WorldWideScience

Sample records for actively cooled be-cu

  1. Active and passive cooling methods for dwellings

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2018-01-01

    In this document a review of three active as well as ten passive cooling methods suitable for residential buildings is carried out. The review firstly addresses how the various technologies cool the space according to the terms of the building heat balance, under what technical conditions...... ventilation, controlled ventilation, roof coating and eco-evaporative cooling are the most suitable passive methods for an extensive use in this country....

  2. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  3. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  4. French activities on gas cooled reactors

    International Nuclear Information System (INIS)

    Bastien, D.

    1996-01-01

    The gas cooled reactor programme in France originally consisted of eight Natural Uranium Graphite Gas Cooled Reactors (UNGG). These eight units, which are now permanently shutdown, represented a combined net electrical power of 2,375 MW and a total operational history of 163 years. Studies related to these reactors concern monitoring and dismantling of decommissioned facilities, including the development of methods for dismantling. France has been monitoring the development of HTRs throughout the world since 1979, when it halted its own HTR R and D programme. France actively participates in three CRPs set up by the IAEA. (author). 1 tab

  5. Active cooling of a mobile phone handset

    International Nuclear Information System (INIS)

    Grimes, Ronan; Walsh, Ed; Walsh, Pat

    2010-01-01

    Power dissipation levels in mobile phones continue to increase due to gaming, higher power applications, and increased functionality associated with the internet. The current cooling methodologies of natural convection and radiation limit the power dissipation within a mobile phone to between 1-2 W depending on size. As power dissipation levels increase, products such as mobile phones will require active cooling to ensure that the devices operate within an acceptable temperature envelop from both user comfort and reliability perspectives. In this paper, we focus on the applied thermal engineering problem of an active cooling solution within a typical mobile phone architecture by implementing a custom centrifugal fan within the mobile phone. Its performance is compared in terms of flow rates and pressure drops, allowable phone heat dissipation and maximum phone surface temperature as this is the user constraint for a variety of simulated PCB architectures in the mobile phone. Perforated plates with varying porosity through different size orifices are used to simulate these architectures. The results show that the power level dissipated by a phone for a constant surface temperature may be increased by ∼50 - 75% depending on pressure drop induced by the internal phone architecture. Hence for successful implementation and efficient utilization of active cooling will require chip layout to be considered at the design stage.

  6. Modeling Atmospheric Activity of Cool Stars

    Science.gov (United States)

    Schrijver, C. J.

    2003-10-01

    This review discusses a set of simple models for cool-star activity with which we compute (1) photospheric field patterns on stars of different activity levels, (2) the associated outer-atmospheric field configurations, and (3) the soft X-ray emission that is expected to result from the ensemble of loop atmospheres in the coronae of these stars. The model is based on empirically-determined properties of solar activity. It allows us to extrapolate to stars of significantly higher and lower activity than seen on the present-day Sun through its cycle. With it, we can, for example, gain insight into stellar field patterns (including a possible formation mechanism for polar starspots), as well as in the properties of coronal heating (helpful in the identification of the quiescent coronal heating mechanism). Lacking comprehensive theoretical understanding, the model's reliance on empirical solar data means that the multitude of processes involved are approximated to be independent of rotation rate, activity level, and fundamental stellar parameters, or -- where unavoidably necessary -- assumed to simply scale with activity. An evaluation of the most important processes involved guides a discussion of the limits of the model, of the limitations in our knowledge, and of future needs. "I propose to adopt such rules as will ensure the testability of scientific statements; which is to say, their falsifiability." Karl Popper (1902-1994)

  7. Diagnostics for the NBETF actively cooled beamdump

    International Nuclear Information System (INIS)

    Theil, E.; Jacobson, V.

    1984-09-01

    Lawrence Berkeley Laboratory's Neutral Beam Engineering Test Facility is currently testing multi-megawatt beams with pulse durations of up to 30 seconds. For this purpose, an actively cooled beam dump composed of heat-absorbing panels tht dissipate the beam energy via high speed water flow has been installed and tested. The panels are mounted in a complex assembly necessary to accommodate the variety of ion sources to be tested. The beam dump required new diagnostics of two kinds: beam diagnostics that provide graphic and quantitative information about the beam, as inferred from energy transferred to the water, and panel diagnostics that provide graphic and quantitative information about the beam dump itself. In this paper we describe our response to these requirements, including new algorithms for beam profiles, and we compare this work to our earlier results for inertial beam dumps. Principal differences are that the power densities on the water-cooled panels can be only indirectly inferred from measurements of the transferred beam energy, and that the acquisition and preparation of raw data is much more complex

  8. Actively controlling coolant-cooled cold plate configuration

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  9. Be-Cu gradient materials through controlled segregation. Basic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Muecklich, F.; Lorinser, M.; Hartmann, S.; Beinstingel, S. [Saarland Univ., Saarbruecken (Germany); Linke, J.; Roedig, M.

    1998-01-01

    The joining of materials has a fundamental problematic nature: Creating a sharp interface between two different materials causes a more or less extreme jump in the properties at this point. This may result in the failure of the component under mechanical or thermal loads. In some cases there are further difficulties caused by using a third component (e.g. the transformation of Ag-lead into Cd by neutron beams). The solution may be the creating of a functionally gradient material (FGM) Be-Cu. We discuss the advantage of such a FGM and the probabilities of an new procedure for manufacturing 1-dimensional FGMs. (author)

  10. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  11. Active Cooling of Oil after Deep-frying.

    Science.gov (United States)

    Totani, Nagao; Yasaki, Naoko; Doi, Rena; Hasegawa, Etsuko

    2017-10-01

    Oil used for deep-frying is often left to stand after cooking. A major concern is oxidation during standing that might be avoidable, especially in the case of oil used repeatedly for commercial deep-frying as this involves large volumes that are difficult to cool in a conventional fryer. This paper describes a method to minimize oil oxidation. French fries were deep-fried and the oil temperature decreased in a manner typical for a commercial deep-fryer. The concentration of polar compounds generated from thermally oxidized oil remarkably increased at temperature higher than 100°C but little oxidation occurred below 60°C. Heating the oil showed that the peroxide and polar compound content did not increase when the oil was actively cooled using a running water-cooled Graham-type condenser system to cool the oil from 180°C to room temperature within 30 min. When French fries were fried and the oil was then immediately cooled using the condenser, the polar compound content during cooling did not increase. Our results demonstrate that active cooling of heated oil is simple and quite effective for inhibiting oxidation.

  12. Active cooling system for Tokamak in-vessel operation manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianjun, E-mail: yuanjj@sjtu.edu.cn; Chen, Tan; Li, Fashe; Zhang, Weijun; Du, Liang

    2015-10-15

    Highlights: • We summarized most of the challenges of fusion devices to robot systems. • Propose an active cooling system to protect all of the necessary components. • Trial design test and theoretical analysis were conducted. • Overall implementation of the active cooling system was demonstrated. - Abstract: In-vessel operation/inspection is an indispensable task for Tokamak experimental reactor, for a robot/manipulator is more capable in doing this than human being with more precise motion and less risk of damaging the ambient equipment. Considering the demanding conditions of Tokamak, the manipulator should be adaptable to rapid response in the extreme conditions such as high temperature, vacuum and so on. In this paper, we propose an active cooling system embedded into such manipulator. Cameras, motors, gearboxes, sensors, and other mechanical/electrical components could then be designed under ordinary conditions. The cooling system cannot only be a thermal shield since the components are also heat sources in dynamics. We carry out a trial test to verify our proposal, and analyze the active cooling system theoretically, which gives a direction on the optimization by varying design parameters, components and distribution. And based on thermal sensors monitoring and water flow adjusting a closed-loop feedback control of temperature is added to the system. With the preliminary results, we believe that the proposal gives a way to robust and inexpensive design in extreme environment. Further work will concentrate on overall implementation and evaluation of this cooling system with the whole inspection manipulator.

  13. Comparative thermal cyclic testing and strength investigation of different Be/Cu joints

    Energy Technology Data Exchange (ETDEWEB)

    Gervash, A.; Giniyatulin, R.; Komarov, V.; Mazul, I.; Litunovsky, N. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Ganenko, A.; Vainerman, A. [CRISM `Prometey`, 193167, St. Petersburg (Russian Federation); Fedotov, V. [Moscow Physical Engineering Institute, 123060, Moscow (Russian Federation); Davydov, D. [Bochvar Institute, 123060, Moscow (Russian Federation); Zalavutdinov, R. [Institute of Physical Chemistry, Moscow (Russian Federation)

    1998-09-01

    One of the main problems for ITER divertor target technology is to provide a reliable joint between Be as armour material and copper alloy heat-sink structure. Such joints are to satisfy numerous requirements. In particular these joints should successfully withstand cyclic hear fluxes and should have good properties after neutron irradiation. To study such a complex problem, several investigation stages were planed in Russia. This paper presents the results of comparative thermal cyclic testing of different Be/Cu candidates. Summarising the thermal cyclic test results and analysing the metallography of those joints it was found that the life-time of all tested joints is limited by rather thick brittle intermetallic layers in the bonding zone caused by relatively long brazing time using heating and cooling down in traditional ohmic furnace. This paper thus presents attempts of using a unique brazing technique with fast e-beam heating. Metallographic investigation as well as X-ray spectrometric analysis of joints produced using the new technique were done. The recent results of testing of Be/Cu joints produced by fast e-beam brazing are discussed and some ideas for the nearest future investigations are presented. (orig.) 5 refs.

  14. Comparative thermal cyclic testing and strength investigation of different Be/Cu joints

    International Nuclear Information System (INIS)

    Gervash, A.; Giniyatulin, R.; Komarov, V.; Mazul, I.; Litunovsky, N.; Ganenko, A.; Vainerman, A.; Fedotov, V.; Davydov, D.; Zalavutdinov, R.

    1998-01-01

    One of the main problems for ITER divertor target technology is to provide a reliable joint between Be as armour material and copper alloy heat-sink structure. Such joints are to satisfy numerous requirements. In particular these joints should successfully withstand cyclic hear fluxes and should have good properties after neutron irradiation. To study such a complex problem, several investigation stages were planed in Russia. This paper presents the results of comparative thermal cyclic testing of different Be/Cu candidates. Summarising the thermal cyclic test results and analysing the metallography of those joints it was found that the life-time of all tested joints is limited by rather thick brittle intermetallic layers in the bonding zone caused by relatively long brazing time using heating and cooling down in traditional ohmic furnace. This paper thus presents attempts of using a unique brazing technique with fast e-beam heating. Metallographic investigation as well as X-ray spectrometric analysis of joints produced using the new technique were done. The recent results of testing of Be/Cu joints produced by fast e-beam brazing are discussed and some ideas for the nearest future investigations are presented. (orig.)

  15. Nondestructive Evaluation of a Be/Cu Diffusion Bond using a Shear Horizontal Wave

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun Kyu; Cheong, Yong Moo; Lee, Dong Won; Hong, Bong Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The International Thermo-nuclear Experimental Reactor (ITER) blanket first wall includes Beryllium(Be) amour tiles joined to a CuCrZr heat sink with stainless steel cooling tubes. This first wall's panels are one of the critical components in the ITER which is exposed with a surface heat flux of 0.5 MW/m2. As a qualification program, ultrasonic test (UT) of a Be/CuCrZr diffusion bond has to be applied according to the proper procedure. Ultrasonic test can detect the presence of unbonded regions and is based on an amplitude change and a phase inversion in a signal reflected from a bond interface. The purpose of this study is to investigate the feasibility of EMAT (Electro-Magnetic Acoustic Transducer) technology for an in-situ inspection of a Be/Copper alloy joining interface under a high temperature and high radiation environment.

  16. Nondestructive Evaluation of a Be/Cu Diffusion Bond using a Shear Horizontal Wave

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Cheong, Yong Moo; Lee, Dong Won; Hong, Bong Keun

    2009-01-01

    The International Thermo-nuclear Experimental Reactor (ITER) blanket first wall includes Beryllium(Be) amour tiles joined to a CuCrZr heat sink with stainless steel cooling tubes. This first wall's panels are one of the critical components in the ITER which is exposed with a surface heat flux of 0.5 MW/m2. As a qualification program, ultrasonic test (UT) of a Be/CuCrZr diffusion bond has to be applied according to the proper procedure. Ultrasonic test can detect the presence of unbonded regions and is based on an amplitude change and a phase inversion in a signal reflected from a bond interface. The purpose of this study is to investigate the feasibility of EMAT (Electro-Magnetic Acoustic Transducer) technology for an in-situ inspection of a Be/Copper alloy joining interface under a high temperature and high radiation environment

  17. IAEA high temperature gas-cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2000-01-01

    The IAEA activities on high temperature gas-cooled reactors are conducted with the review and support of the Member states, primarily through the International Working Group on Gas-Cooled Reactors (IWG-GCR). This paper summarises the results of the IAEA gas-cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (authors)

  18. Active cooling of microvascular composites for battery packaging

    Science.gov (United States)

    Pety, Stephen J.; Chia, Patrick X. L.; Carrington, Stephen M.; White, Scott R.

    2017-10-01

    Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m-2 heat flux below 40 °C.

  19. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  20. Active cooling of a down hole well tractor

    DEFF Research Database (Denmark)

    Soprani, Stefano; Nesgaard, Carsten

    Wireline interventions in high temperature wells represent one of today’s biggest challenges for the oil and gas industry. The high wellbore temperatures, which can reach 200 °C, drastically reduce the life of the electronic components contained in the wireline downhole tools, which can cause...... the intervention to fail. Active cooling systems represent a possible solution to the electronics overheating, as they could maintain the sensitive electronics at a tolerable temperature, while operating in hotter environments. This work presents the design, construction and testing of an actively cooled downhole......-width-modulation circuit was developed to adapt the downhole power source to a suitable voltage for the thermoelectric cooler. The implementation of the active cooling system was supported by the study of the thermal interaction between the downhole tool and the well environment, which was relevant to define the heat...

  1. ACUTE CARDIOVASCULAR EFFECTS OF FIREFIGHTING AND ACTIVE COOLING DURING REHABILITATION

    Science.gov (United States)

    Burgess, Jefferey L.; Duncan, Michael D.; Hu, Chengcheng; Littau, Sally R.; Caseman, Delayne; Kurzius-Spencer, Margaret; Davis-Gorman, Grace; McDonagh, Paul F.

    2012-01-01

    Objectives To determine the cardiovascular and hemostatic effects of fire suppression and post-exposure active cooling. Methods Forty-four firefighters were evaluated prior to and after a 12 minute live-fire drill. Next, 50 firefighters undergoing the same drill were randomized to post-fire forearm immersion in 10°C water or standard rehabilitation. Results In the first study, heart rate and core body temperature increased and serum C-reactive protein decreased but there were no significant changes in fibrinogen, sE-selectin or sL-selectin. The second study demonstrated an increase in blood coagulability, leukocyte count, factors VIII and X, cortisol and glucose, and a decrease in plasminogen and sP-selectin. Active cooling reduced mean core temperature, heart rate and leukocyte count. Conclusions Live-fire exposure increased core temperature, heart rate, coagulability and leukocyte count; all except coagulability were reduced by active cooling. PMID:23090161

  2. Leco. Thermo-active Ceilings & Free Cooling. Using free cooling in combination with thermo-active ceilings for integrated heating and cooling

    OpenAIRE

    Murphy, Mark Allen

    2010-01-01

    The largest potential for decreasing green house gas emissions, and therewith mitigating the effects of global climate change, comes from improving energy efficiency. Through the integration of heating and cooling systems into building elements, such as the thermo-active ceiling, improvements in energy efficiency can be achieved. Utilizing thermal mass to buffer temperature variations and to level out peak loads reduces the instantaneous power demands and enables traditional cooling e...

  3. Leco. Thermo-active Ceilings & Free Cooling. Using free cooling in combination with thermo-active ceilings for integrated heating and cooling

    OpenAIRE

    Murphy, Mark Allen

    2010-01-01

    - The largest potential for decreasing green house gas emissions, and therewith mitigating the effects of global climate change, comes from improving energy efficiency. Through the integration of heating and cooling systems into building elements, such as the thermo-active ceiling, improvements in energy efficiency can be achieved. Utilizing thermal mass to buffer temperature variations and to level out peak loads reduces the instantaneous power demands and enables traditional cool...

  4. Comparative strength analysis and thermal fatigue testing of Be/CuCrZr and Be/GlidCop joints produced by fast brazing

    International Nuclear Information System (INIS)

    Gervash, A.; Mazul, I.; Yablokov, N.; Barabash, V.; Ganenko, A.

    2000-01-01

    Proposing beryllium as plasma facing armour this paper presents the recent results obtained in Russia in the frame of such activities. Last year testing of actively cooled mock-ups produced by fast brazing of Be onto Cu-alloy heat sink allows to consider mentioned Russian method as promising for both PH-copper like CuCrZr and DS-copper like GlidCop. Summarizing recent experimental results with their previous data authors attempt to comparatively investigate a behaviour of Be/CuCrZr and Be/GlidCop joints in ITER relevant conditions. Mechanical properties, brazing zone microstructure and thermal response were taken for comparison. The shear strength for both types of joints was found as 150-200 MPa and did not depend on testing temperature. The brazing zone morphology and microhardness are presented, the thermal fatigue behaviour of investigated joints is described. All main results as well as the nearest future plans are discussed. (orig.)

  5. IAEA activities in gas-cooled reactor technology development

    International Nuclear Information System (INIS)

    Cleveland, J.; Kupitz, J.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has the charter to ''foster the exchange of scientific and technical information'', and ''encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world''. This paper describes the Agency's activities in Gas-cooled Reactor (GCR) technology development

  6. Cooling Timescale of Dust Tori in Dying Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Kohei [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Tazaki, Ryo, E-mail: k.ichikawa@astro.columbia.edu [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2017-07-20

    We estimate the dust torus cooling timescale once the active galactic nucleus (AGN) is quenched. In a clumpy torus system, once the incoming photons are suppressed, the cooling timescale of one clump from T {sub dust} = 1000 K to several 10 K is less than 10 years, indicating that the dust torus cooling time is mainly governed by the light crossing time of the torus from the central engine. After considering the light crossing time of the torus, the AGN torus emission at 12 μ m becomes over two orders of magnitude fainter within 100 years after the quenching. We also propose that those “dying” AGNs could be found using the AGN indicators with a different physical scale R such as 12 μ m band luminosity tracing AGN torus ( R ∼ 10 pc) and the optical [O iii] λ 5007 emission line tracing narrow line regions ( R = 10{sup 2–4} pc).

  7. Balancing passive and active systems for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Fil, N.S.; Allen, P.J.; Kirmse, R.E.; Kurihara, M.; Oh, S.J.; Sinha, R.K.

    1999-01-01

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  8. High quality actively cooled plasma facing components for fusion

    International Nuclear Information System (INIS)

    Nygren, R.

    1993-01-01

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra's Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed

  9. Effects of processing parameters on Be/CuCrZr joining

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Lee, Jung-Suk; Choi, Byung-Kwon; Park, Sang-Yun; Hong, Bong Guen; Jeong, Yong Hwan; Jung, Ki-Jung

    2007-01-01

    A joining of Be/CuCrZr has been considered as the key technology for the fabrication of the ITER first wall. Among the joining methods, Hot isostatic pressing (HIP), which is one of the diffusion bonding methods, is the most feasible method to join the Be and CuCrZr alloy. In the HIP joining of Be and CuCrZr, the interlayer was used to prevent the formation of brittle intermetallic compounds in the interface. Therefore, it is crucial to select a suitable interlayer for a joining of Be and CuCrZr. On the other hand, the diffusion between Be and CuCrZr would be enhanced with an increase of the HIP joining temperature, thereby increasing the joint strength. However, the HIP joining temperature is limited by the mechanical properties of CuCrZr. During the fabrication process of the ITER first wall, CuCrZr is subjected to several thermal cycles including a solution annealing, a cooling and an aging. The HIP joining of Be and CuCrZr corresponds to the aging of CuCrZr. The HIP joining at a higher temperature would cause a degradation of the mechanical properties of CuCrZr by an overaging effect although it is preferable for an improvement of the joint strength. In this study, the effect of the cooling rate on the mechanical properties of aged CuCrZr was investigated to find the maximum HIP temperature without a degradation of the mechanical properties of CuCrZr

  10. Cooling Active Region Loops Observed With SXT and TRACE

    OpenAIRE

    Winebarger, Amy R.; Warren, Harry P.

    2005-01-01

    An Impulsive Heating Multiple Strand (IHMS) Model is able to reproduce the observational characteristics of EUV (~ 1 MK) active region loops. This model implies that some of the loops must reach temperatures where X-ray filters are sensitive (> 2.5 MK) before they cool to EUV temperatures. Hence, some bright EUV loops must be preceded by bright X-ray loops. Previous analysis of X-ray and EUV active region observations, however, have concluded that EUV loops are not preceded by X-ray loops. In...

  11. The design of actively cooled plasma-facing components

    International Nuclear Information System (INIS)

    Scheerer, M.; Smid, I.; Bolt, H.; Gervash, A.; Linke, J.

    2001-01-01

    In future fusion devices, like in the stellarator Wendelstein 7-X, the target plates of the divertor will be exposed to heat loads up to power densities of 10 MW/m 2 for 1000 s. For this purpose actively cooled target elements with an internal coolant flow return, made of 2-D CFC armor tiles brazed onto a two tube cooling structure were developed and manufactured at the Forschungszentrum Juelich. Individual bent- and coolant flow reversal elements were used to achieve a high flexibility in the shape of the target elements. A special brazing technology, using a thin layer of plasma-arc deposited titanium was used for the bonding of the cooling structure to the plasma facing armor (PFA). FEM-simulations of the thermal and mechanical behavior show that a detachment of about 25% of the bonded area between the copper tubes and the PFA can be tolerated, without exceeding the critical heat flux at 15 MW/m 2 or a surface temperature of 1400 C at 10 MW/m 2 by using twisted tape inserts with a twist ratio of 2 at a cooling water velocity of 10 m/s. Thermal cycling tests in an electron beam facility up to a power density level 10.5 MW/m 2 show a very good behavior of parts of the target elements, which confirms the performance under fusion relevant conditions. Even defected parts in the bonding interface of the target elements, known from ultrasonic inspections before, show no change in the thermal performance under cycling, which confirms also the structural integrity of partly defected regions. (orig.)

  12. High quality actively cooled plasma-facing components for fusion

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1995-01-01

    This paper interweaves some suggestions for developing actively cooled plasma-facing components (PFCs) for future fusion devices, with supporting examples taken from the design, fabrication and operation of Tore Supra's Phase III outboard pump limiter (OPL). This actively cooled midplane limiter, designed for heat and particle removal during long-pulse operation, has been operated under essentially thermally steady state conditions. Testing to identify braze flaws, analysis of the impact of joining flaws on the thermal-hydraulic performance of the OPL, and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed. This experience suggests that, for PFCs in future fusion devices, flaw-tolerant designs are possible; analyses of the impacts of flaws on performance can provide criteria for quality assurance; and validating appropriate methods of inspection for such flaws early in the design development of PFCs is prudent. The need for in-service monitoring is also discussed. (orig.)

  13. Comparative analysis of thermally activated, environmentally friendly cooling systems

    International Nuclear Information System (INIS)

    Gupta, Y.; Metchop, L.; Frantzis, A.; Phelan, P.E.

    2008-01-01

    This paper compares the relative performances of three different thermally activated, environmentally friendly cooling systems, e.g. a silica-gel-water adsorption system, a LiBr-H 2 O absorption system and a desiccant air system. The adsorption and absorption systems in the current study employ water as the refrigerant, while the desiccant system cools atmospheric air directly. Each of these systems can be utilized at relatively low heat source temperatures such as achieved by flat plate solar collectors, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation etc. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW deg. C -1 is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica-gel in the adsorption and desiccant systems and the mass of LiBr-H 2 O solution in the absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 deg. C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 deg. C, while the desiccant air system outperforms the others at temperatures above 90 deg. C

  14. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  15. Active solar heating and cooling information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  16. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  17. Microbial activity in district cooling nets; Mikrobiell Aktivitet i Fjaerrkylenaet

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus [Swedish Corrosion Inst., Stockholm (Sweden)

    2004-07-01

    results point out the risk of only analysing the water instead of also neglecting to expose coupons and analysing the presence of biofilms on the coupons. Also made clear when using exposure containers is the advantage of having the possibility of withdrawal of coupons at different occasions, thereby being able to investigate the increase with time in concentration of micro-organisms in the biofilm. The Swedish Corrosion Institute has developed such an exposure container, and used it during phase two. It has proved to be both easy to handle and in good working order, at service for supervision of microbial activity in district cooling nets in general. Finally, recommendations for reducing the risk for biofilm formation and microbial corrosion can be stated as follows: Only water of DH quality should be used, both as basic water and feed water; Avoid additives, especially if organic; Only connect district cooling tubes which are clean on the inside; Watch over the system regarding micro-organism related problems, preferably by using exposure containers.

  18. Actively cooled plasma facing components qualification, commissioning and health monitoring

    International Nuclear Information System (INIS)

    Escourbiac, F.; Durocher, A.; Grosman, A.; Courtois, X.; Farjon, J.-L.; Schlosser, J.; Merola, M.; Tivey, R.

    2006-01-01

    In modern steady state magnetic fusion devices, actively cooled plasma facing components (PFC) have to handle heat fluxes in the range of 10-20 MW/m 2 . This generates a number of engineering constraints: the armour materials must be refractory and compatible with plasma wall interaction requirements (low sputtering and/or low atomic number); the heat sink must offer high thermal conductivity, high mechanical resistance and sufficient ductility; the component cooling system -which is generally based on the circulation of pressurized water in the PFC's heat sink - must offer high thermal heat transfer efficiency. Furthermore, the assembling of the refractory armour material onto the metallic heat sink causes generic difficulties strongly depending on thermo-mechanical properties of materials and design requirements. Life time of the PFC during plasma operation are linked to their manufacturing quality, in particular they are reduced by the possible presence of flaw assembling. The fabrication of PFC in an industrial frame including their qualification and their commissioning - which consists in checking the manufacturing quality during and at the end of manufacture - is a real challenge. From experience gained at Tore Supra on carbon fibre composite flat tiles technology components, it was assessed that a set of qualifications activities must be operated during R(and)D and manufacturing phases. Dedicated Non Destructive Technique (NDT) based on advanced active infrared thermography was developed for this purpose, afterwards, correlations between NDT, high heat flux testing and thermomechanical modelling were performed to analyse damage detection and propagation, and define an acceptance criteria valuable for industrial application. Health monitoring using lock-in technique was also recently operated in-situ of the Tore Supra tokamak for detection of possible defect propagation during operations, presence of acoustic precursor for critical heat flux detection induced

  19. Simulation of an active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Abdelhakim, Lotfi

    2016-01-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  20. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  1. MEMS Device Being Developed for Active Cooling and Temperature Control

    Science.gov (United States)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  2. Thermomechanical simulation of WEST actively cooled upper divertor

    International Nuclear Information System (INIS)

    Batal, T.; Richou, M.; Guilhem, D.; Firdaouss, M.; Larroque, S.; Ferlay, F.; Missirlian, M.; Bucalossi, J.

    2016-01-01

    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test ITER-like W monoblock Plasma Facing Units (PFU). This ITER-like divertor will be tested under long plasma discharge up to 1000 s, with high heat flux density up to 20 MW/m 2 . This paper presents the results of ANSYS thermal-structural simulations of the WEST upper divertor. The upper divertor is made of twelve 30° sectors, each one composed of 38 PFU. The PFUs are actively cooled CuCrZr heat sinks and the incidence surface is coated with a thin tungsten layer. The fixing system is made of pins engaged in slotted holes. Besides, the fixing system of the sector assembly is the same as WEST lower divertor, so one upper divertor sector can be used indifferently in upper or Lower position during transitional operation phases in WEST. The total surface of the upper divertor is 8 m 2 , and it has to be able to extract up to 4 MW in steady-state, with peak heat flux values up to 8 MW/m 2 . The fixing system was designed to handle structural loads such as forces and torques resulting from halo and eddy current, respectively, especially during disruptions and Vertical Displacement Event (VDE). The torque resulting from eddy current is first calculated thanks to an internal CEA ANSYS APDL routine. Then the ANSYS structural and thermal-structural simulations of the PFU are presented, and its design is validated thanks to A-level RCC-MRx criteria. Finally, the most conservative load case is determined in order to validate the design of the pins and the support structure.

  3. Thermomechanical simulation of WEST actively cooled upper divertor

    Energy Technology Data Exchange (ETDEWEB)

    Batal, T., E-mail: tristan.batal@cea.fr; Richou, M.; Guilhem, D.; Firdaouss, M.; Larroque, S.; Ferlay, F.; Missirlian, M.; Bucalossi, J.

    2016-11-15

    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test ITER-like W monoblock Plasma Facing Units (PFU). This ITER-like divertor will be tested under long plasma discharge up to 1000 s, with high heat flux density up to 20 MW/m{sup 2}. This paper presents the results of ANSYS thermal-structural simulations of the WEST upper divertor. The upper divertor is made of twelve 30° sectors, each one composed of 38 PFU. The PFUs are actively cooled CuCrZr heat sinks and the incidence surface is coated with a thin tungsten layer. The fixing system is made of pins engaged in slotted holes. Besides, the fixing system of the sector assembly is the same as WEST lower divertor, so one upper divertor sector can be used indifferently in upper or Lower position during transitional operation phases in WEST. The total surface of the upper divertor is 8 m{sup 2}, and it has to be able to extract up to 4 MW in steady-state, with peak heat flux values up to 8 MW/m{sup 2}. The fixing system was designed to handle structural loads such as forces and torques resulting from halo and eddy current, respectively, especially during disruptions and Vertical Displacement Event (VDE). The torque resulting from eddy current is first calculated thanks to an internal CEA ANSYS APDL routine. Then the ANSYS structural and thermal-structural simulations of the PFU are presented, and its design is validated thanks to A-level RCC-MRx criteria. Finally, the most conservative load case is determined in order to validate the design of the pins and the support structure.

  4. Active cooling in traumatic brain-injured patients: a questionable therapy?

    DEFF Research Database (Denmark)

    Grände, P-O; Reinstrup, P; Rommer, Bertil Roland

    2009-01-01

    -quality trials are considered, TBI patients treated with active cooling were more likely to die, a conclusion supported by a recent high-quality Canadian trial on children. Still, there is a belief that a modified protocol with a shorter time from the accident to the start of active cooling, longer cooling...... and rewarming time and better control of blood pressure and intracranial pressure would be beneficial for TBI patients. This belief has led to the instigation of new trials in adults and in children, including these types of protocol adjustments. The present review provides a short summary of our present...... knowledge of the use of active cooling in TBI patients, and presents some tentative explanations as to why active cooling has not been shown to be effective for outcome after TBI. We focus particularly on the compromised circulation of the penumbra zone, which may be further reduced by the stress caused...

  5. An Overview of the Thermal Calculation and the Cooling Technology for Active Magnetic Bearing

    Science.gov (United States)

    Zhang, Li; Yu, Meiyun; Luo, Yanyan; Liu, Jun; Ren, Yafeng

    2017-10-01

    The cooling process of AMB is that the energy loss is sent out to the outside world when the system is operating. The energy loss transfers to the surrounding medium in the form of heat, which leads to raise the temperature of system components and influences the performance of the system. So it is necessary to study the internal loss of the magnetic bearing system and thermal calculation method. Three kinds of thermal calculation methods are compared, which is important for the design and calculation of cooling. At the same time, the cooling way, the cooling method, and the cooling system is summarized on the basis of cooling technology of active magnetic bearing, and the design method of the cooling system is studied. But for the active magnetic bearing system, when designing the cooling system, heat dissipation of the motor can not be ignored. It is important not only for the performance of the active magnetic bearing system and stable operation, and but also for the improvement of the cooling technology.

  6. Development of conductively cooled first wall armor and actively cooled divertor structure for ITER/FER

    International Nuclear Information System (INIS)

    Ioki, K.; Yamada, M.; Sakata, S.; Okada, K.; Toyoda, M.; Shimizu, K.; Tsujimura, S.; Iimura, M.; Akiba, M.; Araki, M.; Seki, M.

    1991-01-01

    Based on the design requirements for the plasma facing components in ITER/FER, we have performed design studies on the conductively cooled first wall armor and the divertor plate with sliding supports. The full-scale armor tiles were fabricated for heat load tests, and good thermal performances were obtained in heat load tests of 0.2-0.4 MW/m 2 . It is shown by the thermomechanical analysis on the divertor plate that thermal stresses and bending deformation are reduced significantly by using the sliding supports. The divertor test module with the sliding supports has been fabricated to investigate its fabricability and to verify the functions of the sliding supports during a high heat load of about 10 MW/m 2 . (orig.)

  7. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  8. Electron yield from Be-Cu induced by highly charged Xe q+ ions

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Láska, Leoš; Stöckli, M. P.; Fehrenbach, C. W.

    2002-01-01

    Roč. 196, - (2002), s. 61-67 ISSN 0168-583X R&D Projects: GA AV ČR IAA1010105; GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : highly charged ion-induced electron emission * angle impact effect * Be-Cu Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.158, year: 2002

  9. Plasma edge physics in an actively cooled tokamak

    International Nuclear Information System (INIS)

    Gunn, J.P.; Adamek, A.; Boucher, C.

    2005-01-01

    Tore Supra is a large tokamak with a plasma of circular cross section (major radius 2.4 m and minor radius 0.72 m) lying on a toroidal limiter. Tore Supra's main mission is the development of technology to inject up to 25 MW of microwave heating power and extract it continuously for up to 1000 s in steady state without uncontrolled overheating of, or outgassing from, plasma-facing components. The entire first wall of the tokamak is actively cooled by a high pressure water loop and special carbon fiber composite materials have been designed to handle power fluxes up to 10 MW/m 2 . The edge plasma on open magnetic flux surfaces that intersect solid objects plays an important role in the overall behaviour of the plasma. The transport of sputtered impurity ions and the fueling of the core plasma are largely governed by edge plasma density, temperature, and flow profiles. Measurements of these quantities are becoming more reliable and frequent in many tokamaks, and it has become clear that we do not understand them very well. Classical two-dimensional fluid modelling fails to reproduce many aspects of the experimental observations such as the significant thickness of the edge plasma, and the near-sonic flows that occur where none should be expected. It is suspected that plasma turbulence is responsible for these anomalies. In the Tore Supra tokamak, various kinds of Langmuir probes are used to characterize the edge plasma. We will present original measurements that demonstrate the universality of many phenomena that have been observed in X-point divertor tokamaks, especially concerning the ion flows. As in the JET tokamak, surprisingly large values of parallel Mach number are measured midway between the two strike zones, where one would expect to find nearly stagnant plasma if the particle source were poloidally uniform. We will present results of a novel experiment that provides evidence for a poloidally localized particle and energy source on the outboard midplane of

  10. A practical cooling strategy for reducing the physiological strain associated with firefighting activity in the heat.

    Science.gov (United States)

    Barr, D; Gregson, W; Sutton, L; Reilly, T

    2009-04-01

    The aim of this study was to establish whether a practical cooling strategy reduces the physiological strain during simulated firefighting activity in the heat. On two separate occasions under high ambient temperatures (49.6 +/- 1.8 degrees C, relative humidity (RH) 13 +/- 2%), nine male firefighters wearing protective clothing completed two 20-min bouts of treadmill walking (5 km/h, 7.5% gradient) separated by a 15-min recovery period, during which firefighters were either cooled (cool) via application of an ice vest and hand and forearm water immersion ( approximately 19 degrees C) or remained seated without cooling (control). There was no significant difference between trials in any of the dependent variables during the first bout of exercise. Core body temperature (37.72 +/- 0.34 vs. 38.21 +/- 0.17 degrees C), heart rate (HR) (81 +/- 9 vs. 96 +/- 17 beats/min) and mean skin temperature (31.22 +/- 1.04 degrees C vs. 33.31 +/- 1 degrees C) were significantly lower following the recovery period in cool compared with control (p second bout of activity in cool compared to control. Mean skin temperature, HR and thermal sensation were significantly lower during bout 2 in cool compared with control (p < 0.05). It is concluded that this practical cooling strategy is effective at reducing the physiological strain associated with demanding firefighting activity under high ambient temperatures.

  11. The evolution of coronal activity in main sequence cool stars

    International Nuclear Information System (INIS)

    Stern, R.A.

    1984-01-01

    Stars spend most of their lifetime and show the least amount of nuclear evolution on the main sequence. However, the x-ray luminosities of cool star coronas change by orders of magnitude as a function of main sequence age. Such coronal evolution is discussed in relation to our knowledge of the solar corona, solar and stellar flares, stellar rotation and binarity. The relevance of X-ray observations to current speculations on stellar dynamos is also considered

  12. Hot heads & cool bodies: The conundrums of human brown adipose tissue (BAT) activity research.

    Science.gov (United States)

    Bahler, Lonneke; Holleman, Frits; Booij, Jan; Hoekstra, Joost B; Verberne, Hein J

    2017-05-01

    Brown adipose tissue is able to increase energy expenditure by converting glucose and fatty acids into heat. Therefore, BAT is able to increase energy expenditure and could thereby facilitate weight loss or at least weight maintenance. Since cold is a strong activator of BAT, most prospective research is performed during cold to activate BAT. In current research, there are roughly two methods of cooling. Cooling by lowering ambient air temperature, which uses a fixed temperature for all subjects and personalized cooling, which uses cooling blankets or vests with temperatures that can be adjusted to the individual set point of shivering. These methods might trigger mechanistically different cold responses and hence result in a different BAT activation. This hypothesis is underlined by two studies with the same research question (difference in BAT activity between Caucasians and South Asians) one study found no differences in BAT activity whereas the other did found differences in BAT activity. Since most characteristics (e.g. age, BMI) were similar in the two studies, the best explanation for the differences in outcomes is the use of different cooling protocols. One of the reasons for differences in outcomes might be the sensory input from the facial skin, which might be important for the activation of BAT. In this review we will elaborate on the differences between the two cooling protocols used to activate BAT. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  13. Metallographic anlaysis and strength investigation of different Be-Cu joints in the temperature range RT-3500C

    International Nuclear Information System (INIS)

    Gervash, A.A.; Giniatouline, R.N.; Mazul, I.V.

    1995-01-01

    The goal of this work is to estimate the strength and structure of different Be-Cu joining techniques. Brazing, diffusion bonding and joint rolling methods were chosen as ITER Be-Cu joint method candidates. Selected for ITER application Be-Cu joints were produced as technological plates (30-50 mm x 50-100 mm x thickness). AR samples for farther investigations were cutted out from initial technological plates. To compare mechanical strength of selected Be-Cu joints tensile and shearing tests of chosen candidates were carried out in the temperature range RT - 350 degrees C. The metallographic analysis of Be-Cu crosssection was also done. Preliminary results of these tests as well as metallographic analysis data are presented. The industrial possibilities of producing required for ITER full scale Be-Cu joints are discussed

  14. Complex investigation of several silver-less brazed Be/CuCrZr joints

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, A.; Gervash, A.; Komarov, V.; Mazul, I.; Litounovski, N. [Efremov Inst., St Petersburg (Russian Federation); Fedotov, V.; Sevrukov, O. [Moscow Physical Engineering Inst. (Russian Federation); Ganenko, A. [CRISM Prometey, St Petersburg (Russian Federation)

    1998-07-01

    One of the main problems for ITER divertor target technology is to provide a reliable joint between Be as armour material and copper alloy as heat-sink structure. Such joints should satisfy the different requirements. In particular, these joints should successfully withstand cyclic heat fluxes and should have good properties under neutron irradiation. To study such complex of problems several investigation stages were planned in Russia. This paper presents the results of complex investigation of several silver-less brazed Be/CuCrZr joint candidates. (author)

  15. Complex investigation of several silver-less brazed Be/CuCrZr joints

    International Nuclear Information System (INIS)

    Komarov, A.; Gervash, A.; Komarov, V.; Mazul, I.; Litounovski, N.; Fedotov, V.; Sevrukov, O.; Ganenko, A.

    1998-01-01

    One of the main problems for ITER divertor target technology is to provide a reliable joint between Be as armour material and copper alloy as heat-sink structure. Such joints should satisfy the different requirements. In particular, these joints should successfully withstand cyclic heat fluxes and should have good properties under neutron irradiation. To study such complex of problems several investigation stages were planned in Russia. This paper presents the results of complex investigation of several silver-less brazed Be/CuCrZr joint candidates. (author)

  16. Brazing of the Tore Supra actively cooled Phase III Limiter

    International Nuclear Information System (INIS)

    Nygren, R.E.; Walker, C.A.; Lutz, T.J.; Hosking, F.M.; McGrath, R.T.

    1993-01-01

    The head of the water-cooled Tore Supra Phase 3 Limiter is a bank of 14 round OFHC copper tubes, curved to fit the plasma radius, onto which several hundred pyrolytic graphite (PG) tiles and a lesser number of carbon fiber composite tiles are brazed. The small allowable tolerances for fitting the tiles to the tubes and mating of compound curvatures made the brazing and fabrication extremely challenging. The paper describes the fabrication process with emphasis on the procedure for brazing. In the fixturing for vacuum furnace brazing, the tiles were each independently clamped to the tube with an elaborate set of window frame clamps. Braze quality was evaluated with transient heating tests. Some rebrazing was necessary

  17. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    Science.gov (United States)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  18. On the influence of the alternation of two different cooling systems on dairy cow daily activities

    Directory of Open Access Journals (Sweden)

    Simona M.C. Porto

    2017-02-01

    Full Text Available Among the causes that influence cow welfare, heat stress induced by microclimatic conditions is one of the most relevant and many studies have investigated the efficacy of different cooling systems on animal health status. Nevertheless, the direct influence of the cooling systems on possible modifications of dairy cow behaviour has been addressed in a few studies and the related results were affected by the presence of a paddock, which gave a refuge from hot temperature. Since an alteration of the daily time budget spent by dairy cows in their usual activities can be associated with changes in their health status, this study investigated the effects of the alternation of two different cooling systems on lying, standing, and feeding behaviour of a group of dairy cows bred in a free-stall dairy house where animals had no access to a paddock. The barn was equipped with a fogging system associated with forced ventilation installed in the resting area and a sprinkler system associated with forced ventilation installed in the feeding area. The two systems were activated alternately. The results demonstrated that the management of the two cooling systems affected the analysed behaviours. Though the activation of the cooling system installed in the resting area encouraged the decubitus of animals in the stalls, the activation of that one of the feeding alley could not be able to influence the standing behaviour and had only a moderate positive influence on the feeding activity.

  19. Measurements in large pool fires with an actively cooled calorimeter

    International Nuclear Information System (INIS)

    Koski, J.A.; Wix, S.D.

    1995-01-01

    The pool fire thermal test described in Safety Series 6 published by the International Atomic Energy Agency (IAEA) or Title 10, Code of Federal Regulations, Part 71 (10CFR71) in the United States is one of the most difficult tests that a container for larger ''Type B'' quantities of nuclear materials must pass. If retests of a container are required, costly redesign and project delays can result. Accurate measurements and modeling of the pool fire environment will ultimately lower container costs by assuring that containers past the pool fire test on the first attempt. Experiments indicate that the object size or surface temperature of the container can play a role in determining local heat fluxes that are beyond the effects predicted from the simple radiative heat transfer laws. An analytical model described by Nicolette and Larson 1990 can be used to understand many of these effects. In this model a gray gas represents soot particles present in the flame structure. Close to the container surface, these soot particles are convectively and radiatively cooled and interact with incident energy from the surrounding fire. This cooler soot cloud effectively prevents some thermal radiation from reaching the container surface, reducing the surface heat flux below the value predicted by a transparent medium model. With some empirical constants, the model suggested by Nicolette and Larson can be used to more accurately simulate the pool fire environment. Properly formulated, the gray gas approaches also fast enough to be used with standard commercial computer codes to analyze shipping containers. To calibrate this type of model, accurate experimental measurements of radiative absorption coefficients, flame temperatures, and other parameters are necessary. A goal of the calorimeter measurements described here is to obtain such parameters so that a fast, useful design tool for large pool fires can be constructed

  20. Topology Optimization of an Actively Cooled Electronics Section for Downhole Tools

    DEFF Research Database (Denmark)

    Soprani, Stefano; Klaas Haertel, Jan Hendrik; Lazarov, Boyan Stefanov

    2015-01-01

    Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration into the dow......Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration......, according to the topology optimization results and assembly constraints, and compared to the optimized cases....

  1. Evaluation of fiber reinforced polymers using active infrared thermography system with thermoelectric cooling modules

    Science.gov (United States)

    Chady, Tomasz; Gorący, Krzysztof

    2018-04-01

    Active infrared thermography is increasingly used for nondestructive testing of various materials. Properties of this method are creating a unique possibility to utilize it for inspection of composites. In the case of active thermography, an external energy source is usually used to induce a thermal contrast inside tested objects. The conventional heating methods (like halogen lamps or flash lamps) are utilized for this purpose. In this study, we propose to use a cooling unit. The proposed system consists of a thermal imaging infrared camera, which is used to observe the surface of the inspected specimen and a specially designed cooling unit with thermoelectric modules (the Peltier modules).

  2. HIP joining of Be/CuCrZr for fabrication of ITER first wall

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Choi, Byung-Kwon; Park, Sang-Yoon; Kim, Hyun-Gil; Kim, Jun-Hwan; Hong, Bong Guen; Jeong, Yong Hwan

    2007-01-01

    The effects of different interlayer types and the temperature have been investigated in order to optimize the HIP joining conditions of Be to CuCrZr. Ti/Cu and Cr/Cu interlayers were coated onto a Be surface before a HIP joining. HIP temperature was changed from 580 to 620 deg. C. No intermetallic compounds or defects were formed at the interface of the joint specimens. The joining strength measured by the four-point bend test and the shear test was higher in the joint specimen with Ti/Cu interlayers when compared to that with Cr/Cu interalyers and it was increased with an increase of the HIP temperature from 580 to 620 deg. C. The yield strength of the aged CuCrZr was higher than 150 MPa at 250 deg. C up to an aging temperature of 620 deg. C after a water quenching. It is therefore suggested that the HIP temperature of the Be/CuCrZr joint could be increased to 620 deg. C based on the results obtained from this study

  3. Conical surface textures formed by ion bombarding 2% Be-Cu alloy

    International Nuclear Information System (INIS)

    Panitz, J.K.G.

    1991-01-01

    A homogeneous, micrometer-sized conical surface texture forms on 2% Be-Cu alloy which is bombarded with an argon beam produced by a Kaufman ion source. The dimensions of the features that form depend strongly on argon energy (from 250 to 1500 eV); argon fluence (10 19 to 10 20 ions cm -2 ); and argon flux (0.1 to 1 mA cm -2 ). The texture morphology depends less strongly on the background ambient (Mo versus graphite), earlier alloy heat treatments and the temperature during bombardment (100 o C and 450 o C). As the texture matures with increasing fluence, the number of large features increases at the expense of the number of small features. The observed relationship between texture formation and ion flux suggests that the evolution of these features is not adequately described by theories predicting that the mature conical side-wall angle is related to the angle of the maximum sputtering yield. These textured surfaces can be coated with other metals for a variety of possible applications including pulsed power Li + beam anodes; cold cathode field emission devices; optical absorbers and catalysis supports. (author)

  4. Investigation of Be/Cu joints via HHF tests of small-scale mockups

    Energy Technology Data Exchange (ETDEWEB)

    Giniatulin, R.; Gervash, A.; Komarov, V.L.; Litunovsky, N.; Mazul, I.; Yablokov, N. [Efremov Inst., St. Petersburg (Russian Federation)

    1998-01-01

    Beryllium-copper (Be/Cu) joints in divertor components work under cyclic heat loads. To develop reliable joints small-scale mockups are fabricated by divertor technologies and tested under the divertor conditions. One of the critical damaging factors that exist in the divertor and have to be simulated is thermocyclic heat loads in the range of 1-15 MW/m{sup 2}. This work presents the divertor mockups that have beryllium tiles with different dimensions (5 x 5 - 44 x 44) mm{sup 2} brazed with copper alloy heat sink. The electron beam was used to braze these mockups so as to decrease the formation of brittle intermetallic layers. The description of mockups design, geometry of armour tiles and fabrication techniques are presented in the paper. The results of screening and thermocyclic tests of these mockups in the heat flux range of 2-12 MW/m{sup 2} with a number of cycles {approx}10{sup 3} are presented. The results of metallographic analysis are also presented. The results of fabrication and testing with small-scale mockups for first wall application are also described. (author)

  5. Conical surface textures formed by ion bombarding 2% Be Cu alloy

    International Nuclear Information System (INIS)

    Panitz, J.K.G.

    1990-01-01

    A homogeneous, micrometer-sized conical surface texture forms on 2% Be-Cu alloy which is bombarded with an argon beam produced by a Kaufman ion source. The dimensions of the features that form strongly depend on: (1) argon energy (from 250 to 1500 eV), (2) fluence (10 19 to 10 20 ions/cm 2 ), and (3) flux (0.1 to 1 mA/cm 2 ). The texture morphology depends less strongly on the background ambient (Mo vs graphite), earlier alloy heat treatments and the temperature during bombardment (100 degree C and 450 degree C). As the texture matures with increasing fluence, the number of large features increases at the expense of the number of small features. The observed relationship between texture formation and ion flux suggests that the evolution of these features is not adequately described by theories predicting that the mature conical sidewall angle is related to the angle of the maximum sputtering yield. These textured surfaces can be coated with other metals for a variety of possible applications including: (1) pulsed power Li+ beam anodes, (2) cold cathode field emission devices, (3) optical absorbers and (4) catalysis supports. 18 refs., 5 figs

  6. Advanced qualification methodology for actively cooled plasma facing components

    Science.gov (United States)

    Durocher, A.; Escourbiac, F.; Grosman, A.; Boscary, J.; Merola, M.; Cismondi, F.; Courtois, X.; Farjon, J. L.; Missirlian, M.; Schlosser, J.; Tivey, R.

    2007-12-01

    The use of high heat flux plasma facing components (PFCs) in steady state fusion devices requires high reliability. These components have to withstand heat fluxes in the range 10-20 MW m-2 involving a number of severe engineering constraints. Feedback from the experience of various industrial manufacturings showed that the bonding of the refractory armour material onto the metallic heat sink causes generic difficulties strongly depending on material qualities and specific design. As the heat exhaust capability and lifetime of PFCs during plasma operation are directly linked to the manufacturing quality, a set of qualification activities such as active infrared thermography, lock-in and acoustic measurements were performed during the component development phases following a qualification route. This paper describes the major improvements stemming from better measurement accuracy and refined data processing and analyses recent developments aimed at investigating the capability to qualify the component in situ during its lifetime.

  7. Advanced qualification methodology for actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Durocher, A.; Escourbiac, F.; Grosman, A.; Boscary, J.; Merola, M.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Missirlian, M.; Schlosser, J.; Tivey, R.

    2007-01-01

    The use of high heat flux plasma facing components (PFCs) in steady state fusion devices requires high reliability. These components have to withstand heat fluxes in the range 10-20 MW m -2 involving a number of severe engineering constraints. Feedback from the experience of various industrial manufacturings showed that the bonding of the refractory armour material onto the metallic heat sink causes generic difficulties strongly depending on material qualities and specific design. As the heat exhaust capability and lifetime of PFCs during plasma operation are directly linked to the manufacturing quality, a set of qualification activities such as active infrared thermography, lock-in and acoustic measurements were performed during the component development phases following a qualification route. This paper describes the major improvements stemming from better measurement accuracy and refined data processing and analyses recent developments aimed at investigating the capability to qualify the component in situ during its lifetime

  8. Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator

    Science.gov (United States)

    2012-09-01

    prepreg epoxy. Individual FR-4 lamina were mechanically machined to pattern each layer. The layers were aligned, stacked, and laminated to form the...The cooler substrate is a laminated multilayer FR-4 substrate. Individual layers are patterned to support the active element, form a resonant... laminated with 70/30 copper-nickel alloy or 80/20 nickel-chrome alloy and patterned by means of photolithographic techniques and wet etching in a ferric

  9. Rotation, activity, and lithium abundance in cool binary stars

    Science.gov (United States)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P

  10. Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study

    Science.gov (United States)

    Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram

    2009-01-01

    We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.

  11. Effects of acoustic ceiling units on the cooling performance of thermally activated building systems (TABS)

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Rage, Niels; Kazanci, Ongun Berk

    2017-01-01

    Europe, with a building stock responsible for about 40% of the total energy use, needs to reduce the primary energy use in buildings in order to meet the 2020 energy targets of the European Union. High temperature cooling and low temperature heating systems, and as an example, Thermally Activated...

  12. Thermo Active Building Systems – Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2014-01-01

    , Austria, Netherlands, etc.), this type of system has been installed in a significant number of new office buildings since the late 1990s. The trend is spreading to other parts of the world (the rest of Europe, North America and Asia). Thermo active building systems (TABS) are primarily used for cooling...

  13. Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling

    OpenAIRE

    Vetter, Irina; Touska, Filip; Hess, Andreas; Hinsbey, Rachel; Sattler, Simon; Lampert, Angelika; Sergejeva, Marina; Sharov, Anastasia; Collins, Lindon S; Eberhardt, Mirjam; Engel, Matthias; Cabot, Peter J; Wood, John N; Vlachová, Viktorie; Reeh, Peter W

    2012-01-01

    Ciguatoxins derived from fish lead to cold allodynia in humans, the perception of intense burning pain in response to mild cooling. A novel mouse model of ciguatoxin-induced cold allodynia reveals that ciguatoxin activates the TRPA1 thermosensitive ion channel to mediate pain perception.

  14. Active Cooling and Thermal Management of a Downhole Tool Electronics Section

    DEFF Research Database (Denmark)

    Soprani, Stefano; Engelbrecht, Kurt; Just Nørgaard, Anders

    2015-01-01

    combines active and passive cooling techniques, aiming at an efficient thermal management, preserving the tool compactness and avoiding the use of moving parts. Thermoelectric coolers were used to transfer the dissipated heat from the temperature-sensitive electronics to the external environment. Thermal...... contact resistances were minimized and thermally insulating foam protected the refrigerated microenvironment from the hot surroundings....

  15. Comparison between actively cooled divertor dump plates with beryllium and CFC armour

    International Nuclear Information System (INIS)

    Falter, H.D.; Araki, M.; Sato, K.; Suzuki, S.; Cardella, A.

    1995-01-01

    Actively cooled test sections with beryllium and graphite armour all withstand power densities between 15 and 20 MW/m 2 . Beryllium as structural material fails mechanically at low power densities. Monoblocks appear to be the most rigid design but frequently large variations in surface temperature are observed. All other test sections show a uniform surface temperature distribution. (orig.)

  16. Status report on preliminary design activities for solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information presented provides status and progress on the development of solar heating and cooling systems. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities as part of the contract requirements.

  17. Interannual and Decadal Variations of Planetary Wave Activity, Stratospheric Cooling, and Northern Hemisphere Annular Mode.

    Science.gov (United States)

    Hu, Yongyun; Kit Tung, Ka

    2002-07-01

    Using NCEP-NCAR 51-yr reanalysis data, the interannual and decadal variations of planetary wave activity and its relationship to stratospheric cooling, and the Northern Hemisphere Annular mode (NAM), are studied. It is found that winter stratospheric polar temperature is highly correlated on a year-to-year basis with the Eliassen-Palm (E-P) wave flux from the troposphere, implying a dynamical control of the former by the latter, as often suggested. Greater (lower) wave activity from the troposphere implies larger (smaller) poleward heat flux into the polar region, which leads to warmer (colder) polar temperature. A similar highly correlated antiphase relationship holds for E-P flux divergence and the strength of the polar vortex in the stratosphere. It is tempting to extrapolate these relationships found for interannual timescales to explain the recent stratospheric polar cooling trend in the past few decades as caused by decreased wave activity in the polar region. This speculation is not supported by the data. On timescales of decades the cooling trend is not correlated with the trend in planetary wave activity. In fact, it is found that planetary wave amplitude, E-P flux, and E-P flux convergence all show little statistical evidence of decrease in the past 51 yr, while the stratosphere is experiencing a cooling trend and the NAM index has a positive trend during the past 30 yr. This suggests that the trends in the winter polar temperature and the NAM index can reasonably be attributed to the radiative cooling of the stratosphere, due possibly to increasing greenhouse gases and ozone depletion. It is further shown that the positive trend of the NAM index in the past few decades is not through the inhibition of upward planetary wave propagation from the troposphere to the stratosphere, as previously suggested.

  18. Experience gained from high heat flux actively cooled PFCs in Tore Supra

    International Nuclear Information System (INIS)

    Grosman, A.; Bayetti, P.; Brosset, C.; Bucalossi, J.; Cordier, J.J.; Durocher, A.; Escourbiac, F.; Ghendrih, Ph.; Guilhem, D.; Gunn, J.; Loarer, T.; Lipa, M.; Mitteau, R.; Pegourie, B.; Reichle, R.; Schlosser, J.; Tsitrone, E.; Vallet, J.C.

    2005-01-01

    The implementation of actively cooled high heat flux plasma facing components (PFCs) is one of the major ingredients required for operating the Tore Supra tokamak with very long pulses. A pioneering activity has been developed in this field from the very beginning of the device operation that is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW/m 2 of nominal convected heat flux. Technical information is drawn from the whole development up to the industrialisation and focuses on a number of critical issues, such as bonding technology analysis, manufacture processes, repair processes, destructive and non-destructive testing. The actual experience in Tore Supra allows to address the question of D retention on carbon walls. Redeposition on surfaces without plasma flux is suspected to cause the final 'burial' of about half of the injected gas during long discharges

  19. Nickel-hydrogen battery state of charge management in the absence of active cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, C.; Foroozan, S. [TRW, Redondo Beach, CA (United States); Brewer, J.; Jackson, L.G. [NASA, Huntsville, AL (United States). Marshall Space Flight Center

    1995-12-31

    Battery management during prelaunch activities has always required special attention and careful planning. `ne transition from nickel-cadmium to nickel-hydrogen batteries, with their higher self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, have made this aspect of spacecraft management even more challenging. The NASA AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure adequate state of charge during prelaunch charge, trickle charge, and stand was considered and proved to be expensive and difficult to implement. Alternate approaches were considered. A procedure including optimized charging and low rate (active cooling, appeared promising and was investigated. The investigation includes three phases: (1) demonstration of the feasibility of the proposed procedure (2) development of a parametric data base (3) validation in an AXAF-I mission simulation test. Charging, trickle charging, and open circuit stand are considered in each phase. The major conclusion of this work is that nickel-hydrogen batteries can achieve and maintain high states of charge, in the absence of active cooling, using the approach described in this paper.

  20. Design activity of IHI on the experimental multipurpose high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    1978-01-01

    With conspicuous interest and attention paid by iron and steel manufacturing industries, the development of the multipurpose high temperature gas-cooled reactor, namely the process heat reactor has been energetically discussed in Japan. The experimental multipurpose high temperature gas-cooled reactor, planned by JAERI (the Japan Atomic Energy Research Institute), is now at the end of the adjustment design stage and about to enter the system synthesizing design stage. The design of the JAERI reactor as a pilot plant for process heat reactors that make possible the direct use of the heat, produced in the reactor, for other industrial uses was started in 1969, and has undergone several revisions up to now. The criticality of the JAERI reactor is expected to be realized before 1985 according to the presently published program. IHI has engaged in the developing work of HTGR (high temperature gas-cooled reactor) including VHTR (very high temperature gas-cooled reactor) for over seven years, producing several achievements. IHI has also participated in the JAERI project since 1973 with some other companies concerned in this field. The design activity of IHI in the development of the JAERI reactor is briefly presented in this paper. (auth.)

  1. Activities of passive cooling applications and simulation of innovative nuclear power plant design

    International Nuclear Information System (INIS)

    Aglar, F.; Tanrykut, A.

    2002-01-01

    This paper gives a general insight on activities of the Turkish Atomic Energy Authority (TAEA) concerning passive cooling applications and simulation of innovative nuclear power plant design. The condensation mode of heat transfer plays an important role for the passive heat removal application in advanced water-cooled reactor systems. But it is well understood that the presence of noncondesable (NC) gases can greatly inhibit the condensation process due to the build up of NC gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of NC. The test matrix of the experimental investigation undertaken at the METU-CTF test facility (Middle East Technical University, Ankara) covers the range of parameters; Pn (system pressure) : 2-6 bar, Rev (vapor Reynolds number): 45,000-94,000, and Xi (air mass fraction): 0-52%. This experimental study is supplemented by a theoretical investigation concerning the effect of mixture flow rate on film turbulence and air mass diffusion concepts. Recently, TAEA participated to an international standard problem (OECD ISP-42) which covers a set of simulation of PANDA test facility (Paul Scherrer Institut-Switzerland) for six different phases including different natural circulation modes. The concept of condensation in the presence of air plays an important role for performance of heat exchangers, designed for passive containment cooling, which in turn affect the natural circulation behaviour in PANDA systems. (author)

  2. Management of water leaks on Tore Supra actively cooled fusion device

    International Nuclear Information System (INIS)

    Hatchressian, J.C.; Gargiulo, L.; Samaille, F.; Soler, B.

    2005-01-01

    Up to now, Tore Supra is the only fusion device fully equipped with actively cooled Plasma Facing Components (PFCs). In case of abnormal events during a plasma discharge, the PFCs could be submitted to a transient high power density (run away electrons) or to a continuous phenomena as local thermal flux induced by trapped suprathermal electrons or ions). It could lead to a degradation of the PFC integrity and in the worst case to a water leak occurrence. Such water leak has important consequence on the tokamak operation that concerns PFCs themselves, monitoring equipment located in the vacuum vessel or connected to the ports as RF antennas, diagnostics or pumping systems. Following successive water leak events (the most important water leak, that occurred in September 2002, is described in the paper), a large feedback experience has been gained on Tore supra since more than 15 years that could be useful to actively cooled next devices as W7X and ITER. (authors)

  3. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  4. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    Science.gov (United States)

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian

    2011-01-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U–Th zircon crystallization ages (29.3-4.6+4.8 ka; 1δ standard error s.e.) overlap with the (U–Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U-230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10–20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850–900 °C and pressures > 70–150 MPa are calculated from H2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10-2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series (238U–230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  5. Thermal fatigue tests with actively cooled divertor mock-ups for ITER

    International Nuclear Information System (INIS)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B.; Ibbott, C.; Jacobson, D.; Le Marois, G.; Lind, A.; Lorenzetto, P.; Vieider, G.; Peacock, A.; Ploechl, L.; Severi, Y.; Visca, E.

    1998-01-01

    Mock-ups for high heat flux components with beryllium and CFC armour materials have been tested by means of the electron beam facility JUDITH. The experiments concerned screening tests to evaluate heat removal efficiency and thermal fatigue tests. CFC monoblocks attached to DS-Cu (Glidcop Al25) and CuCrZr tubes by active metal casting and Ti brazing showed the best thermal fatigue behaviour. They survived more than 1000 cycles at heat loads up to 25 MW m -2 without any indication of failure. Operational limits are given only by the surface temperature on the CFC tiles. Most of the beryllium mock-ups were of the flat tile type. Joining techniques were brazing, hot isostatic pressing (HIP) and diffusion bonding. HIPed and diffusion bonded Be/Cu modules have not yet reached the standards for application in high heat flux components. The limit of this production method is reached for heat loads of approximately 5 MW m -2 . Brazing with and without silver seems to be a more robust solution. A flat tile mock-up with CuMnSnCe braze was loaded at 5.4 MW m -2 for 1000 cycles without damage The first test with a beryllium monoblock joined to a CuCrZr tube by means of Incusil brazing shows promising results; it survived 1000 cycles at 4.5 MW m -2 without failure. (orig.)

  6. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein

    2011-06-01

    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  7. Improving the viability and versatility of the E × B probe with an active cooling system

    Science.gov (United States)

    Liu, Lihui; Cai, Guobiao; You, Fengyi; Ren, Xiang; Zheng, Hongru; He, Bijiao

    2018-04-01

    A thermostatic E × B probe is designed to protect the probe body from the thermal effect of the plasma plume that has a significant influence on the resolution of the probe for high-power electric thrusters. An active cooling system, which consists of a cooling panel and carbon fiber felts combined with a recycling system of liquid coolants or an open-type system of gas coolants, is employed to realize the protection of the probe. The threshold for the design parameters for the active cooling system is estimated by deriving the energy transfer of the plasma plume-probe body interaction and the energy taken away by the coolants, and the design details are explained. The diagnostics of the LIPS-300 ion thruster with a power of 3 kW and a screen-grid voltage of 1450 V was implemented by the designed thermostatic E × B probe. The measured spectra illustrate that the thermostatic E × B probe can distinguish the fractions of Xe+ ions and Xe2+ ions without areas of overlap. In addition, the temperature of the probe body was less than 306 K in the beam region of the plasma plume during the 200-min-long continuous test. A thermostatic E × B probe is useful for enhancing the viability and versatility of equipment and for reducing uneconomical and complex test procedures.

  8. Activation analysis and waste management of China ITER helium cooled solid breeder test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.R., E-mail: hanjingru@163.co [North China Electric Power University, School of Nuclear Science and Engineering, Zhu-Xin-Zhuang, De-Wai, Beijing 102206 (China); Chen, Y.X.; Han, R. [North China Electric Power University, School of Nuclear Science and Engineering, Zhu-Xin-Zhuang, De-Wai, Beijing 102206 (China); Feng, K.M. [Southwestern Institute of Physics, P.O.Box 432, Chengdu 610041 (China); Forrest, R.A. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2010-08-15

    Activation characteristics have been assessed for the ITER China helium cooled solid breeder (CH-HCSB) 3 x 6 test blanket module (TBM). Taking a representative irradiation scenario, the activation calculations were performed by FISPACT code. Neutron fluxes distributions in the TBM were provided by a preceding MCNP calculation. These fluxes were passed to FISPACT for the activation calculation. The main activation parameters of the HCSB-TBM were calculated and discussed, such as activity, afterheat and contact dose rate. Meanwhile, the dominant radioactivity nuclides and reaction channel pathways have been identified. According to the Safety and Environmental Assessment of Fusion Power (SEAFP) waste management strategy, the activated materials can be re-used following the remote handling recycling options. The results will provide useful indications for further optimization design and waste management of the TBM.

  9. Mitigation of Autoignition Due to Premixing in a Hypervelocity Flow Using Active Wall Cooling

    Science.gov (United States)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2013-01-01

    Preinjection of fuel on the forebody of an airbreathing vehicle is a proposed method to gain access to hypervelocity flight Mach numbers. However, this creates the possibility of autoignition either near the wall or in the core of the flow, thereby consuming fuel prematurely as well as increasing the amount of pressure drag on the vehicle. The computational fluid dynamics code VULCAN was used to conduct three dimensional simulations of the reacting flow in the vicinity of hydrogen injectors on a flat plate at conditions relevant to a Mach 12 notional flight vehicle forebody to determine the location where autoignition occurs. Active wall cooling strategies were formulated and simulated in response to regions of autoignition. It was found that tangential film cooling using hydrogen or helium were both able to nearly or completely eliminate wall autoignition in the flow domain of interest.

  10. Design and fabrication of an actively cooled Langmuir probe for long pulse applications

    International Nuclear Information System (INIS)

    Paterson, J.A.; Biagi, L.A.; Ehlers, K.W.; Koehler, G.W.

    1985-11-01

    The details of the mechanical design and fabrication for a Langmuir Probe for the continuous monitoring of plasma density are given. The probe was designed for use as a diagnostic tool in the development of long pulse positive ion plasma sources for use on neutral beam systems. The essential design feature of this probe is the incorporation of two electrically isolated cooling water circuits which actively cool the probe tip and probe jacket. The electrical isolation is required to prevent drain currents from the probe body disturbing the measurement of the probe tip current and thereby the plasma density measurement. The successful realization of the design requires precision components and vacuum tight ceramic to refractory metal brazes. To date this design has successfully operated in steady-state in plasma densities up to 250 mA/cm 2 and surface heat fluxes of 25 W/cm 2

  11. Efficient and silent cooling. Thermal activation of components; Effiziente und stille Kuehlung. Thermische Bauteilaktivierung

    Energy Technology Data Exchange (ETDEWEB)

    Hemmersbach, Matthias [Uponor GmbH, Ludwigsburg (Germany)

    2013-04-15

    In addition to the increasing user requirements for comfort and indoor climate, the economy is the number one planning tool in modern office buildings and commercial buildings. Under this aspect, the energy-efficient heating and cooling systems not only are an option, but rather an integral part of an economic building concept and a requirement for the successful marketing of modern real estates. A particularly interesting variant is the utilization of a concrete core activation such as Uponor Contec. Approximately 700,000 square meters of space were created annually in Germany - with a rising trend. Thereby, 70 % of the activated areas are installed in office buildings.

  12. EVIDENCE FOR WIDESPREAD COOLING IN AN ACTIVE REGION OBSERVED WITH THE SDO ATMOSPHERIC IMAGING ASSEMBLY

    International Nuclear Information System (INIS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well-known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times than hotter channels. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions (ARs). Is this cooling pattern a common property of AR coronal plasma, or does it only occur in unique circumstances, locations, and times? The new Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data provide a wonderful opportunity to answer this question systematically for an entire AR. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hr of images of AR 11082 observed on 2010 June 19. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the AR including the diffuse emission between loops for the entire 24 hr duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hr time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than ∼0.8 MK. This suggests that the bulk of the emitting coronal plasma in this AR is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  13. Explosive Ordnance Disposal (EOD) Ensembles: Biophysical Characteristics and Predicted Work Times With and Without Chemical Protection and Active Cooling Systems

    Science.gov (United States)

    2015-04-29

    Integrated groin protector (IGP), and Boot Protector); GORE lined leather combat boots; and NOMEX® gloves with Velcro ; and EOD9 full face helmet... effective heat removal or cooling capacity of the active cooling system could not be obtained on the manikin, reasonable estimates can be used to...Price MJ, & Oldroyd M. The effect of heat acclimation on thermal strain during explosives ordnance disposal (EOD) related activity in moderate and

  14. Mechanical and experimental study on freeze proof solar powered adsorption cooling tube using active carbon/methanol working pair

    International Nuclear Information System (INIS)

    Zhao Huizhong; Zhang Min; Liu Zhenyan; Liu Yanling; Ma Xiaodong

    2008-01-01

    The freeze proof solar cooling tube, which can produce cooling capacity with the refrigerant temperature below 0 deg. C using solar light as energy and active carbon-methanol as working pair, was firstly designed and made in this research. This paper focused on mechanical and experimental study on a freeze proof solar powered adsorption cooling tube. The following experimental results could be concluded: at the solar radiation value between 15.3 and 17.1 MJ m -2 , the highest adsorbent bed temperature is below 110 deg. C. The freeze proof solar cooling tube's cooling capacity was about 87-99 kJ, and the coefficient of performance (COP) was more than 0.11 when the evaporation temperature was about -4 deg. C

  15. In service experience feed back of the tore supra actively cooled inner first wall

    International Nuclear Information System (INIS)

    Schlosser, J.; Chappuis, P.; Chatelier, M.; Cordier, J.J.; Deschamps, P.; Garampon, L.; Guilhem, D.; Lipa, M.; Mitteau, R.

    1994-01-01

    Over 12000 plasma shots (some of them up to 8 MW of additional power and same as long as 60 s) have been achieved in TORE SUPRA (TS) with a significant number of them limited by thr inner first wall. This actively water cooled wall is covered with brazed graphite tiles. High power - high energy experiments have shown that a reliability of the graphite tile/heat sink joint and an accurate alignment of the wall are needed. This paper summarizes the experience gained with this component and developments in progress in order to improve the performance of such a inner first wall. (authors). 9 refs., 13 figs., 2 tabs

  16. In service experience feed back of the tore supra actively cooled inner first wall

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J; Chappuis, P; Chatelier, M; Cordier, J J; Deschamps, P; Garampon, L; Guilhem, D; Lipa, M; Mitteau, R

    1994-12-31

    Over 12000 plasma shots (some of them up to 8 MW of additional power and same as long as 60 s) have been achieved in TORE SUPRA (TS) with a significant number of them limited by thr inner first wall. This actively water cooled wall is covered with brazed graphite tiles. High power - high energy experiments have shown that a reliability of the graphite tile/heat sink joint and an accurate alignment of the wall are needed. This paper summarizes the experience gained with this component and developments in progress in order to improve the performance of such a inner first wall. (authors). 9 refs., 13 figs., 2 tabs.

  17. Experimental and Numerical Study of the Effects of Acoustic Sound Absorbers on the Cooling Performance of Thermally Active Building Systems

    DEFF Research Database (Denmark)

    Domínguez, L. Marcos; Kazanci, Ongun Berk; Rage, Nils

    2017-01-01

    Free-hanging horizontal and vertical sound absorbers are commonly used in buildings for room acoustic control; however, when these sound absorbers are used in combination with Thermally Active Building Systems, they will decrease the cooling performance of Thermally Active Building Systems...... and this will affect the thermal indoor environment in that space. Therefore, it is crucial to be able to quantify and model these effects in the design phase. This study quantifies experimentally the effects of horizontal and vertical free-hanging sound absorbers on the cooling performance of Thermally Active......%, respectively. With vertical sound absorbers, the decrease in cooling performance was 8%, 12%, and 14% for the corresponding cases, respectively. The numerical model predicted closely the cooling performance reduction, air temperatures and ceiling surface temperatures in most cases, while there were differences...

  18. Effect of the cooling suit method applied to individuals with multiple sclerosis on fatigue and activities of daily living.

    Science.gov (United States)

    Özkan Tuncay, Fatma; Mollaoğlu, Mukadder

    2017-12-01

    To determine the effects of cooling suit on fatigue and activities of daily living of individuals with multiple sclerosis. Fatigue is one of the most common symptoms in people with multiple sclerosis and adversely affects their activities of daily living. Studies evaluating fatigue associated with multiple sclerosis have reported that most of the fatigue cases are related to the increase in body temperature and that cooling therapy is effective in coping with fatigue. This study used a two sample, control group design. The study sample comprised 75 individuals who met the inclusion criteria. Data were collected with study forms. After the study data were collected, cooling suit treatment was administered to the experimental group. During home visits paid at the fourth and eighth weeks after the intervention, the aforementioned scales were re-administered to the participants in the experimental and control groups. The analyses performed demonstrated that the severity levels of fatigue experienced by the participants in the experimental group wearing cooling suit decreased. The experimental group also exhibited a significant improvement in the participants' levels of independence in activities of daily living. The cooling suit worn by individuals with multiple sclerosis was determined to significantly improve the participants' levels of fatigue and independence in activities of daily living. The cooling suit therapy was found to be an effective intervention for the debilitating fatigue suffered by many multiple sclerosis patients, thus significantly improving their level of independence in activities of daily living. © 2017 John Wiley & Sons Ltd.

  19. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    International Nuclear Information System (INIS)

    Grosman, A.

    2004-01-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m 2 of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m 2 TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  20. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m{sup 2} of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m{sup 2} TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  1. Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling

    Science.gov (United States)

    Chaudhary, V.; Ramanujan, R. V.

    2016-10-01

    Low cost, earth abundant, rare earth free magnetocaloric nanoparticles have attracted an enormous amount of attention for green, energy efficient, active near room temperature thermal management. Hence, we investigated the magnetocaloric properties of transition metal based (Fe70Ni30)100-xCrx (x = 1, 3, 5, 6 and 7) nanoparticles. The influence of Cr additions on the Curie temperature (TC) was studied. Only 5% of Cr can reduce the TC from ~438 K to 258 K. These alloys exhibit broad entropy v/s temperature curves, which is useful to enhance relative cooling power (RCP). For a field change of 5 T, the RCP for (Fe70Ni30)99Cr1 nanoparticles was found to be 548 J-kg-1. Tunable TCin broad range, good RCP, low cost, high corrosion resistance and earth abundance make these nanoparticles suitable for low-grade waste heat recovery as well as near room temperature active cooling applications.

  2. Manufacturing of reliable actively cooled fusion components - a challenge for non-destructive inspections

    International Nuclear Information System (INIS)

    Reheis, N.; Zabernig, A.; Ploechl, L.

    1994-01-01

    Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face the plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI

  3. Activation analysis of Chinese ITER helium cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Han Jingru; Chen Yixue; Ma Xubo; Wang Shouhai; Forrest, R.A.

    2009-01-01

    Based on the Chinese ITER helium cooled solid breeder(CH-HCSB) test blanket module (TBM) of the 3 x 6 sub-modules options, the activation characteristics of the TBM were calculated. Three-dimensional neutronic calculations were performed using the Monte-Carlo code MCNP and the nuclear data library FENDL/2. Furthermore, the activation calculations of HCSB-TBM were carried out with the European activation system EASY-2007. At shutdown the total activity is 1.29 x 10 16 Bq, and the total afterheat is 2.46 kW. They are both dominated by the Eurofer steel. The activity and afterheat are both in the safe range of TBM design, and will not have a great impact on the environment. Meanwhile,on basis of the calculated contact dose rate, the activated materials can be re-used following the remote handling recycling options. The activation results demonstrate that the current HCSB-TBM design can satisfy the ITER safety design requirements from the activation point of view. (authors)

  4. Cool diffusion flames of butane isomers activated by ozone in the counterflow

    KAUST Repository

    Alfazazi, Adamu; Al Omier, Abdullah Abdulaziz; Secco, Andrea; Selim, Hatem; Ju, Yiguang; Sarathy, Mani

    2018-01-01

    and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass

  5. Scaling model for prediction of radionuclide activity in cooling water using a regression triplet technique

    International Nuclear Information System (INIS)

    Silvia Dulanska; Lubomir Matel; Milan Meloun

    2010-01-01

    The decommissioning of the nuclear power plant (NPP) A1 Jaslovske Bohunice (Slovakia) is a complicated set of problems that is highly demanding both technically and financially. The basic goal of the decommissioning process is the total elimination of radioactive materials from the nuclear power plant area, and radwaste treatment to a form suitable for its safe disposal. The initial conditions of decommissioning also include elimination of the operational events, preparation and transport of the fuel from the plant territory, radiochemical and physical-chemical characterization of the radioactive wastes. One of the problems was and still is the processing of the liquid radioactive wastes. Such media is also the cooling water of the long-term storage of spent fuel. A suitable scaling model for predicting the activity of hard-to-detect radionuclides 239,240 Pu, 90 Sr and summary beta in cooling water using a regression triplet technique has been built using the regression triplet analysis and regression diagnostics. (author)

  6. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    International Nuclear Information System (INIS)

    Koski, J.A.; Keltner, N.R.; Nicolette, V.F.; Wix, S.D.

    1993-01-01

    In order to better measure local heat fluxes in open pool fires, an actively cooled calorimeter has been designed and analyzed. As this paper is being prepared, the calorimeter is in fabrication. Following fabrication, testing in a radiant heat facility is planned to assure proper performance before introduction into the pool fire environment. Initially, testing in the SMERF facility will assure reproducibility of tests by removing wind effects. As the program progresses, tests in open facilities, and with different geometries are anticipated. Experimental data from the initial tests will be compared continuously to the gray gas model, and as experiments proceed, the gray gas analytical model will be refined with the goal of improving finite element code analysis of shipping containers. (J.P.N.)

  7. Recent IAEA activities to support advanced water cooled reactor technology development

    International Nuclear Information System (INIS)

    Choi, J.-H.; Bilbao y Leon, S.; Rao, A.S.

    2009-01-01

    The International Atomic Energy Agency (IAEA) is the world's center of cooperation in the nuclear field. The IAEA works with its Member States and multiple partners worldwide to promote safe, secure and peaceful nuclear technologies. To catalyse innovation in nuclear power technology in Member States, the IAEA coordinates cooperative research, promotes information exchange, and analyses technical data and results, with a focus on reducing capital costs and construction periods while further improving performance, safety and proliferation resistance. This paper summarizes the recent major IAEA activities to support technology development for water cooled reactors, which is the most common type of reactor design at present and will probably still be in the near future. (author)

  8. Performance comparison between ethanol phase-change immersion and active water cooling for solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Wen, Chen; Huang, Qunwu; Kang, Xue; Chen, Miao; Wang, Huilin

    2017-01-01

    Highlights: • Thermal performances of ethanol phase-change immersion and active water cooling are compared. • Effects of operation parameters on ethanol phase-change immersion are studied. • Optimum filling ratio is 30% for ethanol phase-change immersion cooling system. • Exergy efficiency of ethanol phase-change immersion method increases by 57%. - Abstract: This paper presents an optimized ethanol phase-change immersion cooling method to obtain lower temperature of dense-array solar cells in high concentrating photovoltaic system. The thermal performances of this system were compared with a conventional active water cooling system with minichannels from the perspectives of start-up characteristic, temperature uniformity, thermal resistance and heat transfer coefficient. This paper also explored the influences of liquid filling ratio, absolute pressure and water flow rate on thermal performances. Dense-array LEDs were used to simulate heat power of solar cells worked under high concentration ratios. It can be observed that the optimal filling ratio was 30% in which the thermal resistance was 0.479 °C/W and the heat transfer coefficient was 9726.21 W/(m 2 ·°C). To quantify the quality of energy output of two cooling systems, exergy analysis are conducted and maximum exergy efficiencies were 17.70% and 11.27%, respectively. The experimental results represent an improvement towards thermal performances of ethanol phase-change immersion cooling system due to the reduction in contact thermal resistance. This study improves the operation control and applications for ethanol phase-change immersion cooling technology.

  9. Cool diffusion flames of butane isomers activated by ozone in the counterflow

    KAUST Repository

    Alfazazi, Adamu

    2018-02-02

    Ignition in low temperature combustion engines is governed by a coupling between low-temperature oxidation kinetics and diffusive transport. Therefore, a detailed understanding of the coupled effects of heat release, low-temperature oxidation chemistry, and molecular transport in cool flames is imperative to the advancement of new combustion concepts. This study provides an understanding of the low temperature cool flame behavior of butane isomers in the counterflow configuration through the addition of ozone. The initiation and extinction limits of butane isomers’ cool flames have been investigated under a variety of strain rates. Results revealed that, with ozone addition, establishment of butane cool diffusion flames was successful at low and moderate strain rates. iso-Butane has lower reactivity than n-butane, as shown by higher fuel mole fractions needed for cool flame initiation and lower extinction strain rate limits. Ozone addition showed a significant influence on the initiation and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass spectrometer. Numerical simulations were performed using a detailed chemical kinetic model and molecular transport to simulate the extinction limits of the cool diffusion flames of the tested fuels. The model qualitatively captured experimental trends for both fuels and ozone levels, but over-predicted extinction limits of the flames. Reactions involving low-temperature species predominantly govern extinction limits of cool flames. The simulations were used to understand the effects of methyl branching on the behavior of n-butane and iso-butane cool diffusion flames.

  10. Desensitization of menthol-activated cold receptors in lower extremities during local cooling in young women with a cold constitution.

    Science.gov (United States)

    Yamazaki, Fumio; Sone, Ryoko

    2017-03-01

    To test the hypothesis that topical menthol-induced reactivity of cold sensation and cutaneous vasoconstriction to local cooling is augmented in individuals with a cold constitution, we examined thermal sensation and cutaneous vasoconstrictor responses at menthol-treated and untreated sites in the legs during local skin cooling in young women complaining of chilliness (C group) and young women with no complaint as a normal control group (N group). During local skin cooling, the sensitivity to cold sensation was greater in the C group than in the N group. The application of menthol enhanced the cold sensation at a low temperature in the N group, but not in the C group. Cutaneous vasoconstrictor responses to local skin cooling were not altered by menthol treatment in either of the two groups. These findings suggest the desensitization of menthol-activated cold receptors in the legs of C group subjects, and a minor role of cold receptor activity in cutaneous vasoconstrictor response to local cooling.

  11. Baicalein Rescues Delayed Cooling via Preservation of Akt Activation and Akt-Mediated Phospholamban Phosphorylation

    Directory of Open Access Journals (Sweden)

    Zuohui Shao

    2018-03-01

    Full Text Available Cooling reduces the ischemia/reperfusion (I/R injury seen in sudden cardiac arrest (SCA by decreasing the burst of reactive oxygen species (ROS. Its cardioprotection is diminished when delay in reaching the target temperature occurs. Baicalein, a flavonoid derived from the root of Scutellaria baicalensis Georgi, possesses antioxidant properties. Therefore, we hypothesized that baicalein can rescue cooling cardioprotection when cooling is delayed. Two murine cardiomyocyte models, an I/R model (90 min ischemia/3 h reperfusion and stunning model (30 min ischemia/90 min reperfusion, were used to assess cell survival and contractility, respectively. Cooling (32 °C was initiated either during ischemia or during reperfusion. Cell viability and ROS generation were measured. Cell contractility was evaluated by real-time phase-contrast imaging. Our results showed that cooling reduced cell death and ROS generation, and this effect was diminished when cooling was delayed. Baicalein (25 µM, given either at the start of reperfusion or start of cooling, resulted in a comparable reduction of cell death and ROS production. Baicalein improved phospholamban phosphorylation, contractility recovery, and cell survival. These effects were Akt-dependent. In addition, no synergistic effect was observed with the combined treatments of cooling and baicalein. Our data suggest that baicalein may serve as a novel adjunct therapeutic strategy for SCA resuscitation.

  12. Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling.

    Science.gov (United States)

    Vetter, Irina; Touska, Filip; Hess, Andreas; Hinsbey, Rachel; Sattler, Simon; Lampert, Angelika; Sergejeva, Marina; Sharov, Anastasia; Collins, Lindon S; Eberhardt, Mirjam; Engel, Matthias; Cabot, Peter J; Wood, John N; Vlachová, Viktorie; Reeh, Peter W; Lewis, Richard J; Zimmermann, Katharina

    2012-10-03

    Ciguatoxins are sodium channel activator toxins that cause ciguatera, the most common form of ichthyosarcotoxism, which presents with peripheral sensory disturbances, including the pathognomonic symptom of cold allodynia which is characterized by intense stabbing and burning pain in response to mild cooling. We show that intraplantar injection of P-CTX-1 elicits cold allodynia in mice by targeting specific unmyelinated and myelinated primary sensory neurons. These include both tetrodotoxin-resistant, TRPA1-expressing peptidergic C-fibres and tetrodotoxin-sensitive A-fibres. P-CTX-1 does not directly open heterologously expressed TRPA1, but when co-expressed with Na(v) channels, sodium channel activation by P-CTX-1 is sufficient to drive TRPA1-dependent calcium influx that is responsible for the development of cold allodynia, as evidenced by a large reduction of excitatory effect of P-CTX-1 on TRPA1-deficient nociceptive C-fibres and of ciguatoxin-induced cold allodynia in TRPA1-null mutant mice. Functional MRI studies revealed that ciguatoxin-induced cold allodynia enhanced the BOLD (Blood Oxygenation Level Dependent) signal, an effect that was blunted in TRPA1-deficient mice, confirming an important role for TRPA1 in the pathogenesis of cold allodynia.

  13. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  14. Dynamic Heat Storage and Cooling Capacity of a Concrete Deck with PCM and Thermally Activated Building System

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    This paper presents a heat storage and cooling concept that utilizes a phase change material (PCM) and a thermally activated building system (TABS) implemented in a hollow core concrete deck. Numerical calculations of the dynamic heat storage capacity of the hollow core concrete deck element...... in the article highlight the potential of using TABS and PCM in a prefabricated concrete deck element....

  15. Activity in Very Cool Stars: Magnetic Dissipation in Late M and L Dwarf Atmospheres

    Science.gov (United States)

    Mohanty, Subhanjoy; Basri, Gibor; Shu, Frank; Allard, France; Chabrier, Gilles

    2002-05-01

    Recent observations show that chromospheric Hα activity in late M and L dwarfs is much lower than in the earlier M types. This is particularly surprising given that the late M and L dwarfs are comparatively very rapid rotators: in the early M dwarfs, rapid rotation is associated with high activity levels. One possibility is that the drop-off in activity in the late M and L dwarfs is a result of very high electrical resistivities in their dense, cool, and predominantly neutral atmospheres.We calculate the magnetic field diffusivity in the atmospheres of objects with Teff in the range 3000-1500 K (mid M to late L) using the atmospheric structure models of Allard and Hauschildt. We find that the combination of very low ionization fraction and high density in these atmospheres results in very large resistivities and thus efficient field diffusion. While both ambipolar diffusion and Ohmic decay of currents due to ion-electron collisions occur, the primary diffusion effects are due to current decay through collisions of charged particles with neutrals. Moreover, the latter resistivity is a strong function of both effective temperature and optical depth, increasing rapidly as either Teff or optical depth decreases. This has two implications: (1) Any magnetic field present is increasingly decoupled from atmospheric fluid motions as one moves from mid M to L. In the late M and L dwarfs, atmospheric motions cannot lead to equilibrium field configurations very different from potential ones. That is, the magnitude of magnetic stresses generated by atmospheric motions is very small in these objects. We quantify this effect by a simple Reynolds number calculation. (2) Even if magnetic stresses are easily produced by fluid motions in the hot interior (where the coupling between field and matter is good), their propagation up through the atmosphere will be increasingly hampered by the growing atmospheric resistivity as one moves from mid M to late L. Thus both the generation and

  16. Experimental study of the thermal characteristics of phase change slurries for active cooling

    International Nuclear Information System (INIS)

    Lu, W.; Tassou, S.A.

    2012-01-01

    Highlights: ► Tween 60 and hexadecanol can be employed to produce paraffin-in-water emulsions. ► Paraffin with longer carbon chain than the paraffin in the emulsion can act as nucleate agent to reduce supercooling. ► Increasing the quantity of paraffin increases the viscosity of the emulsion. ► Antifreeze and traces of thickener can cause a significant increase to the viscosity of the emulsion. ► Well prepared emulsions are stable with storage and thermal cycles. -- Abstract: Phase change materials (PCMs) are increasingly being used for thermal energy storage in buildings and industry to produce energy savings and reduce carbon dioxide emissions. PCM slurries are also being investigated for active thermal energy storage or as alternatives to conventional single phase fluids because they are pumpable and have advanced heat transport performance with phase change. The present study investigates several types of phase change materials for the preparation of PCM slurries which have potential for cooling applications. The thermophysical properties of paraffin in water emulsions, such as latent heat of fusion, melting and freezing temperature ranges, viscosity and the effect of surfactants, have been tested using appropriate experimental techniques. It has been identified that the use of small quantities of higher melting temperature paraffin and surfactants in the emulsion can reduce the effect of supercooling and increase the useful heat of fusion. However there are negative impacts on viscosity which should be considered in heat transport applications.

  17. CFC/Cu bond damage in actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Schlosser, J; Martin, E; Henninger, C; Boscary, J; Camus, G; Escourbiac, F; Leguillon, D; Missirlian, M; Mitteau, R

    2007-01-01

    Carbon fibre composite (CFC) armours have been successfully used for actively cooled plasma facing components (PFCs) of the Tore Supra (TS) tokamak. They were also selected for the divertor of the stellarator W7-X under construction and for the vertical target of the ITER divertor. In TS and W7-X a flat tile design for heat fluxes of 10 MW m -2 has been chosen. To predict the lifetime of such PFCs, it is necessary to analyse the damage mechanisms and to model the damage propagation when the component is exposed to thermal cycling loads. Work has been performed to identify a constitutive law for the CFC and parameters to model crack propagation from the edge singularity. The aim is to predict damage rates and to propose geometric or material improvements to increase the strength and the lifetime of the interfacial bond. For ITER a tube-in-tile concept (monoblock), designed to sustain heat fluxes up to 20 MW m -2 , has been developed. The optimization of the CFC/Cu bond, proposed for flat tiles, could be adopted for the monoblock concept

  18. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  19. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Science.gov (United States)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  20. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    International Nuclear Information System (INIS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-01-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load

  1. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  2. The Plasma Parameters and Geometry of Cool and Warm Active Region Loops

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Haixia; Li, Bo; Huang, Zhenghua; Xia, Lidong; Fu, Hui; Mou, Chaozhou [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, 264209 Shandong (China); Madjarska, Maria S.; Wiegelmann, Thomas [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077, Göttingen (Germany)

    2017-06-10

    How the solar corona is heated to high temperatures remains an unsolved mystery in solar physics. In the present study we analyze observations of 50 whole active region loops taken with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode satellite. Eleven loops were classified as cool loops (<1 MK) and 39 as warm loops (1–2 MK). We study their plasma parameters, such as densities, temperatures, filling factors, nonthermal velocities, and Doppler velocities. We combine spectroscopic analysis with linear force-free magnetic field extrapolation to derive the 3D structure and positioning of the loops, their lengths and heights, and the magnetic field strength along the loops. We use density-sensitive line pairs from Fe xii, Fe xiii, Si x, and Mg vii ions to obtain electron densities by taking special care of intensity background subtraction. The emission measure loci method is used to obtain the loop temperatures. We find that the loops are nearly isothermal along the line of sight. Their filling factors are between 8% and 89%. We also compare the observed parameters with the theoretical Rosner–Tucker–Vaiana (RTV) scaling law. We find that most of the loops are in an overpressure state relative to the RTV predictions. In a follow-up study, we will report a heating model of a parallel-cascade-based mechanism and will compare the model parameters with the loop plasma and structural parameters derived here.

  3. Spectroscopic measurements of lithium influx from an actively water-cooled liquid lithium limiter on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Apruzzese, G.M., E-mail: gerarda.apruzzese@enea.it; Apicella, M.L.; Maddaluno, G.; Mazzitelli, G.; Viola, B.

    2017-04-15

    Since 2006, experiments using a liquid lithium limiter (LLL) were successfully performed on FTU, pointing out the problem of the quantity of lithium in the plasma, especially in conditions of strong evaporation due to the high temperature of limiter surface. In order to avoid the strong evaporation it is necessary to control the temperature by removing the heat from the limiter during the plasma exposure. To explore this issue a new actively cooled lithium limiter (CLL) has been installed and tested in FTU. Suitable monitors to detect the presence of lithium in the plasma are the spectroscopic diagnostics in the visible range that permit to measure the flux of lithium, coming from the limiter surface, through the brightness of the LiI spectral lines. For this aim an Optical Multichannel Analyser (OMA) spectrometer and a single wavelength impurities monitor have been used. The analysis of the Li influx signals has permitted to monitor the effects of interaction between the plasma and the limiter connected to the thermal load. Particular attention has been paid on the possible occurrence of sudden rise of the signals, which is an index of a strong interaction that could lead to a disruption. On the other hand, the appearance of significant signals gives useful indication if the interaction with the plasma has taken place.

  4. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Richou, M; Loarer, T; Riccardi, B; Gavila, P; Constans, S

    2011-01-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m - 2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m - 2 for the CFC-armoured tiles and 15 MW m - 2 for the W-armoured tiles, respectively.

  5. Particle exhaust of helium plasmas with actively cooled outboard pump limiter on Tore Supra

    International Nuclear Information System (INIS)

    Uckan, T.; Mioduszewski, P.K.; Loarer, T.; Chatelier, M.; Guilhem, D.; Lutz, T.; Nygren, R.E.; Mahdavi, M.A.

    1995-08-01

    The superconducting tokamak Tore Supra was designed for long-pulse (30-s) high input power operation. Here observations on the particle-handling characteristics of the actively cooled modular outboard pump limiter (OPL) are presented for helium discharges. The important experimental result was that a modest pumping speed (1 m 3 /s) of the OPL turbomolecular pump (TMP) provided background helium exhaust. This result came about due to a well-conditioned vessel wall with helium discharges that caused no wall outgasing. The particle accountability in these helium discharges was excellent, and the well-conditioned wall did not play a significant role in the particle balance. The helium density control, 25% density drop with OPL exhaust efficiency of ∼1%, was possible with TMP although this may not be the case with reactive gases such as deuterium. The observed quadratic increase of the OPL neutral pressure with helium density was consistent with an improvement of the particle control with increasing plasma density

  6. Ozone Activated Cool Diffusion Flames of Butane Isomers in a Counterflow Facility

    KAUST Repository

    Al Omier, Abdullah Abdulaziz

    2017-01-01

    ignition engines (HCCI) have been developed. These new engines rely on the low temperature chemistry (LTC) combustion concept. A detailed investigation of the properties of cool flames, governed by LTC, is essential for the design of these new engines

  7. Active Control of Transverse Jets for Film Cooling Applications: A Limited Statement of Work

    National Research Council Canada - National Science Library

    Nikitopoulos, D. E

    2006-01-01

    .... A theoretical analysis was conducted and mechanisms that can play a defining role in film cooling control were identified on the basis of fundamental fluid-dynamics, prior experiments and preliminary...

  8. Tracing Of Scaling Elements In Secondary Cooling System Of GA Siwabessy Reactor By Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Lestari, Diyah Erlina

    2000-01-01

    Determination of content of chemical elements and scale formed in the secondary cooling water has been carried out by means of AAN method. The counting was performed using a gamma spectrometer equipped with high resolution HPGe gamma detector. Result of counting show the elements contained in the scale are: Na, Br, Fe, Ci, Mg and Co which are also found in the secondary cooling water. The main scaling element cannot yet be detected

  9. EFFECT OF ACTIVE COOLING AND α-2 ADRENOCEPTOR ANTAGONISM ON CORE TEMPERATURE IN ANESTHETIZED BROWN BEARS (URSUS ARCTOS).

    Science.gov (United States)

    Ozeki, Larissa Mourad; Caulkett, Nigel; Stenhouse, Gordon; Arnemo, Jon M; Fahlman, Åsa

    2015-06-01

    Hyperthermia is a common complication during anesthesia of bears, and it can be life threatening. The objective of this study was to evaluate the effectiveness of active cooling on core body temperature for treatment of hyperthermia in anesthetized brown bears (Ursus arctos). In addition, body temperature after reversal with atipamezole was also evaluated. Twenty-five adult and subadult brown bears were captured with a combination of zolazepam-tiletamine and xylazine or medetomidine. A core temperature capsule was inserted into the bears' stomach or 15 cm into their rectum or a combination of both. In six bears with gastric temperatures≥40.0°C, an active cooling protocol was performed, and the temperature change over 30 min was analyzed. The cooling protocol consisted of enemas with 2 L of water at approximately 5°C/100 kg of body weight every 10 min, 1 L of intravenous fluids at ambient temperature, water or snow on the paws or the inguinal area, intranasal oxygen supplementation, and removing the bear from direct sunlight or providing shade. Nine bears with body temperature>39.0°C that were not cooled served as control for the treated animals. Their body temperatures were recorded for 30 min, prior to administration of reversal. At the end of the anesthetic procedure, all bears received an intramuscular dose of atipamezole. In 10 bears, deep rectal temperature change over 30 min after administration of atipamezole was evaluated. The active cooling protocol used in hyperthermic bears significantly decreased their body temperatures within 10 min, and it produced a significantly greater decrease in their temperature than that recorded in the control group.

  10. Scientific feedback from high heat flux actively cooled PFCs development, realization and first results in Tore Supra

    International Nuclear Information System (INIS)

    Grosman, A.; Bayetti, P.; Brosset, C.; Bucalossi, J.; Cordier, J.J.; Durocher, A.; Escourbiac, F.; Ghendrih, Ph.; Guilhem, D.; Gunn, J.; Loarer, T.; Lipa, M.; Mitteau, R.; Pegourie, B.; Reichle, R.; Schlosser, J.; Tsitrone, E.; Vallet, J.C.

    2004-01-01

    The implementation of actively cooled high heat flux plasma facing components (PFCs) are one of the major ingredients required for operating the Tore Supra tokamak with very long pulses. A pioneering activity has been developed in this field from the very beginning of the device operation that is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW.m -2 of nominal convected heat flux. A technical feedback is given from the whole development up to the industrialization and focuses on a number of critical issues, such as bonding technology analysis, manufacture processes, repair processes, destructive and non destructive testing. The actual experience in Tore Supra allows to address the question of D retention on carbon walls. Redeposition on surfaces without plasma flux is suspected to cause the final 'burial' of about the injected gas during long discharges. (authors)

  11. Scientific feedback from high heat flux actively cooled PFCs development, realization and first results in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A.; Bayetti, P.; Brosset, C.; Bucalossi, J.; Cordier, J.J.; Durocher, A.; Escourbiac, F.; Ghendrih, Ph.; Guilhem, D.; Gunn, J.; Loarer, T.; Lipa, M.; Mitteau, R.; Pegourie, B.; Reichle, R.; Schlosser, J.; Tsitrone, E.; Vallet, J.C

    2004-07-01

    The implementation of actively cooled high heat flux plasma facing components (PFCs) are one of the major ingredients required for operating the Tore Supra tokamak with very long pulses. A pioneering activity has been developed in this field from the very beginning of the device operation that is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW.m{sup -2} of nominal convected heat flux. A technical feedback is given from the whole development up to the industrialization and focuses on a number of critical issues, such as bonding technology analysis, manufacture processes, repair processes, destructive and non destructive testing. The actual experience in Tore Supra allows to address the question of D retention on carbon walls. Redeposition on surfaces without plasma flux is suspected to cause the final 'burial' of about the injected gas during long discharges. (authors)

  12. Ozone Activated Cool Diffusion Flames of Butane Isomers in a Counterflow Facility

    KAUST Repository

    Al Omier, Abdullah Abdulaziz

    2017-04-01

    Proceeding from the aim to reduce global pollution emissions from the continuous burning of hydrocarbons stimulated by increasing energy demand, more efficient and ultra-low emissions’ combustion concepts such as the homogenous charge compression ignition engines (HCCI) have been developed. These new engines rely on the low temperature chemistry (LTC) combustion concept. A detailed investigation of the properties of cool flames, governed by LTC, is essential for the design of these new engines. The primary goal of this work was to build a fundamental counterflow experiment for cool flames studies in a diffusive system, to better understand combustion in LTC engines. The project was intended to provide a basic understanding of the low-temperature reactivity and cool flames properties of butane isomers under atmospheric pressure conditions. This was achieved by establishing self-sustaining cool flames through a novel technique of ozone addition to an oxygen stream in a non-premixed counterflow model. The ignition and extinction limits of butane isomers’ cool flames have been investigated under a variety of strain rates. Results revealed that establishment of cool flames are favored at lower strain rates. Iso-butane was less reactive than n-butane by showing higher ignition and extinction limits. Ozone addition showed a significant influence on cool flame ignition and sustenance; it was found that increasing ozone concentration in the oxidizer stream dramatically increased the reactivity of both fuels. Results showed increased fuel reactivity as the temperature of the fuel stream outlet increased. 4 A numerical analysis was performed to simulate ignition and extinction of the cool flame in diffusive systems. The results revealed that ignition and extinction limits of cool flames are predominantly governed by LTC. The model qualitatively captured experimental trends for both fuels; however, it overpredicted both ignition and extinction limits under all strain rates

  13. Modeling and simulation of an activated carbon–CO2 four bed based adsorption cooling system

    International Nuclear Information System (INIS)

    Jribi, Skander; Saha, Bidyut Baran; Koyama, Shigeru; Bentaher, Hatem

    2014-01-01

    Highlights: • A transient mathematical model of a 4-bed adsorption chiller is proposed. • The performances of the cyclic-steady-state system are presented for different heating and cooling water inlet temperatures. • The desorption pressure has a big influence in the performances. • With 80 kg of Maxsorb III, the CO 2 based adsorption chiller produces 2 kW of cooling power and presents a COP of 0.1. - Abstract: In this study, a transient mathematical model of a 4-bed adsorption chiller using Maxsorb III as the adsorbent and CO 2 as the refrigerant has been analyzed. The performances of the cyclic-steady-state system are presented for different heating and cooling water inlet temperatures. It is found that the desorption pressure has a big influence in the performances due to the low critical point of CO 2 (T c = 31 °C). With 80 kg of Maxsorb III, the CO 2 based adsorption chiller produces 2 kW of cooling power and presents a COP of 0.1, at driving heat source temperature of 95 °C along with a cooling temperature of 27 °C and at optimum desorption pressure of 79 bar. The present thermal compression air-conditioning system could be driven with solar energy or waste heat from internal combustion engines and therefore is suitable for both residential and mobile air-conditioning applications

  14. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  15. Behavior of Eurofer97 reduced activation martensitic steel upon heating and continuous cooling

    International Nuclear Information System (INIS)

    Danon, A.; Alamo, A.

    2002-01-01

    The phase transformation behavior of the Eurofer97 steel (Fe9Cr1WVTa) has been investigated. The transformation temperatures upon heating and cooling were determined by dilatometry for different rates in the range 0.0028-100 deg. C/s. The prior austenitic grain size of Eurofer97, measured as a function of the austenitization temperature, does not change appreciably up to 1050 deg. C and then increases with increasing austenite temperature from 1050 up to 1200 deg. C. Continuous cooling transformation diagrams were determined for the austenitization temperatures of 980, 1060 and 1140 deg. C. They show a well-known form with two main phase fields, martensite and ferrite. Values of the critical cooling rates and ferrite start temperatures depend on the austenitization temperature. After thermal cycles samples were further characterized by optical microscopy, scanning electron microscopy and thermoelectric power measurements

  16. MoXy fiber with active cooling cap for bovine prostate vaporization with high power 200W 532 nm laser

    Science.gov (United States)

    Peng, Steven Y.; Kang, Hyun Wook; Pirzadeh, Homa; Stinson, Douglas

    2011-03-01

    A novel MoXyTM fiber delivery device with Active Cooling Cap (ACCTM) is designed to transmit up to 180W of 532 nm laser light to treat benign prostatic hyperplasia (BPH). Under such high power tissue ablation, effective cooling is key to maintaining fiber power transmission and ensuring the reliability of the fiber delivery device To handle high power and reduce fiber degradation, the MoXy fiber features a larger core size (750 micrometer) and an internal fluid channel to ensure better cooling of the fiber tip to prevent the cap from burning, detaching, or shattering during the BPH treatment. The internal cooling channel was created with a metal cap and tubing that surrounds the optical fiber. In this study MoXy fibers were used to investigate the effect of power levels of 120 and 200 W on in-vitro bovine prostate ablation using a 532 nm XPSTM laser system. For procedures requiring more than 100 kJ, the MoXy fiber at 200W removed tissue at twice the rate of the current HPS fiber at 120W. The fiber maintained a constant tissue vaporization rate during the entire tissue ablation process. The coagulation at 200W was about 20% thicker than at 120W. In conclusion, the new fibers at 200W doubled the tissue removal rate, maintained vaporization efficiency throughout delivery of 400kJ energy, and induced similar coagulation to the existing HPS fiber at 120W.

  17. Thermo Active Building Systems Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2012-01-01

    Using the thermal storage capacity of the concrete slabs between each floor in multistory buildings to heat or cool is a trend that began in the early 1990s in Switzerland.1,2 Pipes carrying water for heating and cooling are embedded in the center of the concrete slab. In central Europe (Germany,......, Austria, Netherlands, etc.), this type of system has been installed in a significant number of new office buildings since the late 1990s. The trend is spreading to other parts of the world (the rest of Europe, North America and Asia)....

  18. Cool Sportswear

    Science.gov (United States)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  19. Control of pile power by measurement of the activity of the cooling fluid. The particular case of EL3

    International Nuclear Information System (INIS)

    Lalere, J.

    1959-01-01

    In a high flux pile the presence of local absorbers makes the power difficult to measure. In any case thermodynamic measurements are sometimes not very accurate. Another possible method could be the measurement of the cooling fluid activity. This has been tried on the heavy water circuit of EL3. In the first part of this report we give some qualitative indications of the various activities present in the heavy water in circulation. After this, the activity of the element chosen has been calculated. Finally, the results obtained from EL3 are given. (author) [fr

  20. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Directory of Open Access Journals (Sweden)

    Joshua H Daskin

    Full Text Available Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd, is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata. All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to

  1. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Science.gov (United States)

    Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid

  2. Cooling of the auditory cortex modifies neuronal activity in the inferior colliculus in rats

    Czech Academy of Sciences Publication Activity Database

    Popelář, Jiří; Šuta, Daniel; Lindovský, Jiří; Bureš, Zbyněk; Pysaněnko, Kateryna; Chumak, Tetyana; Syka, Josef

    2016-01-01

    Roč. 332, feb (2016), s. 7-16 ISSN 0378-5955 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP303/12/1347 Institutional support: RVO:68378041 Keywords : auditory cortex * cooling * cortical inactivation * efferent system Subject RIV: ED - Physiology Impact factor: 2.906, year: 2016

  3. Novel two-phase jet impingement heat sink for active cooling of electronic devices

    International Nuclear Information System (INIS)

    Oliveira, Pablo A. de; Barbosa, Jader R.

    2017-01-01

    Highlights: • Novel jet-based heat sink integrates the evaporator and the expansion device. • The system was tested with a small-scale oil-free R-134a compressor. • The thermodynamic performance of the cooling system was evaluated experimentally. • The single-jet maximum cooling capacity was 160 W, with a COP of 2.3 and a η 2nd of 8%. • Maximum heat transfer coefficient of 15 kW m −2 K −1 and surface temperature of 30 °C. - Abstract: This work presents a compact vapor compression cooling system equipped with a small-scale oil-free R-134a compressor and a jet-impingement-based heat sink that integrates the evaporator and the expansion device into a single unit. At the present stage of the development, a single orifice was used to generate the high-speed two-phase impinging jet on the heated surface. The effects of the compressor piston stroke, applied thermal load and orifice diameter on the system performance were quantified. The thermodynamic performance of the system was evaluated in terms of the temperature of the heated surface, impinging jet heat transfer coefficient, several system thermal resistances, coefficient of performance, second-law efficiency and second-law ratio. The coefficient of performance of the new refrigeration system increased with the cooling capacity, justifying its application in the removal of large thermal loads. The maximum system cooling capacity with a single jet was approximately 160 W, which was achieved with an orifice diameter of 500 μm and operation at a full compressor piston stroke. This condition corresponded to a COP of 2.3, a second-law efficiency of 8.0%, a jet impingement heat transfer coefficient above 15 kW m −2 K −1 and a heater surface temperature of approximately 30 °C.

  4. HHF test with 80x80x1 Be/Cu/SS Mock-ups for verifying the joining technology of the ITER blanket First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Bae, Young Dug; Kim, Suk Kwon; Hong, Bong Guen; Jeong, Yong Hwan; Park, Jeong Yong; Choi, Byung Kwon; Jung, Hyun Kyu

    2008-11-15

    Through the fabrication of the Cu/SS and Be/Cu joint specimens, fabrication procedure such as material preparation, canning, degassing, HIP (Hot Isostatic Pressing), PHHT (Post HIP heat treatment) was established. The HIP conditions (1050 .deg. C, 100 MPa 2 hr for Cu/SS, 580 .deg. C 100 MPa 2 hr for Be/Cu) were developed through the investigation on joint specimen fabricated with the various HIP conditions; the destructive tests of joint include the microstructure observation of the interface with the examination of the elemental distribution, tension test, bend test, Charpy impact test and fracture toughness test. However, since the joint should be tested under the High Heat Flux (HHF) conditions like the ITER operation for verifying its joint integrity, several HHF tests were performed like the previous HHF test with the Cu/SS, Be/Cu, Be/Cu/SS Mock-ups. In the present study, the HHF test with Be/Cu/SS Mock-ups, which have 80 mm x 80 mm single Be tile and each material depths were kept to be the same as the ITER blanket FW. The Mock-ups fabricated with three kinds of interlayers such as Cr/Ti/Cu, Ti/Cr/Cu, Ti/Cu, which were different from the developed interlayer (Cr/Cu), total 6 Mock-ups were fabricated. Preliminary analysis were performed to decide the test conditions; they were tested with up to 2.5 MW/m2 of heat fluxes and 20 cycles for each Mock-up in a given heat flux. They were tested with JUDITH-1 at FZJ in Germany. During tests, all Mock-ups showed delamination or full detachment of Be tile and it can be concluded that the joints with these interlayers have a bad joining but it can be used as a good data for developing the Be/Cu joint with HIP.

  5. Modelling of steady state erosion of CFC actively water-cooled mock-up for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V. [Departement de Recherches sur la Fusion Controlee, Association Euratom-CEA, CEA-Cadarache, F-13108 Saint Paul Lez Durance cedex (France)], E-mail: igra32@rambler.ru

    2008-04-15

    Calculations of the physical and chemical erosion of CFC (carbon fibre composite) monoblocks as outer vertical target of the ITER divertor during normal operation regimes have been done. Off-normal events and ELM's are not considered here. For a set of components under thermal and particles loads at glancing incident angle, variations in the material properties and/or assembly of defects could result in different erosion of actively-cooled components and, thus, in temperature instabilities. Operation regimes where the temperature instability takes place are investigated. It is shown that the temperature and erosion instabilities, probably, are not a critical point for the present design of ITER vertical target if a realistic variation of material properties is assumed, namely, the difference in the thermal conductivities of the neighbouring monoblocks is 20% and the maximum allowable size of a defect between CFC armour and cooling tube is +/-90{sup o} in circumferential direction from the apex.

  6. Modelling of steady state erosion of CFC actively water-cooled mock-up for the ITER divertor

    Science.gov (United States)

    Ogorodnikova, O. V.

    2008-04-01

    Calculations of the physical and chemical erosion of CFC (carbon fibre composite) monoblocks as outer vertical target of the ITER divertor during normal operation regimes have been done. Off-normal events and ELM's are not considered here. For a set of components under thermal and particles loads at glancing incident angle, variations in the material properties and/or assembly of defects could result in different erosion of actively-cooled components and, thus, in temperature instabilities. Operation regimes where the temperature instability takes place are investigated. It is shown that the temperature and erosion instabilities, probably, are not a critical point for the present design of ITER vertical target if a realistic variation of material properties is assumed, namely, the difference in the thermal conductivities of the neighbouring monoblocks is 20% and the maximum allowable size of a defect between CFC armour and cooling tube is +/-90° in circumferential direction from the apex.

  7. Active cooling of an audio-frequency electrical resonator to microkelvin temperatures

    Science.gov (United States)

    Vinante, A.; Bonaldi, M.; Mezzena, R.; Falferi, P.

    2010-11-01

    We have cooled a macroscopic LC electrical resonator using feedback-cooling combined with an ultrasensitive dc Superconducting Quantum Interference Device (SQUID) current amplifier. The resonator, with resonance frequency of 11.5 kHz and bath temperature of 135 mK, is operated in the high coupling limit so that the SQUID back-action noise overcomes the intrinsic resonator thermal noise. The effect of correlations between the amplifier noise sources clearly show up in the experimental data, as well as the interplay of the amplifier noise with the resonator thermal noise. The lowest temperature achieved by feedback is 14 μK, corresponding to 26 resonator photons, and approaches the limit imposed by the noise energy of the SQUID amplifier.

  8. Circulating and plateout activity program for gas-cooled reactors with arbitrary radioactive chains

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.

    1978-03-01

    A time-dependent method for estimating the fuel body, circulating, plateout, and filter inventory of a high temperature gas-cooled reactor (HTGR) during normal operation is discussed. The primary coolant model accounts for the source, buildup, decay, and cleanup of isotopes that are gas borne inside the prestressed concrete reactor vessel (PCRV). This method has been implemented in the SUVIUS computer program that is described in detail

  9. Fuel element replacement and cooling water activity at the musashi reactor

    International Nuclear Information System (INIS)

    Nozaki, Tetsuya; Honda, Teruyuki; Horiuchi, Norikazu; Aizawa, Otohiko; Sato, Tadashi

    1989-01-01

    The Musashi Institute of Technology Research Reactor (TRIGA 11, 100 kW) has been operated without serious problems since 1963. However, because there is no more spare fuel element, it was necessary to decide how to solve the problem. In the end, it was decided to obtain many stainless steel-clad fuel elements and operate with those fuel elements only, under the auspices of the Ministry of Education, Science and Culture. The bulk shielding experimental pool was remodeled as the storage for spent fuel elements, where the neutrons from the thermalizing column were shielded with cadmium and boron polyethylene plates. The equipment for transferring spent fuel elements was built and temporarily set up between the core tank and the new storage. These works were started in 1983, and finished in 1985. After the reactor was restarted, the count rate of the conventional cooling water monitor which was set in the cooling system using a GM counter drastically decreased. The spent fuel storage, the equipment and the works for fuel transfer, and the radioactivity of cooling water are reported. (K.I.)

  10. PCCE-A Predictive Code for Calorimetric Estimates in actively cooled components affected by pulsed power loads

    International Nuclear Information System (INIS)

    Agostinetti, P.; Palma, M. Dalla; Fantini, F.; Fellin, F.; Pasqualotto, R.

    2011-01-01

    The analytical interpretative models for calorimetric measurements currently available in the literature can consider close systems in steady-state and transient conditions, or open systems but only in steady-state conditions. The PCCE code (Predictive Code for Calorimetric Estimations), here presented, introduces some novelties. In fact, it can simulate with an analytical approach both the heated component and the cooling circuit, evaluating the heat fluxes due to conductive and convective processes both in steady-state and transient conditions. The main goal of this code is to model heating and cooling processes in actively cooled components of fusion experiments affected by high pulsed power loads, that are not easily analyzed with purely numerical approaches (like Finite Element Method or Computational Fluid Dynamics). A dedicated mathematical formulation, based on concentrated parameters, has been developed and is here described in detail. After a comparison and benchmark with the ANSYS commercial code, the PCCE code is applied to predict the calorimetric parameters in simple scenarios of the SPIDER experiment.

  11. Experimental and computational fluid dynamics analysis of a photovoltaic/thermal system with active cooling using aluminum fins

    Science.gov (United States)

    Ömeroǧlu, Gökhan

    2017-10-01

    Being the most widespread renewable energy generation system, photovoltaic (PV) systems face major problems, overheating and low overall conversion efficiency. The electrical efficiency of PV systems is adversely affected by significant increases in cell temperature upon exposure to solar irradiation. There have been several ways to remove excess heat and cool down the PV to maintain efficiency at fair levels. A hybrid photovoltaic/thermal system cooled by forced air circulation blown by a PV-powered fan was set up, and a rectangular control volume with cylindrical ends was built at the back of the PV panel where aluminum fins were placed in different arrangements and numbers. During the experiments, temperature and electrical output parameters were measured for three different air velocities (3.3, 3.9, and 4.5 m/s) and two different fin numbers and arrangements (54 pcs shifted and 108 pcs inline) under a constant radiation value of 1350 W/m2. While the electrical efficiency of the panel was reduced by almost 50% and decreased from 12% to 6.8% without active cooling, at 4.5-m/s air velocity and with 108 fins in inline arrangement, the electrical efficiency could be maintained at 11.5%. To compare and verify the experimental results, a heat transfer simulation model was developed with the ANSYS Fluent, and a good fit between the simulation and the test results was obtained.

  12. A Thermal Physiological Comparison of Two HazMat Protective Ensembles With and Without Active Convective Cooling

    Science.gov (United States)

    Williamson, Rebecca; Carbo, Jorge; Luna, Bernadette; Webbon, Bruce W.

    1998-01-01

    Wearing impermeable garments for hazardous materials clean up can often present a health and safety problem for the wearer. Even short duration clean up activities can produce heat stress injuries in hazardous materials workers. It was hypothesized that an internal cooling system might increase worker productivity and decrease likelihood of heat stress injuries in typical HazMat operations. Two HazMat protective ensembles were compared during treadmill exercise. The different ensembles were created using two different suits: a Trelleborg VPS suit representative of current HazMat suits and a prototype suit developed by NASA engineers. The two life support systems used were a current technology Interspiro Spirolite breathing apparatus and a liquid air breathing system that also provided convective cooling. Twelve local members of a HazMat team served as test subjects. They were fully instrumented to allow a complete physiological comparison of their thermal responses to the different ensembles. Results showed that cooling from the liquid air system significantly decreased thermal stress. The results of the subjective evaluations of new design features in the prototype suit were also highly favorable. Incorporation of these new design features could lead to significant operational advantages in the future.

  13. Magnetic field topology of the cool, active, short-period binary system σ2 Coronae Borealis

    Science.gov (United States)

    Rosén, L.; Kochukhov, O.; Alecian, E.; Neiner, C.; Morin, J.; Wade, G. A.; BinaMIcS Collaboration

    2018-06-01

    Aims: The goal of this work is to study the cool, active binary star σ2 CrB, focussing on its magnetic field. The two F9-G0 components of this system are tidally locked and in a close orbit, increasing the chance of interaction between their magnetospheres. Methods: We used Stokes IV data from the twin spectropolarimeters Narval at the TBL and ESPaDOnS at the CFHT. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a new binary Zeeman-Doppler imaging code to reconstruct simultaneously the magnetic topology and brightness distribution of both components of σ2 CrB. This analysis was carried out for two observational epochs in 2014 and 2017. Results: A previously unconfirmed magnetic field of the primary star has been securely detected. At the same time, the polarisation signatures of the secondary appear to have a systematically larger amplitude than that of the primary. This corresponds to a stronger magnetic field, for which the magnetic energy of the secondary exceeds that of the primary by a factor of 3.3-5.7. While the magnetic energy is similar for the secondary star in the two epochs, the magnetic energy is about twice as high in 2017 for the primary. The magnetic field topology of the two stars in the earlier epoch (2014) is very different. The fractions of energy in the dipole and quadrupole components of the secondary are similar and thereafter decrease with increasing harmonic angular degree ℓ. At the same time, for the primary the fraction of energy in the dipole component is low and the maximum energy contribution comes from ℓ = 4. However, in the 2017 epoch both stars have similar field topologies and a systematically decreasing energy with increasing ℓ. In the earlier epoch, the magnetic field at the visible pole appears to be of opposite polarity for the primary and secondary, suggesting linked magnetospheres. The apparent rotational periods of both σ2 Cr

  14. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA

    International Nuclear Information System (INIS)

    Liu Heping; Blanken, Peter D; Weidinger, Tamas; Nordbo, Annika; Vesala, Timo

    2011-01-01

    Understanding seasonal variations in the evaporation of inland waters (e.g., lakes and reservoirs) is important for water resource management as well as the prediction of the hydrological cycles in response to climate change. We analyzed eddy covariance-based evaporation measurements from the Ross Barnett Reservoir (32 deg. 26'N, 90 0 02'W; which is always ice-free) in central Mississippi during the cool months (i.e., September-March) of 2007 and 2008, and found that the variability in cold front activities (i.e., passages of cold fronts and cold/dry air masses behind cold fronts) played an important role in modulating the exchange of sensible (H) and latent (λE) heat fluxes. Our analysis showed that 2007's warmer cool season had smaller mean H and λE than 2008's cooler cool season. This implies that the warmer cool season did not accelerate evaporation and heat exchange between the water surface and the atmosphere. Instead, more frequent cold fronts and longer periods of cold/dry air masses behind the cold fronts in 2008 resulted in overall larger H and λE as compared with 2007, this primarily taking the form of sporadic short-term rapid 'pulses' of H and λE losses from the water's surface. These results suggest that future climate-induced changes in frequency of cold fronts and the meteorological properties of the air masses behind cold fronts (e.g., wind speeds, temperature, and humidity), rather than other factors of climate change, would produce significant variations in the water surface's energy fluxes and subsequent evaporation rates.

  15. Application of CATE 2.0 code on evaluating activated corrosion products in a PWR cooling loop

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingyu; Li, Lu; Chen, Yixue [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering

    2017-03-15

    In PWR plants, most Occupational Radiation Exposure (ORE) for personnel results from Activated Corrosion Products (ACPs) in the cooling loop. In order to evaluate the ACPs in the cooling loop, a three-region transport model is built up based on the theory of driving force from the concentration difference in CATE 2.0 code. In order to analyze the nuclide composition of ACPs, the EAF-2007 nuclear database is embedded in CATE 2.0. The case of MIT PCCL test loop is simulated to test the availability of CATE 2.0 on PWR ACPs evaluation, and the activity of Co-58 and Co-60 after operation for 42 days calculated by CATE 2.0 is consistent with that from the code CRUDSIM adopted by MIT. Then, the nuclide composition of ACPs is analyzed in detail respectively for operation of 42 days and 12 months using CATE 2.0. The results show that the short-lived nuclides contribute a majority of the activity in the regions of in-flux wall and coolant, while the long-lived nuclides contribute most of the activity in the region of out-flux wall.

  16. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  17. Activation calculations for dismantling - The feedback of a 7 years experience in activation calculations for graphite gas cooled reactors in France

    International Nuclear Information System (INIS)

    Eid, M.; Nimal, J.C.; Gerat, L.M.

    1994-01-01

    This is a revision of the past seven years experience in activation calculations for dismantling. It aims at evaluating the experience and at making better understanding to help in decision making during the following phases. Five gas cooled reactors are shutdown and are waiting for the EDF (Electricite De France) dismantling decision. The sixth (BUGEY1) will be shutdown by 1994 and will be waiting a dismantling decision as well. (authors). 3 figs., 3 tabs

  18. LOFC fission product release and circulating activity calculations for gas-cooled reactors

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.; Carruthers, L.M.; Lee, C.E.

    1977-01-01

    The inventories of fission products in a gas-cooled reactor under accident and normal steady state conditions are time and temperature dependent. To obtain a reasonable estimate of these inventories it is necessary to consider fuel failure, a temperature dependent variable, and radioactive decay, a time dependent variable. Using arbitrary radioactive decay chains and published fuel failure models for the High Temperature Gas-Cooled Reactor (HTGR), methods have been developed to evaluate the release of fission products during the Loss of Forced Circulation (LOFC) accident and the circulating and plateout fission product inventories during steady state non-accident operation. The LARC-2 model presented here neglects the time delays in the release from the HTGR due to diffusion of fission products from particles in the fuel rod through the graphite matrix. It also neglects the adsorption and evaporation process of metallics at the fuel rod-graphite and graphite-coolant hole interfaces. Any time delay due to the finite time of transport of fission products by convection through the coolant to the outside of the prestressed concrete reactor vessel (PCRV) is also neglected. This model assumes that all fission products released from fuel particles are immediately deposited outside the PCRV with no time delay

  19. Physics basis and mechanical design of the actively cooled duct scraper protection for the JET neutral beam enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.J. [UKAEA Fusion/Euratom Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)], E-mail: dwilson@jet.uk; Ciric, D.; Cox, S.J.; Jones, T.T.C.; Kovari, M. [UKAEA Fusion/Euratom Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Li Puma, A. [Association EURATOM-CEA, CEA-Cadarache, 13108 St. Paul-Lez-Durance (France); Martin, D.; Milnes, J.; Shannon, M.; Surrey, E. [UKAEA Fusion/Euratom Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2007-10-15

    The objectives of the JET neutral beam enhancement (NBE) include raising the delivered power from the present 25 MW to more than 34 MW and increasing the pulse length from 10 to 20 s. The additional power will be obtained partly by increasing the fractional energy components of the beam, resulting from acceleration of molecular ions, hence increasing the total particle flux. These changes place extreme demands on the design of the upgraded protection to the torus entry duct. The present inertial duct protection already reaches its thermomechanical limit in 10 s pulses, and active cooling of the upgraded duct protection is therefore essential. Extensive analysis of the pressure and temperature evolution in the present un-cooled duct established the relationship between gas re-emission and surface temperature for copper in this operating environment. This information was used in an integrated physics and engineering approach to the design of the actively cooled duct protection, taking into account the power loads from direct beam interception and re-ionisation. Surface temperature determines power density through the gas re-emission and consequential beam re-ionisation. These considerations define the normal operating point for the chosen enhanced hypervapotron element technology. This approach demonstrated that supplementary in situ duct cryopumping would not be needed, provided that the required heat-transfer performance could be met without any encroachment of the elements beyond the space envelope of the existing inertial duct protection plates. This requirement posed severe constraints on the mechanical design of the hypervapotron element array and its manifolding; the adopted engineering design solutions are presented.

  20. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  1. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  2. Study of the photocatalytic activity and cool characteristics of a novel palette of pigments

    International Nuclear Information System (INIS)

    Gargori García, C.; Cerro Lloria, S.; Fas Argamasilla, N.; Llusar Vicent, M.; Monrós Tomás, G.

    2017-01-01

    Optimized compositions of a four-color CMYK plus a green pigment have been prepared by the ceramic method: cobalt doping in Celsian (Ba0,9Co0,1)Al2Si2O8 (cyan), chromium in armalcolite (MgFe)(Cr0,2Ti2,8Fe)O10 (magenta), nickel in geikielite (Mg0,5Ni0,5)TiO3 (yellow), the perovskite CrNdO3 (green) and the same perovskite mineralized with alkaline earth fluorides (BaF2 and MgF2) (black). Both pigment powder and glazed sample in a conventional double firing frit (1050°C) have been characterized with respect to its colorimetric performance by the model CIEL*a*b*, its cooling capacity (as cool pigments) by the measurement of the solar reflection index SRI and its photocatalytic capacity by means of the OrangeII degradation test. The obtained results are compared with those obtained with commercial pigments of the CMY family of the zircon. The results indicate that the coloration of the powders and the enamelled samples is more intense, with L* values lower than the zircon homologous pigments, whereas the obtained chroma with the pigments of the zircon is better (b* negative for cyan, a* positive for magenta and b* positive for yellow). Regarding its cooling capacity, the results indicate high SRI values for all samples. In the case of Celsian SRI is higher than for vanadium-zircon, the green of perovskite slightly exceeds the eskolaite Cr2O3 value that is taken as reference. In the case of the black perovskite, very low SRI values are measured (SRI=0 in the case of powder) and associated with high middle-infrared emissivity values, making it interesting as a pigment for absorbent substrates in solar collectors. The photocatalytic capacity over OrangeII indicates half-life values around 55-70minutes, lower than those measured in zircons (110-190minutes). [es

  3. Physiological and Perceived Effects of Forearm or Head Cooling During Simulated Firefighting Activity and Rehabilitation

    Science.gov (United States)

    Yeargin, Susan; McKenzie, Amy L.; Eberman, Lindsey E.; Kingsley, J. Derek; Dziedzicki, David J.; Yoder, Patrick

    2016-01-01

    Context: Cooling devices aim to protect firefighters by attenuating a rise in body temperature. Devices for head cooling (HC) while firefighting and forearm cooling (FC) during rehabilitation (RHB) intervals are commonly marketed, but research regarding their efficacy is limited. Objective: To investigate the physiological and perceived effects of HC and FC during firefighting drills and RHB. Design: Randomized controlled clinical trial. Setting: Firefighter training center. Patients or Other Participants: Twenty-seven male career firefighters (age = 39 ± 7 years; height = 169 ± 7 cm; weight = 95.4 ± 16.8 kg). Intervention(s): Firefighters were randomly assigned to 1 condition: HC (n = 9), in which participants completed drills wearing a cold gel pack inside their helmet; FC (n = 8), in which participants sat on a collapsible chair with water-immersion arm troughs during RHB; or control (n = 10), in which participants used no cooling devices. Firefighters completed four 15-minute drills (D1−D4) wearing full bunker gear and breathing apparatus. Participants had a 15-min RHB after D2 (RHB1) and D4 (RHB2). Main Outcome Measure(s): Change (Δ) in gastrointestinal temperature (TGI), heart rate (HR), physiological strain index, and perceived thermal sensation. Results: The TGI increased similarly in the HC and control groups, respectively (D1: 0.57°C ± 0.41°C, 0.73°C ± 0.30°C; D2: 0.92°C ± 0.28°C, 0.85°C ± 0.27°C; D3: −0.37°C ± 0.34°C, −0.01°C ± 0.72°C; D4: 0.25°C ± 0.42°C, 0.57°C ± 0.26°C; P > .05). The ΔHR, Δ physiological strain index, and Δ thermal sensation were similar between the HC and control groups during drills (P > .05). The FC group demonstrated a decreased TGI compared with the control group after RHB1 (−1.61°C ± 0.35°C versus −0.23°C ± 0.34°C; P .05). Conclusions: The HC did not attenuate rises in physiological or perceptual variables during firefighting drills. The FC effectively reduced TGI and the

  4. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  5. Faithful state transfer between two-level systems via an actively cooled finite-temperature cavity

    Science.gov (United States)

    Sárkány, Lőrinc; Fortágh, József; Petrosyan, David

    2018-03-01

    We consider state transfer between two qubits—effective two-level systems represented by Rydberg atoms—via a common mode of a microwave cavity at finite temperature. We find that when both qubits have the same coupling strength to the cavity field, at large enough detuning from the cavity mode frequency, quantum interference between the transition paths makes the swap of the excitation between the qubits largely insensitive to the number of thermal photons in the cavity. When, however, the coupling strengths are different, the photon-number-dependent differential Stark shift of the transition frequencies precludes efficient transfer. Nevertheless, using an auxiliary cooling system to continuously extract the cavity photons, we can still achieve a high-fidelity state transfer between the qubits.

  6. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat gains......: overheating has been observed due to the absence of solar shading and the limited cooling capacity of the terminals. No local discomfort has been observed although some segments of the thermal manikin were slightly colder....

  7. Assessing braze quality in the actively cooled Tore Supra phase III outboard pump limiter

    International Nuclear Information System (INIS)

    Hygren, R.; Lutz, T.; Miller, J.

    1994-01-01

    This paper discusses the assessment of quality of brazing of pyrolytic graphite (PG) armor brazed to copper tubes in Tore Supra's Phase III Outboard Pump Limiter (OPL). The limiter head is a bank of 14 water-cooled copper tubes with several hundred brazed PG tiles. Braze quality was first assessed through pre-service qualification testing of individual copper/tiles assemblies. The quality of brazes was evaluated using (non-destructive) transient heating (open-quotes hot waterclose quotes) tests performed in the high temperature, high pressure flow loop at Sandia's Plasma Materials Test Facility. The surface temperatures of tiles were monitored with an infra-red (IR) camera as water at 120 degrees C water at about 2.07 MPa (300 psi) passed through a tube assembly initially at 30 degrees C. For tiles with braze voids or cracks, the surface temperatures lagged behind those of adjacent well bonded tiles. Temperature lags were correlated with flaw sizes observed during repairs using a detailed 2-D heat transfer analyses. open-quotes Badclose quotes tiles, i.e., temperature lags of 10-20 degrees C depending upon tile's size, were easy to detect and, when removed, revealed braze voids of roughly 50% of the joint area. 11 of the 14 tubes were rebrazed after bad tiles were detected and removed. Three tubes were re-brazed twice

  8. Improving activity transport models for water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  9. The research activities on in-tube condensation in the presence of noncondensables for passive cooling applications

    International Nuclear Information System (INIS)

    Tanrikut, A.

    1996-01-01

    The introduction of nuclear power becomes an attractive solution to the problem of increasing demand for electricity power capacity in Turkey. Thus, Turkey is willing to follow the technological development trends in advanced reactor systems and to participate in joint research studies. The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such a validation program is also important for the assessment of advanced computer codes which are currently used for design and licensing procedures. The condensation mode of heat transfer plays an important role for the passive heat removal applications in the current nuclear power plants (e.g. decay heat removal via steam generators in case of loss of heat removal system) and advanced water-cooled reactor systems. But is well established that the presence of noncondensable gases can greatly inhibit the condensation process due to the build-up of noncondensable gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of noncondensable. This paper describes the research activities at the Turkish Atomic Energy Authority concerning condensation in the presence of air, as a noncondensable gas. (author). 9 refs, 6 figs

  10. Manufacturing and testing of actively cooled test limiters for TEXTOR made of the brazed joint SEPCARB-N11/TZM

    International Nuclear Information System (INIS)

    Hohenauer, W.; Bolt, H.; Koppitz, T.; Linke, J.; Lison, R.; You, J.H.; Nickel, H.

    1998-01-01

    To investigate the erosion and redepositon phenomena of fusion-related materials under stationary conditions, actively cooled test limiters were developed for TEXTOR (Tokamak Experiment for Technology Orientated Research). They allow experiments under stationary conditions within the plasma pulse length of 10 s. Heat loads of typically 10 MW m<-2 are removed by pressurised water: volume flow is 10 m 3 h -1, pressure 15 bar and the minimum coefficient of heat transfer is about 75000 W m-2 K. Prototype limiters were built as brazed composites of a C/C material (SEPCARB-N11) and a TZM substrate. The samples were successfully tested in screening tests in the ion beam facility MARION (Material Research Ion Beam Test Facility) with hydrogen beams. Maximum heat loads of up to 22 MW m<-2 were applied without any failure of the cooling system. Steady state of the surface temperature was measured within 5 s. An advanced brazing technique enabled the joining of hemispherically shaped C/C shells to a TZM heat sink without failure. An optimised test limiter was tested in TEXTOR. Analytical and numerical models describing the effects of the heat load distribution, spatial temperatures and stresses were experimentally verified. (orig.)

  11. The research activities on in-tube condensation in the presence of noncondensables for passive cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanrikut, A [Turkish Atomic Energy Authority, Ankara (Turkey)

    1996-12-01

    The introduction of nuclear power becomes an attractive solution to the problem of increasing demand for electricity power capacity in Turkey. Thus, Turkey is willing to follow the technological development trends in advanced reactor systems and to participate in joint research studies. The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such a validation program is also important for the assessment of advanced computer codes which are currently used for design and licensing procedures. The condensation mode of heat transfer plays an important role for the passive heat removal applications in the current nuclear power plants (e.g. decay heat removal via steam generators in case of loss of heat removal system) and advanced water-cooled reactor systems. But is well established that the presence of noncondensable gases can greatly inhibit the condensation process due to the build-up of noncondensable gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of noncondensable. This paper describes the research activities at the Turkish Atomic Energy Authority concerning condensation in the presence of air, as a noncondensable gas. (author). 9 refs, 6 figs.

  12. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sabbah, Rami; Kizilel, R.; Selman, J.R.; Al-Hallaj, S. [Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W. 33rd Street, Chicago, IL 60616 (United States)

    2008-08-01

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power. (author)

  13. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    Science.gov (United States)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  14. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  15. Measurement of tritium activity in the aluminum pipe of JRR-2 heavy water primary cooling system using imaging plate

    International Nuclear Information System (INIS)

    Motoishi, Shoji; Kobayashi, Katsutoshi

    2000-12-01

    JRR-2 is the heavy water cooling type nuclear reactor, which has been operated for 36 years (1960-1976) and in the process of decommissioning at present. For this reason, evaluation of tritium quantity permeated into the pipe and apparatus of the primary coolant heavy water circulating system is important. In the Radioisotope Production Division, activity of tritium in aluminum pipe was measured with imaging plate (IP), liquid scintillation analyzer and high purity germanium detector (HPGe). After acrylic paints was applied for the region except for tritium contamination on the surface of aluminum pipe, only the oxidized contaminated part was dissolved by 1.5%(1.21M) HF for 3 minutes, and measured with IP. As a result, the tritium was found to permeate in the depth of 25 μm. Moreover, 90% of it was found to be distributed within 7 μm. (author)

  16. Research activities on high-temperature gas-cooled reactors (HTRs) in the 5. EURATOM RTD Framework programme

    International Nuclear Information System (INIS)

    Martin-Bermejo, J.; Hugon, M.; Van Goethem, G.

    2002-01-01

    One of the areas of research of the 'nuclear fission' key action of the 5. EURATOM RTD Framework Programme (FP5) is the safety and efficiency of future systems. The main objective of this area is to investigate and evaluate new or revisited concepts (both reactors and alternative fuels) for nuclear energy that offer potential longer term benefits in terms of cost, safety, waste management, use of fissile material, less risk of diversion and sustainability. Several projects related to high-temperature gas-cooled reactors (HTRs) were retained by the European Commission (EC) services. They address important issues such as HTR fuel technology, HTR fuel cycle, HTR materials, power conversion systems and licensing. Most of these projects have already started and are progressing according to the schedule. They are the initial core of activities of a European Network on 'High-temperature Reactor Technology' (HTR-TN) recently set up by 18 EU organisations. (authors)

  17. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Science.gov (United States)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  18. Influence of the irradiation time on the activity of decay products during the cooling. Case: Mo-98 → Mo-99 → Tc-99m

    International Nuclear Information System (INIS)

    Reyes J, J.L.; Ruiz C, M.A.; Alanis M, J.

    2002-01-01

    In this work the behavior of the activity in the cooling time of Mo-99, Tc-99 and Tc-99m obtained by Neutron activation of natural Mo is described. The analytical development is based on the application of the Laplace transform for resolving the balance equations. (Author)

  19. An improved age-activity relationship for cool stars older than a gigayear

    DEFF Research Database (Denmark)

    Booth, R. S.; Poppenhaeger, K.; Watson, C. A.

    2017-01-01

    Stars with convective envelopes display magnetic activity, which decreases over time due to the magnetic braking of the star. This age dependence of magnetic activity is well studied for younger stars, but the nature of this dependence for older stars is not well understood. This is mainly because...... absolute stellar ages for older stars are hard to measure. However, relatively accurate stellar ages have recently come into reach through asteroseismology. In this work, we present X-ray luminosities, which are a measure for magnetic activity displayed by the stellar coronae, for 24 stars with well......-determined ages older than a gigayear. We find 14 stars with detectable X-ray luminosities and use these to calibrate the age-activity relationship. We find a relationship between stellar X-ray luminosity, normalized by the stellar surface area, and age that is steeper than the relationships found for younger...

  20. Ion Beam Analysis methods applied to the examination of Be//Cu joints in hipped Be tiles for ITER first wall mock- ups

    International Nuclear Information System (INIS)

    Vito, E. de; Cayron, C.; Hicham Khodja; Lorenzetto, P.

    2006-01-01

    A proposed fabrication route for ITER first wall components implies a diffusion welding step of Be tiles onto a Cu-based substrate. However, Be has a tendency to form particularly brittle intermetallics with Cu and a lot of other elements. Insertion of interlayers may be a solution to increase bond quality. Applying traditional analyses to this study can be problematic because of Be toxicity and low atomic number Z. Ion Beam Analysis methods have thus been considered together with scanning electron microscopy (SEM) and electron back-scattering diffraction (EBSD) as complementary techniques. The following work aims at demonstrating how such techniques (used in micro-beam mode), and in particular NRA (Nuclear Reaction Analysis) and PIXE (Particle Induced X-ray Emission) techniques, coupled with SEM/EBSD data, can bring valuable information in this area. Quantification of data allow to obtain concentration values (provided the hypotheses on the initial junction composition are valuable), then phase diagrams give clues about the composition and structure of the junction. SEM retro-diffused electrons chemical contrast images and EBSD allow to characterize the presence of the awaited intermetallics, and finally confirm or refine the conclusions of Ion Beam Analysis data quantification. A series of reference first wall mock-ups have been analysed. Interlayer-free mock-ups reveal intermetallics which are mainly BeCu (apparently mixed with lower quantities of BeCu 2 compound). While Cr or Ti interlayers seem to behave as good Be diffusion barriers in the sense that they prevent the formation of BeCu, they strongly interact with Cu to form CuTi 2 or Cr 2 Ti intermetallics. In the case of Cr, Be seems to be incorporated into the Cr layer. PIXE analysis has however been unable to characterize Al-based interlayers (Z=13, close to the lower PIXE sensibility limit) and emphasizes one limitation of Ion Beam Analysis methods for lighter metals, justifying the use of other

  1. Hot heads & cool bodies: The conundrums of human brown adipose tissue (BAT) activity research

    NARCIS (Netherlands)

    Bahler, Lonneke; Holleman, Frits; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.

    2017-01-01

    Brown adipose tissue is able to increase energy expenditure by converting glucose and fatty acids into heat. Therefore, BAT is able to increase energy expenditure and could thereby facilitate weight loss or at least weight maintenance. Since cold is a strong activator of BAT, most prospective

  2. STEADY-STATE HEAT REJECTION RATES FOR A COAXIAL BOREHOLE HEAT EXCHANGER DURING PASSIVE AND ACTIVE COOLING DETERMINED WITH THE NOVEL STEP THERMAL RESPONSE TEST METHOD

    Directory of Open Access Journals (Sweden)

    Marija Macenić

    2018-01-01

    Full Text Available At three locations in Zagreb, classical and extended thermal response test (TRT was conducted on installed coaxial heat exchangers. With classic TR test, thermogeological properties of the ground and thermal resistance of the borehole were determined at each location. It is seen that thermal conductivity of the ground varies, due to difference in geological profile of the sites. In addition, experimental research of steady-state thermal response step test (SSTRST was carried out to determine heat rejection rates for passive and active cooling in steady state regime. Results showed that heat rejection rate is only between 8-11 W/m, which indicates that coaxial system is not suitable for passive cooling demands. Furthermore, the heat pump in passive cooling mode uses additional plate heat exchanger where there is additional temperature drop of working fluid by approximately 1,5 °C. Therefore, steady-state rejection rate for passive cooling is even lower for a real case project. Coaxial heat exchanger should be always designed for an active cooling regime with an operation of a heat pump compressor in a classical vapour compression refrigeration cycle.

  3. Specimen alignment in an axial tensile test of thin films using direct imaging and its influence on the mechanical properties of BeCu

    International Nuclear Information System (INIS)

    Kang, Dong-Joong; Park, Jun-Hyub; Shin, Myung-Soo; Ha, Jong-Eun; Lee, Hak-Joo

    2010-01-01

    This paper proposes a new system for verification of the alignment of loading fixtures and test specimens during tensile testing of thin film with a micrometer size through direct imaging. The novel and reliable image recognition system to evaluate the misalignment between the load train and the specimen axes during tensile test of thin film was developed using digital image processing technology with CCD. The decision of whether alignment of the tensile specimen is acceptable or not is based on a probabilistic analysis through the edge feature extraction of digital imaging. In order to verify the performance of the proposed system and investigate the effect of the misalignment of the specimen on tensile properties, the tensile tests were performed as displacement control in air and at room temperature for metal thin film, the beryllium copper (BeCu) alloys. In the case of the metal thin films, bending stresses caused by misalignment are insignificant because the films are easily bent during tensile tests to eliminate the bending stresses. And it was observed that little effects and scatters on tensile properties occur by stress gradient caused by twisting at in-plane misalignment, and the effects and scatters on tensile properties are insignificant at out-of-plane misalignment, in the case of the BeCu thin film.

  4. Performance of brazed graphite, carbon-fiber composite, and TZM materials for actively cooled structures: qualification tests

    International Nuclear Information System (INIS)

    Smid, I.; Croessmann, C. D.; Watson, R. D.; Linke, J.; Cardella, A.; Bolt, H.; Reheis, N.; Kny, E.

    1995-01-01

    The divertor of a near-term fusion device has to withstand high heat fluxes, heat shocks, and erosion caused by the plasma. Furthermore, it has to be maintainable through remote techniques. Above all, a good heat removal capability across the interface (low-Z armor/heat sink) plus overall integrity after many operational cycles are needed. To meet all these requirements, an active metal brazing technique is applied to bond graphite and carbon-fiber composite materials to a heat sink consisting of a Mo-41Re coolant tube through a TZM body. Plain brazed graphite and TZM tiles are tested for their fusion-relevant properties. The interfaces appear undamaged after thermal cycling when the melting point of the braze joint is not exceeded and when the graphite armor is > 4 mm thick. High heat flux tests are performed on three actively cooled divertor targets. The braze joints show no sign of failure after exposure to thermal loads ∼ 25 % higher than the design value surface heat flux of 10 MW/m 2 . (author)

  5. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  6. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling.

    Science.gov (United States)

    Zhang, T; Rawson, D M; Tosti, L; Carnevali, O

    2008-04-01

    This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk

  7. Activation analysis and waste management for dual-cooled lithium lead breeder (DLL) blanket of the fusion power reactor FDS-II

    International Nuclear Information System (INIS)

    Chen Mingliang; Huang Qunying; Li Jingjing; Zeng Qin; Wu Yican

    2005-01-01

    The calculation and analysis on the activation levels of the different regions of dual-cooled lithium-lead (DLL) breeder blanket of FDS-II, including afterheat, dose rate, activity and biological hazard potential after shutdown, were carried out with the neutronics code system VisualBUS and multi-group working library HENDL1.0/MG. The safety and environment assessment of fusion power (SEAFP) strategy for the management of activated material is here applied to the DLL blanket, to define the suitable recycling (reuse of activated material) procedure and the possibility of clearance (declassification of the material with low activity level to non-active waste). (authors)

  8. Effects of feeding an immunomodulatory supplement to heat-stressed or actively cooled cows during late gestation on postnatal immunity, health, and growth of calves.

    Science.gov (United States)

    Skibiel, Amy L; Fabris, Thiago F; Corrá, Fabiana N; Torres, Yazielis M; McLean, Derek J; Chapman, James D; Kirk, David J; Dahl, Geoffrey E; Laporta, Jimena

    2017-09-01

    Heat stress during late gestation negatively affects the physiology, health, and productivity of dairy cows as well as the calves developing in utero. Providing cows with active cooling devices, such as fans and soakers, and supplementing cows with an immunomodulating feed additive, OmniGen-AF (OG; Phibro Animal Health Corporation), improves immune function and milk yield of cows. It is unknown if maternal supplementation of OG combined with active cooling during late gestation might benefit the developing calf as well. Herein we evaluated markers of innate immune function, including immune cell counts, acute phase proteins, and neutrophil function, of calves born to multiparous dams in a 2 × 2 factorial design. Dams were supplemented with OG or a bentonite control (NO) beginning at 60 d before dry off and exposed to heat stress with cooling (CL) or without active cooling (HT) during the dry period (∼46 d). At birth, calves were separated from their dams and fed 6.6 L of their dams' colostrum in 2 meals. Calf body weight and rectal temperature were recorded, and blood samples were collected at birth (before colostrum feeding) and at 10, 28, and 49 d of age. Calves born to either CL dams or OG dams were heavier at birth than calves born to HT or NO dams, respectively. Concentrations of serum amyloid A were higher in the blood of calves born to OG dams relative to NO and for HT calves relative to CL calves. In addition, calves born to cooled OG dams had greater concentrations of plasma haptoglobin than calves born to cooled control dams. Neutrophil function at 10 d of age was enhanced in calves born to cooled OG dams and lymphocyte counts were higher in calves born to OG dams. Together these results suggest that adding OG to maternal feed in combination with active cooling of cows during late gestation is effective in mitigating the negative effects of in utero heat stress on postnatal calf growth and immune competence. Copyright © 2017 American Dairy Science

  9. The influence of intrinsic sympathomimetic activity and beta-1 receptor selectivity on the recovery of finger skin temperature after finger cooling in normotensive subjects.

    Science.gov (United States)

    Lenders, J W; Salemans, J; de Boo, T; Lemmens, W A; Thien, T; van't Laar, A

    1986-03-01

    A double-blind randomized study was designed to investigate differences in the recovery of finger skin temperature after finger cooling during dosing with placebo or one of four beta-blockers: propranolol, atenolol, pindolol, and acebutolol. In 11 normotensive nonsmoking subjects, finger skin temperature was measured with a thermocouple before and 20 minutes after immersion of one hand in a water bath at 16 degrees C. This finger cooling test caused no significant changes in systemic hemodynamics such as arterial blood pressure, heart rate, and forearm blood flow. The recovery of finger skin temperature during propranolol dosing was better than that during pindolol and atenolol dosing. There were no differences between the recoveries of skin temperature during pindolol, atenolol, and acebutolol dosing. Thus we could demonstrate no favorable effect of intrinsic sympathomimetic activity or beta 1-selectivity on the recovery of finger skin temperature after finger cooling.

  10. Infrared surface temperature measurements for long pulse operation, and real time feedback control in Tore-Supra, an actively cooled Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Guilhem, D.; Adjeroud, B.; Balorin, C.; Buravand, Y.; Bertrand, B.; Bondil, J.L.; Desgranges, C.; Gauthier, E.; Lipa, M.; Messina, P.; Missirlian, M.; Mitteau, R.; Moulin, D.; Pocheau, C.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.; Vallet, S

    2004-07-01

    Tore-Supra has a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components for high performances long pulse plasma discharges. When not actively cooled, plasma-facing components can only accumulate a limited amount of energy since the temperature increase continuously (T proportional to {radical}(t)) during the discharge until radiation cooling is equal to the incoming heat flux (T > 1800 K). Such an environment is found in most today Tokamaks. In the present paper we report the recent results of Tore-Supra, especially the design of the new generation of infrared endoscopes to measure the surface temperature of the plasma facing components. The Tore-Supra infrared thermography system is composed of 7 infrared endoscopes, this system is described in details in the paper, the new JET infrared thermography system is presented and some insights of the ITER set of visible/infrared endoscope is given. (authors)

  11. Infrared surface temperature measurements for long pulse operation, and real time feedback control in Tore-Supra, an actively cooled Tokamak

    International Nuclear Information System (INIS)

    Guilhem, D.; Adjeroud, B.; Balorin, C.; Buravand, Y.; Bertrand, B.; Bondil, J.L.; Desgranges, C.; Gauthier, E.; Lipa, M.; Messina, P.; Missirlian, M.; Mitteau, R.; Moulin, D.; Pocheau, C.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.; Vallet, S.

    2004-01-01

    Tore-Supra has a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components for high performances long pulse plasma discharges. When not actively cooled, plasma-facing components can only accumulate a limited amount of energy since the temperature increase continuously (T proportional to √(t)) during the discharge until radiation cooling is equal to the incoming heat flux (T > 1800 K). Such an environment is found in most today Tokamaks. In the present paper we report the recent results of Tore-Supra, especially the design of the new generation of infrared endoscopes to measure the surface temperature of the plasma facing components. The Tore-Supra infrared thermography system is composed of 7 infrared endoscopes, this system is described in details in the paper, the new JET infrared thermography system is presented and some insights of the ITER set of visible/infrared endoscope is given. (authors)

  12. Assessment of tritiated activities in the radwaste generated from ITER Chinese helium cooled ceramic breeding test blanket module system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chang An, E-mail: chenchangan@caep.cn; Liu, Lingbo; Wang, Bo; Xiang, Xin; Yao, Yong; Song, Jiangfeng

    2016-11-15

    Highlights: • Approaches were developed for calculation/evaluation of tritium activities in the materials and components of a TBM system, with tritium permeation being considered for the first time. • Almost all tritiated materials and components were considered in CNHCCB TBM system including the TBM set, connection pipes, and the ancillary tritium handling systems. • Tritium activity data in HCCB TBM system were updated. Some of which in directly tritium contacted components are to be 2 or 4 magnitudes higher than the original neutron transmutation calculations. • The radwaste amount from both operation and decommission of HCCB TBM system was evaluated. - Abstract: Chinese Helium Cooled Ceramic Breeding Test blanket Module (CNHCCB TBM) will be tested in the ITER machine for the feasibility of in pile tritium production for a future magnetic confinement fusion reactor. The tritium inventories/retentions in the material/components were evaluated and updated mainly based on the tritium diffusion/permeation theory and the analysis of some reported data. Tritiated activities rank from less than 10 Bq g{sup −1} to 10{sup 9} Bq g{sup −1} for the different materials or components, which are generally higher than those from the previous neutron transmutation calculation. The amounts of tritiated radwaste were also estimated according to the operation, decommission, maintenance and replacement strategies, which vary from several tens of kilograms to tons in the different operation phases. The data can be used both for the tritium radiological safety evaluation and radwaste management of CNHCCB TBM set and its ancillary systems.

  13. The WEST programme: Minimizing technology and operational risks of a full actively cooled tungsten divertor on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, André, E-mail: andre.grosman@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Bucalossi, Jérôme; Doceul, Louis [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Escourbiac, Frédéric [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Lipa, Manfred [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Merola, Mario [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Missirlian, Marc [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pitts, Richard A. [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Samaille, Franck; Tsitrone, Emmanuelle [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► The WEST programme is a unique opportunity to experience the industrial scale manufacture of tungsten plasma-facing components similar to the ITER divertor ones. ► In Tore Supra, it will bring important know how for actively cooled W divertor operation. ► This can be done by a reasonable modification of the Tore Supra tokamak. ► A fast implementation of the project would make this information available in due time. ► This allows a significant contribution to the W ITER divertor risk minimization in its manufacturing and operation phase. -- Abstract: The WEST programme consists in transforming the Tore Supra tokamak into an X point divertor device, while taking advantage of its long discharge capability. This is obtained by inserting in vessel coils to create the X point while adapting the in-vessel elements to this new geometry. This will allow the full tungsten divertor technology to be used on ITER to be tested in anticipation of its use on ITER under relevant heat loading conditions and pulse duration. The early manufacturing of a significant industrial series of ITER-similar W plasma-facing units will contribute to the ITER divertor manufacturing risk mitigation and to that associated with early W divertor plasma operation on ITER.

  14. Steady-state heat and particle removal with the actively cooled Phase III outboard pump limiter in Tore Supra

    International Nuclear Information System (INIS)

    Nygren, R.; Koski, J.; Lutz, T.; McGrath; Miller, J.; Watkins, J.; Guilhem, D.; Chappuis, P.; Cordier, J.; Loarer, T.

    1995-01-01

    Tore Supra's Phase III outboard pump limiter (OPL) is a modular actively-cooled mid-plane limiter, designed for heat and particle removal during long pulse operation. During its initial operation in 1993, the OPL successfully removed about 1 MW of power during ohmicly heated shots of up to 10 s duration and reached (steady state) thermal equilibrium. The particle pumping of the Phase III OPL was found to be about 50% greater than the Phase II OPL which had a radial distance between the last closed flux surface and the entrance of the pumping throat of 3.5 cm compared with only 2.5 cm for the Phase III OPL. This paper gives examples of power distribution over the limiter from IR measurements of surface temperature and from extensively calorimetry (34 thermocouples and 10 flow meters) and compares the distributions with values predicted by a 3D model (HF3D) with a detailed magnetic configuration (e.g., includes field ripple). ((orig.))

  15. Design of multi-megawatt actively cooled beam dumps for the Neutral-Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Paterson, J.A.; Koehler, G.; Wells, R.P.

    1981-10-01

    The Neutral Beam Engineering Test Facility will test Neutral Beam Sources up to 170 keV, 65 Amps, with 30 second beam-on times. For this application actively cooled beam dumps for both the neutral and ionized particles will be required. The dumps will be able to dissipate a wide range of power density profiles by utilizing a standard modular panel design which is incorporated into a moveable support structure. The thermal hydraulic design of the panels permit the dissipation of 2 kW/cm 2 anywhere on the panel surface. The water requirements of the dumps are optimized by restricting the flow to panel sections where the heat flux falls short of the design value. The mechanical design of the beam-dump structures is described along with tests performed on a prototype panel. The prototype tests were performed on two different panel designs, one manufactured by Mc Donnell Douglas (MDAC) the other by United Technologies (UT). The dissipation capabilities of the panels were tested at the critical regions to verify their use in the beam dump assemblies

  16. Damage prediction of carbon fibre composite armoured actively cooled plasma-facing components under cycling heat loads

    International Nuclear Information System (INIS)

    Chevet, G; Schlosser, J; Courtois, X; Escourbiac, F; Missirlian, M; Herb, V; Martin, E; Camus, G; Braccini, M

    2009-01-01

    In order to predict the lifetime of carbon fibre composite (CFC) armoured plasma-facing components in magnetic fusion devices, it is necessary to analyse the damage mechanisms and to model the damage propagation under cycling heat loads. At Tore Supra studies have been launched to better understand the damage process of the armoured flat tile elements of the actively cooled toroidal pump limiter, leading to the characterization of the damageable mechanical behaviour of the used N11 CFC material and of the CFC/Cu bond. Up until now the calculations have shown damage developing in the CFC (within the zone submitted to high shear stress) and in the bond (from the free edge of the CFC/Cu interface). Damage is due to manufacturing shear stresses and does not evolve under heat due to stress relaxation. For the ITER divertor, NB31 material has been characterized and the characterization of NB41 is in progress. Finite element calculations show again the development of CFC damage in the high shear stress zones after manufacturing. Stresses also decrease under heat flux so the damage does not evolve. The characterization of the CFC/Cu bond is more complex due to the monoblock geometry, which leads to more scattered stresses. These calculations allow the fabrication difficulties to be better understood and will help to analyse future high heat flux tests on various mock-ups.

  17. Power semiconductor device adaptive cooling assembly

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to a power semiconductor device (100) cooling assembly for cooling a power semiconductor device (100), wherein the assembly comprises an actively cooled heat sink (102) and a controller (208; 300), wherein the controller (208; 300) is adapted for adjusting the cooling

  18. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  19. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  20. Cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Norbaeck, P; Heneby, H

    1976-01-22

    Cooling towers to be transported on road vehicles as a unit are not allowed to exceed certain dimensions. In order to improve the efficiency of such a cooling tower (of cross-flow design and box-type body) with given dimensions, it is proposed to arrange at least one of the scrubbing bodies displaceable within a module or box. Then it can be moved out of the casing into working position, thereby increasing the front surface available for the inlet of air (and with it the efficiency) by nearly a factor of two.

  1. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  2. An approach to the selection of recommended cooling intervals for the activation analysis of unknown samples with Ge(Li) gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Hirose, Akio; Ishii, Daido

    1975-01-01

    Estimation of the optimum cooling interval by the mathematic or graphic method for Ge(Li) γ-ray spectrometry performed in the presence of some Compton interferences, and the recommended cooling intervals available for activation analysis of unknown samples have been proposed, and applied to the non-destructive activation analysis of gold in pure copper. In the presence of Compton interferences, two kinds of optimum cooling intervals were discussed. One maximizes the S/N ratio of a desired photo-peak. This interval had been originated by Isenhour, et al. Using the computer technique, this work is abbreviated as tsub( s/ n). The other, which minimizes the relative standard deviation (delta s/S) of a net photo-peak counting rate of interest (S) was originated by Tomov, et al. and Quittner, et al., this work is abbreviated as tsub(opt) or t'sub(opt). All equations derived by the above authors, however, have the practical disadvantage of including a term relating to the intensity of the desired photo-peak, thus making it difficult to predict the optimum cooling interval before irradiation. Since in chemical analysis, the concentration of the desired element, or the intensity of the photo-peak of interest, should be considered as ''unknown''. In the present work, an approach to the selection of recommended cooling interval applicable to the unknown sample has been discussed, and the interval, tsub(opt), which minimizes the lower limit of detection of a desired element under given irradiation and counting conditions has been proposed. (Evans, J.)

  3. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    International Nuclear Information System (INIS)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking

  4. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  5. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    Science.gov (United States)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  6. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  7. Cooling pancakes

    International Nuclear Information System (INIS)

    Bond, J.R.; Wilson, J.R.

    1984-01-01

    In theories of galaxy formation with a damping cut-off in the density fluctuation spectrum, the first non-linear structures to form are Zeldovich pancakes in which dissipation separates gas from any collisionless dark matter then present. One-dimensional numerical simulations of the collapse, shock heating, and subsequent thermal evolution of pancakes are described. Neutrinos (or any other cool collisionless particles) are followed by direct N-body methods and the gas by Eulerian hydrodynamics with conduction as well as cooling included. It is found that the pressure is relatively uniform within the shocked region and approximately equals the instantaneous ram pressure acting at the shock front. An analytic theory based upon this result accurately describes the numerical calculations. (author)

  8. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  9. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  10. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  11. RAPK-7. code for calculating mass transfer and corrosion products activation in the circulation loops of water-cooled reactors

    International Nuclear Information System (INIS)

    Mikhaylov, A.V.; Moryakov, A.V.; Nikitin, A.V.

    2012-09-01

    The RAPK-7 code was developed to simulate formation of non-irradiated and activated corrosion products, their transport and deposition on inner surfaces of primary components and in primary coolant of water-cooled reactors during their operation on power and after shutdown. The key feature of this code is its particular emphasis on the contamination of circulation loops by radioactive corrosion products of reactor which operates on variable modes. Such reactors typically are: research reactors and their experimental loops, naval nuclear power systems, etc. It's typical for such reactors to have repeated (over the campaign) and frequent variations in power (activating neutron fluxes), thermal-physical, hydrodynamic and other parameters of coolant, intensive water mass exchange between the circulation loop and the pressuriser, etc. The processes of mass-transfer are described by the RAPK-7 code with the use of models similar to those employed by the COTRAN and PACTOLE codes. The circulation circuit is broken down into computation areas. The user will then set the concentrations of water chemistry adjusting additives (alkali, boric acid, ammonia, hydrogen), as well as parameters in each area, such as wall temperature, coolant flow core temperature, pressure, flow rate, velocity, the radial component of coolant flowrate and activating neutron flux density. All the above parameters can be set as time-dependent step functions (bar charts), with independent time steps for each of them. The number of computation areas, the number of time dependencies and the level of detail in their description are limited by computer capabilities only. A 'brake' mode with a single-step change of the required set of parameters is provided to allow for jump-type events, such as replacement of contaminated components with clean ones during core refueling or repairs, emergency injection of boric acid, water mass exchange between the circulation circuit and the pressuriser, etc

  12. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet

    Science.gov (United States)

    Park, Inmyong; Jeong, Sangkwon

    2017-12-01

    The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.

  13. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Somers, J.; Van Den Durpel, L.

    2013-01-01

    The PUMA project - the acronym stands for “Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors” - was a Specific Targeted Research Project (STREP) within the Euratom 6th Framework (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO2-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR designs and their ability to accept a variety

  14. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-01

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO 2 -free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR designs and their ability to accept a

  15. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J; Van Den Durpel, L; Chauvet, V; Cerullo, N; Cetnar, J; Abram, T; Bakker, K; Bomboni, E; Bernnat, W; Domanska, J G; Girardi, E; De Haas, J B.M.; Hesketh, K; Hiernaut, J P; Hossain, K; Jonnet, J; Kim, Y; Kloosterman, J L; Kopec, M; Murgatroyd, J; Millington, D; Lecarpentier, D; Lomonaco, G; McEachern, D; Meier, A; Mignanelli, M; Nabielek, H; Oppe, J; Petrov, B Y; Pohl, C; Ruetten, H J; Schihab, S; Toury, G; Trakas, C; Venneri, F; Verfondern, K; Werner, H; Wiss, T; Zakova, J

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR designs and their ability to accept a

  16. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  17. Determination of burnup, cooling time and initial enrichment of PWR spent fuel by use of gamma-ray activity ratios

    International Nuclear Information System (INIS)

    Min, D.K.; Park, H.J.; Park, K.J.; Ro, S.G.; Park, H.S.

    1999-01-01

    The Korea Atomic Energy Institute has been developing the algorithms for sequential determination of cooling time, initial enrichment and burnup of the PWR spent fuel assembly by use of gamma ratio measurements, i.e. 134 Cs/ 137 Cs, 154 Eu/ 137 Cs and 106 Ru 137 Cs/( 134 Cs) 2 . Calculations were performed by applying the ORIGEN-S code. This method has advantages over combination techniques of neutron and gamma measurement, because of its simplicity and insensitivity to the measurement geometry. For verifying the algorithms an experiment for determining the cooling time, initial enrichment and burnup of the two PWR spent fuel rods was conducted by use of high-resolution gamma detector (HPGe) system only. This paper describes the method used and interim results of the experiment. This method can be applied for spent fuel characterization, burnup credit and safeguards of the spent fuel management facility

  18. Experimental study on cryogenic adsorption of methane by activated carbon for helium coolant purification of High-Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Chang, Hua; Wu, Zong-Xin; Jia, Hai-Jun

    2017-01-01

    Highlights: • The cryogenic CH 4 adsorption on activated carbon was studied for design of HTGR. • The breakthrough curves at different conditions were analyzed by the MTZ model. • The CH 4 adsorption isotherm was fitted well by the Toth model and the D-R model. • The work provides valuable reference data for helium coolant purification of HTGR. - Abstract: The cryogenic adsorption behavior of methane on activated carbon was investigated for helium coolant purification of high-temperature gas-cooled reactor by using dynamic column breakthrough method. With helium as carrier gas, experiments were performed at −196 °C and low methane partial pressure range of 0–120 Pa. The breakthrough curves at different superficial velocities and different feed concentrations were measured and analyzed by the mass-transfer zone model. The methane single-component adsorption isotherm was obtained and fitted well by the Toth model and the Dubinin-Radushkevich model. The adsorption heat of methane on activated carbon was estimated. The cryogenic adsorption process of methane on activated carbon has been verified to be effective for helium coolant purification of high-temperature gas-cooled reactor.

  19. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  20. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  1. A Mathematical Model of a Thermally Activated Roof (TAR Cooling System Using a Simplified RC-Thermal Model with Time Dependent Supply Water Temperature

    Directory of Open Access Journals (Sweden)

    Khalid Ahmed Joudi

    2017-01-01

    Full Text Available This paper presents a computer simulation model of a thermally activated roof (TAR to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time dependent with the variation of the ambient wet bulb temperature. Results from RC-thermal modeling were compared with experimental measurements for a second story room measuring 5.5 m x 4 m x 3 m at Amarah city/ Iraq (31.865 ˚N, 47.128 ˚E for 21 July, 2013. The roof was constructed of 200 mm concrete slab, 150 mm turf and 50 mm insulation. Galvanized 13 mm steel pipe coils were buried in the roof slab with a pipe occupation ratio of 0.12. The walls were constructed of 240 mm common brick with 10mm cement plaster on the inside and outside surfaces and 20 mm Styrofoam insulation on the inside surface and covered with PVC panel. Thermistors were used to measure the indoor and outdoor temperatures, TAR system water inlet and outlet temperatures and temperature distribution inside the concrete slab. The effect of pipe spacing and water mass flow rate were evaluated. Agreement was good between the experimental and RC-thermal model. Concrete core temperature reaches the supply water temperature faster for lower pipe spacing. Heat extracted from the space increased with water mass flow rate to an optimum of 0.0088 kg/s.m².

  2. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  3. Solar Heating and Cooling of Buildings: Activities of the Private Sector of the Building Community and Its Perceived Needs Relative to Increased Activity.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Committee on Solar Energy in the Heating and Cooling of Buildings.

    This report is essentially a collection of information gathered from a broad cross-section of the building community that provides a description of the state of affairs existing mid-1974 through mid-1975 in the private sector of the building community with regard to solar heating and cooling of buildings. The report additionally contains…

  4. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  5. Development of actively cooled windows for plasma observation during quasi-continuous operation of the W7-X stellarator

    International Nuclear Information System (INIS)

    Konig, R.; Grosser, K.; Hildebrandt, D.; Pasch, E.; Werner, T.; Klinger, T.; Ogorodnikova, O.

    2005-01-01

    With the stellarator W7-X a step to quasi-continuous plasma operation will be made. The cooling system of the machine is designed such that two 30 min discharges can be run per day. Right from the start of operation 10 MW of ECRH heating power will be available for quasi-continuous operation. A working group 'Plasma Facing Optical Components' has been formed which presently concentrates on the development of water cooled windows for UV/VR/IR periscopes which can withstand the expected maximum heat loads of up to 50 kW/m 2 which due to the predominantly short wavelength nature of the radiation emitted by the plasma will be absorbed within the first millimeter of any window. We will report on the detailed Finite Element (ANSYS R ) calculations of the heat and stress distribution across the windows. Calculations have been undertaken for a large number of different window materials which are required for the various spectral regions covered by the miscellaneous diagnostics, so that the most suitable material for each application can easily be identified. Also the dependence of the cooling rate on the window diameter and thickness has been studied. The calculations show that at a power load of 50 kW/m 2 cooled sapphire windows can be used for window sizes up to ∼200 mm diameter but that for many of the other materials like ZnSe, ZnS, CaF 2 , MgF 2 and quartz window sizes need to be limited to considerably smaller sizes. Detailed simulations of the local radiation power load distribution demonstrate that by careful design the load on individual optical components can be considerably reduced. A vacuum test chamber, equipped with a vacuum compatible IR heater has been build. In this chamber a low cost, easily exchangeable window design using Helicoflex gaskets on either side of a 60 mm exposed diameter quartz window have been successfully tested over 70 heat cycles up to a maximum temperature of 450 o C at power loads of 15 kW/m 2 . The design proved to be water and

  6. Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest.

    Science.gov (United States)

    Müller, Astrid; Miyazaki, Yuzo; Tachibana, Eri; Kawamura, Kimitaka; Hiura, Tsutom

    2017-08-16

    Biogenic organic aerosols can affect cloud condensation nuclei (CCN) properties, and subsequently impact climate change. Large uncertainties exist in how the difference in the types of terrestrial biogenic sources and the abundance of organics relative to sulfate affect CCN properties. For the submicron water-soluble aerosols collected for two years in a cool-temperate forest in northern Japan, we show that the hygroscopicity parameter κ CCN (0.44 ± 0.07) exhibited a distinct seasonal trend with a minimum in autumn (κ CCN  = 0.32-0.37); these κ CCN values were generally larger than that of ambient particles, including water-insoluble fractions. The temporal variability of κ CCN was controlled by the water-soluble organic matter (WSOM)-to-sulfate ratio (R 2  > 0.60), where the significant reduction of κ CCN in autumn was linked to the increased WSOM/sulfate ratio. Positive matrix factorization analysis indicates that α-pinene-derived secondary organic aerosol (SOA) substantially contributed to the WSOM mass (~75%) in autumn, the majority of which was attributable to emissions from litter/soil microbial activity near the forest floor. These findings suggest that WSOM, most likely α-pinene SOA, originated from the forest floor can significantly suppress the aerosol CCN activity in cool-temperate forests, which have implications for predicting climate effects by changes in biogenic emissions in future.

  7. An electrochemical method for on-line monitoring of biofilm activity in cooling water using the BIoGEORGE trademark probe

    International Nuclear Information System (INIS)

    Licina, G.J.; Nekoksa, G.; Howard, R.L.

    1994-01-01

    The presence of active microorganisms on piping and components in cooling water systems can have a profound effect on the corrosion performance of such systems. Microbiologically influenced corrosion (MIC) can result in premature failures of critical and support systems, increased downtime of equipment for repairs and maintenance, and increased operating costs associated with mitigation measures. In some cases, MIC has forced premature replacement of tanks, heat exchangers, and piping systems with a severe effect on plant availability. Monitoring methods that alert plant operators that biofilm formation is occurring on pipe work and components permit the operators to initiate mitigation actions before biofouling becomes severe or MIC has occurred. An electrochemical probe to permit on-line monitoring of biofilm activity under power plant or other industrial exposure conditions is under development. This device, the BIoGEORGE trademark electrochemical biofilm monitor, permits on-line evaluations of the effects of biofilm formation upon the surfaces of passive alloys such as stainless steels exposed to cooling water environments. Benchtop experiments have shown that biofilm formation on stainless steel surfaces can be detected by an electrochemical indication well in advance of any visual evidence of biofilm or corrosion on the electrodes. The design of the probe, results of benchtop experiments, and a description of its installation at the Browns Ferry Nuclear Plant are described

  8. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  9. Experimental investigation on flow and heat transfer for cooling flush-mounted ribbons in a channel: Application of an EHD active enhancement method

    Directory of Open Access Journals (Sweden)

    Alami Nia Amin

    2016-01-01

    Full Text Available In the present study, the heat transfer enhancement of a bundle of flush-mounted ribbons placed on the floor of a rectangular duct was investigated experimentally. The flush-mounted ribbons act as heat sources and the cooling happens with air. The air flow was two-dimensional, steady, viscous and incompressible under either laminar (500 ≤ ReDh < 2000 and turbulent (2000 ≤ Re Dh ≤ 4500 conditions. The hydrodynamics and heat transfer behavior of the air flow was studied by means of an active method with application of corona wind. The state of the art of this work revolves around an experimental investigation of an EHD1 active method and heat transfer enhancement from the surfaces of the flush- mounted ribbons. Due to the intricacies of the required experiment, a special apparatus needed to be designed and constructed.

  10. Leak tightness tests on actively cooled plasma facing components: Lessons learned from Tore Supra experience and perspectives for the new fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chantant, M., E-mail: michel.chantant@cea.fr; Lambert, R.; Gargiulo, L.; Hatchressian, J.-C.; Guilhem, D.; Samaille, F.; Soler, B.

    2015-10-15

    Highlights: • Test procedures for the qualification of the tightness of actively cooled plasma facing components were defined. • The test is performed after the component manufacturing and before its set-up in the vacuum vessel. • It allows improving the fusion machine availability. • The lessons of tests over 20 years at Tore Supra are presented. - Abstract: The fusion machines under development or construction (ITER, W7X) use several hundreds of actively cooled plasma facing components (ACPFC). They are submitted to leak tightness requirements in order to get an appropriate vacuum level in the vessel to create the plasma. During the ACPFC manufacturing and before their installation in the machine, their leak tightness performance must be measured to check that they fulfill the vacuum requirements. A relevant procedure is needed which allows to segregate potential defects. It must also be optimized in terms of test duration and costs. Tore Supra, as an actively cooled Tokamak, experienced several leaks on ACPFCs during the commissioning and during the operation of the machine. A test procedure was then defined and several test facilities were set-up. Since 1990 the tightness of all the new ACPFCs is systematically tested before their installation in Tore Supra. During the qualification test, the component is set up in a vacuum test tank, and its cooling circuits are pressurized with helium. It is submitted to 3 temperature cycles from room temperature up to the baking temperature level in Tore Supra (200 °C) and two pressurization tests are performed (6 MPa at room temperature and 4 MPa at 200 °C) at each stage. At the end of the last cycle when the ACPFC is at room temperature and pressurized with helium at 6 MPa, the measured leak rate must be lower than 5 × 10{sup −11} Pa m{sup 3} s{sup −1}, the pressure in the test tank being <5 × 10{sup −5} Pa. A large experience has been gained on ACPFCs with carbon parts on stainless steel and Cu

  11. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  12. Research activities on high temperature gas-cooled rectors (HTRs) in the fifth EURATOM RTD framework programme

    International Nuclear Information System (INIS)

    Martin-Bermejo, J.; Hugon, M.

    2001-01-01

    One of the areas of research of the nuclear fission key action of the Fifth EURATOM RTD Framework Programme (FP5) is safety and efficiency of future systems, which has as an objective to investigate and evaluate new or revisited concepts for nuclear energy that offer potential longer-term benefits in terms of cost, safety, waste management, use of fissile material, less risk of diversion and sustainability. After the first call for proposals of FP5, several projects related to high temperature gas-cooled reactors (HTRs) were retained by the European Commission (EC) services. They address important issues such as HTR fuel technology, HTR fuel cycle and HTR materials. In the next call for proposals (deadline January 2001) the EC expects other important HTR-related items not covered by the first call (e.g. power conversion systems and system analysis) to be addressed. The EC also expects proposals for strategy studies and/or thematic networks on the assessment of applications of nuclear energy other than generation of electricity via hydrogen production. (authors)

  13. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Vignal, N., E-mail: nicolas.vignal@cea.fr; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-10-15

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m{sup −2}, advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material.

  14. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    International Nuclear Information System (INIS)

    Vignal, N.; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-01-01

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m −2 , advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material

  15. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  16. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  17. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  18. Late Cenozoic cooling history of the central Menderes Massif and the contribution of erosion to rock exhumation during active continental extension

    Science.gov (United States)

    Nilius, Nils-Peter; Wölfler, Andreas; Heineke, Caroline; Glotzbach, Christoph; Hetzel, Ralf; Hampel, Andrea; Akal, Cüneyt; Dunkl, István

    2017-04-01

    The Menderes Massif constitutes the western part of the Anatolide belt in western Turkey and experienced a prolonged history of post-orogenic extension. A large amount of the extension was accommodated by the two oppositely dipping Gediz and Büyük Menderes detachment faults, which led to the exhumation of the central Menderes Massif (Gessner et al., 2013). Previous studies proposed a synchronous, bivergent exhumation of the central Menderes Massif since the Miocene (Gessner et al., 2001), although only the evolution of the north-dipping Gediz detachment is well constrained (Buscher et al., 2013). Detailed structural and thermochronological investigations from the south-dipping Büyük Menderes detachment have still been missing. Here we present results from different thermochronometers, which constrain the cooling and exhumation history of footwall and hanging wall rocks of the Büyük Menderes detachment. Our new zircon and apatite (U-Th)/He and fission track ages of footwall rocks from the Büyük Menderes detachment document two phases of increased cooling and exhumation (Wölfler et al., in revision). The first episode of increased footwall exhumation ( 0.9 km/Myr) occurred during the middle Miocene, followed by a second phase during latest Miocene and Pliocene ( 1.0 km/Myr). Apatite fission track ages yield a slip rate for the Pliocene movement along the Büyük Menderes detachment of 3.0 (+1.1/-0.6) km/Myr. Thermochronological data of hanging wall units reflect a slow phase of exhumation ( 0.2 km/Myr) in the late Oligocene and an increased exhumation rate of 1.0 km/Myr during the early to middle Miocene, when hanging wall units cooled below 80 °C. In comparison with the Gediz detachment, our thermochronological data from the Büyük Menderes detachment confirms the concurrent activity of both detachments during the late Miocene and Pliocene. With respect to the relative importance of normal faulting and erosion to rock exhumation, a comparison with 10Be

  19. Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Rage, Nils; Kazanci, Ongun Berk

    2017-01-01

    Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require t...

  20. Cooling garment treatment in MS : Clinical improvement and decrease in leukocyte NO production

    NARCIS (Netherlands)

    Beenakker, EAC; Oparina, TI; Hartgring, A; Teelken, A; Arutjunyan, AV; De Keyser, J

    2001-01-01

    Ten heat-sensitive patients with MS were randomly allocated in a cross-over study to wear a cooling garment for 60 minutes at 7 degreesC (active cooling) and 26 degreesC (sham cooling). In contrast to sham cooling, active cooling improved fatigue and postural stability with eyes closed and muscle

  1. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  2. Effect of Seminal Plasma Removal on Cell Membrane, Acrosomal Integrity and Mitochondrial Activity of Cooled Stallion Semen

    Directory of Open Access Journals (Sweden)

    Dhafer M. Aziz

    2012-07-01

    Full Text Available Fresh semen samples were collected from 11 warm blood stallions, each ejaculate was distributed into three equal parts. The first part was diluted in a skim milk-glucose diluent (SMG, the second part was diluted in a skim milk-glucose supplemented with Tyrode's medium (SMG-T, the third part was centrifuged to remove the seminal plasma, then the sperm was resuspended in the second diluent (SMG-T-C. The diluted semen were evaluated immediately after dilution (0 hour and at 24, 48, 72, and 96 hours of storage at 5°C. Flow cytometry was performed to determine sperm viability, mitochondrial activity and acrosomal integrity. Immediately after dilution the tested parameters of sperms that diluted in SMG-T was significantly (P<0.001 higher than those diluted with SMG and SMG-T-C, and with SMG-T-C were higher significantly (P<0.05 than those diluted with SMG. The decreasing rate in tested sperm parameter was greater significantly (P<0.001 in semen samples which were diluted with SMG than those diluted with SMG-T and SMG-T-C. In conclusion, the present study indicated that viability, acrosomal integrity, and mitochondrial activity of stallion sperms were better preserved in SMG-T in comparison with SMG, also centrifugation and removal of the seminal plasma have an adverse effect on these three sperm parameters.

  3. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    Science.gov (United States)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  4. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  5. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  6. System for cooling a cabinet

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a cooling system comprising an active magnetic regenerator having a cold side and a hot side, a hot side heat exchanger connected to the hot side of the magnetic regenerator, one or more cold side heat exchangers, and a cold store reservoir comprising a volume...

  7. Effect of Half Time Cooling on Thermoregulatory Responses and Soccer-Specific Performance Tests

    OpenAIRE

    Yang Zhang; Svetlana Nepocatych; Charlie P. Katica; Annie B. Collins,; Catalina Casaru,; Gytis Balilionis; Jesper Sjökvist; Phillip A. Bishop

    2014-01-01

    This study examined two active coolings (forearm and hand cooling, and neck cooling) during a simulated half-time recovery on thermoregulatory responses and subsequent soccer-specific exercise performance. Following a 45-min treadmill run in the heat, participants (N=7) undertook 15-min recovery with either passive cooling, forearm and hand cooling, or neck cooling in a simulated cooled locker room environment. After the recovery, participants performed a 6×15-m sprint test and Yo-Yo Intermit...

  8. 24 CFR 3280.714 - Appliances, cooling.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Appliances, cooling. 3280.714... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning... accordance with ANSI Z21.40.1-1996, Gas Fired, Heat Activated, Air Conditioning and Heat Pump Appliances, and...

  9. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  10. Tungsten covered graphite and copper elements and ITER-like actively cooled tungsten divertor plasma facing units for the WEST project

    International Nuclear Information System (INIS)

    Guilhem, D; Bucalossi, J; Burles, S; Corre, Y; Ferlay, F; Firdaouss, M; Languille, P; Lipa, M; Martinez, A; Missirlian, M; Proust, M; Richou, M; Samaille, F; Tsitrone, E

    2016-01-01

    After a brief introduction giving some insight of the WEST project, we present the three types of plasma facing units (PFUs) developed for the WEST project taking into account the envisaged main scenarios: (1) high power short pulse scenario (a few seconds) where the objective is to maximize the power handling of the PFUs, up to 20 MW m −2 , (2) high fluence scenario (a few 100 s) on actively cooled ITER-like tungsten (W) PFUs, up to 10 MW m −2 during 1000 s. For the graphite PFUs, the high heat flux tests have been done at GLADIS (ion beam test facility), and for the CuCrZr PFUs on the JUDITH (electron beam test facility). The tests were successful, as no damage occurred for the different load cases. This confirms that the modelling done during the design phase is appropriate to describe these PFUs. Series productions are expected to be achieved by the end of 2015 for the graphite and CuCrZr PFUs, and few ITER-like W PFUs are expected at the beginning of 2016. The lower divertor will be complemented with ITER-like W PFUs as soon as available from our partners so that different fabrication procedures could be evaluated in a real industrial process and a real tokamak environment. (paper)

  11. Helium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Longton, P.B.; Cowen, H.C.

    1975-01-01

    In helium cooled HTR's there is a by-pass circuit for cleaning purposes in addition to the main cooling circuit. This is to remove such impurities as hydrogen, methane, carbon monoxide and water from the coolant. In this system, part of the coolant successively flows first through an oxidation bed of copper oxide and an absorption bed of silica gel, then through activated charcoal or a molecular sieve. The hydrogen and carbon monoxide impurities are absorbed and the dry gas is returned to the main cooling circuit. To lower the hydrogen/water ratio without increasing the hydrogen fraction in the main cooling circuit, some of the hydrogen fraction converted into water is added to the cooling circuit. This is done, inter alia, by bypassing the water produced in the oxidation bed before it enters the absorption bed. The rest of the by-pass circuit, however, also includes an absorption bed with a molecular sieve. This absorbs the oxidized carbon monoxide fraction. In this way, such side effects as the formation of additional methane, carburization of the materials of the by-pass circuit or loss of graphite are avoided. (DG/RF) [de

  12. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  13. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  14. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  15. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  16. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  17. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  18. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  19. Cavity Cooling a Single Charged Levitated Nanosphere

    Science.gov (United States)

    Millen, J.; Fonseca, P. Z. G.; Mavrogordatos, T.; Monteiro, T. S.; Barker, P. F.

    2015-03-01

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.

  20. Continuous cooling transformation behaviors of CLAM steel

    International Nuclear Information System (INIS)

    Wu, Qing-sheng; Zheng, Shu-hui; Huang, Qun-ying; Liu, Shao-jun; Han, Yang-yang

    2013-01-01

    The continuous cooling transformation (CCT) behaviors of CLAM (China Low Activation Martensitic) steel were studied, the CCT diagram was constructed, and the influence of cooling rates on the microstructures was also investigated. The microstructures were investigated using optical microscopy (OM) and microhardness tests were also carried out. The results showed that CLAM steel possessed high hardenability and there were ferrite and martensite transformation regions only. The maximum cooling rate to form ferrite microstructure was found to be 10–12 K/min. In order to obtain fully ferrite microstructure, the cooling rate should be lower than 1 K/min. The CCT diagram also gave relevant parameters such as the transformation temperatures, i.e., A c1 , A c3 , M s and M f were 1124 K, 1193 K, 705 K and 593 K, respectively. The diagram made it possible to predict the microstructures and properties of CLAM steel with different cooling rates

  1. Cooling Rates of Lunar Volcanic Glass Beads

    Science.gov (United States)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  2. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  3. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  4. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  5. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  6. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  7. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  8. Evaluation of the energy efficiency of active pass through wall cooling surface with phase change material in residential buildings combined with cistern cooling and operation optimization by development of suitable control strategies; Evaluierung der Energieeffizienz von aktiv durchstroemten Wandkuehlflaechen mit Phasenwechselmaterial in Wohngebaeuden in Kombination mit einer Zisternenkuehlung und Optimierung des Betriebes durch Entwicklung geeigneter Regelstrategien

    Energy Technology Data Exchange (ETDEWEB)

    Stoelzel, Christof [Variotec, Neumarkt (Germany); Kalz, Doreen; Wienold, Jan; Fischer, Martin [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Gruppe Solares Bauen

    2009-07-01

    This work introduces and evaluates a novel heating and cooling concept employing thermo-active building systems and environmental energy harnessed from 22-m{sup 3} rainwater cisterns for a 290-m{sup 2} low energy residential building in Germany. The building strives for a significantly reduced primary energy use with carefully coordinated measures such as high quality building envelope by means of vacuum insulated panels, supply and exhaust air system with heat recovery, reduced solar heat gains (solar shading), and the integration of thermal solar collectors and photovoltaic in the plant system. On this premise, a comprehensive long-term monitoring over the course of two years in high time resolution was carried out with an accompanying commissioning of the building performance. Measurements comprise the energy use for heating, cooling, and ventilation, as well as the auxiliary equipment, the performance of the environmental heat source/sink, thermal comfort, air quality, and local climatic site conditions. The analysis focuses on the performance and the efficiency of the rainwater cisterns as natural heat source and sink as well as the heat pump system. First, the paper discusses the performance of the thermo-active building systems, investigates the occupant thermal comfort, determines the efficiency of the heating/cooling system, and evaluates the total end and primary energy use of the building. Second, various operation and control strategies for the cooling plant are investigated by means of a validated building and plant model in the dynamic simulation environment TRNSYS. The optimization is carried out in terms of energy efficiency, occupant thermal comfort and the availability of the rainwater cisterns over the summer months. The central findings of the analysis of the energy and efficiency performance of the HVAC according to four defined balance boundaries are the following: Rainwater cistern as environmental source und sink: The energy balance of the

  9. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  10. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  11. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  12. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  13. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  14. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  15. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  16. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  17. Thermal construction unit activation with supply air gains significance. Ceilings cooling - supply air heating - more than 50 % energy conservation; Thermische Bauteilaktivierung mit Zuluft gewinnt an Bedeutung. Decke kuehlen - Zuluft erwaermen - mehr als 50% Energie einsparen

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Wolfgang

    2009-05-15

    In the year 2001, in Stuttgart (Federal Republic of Germany) the first office building was established which uses a thermal construction unit activation with air as cooling agent. Today, the system ''Concret-cool'' already is installed in more than 40 buildings. Computations show that due to the room heating by means of internally finned ventilation pipes embedded in concrete more than 50 % less energy in comparison to comparable systems can be used. In his Green Building project ''Skyline Tower'' in Munich (Federal Republic of Germany), also star architect Helmut Jahn uses the know-how of the manufacturer of ventilation systems from Stuttgart. As one of the first multi-storied buildings in Munich, ''Skyline Tower'' with its 23 floors was prized with the pre-certificate of the German quality seal ''sustainable building ''in gold.

  18. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  19. History of nuclear cooling

    International Nuclear Information System (INIS)

    Kuerti, M.

    1998-01-01

    The historical development of producing extreme low temperatures by magnetic techniques is overviewed. With electron spin methods, temperatures down to 1 mK can be achieved. With nuclear spins theoretically 10 -9 K can be produced. The idea of cooling with nuclear demagnetization is not new, it is a logical extension of the concept of electron cooling. Using nuclear demagnetization experiment with 3 T water cooled solenoids 3 mK could be produced. The cold record is held by Olli Lounasmaa in Helsinki with temperatures below 10 -9 K. (R.P.)

  20. International Ventilation Cooling Application Database

    DEFF Research Database (Denmark)

    Holzer, Peter; Psomas, Theofanis Ch.; OSullivan, Paul

    2016-01-01

    The currently running International Energy Agency, Energy and Conservation in Buildings, Annex 62 Ventilative Cooling (VC) project, is coordinating research towards extended use of VC. Within this Annex 62 the joint research activity of International VC Application Database has been carried out...... and locations, using VC as a mean of indoor comfort improvement. The building-spreadsheet highlights distributions of technologies and strategies, such as the following. (Numbers in % refer to the sample of the database’s 91 buildings.) It may be concluded that Ventilative Cooling is applied in temporary......, systematically investigating the distribution of technologies and strategies within VC. The database is structured as both a ticking-list-like building-spreadsheet and a collection of building-datasheets. The content of both closely follows Annex 62 State-Of-The- Art-Report. The database has been filled, based...

  1. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  2. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  3. Experimental investigation on flow and heat transfer for cooling flush-mounted ribbons in a channel: Application of an EHD active enhancement method

    OpenAIRE

    Alami Nia Amin; Campo Antonio

    2016-01-01

    In the present study, the heat transfer enhancement of a bundle of flush-mounted ribbons placed on the floor of a rectangular duct was investigated experimentally. The flush-mounted ribbons act as heat sources and the cooling happens with air. The air flow was two-dimensional, steady, viscous and incompressible under either laminar (500 ≤ ReDh < 2000) and turbulent (2000 ≤ Re Dh ≤ 4500) conditions. The hydrodynamics and heat transfer behavior of the air flo...

  4. Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

  5. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  6. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  7. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  8. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  9. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  10. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  11. ANL stochastic-cooling experiments using the FNAL 200-MeV cooling ring

    International Nuclear Information System (INIS)

    Hogrefe, R.L.; Kellogg, K.D.; Konecny, R.S.; Kramer, S.L.; Simpson, J.D.; Suddeth, D.E.; Hardek, T.W.

    1981-01-01

    Studies of stochastic momentum cooling are being conducted on the FNAL 200-MeV Storage Ring. The specific goal of the activity is to establish confidence in the theory and simulation methods used to describe the cooling process, and to develop techniques and devices suitable for use in the antiproton-accumulation scheme now planned for construction at FNAL. A summary of the activity, including hardware design, results of experiments, comparison with theory, and implications for the antiproton accumulator are presented

  12. Elastocaloric cooling materials and systems

    Science.gov (United States)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  13. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  14. Technology of power plant cooling

    International Nuclear Information System (INIS)

    Maulbetsch, J.S.; Zeren, R.W.

    1976-01-01

    The following topics are discussed: the thermodynamics of power generation and the need for cooling water; the technical, economic, and legislative constraints within which the cooling problem must be solved; alternate cooling methods currently available or under development; the water treatment requirements of cooling systems; and some alternatives for modifying the physical impact on aquatic systems

  15. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  16. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  17. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  18. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  19. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  20. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  1. Emergency reactor cooling circuit

    International Nuclear Information System (INIS)

    Araki, Hidefumi; Matsumoto, Tomoyuki; Kataoka, Yoshiyuki.

    1994-01-01

    Cooling water in a gravitationally dropping water reservoir is injected into a reactor pressure vessel passing through a pipeline upon occurrence of emergency. The pipeline is inclined downwardly having one end thereof being in communication with the pressure vessel. During normal operation, the cooling water in the upper portion of the inclined pipeline is heated by convection heat transfer from the communication portion with the pressure vessel. On the other hand, cooling water present at a position lower than the communication portion forms cooling water lumps. Accordingly, temperature stratification layers are formed in the inclined pipeline. Therefore, temperature rise of water in a vertical pipeline connected to the inclined pipeline is small. With such a constitution, the amount of heat lost from the pressure vessel by way of the water injection pipeline is reduced. Further, there is no worry that cooling water to be injected upon occurrence of emergency is boiled under reduced pressure in the injection pipeline to delay the depressurization of the pressure vessel. (I.N.)

  2. Active space cooling with night-coldness - development of a decentralized ventilation system with latent heat storage; Aktive Raumkuehlung mit Nachkaelte - Entwicklung eines dezentralen Lueftungsgeraetes mit Latentwaermespeicher. Imtech-Haus, Hamburg Referenzanlage

    Energy Technology Data Exchange (ETDEWEB)

    Luedemann, B.; Detzer, R. [Imtech Deutschland, Hamburg (Germany)

    2007-04-15

    Imtech Germany a decentralized ventilation system with a latent heat-storage unit made of Phase Change Material. The equipment was used successfully in a first reference asset in the Imtech house in Hamburg. During the day active space cooling is realized by storage of night-cold. In combination with a night ventilation the attached areas could be held continuous within the comfort range under 26 C under normal summer conditions. The decentralized ventilation system including control is developed to series production readiness and will be introduced now on the market. (orig.)

  3. Particle deposition and resuspension in gas-cooled reactors—Activity overview of the two European research projects THINS and ARCHER

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T., E-mail: t.barth@hzdr.de [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Lecrivain, G. [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Jayaraju, S.T. [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Hampel, U. [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Technische Universität Dresden, 01062 Dresden (Germany)

    2015-08-15

    Highlights: • A summary on particle deposition and resuspension experiments is provided. • Similarities between single and multilayer particle deposits are found. • Numerical models for simulation of particle deposits are successfully developed. - Abstract: The deposition and resuspension behaviour of radio-contaminated aerosol particles is a key issue for the safety assessment of depressurization accidents of gas-cooled high temperature reactors. Within the framework of two European research projects, namely Thermal Hydraulics of Innovative Nuclear Systems (THINS) and Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D (ARCHER), a series of investigations was performed to investigate the transport, the deposition and the resuspension of aerosol particles in turbulent flows. The experimental and numerical tests can be subdivided into four different parts: (1) Monolayer particle deposition, (2) Monolayer particle resuspension, (3) Multilayer particle deposition and (4) Multilayer particle resuspension. The experimental results provide a new insight into the formation and removal of aerosol particle deposits in turbulent flows and are used for the development and validation of numerical procedures in gas-cooled reactors. Good agreement was found between the numerical and the experimental results.

  4. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  5. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  6. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  7. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  8. Emergency core cooling device

    International Nuclear Information System (INIS)

    Suzaki, Kiyoshi; Inoue, Akihiro.

    1979-01-01

    Purpose: To improve core cooling effect by making the operation region for a plurality of water injection pumps more broader. Constitution: An emergency reactor core cooling device actuated upon failure of recycling pipe ways is adapted to be fed with cooling water through a thermal sleeve by way of a plurality of water injection pump from pool water in a condensate storage tank and a pressure suppression chamber as water feed source. Exhaust pipes and suction pipes of each of the pumps are connected by way of switching valves and the valves are switched so that the pumps are set to a series operation if the pressure in the pressure vessel is high and the pumps are set to a parallel operation if the pressure in the pressure vessel is low. (Furukawa, Y.)

  9. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  10. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  11. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  12. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  13. Cooling pond fog studies

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    The Fog Excess Water Index (FEWI) method of fog prediction has been verified by the use of data obtained at the Dresden cooling pond during 1976 and 1977 and by a reanalysis of observations made in conjunction with a study of cooling pond simulators during 1974. For applications in which the method is applied to measurements or estimates of bulk water temperature, a critical value of about 0.7 mb appears to be most appropriate. The present analyses confirm the earlier finding that wind speed plays little part in determining the susceptibility for fog generation

  14. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  15. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  16. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  17. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  18. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  19. Cooling tower and environment

    International Nuclear Information System (INIS)

    Becker, J.; Ederhof, A.; Gosdowski, J.; Harms, A.; Ide, G.; Klotz, B.; Kowalczyk, R.; Necker, P.; Tesche, W.

    The influence of a cooling tower on the environment, or rather the influence of the environment on the cooling tower stands presently -along with the cooling water supply - in the middle of much discussion. The literature on these questions can hardly be overlooked by the experts concerned, especially not by the power station designers and operators. The document 'Cooling Tower and Environment' is intented to give a general idea of the important publications in this field, and to inform of the present state of technology. In this, the explanations on every section make it easier to get to know the specific subject area. In addition to older standard literature, this publication contains the best-known literature of recent years up to spring 1975, including some articles written in English. Further English literature has been collected by the ZAED (KFK) and is available at the VGB-Geschaefsstelle. Furthermore, The Bundesumweltamt compiles the literature on the subject of 'Environmental protection'. On top of that, further documentation centres are listed at the end of this text. (orig.) [de

  20. Warm and Cool Cityscapes

    Science.gov (United States)

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  1. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  2. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  3. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  4. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  5. Biofouling control of industrial seawater cooling towers

    KAUST Repository

    Albloushi, Mohammed

    2017-11-01

    The use of seawater in cooling towers for industrial applications has much merit in the Gulf Cooperation Council countries due to the scarcity and availability of fresh water. Seawater make-up in cooling towers is deemed the most feasible because of its unlimited supply in coastal areas. Such latent-heat removal with seawater in cooling towers is several folds more efficient than sensible heat extraction via heat exchangers. Operational challenges such as scaling, corrosion, and biofouling are a major challenge in conventional cooling towers, where the latter is also a major issue in seawater cooling towers. Biofouling can significantly hamper the efficiency of cooling towers. The most popular methods used in cooling treatment to control biofouling are disinfection by chlorination. However, the disadvantages of chlorination are formation of harmful disinfection byproducts in the presence of high organic loading and safety concerns in the storage of chlorine gas. In this study, the research focuses on biofouling control in seawater cooling towers by investigating two different approaches. The first strategy addresses the use of alternative oxidants (i.e. ozone micro-bubbles and chlorine dioxide) in treatment of cooling towers. The second strategy investigates removing nutrients in seawater using granular activated carbon filter column and ultrafiltration to prevent the growth of microorganisms. Laboratory bench-scale tests in terms of temperature, cycle of concentration, dosage, etc. indicated that, at lower oxidant dosages (total residual oxidant (TRO) equivalent = 0.1 mg/l Cl2), chlorine dioxide had a better disinfection effect than chlorine and ozone. The performance of oxidizing biocides at pilot scale, operating at assorted conditions, showed that for the disinfectants tested, ozone could remove 95 % bioactivity of total number of bacteria and algae followed by chlorine dioxide at 85%, while conventional chlorine dosing only gave 60% reduction in bioactivities

  6. Comparison of different cooling regimes within a shortened liquid cooling/warming garment on physiological and psychological comfort during exercise

    Science.gov (United States)

    Leon, Gloria R.; Koscheyev, Victor S.; Coca, Aitor; List, Nathan

    2004-01-01

    The aim of this study was to compare the effectiveness of different cooling regime intensities to maintain physiological and subjective comfort during physical exertion levels comparable to that engaged in during extravehicular activities (EVA) in space. We studied eight subjects (six males, two females) donned in our newly developed physiologically based shortened liquid cooling/warming garment (SLCWG). Rigorous (condition 1) and mild (condition 2) water temperature cooling regimes were compared at physical exertion levels comparable to that performed during EVA to ascertain the effectiveness of a lesser intensity of cooling in maintaining thermal comfort, thus reducing energy consumption in the portable life support system. Exercise intensity was varied across stages of the session. Finger temperature, rectal temperature, and subjective perception of overall body and hand comfort were assessed. Finger temperature was significantly higher in the rigorous cooling condition and showed a consistent increase across exercise stages, likely due to the restriction of heat extraction because of the intensive cold. In the mild cooling condition, finger temperature exhibited an overall decline with cooling, indicating greater heat extraction from the body. Rectal temperature was not significantly different between conditions, and showed a steady increase over exercise stages in both rigorous and mild cooling conditions. Ratings of overall comfort were 30% higher (more positive) and more stable in mild cooling (p<0.001). The mild cooling regime was more effective than rigorous cooling in allowing the process of heat exchange to occur, thus maintaining thermal homeostasis and subjective comfort during physical exertion.

  7. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.

  8. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  9. Cooling out of the blue

    International Nuclear Information System (INIS)

    Schmid, W.

    2006-01-01

    This article takes a look at solar cooling and air-conditioning, the use of which is becoming more and more popular. The article discusses how further research and development is necessary. The main challenge for professional experts is the optimal adaptation of building, building technology and solar-driven cooling systems to meet these new requirements. Various solar cooling technologies are looked at, including the use of surplus heat for the generation of cold for cooling systems. Small-scale solar cooling systems now being tested in trials are described. Various developments in Europe are discussed, as are the future chances for solar cooling in the market

  10. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  11. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  12. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  13. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    Science.gov (United States)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  14. Conceptual design of a 24--32 MW radially-cooled insert for a ≥45 T hybrid system

    International Nuclear Information System (INIS)

    Weggel, R.J.; Hake, M.E.; Stejskal, V.

    1994-01-01

    The FBNML is designing and will fabricate a radially-cooled insert magnet to generate 70% of the field of a system, Hybrid V, to surpass 45 T in a 32 mm bore. The insert is to have an overall diameter and a maximum active coil length of 610 mm. With a background field of 14 T the system should generate 47 T at 24 MW and nearly 49 T at 32 MW. The peak stress is extremely high, calling for conductors such as Be-Cu (UNS C17510) and 24% Ag-Cu with strengths up to 1,100 MPa. The peak heat flux density also is high, nearly 12 W/mm 2 . Because the water is coldest and its velocity highest where the heat flux is highest, however, the peak temperature is only 80 C. The water flow is ∼ 200 l/s at 27 atm. The system is to be very user friendly. Access is completely unobstructed at the top. Insert removal leaves the plumbing and electrical connections intact. The massive and expensive outer coils should be long lived, the inner coil easily replaceable. During an inner coil burnout, a sleeve intercepts arcing from the inner coil to the middle one, reducing burnout severity and fault loads. The insert should be a worthy successor to those of the FBNML's world-record holding systems, Hybrids II and III

  15. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  16. Self pumping magnetic cooling

    International Nuclear Information System (INIS)

    Chaudhary, V; Wang, Z; Ray, A; Ramanujan, R V; Sridhar, I

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn–Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (Δ T ) by ∼20 °C and ∼28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink. (letter)

  17. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  18. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  19. Cooling your home naturally

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

  20. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  1. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  2. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  3. Conduction cooling: multicrate fastbus hardware

    International Nuclear Information System (INIS)

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications

  4. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  5. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  6. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  7. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  8. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  9. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  10. The stochastic-cooling system for COSY-Juelich

    International Nuclear Information System (INIS)

    Brittner, P.; Danzglock, R.; Hacker, H.U.; Maier, R.; Pfister, U.; Prasuhn, D.; Singer, H.; Spiess, W.; Stockhorst, H.

    1991-01-01

    The cooling in the Cooler Synchrotron COSY will work in the ranges: Band 1: 1 to 1.8 GHz, Band 2: 1.8 to 3 GHz. The system allows cooling in the energy range of 0.8 to 2.5 GeV. The stochastic-cooling system is under development. Cooling characteristics have been calculated. The tanks are similar to those of the CERN-AC. But the COSY parameters have required changes of the tank design. Active RF components have been developed for COSY. Measured results are presented

  11. The MuCool/MICE LH2 Absorber Program

    International Nuclear Information System (INIS)

    Cummings, Mary Anne

    2004-01-01

    Hydrogen absorber R and D for the MuCool Collaboration is actively pushing ahead on two parallel and complementary fronts. The continuing LH2 engineering and technical developments by the MuCool group, conducted by ICAR institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University in cooperation with Fermilab, are summarized here, including plans for the first tests of an absorber prototype from Osaka University and KEK cooled by internal convection at the newly constructed FNAL MuCool Test Area (MTA). Designs for the high-power test of another absorber prototype (employing external heat exchange) are complete and the system will be installed by summer 2004. A convection-cooled absorber design is being developed for the approved MICE cooling demonstration at Rutherford Appleton Laboratory

  12. Use of fluorocarbons in the cooling of LHC experiments

    CERN Document Server

    Pimenta dos Santos, M

    2003-01-01

    Perfluorochemicals sold by 3M under the trade name 3M Fluorinert Electronic Liquids have been used for many years as heat transfer media in a variety of industries. The suitability of these liquids for the cooling of LHC experiment originates from their high dielectric strength as well as from their chemical stability under ionizing radiation. The Fluorinerts are clear, colorless, non-flammable with low toxicity and low corrosiveness. Additionally, they offer low global waming potential – GWP – and zero ozone-depletion potential – ODP. Some examples of fluorinert application in the cooling of LHC experiments will be presented : (a) the ATLAS Inner detector C3F8 evaporative cooling system (b) the ATLAS TRF C6F14 monophase cooling system and (c) the ALICE SPD “active heat pipe” C4F10 evaporative cooling system. A brief comparison of evaporative and monophase cooling systems will be outlined.

  13. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  14. Passive cooling systems in power reactors

    International Nuclear Information System (INIS)

    Aharon, J.; Harrari, R.; Weiss, Y.; Barnea, Y.; Katz, M.; Szanto, M.

    1996-01-01

    This paper reviews several R and D activities associated with the subject of passive cooling systems, conducted by the N.R.C.Negev thermohydraulic group. A short introduction considering different types of thermosyphons and their applications is followed by a detailed description of the experimental work, its results and conclusions. An ongoing research project is focused on the evaluation of the external dry air passive containment cooling system (PCCS) in the AP-600 (Westinghouse advanced pressurized water reactor). In this context some preliminary theoretical results and planned experimental research are for the fature described

  15. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  16. The role of the IAEA in advanced technologies for water-cooled reactors

    International Nuclear Information System (INIS)

    Cleveland, J.

    1996-01-01

    The role of the IAEA in advanced technologies for water-cooled reactors is described, including the following issues: international collaboration ways through international working group activities; IAEA coordinated research programmes; cooperative research in advanced water-cooled reactor technology

  17. Cooling of molecular ion beams

    International Nuclear Information System (INIS)

    Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.

    2004-01-01

    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

  18. Improve crossflow cooling tower operation

    International Nuclear Information System (INIS)

    Burger, R.

    1989-01-01

    This paper reports how various crossflow cooling tower elements can be upgraded. A typical retrofit example is presented. In the past decade, cooling tower technology has progressed. If a cooling tower is over ten years old, chances are the heat transfer media and mechanical equipment were designed over 30 to 40 years ago. When a chemical plant expansion is projected or a facility desires to upgrade its equipment for greater output and energy efficiency, the cooling tower is usually neglected until someone discovers that the limiting factor of production is the quality of cold water returning from the cooling tower

  19. Continuous cooling transformation behaviors of CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qing-sheng, E-mail: qingsheng.wu@fds.org.cn; Zheng, Shu-hui; Huang, Qun-ying; Liu, Shao-jun; Han, Yang-yang

    2013-11-15

    The continuous cooling transformation (CCT) behaviors of CLAM (China Low Activation Martensitic) steel were studied, the CCT diagram was constructed, and the influence of cooling rates on the microstructures was also investigated. The microstructures were investigated using optical microscopy (OM) and microhardness tests were also carried out. The results showed that CLAM steel possessed high hardenability and there were ferrite and martensite transformation regions only. The maximum cooling rate to form ferrite microstructure was found to be 10–12 K/min. In order to obtain fully ferrite microstructure, the cooling rate should be lower than 1 K/min. The CCT diagram also gave relevant parameters such as the transformation temperatures, i.e., A{sub c1}, A{sub c3}, M{sub s} and M{sub f} were 1124 K, 1193 K, 705 K and 593 K, respectively. The diagram made it possible to predict the microstructures and properties of CLAM steel with different cooling rates.

  20. Droplet bubbling evaporatively cools a blowfly.

    Science.gov (United States)

    Gomes, Guilherme; Köberle, Roland; Von Zuben, Claudio J; Andrade, Denis V

    2018-04-19

    Terrestrial animals often use evaporative cooling to lower body temperature. Evaporation can occur from humid body surfaces or from fluids interfaced to the environment through a number of different mechanisms, such as sweating or panting. In Diptera, some flies move tidally a droplet of fluid out and then back in the buccopharyngeal cavity for a repeated number of cycles before eventually ingesting it. This is referred to as the bubbling behaviour. The droplet fluid consists of a mix of liquids from the ingested food, enzymes from the salivary glands, and antimicrobials, associated to the crop organ system, with evidence pointing to a role in liquid meal dehydration. Herein, we demonstrate that the bubbling behaviour also serves as an effective thermoregulatory mechanism to lower body temperature by means of evaporative cooling. In the blowfly, Chrysomya megacephala, infrared imaging revealed that as the droplet is extruded, evaporation lowers the fluid´s temperature, which, upon its re-ingestion, lowers the blowfly's body temperature. This effect is most prominent at the cephalic region, less in the thorax, and then in the abdomen. Bubbling frequency increases with ambient temperature, while its cooling efficiency decreases at high air humidities. Heat transfer calculations show that droplet cooling depends on a special heat-exchange dynamic, which result in the exponential activation of the cooling effect.

  1. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  2. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    2001-03-01

    connected to the electric power network and where the effect tax, except in certain German areas, is low. Should a European market for solar cooling be developed a conscious policy is required, which rewards effect savings. Because of the non-existing domestic market and the diffuse European market possibilities active Danish participation in IEA Task 25 it is not recommended. (EHS)

  3. Cooling device in thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Tsutomu.

    1988-01-01

    Purpose: To prevent loss of cooling effect over the entire torus structure directly after accidental toubles in a cooling device of a thermonuclear device. Constitution: Coolant recycling means of a cooling device comprises two systems, which are alternately connected with in-flow pipeways and exit pipeways of adjacent modules. The modules are cooled by way of the in-flow pipeways and the exist pipeways connected to the respective modules by means of the coolant recycling means corresponding to the respective modules. So long as one of the coolant recycling means is kept operative, since every one other modules of the torus structure is still kept cooled, the heat generated from the module put therebetween, for which the coolant recycling is interrupted, is removed by means of heat conduction or radiation from the module for which the cooling is kept continued. No back-up emergency cooling system is required and it can provide high economic reliability. (Kamimura, M.)

  4. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  5. Influence of the irradiation time on the activity of decay products during the cooling. Case: Mo-98 {yields} Mo-99 {yields} Tc-99m; Influencia del tiempo de irradiacion en la actividad de los productos de decaimiento durante el enfriamiento. Caso: Mo-98 {yields} Mo-99 {yields} Tc-99m

    Energy Technology Data Exchange (ETDEWEB)

    Reyes J, J.L.; Ruiz C, M.A.; Alanis M, J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work the behavior of the activity in the cooling time of Mo-99, Tc-99 and Tc-99m obtained by Neutron activation of natural Mo is described. The analytical development is based on the application of the Laplace transform for resolving the balance equations. (Author)

  6. Superconducting magnet cooling system

    Science.gov (United States)

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  7. Illumination and radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shanhui; Raman, Aaswath Pattabhi; Zhu, Linxiao; Rephaeli, Eden

    2018-03-20

    Aspects of the present disclosure are directed to providing and/or controlling electromagnetic radiation. As may be implemented in accordance with one or more embodiments, an apparatus includes a first structure that contains an object, and a second structure that is transparent at solar wavelengths and emissive in the atmospheric electromagnetic radiation transparency window. The second structure operates with the first structure to pass light into the first structure for illuminating the object, and to radiatively cool the object while preserving the object's color.

  8. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  9. Gas cooled HTR

    International Nuclear Information System (INIS)

    Schweiger, F.

    1985-01-01

    In the He-cooled, graphite-moderated HTR with spherical fuel elements, the steam generator is fixed outside the pressure vessel. The heat exchangers are above the reactor level. The hot gases stream from the reactor bottom over the heat exchanger, through an annular space around the heat exchanger and through feed lines in the side reflector of the reactor back to its top part. This way, in case of shutdown there is a supplementary natural draught that helps the inner natural circulation (chimney draught effect). (orig./PW)

  10. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    NARCIS (Netherlands)

    Broeze, J.; Sluis, van der S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation &

  11. Cooling power technology at a turning point

    International Nuclear Information System (INIS)

    Hese, L.H.

    1978-01-01

    From freshwater cooling and efflux condenser cooling to wet recirculation cooling, hybrid and dry cooling towers, cooling tower technology has seen a development characterized by higher cooling tower costs and reduced power plant efficiency. Therefore, all research work done at the moment concentrates on making up for the economic losses connected with improved environmental protection. (orig.) [de

  12. Thermographic venous blood flow characterization with external cooling stimulation

    Science.gov (United States)

    Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh

    2018-05-01

    Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.

  13. Antarctica: Cooling or Warming?

    Science.gov (United States)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  14. Cooled spool piston compressor

    Science.gov (United States)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  15. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  16. Review of cavity optomechanical cooling

    International Nuclear Information System (INIS)

    Liu Yong-Chun; Hu Yu-Wen; Xiao Yun-Feng; Wong Chee Wei

    2013-01-01

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit. (topical review - quantum information)

  17. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality.

  18. Plasma chemistry of the sealed-off slab CO laser active medium pumped by radio-frequency discharge with liquid-nitrogen-cooled electrodes

    Science.gov (United States)

    Ionin, A. A.; Kozlov, A. Yu.; Seleznev, L. V.; Sinitsyn, D. V.

    2017-09-01

    The long-term time behavior of the output power of a sealed-off cryogenic slab CO laser pumped by a repetitively pulsed RF discharge and operating on the overtone (λ = 2.6-3.5 μm) vibrational-rotational transitions of the CO molecule was studied experimentally. It is shown that adding of an anomalously large amount of oxygen (up to 50% with respect to the CO concentration) to the initial gas mixture CO : He = 1 : 10 leads to a manyfold (by several tens of times) increase in the duration of the laser operating cycle (until lasing failure due to the degradation of the active medium). In this case, the laser life-time without replacement of the active medium reaches 105-106 pulses. Using various diagnostics (including luminescence spectroscopy and IR and UV absorption spectroscopy), regularities in the time-behavior of the concentrations of the main component of the active medium (CO molecules) and the products of plasmachemical reactions (O3, CO2) generated in the discharge gap during the laser operating cycle are revealed. Time correlation between the characteristics of the active medium and the laser output power are analyzed. A phenomenological approach to describing the entirety of plasmachemical, purely chemical, gas-dynamic, and diffusion processes determining the behavior of the laser output characteristics throughout the laser operating cycle is offered.

  19. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  20. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  1. Stochastic cooling technology at Fermilab

    Science.gov (United States)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  2. Stochastic cooling technology at Fermilab

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    2004-01-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented

  3. Solar heating and cooling technical data and systems analysis

    Science.gov (United States)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  4. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  5. Theory of tapered laser cooling

    International Nuclear Information System (INIS)

    Okamoto, Hiromi; Wei, J.

    1998-01-01

    A theory of tapered laser cooling for fast circulating ion beams in a storage ring is constructed. The authors describe the fundamentals of this new cooling scheme, emphasizing that it might be the most promising way to beam crystallization. The cooling rates are analytically evaluated to study the ideal operating condition. They discuss the physical implication of the tapering factor of cooling laser, and show how to determine its optimum value. Molecular dynamics method is employed to demonstrate the validity of the present theory

  6. Assessment of competing reaction effect on results of activation analysis with use of water-cooled and water-moderated reactor neutron fields

    International Nuclear Information System (INIS)

    Avsaragov, Kh.B.; Toichkin, A.N.; Lobov, A.N.

    1988-01-01

    Effect of competing threshold reactions on results of neutron activation analysis (NAA) using WWER-440 reactor is investigated. (n,p) and (n,α) fast neutron and 232 Th (n,f), 235 U(n,f), 238 U(n,f) fast and thermal neutron processes are considered as competing ones. Contribution of competing reactions when determining Na, Mn, Sc, Fe, Cu, Y for the core channels of in-core monitoring and ionization chamber ring water protection is experimentally evaluated using a spectrometer with Ge(Li) detector in a set with AI-4096 analyser. Under rigid neutron fields interfering activity increases at the expense of thorium and uranium atom fission. It is stressed that when determining Zr, Mo, Ru, Ba, La, Ce, Nd contribution of fission reaction products can appear to be sufficient

  7. Cool-weather activity of the forensically important hairy maggot blow fly Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) on carrion in Upstate South Carolina, United States.

    Science.gov (United States)

    Cammack, Jonathan A; Nelder, Mark P

    2010-02-25

    The hairy maggot blow fly Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) has expanded its range in the United States since its introduction into Texas (ca. 1980) and has been collected in 15 states. We investigated the bionomics of immature and adult C. rufifacies collected from carcasses of a raccoon Procyon lotor (Linnaeus) and white-tailed deer Odocoileus virginianus Zimmerman in Upstate South Carolina during November 2007, and used these insects to estimate the minimum period of insect activity. Puparia of C. rufifacies were collected from deer carrion; 28% were parasitized by Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). The mean daily ambient temperature during this study was 11.4+/-1.02 degrees C, representing the lowest recorded mean temperature for adult activity of C. rufifacies; adults of C. rufifacies were observed flying among the carcasses at 9.0 degrees C. Although C. rufifacies is considered a warm-weather blow fly, researchers should be aware of its activity at suboptimal conditions, behavior that might aid its expansion into more northern areas. 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Calculation of heat fluxes induced by radio frequency heating on the actively cooled protections of ion cyclotron resonant heating (ICRH) and lower hybrid (LH) antennas in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, G., E-mail: Guillaume.ritz@gmail.com [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Corre, Y., E-mail: Yann.corre@cea.fr [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Rault, M.; Missirlian, M. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Portafaix, C. [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint Paul-lez-Durance (France); Martinez, A.; Ekedahl, A.; Colas, L.; Guilhem, D.; Salami, M.; Loarer, T. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France)

    2013-10-15

    Highlights: ► The heat flux generated by radiofrequency (RF) heating was calculated using Tore Supra's heating antennas. ► The highest heat flux value, generated by ions accelerated in RF-rectified sheath potentials, was 5 MW/m{sup 2}. ► The heat flux on the limiters of antennas was in the same order of magnitude as that on the toroidal pumping limiter. -- Abstract: Lower hybrid current drive (LHCD) and ion cyclotron resonance heating (ICRH) are recognized as important auxiliary heating and current drive methods for present and next step fusion devices. However, these radio frequency (RF) systems generate a heat flux up to several MW/m{sup 2} on the RF antennas during plasma operation. This paper focuses on the determination of the heat flux deposited on the lateral protections of the RF antennas in Tore Supra. The heat flux was calculated by finite element method (FEM) using a model of the lateral protection. The FEM calculation was based on surface temperature measurements using infrared cameras monitoring the RF antennas. The heat flux related to the acceleration of electrons in front of the LHCD grills (LHCD active) and to the acceleration of ions in RF-rectified sheath potentials (ICRH active) were calculated. Complementary results on the heat flux related to fast ions (ICRH active with a relatively low magnetic field) are also reported in this paper.

  9. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  10. Emergency core cooling systems

    International Nuclear Information System (INIS)

    Kubokoya, Takashi; Okataku, Yasukuni.

    1984-01-01

    Purpose: To maintain the fuel soundness upon loss of primary coolant accidents in a pressure tube type nuclear reactor by injecting cooling heavy water at an early stage, to suppress the temperature of fuel cans at a lower level. Constitution: When a thermometer detects the temperature rise and a pressure gauge detects that the pressure for the primary coolants is reduced slightly from that in the normal operation upon loss of coolant accidents in the vicinity of the primary coolant circuit, heavy water is caused to flow in the heavy water feed pipeway by a controller. This enables to inject the heavy water into the reactor core in a short time upon loss of the primary coolant accidents to suppress the temperature rise in the fuel can thereby maintain the fuel soundness. (Moriyama, K.)

  11. Cooling of rectangular bars

    International Nuclear Information System (INIS)

    Frainer, V.J.

    1979-01-01

    A solution of the time-transient Heat Transfer Differential Equation in rectangular coordinates is presented, leading to a model which describes the temperature drop with time in rectangular bars. It is similar to an other model for cilindrical bars which has been previously developed in the Laboratory of Mechanical Metallurgy of UFRGS. Following these models, a generalization has been made, which permits cooling time evaluation for all profiles. These results are compared with experimental laboratory data in the 1200 to 800 0 C range. Some other existing models were also studied which have the purpose of studing the same phenomenon. Their mathematical forms and their evaluated values are analyzed and compared with experimental ones. (Author) [pt

  12. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  13. Core catcher cooling for a gas-cooled fast breeder

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  14. Film cooling for a closed loop cooled airfoil

    Science.gov (United States)

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  15. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  16. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    OpenAIRE

    Broeze, J.; Sluis, van der, S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation & storage. The project was aimed to create innovative combinations of these renewable cooling technologies and sophisticated control systems, to design renewable climate systems for various applicati...

  17. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  18. Floor cooling. Extreme cooling efficiency due to vapour barrier? Optimized floor heating and cooling system; Flaechenkuehlung. Extreme Kuehlleistung dank Dampfsperre. Optimiertes Fussbodenheiz- und Kuehlsystem

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Rolf [Wieland-Werke AG, Ulm (Germany). Technisches Marketing Haustechnik

    2010-07-01

    The active cooling of offices generally is accepted ever more. Among other things this is due to the fact that the climatic change results in a hotter summer on a long-term basis also in Germany. Also the use of computers, printing and copying machines increases the thermal load of the rooms considerably. The architecturally affected facade design with large glass areas also has an impact. The thermal comfort maintains the efficiency in offices. Thus, the efficient space cooling has become standard.

  19. LS1 Report: Summer cool down

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    As the final LS1 activities are carried out in the machine, teams have been cooling down the accelerator sector by sector in preparation for beams.   The third sector of the LHC to be cooled down - sector 1-2 - has seen the process begin this week. During the cool-down phase, survey teams are measuring and smoothing (or realigning) the magnets at cold. By the end of August, five sectors of the machine will be in the process of cooling down, with one (sector 6-7) at cold. The LHC Access Safety System (LASS) is now being commissioned, and will be validated during the DSO tests at the beginning of October. As teams consolidate the modifications made to LASS during the shutdown, many points were closed for testing purposes. The CSCM (copper stabiliser continuity measurement) tests have been completed in the first sector (6-7) and no defect has been found. These results will be presented to the LHC Machine Committee next week. CSCM tests will start in the second sector in mid-August. Following many...

  20. Legionella confirmation in cooling tower water

    Science.gov (United States)

    Farhat, Maha; Shaheed, Raja A.; Al-Ali, Haidar H.; Al-Ghamdi, Abdullah S.; Al-Hamaqi, Ghadeer M.; Maan, Hawraa S.; Al-Mahfoodh, Zainab A.; Al-Seba, Hussain Z.

    2018-01-01

    Objectives: To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires’ disease. Methods: Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. Results: All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Conclusion: Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods. PMID:29436561

  1. Biofouling control of industrial seawater cooling towers

    KAUST Repository

    Al-Bloushi, Mohammed

    2017-01-01

    In this study, the research focuses on biofouling control in seawater cooling towers by investigating two different approaches. The first strategy addresses the use of alternative oxidants (i.e. ozone micro-bubbles and chlorine dioxide) in treatment of cooling towers. The second strategy investigates removing nutrients in seawater using granular activated carbon filter column and ultrafiltration to prevent the growth of microorganisms. Laboratory bench-scale tests in terms of temperature, cycle of concentration, dosage, etc. indicated that, at lower oxidant dosages (total residual oxidant (TRO) equivalent = 0.1 mg/l Cl2), chlorine dioxide had a better disinfection effect than chlorine and ozone. The performance of oxidizing biocides at pilot scale, operating at assorted conditions, showed that for the disinfectants tested, ozone could remove 95 % bioactivity of total number of bacteria and algae followed by chlorine dioxide at 85%, while conventional chlorine dosing only gave 60% reduction in bioactivities. Test results of GAC bio-filter showed that around 70 % removal of total organic carbon in the seawater feed was achieved and was effective in keeping the microbial growth to a minimum. The measured results from this study enable designers of seawater cooling towers to manage the biofouling problems when such cooling towers are extrapolated to a pilot scale.

  2. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  3. Be Cool, Man! / Jevgeni Levik

    Index Scriptorium Estoniae

    Levik, Jevgeni

    2005-01-01

    Järg 1995. aasta kriminaalkomöödiale "Tooge jupats" ("Get Shorty") : mängufilm "Be Cool, Chili Palmer on tagasi!" ("Be Cool") : režissöör F. Gary Gray, peaosades J. Travolta ja U. Thurman : USA 2005. Lisatud J. Travolta ja U. Thurmani lühiintervjuud

  4. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  5. Construction progress of the cooling & ventilation in the LHC project

    CERN Document Server

    Body, Y; Josa, F; Monsted, A; Pirollet, B; CERN. Geneva. ST Division

    2002-01-01

    After the LEP dismantling Phase the Cooling and Ventilation Group has started the LHC construction work. Year 2001 through to 2004 will certainly be the most important period of activity for the CV group in the erection phase The author will report on the current works that are in progress on the different LHC Points distinguishing between the Ventilation and the Water Cooling installations. The Ventilation work completed in the new surface buildings in Points 1, 4,5,6 and 8. The work for the Cooling plants comprehend to the pumping stations, the cooling towers and the chilled water production stations in Points 1 and 5, For all of these activities, an updated report of the progress the work, the planning and of the expenses are given. Finally, a brief overview of the future activities is presented.

  6. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  7. Modelling of flow and heat transfer in PV cooling channels

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    Under sunny conditions, the temperature of photovoltaic (PV) modules can be 20 to 30 degrees C above the ambient air temperature. This affects the performance of PV modules, particularly in regions with hot climates. For silicon solar cells, the maximum power decreases between 0.4 and 0.5 per cent for every degree C of temperature increase above a reference value. In an effort to address this issue, this experimental and numerical study examined an active PV panel evaporative cooling scheme that is typically used in hot arid climates. The cooling system circulated cool air behind the PV modules, extracting heat and lowering solar cell temperature. A fluid dynamic and thermal model of the combined system was developed using the EES program in order to study the configuration of the cooling channel and the characteristics of the cooling flow. Heat transfer and flow characteristics in the cooling channel were then calculated along with pressure drop and fan power associated with the air-circulation. The net power output was also calculated. The objective was to design a cost efficient cooling system and to optimize its flow and pressure drop in order to maximize power output. The study demonstrated how the performance of the PV panel is influenced by the geometry of the cooling channel, the inlet air temperature and the air flow rate. 2 refs.

  8. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  9. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  10. Cooling off with physics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Chris [Unilever R and D (United Kingdom)

    2003-08-01

    You might think of ice cream as a delicious treat to be enjoyed on a sunny summer's day. However, to the ice-cream scientists who recently gathered in Thessaloniki in Greece for the 2nd International Ice Cream Symposium, it is a complex composite material. Ice cream consists of three dispersed phases: ice crystals, which have a mean size of 50 microns, air bubbles with a diameter of about 70 microns, and fat droplets with a size of 1 micron. These phases are held together by what is called the matrix - not a sci-fi film, but a viscous solution of sugars, milk proteins and polysaccharides. The microstructure, and hence the texture that you experience when you eat ice cream, is created in a freezing process that has remained fundamentally unchanged since the first ice-cream maker was patented in the 1840s. The ingredients - water, milk protein, fat, sugar, emulsifiers, stabilizers, flavours and a lot of air - are mixed together before being pasteurized and homogenized. They are then pumped into a cylinder that is cooled from the outside with a refrigerant. As the mixture touches the cylinder wall it freezes and forms ice crystals, which are quickly scraped off by a rotating blade. The blade is attached to a beater that disperses the ice crystals into the mixture. At the same time, air is injected and broken down into small bubbles by the shear that the beater generates. As the mixture passes along the cylinder, the number of ice crystals increases and its temperature drops. As a result, the viscosity of the mixture increases, so that more energy input is needed to rotate the beater. This energy is dissipated as heat, and when the ice cream reaches about -6 deg. C the energy input through the beater equals the energy removed as heat by the refrigerant. The process therefore becomes self-limiting and it is not possible to cool the ice cream any further. However, at -6 deg. C the microstructure is unstable. The ice cream therefore has to be removed from the freezer

  11. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  12. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  13. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    In Europe more than 400 solar cooling systems have been installed. By contrast, only a small number of solar cooling installations exist in Australia - primarily adsorption and absorption systems for commercial and hospitals - although these systems are growing. As with other renewable energy technologies, cost is a challenge. However solar cooling is currently competitive with other technologies, with some suggesting that system costs have been decreasing by about 20% per annum in recent times. Australia is also leading efforts in the development of residential solar desiccant technology, currently commercialising Australian-developed technology. Commercial and industrial enterprises are increasingly aware of the impact of demand charges, the potential to install technology as a hedge against future energy price rises and opportunities associated with increased on-site generation and reduced reliance on the grid, often necessitating on-site demand reduction and management. They are also driven by environmental and corporate social responsibility objectives as well as the opportunity for energy independence and uninterruptible operation. Interestingly, many of these interests are mirrdred at residential level, inspiring CSIRO's commercialisation of a domestic scale solar air conditioner with Australian manufacturer Brevis Climate Systems. Australia and other countries are increasingly aware of solar cooling as technology which can reduce or replace grid-powered cooling, particularly in applications where large building thermal energy requirements exist. In these applications, heating, cooling and hot water are generated and used in large amounts and the relative amounts of each can be varied dynamically, depending on building requirements. Recent demonstrations of solar cooling technology in Australia include Hunter TAFE's Solar Desiccant Cooling System - which provides heating, cooling and hot water to commercial training kitchens and classrooms - GPT

  14. Emergency core cooling system

    International Nuclear Information System (INIS)

    Sato, Akira; Kobayashi, Masahide.

    1983-01-01

    Purpose: To enable a stable operation of an emergency core cooling system by preventing the system from the automatic stopping at an abnormally high level of the reactor water during its operation. Constitution: A pump flow rate signal and a reactor water level signal are used and, when the reactor water level is increased to a predetermined level, the pump flow rate is controlled by the reactor water level signal instead of the flow rate signal. Specifically, when the reactor water level is gradually increased by the water injection from the pump and exceeds a setting signal for the water level, the water level deviation signal acts as a demand signal for the decrease in the flow rate of the pump and the output signal from the water level controller is also decreased depending on the control constant. At a certain point, the output signal from the water level controller becomes smaller than the output signal from the flow rate controller. Thus, the output signal from the water level controller is outputted as the output signal for the lower level preference device. In this way, the reactor water level and the pump flow rate can be controlled within a range not exceeding the predetermined pump flow rate. (Horiuchi, T.)

  15. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  16. Magnet cooling economics

    International Nuclear Information System (INIS)

    Parmer, J.F.; Liggett, M.W.

    1985-01-01

    The recommendation to use superfluid helium II in superconducting magnet design has become more prevalent in recent years. Advanced fusion reactor studies such as the Mirror Advanced Reactor Study recently completed by the Lawrence Livermore National Laboratory (LLML) have based superconducting magnet design on the use of He II because of reduced magnet volume, improved stability characteristics, or increased superconductor critical current at fields above 9 Tesla. This paper reports the results of a study to determine the capital costs ($/watt) and the operating costs (watts/watt) of refrigeration systems in the 1.8K to 300K temperature range. The cost data is applied to a 1.8K magnet that is subject to neutronic heating wherein the magnet case is insulated from the winding so that the case can be cooled at a higher temperature (less costly) than the winding. The life cycle cost (capital plus operating) is reported as a function of coil temperature and insulation thickness. In some cases there is an optimum, least-cost thickness. In addition, the basic data can be used to evaluate the impact of neutron shielding effectiveness trades on the combined shield, magnet, cryorefrigerator, and operating life cycle cost

  17. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions

    Science.gov (United States)

    Saper, L.; Stolper, E.

    2017-12-01

    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  18. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  19. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  20. The CO{sub 2} cooling gas for the reactors G2/G3 (leaking, analysis, activity); Le CO{sub 2} de refroidissement des reacteurs G2/G3 (fuites, analyse, activite)

    Energy Technology Data Exchange (ETDEWEB)

    Meiffren, J; Dupay, F [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1965-07-01

    The main objective of this study is to publicise the data obtained during five years operation of the reactor G2 and G3 at Marcoule as far as the cooling gas is concerned, from storage of reserves up to its slow escape into the atmosphere, and including all the stages of its practical use, its chemical examination, its nuclear behaviour and its possible physicochemical transformation. This work can not only yield information about the operations carried out at Marcoule but can also provide useful suggestions for improving the sealing and for decreasing the activity of the pressurized gas circuits in reactors similar to G2/G3. (authors) [French] Le but principal de cette etude est de diffuser les connaissances acquises au cours de cinq annees d'exploitation des reacteurs G2 et G3 de Marcoule en ce qui concerne le gaz de refroidissement, depuis son stockage d'appoint jusqu'a son echappement lent dans l'atmosphere, en passant par tous les stades de son utilisation pratique, de son etude chimique, de son comportement nucleaire, eventuellement de ses transformations physico-chimiques. Cette etude peut, non seulement renseigner sur les operations effectuees couramment a Marcoule, mais egalement donner des suggestions interessantes pour l'amelioration de l'etancheite et la diminution de l'activite des circuits de gaz en pression dans des reacteurs analogues a G2/G3. (auteurs)

  1. Quantitative data analysis to determine best food cooling practices in U.S. restaurants.

    Science.gov (United States)

    Schaffner, Donald W; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2015-04-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41 °F [5 °C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  2. Quantitative Data Analysis To Determine Best Food Cooling Practices in U.S. Restaurants†

    Science.gov (United States)

    Schaffner, Donald W.; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2017-01-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41°F [5°C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  3. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  4. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  5. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    Science.gov (United States)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2015-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  6. The Cool 100 book

    Energy Technology Data Exchange (ETDEWEB)

    Haselip, J.; Pointing, D.

    2011-07-01

    The aim of The Cool 100 book is to document 100 inspiring, educational and practical examples of sustainable and accessible energy supply solutions created by, or suitable for, isolated communities in the cooler regions of the world. The book features the following projects, explored in detail: 1. Promoting Unst Renewable Energy (PURE) project, a pioneering project that demonstrates how wind power and hydrogen technologies can be combined to meet the energy needs of a remote industrial estate on the island of Unst in the British Isles. 2. The EDISON project, or Electric vehicles in a Distributed and Integrated market using Sustainable energy and Open Networks that explored increased renewable energy use and electric vehicle operation in Denmark, with a case study on the island of Bornholm. 3. The Sarfannguit Wireless Electricity Reading project, which has significantly improved utility metering and enabled improved energy management, reduced electricity demand, and the introduction of renewable energy technologies in the isolated villages of Greenland. 4. The Renewable Energy Croft and Hydrogen facility, which uses innovative technologies to support a gardening facility in the Outer Hebrides (Scotland), and is also a working laboratory for students of the local university to develop a hydrogen energy economy. 5. The Samsoe Renewable Energy Island in Denmark, an iconic example of how an island community can consume only green electricity by using a range of innovative technologies and behavioural changes to reduce demand and to harness green energy resources. 6. The Hydrogen Office Project which demonstrates how a commercial office in the coastal town of Methil in Scotland can be supported by a novel renewable, hydrogen and fuel cell energy system, and how the local community is engaged with the project. 7. The Northern Sustainable House in Nunavut, Canada, which explores the process and results of a project to design and implement housing for local families that

  7. CO$_2$ cooling experience (LHCb)

    CERN Document Server

    Van Lysebetten, Ann; Verlaat, Bart

    2007-01-01

    The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

  8. Cooling towers principles and practice

    CERN Document Server

    Hill, G B; Osborn, Peter D

    1990-01-01

    Cooling Towers: Principles and Practice, Third Edition, aims to provide the reader with a better understanding of the theory and practice, so that installations are correctly designed and operated. As with all branches of engineering, new technology calls for a level of technical knowledge which becomes progressively higher; this new edition seeks to ensure that the principles and practice of cooling towers are set against a background of up-to-date technology. The book is organized into three sections. Section A on cooling tower practice covers topics such as the design and operation of c

  9. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  10. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  11. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25; Solvarmedrevet koeling. Forberedelse af evt. deltagelse i IEA, Solar Heating Cooling Task 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    everybody are connected to the electric power network and where the effect tax, except in certain German areas, is low. Should a European market for solar cooling be developed a conscious policy is required, which rewards effect savings. Because of the non-existing domestic market and the diffuse European market possibilities active Danish participation in IEA Task 25 it is not recommended. (EHS)

  12. Operational Characteristics of Four Commercially Available Personal Cooling Vests

    Science.gov (United States)

    Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Lee, Hank C.; Webbon, Bruce W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive and two active cooling vests, and to measure the body temperature and circulatory changes produced by each cooling vest configuration. The MicroClimate Systems and the Life Enhancement Tech(LET) lightweight liquid cooling vests, the Steele Vest and LET's Zipper Front Garment were used to cool the chest region of 11 male and 10 female subjects (25 to 55 yr.) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approx.21 C), were tested for 60 min. with the cooling system operated at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a URI Inc. Biolog ambulatory monitor. In general, the male and female subjects' rectal and ear temperature responses to cooling were similar for all vest configurations tested. Oral temperatures during the recovery period were significantly (Pcooling and recovery periods. These results show that all vest configurations elicit a similar thermal response in both male and female subject groups. However, subject population variance was rather large and may have masked differences between the vests. One vest may prove more effective than another for a given individual, and experience is the only means of determining this.

  13. Cooling improves the writing performance of patients with writer's cramp.

    Science.gov (United States)

    Pohl, Christoph; Happe, Jörg; Klockgether, Thomas

    2002-11-01

    Cooling of hand and forearm muscles by immersion in 15 degrees C cold water for 5 minutes improved the writing performance of patients with writer's cramp. Since abnormal processing of muscle spindle afferent discharges contributes to the pathology of writer's cramp, this effect might result from a reduction in muscle spindle activity by lowering muscle temperature. Cooling is a simple, cheap, and safe procedure, providing temporary relief for patients with writer's cramp. Copyright 2002 Movement Disorder Society

  14. Supplementary report: cooling water systems for Darlington G.S

    International Nuclear Information System (INIS)

    1975-08-01

    This report summarizes Ontario Hydro's existing aquatic environmental programs, presents results of these investigations, and outlines plans and activities for expanded aquatic environment studies including the evaluation of alternative cooling systems. This report outlines specific considerations regarding possible alternative cooling arrangements for the Darlington station. It concludes with a recommendation that a study be initiated to examine the potential benefits of using the heated discharge water in a warm water recreational centre. (author)

  15. Energy Savers: Cool Summer Tips

    International Nuclear Information System (INIS)

    Miller, M.

    2001-01-01

    A tri-fold brochure addressing energy-saving tips for homeowners ranging from low- or no-cost suggestions to higher cost suggestions for longer-term savings. Cooling, windows, weatherizing, and landscaping are addressed

  16. Extended analysis of cooling curves

    International Nuclear Information System (INIS)

    Djurdjevic, M.B.; Kierkus, W.T.; Liliac, R.E.; Sokolowski, J.H.

    2002-01-01

    Thermal Analysis (TA) is the measurement of changes in a physical property of a material that is heated through a phase transformation temperature range. The temperature changes in the material are recorded as a function of the heating or cooling time in such a manner that allows for the detection of phase transformations. In order to increase accuracy, characteristic points on the cooling curve have been identified using the first derivative curve plotted versus time. In this paper, an alternative approach to the analysis of the cooling curve has been proposed. The first derivative curve has been plotted versus temperature and all characteristic points have been identified with the same accuracy achieved using the traditional method. The new cooling curve analysis also enables the Dendrite Coherency Point (DCP) to be detected using only one thermocouple. (author)

  17. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  18. Enhancement of Cognitive Processing by Multiple Sclerosis Patients Using Liquid Cooling Technology: A Case Study

    Science.gov (United States)

    Montgomery, Leslie D.; Montgomery, Richard W.; Ku, Yu-Tsuan; Luna, Bernadette (Technical Monitor)

    1997-01-01

    Cognitive dysfunction is a common symptom in patients with multiple sclerosis (MS). This can have a significant impact on the quality of life of both the patient and of their primary care giver. This case study explores the possibility that liquid cooling therapy may be used to enhance the cognitive processing of MS patients in the same way that it provides temporary relief of some physical impairment. Two MS patients were presented a series of pattern discrimination tasks before and after being cooled with a liquid cooling garment for a one hour period. The subject whose ear temperature was reduced during cooling showed greater electroencephalographic (EEG) activity and scored much better on the task after cooling. The patient whose ear temperature was unaffected by cooling showed less EEG activity and degraded performance after the one hour cooling period.

  19. Cooling methods for power plants

    International Nuclear Information System (INIS)

    Gaspersic, B.; Fabjan, L.; Petelin, S.

    1977-01-01

    There are some results of measurements carried out on the wet cooling tower 275 MWe at TE Sostanj and on the experimental cooling tower at Jozef Stefan Institute, as well. They are including: the measurements of the output air conditions, the measurements of the cross current of water film and vapour-air flowing through two plates, and the distribution of velocity in boundary layer measured by anemometer

  20. Induced draught circular cooling tower

    International Nuclear Information System (INIS)

    Blanquet, J.C.

    1980-01-01

    Induced draught atmospheric cooling towers are described, to wit those in which the circulation is by power fans. This technique with fans grouped together in the centre enables a single tower to be used and provides an excellent integration of the steam wreath into the atmosphere. This type of cooling tower has been chosen for fitting out two 900 MW units of the Chinon power station in France [fr

  1. DETERMINATION OF RADIATOR COOLING SURFACE

    Directory of Open Access Journals (Sweden)

    A. I. Yakubovich

    2009-01-01

    Full Text Available The paper proposes a methodology for calculation of a radiator cooling surface with due account of heat transfer non-uniformity on depth of its core. Calculation of radiator cooling surfaces of «Belarus-1221» and «Belarus-3022» tractors has been carried out in the paper. The paper also advances standard size series of radiators for powerful «Belarus» tractor type.

  2. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  3. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat.

    Science.gov (United States)

    Cotter, J D; Sleivert, G G; Roberts, W S; Febbraio, M A

    2001-04-01

    Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (Pcooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.

  4. Biomedical Use of Aerospace Personal Cooling Garments

    Science.gov (United States)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  5. Atmospheric emissions from power plant cooling towers

    International Nuclear Information System (INIS)

    Micheletti, W.

    2006-01-01

    Power plant recirculated cooling systems (cooling towers) are not typically thought of as potential sources of air pollution. However, atmospheric emissions can be important considerations that may influence cooling tower design and operation. This paper discusses relevant U.S. environmental regulations for potential atmospheric pollutants from power plant cooling towers, and various methods for estimating and controlling these emissions. (orig.)

  6. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  7. Specific cooling capacity of liquid nitrogen

    Science.gov (United States)

    Kilgore, R. A.; Adcock, J. B.

    1977-01-01

    The assumed cooling process and the method used to calculate the specific cooling capacity of liquid nitrogen are described, and the simple equation fitted to the calculated specific cooling capacity data, together with the graphical form calculated values of the specific cooling capacity of nitrogen for stagnation temperatures from saturation to 350 K and stagnation pressures from 1 to 10 atmospheres, are given.

  8. 14 CFR 29.908 - Cooling fans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans installed...

  9. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics

    International Nuclear Information System (INIS)

    Lei, Jiawei; Kumarasamy, Karthikeyan; Zingre, Kishor T.; Yang, Jinglei; Wan, Man Pun; Yang, En-Hua

    2017-01-01

    Highlights: • Cool colored coating and PCM are two complementary passive cooling strategies. • A PCM cool colored coating system is developed. • The coating reduces cooling energy by 8.5% and is effective yearly in tropical Singapore. - Abstract: Cool colored coating and phase change materials (PCM) are two passive cooling strategies often used separately in many studies and applications. This paper investigated the integration of cool colored coating and PCM for building cooling through experimental and numerical studies. Results showed that cool colored coating and PCM are two complementary passive cooling strategies that could be used concurrently in tropical climate where cool colored coating in the form of paint serves as the “first protection” to reflect solar radiation and a thin layer of PCM forms the “second protection” to absorb the conductive heat that cannot be handled by cool paint. Unlike other climate zones where PCM is only seasonally effective and cool paint is only beneficial during summer, the application of the proposed PCM cool colored coating in building envelope could be effective throughout the entire year with a monthly cooling energy saving ranging from 5 to 12% due to the uniform climatic condition all year round in tropical Singapore.

  10. New cooling regulation technology of secondary cooling station in DCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Yan, Jun-wei; Zhu, Dong-sheng; Liu, Fei-long; Lei, Jun-xi [The Key Lab of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510641 (China); Liang, Lie-quan [The Key Lab of E-Commerce Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320 (China)

    2008-07-01

    In this paper, a kind of new control technology of secondary cooling station (constant flow rate/variable temperature difference) in district cooling system (DCS) is proposed in view of serial consequences including low efficiency and high operating cost caused by low temperature of supply water in DCS. This technology has been applied in DCS of Guangzhou University City. The result has already indicated that such technology can increase the supply and return temperatures of buildings, return water temperature of primary side in the plate heat exchanger unit, moreover, the efficiency of both the chiller and the whole system are improved significantly. (author)

  11. Beam Cooling with ionisation losses

    CERN Document Server

    Rubbia, Carlo; Kadi, Y; Vlachoudis, V

    2006-01-01

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more ...

  12. Newton's law of cooling revisited

    International Nuclear Information System (INIS)

    Vollmer, M

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer from any object to its surrounding is not only due to conduction and convection but also due to radiation. The latter does not vary linearly with temperature difference, which leads to deviations from Newton's law. This paper presents a theoretical analysis of the cooling of objects with a small Biot number. It is shown that Newton's law of cooling, i.e. simple exponential behaviour, is mostly valid if temperature differences are below a certain threshold which depends on the experimental conditions. For any larger temperature differences appreciable deviations occur which need the complete nonlinear treatment. This is demonstrated by results of some laboratory experiments which use IR imaging to measure surface temperatures of solid cooling objects with temperature differences of up to 300 K.

  13. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  14. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    . To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air......We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  15. High conductivity Be-Cu alloys for fusion reactors

    International Nuclear Information System (INIS)

    Lilley, E.A.; Adachi, Takao; Ishibashi, Yoshiki

    1995-01-01

    The optimum material has not yet been identified. This will result in heat from plasma to the first wall and divertor. That is, because of cracks and melting by thermal power and shock. Today, it is considered to be some kinds of copper, alloys, however, for using, it must have high conductivity. And it is also needed another property, for example, high strength and so on. We have developed some new beryllium copper alloys with high conductivity, high strength, and high endurance. Therefore, we are introducing these new alloys as suitable materials for the heat sink in fusion reactors

  16. Failure analysis of PB-1 (EBTS Be/Cu mockup)

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C.H.

    1996-11-01

    Failure analysis was done on PB-1 (series of Be tiles joined to Cu alloy) following a tile failure during a high heat flux experiment in EBTS (electron beam test system). This heat flux load simulated ambient conditions inside ITER; the Be tiles were bonded to the Cu alloy using low-temperature diffusion bonding, which is being considered for fabricating plasma facing components in ITER. Results showed differences between the EBTS failure and a failure during a room temperature tensile test. The latter occurred at the Cu-Be interface in an intermetallic phase formed by reaction of the two metals at the bonding temperature. Fracture strengths measured by these tests were over 300 MPa. The high heat flux specimens failed at the Cu-Cu diffusion bond. Fracture morphology in both cases was a mixed mode of dimple rupture and transgranular cleavage. Several explanations for this difference in failure mechanism are suggested

  17. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    Science.gov (United States)

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  18. Wireless sensor network adaptive cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. [SynapSense Corp., Folsom, CA (United States)

    2009-07-01

    Options for reducing data centre cooling energy requirements and their cost savings were discussed with particular reference to a wireless control solution developed by SynapSense Corporation. The wireless sensor network reduces cooling energy use at data centres by providing improved air flow management through the installation of cold aisle containment. The use of this low cost, non-invasive wireless sensor network has reduced the cooling energy use in a data center at BC Hydro by 30 per cent. The system also reduced the server and storage fan energy by 3 per cent by maintaining inlet air temperature below ASHRAE recommended operating range. The distribution of low power, low cost wireless sensors has enabled visualization tools that are changing the way that data centres are managed. The annual savings have been estimated at 4,560,000 kWh and the annual carbon dioxide abatement is approximately 1,400 metric tons. tabs., figs.

  19. Cooled Beam Diagnostics on LEIR

    CERN Document Server

    Tranquille, G; Carli, C; Chanel, M; Prieto, V; Sautier, R; Tan, J

    2008-01-01

    Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the LINAC3 are transformed into short highbrightness bunches using multi-turn injection, cooling and accumulation in the Low Energy Ion Ring, LEIR [1]. The cooling process must therefore be continuously monitored in order to guarantee that the lead ions have the required characteristics in terms of beam size and momentum spread. In LEIR a number of systems have been developed to perform these measurements. These include Schottky diagnostics, ionisation profile monitors and scrapers. Along with their associated acquisition and analysis software packages these instruments have proved to be invaluable for the optimisation of the electron cooler.

  20. Assessment of cooling tower impact

    International Nuclear Information System (INIS)

    1986-01-01

    This guideline describes the state of the art of the meteorological impact of wet cooling towers that are about 80 m to 170 m high, and have a waste heat power in the range of 1000 MW and 2500 MW. The physical processes occurring in the lowest layer of the atmosphere and their impact in the dispersion of cooling tower emissions are represented. On the basis of these facts, the impact on weather or climate in the vicinity of a high wet cooling tower is estimated. Thereby the results of the latest investigations (observations, measurements, and modeling) on the different locations of plants as well as their different power and construction types are taken into consideration. (orig.) [de

  1. Forced draft wet cooling systems

    International Nuclear Information System (INIS)

    Daubert, A.; Caudron, L.; Viollet, P.L.

    1975-01-01

    The disposal of the heat released from a 1000MW power plant needs a natural draft tower of about 130m of diameter at the base, and 170m height, or a cooling system with a draft forced by about forty vans, a hundred meters in diameter, and thirty meters height. The plumes from atmospheric cooling systems form, in terms of fluid mechanics, hot jets in a cross current. They consist in complex flows that must be finely investigated with experimental and computer means. The study, currently being performed at the National Hydraulics Laboratory, shows that as far as the length and height of visible plumes are concerned, the comparison is favorable to some types of forced draft cooling system, for low and medium velocities, (below 5 or 6m/s at 10m height. Beyond these velocities, the forced draft sends the plume up to smaller heights, but the plume is generally more dilute [fr

  2. Emergency cooling device for reactors

    International Nuclear Information System (INIS)

    Inoue, Hisamichi; Naito, Masanori; Sato, Chikara; Chino, Koichi.

    1975-01-01

    Object: To pour high pressure cooling water into a core, when coolant is lost in a boiling water reactor, thereby restraining the rise of fuel cladding. Structure: A control rod guiding pipe, which is moved up and down by a control rod, is mounted on the bottom of a pressure vessel, the control rod guiding pipe being communicated with a high pressure cooling water tank positioned externally of the pressure vessel, and a differential in pressure between the pressure vessel and the aforesaid tank is detected when trouble of coolant loss occurs, and the high pressure cooling water within the tank is poured into the core through the control rod guiding pipe to restrain the rise of fuel cladding. (Kamimura, M.)

  3. Emergency cooling apparatus for reactor

    International Nuclear Information System (INIS)

    Sakaguchi, S.

    1975-01-01

    A nuclear reactor is described which has the core surrounded by coolant and an inert cover gas all sealed within a container, an emergency cooling apparatus employing a detector that will detect cover gas or coolant, particularly liquid sodium, leaking from the container of the reactor, to release a heat exchange material that is inert to the coolant, which heat exchange material is cooled during operation of the reactor. The heat exchange material may be liquid niitrogen or a combination of spheres and liquid nitrogen, for example, and is introduced so as to contact the coolant that has leaked from the container quickly so as to rapidly cool the coolant to prevent or extinguish combustion. (Official Gazette)

  4. Cooling many particles at once

    International Nuclear Information System (INIS)

    Vitiello, G.; Knight, P.; Beige, A.

    2005-01-01

    Full text: We propose a mechanism for the collective cooling of a large number N of trapped particles to very low temperatures by applying red-detuned laser fields and coupling them to the quantized field inside an optical resonator. The dynamics is described by what appear to be rate equations but where some of the major quantities are coherences and not populations. It is shown that the cooperative behaviour of the system provides cooling rates of the same order of magnitude as the cavity decay rate. This constitutes a significant speed-up compared to other cooling mechanisms since this rate can, in principle, be as large as the square root of N times the single-particle cavity or laser coupling constants. (author)

  5. Light Optics for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  6. Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P.; Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Del Nevo, A. [ENEA Brasimone, Camugnano, BO (Italy); Forte, R. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy)

    2016-11-01

    Highlights: • Determination of an optimal configuration for the breeder zone cooling tubes. • Attention has been focused on the toroidal–radial breeder zone cooling tubes lay out. • A theoretical-computational approach based on the Finite Element Method (FEM) has been followed, adopting a qualified commercial FEM code. • Five different configurations have been investigated to optimize the breeder zone cooling tubes arrangement fulfilling all the rules prescribed by safety codes. - Abstract: The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with ENEA-Brasimone, in order to assess the potential influence of BZ cooling tubes number on the thermal performances of the DEMO WCLL outboard breeding blanket equatorial module under the nominal steady state operative conditions envisaged for it, optimizing their geometric configuration and taking also into account that a large number of cooling pipes can deteriorate the tritium breeding performances of the module. In particular, attention has been focused on the toroidal-radial option for the BZ tube bundles lay-out and a parametric study has been carried out taking into account different tube bundles arrangement within the module. The study has been carried out following a numerical approach, based on the finite element method (FEM), and adopting a qualified commercial FEM code. Results

  7. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  8. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  9. Beam Dynamics With Electron Cooling

    CERN Document Server

    Uesugi, T; Noda, K; Shibuya, S; Syresin, E M

    2004-01-01

    Electron cooling experiments have been carried out at HIMAC in order to develop new technologies in heavy-ion therapy and related researches. The cool-stacking method, in particular, has been studied to increase the intensity of heavy-ions. The maximum stack intensity was 2 mA, above which a fast ion losses occurred simulatneously with the vertical coherent oscillations. The instability depends on the working point, the stacked ion-density and the electron-beam density. The instability was suppressed by reducing the peak ion-density with RF-knockout heating.

  10. Magnetization effects in electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskii, A.N.

    A study is made of cooling in an electron beam which is accompanied by a strong magnetic field and a longitudinal temperature low compared to the transverse temperature. It is shown that the combination of two factors--magnetization and low longitudinal temperature of electrons--can sharply increase the cooling rate of a heavy-particle beam when the velocity spread is smaller than the transverse spread of electron velocities and reduce its temperature to the longitudinal temperature of the electrons, which is lower than that of the cathode by several orders of magnitude

  11. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  12. Lamination cooling system formation method

    Science.gov (United States)

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  13. Cooling towers in the landscape

    International Nuclear Information System (INIS)

    Boernke, F.

    1977-01-01

    The cooling tower as a large technical construction is one of the most original industrial buildings. It sticks out as an outlandish element in our building landscape, a giant which cannot be compared with the traditional forms of technical buildings. If it is constructed as a reinforced-concrete hyperboloid, its shape goes beyond all limits of building construction. Judgment of these highly individual constructions is only possible by applying a novel standard breaking completely with tradition. This new scale of height and dimension in industrial construction, and in particular the modern cooling tower, requires painstaking care and design and adaptation to the landscape around it. (orig.) [de

  14. Dynamic analysis of cooling towers

    International Nuclear Information System (INIS)

    Bittnar, Z.

    1987-01-01

    Natural draught cooling towers are shell structures subjected to random vibrations due to wind turbulence and earthquake. The need of big power plant units has initiated the design of very large cooling towers. The random response of such structures may be analysed using a spectral approach and assuming a linear behaviour of the structure. As the modal superposition method is the most suitable procedure for this purpose it is necessary to determine the natural frequencies and mode shapes with adequate accuracy. (orig./GL)

  15. Investigations on passive containment cooling

    International Nuclear Information System (INIS)

    Knebel, J.U.; Cheng, X.; Neitzel, H.J.; Erbacher, F.J.; Hofmann, F.

    1997-01-01

    The composite containment design for advanced LWRs that has been examined under the PASCO project is a promising design concept for purely passive decay heat removal after a severe accident. The passive cooling processes applied are natural convection and radiative heat transfer. Heat transfer through the latter process removes at an emission coefficient of 0.9 about 50% of the total heat removed via the steel containment, and thus is an essential factor. The heat transferring surfaces must have a high emission coefficient. The sump cooling concept examined under the SUCO project achieves a steady, natural convection-driven flow from the heat source to the heat sink. (orig./CB) [de

  16. He-cooled divertor for DEMO. Fabrication technology for tungsten cooling fingers

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J.; Norajitra, P.; Widak, V.; Krauss, W. [Forschungszentrum Karlsruhe GmbH (Germany)

    2008-07-01

    A modular helium-cooled divertor design based on the multi-jet impingement concept (HEMJ) has been developed for the ''post-ITER'' demonstration reactor (DEMO) at the Forschungszentrum Karlsruhe [1, 2]. The main function of the divertor is to keep the plasma free from impurities by catching particles, such as fusion ash and eroded particles from the first wall. From the divertor surface, a maximum heat load of 10 MW/m{sup 2} at least has to be removed. The whole divertor is split up into a number of cassettes (48 according to the latest design studies [3]). Each cassette is cooled separately. The target plates are provided with several cooling fingers to keep the thermal stresses low. Each cooling finger consists of a tungsten tile which is brazed to a thimble-like cap made of a tungsten alloy W-1%La2O3 (WL10) underneath. The thimble has to be connected to the ODS EUROFER steel structure, which is accomplished by brazing again. The tungsten/tungsten brazing is exposed to 1200 C operation temperature while the tungsten/steel brazing joint must withstand 700 C operating temperature. Cooling of the finger is achieved by multi-jet impingement with helium. The inlet temperature of helium is 600 C and rises up to 700 C at the outlet. With this kind of cooling, a mean heat transfer coefficient of 35.000 W/(m{sup 2*}K) can be reached. This compact report will focus on the manufacturing of such a cooling finger unit at FZK. It will cover the machining of the tungsten tile as well as of the thimble and, the brazing of the parts. The major aim of this activity is, on the one hand, to obtain functioning mock-ups with high quality and high reliability, in particular in terms of minimising the surface roughness, cracks, and micro-cracks. On the other hand, effort should also be laid on realising the mass production from economic point of view. (orig.)

  17. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion

    Science.gov (United States)

    Khoshnevis, Sepideh; Craik, Natalie K.; Matthew Brothers, R.; Diller, Kenneth R.

    2016-01-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P cryotherapy. PMID:26632263

  18. Ecological impact of chloro-organics produced by chlorination of cooling tower waters

    International Nuclear Information System (INIS)

    Jolley, R.L.; Cumming, R.B.; Pitt, W.W.; Taylor, F.G.; Thompson, J.E.; Hartmann, S.J.

    1977-01-01

    Experimental results of the initial assessment of chlorine-containing compounds in the blowdown from cooling towers and the possible mutagenic activity of these compounds are reported. High-resolution liquid chromatographic separations were made on concentrates of the blowdown from the cooling tower at the High Flux Isotope Reactor (HFIR) and from the recirculating water system for the cooling towers at the Oak Ridge Gaseous Diffusion Plant (ORGDP), Oak Ridge, Tennessee. The chromatograms of chlorinated cooling waters contained numerous uv-absorbing and cerate-oxidizable constituents that are now being processed through a multicomponent identification procedure. Concentrates of the chlorinated waters are also being examined for mutagenic activity

  19. Feasibility test of the concept of long-term passive cooling system of emergency cooldown tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Lee, Hee Joon

    2015-01-01

    Highlights: • The concept of long-term passive cooling system of emergency cooldown tank (ECT). • Existing natural circulation of steam from ECT and measurement of its condensing flow. • Evaluation of cooling capacity and heat transfer of air-cooled condensing heat exchanger. - Abstract: When a passive cooling system is activated in the accident of a nuclear reactor, the water in the emergency cooldown tank of that system will eventually be fully depleted by evaporation. If, however, the evaporating water could be returned to the tank through an air-cooled condensing heat exchanger mounted on top of the tank, the passive cooling system could provide cooling for an extended period. This feasibility of new concept of long-term passive cooling with an emergency cooldown tank was tested by performing an energy balance test with a scaled-down experimental setup. As a result, it was determined that a naturally circulating steam flow can be used to refill the tank. For an air-cooled heat exchanger, the cooling capacity and air-side natural convective heat transfer coefficient were obtained to be 37% of the heat load and between 9 and 10.2 W/m 2 /K depending on the heat load, respectively. Moreover, it was clearly verified that the water level in the emergency cooldown tank could be maintained over the long-term operation of the passive cooling system

  20. Real-Time Closed Loop Modulated Turbine Cooling

    Science.gov (United States)

    Shyam, Vikram; Culley, Dennis E.; Eldridge, Jeffrey; Jones, Scott; Woike, Mark; Cuy, Michael

    2014-01-01

    It has been noted by industry that in addition to dramatic variations of temperature over a given blade surface, blade-to-blade variations also exist despite identical design. These variations result from manufacturing variations, uneven wear and deposition over the life of the part as well as limitations in the uniformity of coolant distribution in the baseline cooling design. It is proposed to combine recent advances in optical sensing, actuation, and film cooling concepts to develop a workable active, closed-loop modulated turbine cooling system to improve by 10 to 20 the turbine thermal state over the flight mission, to improve engine life and to dramatically reduce turbine cooling air usage and aircraft fuel burn. A reduction in oxides of nitrogen (NOx) can also be achieved by using the excess coolant to improve mixing in the combustor especially for rotorcraft engines. Recent patents filed by industry and universities relate to modulating endwall cooling using valves. These schemes are complex, add weight and are limited to the endwalls. The novelty of the proposed approach is twofold 1) Fluidic diverters that have no moving parts are used to modulate cooling and can operate under a wide range of conditions and environments. 2) Real-time optical sensing to map the thermal state of the turbine has never been attempted in realistic engine conditions.

  1. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  2. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  3. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  4. A cool present for LEIR

    CERN Multimedia

    2005-01-01

    LEIR (Low Energy Ion Ring), which will supply lead ions to the LHC experiments, has taken delivery of one of its key components, its electron cooling system. From left to right, Gérard Tranquille, Virginia Prieto and Roland Sautier, in charge of the electron cooling system for LEIR at CERN, and Christian Lacroix, in charge of installation for the LEIR machine. On 16 December, the day before CERN's annual closure, the LEIR teams received a rather impressive Christmas present. The "parcel" from Russia, measuring 7 metres in length and 4 metres in height, weighed no less than 20 tonnes! The component will, in fact, be one of the key elements of the future LEIR, namely its electron cooling system. LEIR is one of the links in the injector chain that will supply lead ions to the LHC experiments, in particular ALICE (see Bulletin No. 28/2004 of 5 July 2004), within the framework of the I-LHC Project. The electron cooling system is designed to reduce and standardise transverse ion velocity. This focuses the bea...

  5. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Leigh, K.M.

    1980-01-01

    A liquid metal cooled nuclear reactor is described, wherein coolant is arranged to be flowed upwardly through a fuel assembly and having one or more baffles located above the coolant exit of the fuel assembly, the baffles being arranged so as to convert the upwardly directed motion of liquid metal coolant leaving the fuel assembly into a substantially horizontal motion. (author)

  6. Cool Runnings For String 2

    CERN Multimedia

    2001-01-01

    String 2 is a series of superconducting magnets that are prototypes of those which will be installed in the LHC. It was cooled down to 1.9 Kelvin on September 14th. On Thursday last week, the dipoles of String 2 were successfully taken to nominal current, 11850 A.

  7. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  8. Cooling system upon reactor isolation

    International Nuclear Information System (INIS)

    Yamamoto, Kohei; Oda, Shingo; Miura, Satoshi

    1992-01-01

    A water level indicator for detecting the upper limit value for a range of using a suppression pool and a thermometer for detecting the temperature of water at the cooling water inlet of an auxiliary device are disposed. When a detection signal is intaken and the water level in the suppression pool reach the upper limit value for the range of use, a secondary flow rate control value is opened and a primary flow rate control valve is closed. When the temperature of the water at the cooling water inlet of the auxiliary device reaches the upper limit value, the primary and the secondary flow rate control valves are opened. During a stand-by state, the first flow rate control valve is set open and the secondary flow rate control valve is set closed respectively. After reactor isolation, if a reactor water low level signal is received, an RCIC pump is actuated and cooling water is sent automatically under pressure from a condensate storage tank to the reactor and the auxiliary device requiring coolants by way of the primary flow rate control valve. Rated flow rate is ensured in the reactor and cooling water of an appropriate temperature can be supplied to the auxiliary device. (N.H.)

  9. Passive Cooling of Body Armor

    Science.gov (United States)

    Holtz, Ronald; Matic, Peter; Mott, David

    2013-03-01

    Warfighter performance can be adversely affected by heat load and weight of equipment. Current tactical vest designs are good insulators and lack ventilation, thus do not provide effective management of metabolic heat generated. NRL has undertaken a systematic study of tactical vest thermal management, leading to physics-based strategies that provide improved cooling without undesirable consequences such as added weight, added electrical power requirements, or compromised protection. The approach is based on evaporative cooling of sweat produced by the wearer of the vest, in an air flow provided by ambient wind or ambulatory motion of the wearer. Using an approach including thermodynamic analysis, computational fluid dynamics modeling, air flow measurements of model ventilated vest architectures, and studies of the influence of fabric aerodynamic drag characteristics, materials and geometry were identified that optimize passive cooling of tactical vests. Specific architectural features of the vest design allow for optimal ventilation patterns, and selection of fabrics for vest construction optimize evaporation rates while reducing air flow resistance. Cooling rates consistent with the theoretical and modeling predictions were verified experimentally for 3D mockups.

  10. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  11. Proton-antiproton colliding beam electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskij, A.N.

    1981-01-01

    A possibility of effective cooling of high-energy pp tilde beams (E=10 2 -10 3 GeV) in the colliding mode by accompanying radiationally cooled electron beam circulating in an adjacent storage ring is studied. The cooling rate restrictions by the pp tilde beam interaction effects while colliding and the beam self-heating effect due to multiple internal scattering are considered. Some techniques permitting to avoid self-heating of a cooling electron beam or suppress its harmful effect on a heavy particle beam cooling are proposed. According to the estimations the cooling time of 10 2 -10 3 s order can be attained [ru

  12. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  13. Cooling towers for thermal power plants

    International Nuclear Information System (INIS)

    Chaboseau, J.

    1987-01-01

    After a brief recall on cooling towers testing and construction, this paper presents four examples of very large French nuclear power plant cooling towers, and one of an Australian thermal power plant [fr

  14. Design: More than a cool chair

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Austin, Robert; Sullivan, Erin

    2006-01-01

    Austin, R., Friis, K., Sullivan, E. 2006. Design: More than a cool chair. Boston: Harvard Business School Publishing.......Austin, R., Friis, K., Sullivan, E. 2006. Design: More than a cool chair. Boston: Harvard Business School Publishing....

  15. A review of photovoltaic cells cooling techniques

    Science.gov (United States)

    Zubeer, Swar A.; Mohammed, H. A.; Ilkan, Mustafa

    2017-11-01

    This paper highlights different cooling techniques to reduce the operating temperature of the PV cells. This review paper focuses on the improvement of the performance of the small domestic use PV systems by keeping the temperature of the cells as low as possible and uniform. Different cooling techniques have been investigated experimentally and numerically the impact of the operating temperature of the cells on the electrical and thermal performance of the PV systems. The advantages and disadvantages of ribbed wall heat sink cooling, array air duct cooling installed beneath the PV panel, water spray cooling technique and back surface water cooling are examined in this paper to identify their effective impact on the PV panel performance. It was identified that the water spray cooling system has a proper impact on the PV panel performance. So the water cooling is one way to enhance the electrical efficiency of the PV panel.

  16. A review of photovoltaic cells cooling techniques

    Directory of Open Access Journals (Sweden)

    Zubeer Swar A.

    2017-01-01

    Full Text Available This paper highlights different cooling techniques to reduce the operating temperature of the PV cells. This review paper focuses on the improvement of the performance of the small domestic use PV systems by keeping the temperature of the cells as low as possible and uniform. Different cooling techniques have been investigated experimentally and numerically the impact of the operating temperature of the cells on the electrical and thermal performance of the PV systems. The advantages and disadvantages of ribbed wall heat sink cooling, array air duct cooling installed beneath the PV panel, water spray cooling technique and back surface water cooling are examined in this paper to identify their effective impact on the PV panel performance. It was identified that the water spray cooling system has a proper impact on the PV panel performance. So the water cooling is one way to enhance the electrical efficiency of the PV panel.

  17. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  18. Theory, technology, and technique of stochastic cooling

    International Nuclear Information System (INIS)

    Marriner, J.

    1993-10-01

    The theory and technological implementation of stochastic cooling is described. Theoretical and technological limitations are discussed. Data from existing stochastic cooling systems are shown to illustrate some useful techniques

  19. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  20. Cooling Performance of Additively Manufactured Microchannels and Film Cooling Holes

    Science.gov (United States)

    Stimpson, Curtis K.

    Additive manufacturing (AM) enables fabrication of components that cannot be made with any other manufacturing method. Significant advances in metal-based AM systems have made this technology feasible for building production parts to be used use in commercial products. In particular, the gas turbine industry benefits from AM as a manufacturing technique especially for development of components subjected to high heat flux. It has been shown that the use of microchannels in high heat flux components can lead to more efficient cooling designs than those that presently exist. The current manufacturing methods have prevented the use of microchannels in such parts, but AM now makes them manufacturable. However, before such designs can become a reality, much research must be done to characterize impacts on flow and heat transfer of AM parts. The current study considers the effect on flow and heat transfer through turbine cooling features made with AM. Specifically, the performance of microchannels and film cooling holes made with laser powder bed fusion (L-PBF) is assessed. A number of test coupons containing microchannels were built from high temperature alloy powders on a commercially available L-PBF machine. Pressure drop and heat transfer experiments characterized the flow losses and convective heat transfer of air passing through the channels at various Reynolds numbers and Mach numbers. The roughness of the channels' surfaces was characterized in terms of statistical roughness parameters; the morphology of the roughness was examined qualitatively. Magnitude and morphology of surface roughness found on AM parts is unlike any form of roughness seen in the literature. It was found that the high levels of roughness on AM surfaces result in markedly augmented pressure loss and heat transfer at all Reynolds numbers, and conventional flow and heat transfer correlations produce erroneous estimates. The physical roughness measurements made in this study were correlated to