data about neural systems into "coherent and interpretable views". The advantages, limitations and future of modeling approaches are discussed. Perspectives in epilepsy research and clinical epileptology indicate that very promising directions are foreseen, like model-guided experiments or model-guided therapeutic strategy, among others. PMID:25843066
Groundwater recharge in a hard rock aquifer: A conceptual model including surface-loading effects
Rodhe, Allan; Bockgård, Niclas
2006-11-01
SummaryThe groundwater level in a fractured rock aquifer in Sweden was found to respond quickly to rainfall, although the bedrock was covered by 10-m-thick till soil. A considerable portion of the response was caused by surface loading, i.e., by the weight increase of the soil due to the addition of water from precipitation, whereas the rest reflected recharge. The hypothesis that the bedrock aquifer was recharged by vertical flow from groundwater in the overlying soil was tested with a simple recharge model, in which the bedrock-groundwater levels were simulated from the soil-groundwater and estimated surface-loading variation. The model had three parameters: the ratio between the equivalent vertical hydraulic conductivity governing the recharge and the storage coefficient of the bedrock reservoir, the recession coefficient for the bedrock-groundwater level, and the bedrock-groundwater level at which the outflow ceases. The model could be reasonably well calibrated and validated to head observations in one of two boreholes. The fit to the seasonal variation was similar when calibrating the model with or without surface loading, but surface loading had to be included to properly simulate individual recharge events. The relative temporal variation in the fluxes could be determined by the calibration. The variation in the recharge was from -10% to +25% in relation to the mean flux. The variation in the discharge was only ±1%. By applying a storage coefficient of the reservoir of 5 × 10 -4, the simulated mean recharge was about 20 mm yr -1. The results support the hypothesis that the bedrock-groundwater at the site is fed by local recharge from the overlying soil aquifer.
Gabrielle, B.; Gagnaire, N.; Massad, R.; Prieur, V.; Python, Y.
2012-04-01
The potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy sources by bioenergy mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions from arable soils occuring during feedstock production. These emissions are broadly related to fertilizer nitrogen input rates, but largely controlled by soil and climate factors which makes their estimation highly uncertain. Here, we set out to improve estimates of N2O emissions from bioenergy feedstocks by using ecosystem models and measurements and modeling of atmospheric N2O in the greater Paris (France) area. Ground fluxes were measured in two locations to assess the effect of soil type and management, crop type (including lignocellulosics such as triticale, switchgrass and miscanthus), and climate on N2O emission rates and dynamics. High-resolution maps of N2O emissions were generated over the Ile-de-France region (around Paris) with two ecosystem models using geographical databases on soils, weather data, land-use and crop management. The models were tested against ground flux measurements and the emission maps were fed into the atmospheric chemistry-transport model CHIMERE. The maps were tested by comparing the CHIMERE simulations with time series of N2O concentrations measured at various heights above the ground in two locations in 2007. The emissions of N2O, as integrated over the region, were used in a life-cycle assessment of representative biofuel pathways: bioethanol from wheat and sugar-beet (1st generation), and miscanthus (2nd generation chain); bio-diesel from oilseed rape. Effects related to direct and indirect land-use changes (in particular on soil carbon stocks) were also included in the assessment based on various land-use scenarios and literature references. The potential deployment of miscanthus was simulated by assuming it would be grown on the current sugar-beet growing area in Ile-de-France, or by converting land currently under permanent fallow
Ozone control of biological activity during Earth's history, including the KT catastrophe
Sheldon, W. R.
1994-01-01
There have been brief periods since the beginning of the Cambrian some 600 m.y. ago when mass extinctions destroyed a significant fraction of living species. The most widely studied of these events is the catastrophe at the KT boundary that ended the long dominance of the dinosaurs. In addition to mass extinctions, there is another profound discontinuity in the history of Earth's biota, the explosion of life at the end of the Precambrian era which is an episode that is not explained well at all. For some 3 b.y. before the Cambrian, life had been present on Earth, but maintained a low level of activity which is an aspect of the biota that is puzzling, especially during the last two-thirds of that period. During the last 2 b.y. before the Cambrian, conditions at the Earth's surface were suitable for a burgeoning of the biota, according to most criteria: the oceans neither boiled nor were fozen solid during this time, and the atmosphere contained sufficient O for the development of animals. The purpose of this paper is to suggest that mass extinctions and the lackluster behavior of the Precambrian biota share a common cause: an inadequate amount of ozone in the atmosphere.
Design of a high-lift experiment in water including active flow control
Beutel, T.; Sattler, S.; El Sayed, Y.; Schwerter, M.; Zander, M.; Büttgenbach, S.; Leester-Schädel, M.; Radespiel, R.; Sinapius, M.; Wierach, P.
2014-07-01
This paper describes the structural design of an active flow-control experiment. The aim of the experiment is to investigate the increase in efficiency of an internally blown Coanda flap using unsteady blowing. The system uses tailor-made microelectromechanical (MEMS) pressure sensors to determine the state of the oncoming flow and an actuated lip to regulate the mass flow and velocity of a stream near a wall over the internally blown flap. Sensors and actuators are integrated into a highly loaded system that is extremely compact. The sensors are connected to a bus system that feeds the data into a real-time control system. The piezoelectric actuators using the d 33 effect at a comparable low voltage of 120 V are integrated into a lip that controls the blowout slot height. The system is designed for closed-loop control that efficiently avoids flow separation on the Coanda flap. The setup is designed for water-tunnel experiments in order to reduce the free-stream velocity and the system’s control frequency by a factor of 10 compared with that in air. This paper outlines the function and verification of the system’s main components and their development.
Design of a high-lift experiment in water including active flow control
International Nuclear Information System (INIS)
This paper describes the structural design of an active flow-control experiment. The aim of the experiment is to investigate the increase in efficiency of an internally blown Coanda flap using unsteady blowing. The system uses tailor-made microelectromechanical (MEMS) pressure sensors to determine the state of the oncoming flow and an actuated lip to regulate the mass flow and velocity of a stream near a wall over the internally blown flap. Sensors and actuators are integrated into a highly loaded system that is extremely compact. The sensors are connected to a bus system that feeds the data into a real-time control system. The piezoelectric actuators using the d 33 effect at a comparable low voltage of 120 V are integrated into a lip that controls the blowout slot height. The system is designed for closed-loop control that efficiently avoids flow separation on the Coanda flap. The setup is designed for water-tunnel experiments in order to reduce the free-stream velocity and the system’s control frequency by a factor of 10 compared with that in air. This paper outlines the function and verification of the system’s main components and their development. (technical note)
Directory of Open Access Journals (Sweden)
M. D. Petters
2008-10-01
Full Text Available The ability of a particle to serve as a cloud condensation nucleus in the atmosphere is determined by its size, hygroscopicity and its solubility in water. Usually size and hygroscopicity alone are sufficient to predict CCN activity. Single parameter representations for hygroscopicity have been shown to successfully model complex, multicomponent particles types. Under the assumption of either complete solubility, or complete insolubility of a component, it is not necessary to explicitly include that component's solubility into the single parameter framework. This is not the case if sparingly soluble materials are present. In this work we explicitly account for solubility by modifying the single parameter equations. We demonstrate that sensitivity to the actual value of solubility emerges only in the regime of 2×10^{−1}–5×10^{−4}, where the solubility values are expressed as volume of solute per unit volume of water present in a saturated solution. Compounds that do not fall inside this sparingly soluble envelope can be adequately modeled assuming they are either infinitely soluble in water or completely insoluble.
Kreidenweis, S.M.; Petters, M. D.
2012-01-01
Atmospheric particles can serve as cloud condensation nuclei in the atmosphere. The presence of surface active compounds in the particle may affect the critical supersaturation that is required to activate a particle. Modelling surfactants in the context of Köhler theory, however, is difficult because surfactant enrichment at the surface implies that a stable radial concentration gradient must exist in the droplet. In this study, we introduce a hybrid model that accounts for partitionin...
Fritsche, Thomas R; Strabala, Patty A; Sader, Helio S; Dowzicky, Michael J; Jones, Ronald N
2005-07-01
Steadily increasing resistance among the Enterobacteriaceae to beta-lactams, fluoroquinolones, aminoglycosides, tetracyclines, and trimethoprim/sulfamethoxazole has compromised the utility of these commonly used antimicrobial classes for many community- or hospital-acquired infections. The development of tigecycline, the sentinel representative of a novel class of broad-spectrum agents (the glycylcyclines), represents an important milestone in addressing this critical need. Resistance to tigecycline might be expected to occur via the same mechanisms that produce tetracycline resistance; however, tigecycline remains stable and largely unaffected by the commonly occurring efflux and ribosomal protection resistance mechanisms. In this study, an international collection of Enterobacteriaceae (11327 isolates; 32.8% tetracycline-resistant) from global surveillance studies (2000-2004) were evaluated against tigecycline and other comparator antimicrobials. Although the most active agents were the carbapenems and aminoglycosides (97.5-99.7% susceptible), tigecycline displayed high potency (MIC50 and MIC90, 0.25 and 1 microg/mL) with 95.7% of all strains being inhibited at agglomerans; and up to 4-fold for Klebsiella spp., Enterobacter spp., and Citrobacter spp.). Among E. coli (263 isolates) and Klebsiella spp. (356) that meet recognized screening definitions for extended-spectrum beta-lactamase production, 100.0% and 94.4% were inhibited by tigecycline at 2 microg/mL, respectively. These findings confirm that tigecycline exhibits potency, breadth of spectrum, and stability to the commonly occurring resistance mechanisms found in contemporary Enterobacteriaceae isolates, attributes that make this parenteral agent an attractive candidate for use against serious infections produced by these species. PMID:16105566
Directory of Open Access Journals (Sweden)
Jin-Ho Yoon
2013-12-01
Full Text Available The purpose of the present study was to examine differences in lifestyle factors such as physical activity among homosexual (gay or lesbian, bisexual, and heterosexual Korean adolescents.The sample consisted of 74,186 adolescents from grades 7-12 (ages 12-18 who participated in the 8(th annual Korea Youth Risk Behavior Web-based Survey in 2012. Of this sample, only 11,829 provided enough information regarding their romantic and sexual experiences to define them as gay, lesbian, bisexual, or heterosexual. From this information, males were divided into gay (n = 323, bisexual (n = 243, and heterosexual (n = 6,501 groups, and females were divided into lesbian (n = 208, bisexual (n = 113, and heterosexual (n = 4,441 groups. Differences in lifestyle factors according to sexual orientation were analyzed using one-way analysis of variance.Males showed significant differences by sexual orientation group in terms of frequency of smoking (P = 0.029, alcohol consumption (P < 0.001, muscular strength exercises (P = 0.020, and walking for at least 10 minutes per week (P < 0.001. Females showed significant differences by sexual orientation group in terms of frequency of smoking (P < 0.001, alcohol consumption (P < 0.001, vigorous physical exercise (P < 0.001, moderate physical exercise (P < 0.001, and muscular strength exercises (P < 0.001, as well as for self-reported mental stress (P < 0.001.We concluded those gay and bisexual males and lesbian and bisexual females had significant lifestyle differences as compared with heterosexual adolescents. This effect was stronger for females than for males.
Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade
Casson, F J; Angioni, C; Camenen, Y; Dux, R; Fable, E; Fischer, R; Geiger, B; Manas, P; Menchero, L; Tardini, G
2013-01-01
Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the mos...
Son, Yurak; Kamano, Takuya; Yasuno, Takashi; Suzuki, Takayuki; Harada, Hironobu
This paper describes the generation of adaptive gait patterns using new Central Pattern Generators (CPGs) including motor dynamic models for a quadruped robot under various environment. The CPGs act as the flexible oscillators of the joints and make the desired angle of the joints. The CPGs are mutually connected each other, and the sets of their coupling parameters are adjusted by genetic algorithm so that the quadruped robot can realize the stable and adequate gait patterns. As a result of generation, the suitable CPG networks for not only a walking straight gait pattern but also rotation gait patterns are obtained. Experimental results demonstrate that the proposed CPG networks are effective to automatically adjust the adaptive gait patterns for the tested quadruped robot under various environment. Furthermore, the target tracking control based on image processing is achieved by combining the generated gait patterns.
Threat Modelling for Active Directory
Chadwick, David W
2004-01-01
This paper analyses the security threats that can arise against an Active Directory server when it is included in a Web application. The approach is based on the STRIDE classification methodology. The paper also provides outline descriptions of countermeasures that can be deployed to protect against the different threats and vulnerabilities identified here.
A Model for One-Dimensional Coherent Synchrotron Radiation including Short-Range Effects
Ryne, Robert D; Qiang, Ji; Yampolsky, Nikolai
2012-01-01
A new model is presented for simulating coherent synchrotron radiation (CSR) in one dimension. The method is based on convolving an integrated Green function (IGF) with the longitudinal charge density. Since it is based on an IGF, the accuracy of this approach is determined by how well one resolves the charge density and not by resolving the single particle wake function. Since short-range wakefield effects are included analytically, the approach can be much more efficient than ordinary (non-IGF) approaches in situations where the wake function and charge density have disparate spatial scales. Two cases are presented: one derived from the full wake including short-range effects, and one derived from the asymptotic wake. In the latter case the algorithm contains the same physics as others based on the asymptotic approximation, but requires only the line charge density and not its derivative. Examples are presented that illustrate the limitations of the asymptotic-wake approximation, and that illustrate how mic...
CFD simulations and reduced order modeling of a refrigerator compartment including radiation effects
International Nuclear Information System (INIS)
Highlights: ► Free convection in a refrigerator is simulated including radiation effects. ► Heat rates are affected drastically when radiation effects are considered. ► 95% of the flow energy can be represented by using one spatial POD mode. - Abstract: Considering the engineering problem of natural convection in domestic refrigerator applications, this study aims to simulate the fluid flow and temperature distribution in a single commercial refrigerator compartment by using the experimentally determined temperature values as the specified constant wall temperature boundary conditions. The free convection in refrigerator applications is evaluated as a three-dimensional (3D), turbulent, transient and coupled non-linear flow problem. Radiation heat transfer mode is also included in the analysis. According to the results, taking radiation effects into consideration does not change the temperature distribution inside the refrigerator significantly; however the heat rates are affected drastically. The flow inside the compartment is further analyzed with a reduced order modeling method called Proper Orthogonal Decomposition (POD) and the energy contents of several spatial and temporal modes that exist in the flow are examined. The results show that approximately 95% of all the flow energy can be represented by only using one spatial mode
Energy Technology Data Exchange (ETDEWEB)
Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)
2013-07-01
The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.
Directory of Open Access Journals (Sweden)
Lingen Chen, Xuxian Kan, Fengrui Sun, Feng Wu
2013-01-01
Full Text Available The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate and the utilization factor (COP for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.
Diffusion models and neural activity
Czech Academy of Sciences Publication Activity Database
Ricciardi, L. M.; Lánský, Petr
London : Nature publishing group, 2003 - (Nadel, L.), s. 968-972 ISBN 0-333-79261-0 R&D Projects: GA ČR GA309/02/0168 Institutional research plan: CEZ:AV0Z5011922 Keywords : Neuronal activity, Diffusion model Subject RIV: ED - Physiology
Hierarchical modeling of active materials
International Nuclear Information System (INIS)
Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)
INTERIOR MODELS OF SATURN: INCLUDING THE UNCERTAINTIES IN SHAPE AND ROTATION
Energy Technology Data Exchange (ETDEWEB)
Helled, Ravit [Department of Geophysics, Atmospheric and Planetary Sciences, Tel-Aviv University, Tel-Aviv (Israel); Guillot, Tristan [Universite de Nice-Sophia Antipolis, Observatoire de la Cote d' Azur, CNRS UMR 7293, BP 4229, F-06304 Nice (France)
2013-04-20
The accurate determination of Saturn's gravitational coefficients by Cassini could provide tighter constraints on Saturn's internal structure. Also, occultation measurements provide important information on the planetary shape which is often not considered in structure models. In this paper we explore how wind velocities and internal rotation affect the planetary shape and the constraints on Saturn's interior. We show that within the geodetic approach the derived physical shape is insensitive to the assumed deep rotation. Saturn's re-derived equatorial and polar radii at 100 mbar are found to be 54,445 {+-} 10 km and 60,365 {+-} 10 km, respectively. To determine Saturn's interior, we use one-dimensional three-layer hydrostatic structure models and present two approaches to include the constraints on the shape. These approaches, however, result in only small differences in Saturn's derived composition. The uncertainty in Saturn's rotation period is more significant: with Voyager's 10{sup h}39{sup m} period, the derived mass of heavy elements in the envelope is 0-7 M{sub Circled-Plus }. With a rotation period of 10{sup h}32{sup m}, this value becomes <4 M{sub Circled-Plus }, below the minimum mass inferred from spectroscopic measurements. Saturn's core mass is found to depend strongly on the pressure at which helium phase separation occurs, and is estimated to be 5-20 M{sub Circled-Plus }. Lower core masses are possible if the separation occurs deeper than 4 Mbar. We suggest that the analysis of Cassini's radio occultation measurements is crucial to test shape models and could lead to constraints on Saturn's rotation profile and departures from hydrostatic equilibrium.
Palmer-Keenan, Debra M.; Corda, Kirsten
2014-01-01
Limited-resource adults' dietary intakes and nutrition behaviors improve as a result of Expanded Food and Nutrition Education Program (EFNEP)/Supplemental Nutrition Assistance Program Education (SNAP-Ed) participation; however, physical activity education is needed for improved health. The experimental study reported here assessed if spending…
Energy Technology Data Exchange (ETDEWEB)
Kissick, Michael W; Mo Xiaohu; McCall, Keisha C; Mackie, Thomas R [Department of Medical Physics, Wisconsin Institutes for Medical Research, 111 Highland Avenue, University of Wisconsin-Madison, Madison, WI 53705 (United States); Schubert, Leah K [Radiation Oncology Department, University of Nebraska Medical Center, Omaha, NE 68198 (United States); Westerly, David C, E-mail: mwkissick@wisc.ed [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO 80045 (United States)
2010-05-21
The aim of the study was to demonstrate a potential alternative scenario for accurate dose-painting (non-homogeneous planned dose) delivery at 1 cm beam width with helical tomotherapy (HT) in the presence of 1 cm, three-dimensional, intra-fraction respiratory motion, but without any active motion management. A model dose-painting experiment was planned and delivered to the average position (proper phase of a 4DCT scan) with three spherical PTV levels to approximate dose painting to compensate for hypothetical hypoxia in a model lung tumor. Realistic but regular motion was produced with the Washington University 4D Motion Phantom. A small spherical Virtual Water(TM) phantom was used to simulate a moving lung tumor inside of the LUNGMAN(TM) anthropomorphic chest phantom to simulate realistic heterogeneity uncertainties. A piece of 4 cm Gafchromic EBT(TM) film was inserted into the 6 cm diameter sphere. TomoTherapy, Inc., DQA(TM) software was used to verify the delivery performed on a TomoTherapy Hi-Art II(TM) device. The dose uncertainty in the purposeful absence of motion management and in the absence of large, low frequency drifts (periods greater than the beam width divided by the couch velocity) or randomness in the breathing displacement yields very favorable results. Instead of interference effects, only small blurring is observed because of the averaging of many breathing cycles and beamlets and the avoidance of interference. Dose painting during respiration with helical tomotherapy is feasible in certain situations without motion management. A simple recommendation is to make respiration as regular as possible without low frequency drifting. The blurring is just small enough to suggest that it may be acceptable to deliver without motion management if the motion is equal to the beam width or smaller (at respiration frequencies) when registered to the average position.
Eng, William; Norman, Robert
2010-04-01
Increasing antibiotic resistance has prompted a search for new compounds with anti-microbial activity. In the authors' previous study, oregano extract was identified as one of the most potent anti-microbial compounds. The disk diffusion method was employed to assess the degree of inhibition against various microorganisms, and the bacteriostatic or bactericidal mechanism of action. Disk diffusion studies showed that oregano was found to be bacteriostatic for Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus, (MRSA) but bacteriocidal for seven other microorganisms. Pseudomonas aeruginosa could not be inhibited by oregano. An ointment consisting of 1-10% oregano could inhibit most organisms except for Proteus mirabilis and Proteus vulgaris, which required 20% and Pseudomonas which could not be inhibited even at the highest concentration of 80%. Oregano extracts can be formulated into an ointment that shows broad antimicrobial activity. Additional testing to assess tissue toxicity and other adverse reactions would be needed prior to human testing. PMID:20514796
Emphasis: an active management model
International Nuclear Information System (INIS)
The Institute of Nuclear Materials Management was founded and has grown on the basis of promoting professionalism in the nuclear industry. This paper is concerned with professional management of nuclear material. The paper introduces the reader to Emphasis, an active management model. The management model provides the framework to assist a manager in directing his available resources. Emphasis provides for establishing goals, identifying and selecting objectives, matching objectives to specific personnel, preparing and monitoring action plans, and evaluating results. The model stresses crisis prevention by systematically administering and controlling resources. A critical requirement for implementation of the model is the desire to manage, to be in charge of the situation. The nuclear industry does need managers - people who realize the sensitive nature of the industry, professionals who insist on improved performance
Directory of Open Access Journals (Sweden)
W. Kapturkiewicz
2008-12-01
Full Text Available The, developed in this study, simple model and numerical solution of diffusion growth of the solid phase under the conditions of directional solidification allow for the effect of constituent diffusion in both liquid and solid phase and assume the process run in which (like in reality the preset parameter is the velocity of sample (pulling velocity at a preset temperature gradient. The solid/liquid interface velocity is not the process parameter (like it is in numerous other solutions proposed so far but a function of this process. The effect of convection outside the diffusion layer has been included in mass balance under the assumption that in the zone of convection the mixing is complete. The above assumptions enabled solving the kinetics of growth of the solid phase (along with the diffusion field in solid and liquid phase under the conditions of diffusion well reflecting the process run starting with the initial transient state, going through the steady state period in central part of the casting, and ending in a terminal transient state. In the numerical solution obtained by the finite difference method with variable grid dimensions, the error of the mass control balance over the whole process range was 1 - 2 %.
A battery model for constant-power discharge including rate effects
International Nuclear Information System (INIS)
Highlights: • An empirical model of cell potential and current under constant-power discharge. • Model allows for improved initial engineering estimates and comparisons. • Capacity de-rating as a function of rate is incorporated using a Peukert effect. • A simple battery pack model is developed as an application of this battery model. • A battery pack is designed using the model for performance prediction. - Abstract: A battery discharge model is developed to predict terminal voltage and current for a constant-power discharge. The model accounts for the impact of discharge rate on the effective capacity. The model utilizes empirically-determined coefficients, easily obtainable from product data sheets. The model is intended to provide estimates for initial predictions and system sizing; total computational and engineering costs to develop the inputs and obtain results are low. Comparison of model predictions with experimental data in the development and testing of alkaline primary cell battery packs shows good agreement
Directory of Open Access Journals (Sweden)
Cong Guan
2015-06-01
Full Text Available In this article, the operation of a large two-stroke marine diesel engine including various cases with turbocharger cut-out was thoroughly investigated by using a modular zero-dimensional engine model built in MATLAB/Simulink environment. The model was developed by using as a basis an in-house modular mean value engine model, in which the existing cylinder block was replaced by a more detailed one that is capable of representing the scavenging ports-cylinder-exhaust valve processes. Simulation of the engine operation at steady state conditions was performed and the derived engine performance parameters were compared with the respective values obtained by the engine shop trials. The investigation of engine operation under turbocharger cut-out conditions in the region from 10% to 50% load was carried out and the influence of turbocharger cut-out on engine performance including the in-cylinder parameters was comprehensively studied. The recommended schedule for the combination of the turbocharger cut-out and blower activation was discussed for the engine operation under part load conditions. Finally, the influence of engine operating strategies on the annual fuel savings, CO2 emissions reduction and blower operating hours for a Panamax container ship operating at slow steaming conditions is presented and discussed.
Indian Academy of Sciences (India)
Wei Lu; Qingchun Yang; Jordi D Martín; Ricardo Juncosa
2013-04-01
During the 1990s, groundwater overexploitation has resulted in seawater intrusion in the coastal aquifer of the Shenzhen city, China. Although water supply facilities have been improved and alleviated seawater intrusion in recent years, groundwater overexploitation is still of great concern in some local areas. In this work we present a three-dimensional density-dependent numerical model developed with the FEFLOW code, which is aimed at simulating the extent of seawater intrusion while including tidal effects and different groundwater pumping scenarios. Model calibration, using waterheads and reported chloride concentration, has been performed based on the data from 14 boreholes, which were monitored from May 2008 to December 2009. A fairly good fitness between the observed and computed values was obtained by a manual trial-and-error method. Model prediction has been carried out forward 3 years with the calibrated model taking into account high, medium and low tide levels and different groundwater exploitation schemes. The model results show that tide-induced seawater intrusion significantly affects the groundwater levels and concentrations near the estuarine of the Dasha river, which implies that an important hydraulic connection exists between this river and groundwater, even considering that some anti-seepage measures were taken in the river bed. Two pumping scenarios were considered in the calibrated model in order to predict the future changes in the water levels and chloride concentration. The numerical results reveal a decreased tendency of seawater intrusion if groundwater exploitation does not reach an upper bound of about 1.32 × 104 m3/d. The model results provide also insights for controlling seawater intrusion in such coastal aquifer systems.
International Nuclear Information System (INIS)
Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al2O3 and coprecipitation with Fe(OH)3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)
A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature
Energy Technology Data Exchange (ETDEWEB)
Jia Kan; Sun Weifeng; Shi Longxing, E-mail: jiakan.01@gmail.com [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)
2011-06-15
A sub-circuit SPICE model of a MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures. (semiconductor devices)
Energy Technology Data Exchange (ETDEWEB)
Scot Martin
2013-01-31
The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.
International Nuclear Information System (INIS)
It is important to verify the groundwater flow model that reproduces pressure head, water chemistry, and groundwater age. However, water chemistry and groundwater age are considered to be influenced by historical events. In this study, sea level change during glacial-interglacial cycle was taken into account for simulating salinity and groundwater age at coastal granite area. As a result of simulation, salinity movement could not catch up with sea level changes, and mixing zone was formed below the fresh-water zone. This mixing zone was observed in the field measurement, and the observed salinities were agreed with simulated results including sea level change. The simulated residence time including sea level change is one-tenth of steady state. The reason is that the saline water was washed out during regression and modern sea-water was infiltrated during transgression. As mentioned before, considering sea level change are important to reproduce salinity and helium age at coastal area. (author)
A methodology for including wall roughness effects in k-ε low-Reynolds turbulence models
International Nuclear Information System (INIS)
Highlights: • A model for taking into account wall roughness in low-Reynolds k-ε models is presented. • The model is subjected to a first validation to show its potential in general applications. • The application of the model in predicting heat transfer to supercritical fluids is also discussed. - Abstract: A model accounting for wall roughness effects in k-ε low-Reynolds turbulence models is described in the present paper. In particular, the introduction in the transport equations of k and ε of additional source terms related to roughness, based on simple assumptions and dimensional relationships, is proposed. An objective of the present paper, in addition to obtaining more realistic predictions of wall friction, is the application of the proposed model to the study of heat transfer to supercritical fluids. A first validation of the model is reported. The model shows the capability of predicting, at least qualitatively, some of the most important trends observed when dealing with rough pipes in very different flow conditions. Qualitative comparisons with some DNS data available in literature are also performed. Further analyses provided promising results concerning the ability of the model in reproducing the trend of friction factor when varying the flow conditions, though improvements are necessary for achieving better quantitative accuracy. First applications of the model in simulating heat transfer to supercritical fluids are also described, showing the capability of the model to affect the predictions of these heat transfer phenomena, in particular in the vicinity of the pseudo-critical conditions. A more extended application of the model to relevant deteriorated heat transfer conditions will clarify the usefulness of this modelling methodology in improving predictions of these difficult phenomena. Whatever the possible success in this particular application that motivated its development, this approach suggests a general methodology for accounting
A methodology for including wall roughness effects in k-ε low-Reynolds turbulence models
Energy Technology Data Exchange (ETDEWEB)
Ambrosini, W., E-mail: walter.ambrosini@ing.unipi.it; Pucciarelli, A.; Borroni, I.
2015-05-15
Highlights: • A model for taking into account wall roughness in low-Reynolds k-ε models is presented. • The model is subjected to a first validation to show its potential in general applications. • The application of the model in predicting heat transfer to supercritical fluids is also discussed. - Abstract: A model accounting for wall roughness effects in k-ε low-Reynolds turbulence models is described in the present paper. In particular, the introduction in the transport equations of k and ε of additional source terms related to roughness, based on simple assumptions and dimensional relationships, is proposed. An objective of the present paper, in addition to obtaining more realistic predictions of wall friction, is the application of the proposed model to the study of heat transfer to supercritical fluids. A first validation of the model is reported. The model shows the capability of predicting, at least qualitatively, some of the most important trends observed when dealing with rough pipes in very different flow conditions. Qualitative comparisons with some DNS data available in literature are also performed. Further analyses provided promising results concerning the ability of the model in reproducing the trend of friction factor when varying the flow conditions, though improvements are necessary for achieving better quantitative accuracy. First applications of the model in simulating heat transfer to supercritical fluids are also described, showing the capability of the model to affect the predictions of these heat transfer phenomena, in particular in the vicinity of the pseudo-critical conditions. A more extended application of the model to relevant deteriorated heat transfer conditions will clarify the usefulness of this modelling methodology in improving predictions of these difficult phenomena. Whatever the possible success in this particular application that motivated its development, this approach suggests a general methodology for accounting
2010-04-01
... other information required under 25 CFR 1000 subpart K. ... self-governance agreement? 170.623 Section 170.623 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE... self-governance agreement? To include an IRR Program project or activity in a self-governance...
Directory of Open Access Journals (Sweden)
S. M. Kreidenweis
2012-09-01
Full Text Available Atmospheric particles can serve as cloud condensation nuclei in the atmosphere. The presence of surface active compounds in the particle may affect the critical supersaturation that is required to activate a particle. Modelling surfactants in the context of Köhler theory, however, is difficult because surfactant enrichment at the surface implies that a stable radial concentration gradient must exist in the droplet. In this study, we introduce a hybrid model that accounts for partitioning between the bulk and surface phases in the context of single parameter representations of cloud condensation nucleus activity. The presented formulation incorporates the analytical approximations introduced by Raatikainen and Laaksonen to yield a set of equations that maintain the conceptual and mathematical simplicity of the single parameter framework. The resulting set of equations allows users of the single parameter model to account for surfactant partitioning by applying minor modifications to already existing code. We apply this extended model to discuss several uncertainties that hinder our ability to precisely pinpoint the role of surface tension in cloud droplet activation with current measurement and data analysis approaches.
Activated sludge model No. 2d, ASM2d
DEFF Research Database (Denmark)
Henze, M.
1999-01-01
The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...
Thanachareonkit, Anothai; Scartezzini, Jean-Louis
2008-01-01
Physical or virtual models are commonly employed to visualize the conceptual ideas of architects, lighting designers and daylighting researchers. The models are also used to assess the daylighting performance of their buildings, particularly when Complex Fenestration Systems (CFS) are considered. Recent studies have revealed a general tendency of physical models to over- estimate the performance, usually expressed through work plane illuminance and daylight factor profiles, when compared to t...
Hybrid Model Representation of a TLP Including Flexible Topsides in Non-Linear Regular Waves
DEFF Research Database (Denmark)
Wehmeyer, Christof; Ferri, Francesco; Andersen, Morten Thøtt;
2014-01-01
structure, a numerical model is proposed and validated by physical test results. The model is applied to a case study of a tension leg platform with a flexible topside mimicking the tower and a lumped mass mimicking the rotor-nacelle assembly. The model is additionally compared to current commercial...... software, where the need for the coupled higher order dynamics proposed in this paper becomes evident....
Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Tyrrell, Kerin L
2012-12-01
More than 5 million Americans are bitten by animals, usually dogs, annually. Bite patients comprise ∼1% of all patients who visit emergency departments (300,000/year), and approximately 10,000 require hospitalization and intravenous antibiotics. Ceftaroline is the bioactive component of the prodrug ceftaroline fosamil, which is FDA approved for the treatment of acute bacterial skin and skin structure infections (ABSSSIs), including those containing methicillin-resistant Staphylococcus aureus (MRSA). There are no in vitro data about the activity of ceftaroline against Pasteurella multocida subsp. multocida and Pasteurella multocida subsp. septica, other Pasteurella spp., or other bite wound isolates. We therefore studied the in vitro activity of ceftaroline against 243 animal bite isolates. MICs were determined using the broth microdilution method according to CLSI guidelines. Comparator drugs included cefazolin, ceftriaxone, ertapenem, ampicillin-sulbactam, azithromycin, doxycycline, and sulfamethoxazole-trimethoprim (SMX-TMP). Ceftaroline was the most active agent against all 5 Pasteurella species, including P. multocida subsp. multocida and P. multocida subsp. septica, with a maximum MIC of ≤0.008 μg/ml; more active than ceftriaxone and ertapenem (MIC(90)s, ≤0.015 μg/ml); and more active than cefazolin (MIC(90), 0.5 μg/ml) doxycycline (MIC(90), 0.125 μg/ml), azithromycin (MIC(90), 0.5 μg/ml), ampicillin-sulbactam (MIC(90), 0.125 μg/ml), and SMX-TMP (MIC(90), 0.125 μg/ml). Ceftaroline was also very active against all S. aureus isolates (MIC(90), 0.125 μg/ml) and other Staphylococcus and Streptococcus species, with a maximum MIC of 0.125 μg/ml against all bite isolates tested. Ceftaroline has potential clinical utility against infections involving P. multocida, other Pasteurella species, and aerobic Gram-positive isolates, including S. aureus. PMID:23027193
Canuto, V. M.
1994-06-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 108 for the planetary boundary layer and Re approximately equals 1014 for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re9/4 exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon
International Nuclear Information System (INIS)
The characteristics of the laser-induced plasma encountered in laser welding are investigated using a new three-dimensional modelling approach. A simplified keyhole model is employed to couple with our previous plasma plume model, and thus both the plasma inside a blind keyhole and the plasma plume issuing from the keyhole can be treated simultaneously. Investigations include the effects on the laser-induced plasma characteristics of many factors, including the velocity of metal vapour leaving from the keyhole bottom, the velocity of the shielding gas injected coaxially with the laser beam, the velocity and location of the assisting gas injected laterally with respect to the workpiece, and the energy absorption and radiation heat loss of the laser-induced plasma. Typical computed distributions of temperature, velocity and vapour concentration within the plasma are presented with the continuous-wave CO2 laser welding of iron workpiece as the calculation example. It is shown that the high-temperature core of the laser-induced plasma is mostly located inside the blind keyhole or near the keyhole top for the cases under study. The metal-vapour/shielding-gas momentum ratio plays an important role in determining the height of the plasma plume, and the plume height decreases with increasing shielding-gas velocity. The laterally injected assisting gas may also significantly affect the laser-induced plasma characteristics and thus can be used to control the unfavourable effect of the laser-induced plasma on the laser welding process. The predicted temperatures of the laser-induced plasma are reasonably consistent with corresponding experimental data
Development of numerical dispersion model for radioactive nuclei including resuspension processes
International Nuclear Information System (INIS)
Global-scale and local-scale dispersion model are developed combining to global and local scale meteorological forecasting model. By applying this system to another miner constituent such as mineral dust blowing by strong wind in arid region, this system shows very good performance to watch and predict the distribution of it. (author)
Neumann, R. B.; Cardon, Z. G.; Rockwell, F. E.; Teshera-Levye, J.; Zwieniecki, M.; Holbrook, N. M.
2013-12-01
The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical, and ecological consequences of HR depend on the amount of redistributed water, while the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two eco-types of Helianthus annuus L. in split-pot experiments, we examined how well the widely used HR modeling formulation developed by Ryel et al. (2002) could match experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive nighttime transpiration, and though over the last decade it has become more widely recognized that nighttime transpiration occurs in multiple species and many ecosystems, the original Ryel et al. (2002) formulation does not include the effect of nighttime transpiration on HR. We developed and added a representation of nighttime transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and nighttime stomatal behavior changed, both influencing HR.
Modeling of the dynamics of wind to power conversion including high wind speed behavior
DEFF Research Database (Denmark)
Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio;
2016-01-01
is derived from an admittance function. The equivalent wind speed is a representation of the averaging of the wind speeds over the wind turbine rotor plane and is used as input to the static power curve to get the output power. The proposed wind turbine model is validated for the whole operating......This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series for...... power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...
An investigation of FLUENT's fan model including the effect of swirl velocity
International Nuclear Information System (INIS)
The purpose of this paper is to investigate and discuss the reliability of simplified models for the computational fluid dynamics (CFD) simulation of air flow through automotive engine cooling fans. One of the most widely used simplified fan models in industry is a variant of the actuator disk model which is available in most commercial CFD software, such as FLUENT. In this model, the fan is replaced by an infinitely thin surface on which pressure rise across the fan is specified as a polynomial function of normal velocity or flow rate. The advantages of this model are that it is simple, it accurately predicts the pressure rise through the fan and the axial velocity, and it is robust
A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk
DEFF Research Database (Denmark)
Jensen, Ninna Reitzel; Schomacker, Kristian Juul
2015-01-01
unit-linked insurance. By use of a two-account model, we are able to illustrate general concepts without making the model too abstract. To allow for complicated financial markets without dramatically increasing the mathematical complexity, we focus on economic scenarios. We illustrate the use of our......Using a two-account model with event risk, we model life insurance contracts taking into account both guaranteed and non-guaranteed payments in participating life insurance as well as in unit-linked insurance. Here, event risk is used as a generic term for life insurance events, such as death...... product types. This enables comparison of participating life insurance products and unit-linked insurance products, thus building a bridge between the two different ways of formalizing life insurance products. Finally, our model distinguishes itself from the existing literature by taking into account the...
Energy Technology Data Exchange (ETDEWEB)
Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin (AquaBiota Water Research, Stockholm (SE))
2007-06-15
GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All
International Nuclear Information System (INIS)
GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All
A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk
Directory of Open Access Journals (Sweden)
Ninna Reitzel Jensen
2015-06-01
Full Text Available Using a two-account model with event risk, we model life insurance contracts taking into account both guaranteed and non-guaranteed payments in participating life insurance as well as in unit-linked insurance. Here, event risk is used as a generic term for life insurance events, such as death, disability, etc. In our treatment of participating life insurance, we have special focus on the bonus schemes “consolidation” and “additional benefits”, and one goal is to formalize how these work and interact. Another goal is to describe similarities and differences between participating life insurance and unit-linked insurance. By use of a two-account model, we are able to illustrate general concepts without making the model too abstract. To allow for complicated financial markets without dramatically increasing the mathematical complexity, we focus on economic scenarios. We illustrate the use of our model by conducting scenario analysis based on Monte Carlo simulation, but the model applies to scenarios in general and to worst-case and best-estimate scenarios in particular. In addition to easy computations, our model offers a common framework for the valuation of life insurance payments across product types. This enables comparison of participating life insurance products and unit-linked insurance products, thus building a bridge between the two different ways of formalizing life insurance products. Finally, our model distinguishes itself from the existing literature by taking into account the Markov model for the state of the policyholder and, hereby, facilitating event risk.
Complete Loss and Thermal Model of Power Semiconductors Including Device Rating Information
DEFF Research Database (Denmark)
Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon;
2015-01-01
models, only the electrical loadings are focused and treated as design variables, while the device rating is normally pre-defined by experience with limited design flexibility. Consequently, a more complete loss and thermal model is proposed in this paper, which takes into account not only the electrical...... loading but also the device rating as input variables. The quantified correlation between the power loss, thermal impedance and silicon area of Insulated Gate Bipolar Transistor (IGBT) is mathematically established. By this new modeling approach, all factors that have impacts to the loss and thermal...
Recent Advances in Study on Thermodynamic Models for Real Systems Including Electrolytes
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A comprehensive review of recent advances in study on thermodynamic models for real electrolyte solutions is presented. The differences between primitive and non-primitive electrolyte models are demonstrated. Some new thermodynamic models for electrolyte solutions based on the mean spherical approximation and perturbation theory are introduced. An extended scaled-particle theory and modified CleggPitz er equation are presented for physical and chemical absorption processes with mixed solvents, respectively. A pseudo one-component two-Yukawa equation of state is used for the aqueous two-phase extraction process in charged colloidal systems.
A physical-based pMOSFETs threshold voltage model including the STI stress effect
Energy Technology Data Exchange (ETDEWEB)
Wu Wei; Du Gang; Liu Xiaoyan; Sun Lei; Kang Jinfeng; Han Ruqi, E-mail: xyliu@ime.pku.edu.cn [Institute of Microelectronics, Peking University, Beijing 100871 (China)
2011-05-15
The physical threshold voltage model of pMOSFETs under shallow trench isolation (STI) stress has been developed. The model is verified by 130 nm technology layout dependent measurement data. The comparison between pMOSFET and nMOSFET model simulations due to STI stress was conducted to show that STI stress induced less threshold voltage shift and more mobility shift for the pMOSFET. The circuit simulations of a nine stage ring oscillator with and without STI stress proved about 11% improvement of average delay time. This indicates the importance of STI stress consideration in circuit design. (semiconductor devices)
Directory of Open Access Journals (Sweden)
Rosa Ana Salas
2013-11-01
Full Text Available We propose a modeling procedure specifically designed for a ferrite inductor excited by a waveform in time domain. We estimate the loss resistance in the core (parameter of the electrical model of the inductor by means of a Finite Element Method in 2D which leads to significant computational advantages over the 3D model. The methodology is validated for an RM (rectangular modulus ferrite core working in the linear and the saturation regions. Excellent agreement is found between the experimental data and the computational results.
Energy Technology Data Exchange (ETDEWEB)
Ozolin, Y.E.; Karol, I.L. [Main Geophysical Observatory, St. Petersburg (Russian Federation); Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)
1997-12-31
Box model for coupled gaseous and aqueous phases is used for sensitivity study of potential transformation of trace gases in a cloud environment. The rate of this transformation decreases with decreasing of pH in droplets, with decreasing of photodissociation rates inside the cloud and with increasing of the droplet size. Model calculations show the potential formation of H{sub 2}O{sub 2} in aqueous phase and transformation of gaseous HNO{sub 3} into NO{sub x} in a cloud. This model is applied for exploration of aircraft exhausts evolution in plume inside a cloud. (author) 10 refs.
A Circuit Model for CMOS Hall Cells Performance Evaluation including Temperature Effects
Directory of Open Access Journals (Sweden)
Maria-Alexandra Paun
2013-01-01
Full Text Available In order to provide the information on their Hall voltage, sensitivity, and drift with temperature, a new simpler lumped circuit model for the evaluation of various Hall cells has been developed. In this sense, the finite element model proposed by the authors in this paper contains both geometrical parameters (dimensions of the cells and physical parameters such as the mobility, conductivity, Hall factor, carrier concentration, and the temperature influence on them. Therefore, a scalable finite element model in Cadence, for behavior simulation in circuit environment of CMOS Hall effect devices, with different shapes and technologies assessing their performance, has been elaborated.
Directory of Open Access Journals (Sweden)
Watson Andrew J
2007-01-01
Full Text Available Abstract Background Mechanisms that confer an ability to respond positively to environmental osmolarity are fundamental to ensuring embryo survival during the preimplantation period. Activation of p38 mitogen-activated protein kinase (MAPK occurs following exposure to hyperosmotic treatment. Recently, a novel scaffolding protein called Osmosensing Scaffold for MEKK3 (OSM was linked to p38 MAPK activation in response to sorbitol-induced hypertonicity. The human ortholog of OSM is cerebral cavernous malformation 2 (CCM2. The present study was conducted to investigate whether CCM2 is expressed during mouse preimplantation development and to determine whether this scaffolding protein is associated with p38 MAPK activation following exposure of preimplantation embryos to hyperosmotic environments. Results Our results indicate that Ccm2 along with upstream p38 MAPK pathway constituents (Map3k3, Map2k3, Map2k6, and Map2k4 are expressed throughout mouse preimplantation development. CCM2, MAP3K3 and the phosphorylated forms of MAP2K3/MAP2K6 and MAP2K4 were also detected throughout preimplantation development. Embryo culture in hyperosmotic media increased p38 MAPK activity in conjunction with elevated CCM2 levels. Conclusion These results define the expression of upstream activators of p38 MAPK during preimplantation development and indicate that embryo responses to hyperosmotic environments include elevation of CCM2 and activation of p38 MAPK.
A model for including Arduino microcontroller programming in the introductory physics lab
Haugen, Andrew J
2014-01-01
The paper describes a curricular framework for introducing microcontroller programming in the University Physics lab. The approach makes use of Modeling Instruction, an effective approach for teaching science at the secondary level in which student learn the standard material by developing and deploying models of the physical world. In our approach, students engage with a context-rich problem that can be solved with one or more sensors and a microcontroller. The solution path we describe then consists of developing a mathematical model for how the sensors' data can be mapped to a meaningful measurement, and further, developing an algorithmic model that will be implemented in the microcontroller. Once the system is developed and implemented, students are given an array of similar problems in which they can deploy their data collection system. Results from the implementation of this idea, in two University Physics sections, using Arduino microcontrollers, are also described.
International Nuclear Information System (INIS)
An accurate and complete circuit simulation model for single-photon avalanche diodes (SPADs) is presented. The derived model is not only able to simulate the static DC and dynamic AC behaviors of an SPAD operating in Geiger-mode, but also can emulate the second breakdown and the forward bias behaviors. In particular, it considers important statistical effects, such as dark-counting and after-pulsing phenomena. The developed model is implemented using the Verilog-A description language and can be directly performed in commercial simulators such as Cadence Spectre. The Spectre simulation results give a very good agreement with the experimental results reported in the open literature. This model shows a high simulation accuracy and very fast simulation rate. (semiconductor devices)
Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials
Guichard, Stéphane; Bigot, Dimitri; Malet-Damour, Bruno; Libelle, Teddy; Boyer, Harry
2015-01-01
This paper deals with the empirical validation of a building thermal model using a phase change material (PCM) in a complex roof. A mathematical model dedicated to phase change materials based on the heat apparent capacity method was implemented in a multi-zone building simulation code, the aim being to increase understanding of the thermal behavior of the whole building with PCM technologies. To empirically validate the model, the methodology is based both on numerical and experimental studies. A parametric sensitivity analysis was performed and a set of parameters of the thermal model have been identified for optimization. The use of a generic optimization program called GenOpt coupled to the building simulation code enabled to determine the set of adequate parameters. We first present the empirical validation methodology and main results of previous work. We then give an overview of GenOpt and its coupling with the building simulation code. Finally, once the optimization results are obtained, comparisons o...
A Control-Oriented 0D Model of a Turbocharger Gas Stand Including Heat Transfer
Bengtsson, Mikael
2015-01-01
A turbocharger’s performance is measured in a gas stand in order to provide information of the components characteristics. The measurement procedure is a very time consuming process and it is thus desired to make it more time-efficient. To allow for development of an enhanced control strategy used during the measurements, a 0D model of a gas stand is developed. The physical gas stand components are modeled and validated against measurements, all showing a reasonable result. Turbocharger heat ...
Thermodynamical assessments to model steel concrete interface behaviour including corrosion effects
Richard, Benjamin
2009-01-01
To model the three dimensional response of reinforced concrete structures subject to complex loadings, the local constitutive model for concrete have to account for different nonlinear mechanisms such as :Stiffness decrease due to cracks and stiffness recovery due to closing cracks under cyclic loadings, inelastic strains due to the material heterogeneity, frictional sliding due to the cracked surfaces rugosity. In this contribution, a three dimensional behaviour constitutive set of equati...
Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS: calibration and validation
Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.
2011-12-01
Sugarcane is currently the most efficient bioenergy crop with regards to the energy produced per hectare. With approximately half the global bioethanol production in 2005, and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Dynamic global vegetation models coupled with agronomical models are powerful and novel tools to tackle many of the environmental issues related to biofuels if they are carefully calibrated and validated against field observations. Here we adapt the agro-terrestrial model ORCHIDEE-STICS for sugar cane simulations. Observation data of LAI are used to evaluate the sensitivity of the model to parameters of nitrogen absorption and phenology, which are calibrated in a systematic way for six sites in Australia and La Reunion. We find that the optimal set of parameters is highly dependent on the sites' characteristics and that the model can reproduce satisfactorily the evolution of LAI. This careful calibration of ORCHIDEE-STICS for sugar cane biomass production for different locations and technical itineraries provides a strong basis for further analysis of the impacts of bioenergy-related land use change on carbon cycle budgets. As a next step, a sensitivity analysis is carried out to estimate the uncertainty of the model in biomass and carbon flux simulation due to its parameterization.
Phase Transitions in Model Active Systems
Redner, Gabriel S.
The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these
A two-phase solid/fluid model for dense granular flows including dilatancy effects
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys
2016-04-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To
Genomic prediction of growth in pigs based on a model including additive and dominance effects.
Lopes, M S; Bastiaansen, J W M; Janss, L; Knol, E F; Bovenhuis, H
2016-06-01
Independent of whether prediction is based on pedigree or genomic information, the focus of animal breeders has been on additive genetic effects or 'breeding values'. However, when predicting phenotypes rather than breeding values of an animal, models that account for both additive and dominance effects might be more accurate. Our aim with this study was to compare the accuracy of predicting phenotypes using a model that accounts for only additive effects (MA) and a model that accounts for both additive and dominance effects simultaneously (MAD). Lifetime daily gain (DG) was evaluated in three pig populations (1424 Pietrain, 2023 Landrace, and 2157 Large White). Animals were genotyped using the Illumina SNP60K Beadchip and assigned to either a training data set to estimate the genetic parameters and SNP effects, or to a validation data set to assess the prediction accuracy. Models MA and MAD applied random regression on SNP genotypes and were implemented in the program Bayz. The additive heritability of DG across the three populations and the two models was very similar at approximately 0.26. The proportion of phenotypic variance explained by dominance effects ranged from 0.04 (Large White) to 0.11 (Pietrain), indicating that importance of dominance might be breed-specific. Prediction accuracies were higher when predicting phenotypes using total genetic values (sum of breeding values and dominance deviations) from the MAD model compared to using breeding values from both MA and MAD models. The highest increase in accuracy (from 0.195 to 0.222) was observed in the Pietrain, and the lowest in Large White (from 0.354 to 0.359). Predicting phenotypes using total genetic values instead of breeding values in purebred data improved prediction accuracy and reduced the bias of genomic predictions. Additional benefit of the method is expected when applied to predict crossbred phenotypes, where dominance levels are expected to be higher. PMID:26676611
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes
Energy Technology Data Exchange (ETDEWEB)
García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)
2015-01-15
Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes
International Nuclear Information System (INIS)
Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes
Loss and thermal model for power semiconductors including device rating information
DEFF Research Database (Denmark)
Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon;
2014-01-01
pre-defined by experience with poor design flexibility. Consequently a more complete loss and thermal model is proposed in this paper, which takes into account not only the electrical loading but also the device rating as input variables. The quantified correlation between the power loss, thermal......The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal models, only the electrical loadings are focused and treated as design variables, while the device rating is normally...... impedance and silicon area of Insulated Gate Bipolar Transistor (IGBT) is mathematically established. By this new modeling approach, all factors that have impacts to the loss and thermal profiles of power devices can be accurately mapped, enabling more design freedom to optimize the efficiency and thermal...
Lüdde, Hans Jürgen; Achenbach, Alexander; Kalkbrenner, Thilo; Jankowiak, Hans-Christian; Kirchner, Tom
2016-04-01
A new model to account for geometric screening corrections in an independent-atom-model description of ion-molecule collisions is introduced. The ion-molecule cross sections for net capture and net ionization are represented as weighted sums of atomic cross sections with weight factors that are determined from a geometric model of overlapping cross section areas. Results are presented for proton collisions with targets ranging from diatomic to complex polyatomic molecules. Significant improvement compared to simple additivity rule results and in general good agreement with experimental data are found. The flexibility of the approach opens up the possibility to study more detailed observables such as orientation-dependent and charge-state-correlated cross sections for a large class of complex targets ranging from biomolecules to atomic clusters.
A capacity fade model for lithium-ion batteries including diffusion and kinetics
International Nuclear Information System (INIS)
A one dimensional model incorporating solvent diffusion and kinetics of solid electrolyte interphase (SEI) formation is developed to study capacity fade in lithium ion batteries. The model assumes that solvent diffuses through the SEI (solid electrolyte interphase) and undergoes a two electron reduction at the carbon SEI interface. The kinetics of the reduction reaction at the SEI–electrolyte interface and the solvent diffusivity are seen to be the most important parameters governing SEI formation. The capacity loss is seen to be a function of the thickness of the SEI layer and is seen to vary linearly over time. The rate constant governing SEI formation and solvent diffusivity are seen to follow Arrhenius type relationships. The model results are compared with and are found to be in good agreement with experimental data.
International Nuclear Information System (INIS)
The behaviour of concrete, considered as isotropic for a sound material, becomes anisotropic and unilateral as soon as microcracks are initiated. Concrete also shows a different behaviour in tension than in compression. However, isotropic models, which are more simple and time costless, are still widely used for industrial applications. An anisotropic and unilateral model, with few parameters, is thus proposed in the present work, which enhances the accuracy of the description of concrete's behaviour, while remaining suitable for industrial studies. The validation of the model is based on experimental results. Numerical simulations of structures are also proposed, among which one concerns a representative volume of a confinement vessel. Finally, a non local theory is investigated to overcome the problems induced by strain localisation. (author)
International Nuclear Information System (INIS)
The paper presents a brief description of composite damping mechanics for blade sections of arbitrary lamination and geometry. A damped 3-D shear beam element is presented enabling the assembly of damped structural dynamic models of blades with hollow multi-cell tubular laminated sections. Emphasis is placed to the inclusion of composite material coupling effects, first in the blade section stiffness and damping matrices and finally into the stiffness and damping matrices of the finite element. Evaluations of the beam element are presented, to quantify the material coupling effect on composite beams of simple box sections. Correlations between predicted and measured modal frequencies and damping values in small model Glass/Epoxy are also shown. Finally, the damped modal characteristics of a 35m realistic wind-turbine blade model design, are predicted
Hybrid Model Representation of a TLP Including Flexible Topsides in Non-Linear Regular Waves
Directory of Open Access Journals (Sweden)
Christof Wehmeyer
2014-08-01
Full Text Available The rising demand for renewable energy solutions is forcing the established industries to expand and continue evolving. For the wind energy sector, the vast resources in deep sea locations have encouraged research towards the installation of turbines in deeper waters. One of the most promising technologies able to solve this challenge is the floating wind turbine foundation. For the ultimate limit state, where higher order wave loads have a significant influence, a design tool that couples non-linear excitations with structural dynamics is required. To properly describe the behavior of such a structure, a numerical model is proposed and validated by physical test results. The model is applied to a case study of a tension leg platform with a flexible topside mimicking the tower and a lumped mass mimicking the rotor-nacelle assembly. The model is additionally compared to current commercial software, where the need for the coupled higher order dynamics proposed in this paper becomes evident.
Institute of Scientific and Technical Information of China (English)
蔡梦军; 陈建定; Taha, Mohamed
2012-01-01
Two rare metal coordination complexes of yttrium（Ⅲ） including 1,10-phenanthroline, Y（phen）2（NO3）3 and （phenH）2[Y2（pydc）3（NO3）2.6H2O] （phen= 1,10-phenanthroline, pydc=2,6-pyridinedicarboxylate）, and a proton transfer compound （phenH＋）2（pydc2-） were synthesized and characterized by elemental analysis, molar conductance, infrared spectra （IR）, nuclear magnetic resonance （NMR） and thermal analysis. The proposed structures of yttrium complexes were exhibited. The in vitro biological activities of the newly synthesized complexes have also been investigated against Bacillus coli, Staphylococcus aureus and Candida albicans. The results showed that yttrium（Ⅲ） complexes including 1,10-phenanthroline exhibited better antibacterial/antifungal activity than their ligands and corresponding compounds.
European air quality modelled by CAMx including the volatility basis set scheme
Directory of Open Access Journals (Sweden)
G. Ciarelli
2015-12-01
Full Text Available Four periods of EMEP (European Monitoring and Evaluation Programme intensive measurement campaigns (June 2006, January 2007, September–October 2008 and February–March 2009 were modelled using the regional air quality model CAMx with VBS (Volatility Basis Set approach for the first time in Europe within the framework of the EURODELTA-III model intercomparison exercise. More detailed analysis and sensitivity tests were performed for the period of February–March 2009 and June 2006 to investigate the uncertainties in emissions as well as to improve the modelling of organic aerosols (OA. Model performance for selected gas phase species and PM2.5 was evaluated using the European air quality database Airbase. Sulfur dioxide (SO2 and ozone (O3 were found to be overestimated for all the four periods with O3 having the largest mean bias during June 2006 and January–February 2007 periods (8.93 and 12.30 ppb mean biases, respectively. In contrast, nitrogen dioxide (NO2 and carbon monoxide (CO were found to be underestimated for all the four periods. CAMx reproduced both total concentrations and monthly variations of PM2.5 very well for all the four periods with average biases ranging from −2.13 to 1.04 μg m-3. Comparisons with AMS (Aerosol Mass Spectrometer measurements at different sites in Europe during February–March 2009, showed that in general the model over-predicts the inorganic aerosol fraction and under-predicts the organic one, such that the good agreement for PM2.5 is partly due to compensation of errors. The effect of the choice of volatility basis set scheme (VBS on OA was investigated as well. Two sensitivity tests with volatility distributions based on previous chamber and ambient measurements data were performed. For February–March 2009 the chamber-case reduced the total OA concentrations by about 43 % on average. On the other hand, a test based on ambient measurement data increased OA concentrations by about 47 % for the same
European air quality modelled by CAMx including the volatility basis set scheme
Ciarelli, G.; Aksoyoglu, S.; Crippa, M.; Jimenez, J. L.; Nemitz, E.; Sellegri, K.; Äijälä, M.; Carbone, S.; Mohr, C.; O'Dowd, C.; Poulain, L.; Baltensperger, U.; Prévôt, A. S. H.
2015-12-01
Four periods of EMEP (European Monitoring and Evaluation Programme) intensive measurement campaigns (June 2006, January 2007, September-October 2008 and February-March 2009) were modelled using the regional air quality model CAMx with VBS (Volatility Basis Set) approach for the first time in Europe within the framework of the EURODELTA-III model intercomparison exercise. More detailed analysis and sensitivity tests were performed for the period of February-March 2009 and June 2006 to investigate the uncertainties in emissions as well as to improve the modelling of organic aerosols (OA). Model performance for selected gas phase species and PM2.5 was evaluated using the European air quality database Airbase. Sulfur dioxide (SO2) and ozone (O3) were found to be overestimated for all the four periods with O3 having the largest mean bias during June 2006 and January-February 2007 periods (8.93 and 12.30 ppb mean biases, respectively). In contrast, nitrogen dioxide (NO2) and carbon monoxide (CO) were found to be underestimated for all the four periods. CAMx reproduced both total concentrations and monthly variations of PM2.5 very well for all the four periods with average biases ranging from -2.13 to 1.04 μg m-3. Comparisons with AMS (Aerosol Mass Spectrometer) measurements at different sites in Europe during February-March 2009, showed that in general the model over-predicts the inorganic aerosol fraction and under-predicts the organic one, such that the good agreement for PM2.5 is partly due to compensation of errors. The effect of the choice of volatility basis set scheme (VBS) on OA was investigated as well. Two sensitivity tests with volatility distributions based on previous chamber and ambient measurements data were performed. For February-March 2009 the chamber-case reduced the total OA concentrations by about 43 % on average. On the other hand, a test based on ambient measurement data increased OA concentrations by about 47 % for the same period bringing model
A numerical model of the heat balance in flowing waters including thermal manipulations
International Nuclear Information System (INIS)
A numerical model is presented for the simulation of water temperatures and heat flow manipulations in flowing waters. The model is based on the balance equation of a cubic volume of a river, which, when described in Lagrange coordinates, is flowing downwards with the mean flow velocity. An important condition for the balance considerations is the assumption of complete mixing. The energy flow distribution is discussed in detail for the conditions, which are representative for a natural river. Of main interest for the energetic considerations are the treatment of radiation processes and the parameterization of the turbulent heat flows between the river and the atmosphere. (orig./HP)
Gall, Elliott T.; Siegel, Jeffrey A.; Corsi, Richard L.
2015-01-01
We develop an ozone transport and reaction model to determine reaction probabilities and assess the importance of physical properties such as porosity, porediameter, and material thickness on reactive uptake of ozone to five materials. The one-dimensional model accounts formolecular diffusion from bulk air to the air−material interface, reaction at the interface, and diffusive transport and reaction through material pore volumes. Material-ozone reaction probabilities that account for internal...
Social Rationality as a Unified Model of Man (Including Bounded Rationality)
Lindenberg, Siegwart
2001-01-01
In 1957, Simon published a collection of his essays under the title of “Models of Man: Social and Rational”. In the preface, he explains the choice for this title: All of the essays “are concerned with laying foundations for a science of man that will comfortably accommodate his dual nature as a social and as a rational animal.” (p. vii) Observe that the title of the book refers to two models of man, one social and one rational. Throughout his life, Simon kept contributing to this science of ...
Modeling and simulation of nanoscale tri-gate MOSFETs including quantum effects
International Nuclear Information System (INIS)
Quantum effects are predominant in tri-gate MOSFETs, so a model should be developed. For the first time, this paper presents the analytical model for quantization effects of thin film silicon tri-gate MOSFETs by using variational approach. An analytical expression of the inversion charge distribution function (ICDF) or wave function for the tri-gate MOSFETs has been obtained. This obtained ICDF is used to calculate the important device parameters, such as the inversion charge centroid and inversion charge density. The results are validated against with the simulation data. (semiconductor devices)
Description and Application of A Model of Seepage under A Weir Including Mechanical Clogging
Sroka Zbigniew; Walczak Zbigniew; Wosiewicz Bogdan
2014-01-01
The paper discusses seepage flow under a damming structure (a weir) in view of mechanical clogging in a thin layer at the upstream site. It was assumed that in this layer flow may be treated as one-dimensional (perpendicular to the layer), while elsewhere flow was modelled as two-dimensional. The solution in both zones was obtained in the discrete form using the finite element method and the Euler method. The effect of the clogging layer on seepage flow was modelled using the third kind bound...
Including Antenna Models in Microwave Imaging for Breast-Cancer Screening
DEFF Research Database (Denmark)
Rubæk, Tonny; Meincke, Peter
2006-01-01
Microwave imaging is emerging as a tool for screening for breast cancer, but the lack of methods for including the characteristics of the antennas of the imaging systems in the imaging algorithms limits their performance. In this paper, a method for incorporating the full antenna characteristics...
Energy Technology Data Exchange (ETDEWEB)
Ng, Jonathan [Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA; Huang, Yi-Min [Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA; Hakim, Ammar [Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA; Bhattacharjee, A. [Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA; Stanier, Adam [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Wang, Liang [Space Science Center and Physics Department, University of New Hampshire, Durham, New Hampshire 03824, USA; Germaschewski, Kai [Space Science Center and Physics Department, University of New Hampshire, Durham, New Hampshire 03824, USA
2015-11-01
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results. (C) 2015 AIP Publishing LLC.
Stevens, Richard; Gayme, Dennice; Meyers, Johan; Meneveau, Charles
2015-11-01
We present results from large eddy simulations (LES) of wind farms consisting of tens to hundreds of turbines with respective streamwise and spanwise spacings approaching 35 and 12 turbine diameters. Even in staggered farms where the distance between consecutive turbines in the flow direction is more than 50 turbine diameters, we observe visible wake effects. In aligned farms, the performance of the turbines in the fully developed regime, where the power output as function of the downstream position becomes constant, is shown to primarily depend on the streamwise distance between consecutive turbine rows. However, for other layouts the power production in the fully developed regime mainly depends on the geometrical mean turbine spacing (inverse turbine density). These findings agree very well with predictions from our recently developed coupled wake boundary layer (CWBL) model, which introduces a two way coupling between the wake (Jensen) and top-down model approaches (Stevens et al. JRSE 7, 023115, 2015). To further validate the CWBL model we apply it to the problem of determining the optimal wind turbine thrust coefficient for power maximization over the entire farm. The CWBL model predictions agree very well with recent LES results (Goit & Meyers, JFM 768, 5-50, 2015). FOM Fellowships for Young Energy Scientists (YES!), NSF (IIA 1243482, the WINDINSPIRE project), ERC (FP7-Ideas, 306471).
Ng, Jonathan; Hakim, Ammar; Bhattacharjee, Amitava; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai
2015-01-01
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell (PIC) simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here we perform the complementary resistive MHD, Hall MHD and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in re...
Social Rationality as a Unified Model of Man (Including Bounded Rationality)
Lindenberg, Siegwart
2001-01-01
In 1957, Simon published a collection of his essays under the title of “Models of Man: Social and Rational”. In the preface, he explains the choice for this title: All of the essays “are concerned with laying foundations for a science of man that will comfortably accommodate his dual nature as a soc
International Nuclear Information System (INIS)
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results
Description of the new version 4.0 of the tritium model UFOTRI including user guide
International Nuclear Information System (INIS)
In view of the future operation of fusion reactors the release of tritium may play a dominant role during normal operation as well as after accidents. Because of its physical and chemical properties which differ significantly from those of other radionuclides, the model UFOTRI for assessing the radiological consequences of accidental tritium releases has been developed. It describes the behaviour of tritium in the biosphere and calculates the radiological impact on individuals and the population due to the direct exposure and by the ingestion pathways. Processes such as the conversion of tritium gas into tritiated water (HTO) in the soil, re-emission after deposition and the conversion of HTO into organically bound tritium, are considered. The use of UFOTRI in its probabilistic mode shows the spectrum of the radiological impact together with the associated probability of occurrence. A first model version was established in 1991. As the ongoing work on investigating the main processes of the tritium behaviour in the environment shows up new results, the model has been improved in several points. The report describes the changes incorporated into the model since 1991. Additionally provides the up-dated user guide for handling the revised UFOTRI version which will be distributed to interested organizations. (orig.)
A Complete Spectral Analysis of the Jackiw-Rebbi Model, Including its Zero Mode
Charmchi, Farid
2014-01-01
In this paper we present a complete and exact spectral analysis of the $(1+1)$-dimensional model that Jackiw and Rebbi considered to show that the half-integral fermion numbers are possible due to the presence of an isolated self charge conjugate zero mode. The model possesses the charge and particle conjugation symmetries. These symmetries mandate the reflection symmetry of the spectrum about the line $E=0$. We obtain the bound state energies and wave functions of the fermion in this model using two different methods, analytically and exactly, for every arbitrary choice of the parameters of the kink, i.e. its value at spatial infinity ($\\theta_0$) and its scale of variations ($\\mu$). Then, we plot the bound state energies of the fermion as a function of $\\theta_0$. This graph enables us to consider a process of building up the kink from the trivial vacuum. We can then determine the origin and evolution of the bound state energy levels during this process. We see that the model has a dynamical mass generation...
Logical diagnosis model turbojet engine including double-circuit intermittent flow of his injuries
Directory of Open Access Journals (Sweden)
О.П. Стьопушкіна
2007-01-01
Full Text Available In this article is considered question of the change quantitative and qualitative factors of the technical condition constructive element running part of jet engine. As a result called on experimental studies diagnostic sign were definite sign with provision for intermittent damages and on base this is built expert model of the turbojet double-circuit engine.
Energy Technology Data Exchange (ETDEWEB)
Lee, P.D.; Chirazi, A.; Atwood, R.C.; Wang, W
2004-01-25
Phase transition phenomena in metallic alloys involve complex physical processes occurring over a wide range of temporal, spatial and energy scales. Multiscale modelling is a powerful methodology for understanding these complex systems. In this paper, a multiscale model of grain and pore formation is presented during solidification. At the microscale, a combined stochastic-deterministic approach based on the cellular automata method is used to solve multicomponent diffusion in a three-phase system (liquid, solid and gas), simulating the nucleation and growth of both grains and pores. The impingement of the growing pores upon the developing solid is also solved to predict the tortuous shape of the porosity, a critical factor for fatigue properties. The micromodel is coupled with a finite element method (FEM) solution of the macroscale heat transfer and fluid flow in industrial castings through the temperature and pressure fields. The result model was used to investigate the influence of local solidification time, hydrogen content, local metallostatic pressure and alloy composition upon the predicted grain structure and pore morphology. Comparison of the model predictions to both laboratory and industrial scale castings are presented.
Situational effects of the school factors included in the dynamic model of educational effectiveness
Creerners, Bert; Kyriakides, Leonidas
2009-01-01
We present results of a longitudinal study in which 50 schools, 113 classes and 2,542 Cypriot primary students participated. We tested the validity of the dynamic model of educational effectiveness and especially its assumption that the impact of school factors depends on the current situation of th
Energy Technology Data Exchange (ETDEWEB)
Ng, Jonathan; Huang, Yi-Min; Hakim, Ammar; Bhattacharjee, A. [Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Stanier, Adam; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Wang, Liang; Germaschewski, Kai [Space Science Center and Physics Department, University of New Hampshire, Durham, New Hampshire 03824 (United States)
2015-11-15
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.
2010-06-02
... Procedures (44 FR 11034, February 26, 1979); and 3. Will not have a significant economic impact, positive or... Directives; Bombardier, Inc. Model CL-600-2B16 (CL- 604 Variants (Including CL-605 Marketing Variant... addition to Bombardier Inc. Models CL-600-2B19, CL-600-2C10 and CL-600-2D24. The latter three models...
DEFF Research Database (Denmark)
Sun, C; Madsen, P; Lund, M S;
2010-01-01
rate within 56 d after first service) were analyzed using single- and multiple-trait sire models including 1 or 3 production traits. Model stability was evaluated by correlation between EBV from 2 sub-data sets (DATAA and DATAB). Model predictive ability was assessed by the correlation between EBV from...
A catchment-scale groundwater model including sewer pipe leakage in an urban system
Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa
2016-04-01
Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195
Finite element models applied in active structural acoustic control
Oude Nijhuis, Marco H.H.; de Boer; Rao, Vittal S.
2002-01-01
This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controller design. The reduced structural model is combined with an acoustic model which uses the radiation mode concept. For a test case consisting of a rectangular plate with one piezo patch the model re...
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2008-01-01
-dimensional continuous boundary. Additionally, a simple method for determining the so-called equivalent coupling factor is presented. The validity of this method is demonstrated by numerical simulations of the vibration response of a master plate structure with fuzzy attachments. It is revealed that the method performs......Many complicated systems of practical interest consist basically of a well-defined outer shell-like master structure and a complicated internal structure with uncertain dynamic properties. Using the "fuzzy structure theory" for predicting audible frequency vibration, the internal structure is......-dimensional continuous boundary was examined in a companion paper (L. Friis and M. Ohlrich, "Vibration modeling of structural fuzzy with continuous boundary," J. Acoust. Soc. Am. 123, 718-728 (2008)). In the present paper, this method is extended, such that it allows modeling of fuzzy substructures with a two...
DEFF Research Database (Denmark)
Bollerslev, Tim; Andersen, Torben G.; Diebold, Francis X.
A rapidly growing literature has documented important improvements in financial return volatility measurement and forecasting via use of realized variation measures constructed from high-frequency returns coupled with simple modeling procedures. Building on recent theoretical results in Barndorff......-Nielsen and Shephard (2004a, 2005) for related bi-power variation measures, the present paper provides a practical and robust framework for non-parametrically measuring the jump component in asset return volatility. In an application to the DM/$ exchange rate, the S&P500 market index, and the 30-year U...... sophisticated volatility forecasting model, we find that almost all of the predictability in daily, weekly, and monthly return volatilities comes from the non-jump component. Our results thus set the stage for a number of interesting future econometric developments and important financial applications by...
A model for the preventive maintenance scheduling of power plants including wind farms
International Nuclear Information System (INIS)
This paper considers the problem of Power Plant Preventive Maintenance Scheduling (PPPMS). The goal is to evaluate which generators must stop production to be checked periodically for safety reasons. Preventive maintenance is crucial because a failure in a power plant may cause a general breakdown in an electric grid. This situation might result in a disruption of electric service to customers. The objective is to perform the problem of PPPMS from a reliability perspective, so the reliability of the system is maximized. The model presented considers the integration of wind power plants or wind farms into a traditional electric generating system comprising thermal, hydroelectric, and nuclear power units. The resulting model is categorized as an optimization problem. A case study based on a real power system is presented. Its main objective is to validate the efficiency of the proposed analysis
Benzekry, Sebastien
2010-01-01
Angiogenesis is a key process in the tumoral growth which allows the cancerous tissue to impact on its vasculature in order to improve the nutrient's supply and the metastatic process. In this paper, we introduce a model for the density of metastasis which takes into account for this feature. It is a two dimensional structured equation with a vanishing velocity field and a source term on the boundary. We present here the mathematical analysis of the model, namely the well-posedness of the equation and the asymptotic behavior of the solutions, whose natural regularity led us to investigate some basic properties of the space $\\Wd(\\Om)=\\{V\\in L^1;\\;\\div(GV)\\in L^1\\}$, where $G$ is the velocity field of the equation.
International Nuclear Information System (INIS)
Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)
A generalized model for optimal transport of images including dissipation and density modulation
Maas, Jan; Rumpf, Martin; Schönlieb, Carola; Simon, Stefan
2015-01-01
In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorpor...
The Food Crises: A quantitative model of food prices including speculators and ethanol conversion
Marco Lagi; Yavni Bar-Yam; Bertrand, Karla Z.; Yaneer Bar-Yam
2011-01-01
Recent increases in basic food prices are severely impacting vulnerable populations worldwide. Proposed causes such as shortages of grain due to adverse weather, increasing meat consumption in China and India, conversion of corn to ethanol in the US, and investor speculation on commodity markets lead to widely differing implications for policy. A lack of clarity about which factors are responsible reinforces policy inaction. Here, for the first time, we construct a dynamic model that quantita...
Lingen Chen, Xuxian Kan, Fengrui Sun, Feng Wu
2013-01-01
The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ra...
Institute of Scientific and Technical Information of China (English)
郭金运; 陶华学
2003-01-01
In order to process different kinds of observing data with different precisions, a new solution model of nonlinear dynamic integral least squares adjustment was put forward, which is not dependent on their derivatives. The partial derivative of each component in the target function is not computed while iteratively solving the problem. Especially when the nonlinear target function is more complex and very difficult to solve the problem, the method can greatly reduce the computing load.
A quark model calculation of yy->pipi including final-state interactions
Blundell, H G; Hay, G; Swanso, E
2000-01-01
A quark model calculation of the processes yy->pi+pi- and yy->pipi is performed. At tree level, only charged pions couple to the initial state photons and neutral pions are not exceeded in the final state. However a small but significant cross section is observed. We demonstrate that this may be accounted for by a rotation in isospin space induced by final-state interactions.
Directory of Open Access Journals (Sweden)
Javad Khodadadi Sangdeh
2014-04-01
Full Text Available Introduction: Adolescence is a critical stage for the onset of high-risk behavior of smoking. The present study investigated the role of parental monitoring and deviant peer companionship with regard to smoking in adolescents. Methods: The design of the current study involves correlation using structural equation modeling. The population of the study involves all male and female adolescents in Tehran high school, from which 1241 individuals were selected through cluster sampling. To collect the data, different scales such as Iran’s adolescent risk-taking scales, parental monitoring scales and finally companionship with deviant peers were used. The data were analyzed using correlation statistical indices, independent t-test and structural equation modeling. Results: The obtained results showed that there was no significant difference between girls and boys in smoking risk-taking. In addition, parental monitoring for girls was higher than for boys; however, boys reported greater levels of companionship with deviant peers. Moreover, parental monitoring through companionship with peers had a significant effect on smoking. The mediating model can explain 10% of smoking variance. Conclusion: Attention to the role of parental monitoring in reducing deviant peer company and consequently reducing the risk of smoking by adolescents is very important.
International Nuclear Information System (INIS)
Numerical simulation method was examined for chemical reactions of actinide elements U, Pu, Np, and Tc etc. in an aqueous nitric acid solution. It is known that the numerical calculation for the Purex process with chemical reactions and liquid flow becomes stiff, because time constant for the chemical reactions is two to three order of magnitude smaller due to the very fast reactions than that of mass transfer or of reaching distribution equilibrium. Recently in order to increase a time step Δt the partial equilibrium (P.E.) model, in which some very fast reactions are treated by the equilibrium law whereas other reactions are by the rate law, has been proposed. In the present study concentration change of the solutes in an aqueous solution with 30 chemical reactions, of which 4 are expressed by equilibrium equations, has been calculated. Description of the P.E. model and the comparison of the results and cpu time between the kinetic and the P.E. models are given. (author)
Including network knowledge into Cox regression models for biomarker signature discovery.
Fröhlich, Holger
2014-03-01
Discovery of prognostic and diagnostic biomarker gene signatures for diseases, such as cancer, is seen as a major step toward a better personalized medicine. During the last decade various methods have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinical diagnosis is the typical low reproducibility of these signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks. Most of these methods focus on classification problems, that is learn a model from data that discriminates patients into distinct clinical groups. Far less has been published on approaches that predict a patient's event risk. In this paper, we investigate eight methods that integrate network information into multivariable Cox proportional hazard models for risk prediction in breast cancer. We compare the prediction performance of our tested algorithms via cross-validation as well as across different datasets. In addition, we highlight the stability and interpretability of obtained gene signatures. In conclusion, we find GeneRank-based filtering to be a simple, computationally cheap and highly predictive technique to integrate network information into event time prediction models. Signatures derived via this method are highly reproducible. PMID:24430933
KSTAR ICRF Antenna Modeling including Coupling and Application to the Test of Vacuum Feed Through
Energy Technology Data Exchange (ETDEWEB)
Kim, Sun Ho; Wang, Son Jong; Hwang, Churl Kew; Kwak, Jong Gu; Bae, Young Dug [KAERI, Daejeon (Korea, Republic of)
2010-01-15
It is observed that the induced voltages of antenna staps can be larger than that of driven antenna strap by mutual coupling between antenna straps at the specific frequency range. Therefore, it is required to study on the coupling between straps for more efficient RF power transmission to plasmas by driving specific phase and amplitude of currents on straps. In this research, the basis for the understanding of coupling phenomena of ICRF antenna straps is established by the completion of antenna transmission line model with coupling via applying the measured S-parameter. The vacuum and electrical characteristics of Vacuum Feed Thru are tested for the installation to the KSTAR ICRF antenna strap 1 and 4. The He leak rate requirement is satisfied in the vacuum test and breakdown or excessive temperature increase are not observed in the electrical test applying 6 kV to VFT with 10 kW RF transmitter. Electrical characteristics test are tried by using the coupling between antenna straps and the antenna strap model completed is used for the analysis. It is observed that the high voltage enough for the VFT test is not induced at the test frequency of 48 MHz and it is confirmed in the antenna transmission line model as well
A stepped leader model for lightning including charge distribution in branched channels
International Nuclear Information System (INIS)
The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.
SAR variation study from 300 to 5000 MHz for 15 voxel models including different postures
International Nuclear Information System (INIS)
An extensive study on specific absorption rate (SAR) covering 720 simulations and 15 voxel models (18-105 kg) has been performed by applying the parallel finite-difference time-domain method. High-resolution whole-body models have been irradiated with plane waves from 300 MHz to 5 GHz by applying various incoming directions and polarizations. Detailed results of whole-body SAR and peak 10 g SAR are reported, and SAR variation in the dB scale is examined. For an adult, the effect of incoming direction on whole-body SAR is larger in the GHz range than at around 300-450 MHz, and the effect is stronger with vertical polarization. For a child (height ∼1.2 m), the effect of incoming direction is similar as for an adult, except at 300 MHz for horizontal polarization. The effect of the phantom (18-105 kg) on whole-body SAR is larger at around 2-5 GHz and at vertical 300 MHz (proximity of whole-body resonance for the child) than at around horizontal 300-900 MHz. Body posture has little effect on whole-body SAR in the GHz range, but at around 300-450 MHz, one may even expect a 2 dB rise in whole-body SAR if posture is changed from the standing position. Posture affects peak 10 g SAR much more than whole-body SAR. The polarization of the incident electric field may have an effect of several dB on whole-body SAR. Between 2 and 5 GHz for adults, whole-body SAR is higher for horizontal than for vertical polarization, if the incoming direction is in the azimuth plane. In the GHz range, horizontal polarization gives higher whole-body SAR, especially for irradiation from the lateral direction. A comparison between homogeneous and heterogeneous models was done. A homogenized model underestimates whole-body SAR, especially at ∼2 GHz. The basic restriction of whole-body SAR, set by ICNIRP, is exceeded in the smallest models (∼20 kg) at the reference level of exposure, but also some adult phantoms are close to the limit. The peak 10 g SAR limits were never exceeded in the studied
Mathematical model of radon activity measurements
Energy Technology Data Exchange (ETDEWEB)
Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Zambianchi, Pedro, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)
2015-07-01
Present work describes a mathematical model that quantifies the time dependent amount of {sup 222}Rn and {sup 220}Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of {sup 222}Rn and {sup 220}Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since {sup 220}Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to {sup 222}Rn, only. Furthermore, the model also addresses the activity of {sup 220}Rn and {sup 222}Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)
Mathematical model of radon activity measurements
International Nuclear Information System (INIS)
Present work describes a mathematical model that quantifies the time dependent amount of 222Rn and 220Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of 222Rn and 220Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since 220Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to 222Rn, only. Furthermore, the model also addresses the activity of 220Rn and 222Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)
Finite element models applied in active structural acoustic control
Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.
2002-01-01
This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll
Berglund, Judith
2007-01-01
Approximately 2-3 billion metric tons of soil dust are estimated to be transported in the Earth's atmosphere each year. Global transport of desert dust is believed to play an important role in many geochemical, climatological, and environmental processes. This dust carries minerals and nutrients, but it has also been shown to carry pollutants and viable microorganisms capable of harming human, animal, plant, and ecosystem health. Saharan dust, which impacts the eastern United States (especially Florida and the southeast) and U.S. Territories in the Caribbean primarily during the summer months, has been linked to increases in respiratory illnesses in this region and has been shown to carry other human, animal, and plant pathogens. For these reasons, this candidate solution recommends integrating Saharan dust distribution and concentration forecasts from the NASA GOCART global dust cycle model into a public health DSS (decision support system), such as the CDC's (Centers for Disease Control and Prevention's) EPHTN (Environmental Public Health Tracking Network), for the eastern United States and Caribbean for early warning purposes regarding potential increases in respiratory illnesses or asthma attacks, potential disease outbreaks, or bioterrorism. This candidate solution pertains to the Public Health National Application but also has direct connections to Air Quality and Homeland Security. In addition, the GOCART model currently uses the NASA MODIS aerosol product as an input and uses meteorological forecasts from the NASA GEOS-DAS (Goddard Earth Observing System Data Assimilation System) GEOS-4 AGCM. In the future, VIIRS aerosol products and perhaps CALIOP aerosol products could be assimilated into the GOCART model to improve the results.
Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.
Morrison, Ian S; Gowanlock, Michael G
2015-08-01
Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own. PMID:26274865
DEFF Research Database (Denmark)
Andersen, Morten; Vinther, Frank; Ottesen, Johnny T.
2013-01-01
curves stay non-negative and bounded, which can be interpreted as a mathematical formulation of homeostasis. No oscillating solutions are present when using physiologically reasonable parameter values. This indicates that the ultradian rhythm originate from different mechanisms.Using physiologically......This paper presents a mathematical model of the HPA axis. The HPA axis consists of the hypothalamus, the pituitary and the adrenal glands in which the three hormones CRH, ACTH and cortisol interact through receptor dynamics. Furthermore, it has been suggested that receptors in the hippocampus have...
Double pendulum model for a tennis stroke including a collision process
Youn, Sun-Hyun
2015-10-01
By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.
Donelan, M. A.; Soloviev, A. V.
2016-05-01
A mixing length model for air-water gas transfer is developed to include the effects of wave breaking. The model requires both the shear velocity induced by the wind and the integrated wave dissipation. Both of these can be calculated for tanks and oceans by a full spectrum wave model. The gas transfer model is calibrated, with laboratory tank measurements of carbon dioxide flux, and transported to oceanic conditions to yield air-sea transfer velocity versus wind speed.
A model of plasma current through a hole of Rogowski probe including sheath effects
Furui, H.; Ejiri, A.; Nagashima, Y.; Takase, Y.; Sonehara, M.; Tsujii, N.; Yamaguchi, T.; Shinya, T.; Togashi, H.; Homma, H.; Nakamura, K.; Takeuchi, T.; Yajima, S.; Yoshida, Y.; Toida, K.; Takahashi, W.; Yamazaki, H.
2016-04-01
In TST-2 Ohmic discharges, local current is measured using a Rogowski probe by changing the angle between the local magnetic field and the direction of the hole of the Rogowski probe. The angular dependence shows a peak when the direction of the hole is almost parallel to the local magnetic field. The obtained width of the peak was broader than that of the theoretical curve expected from the probe geometry. In order to explain this disagreement, we consider the effect of sheath in the vicinity of the Rogowski probe. A sheath model was constructed and electron orbits were numerically calculated. From the calculation, it was found that the electron orbit is affected by E × B drift due to the sheath electric field. Such orbit causes the broadening of the peak in the angular dependence and the dependence agrees with the experimental results. The dependence of the broadening on various plasma parameters was studied numerically and explained qualitatively by a simplified analytical model.
International Nuclear Information System (INIS)
Purpose: Model the effects of radiation dosimetry on IQ among pediatric patients with central nervous system (CNS) tumors. Methods and Materials: Pediatric patients with CNS embryonal tumors (n = 39) were prospectively evaluated with serial cognitive testing, before and after treatment with postoperative, risk-adapted craniospinal irradiation (CSI) and conformal primary-site irradiation, followed by chemotherapy. Differential dose-volume data for 5 brain volumes (total brain, supratentorial brain, infratentorial brain, and left and right temporal lobes) were correlated with IQ after surgery and at follow-up by use of linear regression. Results: When the dose distribution was partitioned into 2 levels, both had a significantly negative effect on longitudinal IQ across all 5 brain volumes. When the dose distribution was partitioned into 3 levels (low, medium, and high), exposure to the supratentorial brain appeared to have the most significant impact. For most models, each Gy of exposure had a similar effect on IQ decline, regardless of dose level. Conclusions: Our results suggest that radiation dosimetry data from 5 brain volumes can be used to predict decline in longitudinal IQ. Despite measures to reduce radiation dose and treatment volume, the volume that receives the highest dose continues to have the greatest effect, which supports current volume-reduction efforts
Energy Technology Data Exchange (ETDEWEB)
Regner, K. T.; Wei, L. C. [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Malen, J. A., E-mail: jonmalen@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2015-12-21
We develop a solution to the two-temperature diffusion equation in axisymmetric cylindrical coordinates to model heat transport in thermoreflectance experiments. Our solution builds upon prior solutions that account for two-channel diffusion in each layer of an N-layered geometry, but adds the ability to deposit heat at any location within each layer. We use this solution to account for non-surface heating in the transducer layer of thermoreflectance experiments that challenge the timescales of electron-phonon coupling. A sensitivity analysis is performed to identify important parameters in the solution and to establish a guideline for when to use the two-temperature model to interpret thermoreflectance data. We then fit broadband frequency domain thermoreflectance (BB-FDTR) measurements of SiO{sub 2} and platinum at a temperature of 300 K with our two-temperature solution to parameterize the gold/chromium transducer layer. We then refit BB-FDTR measurements of silicon and find that accounting for non-equilibrium between electrons and phonons in the gold layer does lessen the previously observed heating frequency dependence reported in Regner et al. [Nat. Commun. 4, 1640 (2013)] but does not completely eliminate it. We perform BB-FDTR experiments on silicon with an aluminum transducer and find limited heating frequency dependence, in agreement with time domain thermoreflectance results. We hypothesize that the discrepancy between thermoreflectance measurements with different transducers results in part from spectrally dependent phonon transmission at the transducer/silicon interface.
On the modelling of semi-insulating GaAs including surface tension and bulk stresses
Energy Technology Data Exchange (ETDEWEB)
Dreyer, W.; Duderstadt, F.
2004-07-01
Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)
Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.
2012-01-01
To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.
International Nuclear Information System (INIS)
We develop a solution to the two-temperature diffusion equation in axisymmetric cylindrical coordinates to model heat transport in thermoreflectance experiments. Our solution builds upon prior solutions that account for two-channel diffusion in each layer of an N-layered geometry, but adds the ability to deposit heat at any location within each layer. We use this solution to account for non-surface heating in the transducer layer of thermoreflectance experiments that challenge the timescales of electron-phonon coupling. A sensitivity analysis is performed to identify important parameters in the solution and to establish a guideline for when to use the two-temperature model to interpret thermoreflectance data. We then fit broadband frequency domain thermoreflectance (BB-FDTR) measurements of SiO2 and platinum at a temperature of 300 K with our two-temperature solution to parameterize the gold/chromium transducer layer. We then refit BB-FDTR measurements of silicon and find that accounting for non-equilibrium between electrons and phonons in the gold layer does lessen the previously observed heating frequency dependence reported in Regner et al. [Nat. Commun. 4, 1640 (2013)] but does not completely eliminate it. We perform BB-FDTR experiments on silicon with an aluminum transducer and find limited heating frequency dependence, in agreement with time domain thermoreflectance results. We hypothesize that the discrepancy between thermoreflectance measurements with different transducers results in part from spectrally dependent phonon transmission at the transducer/silicon interface
Description and Application of A Model of Seepage under A Weir Including Mechanical Clogging
Directory of Open Access Journals (Sweden)
Sroka Zbigniew
2014-07-01
Full Text Available The paper discusses seepage flow under a damming structure (a weir in view of mechanical clogging in a thin layer at the upstream site. It was assumed that in this layer flow may be treated as one-dimensional (perpendicular to the layer, while elsewhere flow was modelled as two-dimensional. The solution in both zones was obtained in the discrete form using the finite element method and the Euler method. The effect of the clogging layer on seepage flow was modelled using the third kind boundary condition. Seepage parameters in the clogging layer were estimated based on laboratory tests conducted by Skolasińska [2006]. Typical problem was taken to provide simulation and indicate how clogging affects the seepage rate and other parameters of the flow. Results showed that clogging at the upstream site has a significant effect on the distribution of seepage velocity and hydraulic gradients. The flow underneath the structure decreases with time, but these changes are relatively slow.
International Nuclear Information System (INIS)
A thermo-mechanical turbulence model is developed and used for predicting heat transfer in a gas-solid flow through a vertical pipe with constant wall heat flux. The new four-way interaction model makes use of the thermal kθ-τθ equations, in addition to the hydrodynamic k-τ transport, and accounts for the particle-particle and particle-wall collisions through a Eulerian/Lagrangian formulation. The simulation results indicate that the level of thermal turbulence intensity and the heat transfer are strongly affected by the particle collisions. Inter-particle collisions attenuate the thermal turbulence intensity near the wall but somewhat amplify the temperature fluctuations in the pipe core region. The hydrodynamic-to-thermal times-scale ratio and the turbulent Prandtl number in the region near the wall increase due to the inter-particle collisions. The results also show that the use of a constant or the single-phase gas turbulent Prandtl number produces error in the thermal eddy diffusivity and thermal turbulent intensity fields. Simulation results also indicate that the inter-particle contact heat conduction during collision has no significant effect in the range of Reynolds number and particle diameter studied
Sugihara, T; Yawata, Y; Hebbel, R P
1994-05-01
Deoxygenation-induced red blood cell (RBC) sickling probably activates multiple cation leak pathways. In an attempt to model this, we examined the net passive K efflux ("K leak") from normal and sickle RBCs undergoing elliptical deformation in hypotonic media (200 mOsmol/L). This hypotonic deformation activates two deformation-dependent K leak pathways that are not detectable during the balanced leak (Kefflux = Nainflux) resulting from deformation of RBCs in isotonic medium. These are (1) a calcium-dependent leak component and (2) a novel leak pathway that is inhibited by substitution of bromide (but not sulfamate) for chloride, which converts the unbalanced K leak (Kefflux > Nainflux) of hypotonic deformation to a residual balanced leak. This dramatic effect of hypotonic deformation is reversible, is detected in both normal and sickle RBCs, and is inhibited significantly by 4,4'-diisothiocyano-2,2'-stilbene disulfonate. Remarkably, bromide also inhibits by 55% the K leak resulting from authentic deoxygenation-induced RBC sickling and, thereby, blunts the imbalance of accompanying monovalent cation leaks. The unique effect of bromide is not readily explainable on the basis of known behaviors of known ion leak/transport pathways. The mechanical threshold for triggering K leak during hypotonic deformation is at applied shear stress of 164 dyne/cm2, a value similar to the abnormal susceptibility we previously found for oxygenated sickle RBCs during isotonic deformation. These data suggest that membrane stretch accompanying hypotonic deformation activates the same multiple leak pathways that contribute to net K leak during authentic RBC sickling, including a previously unknown bromide-sensitive leak. PMID:7513211
Petri Nets Hierarchical Modelling Framework of Active Products' Community
Zouinkhi, Ahmed; Bajic, Eddy; Rondeau, Eric; Abdelkrim, Mohamed Naceur
2010-01-01
In this work, we define the concept of an active security management in a distributed system, with Hierarchical Petri nets modelling of active product's behaviour. The target application is dedicated to security management of hazardous products but the concept is extensible to other application areas. We proposed an active product's behaviour model represented by hierarchical coloured Petri nets. This hierarchy includes sub-models where each one allows displaying the evolution of every state ...
Bixio, A.; Gambolati, G.; Paniconi, C.; Putti, M.; Shestopalov, V.; Bublias, V.; Bohuslavsky, A.; Kasteltseva, N.; Rudenko, Y.
2002-06-01
Morphogenetic depressions or "dishes" in the Chernobyl exclusion zone play an important role in the transport of water and solutes (in particular the radionuclides 137Cs and 90Sr), functioning as accumulation basins and facilitating their transfer between the surface and subsurface via return flow (under conditions of high soil water saturation) and infiltration. From a digital elevation model (DEM) of the 112-km2 study area, 583 dishes (covering about 10% of the area) are identified and classified into four geometric types, ranging in size from 2,500 to 22,500 m2, and a with a maximum depth of 2 m. The collective influence of these depressions on the hydrology of the study basin is investigated with a coupled model of three-dimensional saturated and unsaturated subsurface flow and one-dimensional (along the rill or channel direction s) hill-slope and stream overland flow. Special attention is given to the handling of dishes, applying a "lake boundary-following" procedure in the topographic analysis, a level pool routing algorithm to simulate the storage and retardation effects of these reservoirs, and a higher hydraulic conductivity in the topmost 3 m of soil relative to non-dish cells in accordance with field observations. Modeling the interactions between the surface and subsurface hydrologic regimes requires careful consideration of the distinction between potential and actual atmospheric fluxes and their conversion to ponding, overland flow, and infiltration, and this coupling is described in some detail. Further consideration is given to the treatment of snow accumulation, snowmelt, and soil freezing and thawing processes, handled via linear and step function variations over the winter months in atmospheric boundary conditions and in upper soil hydraulic conductivities. A 1-year simulation of the entire watershed is used to analyze the water table response and, at the surface, the ponding heads and the infiltration/exfiltration fluxes. Saturation patterns and
Energy-based fatigue model for shape memory alloys including thermomechanical coupling
Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong
2016-03-01
This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.
International Nuclear Information System (INIS)
The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U3SiAl-Al and U3Si2-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U3SiAl-Al in plate, tube, and rod configurations as a function of fission density. Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 μm). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U3SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs
Mahran, Yossra; Schueler, Robert; Weber, Marcel; Pizarro, Carmen; Nickenig, Georg; Skowasch, Dirk; Hammerstingl, Christoph
2016-01-01
AIM To find parameters from transthorathic echocardiography (TTE) including speckle-tracking (ST) analysis of the right ventricle (RV) to identify precapillary pulmonary hypertension (PH). METHODS Forty-four patients with suspected PH undergoing right heart catheterization (RHC) were consecutively included (mean age 63.1 ± 14 years, 61% male gender). All patients underwent standardized TTE including ST analysis of the RV. Based on the subsequent TTE-derived measurements, the presence of PH was assessed: Left ventricular ejection fraction (LVEF) was calculated by Simpsons rule from 4Ch. Systolic pulmonary artery pressure (sPAP) was assessed with continuous wave Doppler of systolic tricuspid regurgitant velocity and regarded raised with values ≥ 30 mmHg as a surrogate parameter for RA pressure. A concomitantly elevated PCWP was considered a means to discriminate between the precapillary and postcapillary form of PH. PCWP was considered elevated when the E/e’ ratio was > 12 as a surrogate for LV diastolic pressure. E/e’ ratio was measured by gauging systolic and diastolic velocities of the lateral and septal mitral valve annulus using TDI mode. The results were then averaged with conventional measurement of mitral valve inflow. Furthermore, functional testing with six minutes walking distance (6MWD), ECG-RV stress signs, NT pro-BNP and other laboratory values were assessed. RESULTS PH was confirmed in 34 patients (precapillary PH, n = 15, postcapillary PH, n = 19). TTE showed significant differences in E/e’ ratio (precapillary PH: 12.3 ± 4.4, postcapillary PH: 17.3 ± 10.3, no PH: 12.1 ± 4.5, P = 0.02), LV volumes (ESV: 25.0 ± 15.0 mL, 49.9 ± 29.5 mL, 32.2 ± 13.6 mL, P = 0.027; EDV: 73.6 ± 24.0 mL, 110.6 ± 31.8 mL, 87.8 ± 33.0 mL, P = 0.021) and systolic pulmonary arterial pressure (sPAP: 61.2 ± 22.3 mmHg, 53.6 ± 20.1 mmHg, 31.2 ± 24.6 mmHg, P = 0.001). STRV analysis showed significant differences for apical RV longitudinal strain (RVAS: -7.5% ± 5
McLarty, Dustin Fogle
Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch
Energy Technology Data Exchange (ETDEWEB)
Paeth, H. [Geographical Institute, University of Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Thamm, H.P. [Geographical Institute, University of Bonn, Bonn (Germany)
2007-08-15
Previous studies have highlighted the crucial role of land degradation in tropical African climate. This effect urgently has to be taken into account when predicting future African climate under enhanced greenhouse conditions. Here, we present time slice experiments of African climate until 2025, using a high-resolution regional climate model. A supposable scenario of future land use changes, involving vegetation loss and soil degradation, is prescribed simultaneously with increasing greenhouse-gas concentrations in order to detect, where the different forcings counterbalance or reinforce each other. This proceeding allows us to define the regions of highest vulnerability with respect to future freshwater availability and food security in tropical and subtropical Africa and may provide a decision basis for political measures. The model simulates a considerable reduction in precipitation amount until 2025 over most of tropical Africa, amounting to partly more than 500 mm (20-40% of the annual sum), particularly in the Congo Basin and the Sahel Zone. The change is strongest in boreal summer and basically reflects the pattern of maximum vegetation cover during the seasonal cycle. The related change in the surface energy fluxes induces a substantial near-surface warming by up to 7C. According to the modified temperature gradients over tropical Africa, the summer monsoon circulation intensifies and transports more humid air masses into the southern part of West Africa. This humidifying effect is overcompensated by a remarkable decrease in surface evaporation, leading to the overall drying tendency over most of Africa. Extreme daily rainfall events become stronger in autumn but less intense in spring. Summer and autumn appear to be characterized by more severe heat waves over Subsaharan West Africa. In addition, the Tropical Easterly Jet is weakening, leading to enhanced drought conditions in the Sahel Zone. All these results suggest that the local impact of land
Roy, Sankar Kumar; Roy, Banani
In this article, a prey-predator system with Holling type II functional response for the predator population including prey refuge region has been analyzed. Also a harvesting effort has been considered for the predator population. The density-dependent mortality rate for the prey, predator and super predator has been considered. The equilibria of the proposed system have been determined. Local and global stabilities for the system have been discussed. We have used the analytic approach to derive the global asymptotic stabilities of the system. The maximal predator per capita consumption rate has been considered as a bifurcation parameter to evaluate Hopf bifurcation in the neighborhood of interior equilibrium point. Also, we have used fishing effort to harvest predator population of the system as a control to develop a dynamic framework to investigate the optimal utilization of the resource, sustainability properties of the stock and the resource rent is earned from the resource. Finally, we have presented some numerical simulations to verify the analytic results and the system has been analyzed through graphical illustrations.
Directory of Open Access Journals (Sweden)
Niko Schäpke
2014-07-01
Full Text Available Sustainability transitions require altered individual behaviors. Policies aimed at changing people’s consumption behavior are designed according to efficiency, consistency, and sufficiency principles. Taking into account shortcomings of the first two principles, this paper specifically addresses the sufficiency principle. Sufficiency policies are not very popular due to the fear that they may impede quality of life. This fear might be eased when highlighting the motivational side of sustainable behavior, such as the wish to care for future generations and the world’s poor. This article uses the capability approach (CA, developed primarily by Nobel-laureate economist Amartya Sen (1987a and philosopher Martha Nussbaum (1993, 2000, to a include the differentiation between self- and other-oriented goals and behavior, b build on its demonstrated success in assessing quality of life, and c assess the sustainability of behavior and policies. These three facets make CA suitable to analyze the effectiveness of sufficiency policies on sustainability and quality of life. To better understand the motivational side of sustainable behavior, CA is here for the first time enriched through approaches from environmental psychology. This enables us to highlight the idea of intrinsic empowerment as a building block for sufficiency policies. We close the article by highlighting further avenues for research.
Including Long-range Interactions in Atomistic Modelling of Diffusional Phase Changes
Energy Technology Data Exchange (ETDEWEB)
Mason, D R; Rudd, R E; Sutton, A P
2005-08-25
Phase transformations in 2xxx series aluminium alloys (Al-Cu-Mg) are investigated with an off-lattice atomistic kinetic Monte Carlo simulation incorporating the effects of strain around misfitting atoms and vacancies. Vacancy diffusion is modeled by comparing the energies of trial states, where the system is partially relaxed for each trial state. Only a limited precision is required for the energy of each trial state, determined by the value of k{sub B}T. Since the change in the relaxation displacement field caused by a vacancy hop decays as 1/r{sup 3}, it is sufficient to determine the next move by relaxing only those atoms in a sphere of finite radius centered on the moving vacancy. However, once the next move has been selected, the entire system is relaxed. Simulations of the early stages of phase separation in Al-Cu with elastic relaxation show an enhanced rate of clustering compared to those performed on the same system with a rigid lattice. However on a flexible lattice vacancy trapping by Mg atoms in the ternary Al-Cu-Mg system makes clustering slower than the corresponding rigid lattice calculation.
Novel Cross-Layer Simulation Platform to Include Realistic Channel Modeling in System Simulations
Directory of Open Access Journals (Sweden)
Getachew Redieteab
2012-08-01
Full Text Available Up to date wireless local access network (WLAN simulation platform development efforts have concentrated either on the physical (PHY layer or the medium access control (MAC layer. The obtainedperformance is thus biased in that one layer has more weight than the other. On the other hand, an allinclusive simulator based on the actual platforms could be too much resource consuming. Simulator architectures are indeed tailor-made for one of the layers and thus not convenient for the other. That is why we propose a new IEEE 802.11n/ac multi-user simulation platform with reduced complexity. This platform is composed of an all inclusive PHY layer module and an elaborated MAC layer module working in a symbiotic manner. Both PHY and MAC layers being finely represented, an accurate modeling of reality is made possible. This PHY+MAC simulation platform can thus be an interesting toolfor testing PHY-MAC cross-layer solutions for WLANs.
Active Appearance Model Based Hand Gesture Recognition
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM). For this work, the proposed algorithm is conposed of constructing AAMs and fitting the models to the interest region. In training stage, according to the manual labeled feature points, the relative AAM is constructed and the corresponding average feature is obtained. In recognition stage, the interesting hand gesture region is firstly segmented by skin and movement cues.Secondly, the models are fitted to the image that includes the hand gesture, and the relative features are extracted.Thirdly, the classification is done by comparing the extracted features and average features. 30 different gestures of Chinese sign language are applied for testing the effectiveness of the method. The Experimental results are given indicating good performance of the algorithm.
Fitzenz, D. D.; Nyst, M.; Apel, E. V.; Muir-Wood, R.
2014-12-01
The recent Canterbury earthquake sequence (CES) renewed public and academic awareness concerning the clustered nature of seismicity. Multiple event occurrence in short time and space intervals is reminiscent of aftershock sequences, but aftershock is a statistical definition, not a label one can give an earthquake in real-time. Aftershocks are defined collectively as what creates the Omori event rate decay after a large event or are defined as what is taken away as "dependent events" using a declustering method. It is noteworthy that depending on the declustering method used on the Canterbury earthquake sequence, the number of independent events varies a lot. This lack of unambiguous definition of aftershocks leads to the need to investigate the amount of clustering inherent in "declustered" risk models. This is the task we concentrate on in this contribution. We start from a background source model for the Canterbury region, in which 1) centroids of events of given magnitude are distributed using a latin-hypercube lattice, 2) following the range of preferential orientations determined from stress maps and focal mechanism, 3) with length determined using the local scaling relationship and 4) rates from a and b values derived from the declustered pre-2010 catalog. We then proceed to create tens of thousands of realizations of 6 to 20 year periods, and we define criteria to identify which successions of events in the region would be perceived as a sequence. Note that the spatial clustering expected is a lower end compared to a fully uniform distribution of events. Then we perform the same exercise with rates and b-values determined from the catalog including the CES. If the pre-2010 catalog was long (or rich) enough, then the computed "stationary" rates calculated from it would include the CES declustered events (by construction, regardless of the physical meaning of or relationship between those events). In regions of low seismicity rate (e.g., Canterbury before
Farrell, David J; Sader, Helio S; Castanheira, Mariana; Biedenbach, Douglas J; Rhomberg, Paul R; Jones, Ronald N
2010-06-01
CEM-101 is a novel fluorinated macrolide-ketolide with potent activity against bacterial pathogens that are susceptible or resistant to other macrolide-lincosamide-streptogramin B (MLS(B))-ketolide agents. CEM-101 is being developed for oral and parenteral use in moderate to moderately severe community-acquired bacterial pneumonia. The objective of this study was to assess the activity of CEM-101 and comparators against contemporary respiratory tract infection (RTI) isolates. A worldwide sample of organisms was used, including Streptococcus pneumoniae [n=168; 59.3% erythromycin-resistant and 18 multidrug-resistant (MDR) serogroup 19A strains], Moraxella catarrhalis (n=21; 11 beta-lactamase positive), Haemophilus influenzae (n=100; 48 beta-lactamase positive), Haemophilus parainfluenzae and Haemophilus haemolyticus (n=12), and Legionella pneumophila (n=30). Testing and interpretation were performed using reference Clinical and Laboratory Standards Institute methods. CEM-101 was very potent against S. pneumoniae [minimum inhibitory concentration for 90% of the organisms (MIC90)=0.25 mg/L; highest MIC at 0.5 mg/L] and was 2- and > or =32-fold more active than telithromycin and clindamycin, respectively. CEM-101 also demonstrated potent activity against S. pneumoniae MDR-19A strains (MIC90=0.5 mg/L). CEM-101 was the most potent antimicrobial agent tested against L. pneumophila, with all MIC values at or = 2 mg/L. CEM-101 exhibited the greatest potency and widest spectrum of activity against RTI pathogens among the tested MLS(B)-ketolide agents (azithromycin, clarithromycin, erythromycin, telithromycin, clindamycin and quinupristin/dalfopristin) and was comparable overall with levofloxacin. PMID:20211548
DEFF Research Database (Denmark)
Flores Alsina, Xavier; Comas, J.; Rodriquez-Roda, I.;
2009-01-01
are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant...
Richmond, R
1993-01-01
The range of tobacco control activities should be viewed as essential parts of a complex multi-component puzzle. Intervention strategies designed to address tobacco control should be comprehensive and include both primary and secondary prevention activities and be multi-faceted and capable of bringing about change at both the individual and broader social and cultural levels. In this paper I argue for a mutually inclusive framework in which the various components contribute in important and different ways. I examine the prevalence of smoking and identify the high risk groups, then I examine the range of available strategies and present the evidence for their success. I discuss the primary prevention approaches such as warning labels, taxes, price increases, workplace bans, education in schools, mass media and self-help materials, as well as brief interventions and treatment strategies which are conducted at the worksite, general practice and specialized cessation clinics. The areas for future research are delineated for increased resource allocation and include: the best ways to disseminate brief interventions to smokers, methods to motivate smokers; training of health professionals to deliver brief interventions; enhancing quitting and access to existing treatment resources among specific disadvantaged minority groups, e.g. migrants, unemployed youth, the effect on smoking prevalence of warning labels on cigarette packets and price rises on cigarettes. PMID:16818330
Modelling of activity transport in PHWR
International Nuclear Information System (INIS)
The modelling of mass and activity transport in PHWR is of importance in predicting the build up of radiation field in and around the Primary Heat Transport system which will consequently help in planning the Dilute Chemical Decontamination and man rem budgeting. Modeling also helps in understanding the different parameters controlling the transport behaviour. Some of the important parameters include coolant chemistry like pH, physical parameters like temperature, the nature of the corrosion film and hence the effect of passivation techniques. VVER code for activity transport uses six nodes for the primary system and is essentially devised for stainless steel system. In the present work though based on this model, major modifications have been incorporated to suit the PHWR conditions. In the code, the PHT system of PHWR is suitably divided into 14 nodes, 5 in-core and 9 out of core nodes based on material and heat transfer properties. This paper describes the mechanisms involved in the various processes like generation of corrosion products, their release as well as their transport into the primary coolant, the activation of inactive corrosion product nuclides and the build up of radiation field due to 60Co around the PHT system. (author)
Directory of Open Access Journals (Sweden)
Hollingshead Melinda G
2009-02-01
Full Text Available Abstract Background The nucleoside analog, ARC (NSC 188491 is a recently characterized transcriptional inhibitor that selectively kills cancer cells and has the ability to perturb angiogenesis in vitro. In this study, the mechanism of action of ARC was further investigated by comparing in vitro and in vivo activity with other anti-neoplastic purines. Methods Structure-based homology searches were used to identify those compounds with similarity to ARC. Comparator compounds were then evaluated alongside ARC in the context of viability, cell cycle and apoptosis assays to establish any similarities. Following this, biological overlap was explored in detail using gene-expression analysis and kinase inhibition assays. Results Results demonstrated that sangivamycin, an extensively characterized pro-apoptotic nucleoside isolated from Streptomyces, had identical activity to ARC in terms of 1 cytotoxicity assays, 2 ability to induce a G2/M block, 3 inhibitory effects on RNA/DNA/protein synthesis, 4 transcriptomic response to treatment, 5 inhibition of protein kinase C, 6 inhibition of positive transcription elongation factor b (P-TEFb, 7 inhibition of VEGF secretion, and 8 activity within hollow fiber assays. Extending ARC activity to PKC inhibition provides a molecular basis for ARC cancer selectivity and anti-angiogenic effects. Furthermore, functional overlap between ARC and sangivamycin suggests that development of ARC may benefit from a retrospective of previous sangivamycin clinical trials. However, ARC was found to be inactive in several xenograft models, likely a consequence of rapid serum clearance. Conclusion Overall, these data expand on the biological properties of ARC but suggest additional studies are required before it can be considered a clinical trials candidate.
International Nuclear Information System (INIS)
Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011–0.013) clinical factor was “previous abdominal surgery.” As second significant (p = 0.012–0.016) factor, “cardiac history” was included in all three rectal bleeding fits, whereas including “diabetes” was significant (p = 0.039–0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003–0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D50. Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions
Institute of Scientific and Technical Information of China (English)
ZHOU Feng-Qun; TIAN Ming-Li; SONG Yue-Li; LAN Chang-Lin; KONG Xiang-Zhong
2013-01-01
Based on a formula used to calculate the activation cross-section sum of two reactions producing a sort of nuclide with a target including two isotopes,the related problems in some references have been analyzed and discussed.It is pointed out that the calculation methods of the cross-section sum of two reactions producing the same radioactive nuclide for two isotopes in some references are improper and usually it is impossible to obtain the correct cross-section sum of two reactions producing the same radioactive nuclide for two isotopes in the case of using natural samples.At the same time,the related concepts are clarified and the correct processing method and representation are given.The comparison with the experimental results show that the theoretical analysis results are right.
International Nuclear Information System (INIS)
Based on a formula used to calculate the activation cross-section sum of two reactions producing a sort of nuclide with a target including two isotopes, the related problems in some references have been analyzed and discussed. It is pointed out that the calculation methods of the cross-section sum of two reactions producing the same radioactive nuclide for two isotopes in some references are improper and usually it is impossible to obtain the correct cross-section sum of two reactions producing the same radioactive nuclide for two isotopes in the case of using natural samples. At the same time, the related concepts are clarified and the correct processing method and representation are given. The comparison with the experimental results show that the theoretical analysis results are right. (authors)
Patt, Daniel A.
This work presents the development and application of an active control approach for reduction of both vibration and noise induced by helicopter rotor blade vortex interaction (BVI). Control is implemented through single or dual actively controlled flaps (ACFs) on each blade. Low-speed helicopter flight is prone to severe BVI, resulting in elevated vibration and noise levels. Existing research has suggested that when some form of active control is used to reduce vibration, noise will increase and vice versa. The present research achieves simultaneous reduction of noise and vibration, and also investigates the physical sources of the observed reduction. The initial portion of this work focused on developing a tool for simulating helicopter noise and vibrations in the BVI flight regime. A method for predicting compressible unsteady blade surface pressure distribution on rotor blades was developed and combined with an enhanced free-wake model and an acoustic prediction tool with provisions for blade flexibility. These elements were incorporated within an aeroelastic analysis featuring fully coupled flap-lag-torsional blade dynamics. Subsequently, control algorithms were developed that were effective for reducing noise and vibration even in the nonlinear BVI flight regime; saturation limits were incorporated constraining flap deflections to specified limits. The resulting simulation was also validated with a wide range of experimental data, achieving excellent correlation. Finally, a number of active control studies were performed. Multi-component vibration reductions of 40--80% could be achieved, while incurring a small noise penalty. Noise was reduced using an onboard feedback microphone; reductions of 4--10 dB on the advancing side were observed on a plane beneath the rotor when using dual flaps. Finally, simultaneous noise and vibration reduction was studied. A reduction of about 5 dB in noise on the advancing side combined with a 60% reduction in vibration was
Bernardoni, Brittney; Scerpella, Tamara A; Rosenbaum, Paula F; Kanaley, Jill A; Raab, Lindsay N; Li, Quefeng; Wang, Sijian; Dowthwaite, Jodi N
2015-05-01
We prospectively evaluated adolescent organized physical activity (PA) as a factor in adult female bone traits. Annual DXA scans accompanied semiannual records of anthropometry, maturity, and PA for 42 participants in this preliminary analysis (criteria: appropriately timed DXA scans at ~1 year premenarche [predictor] and ~5 years postmenarche [dependent variable]). Regression analysis evaluated total adolescent interscan PA and PA over 3 maturity subphases as predictors of young adult bone outcomes: 1) bone mineral content (BMC), geometry, and strength indices at nondominant distal radius and femoral neck; 2) subhead BMC; 3) lumbar spine BMC. Analyses accounted for baseline gynecological age (years pre- or postmenarche), baseline bone status, adult body size and interscan body size change. Gymnastics training was evaluated as a potentially independent predictor, but did not improve models for any outcomes (p > .07). Premenarcheal bone traits were strong predictors of most adult outcomes (semipartial r2 = .21-0.59, p ≤ .001). Adult 1/3 radius and subhead BMC were predicted by both total PA and PA 1-3 years postmenarche (p < .03). PA 3-5 years postmenarche predicted femoral narrow neck width, endosteal diameter, and buckling ratio (p < .05). Thus, participation in organized physical activity programs throughout middle and high school may reduce lifetime fracture risk in females. PMID:25386845
Directory of Open Access Journals (Sweden)
Camilo Saavedra
2014-07-01
questions. Most multispecies models include interactions between commercially exploited species, since those data are more readily available. However, information is needed on at least both the main preys and predators of a selected stock. In the case of European Hake, the species we have focus our research on, cetaceans are their main predator, particularly common and bottlenose dolphins, which have been estimated to remove annually in the Atlantic shelf waters of the Iberian Peninsula, an amount similar to that caught by Spanish and Portuguese fleets (Santos et al., 2013. The European hake is one of the main fishing species of the Spanish and Portuguese fleets operating in the area, and one where more research activity has been concentrated, hence there is plenty of available biological information on growth, reproduction and trophic interactions. As a result, a population model has been built which uses trophic interactions to investigate the relationships between hake and other species. The European hake population is currently divided into two stocks, north and south. The southern hake stock, distributed along the Atlantic coast of the Iberian Peninsula, is annually assessed by the International Council for the Exploration of the Sea (ICES and the Spanish Institute of Oceanography (IEO. For the assessment of this stock, “Gadget” a multi-specific modeling framework is used. Gadget allows the building of minimum realistic models that integrating the main trophic relationships among selected species considered to reflect the main processes in the system. Modeling cetacean populations can allow us to include complex trophic relationships in multispecies models. Furthermore, it will also be a tool to help cetaceans conservation by guiding possible management measures that ensure their viability or recovery. All cetacean species are protected by national and international legislation (e.g. Habitats Directive. However, modeling cetaceans dynamics has a number of problems
Modelling the 8.2 Ka event using a fully coupled general circulation model including isotope tracers
International Nuclear Information System (INIS)
Full text: The representation of stable water isotopes (1H218O and 1H2H16O) has been implemented into the atmospheric, oceanic and land surface components of the Hadley Centre general circulation model, HadCM3. As a result HadCM3 is a more useful tool for the investigation of past climates and model results can be more easily compared with paleodata. The simulated water isotopes are validated by comparing against observations for the present day climate. The model is then used to investigate the 8.2 Ka event; this is the largest rapid climate change event of the Holocene and it has been observed in a number of paleoarchives. The model is forced by adding 5.2 Sv of freshwater into the North Atlantic for 1 year (to simulate the final drainage of Lake Agassiz: the expected cause of the event). This leads to a reduction in the strength of the thermohaline circulation, which in turn leads to cooling and reduced δ18O in precipitation over much of the Northern Hemisphere. These features are in agreement with the paleodata; however the model is not able to reproduce the duration of the event with this forcing. (author)
Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection
Hyhlík, Tomáš
2016-03-01
The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.
McLerran, Larry
2016-01-01
We modify the McLerran-Venugopalan model to include only a finite number of sources of color charge. We argue that Coulombic interactions between these color charges generates a source-source correlation function that properly includes the effects of color charge screening, a generalization of Debye screening for the Color Glass Condensate. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this paper we provide a basic formulation of the problem on a lattice.
Including a full carbon cycle into the iLOVECLIM model (v1.0)
N. Bouttes; Roche, D. M.; V. Mariotti-Epelbaum; L. Bopp
2014-01-01
The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a climate model to understand and simulate past and future changes of the carbon cycle. In particular, natural variations of atmospheric CO2 have happened in the past, wh...
Cong Guan; Gerasimos Theotokatos; Hui Chen
2015-01-01
In this article, the operation of a large two-stroke marine diesel engine including various cases with turbocharger cut-out was thoroughly investigated by using a modular zero-dimensional engine model built in MATLAB/Simulink environment. The model was developed by using as a basis an in-house modular mean value engine model, in which the existing cylinder block was replaced by a more detailed one that is capable of representing the scavenging ports-cylinder-exhaust valve processes. Simulatio...
International Nuclear Information System (INIS)
We show that the partition function of many classical models with continuous degrees of freedom, e.g. Abelian lattice gauge theories and statistical mechanical models, can be written as the partition function of an (enlarged) four-dimensional lattice gauge theory (LGT) with gauge group U(1). This result is very general in that it includes models in different dimensions with different symmetries. In particular, we show that a U(1) LGT defined in a curved spacetime can be mapped to a U(1) LGT with a flat background metric. The result is achieved by expressing the U(1) LGT partition function as an inner product between two quantum states
Modeling Workflow Using UML Activity Diagram
Institute of Scientific and Technical Information of China (English)
Wei Yinxing(韦银星); Zhang Shensheng
2004-01-01
An enterprise can improve its adaptability in the changing market by means of workflow technologies. In the build time, the main function of Workflow Management System (WFMS) is to model business process. Workflow model is an abstract representation of the real-world business process. The Unified Modeling Language (UML) activity diagram is an important visual process modeling language proposed by the Object Management Group (OMG). The novelty of this paper is representing workflow model by means of UML activity diagram. A translation from UML activity diagram to π-calculus is established. Using π-calculus, the deadlock property of workflow is analyzed.
Czech Academy of Sciences Publication Activity Database
Dobeš, J.; Fořt, J.; Fürst, J.; Kozel, K.; Louda, P.; Příhoda, Jaromír
Bremen : ZARM, University of Bremen, 2008. s. 1-1. [Annual Meeting of the GAMM /79./. 31.03.2008-04.04.2008, Bremen] R&D Projects: GA AV ČR(CZ) IAA200760614; GA ČR GA101/07/1508 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbine blade cascades * turbulence modelling * bypass transition Subject RIV: BK - Fluid Dynamics
Lagi, Marco; Bertrand, Karla Z; Bar-Yam, Yaneer
2012-01-01
Increases in global food prices have led to widespread hunger and social unrest---and an imperative to understand their causes. In a previous paper published in September 2011, we constructed for the first time a dynamic model that quantitatively agreed with food prices. Specifically, the model fit the FAO Food Price Index time series from January 2004 to March 2011, inclusive. The results showed that the dominant causes of price increases during this period were investor speculation and ethanol conversion. The model included investor trend following as well as shifting between commodities, equities and bonds to take advantage of increased expected returns. Here, we extend the food prices model to January 2012, without modifying the model but simply continuing its dynamics. The agreement is still precise, validating both the descriptive and predictive abilities of the analysis. Policy actions are needed to avoid a third speculative bubble that would cause prices to rise above recent peaks by the end of 2012.
2010-09-27
... in the Federal Register on June 2, 2010 (75 FR 30740). That NPRM proposed to correct an unsafe...'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3. Will not have.... Model CL-600-2B16 (CL- 604 Variants (Including CL-605 Marketing Variant)) Airplanes AGENCY:...
Directory of Open Access Journals (Sweden)
Wendi Liu
2015-01-01
Full Text Available The aim of the present study is to apply simple ODE models in the area of modeling the spread of emerging infectious diseases and show the importance of model selection in estimating parameters, the basic reproduction number, turning point, and final size. To quantify the plausibility of each model, given the data and the set of four models including Logistic, Gompertz, Rosenzweg, and Richards models, the Bayes factors are calculated and the precise estimates of the best fitted model parameters and key epidemic characteristics have been obtained. In particular, for Ebola the basic reproduction numbers are 1.3522 (95% CI (1.3506, 1.3537, 1.2101 (95% CI (1.2084, 1.2119, 3.0234 (95% CI (2.6063, 3.4881, and 1.9018 (95% CI (1.8565, 1.9478, the turning points are November 7,November 17, October 2, and November 3, 2014, and the final sizes until December 2015 are 25794 (95% CI (25630, 25958, 3916 (95% CI (3865, 3967, 9886 (95% CI (9740, 10031, and 12633 (95% CI (12515, 12750 for West Africa, Guinea, Liberia, and Sierra Leone, respectively. The main results confirm that model selection is crucial in evaluating and predicting the important quantities describing the emerging infectious diseases, and arbitrarily picking a model without any consideration of alternatives is problematic.
Directory of Open Access Journals (Sweden)
Moonen Marie
2011-09-01
Full Text Available Abstract Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves.
Directory of Open Access Journals (Sweden)
Jesús Quesada
2016-08-01
Full Text Available An active packaging system has been designed for the shelf life extension of ready to eat meat products. The package included an inner surface coated with a chitosan film with thyme essential oil (0%, 0.5%, 1%, and 2% not in direct contact with the meat. Our aim was to reduce the impact of thyme essential oil (EO on meat sensory properties by using a chemotype with low odor intensity. The pH, color parameters, microbial populations, and sensory properties were assessed during 4 weeks of refrigerated storage. The presence of EO films reduced yeast populations, whereas aerobic mesophilic bacteria, lactic acid bacteria, and enterobacteria were not affected by the presence of the EO in the films. Meat color preservation (a * was enhanced in the presence of EO, giving a better appearance to the packaged meat. The presence of the chitosan-EO layer reduced water condensation inside the package, whereas packages containing only chitosan had evident water droplets. Thyme odor was perceived as desirable in cooked meat, and the typical product odor intensity decreased by increasing the EO concentration. Further studies should point towards developing oil blends or combinations with natural antimicrobial agents to be incorporated into the film to improve its antimicrobial properties.
Anderson, Benjamin; Kuzyk, Mark G
2014-03-01
All observations of photodegradation and self-healing follow the predictions of the correlated chromophore domain model [Ramini et al., Polym. Chem. 4, 4948 (2013)]. In the present work, we generalize the domain model to describe the effects of an electric field by including induced dipole interactions between molecules in a domain by means of a self-consistent field approach. This electric field correction is added to the statistical mechanical model to calculate the distribution of domains that are central to healing. Also included in the model are the dynamics due to the formation of an irreversibly damaged species, which we propose involves damage to the polymer mediated through energy transfer from a dopant molecule after absorbing a photon. As in previous studies, the model with one-dimensional domains best explains all experimental data of the population as a function of time, temperature, intensity, concentration, and now applied electric field. Though the precise nature of a domain is yet to be determined, the fact that only one-dimensional domain models are consistent with observations suggests that they might be made of correlated dye molecules along polymer chains. Furthermore, the voltage-dependent measurements suggest that the largest polarizability axis of the molecules are oriented perpendicular to the chain. PMID:24730866
Anderson, Benjamin
2013-01-01
All observations of photodegradation and self healing follow the predictions of the correlated chromophore domain model. [Ramini et.al. Polym. Chem., 2013, 4, 4948.] In the present work, we generalize the domain model to describe the effects of an electric field by including induced dipole interactions between molecules in a domain by means of a self-consistent field approach. This electric field correction is added to the statistical mechanical model to calculate the distribution of domains that are central to healing. Also included in the model are the dynamics due to the formation of an irreversibly damaged species. As in previous studies, the model with a one-dimensional domain best explains all experimental data of the population as a function of time, temperature, intensity, concentration, and now applied electric field. Though the nature of a domain is yet to be determined, the fact that only one-dimensional domain models are consistent with observations suggests that they might be made of correlated d...
Lauer, Wesley; Viparelli, Enrica; Piegay, Herve
2014-05-01
Sedimentary deposits adjacent to rivers can represent important sources and sinks for bed material sediment, particularly on decadal and longer timescales. The Morphodynamics and Sediment Tracers in 1-D model (MAST-1D) is a size-specific sediment transport model that allows for active exchange between channel and floodplain sediment on river reaches of tens to hundreds of kilometers in length. The model is intended to provide a mechanism for performing a first-order assessment of the likely importance of off-channel sediment exchange in controlling decadal-scale geomorphic trends, thereby helping plan and/or prioritize field data collection and higher resolution modeling work. The model develops a sediment budget for short segments of an alluvial valley. Each segment encompasses several active river bends. In each segment, a sediment transport capacity computation is performed to determine the downstream flux of bed material sediment, following the approach of most other 1-D sediment transport models. However, the model differs from most other bed evolution models in that sediment can be exchanged with the floodplain in each segment, and mass conservation is applied to both the active layer and floodplain sediment storage reservoirs. The potential for net imbalances in overall exchange as well as the size specific nature of the computations allows the model to simulate reach-scale aggradation/degradation and/or changes in bed texture. The inclusion of fine sediment in the model allows it to track geochemical tracer material and also provides a mechanism to simulate, to first order, the effects of changes in the supply of silt and clay on overall channel hydraulic capacity. The model is applied to a ~40 km reach of the Ain River, a tributary of the Rhône River in eastern France that has experienced a significant sediment deficit as a result of the construction of several dams between 1920 and 1970. MAST-1D simulations result in both incision and the formation of a
Modeling of active beam units with Modelica
DEFF Research Database (Denmark)
Maccarini, Alessandro; Hultmark, Göran; Vorre, Anders; Afshari, Alireza; Bergsøe, Niels Christian
2015-01-01
This paper proposes an active beam model suitable for building energy simulations with the programming language Modelica. The model encapsulates empirical equations derived by a novel active beam terminal unit that operates with low-temperature heating and high-temperature cooling systems...
Discursive Positionings and Emotions in Modelling Activities
Daher, Wajeeh
2015-01-01
Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their…
A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect
Institute of Scientific and Technical Information of China (English)
GE Ji; JIN Zhi; SU Yong-Bo; CHENG Wei; WANG Xian-Wai; CHEN Gao-Peng; LIU Xin-Yu
2009-01-01
We develop a physics-based charge-control InP double heterojunction bipolar transistor model including three important effects: current blocking, mobile-charge modulation of the base-collector capacitance and velocity-field modulation in the transit time. The bias-dependent base-collector depletion charge is obtained analytically, which takes into account the mobile-charge modulation. Then, a measurement based voltage-dependent transit time formulation is implemented. As a result, over a wide range of biases, the developed model shows good agreement between the modeled and measured S-parameters and cutoff frequency. Also, the model considering current blocking effect demonstrates more accurate prediction of the output characteristics than conventional vertical bipolar inter company results.
Students’ mathematical learning in modelling activities
DEFF Research Database (Denmark)
Kjeldsen, Tinne Hoff; Blomhøj, Morten
2013-01-01
involved. We argue that progress in students’ conceptual learning needs to be conceptualised separately from that of progress in their modelling competency. Findings are that modelling activities open a window to the students’ images of the mathematical concepts involved; that modelling activities can......Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....
Theory and modeling of active brazing.
Energy Technology Data Exchange (ETDEWEB)
van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.
2013-09-01
Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.
Marsolat, F.; De Marzi, L.; Pouzoulet, F.; Mazal, A.
2016-01-01
In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec, for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec. The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm-1. These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis.
Modelling Typical Online Language Learning Activity
Montoro, Carlos; Hampel, Regine; Stickler, Ursula
2014-01-01
This article presents the methods and results of a four-year-long research project focusing on the language learning activity of individual learners using online tasks conducted at the University of Guanajuato (Mexico) in 2009-2013. An activity-theoretical model (Blin, 2010; Engeström, 1987) of the typical language learning activity was used to…
Evaluating a Model of Youth Physical Activity
Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary
2010-01-01
Objective: To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods: Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a…
Hansen, A.; Refsgaard, J.; Christensen, B. S.; Jensen, K. H.
2011-12-01
Nitrate leaching from agricultural areas and the resulting pollution of groundwater and surface waters is one of the largest challenges in water resources management in Denmark. Nitrate can however be naturally degraded under anaerobic conditions and several studies have shown that degradation in the saturated zone removes more than 50% of the nitrate leaching in Danish catchments. For degradation of nitrate to occur in the saturated zone, nitrate must be transported under the redox interface and a correct simulation of the small-scale flow patterns within a catchment is therefore important in nitrate models. The general findings in Danish nitrate modeling studies are that the models perform well at catchment scale, but the predictability of the models decreases at smaller scale. Thus the model predictions are highly uncertain at small scale and the models cannot at present predict areas within a catchment, where the majority of the nitrate is brought under the interface and thus degraded, and areas, where nitrate is transported directly to streams and lakes without any significant reduction. The objective of this study is to test if the small scale performance of a catchment scale nitrate model can be improved by including small scale observation data in the calibration procedure. The study area is the clayey catchment to Lillebæk stream (4.7 km2), located on the island of Funen in Denmark. Due to the presence of clayey top soils subsurface drains are installed and in consequence the stream discharge is highly dominated by drain flow. An integrated transient hydrological model based on the MIKE SHE code has been developed for the study area. The model has been calibrated against hydraulic head measurements and stream discharge measurements from two stations, one covering most of the catchment and the other station approximately half, using the parameter estimator code PEST. Acceptable model performance has been achieved at catchment scale calibrating the model
Directory of Open Access Journals (Sweden)
Yong Zhao
1997-01-01
Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.
International Nuclear Information System (INIS)
For low-energy nuclear reactions well above the resonance region, but still below the pion threshold, statistical pre-equilibrium models (e.g., the exciton and the hybrid ones) are a frequent tool for analysis of energy spectra and the cross sections of cluster emission. For α’s, two essentially distinct approaches are popular, namely the preformed one and the different versions of coalescence approaches, whereas only the latter group of models can be used for other types of cluster ejectiles. The original Iwamoto-Harada model of pre-equilibrium cluster emission was formulated using the overlap of the cluster and its constituent nucleons in momentum space. Transforming it into level or state densities is not a straigthforward task; however, physically the same model was presented at a conference on reaction models five years earlier. At that time, only the densities without spin were used. The introduction of spin variables into the exciton model enabled detailed calculation of the γ emission and its competition with nucleon channels, and - at the same time - it stimulated further developments of the model. However - to the best of our knowledge - no spin formulation has been presented for cluster emission till recently, when the first attempts have been reported, but restricted to the first emission only. We have updated this effort now and we are able to handle (using the same simplifications as in our previous work) pre-equilibrium cluster emission with spin including all nuclei in the reaction chain. (author)
DEFF Research Database (Denmark)
Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik
2014-01-01
and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...
Kapoyannis, A S; Panagiotou, A D
1998-01-01
A recently constructed strangeness-including Statistical Bootstrap Model (S-SBM), which defines the limits of the hadronic phase and provides for a phase beyond, is further extended so as to include a factor that describes strangeness suppression. The model is then used to analyse the multiplicity data from collision experiments in which the colliding entities form isospin symmetric systems, the primary focus being on S+S interactions (NA35 collaboration). An optimal set of thermodynamical variables is extracted through a fit to both the inclusive full phase space and midrapidity data. The assumption that the measured particles originate from a thermally and partial-chemically equilibrated source described by the S-SBM is satisfactorily established. The proximity of the thermodynamical variables extracted from the S+S data to the limits of the hadronic phase is systematically investigated. Finally, experimental data from proton-antiproton collisions (UA5 collaboration) are similarly analysed.
Active Learning for Player Modeling
DEFF Research Database (Denmark)
Shaker, Noor; Abou-Zleikha, Mohamed; Shaker, Mohammad
2015-01-01
the full dataset) is necessary for the construction of accu- rate models that are as accurate as those constructed from the full dataset. This indicates the potential of the method and its benefits in cases when obtaining the data is expensive or time, storage or effort consuming. The results also...... indicate that the method can be used online during the content generation process where the mod- els can improve and better content can be presented as the game is being played....
Kharin, Stanislav; Sarsengeldin, Merey; Kassabek, Samat
2016-08-01
We represent mathematical models of electromagnetic field dynamics and heat transfer in closed symmetric and asymmetric electrical contacts including Thomson effect, which are essentially nonlinear due to the dependence of thermal and electrical conductivities on temperature. Suggested solutions are based on the assumption of identity of equipotentials and isothermal surfaces, which agrees with experimental data and valid for both linear and nonlinear cases. Well known Kohlrausch temperature-potential relation is analytically justified.
Rasmussen, Anders R.; Sørensen, Mads P.; Gaididei, Yuri B.; Christiansen, Peter L.
2008-01-01
A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. In contrast to the model known as the Kuznetsov equation, the proposed nonlinear wave equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non-dissipative limit. An exact traveling front solution is obtained from a generalized traveling wave assumption. This solution is, in an overall ...
The activity model of legal psychologist
N.V. Bogdanovich,; V.A. Chernushevich
2014-01-01
We propose an activity model of legal psychologist work. As a basis for the construction of the system of legal psychologist activity, we use trajectory of teenager living in the legal field. As the main activities within their respective specializations, we highlighted prevention, maintenance and rehabilitation. We define the main activities necessary for the development within the FGOSIII specialization 050407 “Pedagogy and Psychology of deviant behavior”: general and pathopsychologic diagn...
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
Institute of Scientific and Technical Information of China (English)
吴建松; 张辉; 杨锐
2013-01-01
This paper applies the meshfree Smoothed Particle Hydrodynamics (SPH) method with Graphical Processing Unit (GPU) parallel computing technique to investigate the highly complex 3-D dam-break flow in urban areas including underground spaces. Taking the advantage of GPUs parallel computing techniques, simulations involving more than 107 particles can be achieved. We use a virtual geometric plane boundary to handle the outermost solid wall in order to save considerable video card memory for the GPU computing. To evaluate the accuracy of the new GPU-based SPH model, qualitative and quantitative comparison to a real flooding experiment is performed and the results of a numerical model based on Shallow Water Equations (SWEs) is given with good accu- racy. With the new GPU-based SPH model, the effects of the building layouts and underground spaces on the propagation of dam- break flood through an intricate city layout are examined.
25 CFR 170.137 - What types of activities can a recreation, tourism, and trails program include?
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false What types of activities can a recreation, tourism, and... Eligibility Recreation, Tourism and Trails § 170.137 What types of activities can a recreation, tourism, and... may perform under a recreation, tourism, and trails program: (1) Transportation planning for...
Dadaczynski, Kevin; Paulus, Peter; de Vries, Nanne; de Ruiter, Silvia; Buijs, Goof
2010-01-01
The HEPS Inventory Tool aims to support stakeholders working in school health promotion to promote high quality interventions on healthy eating and physical activity. As a tool it provides a step-by-step approach on how to develop a national or regional inventory of existing school based interventions on healthy eating and physical activity. It…
Poisson-Fermi Model of Single Ion Activities
Liu, Jinn-Liang
2015-01-01
A Poisson-Fermi model is proposed for calculating activity coefficients of single ions in strong electrolyte solutions based on the experimental Born radii and hydration shells of ions in aqueous solutions. The steric effect of water molecules and interstitial voids in the first and second hydration shells play an important role in our model. The screening and polarization effects of water are also included in the model that can thus describe spatial variations of dielectric permittivity, water density, void volume, and ionic concentration. The activity coefficients obtained by the Poisson-Fermi model with only one adjustable parameter are shown to agree with experimental data, which vary nonmonotonically with salt concentrations.
Discursive positionings and emotions in modelling activities
Daher, Wajeeh
2015-11-01
Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their participation in the modelling activity changed as the activity proceeded. Overall, it can be said that three of the four group members acted as insiders, while the fourth acted as an outsider, and only, towards the end of the group's work on the activity, he acted as an insider. Moreover, the research findings point at four factors that affected the group members' positionings and emotions during the modelling activity: the member's characteristics, the member's history of learning experiences, the activity characteristics and the modelling phases. Furthermore, the different positionings of the group members in the different modelling phases were accompanied by different emotions experienced by them, where being an insider and a collaborator resulted in positive emotions, while being an outsider resulted in negative emotions.
Time dependence of Fe/O ratio within a 3D Solar Energetic Particle propagation model including drift
Dalla, S; Zelina, P; Laitinen, T
2016-01-01
Context. The intensity profiles of iron and oxygen in Solar Energetic Particle (SEP) events often display differences that result in a decreasing Fe/O ratio over time. The physical mechanisms behind this behaviour are not fully understood, but these observational signatures provide important tests of physical modelling efforts. Aims. In this paper we study the propagation of iron and oxygen SEP ions using a 3D model of propagation which includes the effect of guiding centre drift in a Parker spiral magnetic field. We derive time intensity profiles for a variety of observer locations and study the temporal evolution of the Fe/O ratio. Methods. We use a 3D full orbit test particle model which includes scattering. The configuration of the interplanetary magnetic field is a unipolar Parker spiral. Particles are released instantaneously from a compact region at 2 solar radii and allowed to propagate in 3D. Results. Both Fe and O experience significant transport across the magnetic field due to gradient and curvatu...
Directory of Open Access Journals (Sweden)
Arturo Jiménez-Gutiérrez
2014-08-01
Full Text Available The synthesis of water networks based on properties has commonly ignored the effect of temperature on the property balances that are part of the formulation. When wide differences of temperatures are observed within the process, such an effect might yield significant errors in the application of conventional property balances. In this work, a framework for the development of water networks that include temperature effects on property balances is presented. The approach is based on the inclusion of constants in the property operators that are commonly used to carry out the property balances. An additional term to take care of composition effects is also included. The resulting approach is embedded into a formulation based on a mixed-integer nonlinear programming model for the design of water networks. A case study is presented that shows that the proposed approach yields an improvement in the prediction of the resulting properties for the integrated network, thus affecting the optimal solution.
Face Alignment Using Active Shape Model And Support Vector Machine
Le, Thai Hoang; Vo, Truong Nhat
2012-01-01
The Active Shape Model (ASM) is one of the most popular local texture models for face alignment. It applies in many fields such as locating facial features in the image, face synthesis, etc. However, the experimental results show that the accuracy of the classical ASM for some applications is not high. This paper suggests some improvements on the classical ASM to increase the performance of the model in the application: face alignment. Four of our major improvements include: i) building a mod...
GestUI: A Model-driven Method and Tool for Including Gesture-based Interaction in User Interfaces
Directory of Open Access Journals (Sweden)
Otto Parra
2016-04-01
Full Text Available Among the technological advances in touch-based devices, gesture-based interaction have become a prevalent feature in many application domains. Information systems are starting to explore this type of interaction. As a result, gesture specifications are now being hard-coded by developers at the source code level that hinders their reusability and portability. Similarly, defining new gestures that reflect user requirements is a complex process. This paper describes a model-driven approach to include gesture-based interaction in desktop information systems. It incorporates a tool prototype that captures user-sketched multi-stroke gestures and transforms them into a model by automatically generating the gesture catalogue for gesture-based interaction technologies and gesture-based user interface source codes. We demonstrated our approach in several applications ranging from case tools to form-based information systems.
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-01-01
This report describes the user's manual for 'HPTAM,' a two-dimensional Heat Pipe Transient Analysis Model. HPTAM is described in detail in the UNM-ISNPS-3-1995 report which accompanies the present manual. The model offers a menu that lists a number of working fluids and wall and wick materials from which the user can choose. HPTAM is capable of simulating the startup of heat pipes from either a fully-thawed or frozen condition of the working fluid in the wick structure. The manual includes instructions for installing and running HPTAM on either a UNIX, MS-DOS or VMS operating system. Samples for input and output files are also provided to help the user with the code.
International Nuclear Information System (INIS)
The use of redundancy to increase the reliability of industrial systems make them subject to the occurrence of common cause events. The industrial experience and the results of safety analysis studies have indicated that common cause failures are the main contributors to the unreliability of plants that have redundant systems, specially in nuclear power plants. In this Thesis procedures are developed in order to include the impact of common cause failures in the calculation of the top event occurrence probability of the Auxiliary Feedwater System in a typical two-loop Nuclear Power Plant (PWR). For this purpose the Multiple Greek Letter Model is used. (author). 14 refs., 10 figs., 11 tabs
Shell-model half-lives for r-process waiting point nuclei including first-forbidden contributions
Zhi, Q.; Caurier, E.; J.J. Cuenca-García; Langanke, K.; Martínez-Pinedo, G.; Sieja, K.(IPHC, CNRS/IN2P3, Université de Strasbourg, Strasbourg, F-67037, France)
2013-01-01
We have performed large-scale shell-model calculations of the half-lives and neutron-branching probabilities of the r-process waiting point nuclei at the magic neutron numbers N=50, 82, and 126. The calculations include contributions from allowed Gamow-Teller and first-forbidden transitions. We find good agreement with the measured half-lives for the N=50 nuclei with charge numbers Z=28-32 and for the N=82 nuclei 129Ag and 130Cd. The contribution of forbidden transitions reduce the half-lives...
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-01-01
A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.
International Nuclear Information System (INIS)
Cell-to-cell communication is an important factor for understanding the mechanisms of radiation-induced responses such as bystander effects. In this study, a new mathematical model of intercellular signalling between individual cells in a cellular population is proposed. The authors considered two types of transmission of signals: via culture medium and via gap junction. They focus on the effects that radiation and intercellular signalling have on cell-cycle modification. The cell cycle is represented as a virtual clock that includes several checkpoint pathways within a cyclic process. They also develop a grid model and set up diffusion equations to model the propagation of signals to and from spatially located cells. The authors have also considered the role that DNA damage plays in the cycle of cells which can progress through the cell cycle or stop at the G1, S, G2 or M-phase checkpoints. Results of testing show that the proposed model can simulate intercellular signalling and cell-cycle progression in individual cells during and after irradiation. (authors)
International Nuclear Information System (INIS)
, addresses the issue of the nature of the transition. We develop a new 'mechanistic' model that could help in modeling why and where this transition can occur. The transition between both regimes would occur for a fracture length of 1-10 m and even at a smaller scale for the few outcrops that follow the self-similar density model. A consequence for the disposal issue is that the model that is likely to apply in the 'blind' scale window between 10-100 m is the self-similar model as it is defined for large-scale lineaments. The self-similar model, as it is measured for some outcrops and most lineament maps, is definitely worth being investigated as a reference for scales above 1-10 m. In the rest of the report, we develop a methodology for incorporating uncertainty and variability into the DFN modeling. Fracturing properties arise from complex processes which produce an intrinsic variability; characterizing this variability as an admissible variation of model parameter or as the division of the site into subdomains with distinct DFN models is a critical point of the modeling effort. Moreover, the DFN model encompasses a part of uncertainty, due to data inherent uncertainties and sampling limits. Both effects must be quantified and incorporated into the DFN site model definition process. In that context, all available borehole data including recording of fracture intercept positions, pole orientation and relative uncertainties are used as the basis for the methodological development and further site model assessment. An elementary dataset contains a set of discrete fracture intercepts from which a parent orientation/density distribution can be computed. The elementary bricks of the site, from which these initial parent density distributions are computed, rely on the former Single Hole Interpretation division of the boreholes into sections whose local boundaries are expected to reflect - locally - geology and fracturing properties main characteristics. From that starting point
Chirinda, Ngonidzashe; Olesen, Jørgen E.; Heckrath, Goswin; Paradelo Pérez, Marcos; Taghizadeh-Toosi, Arezoo
2016-04-01
Globally, soil carbon (C) reserves are second only to those in the ocean, and accounts for a significant C reservoir. In the case of arable soils, the quantity of stored C is influenced by various factors (e.g. management practices). Currently, the topography related influences on in-field soil C dynamics remain largely unknown. However, topography is known to influence a multiplicity of factors that regulate C input, storage and redistribution. To understand the patterns and untangle the complexity of soil C dynamics in arable landscapes, our study was conducted with soils from shoulderslope and footslope positions on a 7.1 ha winter wheat field in western Denmark. We first collected soil samples from shoulderslope and footslope positions with various depth intervals down to 100 cm and analyzed them for physical and chemical properties including texture and soil organic C contents. In-situ carbon dioxide (CO2) concentrations were measured at different soil profile depths at both positions for a year. Soil moisture content and temperature at 5 and 40 cm depth was measured continuously. Additionally, surface soil CO2 fluxes at shoulderslope and footslope positions were measured. We then used measurement data collected from the two landscape positions to calibrate the one-dimensional mechanistic model SOILCO2 module of the HYDRUS-1D software package and obtained soil CO2 fluxes from soil profile at two landscape positions. Furthermore, we tested whether the inclusion of vertical and lateral soil C movement improved the modeling of C dynamics in cultivated landscapes. For that, soil profile CO2 fluxes were compared with those obtained using a simple process-based soil whole profile C model, C-TOOL, which was modified to include vertical and lateral movement of C on landscape. Our results highlight the need to consider vertical and lateral soil C movement in the modeling of C dynamics in cultivated landscapes, for better qualification of net carbon storage.
Directory of Open Access Journals (Sweden)
E. Gutknecht
2013-06-01
Full Text Available The Eastern Boundary Upwelling Systems (EBUS contribute to one fifth of the global catches in the ocean. Often associated with Oxygen Minimum Zones (OMZs, EBUS represent key regions for the oceanic nitrogen (N cycle. Important bioavailable N loss due to denitrification and anammox processes as well as greenhouse gas emissions (e.g, N2O occur also in these EBUS. However, their dynamics are currently crudely represented in global models. In the climate change context, improving our capability to properly represent these areas is crucial due to anticipated changes in the winds, productivity, and oxygen content. We developed a biogeochemical model (BioEBUS taking into account the main processes linked with EBUS and associated OMZs. We implemented this model in a 3-D realistic coupled physical/biogeochemical configuration in the Namibian upwelling system (northern Benguela using the high-resolution hydrodynamic ROMS model. We present here a validation using in situ and satellite data as well as diagnostic metrics and sensitivity analyses of key parameters and N2O parameterizations. The impact of parameter values on the OMZ off Namibia, on N loss, and on N2O concentrations and emissions is detailed. The model realistically reproduces the vertical distribution and seasonal cycle of observed oxygen, nitrate, and chlorophyll a concentrations, and the rates of microbial processes (e.g, NH4+ and NO2− oxidation, NO3− reduction, and anammox as well. Based on our sensitivity analyses, biogeochemical parameter values associated with organic matter decomposition, vertical sinking, and nitrification play a key role for the low-oxygen water content, N loss, and N2O concentrations in the OMZ. Moreover, the explicit parameterization of both steps of nitrification, ammonium oxidation to nitrate with nitrite as an explicit intermediate, is necessary to improve the representation of microbial activity linked with the OMZ. The simulated minimum oxygen
Directory of Open Access Journals (Sweden)
A. Paulmier
2012-10-01
Full Text Available The Eastern Boundary Upwelling Systems (EBUS contribute to one fifth of the global catches in the ocean. Often associated with Oxygen Minimum Zones (OMZs, EBUS represent key regions for the oceanic nitrogen (N cycle. Important bioavailable N loss due to denitrification and anammox processes as well as greenhouse gas emissions (e.g, N2O occur also in these EBUS. However, their dynamics are currently crudely represented in global models. In the climate change context, improving our capability to properly represent these areas is crucial, due to anticipated changes in the winds, productivity, and oxygen content. We developed a biogeochemical model (BioEBUS taking into account the main processes linked with EBUS and associated OMZs. We implemented this model in a 3-D realistic coupled physical/biogeochemical configuration in the Namibian upwelling system (Northern Benguela using the high-resolution hydrodynamical model ROMS. We present here a validation using in situ and satellite data as well as diagnostic metrics, and sensitivity analyses of key parameters and N2O parameterizations. The impact of parameter values on the OMZ off Namibia, on N loss, and on N2O concentrations and emissions is detailed. The model realistically reproduces the vertical distribution and seasonal cycle of observed oxygen, nitrate and Chl a concentrations, and the rates of microbial processes (e.g. NH4+ and NO2− oxidation, NO3− reduction and anammox as well. Based on our sensitivity analyses, biogeochemical parameter values associated with organic matter decomposition, vertical sinking and nitrification play a key role for the low-oxygen water content, N loss and N2O concentrations in the OMZ. Moreover, the importance of both steps of nitrification, ammonium oxidation to nitrate with nitrite as an explicit intermediate, is highlighted to improve the representation of microbial activity linked with OMZ. The simulated minimum oxygen concentrations are driven by the
Learning models of activities involving interacting objects
DEFF Research Database (Denmark)
Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.; Zilles, Sandra
We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were...
Learning models of activities involving interacting objects
DEFF Research Database (Denmark)
Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.;
2013-01-01
We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were...
Energy Technology Data Exchange (ETDEWEB)
Darcel, C. (Itasca Consultants SAS (France)); Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O. (Geosciences Rennes, UMR 6118 CNRS, Univ. def Rennes, Rennes (France))
2009-11-15
the lineament scale (k{sub t} = 2) on the other, addresses the issue of the nature of the transition. We develop a new 'mechanistic' model that could help in modeling why and where this transition can occur. The transition between both regimes would occur for a fracture length of 1-10 m and even at a smaller scale for the few outcrops that follow the self-similar density model. A consequence for the disposal issue is that the model that is likely to apply in the 'blind' scale window between 10-100 m is the self-similar model as it is defined for large-scale lineaments. The self-similar model, as it is measured for some outcrops and most lineament maps, is definitely worth being investigated as a reference for scales above 1-10 m. In the rest of the report, we develop a methodology for incorporating uncertainty and variability into the DFN modeling. Fracturing properties arise from complex processes which produce an intrinsic variability; characterizing this variability as an admissible variation of model parameter or as the division of the site into subdomains with distinct DFN models is a critical point of the modeling effort. Moreover, the DFN model encompasses a part of uncertainty, due to data inherent uncertainties and sampling limits. Both effects must be quantified and incorporated into the DFN site model definition process. In that context, all available borehole data including recording of fracture intercept positions, pole orientation and relative uncertainties are used as the basis for the methodological development and further site model assessment. An elementary dataset contains a set of discrete fracture intercepts from which a parent orientation/density distribution can be computed. The elementary bricks of the site, from which these initial parent density distributions are computed, rely on the former Single Hole Interpretation division of the boreholes into sections whose local boundaries are expected to reflect - locally - geology
Modelling the Active Hearing Process in Mosquitoes
Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan
2011-11-01
A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.
International Nuclear Information System (INIS)
A system based on an IBM-PC microcomputer coupled to a Canberra Series 80 multichannel analyser was developed for activation analysis with short-lived radioisotopes. The data transfer program can store up to 77 gamma-ray spectra on a floppy disc. A spectrum analysis program, DVC, was written to determine peak areas interactively, to correct the counting losses, and to calculate elemental concentrations. (author)
Thorsteinsson, Troels; Helms, Anne Sofie; Adamsen, Lis; Andersen, Lars Bo; Andersen, Karen Vitting; Christensen, Karl Bang; Halse, Henrik; Heilmann, Carsten; Hejgaard, Nete; Johansen, Christoffer; Madsen, Marianne; Madsen, Svend Aage; Simovska, Venka; Strange, Birgit; Thing, Lone Friis
2013-01-01
Background During cancer treatment children have reduced contact with their social network of friends, and have limited participation in education, sports, and leisure activities. During and following cancer treatment, children describe school related problems, reduced physical fitness, and problems related to interaction with peers. Methods/design The RESPECT study is a nationwide population-based prospective, controlled, mixed-methods intervention study looking at children aged 6-18 years n...
Bottardi, Stefania; Mavoungou, Lionel; Pak, Helen; Daou, Salima; Bourgoin, Vincent; Lakehal, Yahia A.; Affar, El Bachir; Milot, Eric
2014-01-01
IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKAROS also binds to the Positive-Transcription Elongation Factor b (P-TEFb) at gene promoters. Here, we demonstrate that NuRD and P-TEFb are assembled in a complex that can be recruited to specific genes by IKAROS. The expression level of IKAROS influences the recruitment of the NuRD-P-TEFb complex to gene regulatory regions and facilitates transcription elongation by transferring the Protein Phosphatase 1α (PP1α), an IKAROS-binding protein and P-TEFb activator, to CDK9. We show that an IKAROS mutant that is unable to bind PP1α cannot sustain gene expression and impedes normal differentiation of IkNULL hematopoietic progenitors. Finally, the knock-down of the NuRD subunit Mi2 reveals that the occupancy of the NuRD complex at transcribed regions of genes favors the relief of POL II promoter-proximal pausing and thereby, promotes transcription elongation. PMID:25474253
Ruiz De la Cruz, A.; Ferrer, A.; del Hoyo, J.; Siegel, J.; Solis, J.
2011-08-01
In this work, we report a model for accurately calculating the focal volumes corresponding to astigmatic elliptical beams used in fs-laser waveguide writing. The model is based on the use of the ABCD matrix formalism for the propagation of a Gaussian beam. The code includes the effects of propagation on the astigmatic elliptical beam, and the effects of beam truncation and diffraction at the entrance pupil of the focusing objective due to beam clipping when overfilling the pupil. The results predict that for a given astigmatism value and propagation distance it is possible to efficiently suppress the astigmatic focus closer to the surface. This explains previous experimental results where single structure waveguides with controllable aspect-ratio were fabricated using astigmatic-elliptical beams. Furthermore, we investigate the respective roles of astigmatism and beam propagation, as well as the strong impact of truncation and diffraction effects caused by clipping the beam at the pupil of the focusing optics. Finally, based on the results from our model, we present some practical considerations in terms of beam propagation and phase wrapping constraints.
International Nuclear Information System (INIS)
Highlights: • An advanced propulsion system for marine applications was designed and modeled. • SOx can be removed as highly concentrated sulphuric acid from the machinery system. • The removal of SOx increased the power production from waste heat recovery with 32.9%. - Abstract: Stricter legislation on sulphur oxide emissions from ships will apply as of 2015 in emission control areas. Consequently, prices on low sulphur fuels are expected to increase drastically, providing a strong incentive to find alternative ways of complying with the legislation and improving the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy and the environment; however, further research and development efforts are needed
González-Suárez, Ana; Berjano, Enrique; Guerra, Jose M.; Gerardo-Giorda, Luca
2016-01-01
Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80°C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research. PMID:26938638
Active Gel Model of Amoeboid Cell Motility
Callan-Jones, A C
2013-01-01
We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-susbstrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.
Modeling of Activated Sludge Floc Characteristics
Directory of Open Access Journals (Sweden)
Ibrahim H. Mustafa
2009-01-01
Full Text Available Problem Statement: The activated sludge system needs to improve the operational performance and to achieve more effective control. To realize this, a better quantitative understanding of the biofloc characteristics is required. The objectives of this study were to: (i Study the biofloc characteristics from kinetics-mass transfer interaction point of view by quantification of the weight of the aerobic portion of the activated sludge floc to the total floc weight. (ii Study the effect of bulk concentrations of oxygen and nitrates, power input and substrates diffusivity on the portion aerobic portion of the floc. Approach: An appropriate mathematical model based on heterogeneous modeling is developed for activated sludge flocs. The model was taking into account three growth processes: Carbon oxidation, nitrification and de-nitrification in terms of four components: substrate, nitrate, ammonia, and oxygen. The model accounts for the internal and external mass transfer limitations and relates the external mass transfer resistance with power input. The floc model equations were two- point boundary value differential equations. Therefore a central finite difference method is employed. Results: The percentage aerobic portion increased with increasing with oxygen bulk concentrations and power input and decreases when the bulk concentration of ammonia and substrate increases. Both will compete to consume the internal oxygen by autotrophic and heterotrophic bacteria through aerobic growth processes. The biofloc activity through the profiles was either totally active or partially active. The totally active biofloc is either totally aerobic or aerobic and anoxic together. Conclusions: The heterogeneous floc model was able to describe the biofloc characteristics and reflects the real phenomena existing in the activated sludge processes.
Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Tyrrell, Kerin L.
2012-01-01
More than 5 million Americans are bitten by animals, usually dogs, annually. Bite patients comprise ∼1% of all patients who visit emergency departments (300,000/year), and approximately 10,000 require hospitalization and intravenous antibiotics. Ceftaroline is the bioactive component of the prodrug ceftaroline fosamil, which is FDA approved for the treatment of acute bacterial skin and skin structure infections (ABSSSIs), including those containing methicillin-resistant Staphylococcus aureus ...
International Nuclear Information System (INIS)
Neutron activation analysis may be performed as a multi-element and low-level technique for many important trace elements in biological materials, provided that post-irradiation chemical separations are applied. This paper describes a chemical separation consisting of automated procedures for destruction, distillation, and anion-chromatography. The system developed enables the determination of 14 trace elements in biological materials, viz. antimony, arsenic, bromine, cadmium, chromium, cobalt, copper, gold, iron, mercury, molybdenum, nickel, selenium, and zinc. The aspects of sample preparation, neutron irradiation, gamma-spectrum evaluation, and blank-value contribution are also discussed
de Monserrat, Albert; Morgan, Jason P.
2016-04-01
Materials in Earth's interior are exposed to thermomechanical (e.g. variations in stress/pressure and temperature) and chemical (e.g. phase changes, serpentinization, melting) processes that are associated with volume changes. Most geodynamical codes assume the incompressible Boussinesq approximation, where changes in density due to temperature or phase change effect buoyancy, yet volumetric changes are not allowed, and mass is not locally conserved. Elastic stresses induced by volume changes due to thermal expansion, serpentinization, and melt intrusion should cause 'cold' rocks to brittlely fail at ~1% strain. When failure/yielding is an important rheological feature, we think it plausible that volume-change-linked stresses may have a significant influence on the localization of deformation. Here we discuss a new Lagrangian formulation for "elasto-compressible -visco-plastic" flow. In this formulation, the continuity equation has been generalised from a Boussinesq incompressible formulation to include recoverable, elastic, volumetric deformations linked to the local state of mean compressive stress. This formulation differs from the 'anelastic approximation' used in compressible viscous flow in that pressure- and temperature- dependent volume changes are treated as elastic deformation for a given pressure, temperature, and composition/phase. This leads to a visco-elasto-plastic formulation that can model the effects of thermal stresses, pressure-dependent volume changes, and local phase changes. We use a modified version of the (Miliman-based) FEM code M2TRI to run a set of numerical experiments for benchmarking purposes. Three benchmarks are being used to assess the accuracy of this formulation: (1) model the effects on density of a compressible mantle under the influence of gravity; (2) model the deflection of a visco-elastic beam under the influence of gravity, and its recovery when gravitational loading is artificially removed; (3) Modelling the stresses
Assessment of toxicity using dehydrogenases activity and mathematical modeling.
Matyja, Konrad; Małachowska-Jutsz, Anna; Mazur, Anna K; Grabas, Kazimierz
2016-07-01
Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times. PMID:27021434
Toward a model of neuropsychological activity.
Ardila, A; Galeano, L M; Rosselli, M
1998-12-01
The main purpose of this research was to establish the intercorrelations existing among different psychological and neuropsychological test scores in a normal and homogeneous population. A second purpose was to attempt further step in the component analysis of cognitive activity measured by means of neuropsychological tests. A comprehensive neuropsychological test battery was assembled and individually administered to a 300-subject sample, aged 17-25 year-old. All of them were right-handed male university students. The battery included some basic neuropsychological tests directed to assess language, calculation abilities, spatial cognition, praxic abilities, memory, perceptual abilities, and executive functions. In addition, the Wechsler Adult Intelligence Scale was administered. Forty-one different scores were calculated. Correlations among the different test scores were analyzed. It was found that some of the tests presented a quite complex intecorrelation system, whereas other tests presented few or no significant correlations. Mathematical ability tests and orthography knowledge represented the best predictors of Full Scale IQ. A factor analysis with varimax rotation disclosed five factors (verbal, visuoperceptual, executive function, fine movements, and memory) accounting for 63.6% of the total variance. Implications of these results for a neuropsychological model about brain organization of cognition were analyzed. PMID:9951709
Modelling the emergence of spatial patterns of economic activity
Yang, Jung-Hun; Frenken, Koen
2012-01-01
Understanding how spatial configurations of economic activity emerge is important when formulating spatial planning and economic policy. A simple model was proposed by Simon, who assumed that firms grow at a rate proportional to their size, and that new divisions of firms with certain probabilities relocate to other firms or to new centres of economic activity. Simon's model produces realistic results in the sense that the sizes of economic centres follow a Zipf distribution, which is also observed in reality. It lacks realism in the sense that mechanisms such as cluster formation, congestion (defined as an overly high density of the same activities) and dependence on the spatial distribution of external parties (clients, labour markets) are ignored. The present paper proposed an extension of the Simon model that includes both centripetal and centrifugal forces. Centripetal forces are included in the sense that firm divisions are more likely to settle in locations that offer a higher accessibility to other fi...
Cain, Clarence P.; Polhamus, Garrett D.; Roach, William P.; Stolarski, David J.; Schuster, Kurt J.; Stockton, Kevin; Rockwell, Benjamin A.; Chen, Bo; Welch, Ashley J.
2006-07-01
With the advent of such systems as the airborne laser and advanced tactical laser, high-energy lasers that use 1315-nm wavelengths in the near-infrared band will soon present a new laser safety challenge to armed forces and civilian populations. Experiments in nonhuman primates using this wavelength have demonstrated a range of ocular injuries, including corneal, lenticular, and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser safety standards have traditionally been based on experimental data, and there is scant data for this wavelength. We are reporting minimum visible lesion (MVL) threshold measurements using a porcine skin model for two different pulse durations and spot sizes for this wavelength. We also compare our measurements to results from our model based on the heat transfer equation and rate process equation, together with actual temperature measurements on the skin surface using a high-speed infrared camera. Our MVL-ED50 thresholds for long pulses (350 µs) at 24-h postexposure are measured to be 99 and 83 Jcm-2 for spot sizes of 0.7 and 1.3 mm diam, respectively. Q-switched laser pulses of 50 ns have a lower threshold of 11 Jcm-2 for a 5-mm-diam top-hat laser pulse.
Directory of Open Access Journals (Sweden)
J Matthew Mahoney
Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.
Mahoney, J Matthew; Titiz, Ali S; Hernan, Amanda E; Scott, Rod C
2016-01-01
Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597
Activity of a social dynamics model
Reia, Sandro M.; Neves, Ubiraci P. C.
2015-10-01
Axelrod's model was proposed to study interactions between agents and the formation of cultural domains. It presents a transition from a monocultural to a multicultural steady state which has been studied in the literature by evaluation of the relative size of the largest cluster. In this article, we propose new measurements based on the concept of activity per agent to study the Axelrod's model on the square lattice. We show that the variance of system activity can be used to indicate the critical points of the transition. Furthermore the frequency distribution of the system activity is able to show a coexistence of phases typical of a first order phase transition. Finally, we verify a power law dependence between cluster activity and cluster size for multicultural steady state configurations at the critical point.
Kanavarioti, A.; Alberas, D. J.; Rosenbach, M. T.; Bernasconi, C. F.; Chang, S.
1991-01-01
We are investigating the reactions of ImpN's in the presence of a number of prebiotically plausible materials, such as metal ions, phosphate, amines and other nucleotides and hope to learn more about the stability/reactivity of ImpN's in a prebiotic aqueous environment. We find that, in the presence of phosphate, ImpN's form substantial amounts of diphosphate nucleotides. These diphosphate nucleotides are not very good substrates for template directed reactions, but are chemically activated and are known to revert to the phosphoimidazolides in the presence of imidazole under solid state conditions. With respect to our studies of the oligomerization reaction, the determination of the dimerization rate constant of a specific ImpN (guanosine 5'-phospho 2 methylimidazolide) both in the absence and the presence of the template leads to the conclusion that at 37 C the dimerization is not template directed, although the subsequent polymerization steps are. In other words, this specific polynucleotide synthesizing system favors the elongation of oligonucleotides as compared with the formation of dimers and trimers. This favoring of the synthesis of long as opposed to short oligonucleotides may be regarded as a rudimentary example of natural selection at the molecular level.
Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.
Ellis, Linda K.
2000-01-01
Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)
Orbital Optimization in the Active Space Decomposition Model
Kim, Inkoo; Shiozaki, Toru
2015-01-01
We report the derivation and implementation of orbital optimization algorithms for the active space decomposition (ASD) model, which are extensions of complete active space self-consistent field (CASSCF) and its occupation-restricted variants in the conventional multiconfiguration electronic-structure theory. Orbital rotations between active subspaces are included in the optimization, which allows us to unambiguously partition the active space into subspaces, enabling application of ASD to electron and exciton dynamics in covalently linked chromophores. One- and two-particle reduced density matrices, which are required for evaluation of orbital gradient and approximate Hessian elements, are computed from the intermediate tensors in the ASD energy evaluation. Numerical results on 4-(2-naphthylmethyl)-benzaldehyde and [3$_6$]cyclophane and model Hamiltonian analyses of triplet energy transfer processes in the Closs systems are presented. Furthermore model Hamiltonians for hole and electron transfer processes in...
Rybak, Michael J.; Hershberger, Ellie; Moldovan, Tabitha; Grucz, Richard G.
2000-01-01
The in vitro activity of daptomycin was compared with those of vancomycin, linezolid, and quinupristin-dalfopristin against a variety (n = 203) of gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and S. epidermidis (MRSA and MRSE, respectively), vancomycin-resistant enterococci (VRE), and vancomycin-intermediate S. aureus (VISA). Overall, daptomycin was more active against all organisms tested, except Enterococcus faecium and VISA, against which its activity was s...
Samala, Sujatha; Veeresham, Ciddi
2016-03-01
The effect of boswellic acids (BA) and andrographolide (AD) on the pharmacokinetics and pharmacodynamics of glyburide in normal as well as in streptozotocin-induced diabetic rats was studied. In normal and diabetic rats, the combination of glyburide with BA or AD increased significantly (p < 0.01) all the pharmacokinetic parameters, such as Cmax, AUC0-n, AUCtotal, t1/2, and mean residence time, and decreased the clearance, Vd, markedly as compared with the control group. In rat liver, microsomes BA and AD have shown CYP3A4 inhibitory activity significantly (p < 0.01), compared with the vehicle group. The increase in hypoglycemic action by concomitant administration of glyburide with BA or AD was more in diabetic rats than when the drugs were used singly and with the control group, which suggests the enhancement of glucose reduction capacity of glyburide in diabetic rats along with BA or AD. In PK/PD modeling of BA and AD with glyburide, the predicted PK and PD parameters are in line with the observed PK and PD parameters. The results revealed that BA and AD led to the PK/PD changes because of glyburide-increased bioavailability and because of the inhibition of CYP3A4 enzyme. In conclusion, add-on preparations containing BA or AD may increase the bioavailability of glyburide, and hence the dose should be monitored. PMID:26762235
MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON
The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...
DEFF Research Database (Denmark)
Johansen, Per; Rømer, Daniel; Andersen, Torben Ole; Pedersen, Henrik C.
2014-01-01
multibody dynamics model of a radial piston fluid power motor, which connects the rigid bodies through models of the transient hydrodynamic lubrication pressure in the joint clearance. A finite volume approach is used to model the pressure dynamics of the fluid film lubrication. The model structure and...
Validation of Power Requirement Model for Active Loudspeakers
DEFF Research Database (Denmark)
Schneider, Henrik; Madsen, Anders Normann; Bjerregaard, Ruben;
2015-01-01
The actual power requirement of an active loudspeaker during playback of music has not received much attention in the literature. This is probably because no single and simple solution exists and because a complete system knowledge from input voltage to output sound pressure level is required....... There are however many advantages that could be harvested from such knowledge like size, cost and efficiency improvements. In this paper a recently proposed power requirement model for active loudspeakers is experimentally validated and the model is expanded to include the closed and vented type enclosures...
Yin, J.; Cumberland, S. A.; Harrison, R. M.; Allan, J.; Young, D. E.; Williams, P. I.; Coe, H.
2015-02-01
PM2.5 was collected during a winter campaign at two southern England sites, urban background North Kensington (NK) and rural Harwell (HAR), in January-February 2012. Multiple organic and inorganic source tracers were analysed and used in a Chemical Mass Balance (CMB) model, which apportioned seven separate primary sources, that explained on average 53% (NK) and 56% (HAR) of the organic carbon (OC), including traffic, woodsmoke, food cooking, coal combustion, vegetative detritus, natural gas and dust/soil. With the addition of source tracers for secondary biogenic aerosol at the NK site, 79% of organic carbon was accounted for. Secondary biogenic sources were represented by oxidation products of α-pinene and isoprene, but only the former made a substantial contribution to OC. Particle source contribution estimates for PM2.5 mass were obtained by the conversion of the OC estimates and combining with inorganic components ammonium nitrate, ammonium sulfate and sea salt. Good mass closure was achieved with 81% (92% with the addition of the secondary biogenic source) and 83% of the PM2.5 mass explained at NK and HAR respectively, with the remainder being secondary organic matter. While the most important sources of OC are vehicle exhaust (21 and 16%) and woodsmoke (15 and 28%) at NK and HAR respectively, food cooking emissions are also significant, particularly at the urban NK site (11% of OC), in addition to the secondary biogenic source, only measured at NK, which represented about 26%. In comparison, the major source components for PM2.5 at NK and HAR are inorganic ammonium salts (51 and 56%), vehicle exhaust emissions (8 and 6%), secondary biogenic (10% measured at NK only), woodsmoke (4 and 7%) and sea salt (7 and 8%), whereas food cooking (4 and 1%) showed relatively smaller contributions to PM2.5. Results from the CMB model were compared with source contribution estimates derived from the AMS-PMF method. The overall mass of organic matter accounted for is rather
Intracellular mechanochemical waves in an active poroelastic model.
Radszuweit, Markus; Alonso, Sergio; Engel, Harald; Bär, Markus
2013-03-29
Many processes in living cells are controlled by biochemical substances regulating active stresses. The cytoplasm is an active material with both viscoelastic and liquid properties. We incorporate the active stress into a two-phase model of the cytoplasm which accounts for the spatiotemporal dynamics of the cytoskeleton and the cytosol. The cytoskeleton is described as a solid matrix that together with the cytosol as an interstitial fluid constitutes a poroelastic material. We find different forms of mechanochemical waves including traveling, standing, and rotating waves by employing linear stability analysis and numerical simulations in one and two spatial dimensions. PMID:23581377
DEFF Research Database (Denmark)
Thiessen, K.M.; Andersson, Kasper Grann; Batandjieva, B.; Cheng, J.-J.; Hwang, W.T.; Kaiser, J.C.; Kamboj, S.; Steiner, M.; Tomas, J.; Trifunovic, D.; Yu, C.
2009-01-01
The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes t...
International Nuclear Information System (INIS)
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance
Camilo Saavedra; Jose Cedeira; Daniel Howell; Pierce, Graham J.; Fiona Read
2014-01-01
Single-species models have been commonly used to assess fish stocks in the past. Since these models have relatively simple data requirements, they sometimes provide the only tool available to assess the status of a stock when data are not enough to develop more complex models. However, these models have been criticized for several reasons since they provide reference points independently for each species assessed ignoring their interactions. For example, several studies suggest that even more...
Cifra, Michal; Pokorný, Jirí; Kucera, Ondrej
2011-12-01
This volume contains papers presented at the International Fröhlich's Symposium entitled 'Electrodynamic Activity of Living Cells' (1-3 July 2011, Prague, Czech Republic). The Symposium was the 9th meeting devoted to physical processes in living matter organized in Prague since 1987. The hypothesis of oscillation systems in living cells featured by non-linear interaction between elastic and electrical polarization fields, non-linear interactions between the system and the heat bath leading to energy downconversion along the frequency scale, energy condensation in the lowest frequency mode and creation of a coherent state was formulated by H Fröhlich, founder of the theory of dielectric materials. He assumed that biological activity is based not only on biochemical but also on biophysical mechanisms and that their disturbances form basic links along the cancer transformation pathway. Fröhlich outlined general ideas of non-linear physical processes in biological systems. The downconversion and the elastic-polarization interactions should be connected in a unified theory and the solution based on comprehensive non-linear characteristics. Biochemical and genetic research of biological systems are highly developed and have disclosed a variety of cellular and subcellular structures, chemical reactions, molecular information transfer, and genetic code sequences - including their pathological development. Nevertheless, the cancer problem is still a big challenge. Warburg's discovery of suppressed oxidative metabolism in mitochondria in cancer cells suggested the essential role of physical mechanisms (but his discovery has remained without impact on cancer research and on the study of physical properties of biological systems for a long time). Mitochondria, the power plants of the cell, have several areas of activity-oxidative energy production is connected with the formation of a strong static electric field around them, water ordering, and liberation of non
Zaoutis, Theoklis; Moore, Lynn Steele; Furness, Kathleen; Klein, Joel D.
2001-01-01
The in vitro activities of meropenem, linezolid, quinupristin-dalfopristin, vancomycin, and penicillin against 130 clinical isolates of group C and G streptococci, including vancomycin-tolerant isolates, were evaluated. Meropenem, linezolid, quinupristin-dalfopristin, vancomycin, and penicillin MICs at which 90% of the isolates were inhibited were 0.06, 2.0, 0.25, 0.5, and ≤0.016 μg/ml, respectively. Meropenem, linezolid, quinupristin-dalfopristin, and penicillin were active against group C a...
Allen, Edward J; Allen, Linda J S; Schurz, Henri
2005-07-01
A discrete-time Markov chain model, a continuous-time Markov chain model, and a stochastic differential equation model are compared for a population experiencing demographic and environmental variability. It is assumed that the environment produces random changes in the per capita birth and death rates, which are independent from the inherent random (demographic) variations in the number of births and deaths for any time interval. An existence and uniqueness result is proved for the stochastic differential equation system. Similarities between the models are demonstrated analytically and computational results are provided to show that estimated persistence times for the three stochastic models are generally in good agreement when the models satisfy certain consistency conditions. PMID:15946709
Elisa González-Domínguez; Tito Caffi; Nicola Ciliberti; Vittorio Rossi
2015-01-01
A mechanistic model for Botrytis cinerea on grapevine was developed. The model, which accounts for conidia production on various inoculum sources and for multiple infection pathways, considers two infection periods. During the first period ("inflorescences clearly visible" to "berries groat-sized"), the model calculates: i) infection severity on inflorescences and young clusters caused by conidia (SEV1). During the second period ("majority of berries touching" to "berries ripe for harvest"), ...
Renuka V. S.; Abraham T Mathew
2013-01-01
A crane system offers a typical control problem being an under actuated MIMO system. In this paper the precise modelling of a 2D gantry crane system with 3 DOF is considered. First a simple dynamic model of the system is obtained using Lagrange’s equations of motion. Then, friction non-linearities were added to the model, which were found to decrease the output magnitudes from reference values. The model was further improved by considering the possibility of 3D angular swing which showed more...
DEFF Research Database (Denmark)
Perers, Bengt; Kovacs, Peter; Pettersson, Ulrik;
2011-01-01
An improved unglazed collector model has been validated for use in TRNSYS and IDA and also for future extension of the EN12975 collector test standard. The basic model is the same as used in the EN12975 test standard in the quasi dynamic performance test method (QDT). In this case with the addition...... collector testing and system simulation by using the same dynamic model and parameters during testing and simulation. The model together with the parameters will be validated in each test in this way. This work describes the method applied to an unglazed collector operating partly below the dew point under...
González-Domínguez, Elisa; Caffi, Tito; Ciliberti, Nicola; Rossi, Vittorio
2015-01-01
A mechanistic model for Botrytis cinerea on grapevine was developed. The model, which accounts for conidia production on various inoculum sources and for multiple infection pathways, considers two infection periods. During the first period ("inflorescences clearly visible" to "berries groat-sized"), the model calculates: i) infection severity on inflorescences and young clusters caused by conidia (SEV1). During the second period ("majority of berries touching" to "berries ripe for harvest"), the model calculates: ii) infection severity of ripening berries by conidia (SEV2); and iii) severity of berry-to-berry infection caused by mycelium (SEV3). The model was validated in 21 epidemics (vineyard × year combinations) between 2009 and 2014 in Italy and France. A discriminant function analysis (DFA) was used to: i) evaluate the ability of the model to predict mild, intermediate, and severe epidemics; and ii) assess how SEV1, SEV2, and SEV3 contribute to epidemics. The model correctly classified the severity of 17 of 21 epidemics. Results from DFA were also used to calculate the daily probabilities that an ongoing epidemic would be mild, intermediate, or severe. SEV1 was the most influential variable in discriminating between mild and intermediate epidemics, whereas SEV2 and SEV3 were relevant for discriminating between intermediate and severe epidemics. The model represents an improvement of previous B. cinerea models in viticulture and could be useful for making decisions about Botrytis bunch rot control. PMID:26457808
2-dimensional numerical modeling of active magnetic regeneration
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Pryds, Nini; Smith, Anders;
2009-01-01
Various aspects of numerical modeling of Active Magnetic Regeneration (AMR) are presented. Using a 2-dimensional numerical model for solving the unsteady heat transfer equations for the AMR system, a range of physical effects on both idealized and non-idealized AMR are investigated. The modeled...... system represents a linear, parallel-plate based AMR. The idealized version of the model is able to predict the theoretical performance of AMR in terms of cooling power and temperature span. This is useful to a certain extent, but a model reproducing experiments to a higher degree is desirable. Therefore...... physical effects such as thermal parasitic losses have been included. Furthermore, experimentally found magnetocaloric properties are used when available, since the commonly used mean field model can be too idealized and is not always able to determine the magnetocaloric effect accurately. In the present...
Modeling of an Active Tablet Coating Process.
Toschkoff, Gregor; Just, Sarah; Knop, Klaus; Kleinebudde, Peter; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes G
2015-12-01
Tablet coating is a common unit operation in the pharmaceutical industry, during which a coating layer is applied to tablet cores. The coating uniformity of tablets in a batch is especially critical for active coating, that is, coating that contains an active pharmaceutical ingredient. In recent years, discrete element method (DEM) simulations became increasingly common for investigating tablet coating. In this work, DEM was applied to model an active coating process as closely as possible, using measured model parameters and non-spherical particles. We studied how operational conditions (rotation speed, fill level, number of nozzles, and spray rate) influence the coating uniformity. To this end, simulation runs were planned and interpreted according to a statistical design of (simulation) experiments. Our general goal was to achieve a deeper understanding of the process in terms of residence times and dimensionless scaling laws. With that regard, the results were interpreted in light of analytical models. The results were presented at various detail levels, ranging from an overview of all variations to in-depth considerations. It was determined that the biggest uniformity improvement in a realistic setting was achieved by increasing the number of spray nozzles, followed by increasing the rotation speed and decreasing the fill level. PMID:26344941
Modeling activity transport in the CANDU heat transport system
International Nuclear Information System (INIS)
The release and transport of corrosion products from the surfaces of primary coolant system components is a serious concern for all water-cooled nuclear power plants. The consequences of high levels of corrosion product transport are twofold: a) increased corrosion product (crud) deposition on fuel cladding surfaces, leading to reduced heat transfer and the possibility of fuel failures, and b) increased production of radioactive species by neutron activation, resulting in increased out-of-core radiation fields and worker dose. In recent years, a semi-empirical activity transport model has been successfully developed to predict the deposition of radionuclides, including 60Co, 95Zr, 124Sb and fission products, around the CANDU® primary Heat Transport System (HTS), and to predict radiation fields at the steam generators and reactor face. The model links corrosion of the carbon steel outlet feeders to magnetite and radionuclide deposition on steam generator and inlet piping surfaces. This paper will describe the model development, key assumptions, required inputs, and model validation. The importance of reactor artefact characterization in the model development will be highlighted, and some key results will be presented, including oxide morphology and loadings, and radionuclide distributions within the oxide. The predictive capabilities of the model will also be described, including predictions of oxide thickness and the effects of changes in chemistry parameters such as alkalinity. While the model was developed primarily for the CANDU® HTS, the information gained during model development regarding corrosion product and radionuclide transport and deposition can also provide insights into activity transport in other water-cooled reactor systems. (author)
Directory of Open Access Journals (Sweden)
Renuka V. S.
2013-06-01
Full Text Available A crane system offers a typical control problem being an under actuated MIMO system. In this paper the precise modelling of a 2D gantry crane system with 3 DOF is considered. First a simple dynamic model of the system is obtained using Lagrange’s equations of motion. Then, friction non-linearities were added to the model, which were found to decrease the output magnitudes from reference values. The model was further improved by considering the possibility of 3D angular swing which showed more accurate transient responses. Finally, the dynamics of hoisting cable flexibility was added to the system resulting in a complex model requiring time consuming simulation. But, significant change was seen in the angular swing output which will significantly affect controller performance. The models considering either flexibility or 3D load swing are comparatively less complex than the combined model. The precise model to be considered is a trade-off between safety (minimum swing angle and precise load handling.
Revilla, Marta; Galán, Berta; Viguri, Javier R
2016-07-01
An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. PMID:27085154
Chaudhary, R.; Ji, C.; Thomas, B. G.; Vanka, S. P.
2011-10-01
Computational modeling is an important tool to understand and stabilize transient turbulent fluid flow in the continuous casting of steel to minimize defects. The current work combines the predictions of two steady Reynolds-averaged Navier-Stokes (RANS) models, a "filtered" unsteady RANS model, and two large eddy simulation (LES) models with ultrasonic Doppler velocimetry (UDV) measurements in a small-scale liquid GaInSn model of the continuous casting mold region fed by a bifurcated well-bottom nozzle with horizontal ports. Both mean and transient features of the turbulent flow are investigated. LES outperformed all models while matching the measurements, except in locations where measurement problems are suspected. The LES model also captured high-frequency fluctuations, which the measurements could not detect. Steady RANS models were the least accurate methods. Turbulent velocity variation frequencies and energies decreased with distance from the nozzle port regions. Proper orthogonal decomposition analysis, instantaneous velocity patterns, and Reynolds stresses reveal that velocity fluctuations and flow structures associated with the alternating-direction swirl in the nozzle bottom lead to a wobbling jet exiting the ports into the mold. These turbulent flow structures are responsible for patterns observed in both the time average flow and the statistics of their fluctuations.
Energy Technology Data Exchange (ETDEWEB)
Hiatt, Jessica R. [Department of Radiation Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903 (United States); Davis, Stephen D. [Department of Medical Physics, McGill University Health Centre, Montreal, Quebec H3G 1A4 (Canada); Rivard, Mark J., E-mail: mark.j.rivard@gmail.com [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)
2015-06-15
Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose
On a Quantum Model of Brain Activities
Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.
2010-01-01
One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.
International Nuclear Information System (INIS)
A non-local polycrystal approach, taking into account strain gradients, is proposed to simulate the 316LN stainless steel fatigue life curve in the hardening stage. Material parameters identification is performed on tensile curves corresponding to several 316LN polycrystals presenting different grain sizes. Applied to an actual 3D aggregate of 316LN stainless steel of 1200 grains, this model leads to an accurate prediction of cyclic curves. Geometrical Necessary Dislocation densities related to the computed strain gradient are added to the micro-plasticity laws. Compared to standard models, this model predicts a decrease of the local stresses as well as a grain size effect. (authors)
International Nuclear Information System (INIS)
A semi-analytical approach is presented to model the effects of complicated boundary conditions and rarefaction on the squeeze-film damping dependent quality factor in a double-gimballed MEMS torsion mirror. To compute squeeze-film damping in a rectangular torsion mirror with simple boundaries, compact models derived by solving the conventional Reynolds equation with zero pressure boundary conditions on the edges of the plate are generally used. These models are not applicable if the air-gap thickness is comparable to the length of the plate. To extend the validity of the existing models in devices with large air-gap thickness and complicated boundaries, we present a procedure that requires the computation of the effective length of the structure and uses this length for the computation of damping in all flow regimes using a modified effective viscosity model. The effective length is computed by comparing the damping obtained from a numerical solution of Navier–Stokes equations with that obtained from a Reynolds-equation-based compact model. To capture the effect of rarefaction in different flow regimes, we use two different approaches: the effective viscosity approach which is valid for continuum, slip, transition and molecular flow regimes, and an approach based on the free molecular model which is valid only in a molecular flow regime. We show that the effective length obtained for complicated structures in the continuum regime may still be used to capture the rarefaction effect in the slip, transition and molecular regimes. On comparing different empirical models based on the effective viscosity approach with experimental results, we find some anomaly in the region between the molecular regime and the intrinsic regime where non-fluid damping dominates. To improve modelling in the rarified regimes, we modify the best model among the existing models by minimizing error obtained with respect to the experimental results. We find that the proposed model captures
MODEL OF ACTIVITY OF THE ENTERPRISE AS MODEL OF ACTIVITY OF THE HUMAN: SEARCH ANALYSIS
Ruslan Flerovich Vildanov; Aidar Sultangalievich Puryaev
2014-01-01
Actualized demand of manufactury company's efficiency from the point of quality charachteristics. Reveal unbreakable connection of man and organisation, on example of the comparative analysis of man's and manufacture company's activities. Studing models of company's and men's activities in order to reveal similarity. In order of their implementation to the economics assumes opportunity of using scientific methods, which use for studying functions, vital activities and behavior of the men.
Hanukah, Eli
2013-01-01
We develop a new higher order closed-form model for the dynamics of a hyperelastic isotropic 3D cylindrical body. We derive, for the first time, a simple explicit expression for the fundamental frequency.
Development of a generic activities model of command and control
Stanton, NA; Baber, C; Walker, GH; Houghton, RJ; McMaster, R.; Stewart, R; Harris, D.; Jenkins, DP; Young, MS; Salmon, PM
2008-01-01
This paper reports on five different models of command and control. Four different models are reviewed: a process model, a contextual control model, a decision ladder model and a functional model. Further to this, command and control activities are analysed in three distinct domains: armed forces, emergency services and civilian services. From this analysis, taxonomies of command and control activities are developed that give rise to an activities model of command and control. This model w...
DEFF Research Database (Denmark)
Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat;
2015-01-01
In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under the...... stresses due to the cooling process during manufacturing are also considered. Numerical solutions are obtained using an in-house developed finite element code; proper comparison with literature in the field is given....
Fernández-Nieto, E D; Narbona-Reina, G; Zabsonré, J D
2015-01-01
In this work we present a deduction of the Saint-Venant-Exner model through an asymptotic analysis of the Navier-Stokes equations. A multi-scale analysis is performed in order to take into account that the velocity of the sediment layer is smaller than the one of the fluid layer. This leads us to consider a shallow water type system for the fluid layer and a lubrication Reynolds equation for the sediment one. This deduction provides some improvements with respect to the classical Saint-Venant-Exner model: (i) the deduced model has an associated energy. Moreover, it allows us to explain why classical models do not have an associated energy and how to modify them in order to recover a model with this property. (ii) The model incorporates naturally a necessary modification that must be taken into account in order to be applied to arbitrarily sloping beds. Furthermore, we show that this modification is different of the ones considered classically, and that it coincides with a classical one only if the solution ha...
International Nuclear Information System (INIS)
During this work, a 2D axially symmetric model of a TIG arc welding process had been developed in order to predict for given welding parameters, the needed variables for a designer of welded assembly: the heat input on the work piece, the weld pool geometry,... The developed model, using the Cast3M finite elements software, deals with the physical phenomena acting in each part of the process: the cathode, the plasma, the work piece with a weld pool, and the interfaces between these parts. To solve this model, the thermohydraulics equations are coupled with the electromagnetic equations that are calculated in part using the least squares finite element method. The beginning of the model validation consisted in comparing the results obtained with the ones available in the scientific literature. Thus, this step points out the action of each force in the weld pool, the contribution of each heat flux in the energy balance. Finally, to validate the model predictiveness, experimental and numerical sensitivity analyses were conducted using a design of experiments approach. The effects of the process current, the arc gap and the electrode tip angle on the weld pool geometry and the energy transferred to the work piece and the arc efficiency were studied. The good agreement obtained by the developed model for these outputs shows the good reproduction of the process physics. (author)
Modelling of Activated Sludge Wastewater Treatment
Directory of Open Access Journals (Sweden)
Kurtanjeka, Ž.
2008-02-01
Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge
Energy Technology Data Exchange (ETDEWEB)
Hurisse, O.; Minier, J.P. [EDF RD, departement MFEE, 6, quai Watier, 78400 Chatou (France)
2011-06-15
Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)
Van Wassenbergh, Sam
2015-07-01
The gill cover of fish and pre-metamorphic salamanders has a key role in suction feeding by acting as a one-way valve. It initially closes and avoids an inflow of water through the gill slits, after which it opens to allow outflow of the water that was sucked through the mouth into the expanded buccopharyngeal cavity. However, due to the inability of analytical models (relying on the continuity principle) to calculate the flow of fluid through a cavity with two openings and that was changing in shape and size, stringent boundary conditions had to be used in previously developed mathematical models after the moment of the valve's opening. By solving additionally for the conservation of momentum, computational fluid dynamics (CFD) has the capacity to dynamically simulate these flows, but this technique also faces complications in modeling a transition from closed to open valves. Here, I present a relatively simple solution strategy to incorporate the opening of the valves, exemplified in an axisymmetrical model of a suction-feeding sunfish in ANSYS Fluent software. By controlling viscosity of a separately defined fluid entity in the region of the opercular cavity, early inflow can be blocked (high viscosity assigned) and later outflow can be allowed (changing viscosity to that of water). Finally, by analyzing the CFD solution obtained for the sunfish model, a few new insights into the biomechanics of suction feeding are gained. PMID:25936359
DEFF Research Database (Denmark)
Christensen, Bent Jesper; van der Wel, Michel
techniques for a variety of volatility factors, and implement the relevant likelihood ratio tests. Our factor model estimates are similar across a general state space implementation and an alternative robust two-step principal components approach. The evidence favors time-varying market prices of risk. Most......We develop a new empirical approach to term structure analysis that allows testing for time-varying risk premia and for the absence of arbitrage opportunities based on the drift restriction within the Heath, Jarrow and Morton (1992) framework. As in the equity case, a zero intercept condition is...... tested, but in addition to the standard bilinear term in factor loadings and market prices of risk, the relevant mean restriction in the term structure case involves an additional nonlinear (quadratic) term in factor loadings. We estimate our general model using likelihood-based dynamic factor model...
International Nuclear Information System (INIS)
After the accident at TEPCO's Fukushima Daiichi Nuclear Power Station on March 11, 2011, severe accident countermeasures and regulations have been discussed in various organizations as well as the Secretariat of the Nuclear Regulation Authority (S/NRA) in Japan. For severe accident management, spray systems or alternative spray systems have become increasingly important for reducing radionuclide release from the containment. In the present study, a simplified model was developed for aerosol removal by the spray system, considering a nonsprayed region in the containment. The effect of the nonsprayed region was estimated by the simplified model with a single volume, although multivolumes were used in the past. The model was verified through comparison with the analytical solutions for typical containment spray conditions. (author)
International Nuclear Information System (INIS)
The purpose of this study is to investigate nonlinear behavior of reinforced concrete (RC) structures with the plasticity modeling. For this aim a nonlinear finite element analysis program is coded in MATLAB. This program contains several yield criteria and stress-strain relationship for compression and tension behavior of concrete. In this paper, the well-known criteria, Drucker-Prager, von Mises, and a new criterion, Hsieh-Ting-Chen, are taken into account. The elastic-perfectly plastic and Park-Paulay stress-strain relationships in compression behavior and tension stiffening in tension behavior of concrete are used with four different yield criteria mentioned above. It is concluded that the proposed models are in good agreement with the experimental and analytical results taken from the literature. It is also concluded that the coded program, the proposed models, and Hsieh-Ting-Chen criterion can be effectively used in the nonlinear analysis of reinforced concrete beams.
Directory of Open Access Journals (Sweden)
E.C. Biscaia Junior
2001-06-01
Full Text Available A dynamic kinetic-diffusive model for the extraction of metallic ions from aqueous liquors using liquid surfactant membranes is proposed. The model incorporates undesirable intrinsic phenomena such as swelling and breakage of the emulsion globules that have to be controlled during process operation. These phenomena change the spatial location of the chemical reaction during the course of extraction, resulting in a transient moving boundary problem. The orthogonal collocation method was used to transform the partial differential equations into an ordinary differential equation set that was solved by an implicit numerical routine. The model was found to be numerically stable and reliable in predicting the behaviour of zinc extraction with acidic extractant for long residence times.
International Nuclear Information System (INIS)
An analytical model for surrounding gate metal—oxide—semiconductor field effect transistors (MOSFETs) considering quantum effects is presented. To achieve this goal, we have used a variational approach for solving the Poissonand Schrodinger equations. This model is developed to provide an analytical expression for the inversion charge distribution function for all regions of the device operation. This expression is used to calculate the other important parameters like the inversion charge centroid, threshold voltage and inversion charge density. The calculated expressions for the above parameters are simple and accurate. The validity of this model was checked for the devices with different device dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement. (semiconductor devices)
International Nuclear Information System (INIS)
Process modeling of activated sludge flocculation and sedimentation reviews consider the activated sludge floc characteristics such as: morphology viable and non-viable cell ratio density and water content, bio flocculation and its kinetics were studied considering the characteristics of bio flocculation and explaining theory of Divalent Cation Bridging which describes the major role of cations in bio flocculation. Activated sludge flocculation process modeling was studied considering mass transfer limitations from Clifft and Andrew, 1981, Benefild and Molz 1983 passing Henze 1987, until Tyagi 1996 and G. Ibrahim et aI. 2002. Models of aggregation and breakage of flocs were studied by Spicer and Pratsinis 1996,and Biggs 2002 Size distribution of floes influences mass transfer and biomass separation in the activated sludge process. Therefore, it is of primary importance to establish the role of specific process operation factors, such as sludge loading dynamic sludge age and dissolved oxygen, on this distribution with special emphasis on the formation of primary particles
Energy Technology Data Exchange (ETDEWEB)
Berthoud, G.; Crecy, F. de; Meignen, R.; Valette, M. [CEA-G, DRN/DTP/SMTH, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)
1998-01-01
The premixing phase of a molten fuel-coolant interaction is studied by the way of mechanistic multidimensional calculation. Beside water and steam, corium droplet flow and continuous corium jet flow are calculated independent. The 4-field MC3D code and a detailed hot jet fragmentation model are presented. MC3D calculations are compared to the FARO L14 experiment results and are found to give satisfactory results; heat transfer and jet fragmentation models are still to be improved to predict better final debris size values. (author)
Luo, Yu; Kang, Xi; Kauffmann, Guinevere; Fu, Jian
2016-05-01
The quenching of star formation in satellite galaxies is observed over a wide range of dark matter halo masses and galaxy environments. In the recent Guo et al. and Fu et al. semi-analytic + N-body models, the gaseous environment of the satellite galaxy is governed by the properties of the dark matter subhalo in which it resides. This quantity depends of the resolution of the N-body simulation, leading to a divergent fraction of quenched satellites in high- and low-resolution simulations. Here, we incorporate an analytic model to trace the subhaloes below the resolution limit. We demonstrate that we then obtain better converged results between the Millennium I and II simulations, especially for the satellites in the massive haloes (log Mhalo = [14, 15]). We also include a new physical model for the ram-pressure stripping of cold gas in satellite galaxies. However, we find very clear discrepancies with observed trends in quenched satellite galaxy fractions as a function of stellar mass at fixed halo mass. At fixed halo mass, the quenched fraction of satellites does not depend on stellar mass in the models, but increases strongly with mass in the data. In addition to the overprediction of low-mass passive satellites, the models also predict too few quenched central galaxies with low stellar masses, so the problems in reproducing quenched fractions are not purely of environmental origin. Further improvements to the treatment of the gas-physical processes regulating the star formation histories of galaxies are clearly necessary to resolve these problems.
Managing CSCL Activity through networking models
Directory of Open Access Journals (Sweden)
Luis Casillas
2014-04-01
Full Text Available This study aims at managing activity carried out in Computer-Supported Collaborative Learning (CSCL environments. We apply an approach that gathers and manages the knowledge underlying huge data structures, resulting from collaborative interaction among participants and stored as activity logs. Our method comprises a variety of important issues and aspects, such as: deep understanding of collaboration among participants in workgroups, definition of an ontology for providing meaning to isolated data manifestations, discovering of knowledge structures built in huge amounts of data stored in log files, and development of high-semantic indicators to describe diverse primitive collaborative acts, and binding these indicators to formal descriptions defined in the collaboration ontology; besides our method includes gathering collaboration indicators from web forums using natural language processing (NLP techniques.
Three components model of enterprise’s export activity
Directory of Open Access Journals (Sweden)
S.A.-A. Al-Osta
2015-03-01
Full Text Available The article presents the export activity of the enterprise in the form of structural three components model. It is suggested to include to the model composition such components as pre-export, restructuring / adaptation and export operation. The nature of the given export activities components has been defined. A special role of adaptive changes in the conversion of pre-export to the export operation has been substantiated. The aim of the article. The article is aimed at forming an integrated model of enterprise’s exports, which is built within the legal framework and would be adequate to modern trade and financial conditions. The results of the analysis. Frequently the terms «export activity» and «export» have parallel using in regulatory legal acts and scientific studies. The article stated that «export» and «export activity» are similar concepts, because in both cases these terms are used to describe the relationships of the enterprise with foreign customers. But at the same time, «export» and «export activity» concepts are different, because «export» means sale and transportation of products to foreign business partner, and «export activities» provides a set of actions, economic activity organized in a sequence of stages and certain functions of the output on the external market. Enterprises usually starts export activity because of definite motives and positive effects to which it may lead. Among these reasons are creating a positive image on the domestic market (stereotype of European standards, expanding of markets, the possibility of the commercial risk redistribution. These prospects and the positive effects can be unfulfilled or can be accompanied by such undesirable consequences for the company, as additional international marketing expenses, certification costs and enterprise restructuring. At the same time, an enterprise restructuring is a process certainly constructive when it is caused by the desire to fulfill
Holdaway, D. R.; Errico, R.
2011-12-01
Inherent in the minimization process in the 4D-Var data assimilation system is the need for the model's adjoint. It is straightforward to obtain the exact adjoint by linearizing the code in a line by line sense; however it only provides an accurate overall representation of the physical processes if the model behaviour is linear. Moist processes in the atmosphere, and thus the models that represent them, are intrinsically highly non-linear and can contain discrete switches. The adjoint that is required in the data assimilation system needs to provide an accurate representation of the physical behaviour for perturbation sizes of the order of the analysis error, so an exact adjoint of the moist physics model is likely to be inaccurate. Instead a non-exact adjoint model, which is accurate for large enough perturbations, must be developed. The constraint on the development is that the simplified adjoint be consistent with the actual trajectory of the model. Previous attempts to include the moist physics in the 4D-Var have emphasized the need for redevelopment of the actual moist scheme to a simpler version. These schemes are designed to be linear in the limit of realistic perturbation size but also capture the essence of the physical behaviour, making the adjoint version of the scheme suitable for use in the 4D-Var. A downside to this approach is that it can result in an over simplification of the physics and represent a larger departure from the true model trajectory than necessary. The adjoint is just the transpose of the tangent linear model, which is the differential of the model operator. This differential of the operator can be constructed from Jacobian matrices. Examining the structures of the Jacobians as perturbations of varying size are added to the state vector can help determine whether the adjoint model - be it of actual or simplified physics - will be suitable for use in the assimilation algorithm. If Jacobian structures change considerably when the
Iverson, Richard M.; George, David L.
2014-01-01
To simulate debris-flow behaviour from initiation to deposition, we derive a depth-averaged, two-phase model that combines concepts of critical-state soil mechanics, grain-flow mechanics and fluid mechanics. The model's balance equations describe coupled evolution of the solid volume fraction, m, basal pore-fluid pressure, flow thickness and two components of flow velocity. Basal friction is evaluated using a generalized Coulomb rule, and fluid motion is evaluated in a frame of reference that translates with the velocity of the granular phase, vs. Source terms in each of the depth-averaged balance equations account for the influence of the granular dilation rate, defined as the depth integral of ∇⋅vs. Calculation of the dilation rate involves the effects of an elastic compressibility and an inelastic dilatancy angle proportional to m−meq, where meq is the value of m in equilibrium with the ambient stress state and flow rate. Normalization of the model equations shows that predicted debris-flow behaviour depends principally on the initial value of m−meq and on the ratio of two fundamental timescales. One of these timescales governs downslope debris-flow motion, and the other governs pore-pressure relaxation that modifies Coulomb friction and regulates evolution of m. A companion paper presents a suite of model predictions and tests.
Keitel, David
2016-04-01
The vulnerability to single-detector instrumental artifacts in standard detection methods for long-duration quasimonochromatic gravitational waves from nonaxisymmetric rotating neutron stars [continuous waves (CWs)] was addressed in past work [D. Keitel et al., Phys. Rev. D 89, 064023 (2014).] by a Bayesian approach. An explicit model of persistent single-detector disturbances led to a generalized detection statistic with improved robustness against such artifacts. Since many strong outliers in semicoherent searches of LIGO data are caused by transient disturbances that last only a few hours, we extend the noise model to cover such limited-duration disturbances, and demonstrate increased robustness in realistic simulated data. Besides long-duration CWs, neutron stars could also emit transient signals which, for a limited time, also follow the CW signal model (tCWs). As a pragmatic alternative to specialized transient searches, we demonstrate how to make standard semicoherent CW searches more sensitive to transient signals. Considering tCWs in a single segment of a semicoherent search, Bayesian model selection yields a new detection statistic that does not add significant computational cost. On simulated data, we find that it increases sensitivity towards tCWs, even of varying durations, while not sacrificing sensitivity to classical CW signals, and still being robust to transient or persistent single-detector instrumental artifacts.
Locke, Jill; Rotheram-Fuller, Erin; Kasari, Connie
2012-01-01
This study examined the social impact of being a typical peer model as part of a social skills intervention for children with autism spectrum disorder (ASD). Participants were drawn from a randomized-controlled-treatment trial that examined the effects of targeted interventions on the social networks of 60 elementary-aged children with ASD.…
Modeling & imaging of bioelectrical activity principles and applications
He, Bin
2010-01-01
Over the past several decades, much progress has been made in understanding the mechanisms of electrical activity in biological tissues and systems, and for developing non-invasive functional imaging technologies to aid clinical diagnosis of dysfunction in the human body. The book will provide full basic coverage of the fundamentals of modeling of electrical activity in various human organs, such as heart and brain. It will include details of bioelectromagnetic measurements and source imaging technologies, as well as biomedical applications. The book will review the latest trends in
Two-stage robust UC including a novel scenario-based uncertainty model for wind power applications
International Nuclear Information System (INIS)
Highlights: • Methodological framework for obtaining Robust Unit Commitment (UC) policies. • Wind-power forecast using a revisited bootstrap predictive inference approach. • Novel scenario-based model for wind-power uncertainty. • Efficient modeling framework for obtaining nearly optimal UC policies in reasonable time. • Effective incorporation of wind-power uncertainty in the UC modeling. - Abstract: The complex processes involved in the determination of the availability of power from renewable energy sources, such as wind power, impose great challenges in the forecasting processes carried out by transmission system operators (TSOs). Nowadays, many of these TSOs use operation planning tools that take into account the uncertainty of the wind-power. However, most of these methods typically require strict assumptions about the probabilistic behavior of the forecast error, and usually ignore the dynamic nature of the forecasting process. In this paper a methodological framework to obtain Robust Unit Commitment (UC) policies is presented; such methodology considers a novel scenario-based uncertainty model for wind power applications. The proposed method is composed by three main phases. The first two phases generate a sound wind-power forecast using a bootstrap predictive inference approach. The third phase corresponds to modeling and solving a one-day ahead Robust UC considering the output of the first phase. The performance of proposed approach is evaluated using as case study a new wind farm to be incorporated into the Northern Interconnected System (NIS) of Chile. A projection of wind-based power installation, as well as different characteristic of the uncertain data, are considered in this study
Luo, Yu; Kauffmann, Guinevere; Fu, Jian
2016-01-01
The quenching of star formation in satellite galaxies is observed over a wide range of dark matter halo masses and galaxy environments. In the recent Guo et al (2011) and Fu et al (2013) semi-analytic + N-body models, the gaseous environment of the satellite galaxy is governed by the properties of the dark matter subhalo in which it resides. This quantity depends of the resolution of the N-body simulation, leading to a divergent fraction of quenched satellites in high- and low-resolution simulations. Here, we incorporate an analytic model to trace the subhaloes below the resolution limit. We demonstrate that we then obtain better converged results between the Millennium I and II simulations, especially for the satellites in the massive haloes ($\\rm log M_{halo}=[14,15]$). We also include a new physical model for the ram-pressure stripping of cold gas in satellite galaxies. However, we find very clear discrepancies with observed trends in quenched satellite galaxy fractions as a function of stellar mass at fix...
ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: MODELING
Directory of Open Access Journals (Sweden)
Brînduşa-Antonela SBÎRCEA
2011-01-01
Full Text Available By using active and participatory methods it is hoped that pupils will not only come to a deeper understanding of the issues involved, but also that their motivation will be heightened. Pupil involvement in their learning is essential. Moreover, by using a variety of teaching techniques, we can help students make sense of the world in different ways, increasing the likelihood that they will develop a conceptual understanding. The teacher must be a good facilitator, monitoring and supporting group dynamics. Modeling is an instructional strategy in which the teacher demonstrates a new concept or approach to learning and pupils learn by observing. In the teaching of biology the didactic materials are fundamental tools in the teaching-learning process. Reading about scientific concepts or having a teacher explain them is not enough. Research has shown that modeling can be used across disciplines and in all grade and ability level classrooms. Using this type of instruction, teachers encourage learning.
Ivanov, M. V.; Megias, G. D.; González-Jiménez, R.; Moreno, O.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.
2016-08-01
Charged current inclusive neutrino-nucleus cross sections are evaluated using the superscaling model for quasielastic scattering and its extension to the pion production region. The contribution of two-particle-two-hole vector meson-exchange current excitations is also considered within a fully relativistic model tested against electron scattering data. The results are compared with the inclusive neutrino-nucleus data from the T2K and SciBooNE experiments. For experiments where ∼ 0.8 {{GeV}}, the three mechanisms considered in this work provide good agreement with the data. However, when the neutrino energy is larger, effects from beyond the Δ also appear to be playing a role. The results show that processes induced by vector two-body currents play a minor role in the inclusive cross sections at the kinematics considered.
Directory of Open Access Journals (Sweden)
A. Ahmadi Javid
2012-01-01
Full Text Available
ENGLISH ABSTRACT: In this paper, we present a distribution network design problem in a supply chain system that minimises the total cost of location, inventory, and delivery delay. Customers’ demands are random, and multiple capacity levels are available for the distribution centers. The problem is first formulated as a mixed integer convex programming model to optimally solve medium-sized instances, and then a heuristic is developed for solving large-sized instances.
AFRIKAANSE OPSOMMING: In hierdie artikel word ‘n distribusienetwerkprobleem in ‘n voorsieningsketting voorgehou waar die totale koste van die ligging, voorraad en afleweringsvertragings geminimiseer word. Die vraag is lukraak en verskeie kapasiteitsvlakke is beskikbaar in die verspreidingsentra. Die problem word eers geformuleer as ‘n gemengde-heeltal-konvekse model sodat mediumgrootte gevalle geoptimiseer kan word, waarna ‘n heuristieke benadering ontwikkel word vir die oplos van grootskaalse aktiwiteite.
Iliev, Oleg P.
2013-05-15
Paper production is a problem with significant importance for society; it is also a challenging topic for scientific investigation. This study is concerned with the simulation of the pressing section of a paper machine. A two-dimensional model is developed to account for the water flow within the pressing zone. A Richards-type equation is used to describe the flow in the unsaturated zone. The dynamic capillary pressure-saturation relation is adopted for the paper production process. The mathematical model accounts for the coexistence of saturated and unsaturated zones in a multilayer computational domain. The discretization is performed by the MPFA-O method. Numerical experiments are carried out for parameters that are typical of the production process. The static and dynamic capillary pressure-saturation relations are tested to evaluate the influence of the dynamic capillary effect. © 2013 Springer Science+Business Media Dordrecht.
International Nuclear Information System (INIS)
This paper presents a theoretical model for describing globular transfer in gas metal arc welding. The heat and mass transfer in the electrode, arc plasma and molten pool are considered in one unified model. Using the volume of fluid method, the transport phenomena are dynamically studied in the following processes: droplet formation and detachment, droplet flight in arc plasma, impingement of droplets on the molten pool and solidification after the arc extinguishes. The simulation of heat and mass transfer in the arc plasma considers the developing surface profile of the electrode and molten pool and also the effect of the flying droplet inside the arc plasma. Furthermore, the heat inputs to the electrode and the molten pool result from the simulation of the arc plasma. In addition, a He-Ne laser in conjunction with the shadow-graphing technique is used to observe the metal-transfer process. The theoretical predictions and experimental results are shown to be in good agreement
Daviau, Claude
2014-01-01
A wave equation with mass term is studied for all particles and antiparticles of the first generation: electron and its neutrino, positron and antineutrino, quarks $u$ and $d$ with three states of color and antiquarks $\\overline{u}$ and $\\overline{d}$. This wave equation is form invariant under the $Cl_3^*$ group generalizing the relativistic invariance. It is gauge invariant under the $U(1)\\times SU(2) \\times SU(3)$ group of the standard model of quantum physics. The wave is a function of space and time with value in the Clifford algebra $Cl_{1,5}$. All features of the standard model, charge conjugation, color, left waves, Lagrangian formalism, are linked to the geometry of this extended space-time.
Daviau, Claude; Bertrand, Jacques
A wave equation with mass term is studied for all particles and antiparticles of the first generation: electron and its neutrino, positron and antineutrino, quarks $u$ and $d$ with three states of color and antiquarks $\\overline{u}$ and $\\overline{d}$. This wave equation is form invariant under the $Cl_3^*$ group generalizing the relativistic invariance. It is gauge invariant under the $U(1)\\times SU(2) \\times SU(3)$ group of the standard model of quantum physics. The wave is a function of space and time with value in the Clifford algebra $Cl_{1,5}$. All features of the standard model, charge conjugation, color, left waves, Lagrangian formalism, are linked to the geometry of this extended space-time.
Energy Technology Data Exchange (ETDEWEB)
Chu, David Y.J. [National Chiao-Tung Univ., Hsinchu (China). Dept. of Electrophysics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2015-01-15
We discuss the non-thermal phase structure of a chirally invariant Higgs-Yukawa model on the lattice in the presence of a higher dimensional Φ{sup 6}-term. For the exploration of the phase diagram we use analytical, lattice perturbative calculations of the constraint effective potential as well as numerical simulations. We also present first results of the effects of the Φ{sup 6}-term on the lower Higgs boson mass bounds.
Mortaza Jamshidian; Wei Liu; Ying Zhang; Farid Jamishidian
2005-01-01
The problem of simultaneous inference and multiple comparison for comparing means of k( ≥ 3) populations has been long studied in the statistics literature and is widely available in statistics literature. However to-date, the problem of multiple comparison of regression models has not found its way to the software. It is only recently that the computational aspects of this problem have been resolved in a general setting. SimReg employs this new methodology and provides users with software fo...
Barthélémy, Romain; Jacques, Nicolas; Vermeersch, François; Kerampran, Steven
2015-09-01
Metallic foams have known a keen interest in the last decades. Their ability to undergo very large deformations while transmitting low stress levels make them capable of performing functions of protective layers against intense loadings and of energy absorbers, for instance. The behaviour of metal foams varies considerably between quasi-static and dynamic regimes. Those differences can be linked to the strain-rate sensitivity of the skeleton material and to micro-inertial effects (induced by the crushing of the foam cells). In the present work, a micromechanical model has been developed to take into account micro-inertia effects on the macroscopic behaviour of closed-cell foams under dynamic loading conditions. The proposed modelling is based on the dynamic homogenisation procedure introduced by Molinari and Mercier (J. Mech. Phys. Solids 49 (2001) 1497-1516). Within this framework, the macrostress is the sum of two terms. The first one is a static stress, that can be described with any existing model of metal foam. The second contribution is a dynamic stress related to micro-inertia effects. Considering an initially spherical shell as a Representative Volume Element (RVE) of the foam material, a closed-form expression of the dynamic stress was obtained. The proposed modelling was applied to shock propagation in aluminium foams (it should however be noted that the present theory is not restricted to uniaxial deformation but can be applied to arbitrary loadings). From experimental data of the literature, it is observed that incorporating micro-inertia effects allows one to achieve a better description of the foam shock response. This indicates that micro-inertia may have a significant influence on the dynamic behaviour of metallic foams.
Directory of Open Access Journals (Sweden)
Barthélémy Romain
2015-01-01
Full Text Available Metallic foams have known a keen interest in the last decades. Their ability to undergo very large deformations while transmitting low stress levels make them capable of performing functions of protective layers against intense loadings and of energy absorbers, for instance. The behaviour of metal foams varies considerably between quasi-static and dynamic regimes. Those differences can be linked to the strain-rate sensitivity of the skeleton material and to micro-inertial effects (induced by the crushing of the foam cells. In the present work, a micromechanical model has been developed to take into account micro-inertia effects on the macroscopic behaviour of closed-cell foams under dynamic loading conditions. The proposed modelling is based on the dynamic homogenisation procedure introduced by Molinari and Mercier (J. Mech. Phys. Solids 49 (2001 1497–1516. Within this framework, the macrostress is the sum of two terms. The first one is a static stress, that can be described with any existing model of metal foam. The second contribution is a dynamic stress related to micro-inertia effects. Considering an initially spherical shell as a Representative Volume Element (RVE of the foam material, a closed-form expression of the dynamic stress was obtained. The proposed modelling was applied to shock propagation in aluminium foams (it should however be noted that the present theory is not restricted to uniaxial deformation but can be applied to arbitrary loadings. From experimental data of the literature, it is observed that incorporating micro-inertia effects allows one to achieve a better description of the foam shock response. This indicates that micro-inertia may have a significant influence on the dynamic behaviour of metallic foams.
Czech Academy of Sciences Publication Activity Database
Jiránek, P.; Strakoš, Zdeněk; Vohralík, M.
Liberec : Technical University, 2008. s. 73-74. ISBN 978-80-7372-298-2. [SNA '08 - Seminar on numerical analysis: modelling and simulation of challenging engineering problems. 28.01.2008-01.02.2008, Liberec] R&D Projects: GA MŠk 1M0554; GA AV ČR IAA100300802 Institutional research plan: CEZ:AV0Z10300504 Subject RIV: BA - General Mathematics
International Nuclear Information System (INIS)
The Computerized Procedure System (CPS) is one of the primary operating support systems in the digital Main Control Room. The CPS displays procedure on the computer screen in the form of a flow chart, and displays plant operating information along with procedure instructions. It also supports operator decision making by providing a system decision. A procedure flow should be correct and reliable, as an error would lead to operator misjudgement and inadequate control. In this paper we present a modeling for the CPS that enables formal verification based on Petri nets. The proposed State Token Petri Nets (STPN) also support modeling of a procedure flow that has various interruptions by the operator, according to the plant condition. STPN modeling is compared with Coloured Petri net when they are applied to Emergency Operating Computerized Procedure. A converting program for Computerized Procedure (CP) to STPN has been also developed. The formal verification and validation methods of CP with STPN increase the safety of a nuclear power plant and provide digital quality assurance means that are needed when the role and function of the CPS is increasing.
Jäger, Sebastian; Pickett, Anthony; Middendorf, Peter
2016-04-01
Laminated composites can undergo complex damage mechanisms when subjected to transverse impact. For unidirectional laminates it is well recognized that delamination failure usually initiates via intra-ply shear cracks that run parallel to the fibres. These cracks extend to the interface of adjacent orthogonal plies, where they are either stopped, or propagate further as inter-ply delamination cracks. These mechanisms largely determine impact energy absorption and post-delamination bending stiffness of the laminate. Important load transfer mechanisms will occur that may lead to fibre failure and ultimate rupture of the laminate. In recent years most Finite Element (FE) models to predict delamination usually stack layers of ply elements with interface elements to represent inter-ply stiffness and treat possible delamination. The approach is computationally efficient and does give some estimate of delamination zones and damaged laminate bending stiffness. However, these models do not properly account for coupled intra-ply shear failure and delamination crack growth, and therefore cannot provide accurate results on crack initiation and propagation. An alternative discrete meso-scale FE model is presented that accounts for this coupling, which is validated against common delamination tests and impact delamination from the Compression After Impact (CAI) test. Ongoing research is using damage prediction from the CAI simulation as a basis for residual strength analysis, which will be the published in future work.
Berjamin, Harold; Vergez, Christophe; Cottanceau, Emmanuel
2015-01-01
A time-domain numerical modeling of brass instruments is proposed. On one hand, outgoing and incoming waves in the resonator are described by the Menguy-Gilbert model, which incorporates three key issues: nonlinear wave propagation, viscothermal losses, and a variable section. The non-linear propagation is simulated by a TVD scheme well-suited to non-smooth waves. The fractional derivatives induced by the viscothermal losses are replaced by a set of local-in-time memory variables. A splitting strategy is followed to couple optimally these dedicated methods. On the other hand, the exciter is described by a one-mass model for the lips. The Newmark method is used to integrate the nonlinear ordinary differential equation so-obtained. At each time step, a coupling is performed between the pressure in the tube and the displacement of the lips. Finally, an extensive set of validation tests is successfully completed. In particular, self-sustained oscillations of the lips are simulated by taking into account the nonli...
International Nuclear Information System (INIS)
Grids of stellar evolution are required in many fields of astronomy/astrophysics, such as planet hosting stars, binaries, clusters, chemically peculiar stars, etc. In this study, a grid of stellar evolution models with updated ingredients and recently determined solar abundances is presented. The solar values for the initial abundances of hydrogen, heavy elements and mixing-length parameter are 0.0172, 0.7024 and 1.98, respectively. The mass step is small enough (0.01 M⊙) that interpolation for a given star mass is not required. The range of stellar mass is 0.74 to 10.00 M⊙. We present results in different forms of tables for easy and general application. The second stellar harmonic, required for analysis of apsidal motion of eclipsing binaries, is also listed. We also construct rotating models to determine the effect of rotation on stellar structure and derive fitting formulae for luminosity, radius and the second harmonic as a function of rotational parameter. We also compute and list colors and bolometric corrections of models required for transformation between theoretical and observational results. The results are tested for the Sun, the Hyades cluster, the slowly rotating chemically peculiar Am stars and eclipsing binaries with apsidal motion. The theoretical and observational results along isochrones are in good agreement. The grids are also applicable to rotating stars provided that equatorial velocity is given. (paper)
Goldberg, Robert K.; Carney, Kelly S.
2004-01-01
An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites, such as the Reinforced Carbon Carbon (RCC) material used on the leading edges of the Space Shuttle. In the developed model, the differences in the tension and compression deformation behaviors have also been accounted for. State variable viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear response is independent of the stiffness in the normal directions. The developed equations have been implemented into LS-DYNA through the use of user defined subroutines (UMATs). Several sample qualitative calculations have been conducted, which demonstrate the ability of the model to qualitatively capture the features of the deformation response present in woven ceramic matrix composites.
Generic simplified simulation model for DFIG with active crowbar
Energy Technology Data Exchange (ETDEWEB)
Buendia, Francisco Jimenez [Gamesa Innovation and Technology, Sarriguren, Navarra (Spain). Technology Dept.; Barrasa Gordo, Borja [Assystem Iberia, Bilbao, Vizcaya (Spain)
2012-07-01
Simplified models for transient stability studies are a general requirement for transmission system operators to wind turbine (WTG) manufacturers. Those models must represent the performance of the WTGs for transient stability studies, mainly voltage dips originated by short circuits in the electrical network. Those models are implemented in simulation software as PSS/E, DigSilent or PSLF. Those software platforms allow simulation of transients in large electrical networks with thousands of busses, generators and loads. The high complexity of the grid requires that the models inserted into the grid should be simplified in order to allow the simulations being executed as fast as possible. The development of a model which is simplified enough to be integrated in those complex grids and represent the performance of WTG is a challenge. The IEC TC88 working group has developed generic models for different types of generators, among others for WTGs using doubly fed induction generators (DFIG). This paper will focus in an extension of the models for DFIG WTGs developed in IEC in order to be able to represent the simplified model of DFIG with an active crowbar, which is required to withstand voltage dips without disconnecting from the grid. This paper improves current generic model of Type 3 for DFIG adding a simplified version of the generator including crowbar functionality and a simplified version of the crowbar firing. In addition, this simplified model is validated by correlation with voltage dip field test from a real wind turbine. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ikegami, Seiji, E-mail: double1892@gmail.com
2013-12-01
The aims of this work are to compare and to include two energy loss effects in multiple scattering caused by elastic and inelastic collisions in angular and lateral distributions based on Valdes and Arista (VA) theory. VA developed small angle multiple scattering theory including energy loss effects based on the Sigmund and Winterbon model for the first time. However, the energy loss effects on lateral distributions have not yet been estimated. In the VA model, target thickness and energy loss are independently treated. In this study, those effects are successfully introduced on the basis of the VA model. We considered the lateral spread and angular distribution separately and included the nuclear and electronic energy loss effects as a function of target thickness. Our results indicate that discrepancies occur between the two distributions, including nuclear and electronic stopping for several target thickness. Moreover, we constructed a multiple scattering model that includes both elastic and inelastic energy losses.
Directory of Open Access Journals (Sweden)
Juan Carlos Osorio Gómez
2010-04-01
Full Text Available Production planning and control are complex problems for manufacturing organisations. Hierarchical production planning and control is one way to address the problem as it can reduce its complexity and reach good solutions in reasonable computational time. This paper presents a hierarchical approach to resolving production programming in a flexible job shop configuration; this problem includes pre-emption and sequence-dependent setup times. Al-though non-optimal (as expected, good solutions were obtained as shown in the validation of the method.
Directory of Open Access Journals (Sweden)
Maryam Derakhshandeh
2015-09-01
Full Text Available B3LYP/6-31G/6-31G/6-31G*/6-311G* density functional theory (DFT calculations have performed for the structure and stability of three wall carbon nano tubes (TWCNTs. In this work, it was calculated the geometrical structure, and stability to predict NMR and thermodynamics parameters. A mixing of SWBNNTs @ DWCNTs has been modeled and calculated for the suitable structures to storage the H2 molecules. We have found these kinds of nano-structures are useful for maximum storages of H2 molecule compare to other SWCNTs.
Yang, Jeong-Hoon
The fast ignitor approach to inertial confinement fusion offers an efficient route to produce higher energy gain for less driver energy and compressed fuel density than the conventional hydrodynamic ignition scheme. Over the last decade, serious efforts have been expended towards the goal of achieving controlled fusion using this new approach. However, until now no simple physical plasma model for this idea has been available and the feasibility of the fast ignition project by petawatt laser pulses is not yet clear. We have investigated the capability of ultrafast lasers with irradiance I > 1018 W cm-2 to produce highly energetic electron beams both in a planar wave and in a Gaussian focus in a low-density plasma and within a physical model of electrostatic effects in relativistic plasmas. The trajectory of a free electron in a plane wave with arbitrary initial conditions has been derived. From the complete solutions for the particle trajectory, we have also determined the initial velocities required to produce figure-of-eight motions for arbitrary initial particle positions. A new expression for the relativistic ponderomotive force has been developed. It compares very well with earlier work by Quesnel and Mora. The new expression promises to speed up particle-in-cell simulations. It has been found that free electrons escape from the Gaussian focal region of a 10-ps petawatt laser pulse very quickly before the field reaches its maximum amplitude. In this case very small net energy transfer occurs during the complete interaction of the electrons with the laser beam, indicating that (in the absence of collective electrostatic effects) free electrons cannot extract enough energy from the ignition laser pulse for ignition. This thesis presents a novel simulation model for predicting the large-scale dynamic behavior of the high intensity laser-plasma interaction. We have developed a simple particle simulation code to explore collective electrostatic effects in plasmas
Facal, David; González-Barcala, Francisco-Javier
2016-01-01
Changes in respiratory function are common in older populations and affect quality of life, social relationships, cognitive function and functional capacity. This paper reviews evidence reported in medical and psychological journals between 2000 and 2014 concerning the impact of changes in respiratory function on daily living in older adults. A tentative model establishes relationships involving respiratory function, cognitive function and functional capacities. The conclusion stresses the need for both longitudinal studies, to establish causal pathways between respiratory function and psychosocial aspects in aging, and intervention studies. PMID:26593253
Bucki, M; Bucki, Marek; Payan, Yohan
2006-01-01
In this paper we present a methodology to adress the problem of brain tissue deformation referred to as "brainshift". This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on preoperative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intraoperative image-guided system, we propose a biomechanical model of the brain which can take into account interactively such deformations as well as surgical procedures that modify the brain structure, like tumour or tissue resection.
Crandon, Jared L.; Nicolau, David P.
2013-01-01
Secondary to the stability of aztreonam against metallo-β-lactamases, coupled with avibatam's neutralizing activity against often coproduced extended-spectrum β-lactamases (ESBLs) or AmpC enzymes, the combination of aztreonam and avibactam has been proposed as a principal candidate for the treatment of infections with metallo-β-lactamase-producing Gram-negative organisms. Using the neutropenic-mouse thigh infection model, we evaluated the efficacy of human simulated doses of aztreonam-avibact...
Glass Durability Modeling, Activated Complex Theory (ACT)
International Nuclear Information System (INIS)
The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al+3 and Fe+3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe+3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al+3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe+3 rich and some Al+3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple atomic
Uwimana, J; Jackson, D; Hausler, H; Zarowsky, C
2012-05-01
In South Africa, the control of TB and HIV co-infection remains a major challenge despite the availability of international and national guidelines for integration of TB and HIV services. This study was undertaken in KwaZulu-Natal, one of the provinces most affected by both TB and HIV, to identify and understand managers' and community care workers' (CCWs) perceptions of health systems barriers related to the implementation of collaborative TB/HIV activities, including prevention of mother to child transmission of HIV (PMTCT). We conducted 29 in-depth interviews with health managers at provincial, district and facility level and with managers of NGOs involved in TB and HIV care, as well as six focus group discussions with CCWs. Thematic analysis of transcripts revealed a convergence of perspectives on the process and the level of the implementation of policy directives on collaborative TB and HIV activities across all categories of respondents (i.e. province-, district-, facility- and community-based organizations). The majority of participants felt that the implementation of the policy was insufficiently consultative and that leadership and political will were lacking. The predominant themes related to health systems barriers include challenges related to structure and organisational culture; management, planning and power issues; unequal financing; and human resource capacity and regulatory problems notably relating to scope of practice of nurses and CCWs. Accelerated implementation of collaborative TB/HIV activities including PMTCT will require political will and leadership to address these health systems barriers. PMID:22394016
Models of the stochastic activity of neurones
Holden, Arun Vivian
1976-01-01
These notes have grown from a series of seminars given at Leeds between 1972 and 1975. They represent an attempt to gather together the different kinds of model which have been proposed to account for the stochastic activity of neurones, and to provide an introduction to this area of mathematical biology. A striking feature of the electrical activity of the nervous system is that it appears stochastic: this is apparent at all levels of recording, ranging from intracellular recordings to the electroencephalogram. The chapters start with fluctuations in membrane potential, proceed through single unit and synaptic activity and end with the behaviour of large aggregates of neurones: L have chgaen this seque~~e\\/~~';uggest that the interesting behaviourr~f :the nervous system - its individuality, variability and dynamic forms - may in part result from the stochastic behaviour of its components. I would like to thank Dr. Julio Rubio for reading and commenting on the drafts, Mrs. Doris Beighton for producing the fin...
Computer modeling for neutron activation analysis methods
International Nuclear Information System (INIS)
Full text: The INP AS RU develops databases for the neutron-activation analysis - ND INAA [1] and ELEMENT [2]. Based on these databases, the automated complex is under construction aimed at modeling of methods for natural and technogenic materials analysis. It is well known, that there is a variety of analysis objects with wide spectra, different composition and concentration of elements, which makes it impossible to develop universal methods applicable for every analytical research. The modelling is based on algorithm, that counts the period of time in which the sample was irradiated in nuclear reactor, providing the sample's total absorption and activity analytical peaks areas with given errors. The analytical complex was tested for low-elemental analysis (determination of Fe and Zn in vegetation samples, and Cu, Ag and Au - in technological objects). At present, the complex is applied for multielemental analysis of sediment samples. In this work, modern achievements in the analytical chemistry (measurement facilities, high-resolution detectors, IAEA and IUPAC databases) and information technology applications (Java software, database management systems (DBMS), internet technologies) are applied. Reference: 1. Tillaev T., Umaraliev A., Gurvich L.G., Yuldasheva K., Kadirova J. Specialized database for instrumental neutron activation analysis - ND INAA 1.0, The 3-rd Eurasian Conference Nuclear Science and its applications, 2004, pp.270-271.; 2. Gurvich L.G., Tillaev T., Umaraliev A. The Information-analytical database on the element contents of natural objects. The 4-th International Conference Modern problems of Nuclear Physics, Samarkand, 2003, p.337. (authors)
Schlagenhaufer, Holger A; Sanchez, Ariel G
2012-01-01
With the advent of very large volume, wide-angle photometric redshift surveys like e.g. Pan-STARRS, DES, or PAU, which aim at using the spatial distribution of galaxies as a means to constrain the equation of state parameter of dark energy, w_DE, it has become extremely important to understand the influence of redshift inaccuracies on the measurement. We have developed a new model for the anisotropic two point large-scale (r > 64 h^-1 Mpc) correlation function xi(rp,pi), in which nonlinear structure growth and nonlinear coherent infall velocities are taken into account, and photometric redshift errors can easily be incorporated. In order to test its validity and investigate the effects of photometric redshifts, we compare our model with the correlation function computed from a suite of 50 large-volume, moderate-resolution numerical N-body simulation boxes, where we can perform the analysis not only in real- and redshift space, but also simulate the influence of a gaussian redshift error distribution with an a...
Institute of Scientific and Technical Information of China (English)
Youpu Dong; Ancheng Xiao; Lei Wu; Xuying Li
2014-01-01
Field observations of the crossing relationships of fractures have been used to explain the sequence of fractures. Based on field observations from Fuyang-Lin’an anticline, located near Hang-zhou, Zhejiang Province, this paper proposes that the formation of synfolding fractures was influenced dominantly by one fracture set, which developed prior to folding and the orientation was nearly paral-lel to the bedding. The length of the prefolding fractures is longer than the synfolding fractures. These prefolding fractures cut thicker strata into small pieces and form a dense network of fractures in thicker strata. Most synfolding fractures, which are oblique to the bedding, are truncated by prefolding fractures in thicker strata. The synfolding fractures, which result from local stress, are inferred to form during folding. Here, the mechanism of truncation was analyzed using finite-element models. The ap-proach was based on the idea that natural fractures can be interpreted or inferred from stress distribu-tion. The presence or absence of prefolding fractures is shown to strongly control the distribution of stress, and this control has an important implication for interpreting the fracture truncation mecha-nism from geomechanical models.
Energy Technology Data Exchange (ETDEWEB)
Hohmann, G.W.; Jiracek, G.R.
1979-09-01
The bipole-dipole responses of three-dimensional (3D) prisms were studied using an integral equation numerical solution. Although response patterns are quite complex, the bipole-dipole method appears to be a useful, efficient means of mapping the areal distribution of resistivity. However, 3D modeling is required for quantitative interpretation. Computer time for our solution varies from negligible for small bodies to 6 minutes on a UNIVAC 1108 for the largest possible body (85 cubes). Bipole-dipole response varies significantly with bipole orientation and position, but simply changing the distance between the bipole and the body does not greatly affect the response. However, the response is complex and interpretation ambiguous if both transmitter electrodes are located directly over a body. Boundaries of shallow bodies are much better resolved than those of deep bodies. Conductive bodies produce false polarization highs that can confuse interpretation. It is difficult to distinguish the effects of depth and resistivity contrast, and, as with all electrical methods, depth extent is difficult to resolve. Interactive interpretation of bipole-dipole field results from a geothermal prospect in New Mexico illustrates the value of the 3D modeling technique.
Analytical charge control model for AlGaN/GaN MIS-HFETs including an undepleted barrier layer
International Nuclear Information System (INIS)
An analytical charge control model considering the insulator/AlGaN interface charge and undepleted Al-GaN barrier layer is presented for AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors (MIS-HFETs) over the entire operation range of gate voltage. The whole process of charge control is analyzed in detail and partitioned into four regions: I-full depletion, II-partial depletion, III-neutral region and IV-electron accumulation at the insulator/AlGaN interface. The results show that two-dimensional electron gas (2DEG) saturates at the boundary of region II/III and the gate voltage should not exceed the 2DEG saturation voltage in order to keep the channel in control. In addition, the span of region II accounts for about 50% of the range of gate voltage before 2DEG saturates. The good agreement of the calculated transfer characteristic with the measured data confirms the validity of the proposed model. (semiconductor devices)
Directory of Open Access Journals (Sweden)
Florentin Wörgötter
2009-11-01
Full Text Available Model-free tracking is important for solving tasks such as moving-object tracking and action recognition in cases where no prior object knowledge is available. For this purpose, we extend the concept of spatially synchronous dynamics in spin-lattice models to the spatiotemporal domain to track segments within an image sequence. The method is related to synchronization processes in neural networks and based on superparamagnetic clustering of data. Spin interactions result in the formation of clusters of correlated spins, providing an automatic labeling of corresponding image regions. The algorithm obeys detailed balance. This is an important property as it allows for consistent spin-transfer across subsequent frames, which can be used for segment tracking. Therefore, in the tracking process the correct equilibrium will always be found, which is an important advance as compared with other more heuristic tracking procedures. In the case of long image sequences, i.e., movies, the algorithm is augmented with a feedback mechanism, further stabilizing segment tracking.
Active State Model for Autonomous Systems
Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest
2003-01-01
The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.
Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann
2009-09-21
We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS. PMID:19778110