WorldWideScience

Sample records for active trail protein

  1. Potent Systemic Anticancer Activity of Adenovirally Expressed EGFR-Selective TRAIL Fusion Protein

    NARCIS (Netherlands)

    Bremer, Edwin; van Dam, Gooitzen M.; de Bruyn, Marco; van Riezen, Manon; Dijkstra, Marike; Kamps, Gera; Helfrich, Wijnand; Haisma, Hidde

    2008-01-01

    Previously, we demonstrated potent tumor cell-selective pro-apoptotic activity of scFv425:sTRAIL, a recombinant fusion protein comprised of EGFR-directed antibody fragment (scFv425) genetically fused to human soluble TNF-related apoptosis-inducing ligand (sTRAIL). Here, we report on the promising th

  2. Bcl-2 over-expression and activation of protein kinase C suppress the Trail-induced apoptosis in Jurkat T cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Trail,a tumor necrosis factor-related apoptosis-inducing ligand,is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2.Its role,like FasL in activation-induced cell death(AICD),has been demonstrated in immune system.However the mechanism of Trail induced apoptosis remains unclear.In this report,the recombinant Trail protein was expressed and purified.The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro.Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner.Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells.Treatment with PMA(phorbol 12-myristate 13-acetate),a PKC activator,suppressed Trail-induced apoptosis in Jurkat T cells.The inhibition of apoptosis by PMA was abolished by pretreatment with Bis,a PKC inhibitor.Taken together,it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.

  3. Cleavage by Caspase 8 and Mitochondrial Membrane Association Activate the BH3-only Protein Bid during TRAIL-induced Apoptosis.

    Science.gov (United States)

    Huang, Kai; Zhang, Jingjing; O'Neill, Katelyn L; Gurumurthy, Channabasavaiah B; Quadros, Rolen M; Tu, Yaping; Luo, Xu

    2016-05-27

    The BH3-only protein Bid is known as a critical mediator of the mitochondrial pathway of apoptosis following death receptor activation. However, since full-length Bid possesses potent apoptotic activity, the role of a caspase-mediated Bid cleavage is not established in vivo In addition, due to the fact that multiple caspases cleave Bid at the same site in vitro, the identity of the Bid-cleaving caspase during death receptor signaling remains uncertain. Moreover, as Bid maintains its overall structure following its cleavage by caspase 8, it remains unclear how Bid is activated upon cleavage. Here, Bid-deficient (Bid KO) colon cancer cells were generated by gene editing, and were reconstituted with wild-type or mutants of Bid. While the loss of Bid blocked apoptosis following treatment by TNF-related apoptosis inducing ligand (TRAIL), this blockade was relieved by re-introduction of the wild-type Bid. In contrast, the caspase-resistant mutant Bid(D60E) and a BH3 defective mutant Bid(G94E) failed to restore TRAIL-induced apoptosis. By generating Bid/Bax/Bak-deficient (TKO) cells, we demonstrated that Bid is primarily cleaved by caspase 8, not by effector caspases, to give rise to truncated Bid (tBid) upon TRAIL treatment. Importantly, despite the presence of an intact BH3 domain, a tBid mutant lacking the mitochondrial targeting helices (α6 and α7) showed diminished apoptotic activity. Together, these results for the first time establish that cleavage by caspase 8 and the subsequent association with the outer mitochondrial membrane are two critical events that activate Bid during death receptor-mediated apoptosis. PMID:27053107

  4. Sesquiterpenes with TRAIL-resistance overcoming activity from Xanthium strumarium.

    Science.gov (United States)

    Karmakar, Utpal K; Ishikawa, Naoki; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-08-01

    The ability of TRAIL to selectively induce apoptosis in cancer cells while sparing normal cells makes it an attractive target for the development of new cancer therapy. In search of bioactive natural products for overcoming TRAIL-resistance from natural resources, we previously reported a number of active compounds. In our screening program on natural resources targeting overcoming TRAIL-resistance, activity-guided fractionations of the extract of Xanthium strumarium led to the isolation of five sesquiterpene compounds (1-5). 11α,13-dihydroxanthinin (2) and 11α,13-dihydroxanthuminol (3) were first isolated from natural resources and xanthinosin (1), desacetylxanthanol (4), and lasidiol p-methoxybenzoate (5) were known compounds. All compounds (1-5) showed potent TRAIL-resistance overcoming activity at 8, 20, 20, 16, and 16 μM, respectively, in TRAIL-resistant AGS cells. Compounds 1 and 5 enhanced the levels of apoptosis inducing proteins DR4, DR5, p53, CHOP, Bax, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9 and also decreased the levels of cell survival protein Bcl-2 in TRAIL-resistant AGS cells in a dose-dependent manner. Compound 1 also enhanced the levels of DR4 and DR5 proteins in a time-dependent manner. Thus, compounds 1 and 5 were found to induce both extrinsic and intrinsic apoptotic cell death. Compound 1 also exhibit TRAIL-resistance overcoming activity in DLD1, DU145, HeLa, and MCF7 cells but did not decrease viability in non-cancer HEK293 cells up to 8 μM. PMID:26081757

  5. Efficient refolding of the bifunctional therapeutic fusion protein VAS-TRAIL by a triple agent solution.

    Science.gov (United States)

    Fan, Jiying; Wang, Zhanqing; Huang, Liying; Shen, Yaling

    2016-09-01

    VAS-TRAIL is a bifunctional fusion protein that combines anti-angiogenic activity with tumor-selective apoptotic activity for enhanced anti-tumor efficacy. VAS-TRAIL is expressed as inclusion body in Escherichia coli, but protein refolding is difficult to achieve and results in low yields of bioactive protein. In this study, we describe an efficient method for VAS-TRAIL refolding. The solubilization of aggregated VAS-TRAIL was achieved by a triple agent solution, which consists of an alkaline solution (pH 11.5) containing 0.4M l-arginine and 2M urea. The solubilized protein showed high purity and preserved secondary structure according to fluorescence properties. VAS-TRAIL refolding was performed through stepwise dialysis and resulted in more than 50% recovery of the soluble protein. The function of l-arginine was additive with alkaline pH, as shown by the significant improvement in refolding yield (≈30%) by l-arginine-containing solubilization solutions compared with alkaline solubilization solutions without l-arginine. The refolded VAS-TRAIL also showed β-sheet structures and the propensity for oligomerization. Bioassays showed that the refolded fusion protein exhibited the expected activities, including its apoptotic activities toward tumor and endothelial cells, which proposed its promising therapeutic potential. PMID:26358405

  6. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    Science.gov (United States)

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images.

  7. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    Science.gov (United States)

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  8. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    International Nuclear Information System (INIS)

    Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL

  9. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor.

    Directory of Open Access Journals (Sweden)

    Suthakar Ganapathy

    Full Text Available BACKGROUND: Resveratrol (3, 4', 5 tri-hydroxystilbene, a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining and inducing apoptosis (TUNEL staining. The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27(/KIP1, and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells and markers of metastasis (MMP-2 and MMP-9. The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity. CONCLUSIONS/SIGNIFICANCE: These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer.

  10. The BH3 Only Protein Mimetic Obatoclax Sensitizes Cholangiocarcinoma Cells to Apo2L/TRAIL-Induced Apoptosis

    Science.gov (United States)

    Mott, Justin L.; Bronk, Steve F.; Mesa, Ruben A.; Kaufmann, Scott H.; Gores, Gregory J.

    2008-01-01

    Human cholangiocarcinomas evade apoptosis by overexpression of Mcl-1. The drug obatoclax (GX15–070) inhibits anti-apoptotic members of the Bcl-2 family including Mcl-1. Purpose To determine if obatoclax sensitizes human cholangiocarcinoma cells to apoptosis. Experimental Design The human cholangiocarcinoma cell lines, KMCH, KMBC, and TFK, were employed for these studies. Protein expression was assessed by immunoblot, and protein-protein interactions detected by co-precipitation of the polypeptide of interest with S-tagged Mcl-1. Activation of Bak and Bax was observed by immunocytochemistry with conformation specific antisera. Results Obatoclax induced minimal apoptosis alone; however, it increased apoptosis 3- to 13-fold in all three cancer cell lines when combined with Apo2L/TRAIL. Obatoclax did not alter cellular expression of Bid, Bim, Puma, Noxa, Bak, Bax, Mcl-1 or cFLIP. Mcl-1 binding to Bak was readily identified in untreated cells, and this association was disrupted by treating the cells with obatoclax. Additionally, Bim binding to Mcl-1 was markedly decreased by obatoclax treatment. We also identified alterations in Bak and Bax conformation following treatment with obatoclax plus Apo2L/TRAIL, but not with either Apo2L/TRAIL or obatoclax alone. Conclusions In conclusion, obatoclax releases Bak and Bim from Mcl-1 and sensitizes human cholangiocarcinoma cells to Apo2L/TRAIL-induced apoptosis. Obatoclax is a potentially promising adjunctive agent for the treatment of this cancer. PMID:18723481

  11. Apoptosis and Expression of Protein TRAIL in Granulosa Cells of Rats with Polycystic Ovarian Syndrome

    Institute of Scientific and Technical Information of China (English)

    ZHANG Juan; ZHU Guijin; WANG Xinrong; XU Bei; HU Linli

    2007-01-01

    The relationship between apoptosis of granulosa cells and follicle development arrest in polycystic ovarian syndrome (PCOS) rats, and the contribution of tumor necrosis factor related apoptosis inducing ligand (TRAIL) in apoptosis of granulosa cells were explored. By using sodium prasterone sulfate rat PCOS model was induced. The apoptosis of granulosa cells in ovaries of rats was observed by TdT-mediated dUTP-biotin nick end-labeling (TUNEL), and the expression of TRAIL protein and mRNA in granulosa cells was detected by using immunhistochemical staining and reverse transcription polymerase chain reaction (RT-PCR) respectively. The apoptotic rate and the expression of protein TRAIL in granulosa cells were significantly higher in antral follicles from the PCOS rats than in those from the control rats (P<0.01, P<0.05). There was no significant difference in apoptotic rate and the expression of TRAIL protein in granulosa cells of preantral follicles between the PCOS rats and the control rats (P>0.05). No apoptosis and the expression of TRAIL protein in granulosa cells of primordial follicles were found in the two groups. The expression of TRAIL mRNA was significantly stronger in granulosa cells from the PCOS rats than in those from the control rats (P<0.01). It was suggested that the apoptotic rate in granulosa cells was significantly higher in antral follicle from the PCOS rats than in those from the control rats. TRAIL played a role in regulating the apoptosis of granulosa cells in PCOS rats.

  12. 可溶性人TRAIL分子的制备及其抗肿瘤活性%Production and Antitumor Activity of Soluble Human TRAIL

    Institute of Scientific and Technical Information of China (English)

    唐蓓; 何凤田; 蔡绍皙

    2004-01-01

    The eDNA encoding human TRAIL extraeellular region(amino acids 41-281) was amplified byreverse transcription(RT)-PCR from total RNA derived from human acute promyelocytic leukemia cell line HL60. After sequencing, the cDNA was cloned into the vector pQE-80L and transformed into E.coli DH5aα.By IPTG induction, the soluble TRAIL41-281(sTRAIL41-281) protein was expressed with the 40% of total bacteria protein. Inclusion bodies were dissolved into 8 mol/L urea, purified by Ni-NTA chromatography column, the product with over 90% purity was obtained. After refolding by dialysis, the active trimer form of sTRAIL41-281 was derived from the renatured proteins by gel filtration chromatography. The MTT assay, flow cytometry and DNA fragmentation assay showed that the refolded sTRAIL41-281 could potently inhibit the growth of Jurkat cells and induce apoptosis, confirmed the apoptosis-inducing activity of sTRAIL41-281 on tumor cells, it will benefit the further research of TRAIL.

  13. Hepatitis B virus X protein modulates the apoptosis of hepatoma cell line induced by TRAIL

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiaohong; SUN Wensheng; GAO Lifen; MA Chunhong; HAN Lihui; CHEN Youhai

    2005-01-01

    The purpose of this study is to observe the effects of HBx on the apoptosis of hepatoma cells induced by TNF-related apoptosis-inducing ligand (TRAIL) and to study preliminary molecular mechanisms for its effects. In order to set up a model in vitro, BEL7402-HBx cell line, stably expressing HBx mRNA, was established by stable transfection of pcDNA-HBx, which contains HBx gene, into hepatoma cell line BEL7402. Control cell line BEL7402-cDNA3, stably transfected with pcDNA3, was set up simultaneously as a control. Trypan blue exclusion test,caspase 3 activity detection and TUNEL assay were performed to detect the apoptosis of BEL7402, BEL7402-cDNA3, BEL7402-HBx induced by TRAIL. The expression of TRAIL receptors in three groups was analyzed by Flow cytometry. In addition, phosphorothioated antisense oligonucleotide against the translation initial region of HBx gene (PS-asODNs/HBx) was used to block the expression of HBx in HepG2.2.15 cells and to further confirm the effects of HBx on TRAIL-induced apoptosis. Trypan blue exclusion test indicated that TRAIL had a dose-dependent cytotoxicity on BEL7402, BEL7402-cDNA3 and BEL7402-HBx cells. Under treatment of the same concentration of TRAIL, BEL7402-HBx had a higher apoptosis rate and a higher level of Caspase 3 activation than BEL7402 and BEL7402-cDNA3. TUENL assay showed that the apoptosis rate of BEL7402-HBx induced by 10 μg/L TRAIL was 41.4%±7.2%, significantly higher than that of BEL7402 and BEL7402-cDNA3 cells. Blockade of HBx expression in Hep G2.2.15 cells partly inhibited the apoptosis induced by TRAIL. The introduction or blockade of HBx did not change the expression pattern of TRAIL receptors. The present study firstly confirms the effects of HBx on TRAIL- induced apoptosis from two different points and it is not related with the expression level of TRAIL receptors. This would be useful to further clarify the roles of imbalanced apoptosis in pathogenesis of Hepatitis B and related hepatocellular carcinoma.

  14. Activation of Wnt/β-catenin signaling increases apoptosis in melanoma cells treated with trail.

    Directory of Open Access Journals (Sweden)

    Zachary F Zimmerman

    Full Text Available While the TRAIL pathway represents a promising therapeutic target in melanoma, resistance to TRAIL-mediated apoptosis remains a barrier to its successful adoption. Since the Wnt/β-catenin pathway has been implicated in facilitating melanoma cell apoptosis, we investigated the effect of Wnt/β-catenin signaling on regulating the responses of melanoma cells to TRAIL. Co-treatment of melanoma cell lines with WNT3A-conditioned media and recombinant TRAIL significantly enhanced apoptosis compared to treatment with TRAIL alone. This apoptosis correlates with increased abundance of the pro-apoptotic proteins BCL2L11 and BBC3, and with decreased abundance of the anti-apoptotic regulator Mcl1. We then confirmed the involvement of the Wnt/β-catenin signaling pathway by demonstrating that siRNA-mediated knockdown of an intracellular β-catenin antagonist, AXIN1, or treating cells with an inhibitor of GSK-3 also enhanced melanoma cell sensitivity to TRAIL. These studies describe a novel regulation of TRAIL sensitivity in melanoma by Wnt/β-catenin signaling, and suggest that strategies to enhance Wnt/β-catenin signaling in combination with TRAIL agonists warrant further investigation.

  15. STI571 reduces TRAIL-induced apoptosis in colon cancer cells: c-Abl activation by the death receptor leads to stress kinase-dependent cell death

    Directory of Open Access Journals (Sweden)

    Huang Duen-Yi

    2012-03-01

    Full Text Available Abstract Background In an effort to achieve better cancer therapies, we elucidated the combination cancer therapy of STI571 (an inhibitor of Bcr-Abl and clinically used for chronic myelogenous leukemia and TNF-related apoptosis-inducing ligand (TRAIL, a developing antitumor agent in leukemia, colon, and prostate cancer cells. Methods Colon cancer (HCT116, SW480, prostate cancer (PC3, LNCaP and leukemia (K562 cells were treated with STI571 and TRAIL. Cell viability was determined by MTT assay and sub-G1 appearance. Protein expression and kinase phosphorylation were determined by Western blotting. c-Abl and p73 activities were inhibited by target-specific small interfering (siRNA. In vitro kinase assay of c-Abl was conducted using CRK as a substrate. Results We found that STI571 exerts opposite effects on the antitumor activity of TRAIL. It enhanced cytotoxicity in TRAIL-treated K562 leukemia cells and reduced TRAIL-induced apoptosis in HCT116 and SW480 colon cancer cells, while having no effect on PC3 and LNCaP cells. In colon and prostate cancer cells, TRAIL caused c-Abl cleavage to the active form via a caspase pathway. Interestingly, JNK and p38 MAPK inhibitors effectively blocked TRAIL-induced toxicity in the colon, but not in prostate cancer cells. Next, we found that STI571 could attenuate TRAIL-induced c-Abl, JNK and p38 activation in HCT116 cells. In addition, siRNA targeting knockdown of c-Abl and p73 also reduced TRAIL-induced cytotoxicity, rendering HCT116 cells less responsive to stress kinase activation, and masking the cytoprotective effect of STI571. Conclusions All together we demonstrate a novel mediator role of p73 in activating the stress kinases p38 and JNK in the classical apoptotic pathway of TRAIL. TRAIL via caspase-dependent action can sequentially activate c-Abl, p73, and stress kinases, which contribute to apoptosis in colon cancer cells. Through the inhibition of c-Abl-mediated apoptotic p73 signaling, STI571 reduces

  16. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept

    Science.gov (United States)

    Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei

    2016-06-01

    This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.

  17. ANALYSIS OF AN ELECTROSTRICTIVE STACK ACTUATORFOR ACTIVE TRAILING EDGE FLAPS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Helicopter is a complex dynamic system with many rotating components. The rotor blades operate in a highly complex aerodynamic environment. The vibratory hub load, which is caused by cyclic variation of centrifugal and aerodynamic load of the rotating blades in flight, is transmitted to the fuselage, resulting in serious vibration and noise of the structure. It is one of the most important exciting sources in helicopters.  There has long been a desire to reduce helicopter vibration and to improve its performance. Control schemes adopted so far can be classified as either passive or active control technologies. The passive technologies include optimization of rotor hub, blade and the fuselage, hub or blade mounted passive vibration absorbers and anti-resonant vibration isolators. One of the major disadvantages with passive technologies is that they are designed to provide maximum vibration reduction at a specific frequency; therefore, their performance is degraded significantly with changes in the operating conditions of the rotor system.  With the development of computer science and active control technology, increasing efforts have been devoted to active control technologies to benefit helicopter vibration suppression in recent years. Earlier studies include Higher Harmonic Control (HHC)[1] and Individual Blade Control (IBC)[2], which is aimed to reduce the vibratory blade load by oscillating the blade in pitch motion using hydraulic actuators. It is successful in suppressing the vibration of the fuselage; however, its application is limited by serious energy consumption.  To overcome these difficulties, a new concept in helicopter vibration control is the smart rotor system. In this scheme, actuators are embedded in composite blades. They are used to activate the trailing edge flaps in higher harmonic pitch motion to adjust the lift force actively. Under the regulation of a control system, the vibratory hub load can be counteracted actively at

  18. Evaluating the Impact of Neighborhood Trail Development on Active Travel Behavior and Overall Physical Activity

    OpenAIRE

    Burbidge, Shaunna Kay

    2008-01-01

    Many studies have examined the impact that the built environment has on physical activity. However, most have used cross-sectional methods which have allowed them to establish correlations but not behavioral causality. This research first uses a longitudinal design to perform a pilot study evaluating the impact neighborhood trail development has on active travel behavior and overall physical activity. A sample of suburban residents in West Valley City, Utah were surveyed both before and after...

  19. Evaluating the Impact of Neighborhood Trail Development on Active Travel Behavior and Overall Physical Activity

    OpenAIRE

    Burbidge, Shaunna K; Goulias, Konstadinos G.

    2008-01-01

    Many studies have examined the impact that the built environment has on physical activity, and much of the existing research posits that if communities will provide and improve active infrastructure such as trails, sidewalks, and bike lanes, people will become more physically active. However, most of these studies have used cross-sectional methods which have allowed them to establish correlations but not behavioral causality. In this pilot project a longitudinal design is used to evaluate the...

  20. TRAIL and proteasome inhibitors combination induces a robust apoptosis in human malignant pleural mesothelioma cells through Mcl-1 and Akt protein cleavages

    International Nuclear Information System (INIS)

    Malignant pleural mesothelioma (MPM) is an aggressive malignancy closely associated with asbestos exposure and extremely resistant to current treatments. It exhibits a steady increase in incidence, thus necessitating an urgent development of effective new treatments. Proteasome inhibitors (PIs) and TNFα-Related Apoptosis Inducing Ligand (TRAIL), have emerged as promising new anti-MPM agents. To develop effective new treatments, the proapoptotic effects of PIs, MG132 or Bortezomib, and TRAIL were investigated in MPM cell lines NCI-H2052, NCI-H2452 and NCI-H28, which represent three major histological types of human MPM. Treatment with 0.5-1 μM MG132 alone or 30 ng/mL Bortezomib alone induced a limited apoptosis in MPM cells associated with the elevated Mcl-1 protein level and hyperactive PI3K/Akt signaling. However, whereas 10–20 ng/ml TRAIL alone induced a limited apoptosis as well, TRAIL and PI combination triggered a robust apoptosis in all three MPM cell lines. The robust proapoptotic activity was found to be the consequence of a positive feedback mechanism-governed amplification of caspase activation and cleavage of both Mcl-1 and Akt proteins, and exhibited a relative selectivity in MPM cells than in non-tumorigenic Met-5A mesothelial cells. The combinatorial treatment using TRAIL and PI may represent an effective new treatment for MPMs

  1. The secreted protein acidic and rich in cysteine is a critical mediator of cell death program induced by WIN/TRAIL combined treatment in osteosarcoma cells.

    Science.gov (United States)

    Notaro, Antonietta; Sabella, Selenia; Pellerito, Ornella; Vento, Renza; Calvaruso, Giuseppe; Giuliano, Michela

    2016-03-01

    Secreted protein acidic and rich in cysteine (SPARC) is a multi-functional protein which modulates cell-cell and cell-matrix interactions. In cancer cells, SPARC behaves as a tumor promoter in a number of tumors, but it can also act as a tumor suppressor factor. Our previous results showed that the synthetic cannabinoid WIN55,212-2 (WIN), a potent cannabinoid receptor agonist, is able to sensitize osteosarcoma MG63 cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis which is accompanied with endoplasmic reticulum (ER)-stress induction and the increase in autophagic markers. In the present investigation, we studied the role of SPARC in WIN/TRAIL-induced apoptosis demonstrating that WIN increased the level of SPARC protein and mRNA in a time-dependent manner. This event was functional to WIN/TRAIL-dependent apoptosis as demonstrated by RNA interfering analysis which indicated that SPARC-silenced cells were less sensitive to cytotoxic effects induced by the combined treatment. Our experiments also demonstrate that SPARC interacts with caspase-8 thus probably favoring its translocation to plasma membrane and the activation of extrinsic apoptotic pathway. In conclusion, to the best of our knowledge, our results are the first to show that WIN-dependent increase in the level of SPARC plays a critical role in sensitizing osteosarcoma cells to TRAIL action.

  2. Effects of methylation status of caspase-8 promoter on antitumor activity of TRAIL to human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ru-gang; FANG Dian-chun; YANG Liu-qin; LUO Yuan-gang

    2004-01-01

    Objective: To study the effects of the methylation status of caspase-8 promoter on the antitumor activity of TRAIL to the human gastric cancer cells. Methods: The methylation of caspase-8 was measured with methylation specific PCR (MSP) and the antitomor capability of TRAIL to human gastric cancer cells was determined with MTT. Results: No methylation of caspase-8 in the human gastric cancer cells was found. The sensitivity of 5 lines of gastric cancer cells to the antitumor activity of TRAIL was different. The administration of the demethylation agent 5-Aza-2'-deoxycytidine ( 5-AzaCdR) increased the sensitivity of gastric cancer cells to TRAIL but did not change the methylation status of caspase-8 promoter in gastric cancer cells. Conclusion: 5-Aza-CdR increases the sensitivity of most of gastric cancer cells to TRAIL but caspase-8 is not involved in the antitumor activity of TRAIL.

  3. Identification of Flap Motion Parameters for Vibration Reduction in Helicopter Rotors with Multiple Active Trailing Edge Flaps

    Directory of Open Access Journals (Sweden)

    Uğbreve;ur Dalli

    2011-01-01

    Full Text Available An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing conditions. Rotor blade system response is calculated using the proposed solution method and the developed program depending on any structural and aerodynamic properties of rotor blades, structural properties of trailing edge flaps and properties of trailing edge flap actuator inputs. Rotor blade loads are determined first on a nominal rotor blade without multiple active trailing edge flaps and then the effects of the active flap motions on the existing rotor blade loads are investigated. Multiple active trailing edge flaps are controlled by using open loop controllers to identify the effects of the actuator signal output properties such as frequency, amplitude and phase on the system response. Effects of using multiple trailing edge flaps on controlling rotor blade vibrations are investigated and some design criteria are determined for the design of trailing edge flap controller that will provide actuator signal outputs to minimize the rotor blade root loads. It is calculated that using the developed active trailing edge rotor blade model, helicopter rotor blade vibrations can be reduced up to 36% of the nominal rotor blade vibrations.

  4. The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer

    Directory of Open Access Journals (Sweden)

    Lane Denis

    2010-01-01

    Full Text Available Abstract Background The production of ascites is a common complication of ovarian cancer. Ascites constitute a unique tumor microenvironment that may affect disease progression. In this context, we recently showed that ovarian cancer ascites may protect tumor cells from TRAIL-induced apoptosis. In this study, we sought to determine whether the prosurvival effect of ascites affects disease-free intervals. Methods Peritoneal fluids were obtained from 54 women undergoing intra-abdominal surgery for suspected ovarian cancer (44 cancers and 10 benign diseases. The ability of peritoneal fluids to protect from TRAIL was assessed in the ovarian cancer cell line CaOV3, and IC50 were determined. The anti-apoptotic activity of 6 ascites against cisplatin, paclitaxel, doxorubicin, etoposide and vinorelbine was also assessed in CaOV3 cells, and the prosurvival activity of two ascites was assessed in 9 primary ovarian cancer cultures. Results Among the 54 peritoneal fluids tested, inhibition of TRAIL cytotoxicity was variable. Fluids originating from ovarian cancer were generally more protective than fluids from non-malignant diseases. Most of the 44 ovarian cancer ascites increased TRAIL IC50 and this inhibitory effect did not correlate strongly with the protein concentration in these ascites or the levels of serum CA125, a tumor antigen which is used in the clinic as a marker of tumor burden. The effect of ascites on cisplatin- and paclitaxel-induced cell death was assessed with 4 ascites having inhibitory effect on TRAIL-induced cell death and 2 that do not. The four ascites with prosurvival activity against TRAIL had some inhibitory on cisplatin and/or paclitaxel. Two ovarian cancer ascites, OVC346 and OVC509, also inhibited TRAIL cytotoxicity in 9 primary cultures of ovarian tumor and induced Akt activation in three of these primary cultures. Among a cohort of 35 patients with ascites, a threshold of TRAIL IC50 with ascites/IC50 without ascites > 2 was

  5. Minnesota State Trails

    Data.gov (United States)

    Minnesota Department of Natural Resources — State trails maintained by Minnesota DNR Division of Parks and Trails. These have multiple use status with specific activities supported in designated sections....

  6. 25 CFR 170.137 - What types of activities can a recreation, tourism, and trails program include?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What types of activities can a recreation, tourism, and... Eligibility Recreation, Tourism and Trails § 170.137 What types of activities can a recreation, tourism, and... may perform under a recreation, tourism, and trails program: (1) Transportation planning for...

  7. A novel cationic lipid with intrinsic antitumor activity to facilitate gene therapy of TRAIL DNA.

    Science.gov (United States)

    Luo, Cong; Miao, Lei; Zhao, Yi; Musetti, Sara; Wang, Yuhua; Shi, Kai; Huang, Leaf

    2016-09-01

    Metformin (dimethylbiguanide) has been found to be effective for the treatment of a wide range of cancer. Herein, a novel lipid (1,2-di-(9Z-octadecenoyl)-3-biguanide-propane (DOBP)) was elaborately designed by utilizing biguanide as the cationic head group. This novel cationic lipid was intended to act as a gene carrier with intrinsic antitumor activity. When compared with 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP), a commercially available cationic lipid with a similar structure, the blank liposomes consisting of DOBP showed much more potent antitumor effects than DOTAP in human lung tumor xenografts, following an antitumor mechanism similar to metformin. Given its cationic head group, biguanide, DOBP could encapsulate TNF-related apoptosis-inducing ligand (TRAIL) plasmids into Lipid-Protamine-DNA (LPD) nanoparticles (NPs) for systemic gene delivery. DOBP-LPD-TRAIL NPs demonstrated distinct superiority in delaying tumor progression over DOTAP-LPD-TRAIL NPs, due to the intrinsic antitumor activity combined with TRAIL-induced apoptosis in the tumor. These results indicate that DOBP could be used as a versatile and promising cationic lipid for improving the therapeutic index of gene therapy in cancer treatment. PMID:27344367

  8. Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Tibaldi, Carlo; Zahle, Frederik;

    2016-01-01

    This article presents the aeroelastic optimization of a 10MW wind turbine ‘smart blade’ equipped with active trailing edge flaps. The multi-disciplinary wind turbine analysis and optimization tool HawtOpt2 is utilized, which is based on the open-source framework Open-MDAO. The tool interfaces...... to several state-of-the art simulation codes, allowing for a wide variety of problem formulations and combinations of models. A simultaneous aerodynamic and structural optimization of a 10 MW wind turbine rotor is carried out with respect to material layups and outer shape. Active trailing edge flaps...... are integrated in the design taking into account their achieved fatigue load reduction. The optimized ‘smart blade’ design is compared to an aeroelastically optimized design with no flaps and the baseline design....

  9. Novel treatment option for MUC16-positive malignancies with the targeted TRAIL-based fusion protein Meso-TR3

    International Nuclear Information System (INIS)

    The targeted delivery of cancer therapeutics represents an ongoing challenge in the field of drug development. TRAIL is a promising cancer drug but its activity profile could benefit from a cancer-selective delivery mechanism, which would reduce potential side effects and increase treatment efficiencies. We recently developed the novel TRAIL-based drug platform TR3, a genetically fused trimer with the capacity for further molecular modifications such as the addition of tumor-directed targeting moieties. MUC16 (CA125) is a well characterized biomarker in several human malignancies including ovarian, pancreatic and breast cancer. Mesothelin is known to interact with MUC16 with high affinity. In order to deliver TR3 selectively to MUC16-expressing cancers, we investigated the possibility of targeted TR3 delivery employing the high affinity mesothelin/MUC16 ligand/receptor interaction. Using genetic engineering, we designed the novel cancer drug Meso-TR3, a fusion protein between native mesothelin and TR3. The recombinant proteins were produced with mammalian HEK293T cells. Meso-TR3 was characterized for binding selectivity and killing efficacy against MUC16-positive cancer cells and controls that lack MUC16 expression. Drug efficacy experiments were performed in vitro and in vivo employing an intraperitoneal xenograft mouse model of ovarian cancer. Similar to soluble mesothelin itself, the strong MUC16 binding property was retained in the Meso-TR3 fusion protein. The high affinity ligand/receptor interaction was associated with a selective accumulation of the cancer drug on MUC16-expressing cancer targets and directly correlated with increased killing activity in vitro and in a xenograft mouse model of ovarian cancer. The relevance of the mesothelin/MUC16 interaction for attaching Meso-TR3 to the cancer cells was verified by competitive blocking experiments using soluble mesothelin. Mechanistic studies using soluble DR5-Fc and caspase blocking assays confirmed

  10. Antitumor activities and on-target toxicities mediated by a TRAIL receptor agonist following cotreatment with panobinostat.

    Science.gov (United States)

    Martin, Ben P; Frew, Ailsa J; Bots, Michael; Fox, Stephen; Long, Fenella; Takeda, Kazuyoshi; Yagita, Hideo; Atadja, Peter; Smyth, Mark J; Johnstone, Ricky W

    2011-06-01

    The recent development of novel targeted anticancer therapeutics such as histone deacetylase inhibitors (HDACi) and activators of the TRAIL pathway provide opportunities for the introduction of new treatment regimens in oncology. HDACi and recombinant TRAIL or agonistic anti-TRAIL receptor antibodies have been shown to induce synergistic tumor cell apoptosis and some therapeutic activity in vivo. Herein, we have used syngeneic preclinical models of human solid cancers to demonstrate that the HDACi panobinostat can sensitize tumor cells to apoptosis mediated by the anti-mouse TRAIL receptor antibody MD5-1. We demonstrate that the combination of panobinostat and MD5-1 can eradicate tumors grown subcutaneously and orthotopically in immunocompetent mice, while single agent treatment has minimal effect. However, escalation of the dose of panobinostat to enhance antitumor activity resulted in on-target MD5-1-mediated gastrointestinal toxicities that were fatal to the treated mice. Studies performed in mice with knockout of the TRAIL receptor showed that these mice could tolerate doses of the panobinostat/MD5-1 combination that were lethal in wild type mice resulting in superior tumor clearance. Given that clinical studies using HDACi and activators of the TRAIL pathway have been initiated, our preclinical data highlight the potential toxicities that could limit the use of such a treatment regimen. Our studies also demonstrate the power of using syngeneic in vivo tumor models as physiologically relevant preclinical systems to test the antitumor effects and identify potential side effects of novel anticancer regimens.

  11. Requirement of catalytically active Tyk2 and accessory signals for the induction of TRAIL mRNA by IFN-beta.

    Science.gov (United States)

    Rani, M R Sandhya; Pandalai, Sudha; Shrock, Jennifer; Almasan, Alex; Ransohoff, Richard M

    2007-09-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) mRNA was induced preferentially by interferon (IFN)-beta but not IFN-alpha in human fibrosarcoma and primary fibroblast cells. To characterize the signaling components mediating the IFN subtype-specific induction of this gene, we used mutant cell lines lacking individual components involved in signaling by type I IFNs. TRAIL was not induced by IFN-beta in mutant cell lines U2A, U3A, U4A, U5A, and U6A, which lack, respectively, IFN regulatory factor-9 (IRF-9), Stat1, Jak1, IFNAR-2.2, and Stat2, indicating transcription factor IFN-stimulated gene factor 3 (ISGF3) was essential for the induction of this gene. TRAIL was not induced by IFN-beta in U1A (Tyk2 null) or U1A.R930 cells (that express a kinase-deficient point mutant of Tyk2) but was induced in U1A.wt-5 cells (U1A cells expressing wild-type Tyk2), indicating that Tyk2 protein and kinase activity were both required for induction of the gene. Biochemical and genetic analyses revealed the requirement of transcription factor NF-kappa B and phosphoinositide 3-kinase (PI3K) but not extracellular signal-regulated kinase (ERK) for the induction of TRAIL by IFN-beta. Furthermore, the antiproliferative but not antiviral effects of IFN-beta required catalytically active Tyk2, suggesting that expression of genes, such as TRAIL, may play an important role in mediating the biologic effects of IFNs.

  12. Active flow control for reduction of fluctuating aerodynamic forces of a blunt trailing edge profiled body

    Energy Technology Data Exchange (ETDEWEB)

    Naghib-Lahouti, Arash, E-mail: anaghibl@uwo.c [Boundary Layer Wind Tunnel Laboratory, University of Western Ontario, London, Ontario, N6A 5B9 (Canada); Hangan, Horia [Boundary Layer Wind Tunnel Laboratory, University of Western Ontario, London, Ontario, N6A 5B9 (Canada)

    2010-12-15

    Vortex shedding in the wake of two-dimensional bluff bodies is usually accompanied by three dimensional instabilities. These instabilities result in streamwise and vertical vorticity components which occur at a certain spanwise wavelength. The spanwise wavelength of the instabilities ({lambda}{sub Z}) depends on several parameters, including profile geometry and Reynolds number. The objective of the present work is to study the three dimensional wake instabilities for a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge, and to manipulate these instabilities to control the aerodynamic forces. Results of numerical simulations of flow around the body at Re(d) = 400, 600, and 1000, as well as planar Laser Induced Fluorescence (LIF) flow visualizations at Re(d) = 600 and 1000 are analyzed to determine the wake vorticity structure and {lambda}{sub Z}. Based on the findings of these analyses, an active flow control mechanism for attenuation of the fluctuating aerodynamic forces on the body is proposed. The flow control mechanism is comprised of a series of trailing edge injection ports distributed across the span, with a spacing equal to {lambda}{sub Z}. Injection of a secondary flow leads to amplification of the three dimensional instabilities and disorganization of the von Karman vortex street. Numerical simulations indicate that the flow control mechanism can attenuate the fluctuating aerodynamic forces at lower Reynolds numbers (Re(d) = 400 and 600) where {lambda}{sub Z} is constant in time. However, the control mechanism loses its effectiveness at Re(d) = 1000, due to the temporal variations of {lambda}{sub Z}.

  13. Short-hairpin RNA-induced suppression of adenine nucleotide translocase-2 in breast cancer cells restores their susceptibility to TRAIL-induced apoptosis by activating JNK and modulating TRAIL receptor expression

    Directory of Open Access Journals (Sweden)

    Kim Chul-Woo

    2010-09-01

    Full Text Available Abstract Background Tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL; apo2 ligand induces apoptosis in cancer cells but has little effect on normal cells. However, many cancer cell types are resistant to TRAIL-induced apoptosis, limiting the clinical utility of TRAIL as an anti-cancer agent. We previously reported that the suppression of adenine nucleotide translocase-2 (ANT2 by short-hairpin RNA (shRNA induces apoptosis of breast cancer cells, which frequently express high levels of ANT2. In the present study, we examined the effect of RNA shRNA-induced suppression of ANT2 on the resistance of breast cancer cells to TRAIL-induced apoptosis in vitro and in vivo. Results ANT2 shRNA treatment sensitized MCF7, T47 D, and BT474 cells to TRAIL-induced apoptosis by up-regulating the expression of TRAIL death receptors 4 and 5 (DR4 and DR5 and down-regulating the TRAIL decoy receptor 2 (DcR2. In MCF7 cells, ANT2 knockdown activated the stress kinase c-Jun N-terminal kinase (JNK, subsequently stabilizing and increasing the transcriptional activity of p53 by phosphorylating it at Thr81; it also enhanced the expression and activity of DNA methyltransferase 1 (DNMT1. ANT2 shRNA-induced overexpression of DR4/DR5 and TRAIL sensitization were blocked by a p53 inhibitor, suggesting that p53 activation plays an important role in the transcriptional up-regulation of DR4/DR5. However, ANT2 knockdown also up-regulated DR4/DR5 in the p53-mutant cell lines BT474 and T47 D. In MCF7 cells, ANT2 shRNA treatment led to DcR2 promoter methylation and concomitant down-regulation of DcR2 expression, consistent with the observed activation of DNMT1. Treatment of the cells with a demethylating agent or JNK inhibitor prevented the ANT2 shRNA-induced down-regulation of DcR2 and activation of both p53 and DNMT1. In in vivo experiments using nude mice, ANT2 shRNA caused TRAIL-resistant MCF7 xenografts to undergo TRAIL-induced cell death, up-regulated DR4/DR5

  14. Patients with Ankylosing Spondylitis and Low Disease Activity because of Anti-TNF-Alpha Therapy Have Higher TRAIL Levels Than Controls: A Potential Compensatory Effect

    Directory of Open Access Journals (Sweden)

    Fernanda Genre

    2014-01-01

    Full Text Available Objective. TRAIL is a potential biomarker of cardiovascular (CV disease. Ankylosing spondylitis (AS is a chronic inflammatory disease associated with metabolic syndrome (MeS and accelerated atherosclerosis. We assessed whether disease activity, systemic inflammation, and MeS features were associated with circulating TRAIL levels in AS patients undergoing TNF-α antagonist infliximab therapy and if infliximab infusion modified TRAIL levels. Methods. We measured TRAIL serum levels in 30 nondiabetic AS patients without CV disease undergoing anti-TNF-α therapy, immediately before and after an infliximab infusion, and in 48 matched controls. Correlations of TRAIL levels with disease activity, systemic inflammation and MeS features, adipokines, and biomarkers of endothelial activation were evaluated. Changes in TRAIL levels following anti-TNF-α infusion were analyzed. Results. TRAIL levels were higher in AS patients than controls. TRAIL levels displayed an inverse correlation with total and LDL cholesterol. We observed an inverse correlation with QUICKI and a marginal association with HOMA-IR. We also found an inverse correlation with resistin and a marginal association with apelin and OPN. Anti-TNF-α infusion did not change TRAIL levels after 120′. Conclusion. Elevated TRAIL levels in AS patients may be the result of a compensatory mechanism to reduce CV risk in these patients.

  15. Purification and Characterization of Recombinant sTRAIL Expressed in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xia XIA; Ya-Ling SHEN; Dong-Zhi WEI

    2004-01-01

    As a potential anti-tumor protein, tumor necrosis factor-related apoptosis-inducing ligand(TRAIL) has drawn considerable attention. This report presented the purification and characterization ofsoluble TRAIL, expressed as inclusion bodies in E. coli sTRAIL inclusion bodies were solubilized andrefolded at a high concentration up to 0.9g/L by a simple dilution method. Refolded protein was purifiedto electrophoretic homogeneity by a single-step immobilized metal affinity chromatography. The purifiedsTRAIL had a strong cytotoxic activity against human pancreatic tumor cell line 1990, with ED50 about1.5mg/L. Circular dichroism and fluorescence spectrum analysis showed that the refolded sTRAIL had astructure similar to that of native protein with β-sheet secondary structure. This efficient procedure ofsTRAIL renaturation may be useful for the mass production of this therapeutically important protein.

  16. Structural and mechanism design of an active trailing-edge flap blade

    DEFF Research Database (Denmark)

    Lee, Jae Hwan; Natarajan, Balakumaran; Eun, Won Jong;

    2013-01-01

    , as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram...... of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design....... To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4°, three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin...

  17. Wind tunnel test on airfoil Riso-B1-18 with an Active Trailing Edge Flap

    DEFF Research Database (Denmark)

    Bak, Christian; Gaunaa, Mac; Andersen, Peter Bjørn;

    2010-01-01

    A wind tunnel test of the wind turbine airfoil Risø-B1-18 equipped with an Active Trailing Edge Flap (ATEF) was carried out. The ATEF was 9% of the total chord, made of piezo electric actuators attached to the trailing edge of a non-deformable airfoil and actuated using an (electric) amplifier....... The airfoil was tested at Re = 1.66 × 106. Steady state and dynamic tests were carried out with prescribed deflections of the ATEF. The steady state tests showed that deflecting the ATEF towards the pressure side (positive ) translated the lift curve to higher lift values and deflecting the ATEF towards...

  18. Reduced prefrontal cortex activation using the Trail Making Test in schizophrenia

    Directory of Open Access Journals (Sweden)

    Fujiki R

    2013-05-01

    Full Text Available Ryo Fujiki,1,2 Kiichiro Morita,1,2 Mamoru Sato,1,2 Yuji Kamada,1,2 Yusuke Kato,1,2 Masayuki Inoue,2 Yoshihisa Shoji,1,2 Naohisa Uchimura1 1Department of Neuropsychiatry, Kurume University School of Medicine, Kurume-City, Japan; 2Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, Kurume-City, Japan Abstract: Schizophrenia has been associated with a deficit of the prefrontal cortex, which is involved in attention, executive processes, and working memory. The Trail Making Test (TMT is administered in two parts, TMT-A and TMT-B. It is suggested that the difference in performance between part A and part B reflects executive processes. In this study, we compared the characteristics of hemodynamic changes during TMT tasks between 14 outpatients with schizophrenia and 14 age- and gender-matched healthy control subjects. Using multichannel near-infrared spectroscopy, we measured relative changes in oxygenated hemoglobin concentration, which reflects brain activity of the prefrontal cortex during this task. In both tasks, patients showed significantly smaller activation than controls and, in an assessment of executive functions, a subtraction of oxygenated hemoglobin (oxy-Hb changes during TMT-A from those of TMT-B showed a decrease in cerebral lateralization and hypoactivity in patients. There was a significant negative correlation between oxy-Hb changes and the severity of psychiatric symptoms. These findings may characterize disease-related features, suggesting the usefulness of oxy-Hb change measurement during TMT tasks for assessing functional outcomes in schizophrenic patients. Keywords: Trail Making Test, multichannel near-infrared spectroscopy, schizophrenia, prefrontal cortex, executive function

  19. Dealing naturally with stumbling blocks on highways and byways of TRAIL induced signaling.

    Science.gov (United States)

    Rana, Aamir; Attar, Rukset; Qureshi, Muhammad Zahid; Gasparri, Maria Luisa; Donato, Violante Di; Ali, Ghulam Muhammad; Farooqi, Ammad Ahmad

    2014-01-01

    In-depth analysis of how TRAIL signals through death receptors to induce apoptosis in cancer cells using high throughput technologies has added new layers of knowledge. However, the wealth of information has also highlighted the fact that TRAIL induced apoptosis may be impaired as evidenced by experimental findings obtained from TRAIL resistant cancer cell lines. Overwhelmingly, increasing understanding of TRAIL mediated apoptosis has helped in identifying synthetic and natural compounds which can restore TRAIL induced apoptosis via functionalization of either extrinsic or intrinsic pathways. Increasingly it is being realized that biologically active phytochemicals modulate TRAIL induced apoptosis, as evidenced by cell-based studies. In this review we have attempted to provide an overview of how different phytonutrients have shown efficacy in restoring apoptosis in TRAIL resistant cancer cells. We partition this review into how the TRAIL mediated signaling landscape has broadened over the years and how TRAIL induced signaling machinery crosstalks with autophagic protein networks. Subsequently, we provide a generalized view of considerable biological activity of coumarins against a wide range of cancer cell lines and how coumarins (psoralidin and esculetin) isolated from natural sources have improved TRAIL induced apoptosis in resistant cancer cells. We summarize recent updates on piperlongumine, phenethyl isothiocyanate and luteolin induced activation of TRAIL mediated apoptosis. The data obtained from pre-clinical studies will be helpful in translation of information from benchtop to the bedside. PMID:25338981

  20. Aplysin Sensitizes Cancer Cells to TRAIL by Suppressing P38 MAPK/Survivin Pathway

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2014-09-01

    Full Text Available TNF-related apoptosis-inducing ligand (TRAIL is a tumor-selective apoptosis inducer and has been shown to be promising for treating various types of cancers. However, the application of TRAIL is greatly impeded by the resistance of cancer cells to its action. Studies show that overexpression of some critical pro-survival proteins, such as survivin, is responsible for TRAIL resistance. In this study, we found that Aplysin, a brominated compound from marine organisms, was able to restore the sensitivity of cancer cells to TRAIL both in vitro and in vivo. Aplysin was found to enhance the tumor-suppressing capacity of TRAIL on several TRAIL-resistant cancer cell lines. TRAIL-induced apoptosis was also potentiated in A549 and MCF7 cells treated with Aplysin. Survivin downregulation was identified as a mechanism by which Aplysin-mediated TRAIL sensitization of cancer cells. Furthermore, the activation of p38 MAPK was revealed in Aplysin-treated cancer cells, and its inhibitor SB203580 was able to abrogate the promoting effect of Aplysin on the response of cancer cells to TRAIL action, as evidenced by restored survivin expression, elevated cell survival and reduced apoptotic rates. In conclusion, we provided evidence that Aplysin acts as a sensitizer for TRAIL and its effect on p38 MAPK/survivin pathway may partially account for this activity. Considering its low cytotoxicity to normal cells, Aplysin may be a promising agent for cancer treatment in combination with TRAIL.

  1. 2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap

    Science.gov (United States)

    Jaksich, Dylan; Shen, Jinwei

    2014-11-01

    Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.

  2. Structural and aerodynamic considerations of an active piezoelectric trailing-edge tab on a helicopter rotor

    Science.gov (United States)

    Murray, Gabriel Jon

    This dissertation is concerned with an active tab for use on a rotorcraft for noise and vibration reduction. The tab is located at the trailing edge of the airfoil. The tab consists of a shim sandwiched by layers of the piezoelectric actuators, macro fiber composites, of varying length. This configuration is similar to a bimorph. The modus operandi is similar to that of a trailing edge flap. The actuators deform the tab, bending it to achieve a tip displacement. This provides a change in the lift, moment, and drag coefficients of the airfoil. By actuating the system at 3/rev to 5/rev, reductions in noise and vibration can be realized. The system was examined and designed around using the UH-60 Blackhawk as the model rotorcraft. The tab is envisioned to operate between 65% to 85% of the main rotor span. The tab's chordwise dimensions considered were 20% and 15% of the blade chord. In order to assess the potential of the tab to change the lift and moment coefficients of the airfoil-tab system, a steady computational fluid dynamics study was conducted. The results were generated via the University of Maryland's Transonic Unsteady Navier-Stokes code. Various tab deflection angles, Mach numbers, and angle-of-attack values were computed. These results were compared to a trailing edge flap of similar size. The comparison shows that the tab produces lift and moment increments similar to that of the trailing edge flap. The design of the tab---composed of both active piezoelectric actuators and passive materials---was conducted using finite element analysis. The objectives were to maximize the tip deflection due to the actuators, while minimizing the deformation due to inertial and aerodynamic forces and loads. The inertial loads (acceleration terms) come from both blade motion, such as flapping and pitch, as well as the rotation of the rotor (centrifugal force). All of these previously mentioned terms cause the tab to undergo undesirable deflections. The original concept

  3. Piperlongumine and immune cytokine TRAIL synergize to promote tumor death.

    Science.gov (United States)

    Li, Jiahe; Sharkey, Charles C; King, Michael R

    2015-01-01

    Malignant transformation results in increased levels of reactive oxygen species (ROS). Adaption to this toxic stress allows cancer cells to proliferate. Recently, piperlongumine (PL), a natural alkaloid, was identified to exhibit novel anticancer effects by targeting ROS signaling. PL induces apoptosis specifically in cancer cells by downregulating several anti-apoptotic proteins. Notably, the same anti-apoptotic proteins were previously found to reduce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in cancer cells. Therefore, we reasoned that PL would synergize with TRAIL to stimulate potent apoptosis in cancer cells. We demonstrate for the first time that PL and TRAIL exhibit a synergistic anti-cancer effect in cancer cell lines of various origins. PL resulted in the upregulation of TRAIL receptor DR5, which potentiated TRAIL-induced apoptosis in cancer cells. Furthermore, such upregulation was found to be dependent on ROS and the activation of JNK and p38 kinases. Treatment with combined PL and TRAIL demonstrated significant anti-proliferative effects in a triple-negative breast cancer MDA-MB-231 xenograft model. This work provides a novel therapeutic approach for inducing cancer cell death. Combination of PL and TRAIL may suggest a novel paradigm for treatment of primary and metastatic tumors. PMID:25984950

  4. Quercetin sensitizes pancreatic cancer cells to TRAIL-induced apoptosis through JNK-mediated cFLIP turnover.

    Science.gov (United States)

    Kim, Ji Hye; Kim, Min Joo; Choi, Kyung-Chul; Son, Jaekyoung

    2016-09-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that can selectively kill cancer cells. Nonetheless, many cancers are resistant to TRAIL, and the molecular mechanisms of TRAIL resistance in cancer, particularly pancreatic cancer, are still unclear. In this study, we tested the hypothesis that quercetin, a flavonoid, induces apoptosis in TRAIL-resistant pancreatic cancer cells. Although quercetin alone had no significant cytotoxic effect, when combined with TRAIL, it promoted TRAIL-induced apoptosis that required mitochondrial outer membrane permeabilization. A BH3-only protein BID knockdown dramatically attenuated TRAIL/quercetin-induced apoptosis. The expression levels of cellular FLICE-like inhibitory protein (cFLIP) decreased in a dose-dependent manner in the presence of quercetin, and overexpression of cFLIP was able to robustly rescue pancreatic cancer cells from TRAIL/quercetin-induced apoptosis. Additionally, quercetin activated c-Jun N-terminal kinase (JNK) in a dose-dependent manner, which in turn induced the proteasomal degradation of cFLIP, and JNK activation also sensitized pancreatic cancer cells to TRAIL-induced apoptosis. Thus, our results suggest that quercetin induces TRAIL-induced apoptosis via JNK activation-mediated cFLIP turnover. PMID:27477310

  5. A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Poulsen, Niels Kjølstad

    2015-01-01

    . The effects of active flap control are assessed with aeroelastic simulations of the turbine in normal operation conditions, as prescribed by the International Electrotechnical Commission standard. The turbine lifetime fatigue damage equivalent loads provide a convenient summary of the results achieved......The paper proposes a smart rotor configuration where adaptive trailing edge flaps (ATEFs) are employed for active alleviation of the aerodynamic loads on the blades of the NREL 5 MW reference turbine. The flaps extend for 20% of the blade length and are controlled by a linear quadratic (LQ...

  6. Dengue virus activates membrane TRAIL relocalization and IFN-α production by human plasmacytoid dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Mariana Gandini

    Full Text Available BACKGROUND: Dengue displays a broad spectrum of clinical manifestations that may vary from asymptomatic to severe and even fatal features. Plasma leakage/hemorrhages can be caused by a cytokine storm induced by monocytes and dendritic cells during dengue virus (DENV replication. Plasmacytoid dendritic cells (pDCs are innate immune cells and in response to virus exposure secrete IFN-α and express membrane TRAIL (mTRAIL. We aimed to characterize pDC activation in dengue patients and their function under DENV-2 stimulation in vitro. METHODS FINDINGS: Flow cytometry analysis (FCA revealed that pDCs of mild dengue patients exhibit significantly higher frequencies of mTRAIL compared to severe cases or healthy controls. Plasma levels of IFN-α and soluble TRAIL are increased in mild compared to severe dengue patients, positively correlating with pDC activation. FCA experiments showed that in vitro exposure to DENV-2 induced mTRAIL expression on pDC. Furthermore, three dimension microscopy highlighted that TRAIL was relocalized from intracellular compartment to plasma membrane. Chloroquine treatment inhibited DENV-2-induced mTRAIL relocalization and IFN-α production by pDC. Endosomal viral degradation blockade by chloroquine allowed viral antigens detection inside pDCs. All those data are in favor of endocytosis pathway activation by DENV-2 in pDC. Coculture of pDC/DENV-2-infected monocytes revealed a dramatic decrease of antigen detection by FCA. This viral antigens reduction in monocytes was also observed after exogenous IFN-α treatment. Thus, pDC effect on viral load reduction was mainly dependent on IFN-α production. CONCLUSIONS: This investigation characterizes, during DENV-2 infection, activation of pDCs in vivo and their antiviral role in vitro. Thus, we propose TRAIL-expressing pDCs may have an important role in the outcome of disease.

  7. Associations Between Sociodemographic Characteristics and Perceptions of the Built Environment With the Frequency, Type, and Duration of Physical Activity Among Trail Users

    OpenAIRE

    Maslow, Andréa L.; Reed, Julian A.; Price, Anna E.; Steven P. Hooker

    2012-01-01

    Introduction Rail trails are elements of the built environment that support the Task Force on Community Preventive Services' recommendation to create, or enhance access to, places for physical activity (PA). The purpose of this study was to examine the associations between sociodemographic characteristics and perceptions of the built environment with the frequency, type, and duration of PA among users of an urban, paved rail trail segment. Methods Interviewers conducted intercept surveys with...

  8. TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells.

    Science.gov (United States)

    Lelaidier, Martin; Dìaz-Rodriguez, Yildian; Cordeau, Martine; Cordeiro, Paulo; Haddad, Elie; Herblot, Sabine; Duval, Michel

    2015-10-01

    Acute lymphoblastic leukemia (ALL) still frequently recurs after hematopoietic stem cell transplantation (HSCT), underscoring the need to improve the graft-versus-leukemia (GvL) effect. Natural killer (NK) cells reconstitute in the first months following HSCT when leukemia burden is at its lowest, but ALL cells have been shown to be resistant to NK cell-mediated killing. We show here that this resistance is overcome by NK cell stimulation with TLR-9-activated plasmacytoid dendritic cells (pDCs). NK cell priming with activated pDCs resulted in TRAIL and CD69 up-regulation on NK cells and IFN-γ production. NK cell activation was dependent on IFN-α produced by pDCs, but was not reproduced by IFN-α alone. ALL killing was further enhanced by inhibition of KIR engagement. We showed that ALL lysis was mainly mediated by TRAIL engagement, while the release of cytolytic granules was involved when ALL expressed NK cell activating receptor ligands. Finally, adoptive transfers of activated-pDCs in ALL-bearing humanized mice delayed the leukemia onset and cure 30% of mice. Our data therefore demonstrate that TLR-9 activated pDCs are a powerful tool to overcome ALL resistance to NK cell-mediated killing and to reinforce the GvL effect of HSCT. These results open new therapeutic avenues to prevent relapse in children with ALL.

  9. Adaptive trailing edge flaps for active load alleviation in a smart rotor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.

    2013-08-15

    The work investigates the development of an active smart rotor concept from an aero-servo-elastic perspective. An active smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators, is able to alleviate the fluctuating part of the aerodynamic loads it has to withstand. The investigation focuses on a specific actuator type: the Adaptive Trailing Edge Flap (ATEF), which introduces a continuous deformation of the aft part of the airfoil camber-line. An aerodynamic model that accounts for the steady and unsteady effects of the flap deflection on a 2D airfoil section is developed, and, considering both attached and separated flow conditions, is validated by comparison against Computational Fluid Dynamic solutions and a panel code method. The aerodynamic model is integrated in the BEM-based aeroelastic simulation code HAWC2, thus providing a tool able to simulate the response of a wind turbine equipped with ATEF. A load analysis of the NREL 5 MW reference turbine in its baseline configuration reveals that the highest contribution to the blade flapwise fatigue damage originates from normal operation above rated wind speed, and from loads characterized by frequencies below 1 Hz. The analysis also reports that periodic load variations on the turbine blade account for nearly 11 % of the blade flapwise lifetime fatigue damage, while the rest is ascribed to load variations from disturbances of stochastic nature. The study proposes a smart rotor configuration with flaps laid out on the outer 20 % of the blade span, from 77 % to 97% of the blade length. The configuration is first tested with a simplified cyclic control approach, which gives a preliminary indication of the load alleviation potential, and also reveals the possibility to enhance the rotor energy capture below rated conditions by using the flaps. Two model based control algorithms are developed to actively alleviate the fatigue loads on the smart rotor with ATEF. The first

  10. MAPK p38 and JNK have opposing activities on TRAIL-induced apoptosis activation in NSCLC H460 cells that involves RIP1 and caspase-8 and is mediated by Mcl-1

    NARCIS (Netherlands)

    Azijli, Kaamar; Yuvaraj, Saravanan; van Roosmalen, Ingrid; Flach, Koen; Giovannetti, Elisa; Peters, Godefridus J.; de Jong, Steven; Kruyt, Frank A. E.

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce both caspase-dependent apoptosis and kinase activation in tumor cells. Here, we examined the consequences and mechanisms of TRAIL-induced MAPKs p38 and JNK in non-small cell lung cancer (NSCLC) cells. In apoptosis sensitive H

  11. Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration

    OpenAIRE

    Bergami, Leonardo; Gaunaa, Mac; Poulsen, Niels Kjølstad; Buhl, Thomas

    2013-01-01

    Denne afhandling omhandler udviklingen af et aktivt smart rotor koncept fra et aeroservoelastisk perspektiv. En aktiv smart rotor er en vindmøllerotor som igennem en kombination af sensorer, reguleringsenhed og aktuatorer, aktivt kan reducere den fluktuerende del af de aerodynamiske kræfter møllen skal modstå. Undersøgelsen omhandler en specifik aktuator type: Adaptive Trailing Edge Flap (ATEF), der består af en kontinuert deformation af den bagerste del af vingeprofilernes tværsnitsform.Der ...

  12. Expression of TRAIL and its receptors in primary hepatic carcinoma and apoptosis-inducing effect of HrsTRAIL on hepatoma cell line HepG2

    Institute of Scientific and Technical Information of China (English)

    Mingbing Xiao; Jiefei Huang; Runzhou Ni; Jing Zhu; Hong Zhang; Qun Wei; Feng Jiang; Baijun Bao

    2006-01-01

    Objective: To investigate the expression of tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)and its receptors in primary hepatic carcinoma (PHC) and the apoptosis-inducing effect on hepatoma cell line HepG2. Methods:TRAIL and its receptors were detected by semiquantitive RT-PCR in 30 PHC and para-carcinoma tissues and two hepatoma cell lines of HepG2 and SMMC-7721. HepG2 cells were treated with human recombinant soluble TRAIL protein (HrsTRAIL) and then the viability of HepG2 cells was measured by microculture tetrazolium dye(MTT) assay and apoptosis index was demonstrated by fluorescence-activated cell sorting(FACS). Results :TRAIL and its receptors were detectable in all PHC and para-carcinoma tissues and hepatoma cell line HepG2. TRAIL, death receptor 4 (DR4), DR5, and decoy receptor 2 (DcR2) but not DcRI were detectable in hepatoma cell line SMMC-7721. The expression patterns of TRAIL receptors in HepG2 were quite similar to PHC specimens. The semiquantitive results showed that the expression level of TRAIL and DcR were lower but DR was higher in hepatoma tissues than in para-carcinoma tissues. In PHC tissues, the expressions of DR were higher than DcR, while there was no difference in para-carcinoma tissues. HrsTRAIL had potent antitumor activity in a time- and dose-dependent manner. After co-incubations of the HepG2 cells in the presence of HrsTRAIL at concentration 1 000 ng/ml for 24 hours, the viability of HepG2 cells decreased to 45% and the apoptosis index reached 51%. Conclusion:TRAIL and its receptors were expressed in both PHC tissues and para-carcinoma tissues but the expression levels were different. The lower expression of TRAIL in PHC tissues suggested that insufficient apoptosis occured in the development of PHC. High expression of DR in PHC tissues may be a self-defense mechanism and may afford a theory of HrsTRAIL therapy for PHC. HrsTRAIL may be a potential cytotoxic drug for PHC, and it can kill majority of HepG2 cells, but

  13. Superior Hiking Trail

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  14. Superior Hiking Trail Facilities

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  15. Roscovitine sensitizes breast cancer cells to TRAIL-induced apoptosis through a pleiotropic mechanism

    Institute of Scientific and Technical Information of China (English)

    Gustavo Ortiz-Ferrón; Rosario Yerbes; Adriana Eramo; Ana I López-Pérez; Ruggero De Maria; Abelardo López-Rivas

    2008-01-01

    The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L) is a member of the TNF gene superfamily that induces apoptosis upon engagement of cognate death receptors.While TRAIL is relatively non-toxic to normal cells,it selectively induces apoptosis in many transformed cells.Nevertheless,breast tumor cells are particularly resistant to the effects of TRAIL.Here we report that,in combination with the cyclin-dependent kinase inhibitor roscovitine,exposure to TRAIL induced marked apoptosis in the majority of TRAIL-resistant breast cancer cell Iines examined.Roscovitine facilitated TRAIL death-inducing signaling complex formation and the activation of caspase-8.The cFLIPL and eFLIPs FLICE-inhibitory proteins were significantly down-regulated following exposure to roscovitine and,indeed,the knockdown of cFLIP isoforms by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis.In addition,we demonstrate that roscovitine strongly suppressed Mcl-1 expression and up-regulated E2F1 protein levels in breast tumor cells.Significantly,the silencing of Mcl-1 by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis.Furthermore,the knockdown of E2F1 protein by siRNA reduced the sensitizing effect of roscovitine in TRAIL-induced apoptosis.In summary,our results reveal a pleitropic mechanism for the pro-apoptotic influence of roscovitine,highlighting its potential as an antitumor agent in breast cancer in combination with TRAIL.

  16. Skills in Motion: Boys' Trail Motorbiking Activities as Transitions into Working-Class Masculinity in a Post-Industrial Locale

    Science.gov (United States)

    Ivinson, Gabrielle Mary

    2014-01-01

    During an ethnographic research project exploring young people's perceptions of living in a post-industrial semi-rural place, boys aged 13/14 years revealed their semi-clandestine motorbiking activities across mountains trails. It was found that riding motorbikes and fixing engines were potential resources for young boys' transitions…

  17. Smac mimetic SM-164 potentiates APO2L/TRAIL- and doxorubicin-mediated anticancer activity in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Shuijun Zhang

    Full Text Available BACKGROUND: The members of inhibitor of apoptosis proteins (IAPs family are key negative regulators of apoptosis. Overexpression of IAPs are found in hepatocellular carcinoma (HCC, and can contribute to chemotherapy resistance and recurrence of HCC. Small-molecule Second mitochondria-derived activator of caspases (Smac mimetics have recently emerged as novel anticancer drugs through targeting IAPs. The specific aims of this study were to 1 examine the anticancer activity of Smac mimetics as a single agent and in combination with chemotherapy in HCC cells, and 2 investigate the mechanism of anticancer action of Smac mimetics. METHODS: Four HCC cell lines, including SMMC-7721, BEL-7402, HepG2 and Hep3B, and 12 primary HCC cells were used in this study. Smac mimetic SM-164 was used to treat HCC cells. Cell viability, cell death induction and clonal formation assays were used to evaluate the anticancer activity. Western blotting analysis and a pancaspase inhibitor were used to investigate the mechanisms. RESULTS: Although SM-164 induced complete cIAP-1 degradation, it displayed weak inhibitory effects on the viability of HCC cells. Nevertheless, SM-164 considerably potentiated Apo2 ligand or TNF-related apoptosis-inducing ligand (APO2L/TRAIL- and Doxorubicin-mediated anticancer activity in HCC cells. Mechanistic studies demonstrated that SM-164 in combination with chemotherapeutic agents resulted in enhanced activation of caspases-9, -3 and cleavage of poly ADP-ribose polymerase (PARP, and also led to decreased AKT activation. CONCLUSIONS: Smac mimetics can enhance chemotherapeutic-mediated anticancer activity by enhancing apoptosis signaling and suppressing survival signaling in HCC cells. This study suggests Smac mimetics are potential therapeutic agents for HCC.

  18. Paclitaxel sensitizes gastric cancer cells to TRAIL-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Objective:Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promise for cancer therapy as it has unique capacity to selectively trigger apoptosis in cancer cells. We reported here that paclitaxel sensitized gastric cancer cells to TRAIL-induced apoptosis.Methods: After drug exposure, apoptosis rate and caspase activation were examined. Various proteins were detected by western blot. Several interventions, including pharmacological inhibitors and siRNA transfection were used. hTe growth inhibition of tumors was evaluated in SGC-7901-implanted nude mice model.Results:We found gastric cancer cellsshowed a mixed response to TRAIL. Combined treatment with paclitaxel markedly enhanced TARIL-induced apoptosis in vitro and in vivo. The underlying mechanisms involved in synergistical activation of caspase proteins, up-regulation of receptors, down-regulation of antiapoptotic proteins and inactivation of MAPKs.Conclusion:TRAIL-induced cytotoxicity and apoptosis can be synergistically enhanced by paclitaxel, suggesting the therapeutic potential of combining TARIL plus paclitaxel in gastric cancer treatment.

  19. EGFR-targeted TRAIL and a Smac mimetic synergize to overcome apoptosis resistance in KRAS mutant colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Yvonne Möller

    Full Text Available TRAIL is a death receptor ligand that induces cell death preferentially in tumor cells. Recombinant soluble TRAIL, however, performs poorly as an anti-cancer therapeutic because oligomerization is required for potent biological activity. We previously generated a diabody format of tumor-targeted TRAIL termed Db(αEGFR-scTRAIL, comprising single-stranded TRAIL molecules (scTRAIL and the variable domains of a humanized variant of the EGFR blocking antibody Cetuximab. Here we define the bioactivity of Db(αEGFR-scTRAIL with regard to both EGFR inhibition and TRAIL receptor activation in 3D cultures of Caco-2 colorectal cancer cells, which express wild-type K-Ras. Compared with conventional 2D cultures, Caco-2 cells displayed strongly enhanced sensitivity toward Db(αEGFR-scTRAIL in these 3D cultures. We show that the antibody moiety of Db(αEGFR-scTRAIL not only efficiently competed with ligand-induced EGFR function, but also determined the apoptotic response by specifically directing Db(αEGFR-scTRAIL to EGFR-positive cells. To address how aberrantly activated K-Ras, which leads to Cetuximab resistance, affects Db(αEGFR-scTRAIL sensitivity, we generated stable Caco-2tet cells inducibly expressing oncogenic K-Ras(G12V. In the presence of doxycycline, these cells showed increased resistance to Db(αEGFR-scTRAIL, associated with the elevated expression of the anti-apoptotic proteins cIAP2, Bcl-xL and FlipS. Co-treatment of cells with the Smac mimetic SM83 restored the Db(αEGFR-scTRAIL-induced apoptotic response. Importantly, this synergy between Db(αEGFR-scTRAIL and SM83 also translated to 3D cultures of oncogenic K-Ras expressing HCT-116 and LoVo colorectal cancer cells. Our findings thus support the notion that Db(αEGFR-scTRAIL therapy in combination with apoptosis-sensitizing agents may be promising for the treatment of EGFR-positive colorectal cancers, independently of their KRAS status.

  20. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca2+ influx

    International Nuclear Information System (INIS)

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  1. Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    The work investigates the development of an active smart rotor concept from an aero-servo-elastic perspective. An active smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators, is able to alleviate the fluctuating part of the aerodynamic loads it has......-MPC requires lower flap activity, and also achieves higher reductions of the tower fatigue loads, thus indicating that a combined control approach that coordinates and integrates all available sensors and actuators has the potential for overall better results than achieved by a series of independent control...

  2. Methanolic extract of white asparagus shoots activates TRAIL apoptotic death pathway in human cancer cells and inhibits colon carcinogenesis in a preclinical model.

    Science.gov (United States)

    Bousserouel, Souad; Le Grandois, Julie; Gossé, Francine; Werner, Dalal; Barth, Stephan W; Marchioni, Eric; Marescaux, Jacques; Raul, Francis

    2013-08-01

    Shoots of white asparagus are a popular vegetable dish, known to be rich in many bioactive phytochemicals reported to possess antioxidant, and anti-inflammatory and antitumor activities. We evaluated the anticancer mechanisms of a methanolic extract of Asparagus officinalis L. shoots (Asp) on human colon carcinoma cells (SW480) and their derived metastatic cells (SW620), and Asp chemopreventive properties were also assessed in a model of colon carcinogenesis. SW480 and SW620 cell proliferation was inhibited by 80% after exposure to Asp (80 µg/ml). We demonstrated that Asp induced cell death through the activation of TRAIL DR4/DR5 death receptors leading to the activation of caspase-8 and caspase-3 and to cell apoptosis. By specific blocking agents of DR4/DR5 receptors we were able to prevent Asp-triggered cell death confirming the key role of DR4/DR5 receptors. We found also that Asp (80 µg/ml) was able to potentiate the effects of the cytokine TRAIL on cell death even in the TRAIL-resistant metastatic SW620 cells. Colon carcinogenesis was initiated in Wistar rats by intraperitoneal injections of azoxymethane (AOM), once a week for two weeks. One week after (post-initiation) rats received daily Asp (0.01%, 14 mg/kg body weight) in drinking water. After 7 weeks of Asp-treatment the colon of rats exhibited a 50% reduction of the number of preneoplastic lesions (aberrant crypt foci). In addition Asp induced inhibition of several pro-inflammatory mediators, in association with an increased expression of host-defense mediators. In the colonic mucosa of Asp-treated rats we also confirmed the pro-apoptotic effects observed in vitro including the activation of the TRAIL death‑receptor signaling pathway. Taken together, our data highlight the chemopreventive effects of Asp on colon carcinogenesis and its ability to promote normal cellular homeostasis.

  3. Methanolic extract of white asparagus shoots activates TRAIL apoptotic death pathway in human cancer cells and inhibits colon carcinogenesis in a preclinical model.

    Science.gov (United States)

    Bousserouel, Souad; Le Grandois, Julie; Gossé, Francine; Werner, Dalal; Barth, Stephan W; Marchioni, Eric; Marescaux, Jacques; Raul, Francis

    2013-08-01

    Shoots of white asparagus are a popular vegetable dish, known to be rich in many bioactive phytochemicals reported to possess antioxidant, and anti-inflammatory and antitumor activities. We evaluated the anticancer mechanisms of a methanolic extract of Asparagus officinalis L. shoots (Asp) on human colon carcinoma cells (SW480) and their derived metastatic cells (SW620), and Asp chemopreventive properties were also assessed in a model of colon carcinogenesis. SW480 and SW620 cell proliferation was inhibited by 80% after exposure to Asp (80 µg/ml). We demonstrated that Asp induced cell death through the activation of TRAIL DR4/DR5 death receptors leading to the activation of caspase-8 and caspase-3 and to cell apoptosis. By specific blocking agents of DR4/DR5 receptors we were able to prevent Asp-triggered cell death confirming the key role of DR4/DR5 receptors. We found also that Asp (80 µg/ml) was able to potentiate the effects of the cytokine TRAIL on cell death even in the TRAIL-resistant metastatic SW620 cells. Colon carcinogenesis was initiated in Wistar rats by intraperitoneal injections of azoxymethane (AOM), once a week for two weeks. One week after (post-initiation) rats received daily Asp (0.01%, 14 mg/kg body weight) in drinking water. After 7 weeks of Asp-treatment the colon of rats exhibited a 50% reduction of the number of preneoplastic lesions (aberrant crypt foci). In addition Asp induced inhibition of several pro-inflammatory mediators, in association with an increased expression of host-defense mediators. In the colonic mucosa of Asp-treated rats we also confirmed the pro-apoptotic effects observed in vitro including the activation of the TRAIL death‑receptor signaling pathway. Taken together, our data highlight the chemopreventive effects of Asp on colon carcinogenesis and its ability to promote normal cellular homeostasis. PMID:23754197

  4. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  5. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  6. The angular structure of ONC201, a TRAIL pathway-inducing compound, determines its potent anti-cancer activity

    Science.gov (United States)

    Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S.; Nallaganchu, Bhaskara Rao; Olson, Gary L.; Dicker, David T.; Allen, Joshua E.; El-Deiry, Wafik S.

    2014-01-01

    We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers. PMID:25587031

  7. Simulations of a rotor with active deformable trailing edge flaps in half-wake inflow: Comparison of EllipSys 3D with HAWC2

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; Zahle, Frederik; Sørensen, Niels N.;

    2012-01-01

    . In this study, a comparison between aerodynamic predictions of the aeroelastic code HAWC2 and the Navier-Stokes code EllipSys3D for the NREL 5MW reference wind turbine rotor in a stiff configuration equipped with a deformable trailing edge flap is performed. A case where the half rotor plane experiences......Various research projects have focused on active aerodynamic load control of wind turbines using control devices on the blades, for example flaps. The aerodynamic load predictions of utilized aeroelastic codes have not yet been fully validated with full rotor CFD or experimental results...... an inflow resembling the wake from an upstream wind turbine is investigated, which is appropriate for comparing the predictions of the two codes related to the abrupt aerodynamic response and the influence of the controllable flap. The trailing edge flap is actuated to alleviate the added loads from a non...

  8. Recombinant soluble TRAIL induces apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    TRAIL is a tumor necrosis factor family member that selectively induces apoptosis of cancer cells but not of normal cells. To develop TRAIL into a potential cancer drug, three different sizes of soluble TRAIL fragments, including sTRAIL(74-281), sTRAIL(95-281) and sTRAIL(101-281), were expressed in E. coli and purified to homogeneity. Apoptosis assays indicated that sTRAIL(95-281) and sTRAIL(101-281), but not sTRAIL(74-281), can potently induce apoptosis of various cancer cell lines in 6 h, suggesting that the N-terminal fragment of aa101 has inhibitory effect on TRAIL-induced apoptosis. Moreover, we found that some cancer cells were resistant to TRAIL and the resistant cells could be converted into sensitive cells by treatment with the protein synthesis inhibitor cycloheximide, suggesting that one or more short-lived proteins are responsible for cells' resistance to TRAIL.

  9. Does HPA-axis activity mediate the relationship between obstetric complications and externalizing behavior problems? The TRAILS study : The TRAILS study

    NARCIS (Netherlands)

    Marsman, Rianne; Rosmalen, Judith G. M.; Oldehinkel, Albertine J.; Ormel, Johan; Buitelaar, Jan K.

    2009-01-01

    To examine whether HPA-axis activity mediates the relationship between obstetric complications (OCs) and externalizing behavior problems, and to investigate whether this model is different for boys and girls. In a population-based cohort of 1,768 10- to 12-year-old early adolescents, we assessed the

  10. Fast Rotation and Trailing Fragments of the Active Asteroid P/2012 F5 (Gibbs)

    Science.gov (United States)

    Drahus, Michał; Waniak, Wacław; Tendulkar, Shriharsh; Agarwal, Jessica; Jewitt, David; Sheppard, Scott S.

    2015-03-01

    While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200 m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 ± 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption of the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  11. ANALYSIS OF AN ELECTROSTRICTIVE STACK ACTUATOR FOR ACTIVE TRAILING EDGE FLAPS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Stack actuator is a solid-state driving component of Active Tailing Edge Flap in smart rotor systems. It is a multi-layer serial structure of basic units composed of electrostrictive and adhesive layers. In this paper, a dynamic model of the actuator is derived based on the constitutive equation of electrostrictive material and the equation of motion. Theoretical analysis is made on the factors involved in the design of the actuator, which reveals that the electrostrictive layer and the adhesive layer should be optimized to compromise between displacement and frequency requirements. In the final part of the paper, the experiment of an ATEF system is introduced. The results show that the model is reasonable. It also suggests that the bending stiffness of elastic mechanism is an important factor in design, which should be carefully studied to provide satisfactory dynamic response of the ATEF system.

  12. Novel HTS strategy identifies TRAIL-sensitizing compounds acting specifically through the caspase-8 apoptotic axis.

    Directory of Open Access Journals (Sweden)

    Darren Finlay

    Full Text Available Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL is potentially a very important therapeutic as it shows selectivity for inducing apoptosis in cancer cells whilst normal cells are refractory. TRAIL binding to its cognate receptors, Death Receptors-4 and -5, leads to recruitment of caspase-8 and classical activation of downstream effector caspases, leading to apoptosis. As with many drugs however, TRAIL's usefulness is limited by resistance, either innate or acquired. We describe here the development of a novel 384-well high-throughput screening (HTS strategy for identifying potential TRAIL-sensitizing agents that act solely in a caspase-8 dependent manner. By utilizing a TRAIL resistant cell line lacking caspase-8 (NB7 compared to the same cells reconstituted with the wild-type protein, or with a catalytically inactive point mutant of caspase-8, we are able to identify compounds that act specifically through the caspase-8 axis, rather than through general toxicity. In addition, false positive hits can easily be "weeded out" in this assay due to their activity in cells lacking caspase-8-inducible activity. Screening of the library of pharmacologically active compounds (LOPAC was performed as both proof-of-concept and to discover potential unknown TRAIL sensitizers whose mechanism is caspase-8 mediated. We identified known TRAIL sensitizers from the library and identified new compounds that appear to sensitize specifically through caspase-8. In sum, we demonstrate proof-of-concept and discovery of novel compounds with a screening strategy optimized for the detection of caspase-8 pathway-specific TRAIL sensitizers. This screen was performed in the 384-well format, but could easily be further miniaturized, allows easy identification of artifactual false positives, and is highly scalable to accommodate diverse libraries.

  13. Improved Asteroid Astrometry and Photometry with Trail Fitting

    CERN Document Server

    Vereš, Peter; Denneau, Larry; Wainscoat, Richard; Holman, Matthew J; Lin, Hsing-Wen

    2012-01-01

    Asteroid detections in astronomical images may appear as trails due to a combination of their apparent rate of motion and exposure duration. Nearby asteroids in particular typically have high apparent rates of motion and acceleration. Their recovery, especially on their discovery apparition, depends upon obtaining good astrometry from the trailed detections. We present an analytic function describing a trailed detection under the assumption of a Gaussian point spread function (PSF) and constant rate of motion. We have fit the function to both synthetic and real trailed asteroid detections from the Pan-STARRS1 survey telescope to obtain accurate astrometry and photometry. For short trails our trailing function yields the same astrometric and photometry accuracy as a functionally simpler 2-d Gaussian but the latter underestimates the length of the trail - a parameter that can be important for measuring the object's rate of motion and assessing its cometary activity. For trails longer than about 10 pixels (> 3xP...

  14. Ginsenoside compound K sensitizes human colon cancer cells to TRAIL-induced apoptosis via autophagy-dependent and -independent DR5 upregulation.

    Science.gov (United States)

    Chen, Lei; Meng, Yue; Sun, Qi; Zhang, Zhongyu; Guo, Xiaoqing; Sheng, Xiaotong; Tai, Guihua; Cheng, Hairong; Zhou, Yifa

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell-specific apoptosis-inducing cytokine with little toxicity to most normal cells. However, acquired resistance of cancer cells to TRAIL is a roadblock. Agents that can either potentiate the effect of TRAIL or overcome resistance to TRAIL are urgently needed. This article reports that ginsenoside compound K (CK) potentiates TRAIL-induced apoptosis in HCT116 colon cancer cells and sensitizes TRAIL-resistant colon cancer HT-29 cells to TRAIL. On a cellular mechanistic level, CK downregulated cell survival proteins including Mcl-1, Bcl-2, surviving, X-linked inhibitor of apoptosis protein and Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein, upregulated cell pro-apoptotic proteins including Bax, tBid and cytochrome c, and induced the cell surface expression of TRAIL death receptor DR5. Reduction of DR5 levels by siRNAs significantly decreases CK- and TRAIL-mediated apoptosis. Importantly, our results indicate, for the first time, that DR5 upregulation is mediated by autophagy, as blockade of CK-induced autophagy by 3-MA, LY294002 or Atg7 siRNAs substantially decreases DR5 upregulation and reduces the synergistic effect. Furthermore, CK-stimulated autophagy is mediated by the reactive oxygen species-c-Jun NH2-terminal kinase pathway. Moreover, we found that p53 and the C/EBP homologous (CHOP) protein is also required for DR5 upregulation but not related with autophagy. Our findings contribute significantly to the understanding of the mechanism accounted for the synergistic anticancer activity of CK and TRAIL, and showed a novel mechanism related with DR5 upregulation. PMID:27512955

  15. Melanoma-associated Chondroitin Sulfate Proteoglycan (MCSP-targeted delivery of soluble TRAIL potently inhibits melanoma outgrowth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    van Waarde Aren

    2010-11-01

    Full Text Available Abstract Background Advanced melanoma is characterized by a pronounced resistance to therapy leading to a limited patient survival of ~6 - 9 months. Here, we report on a novel bifunctional therapeutic fusion protein, designated anti-MCSP:TRAIL, that is comprised of a melanoma-associated chondroitin sulfate proteoglycan (MCSP-specific antibody fragment (scFv fused to soluble human TRAIL. MCSP is a well-established target for melanoma immunotherapy and has recently been shown to provide important tumorigenic signals to melanoma cells. TRAIL is a highly promising tumoricidal cytokine with no or minimal toxicity towards normal cells. Anti-MCSP:TRAIL was designed to 1. selectively accrete at the cell surface of MCSP-positive melanoma cells and inhibit MCSP tumorigenic signaling and 2. activate apoptotic TRAIL-signaling. Results Treatment of a panel of MCSP-positive melanoma cell lines with anti-MCSP:TRAIL induced TRAIL-mediated apoptotic cell death within 16 h. Of note, treatment with anti-MCSP:sTRAIL was also characterized by a rapid dephosphorylation of key proteins, such as FAK, implicated in MCSP-mediated malignant behavior. Importantly, anti-MCSP:TRAIL treatment already inhibited anchorage-independent growth by 50% at low picomolar concentrations, whereas > 100 fold higher concentrations of non-targeted TRAIL failed to reduce colony formation. Daily i.v. treatment with a low dose of anti-MCSP:TRAIL (0.14 mg/kg resulted in a significant growth retardation of established A375 M xenografts. Anti-MCSP:TRAIL activity was further synergized by co-treatment with rimcazole, a σ-ligand currently in clinical trials for the treatment of various cancers. Conclusions Anti-MCSP:TRAIL has promising pre-clinical anti-melanoma activity that appears to result from combined inhibition of tumorigenic MCSP-signaling and concordant activation of TRAIL-apoptotic signaling. Anti-MCSP:TRAIL alone, or in combination with rimcazole, may be of potential value for the

  16. TRAIL regulates normal erythroid maturation through an ERK-dependent pathway.

    Science.gov (United States)

    Secchiero, Paola; Melloni, Elisabetta; Heikinheimo, Markku; Mannisto, Susanna; Di Pietro, Roberta; Iacone, Antonio; Zauli, Giorgio

    2004-01-15

    In order to investigate the biologic activity of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on human erythropoiesis, glycophorin A (GPA)+ erythroid cells were generated in serum-free liquid phase from human cord blood (CB) CD34+ progenitor cells. The surface expression of TRAIL-R1 was weakly detectable in the early-intermediate phase of erythroid differentiation (days 4-6; dim-intermediate GPA expression), whereas a clear-cut expression of TRAIL-R2 was observed through the entire course of erythroid differentiation (up to days 12-14; bright GPA expression). On the other hand, surface TRAIL-R3 and -R4 were not detected at any culture time. Besides inducing a rapid but small increase of apoptotic cell death, which was abrogated by the pan-caspase inhibitor z-VAD-fmk, the addition of recombinant TRAIL at day 6 of culture inhibited the generation of morphologically mature erythroblasts. Among the intracellular pathways investigated, TRAIL significantly stimulated the extracellular signal-regulated kinase 1/2 (ERK1/2) but not the p38/mitogen-activated protein kinase (MAPK) or the c-Jun NH2-terminal kinase (JNK) pathway. Consistently with a key role of ERK1/2 in mediating the negative effects of TRAIL on erythroid maturation, PD98059, a pharmacologic inhibitor of the ERK pathway, but not z-VAD-fmk or SB203580, a pharmacologic inhibitor of p38/MAPK, reverted the antidifferentiative effect of TRAIL on CB-derived erythroblasts. PMID:12969966

  17. TRAIL Activates a Caspase 9/7-Dependent Pathway in Caspase 8/10-Defective SK-N-SH Neuroblastoma Cells with Two Functional End Points: Induction of Apoptosis and PGE2 Release

    Directory of Open Access Journals (Sweden)

    Giorgio Zauli

    2003-09-01

    Full Text Available Most neuroblastoma cell lines do not express apical caspases 8 and 10, which play a key role in mediating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL cytotoxicity in a variety of malignant cell types. In this study, we demonstrated that TRAIL induced a moderate but significant increase of apoptosis in the caspase 8/10-deficient SK-N-SH neuroblastoma cell line, through activation of a novel caspase 9/7 pathway. Concomitant to the induction of apoptosis, TRAIL also promoted a significant increase of prostaglandin E2 (PGE2 release by SKN-SH cells. Moreover, coadministration of TRAIL plus indomethacin, a pharmacological inhibitor of cyclooxygenase (COX, showed an additive effect on SKN-SH cell death. In spite of the ability of TRAIL to promote the phosphorylation of both ERKi/2 and p38/MAPK, which have been involved in the control of COX expression/activity, neither PD98059 nor SB203580, pharmacological inhibitors of the ERKi/2 and p38/MAPK pathways, respectively, affected either PGE2 production or apoptosis induced by TRAIL. Finally, both induction of apoptosis and PGE2 release were completely abrogated by the broad caspase inhibitor z-VAD4mk, suggesting that both biologic end points were regulated in SK-N-SH cells through a caspase 9/7-dependent pathway.

  18. Expression of TRAIL and TRAIL receptors in normal and malignant tissues

    Institute of Scientific and Technical Information of China (English)

    Raymond A DANIELS; Gavin R SCREATON; Helen TURLEY; Fiona C KIMBERLEY; Xue Song LIU; Juthathip MONGKOLSAPAYA; Paul CH'EN; Xiao Ning XU; Boquan JIN; Francesco PEZZELLA

    2005-01-01

    TRAIL, tumor necrosis factor-related apoptosis-inducing ligand, is a member of the TNF family of proteins.Tumour cells were initially found to have increased sensitivity to TRAIL compared with normal cells, raising hopes that TRAIL would prove useful as an anti-tumor agent. The production of reliable monoclonal antibodies against TRAIL and its receptors that can stain fixed specimens will allow a thorough analysis of their expression on normal and malignant tissues. Here we report the generation of monoclonal antibodies against TRAIL and its four membrane-bound receptors (TR1-4), which have been used to stain a range of normal and malignant cells, as routinely fixed specimens. Low levels of TRAIL expression were found to be limited mostly to smooth muscle in lung and spleen as well as glial cells in the cerebellum and follicular cells in the thyroid. Expression of the TRAIL decoy receptors (TR3 and 4) was not as widespread as indicated by Northern blotting, suggesting that they may be less important for the control of TRAIL cytotoxicity than previously thought. TR1 and TR2 expression increases significantly in a number of malignant tissues,but in some common malignancies their expression was low, or patchy, which may limit the therapeutic role of TRAIL.Taken together, we have a panel of monoclonal antibodies that will allow a better assessment of the normal role of TRAIL and allow assessment of biopsy material, possibly allowing the identification of tumors that may be amenable to TRAIL therapy.

  19. Withanolide E sensitizes renal carcinoma cells to TRAIL-induced apoptosis by increasing cFLIP degradation.

    Science.gov (United States)

    Henrich, C J; Brooks, A D; Erickson, K L; Thomas, C L; Bokesch, H R; Tewary, P; Thompson, C R; Pompei, R J; Gustafson, K R; McMahon, J B; Sayers, T J

    2015-01-01

    Withanolide E, a steroidal lactone from Physalis peruviana, was found to be highly active for sensitizing renal carcinoma cells and a number of other human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Withanolide E, the most potent and least toxic of five TRAIL-sensitizing withanolides identified, enhanced death receptor-mediated apoptotic signaling by a rapid decline in the levels of cFLIP proteins. Other mechanisms by which TRAIL sensitizers have been reported to work: generation of reactive oxygen species (ROS), changes in pro-and antiapoptotic protein expression, death receptor upregulation, activation of intrinsic (mitochondrial) apoptotic pathways, ER stress, and proteasomal inhibition proved to be irrelevant to withanolide E activity. Loss of cFLIP proteins was not due to changes in expression, but rather destabilization and/or aggregation, suggesting impairment of chaperone proteins leading to degradation. Indeed, withanolide E treatment altered the stability of a number of HSP90 client proteins, but with greater apparent specificity than the well-known HSP90 inhibitor geldanamycin. As cFLIP has been reported to be an HSP90 client, this provides a potentially novel mechanism for sensitizing cells to TRAIL. Sensitization of human renal carcinoma cells to TRAIL-induced apoptosis by withanolide E and its lack of toxicity were confirmed in animal studies. Owing to its novel activity, withanolide E is a promising reagent for the analysis of mechanisms of TRAIL resistance, for understanding HSP90 function, and for further therapeutic development. In marked contrast to bortezomib, among the best currently available TRAIL sensitizers, withanolide E's more specific mechanism of action suggests minimal toxic side effects. PMID:25719250

  20. β-Sitosterol sensitizes MDA-MB-231 cells to TRAIL-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Cheol PARK; Dong-oh MOON; Chung-ho RYU; Byung tae CHOI; Won ho LEE; Gi-young KIM; Yung hyun CHOI

    2008-01-01

    Aim:To investigate whether subtoxic concentration of β-sitosterol (SITO) com-bined with TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in TRAIL-resistant MDA-MB-231 breast cancer cells.Methods:Cell viability and growth were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphnyl-2H-tetrazolim bromide assays,chromatin condensation,release of lactate dehydrogenase (LDH),and Annexin V+ cells.The apoptosis-related proteins were detected by Western blotting.Results:Treatment with TRAIL in combination with subtoxic concen-trations of SITO sensitized MDA-MB-231 breast cancer cells to TRAIL-mediated apoptosis.The synergistic treatment induced chromatin condensation,DNA fragmentation,the release of LDH,and Annexin V cells.The indicators of apoptosis are correlated to the induction of caspase activities,which results in the cleavage ofpoly(ADP-ribose)polymerase.Both the cytotoxic effects and apoptotic characteristics induced by the synergistic treatment were significantly inhibited by a pan-caspase inhibitor z-VAD-fmk,demonstrating the important role of caspases.These results indicate that caspases are crucial regulators of apoptosis induced by the combined treatment of SITO and TRAIL in MDA-MB-231 cells.Conclusion:The synergistic treatment of SITO and TRAIL induces apoptosis,which can serve as a potential preventive and therapeutic agent.

  1. Modulation of TRAIL resistance in colon carcinoma cells : Different contributions of DR4 and DR5

    NARCIS (Netherlands)

    van Geelen, Caroline M. M.; Pennarun, Bodvael; Le, Phuong T. K.; de Vries, Elisabeth G. E.; de Jong, Steven

    2011-01-01

    Background: rhTRAIL is a therapeutic agent, derived from the TRAIL cytokine, which induces apoptosis in cancer cells by activating the membrane death receptors 4 and 5 (DR4 and DR5). Here, we investigated each receptor's contribution to rhTRAIL sensitivity and rhTRAIL resistance. We assessed whether

  2. TRAIL sensitize MDR cells to MDR-related drugs by down-regulation of P-glycoprotein through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases

    Directory of Open Access Journals (Sweden)

    Kim Dong-Wan

    2010-07-01

    Full Text Available Abstract Background The development of new modulator possessing high efficacy, low toxicity and high selectivity is a pivotal approach to overcome P-glycoprotein (P-gp mediated multidrug resistance (MDR in cancer treatment. In this study, we suggest a new molecular mechanism that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand down-regulates P-glycoprotein (P-gp through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases and thereby sensitize MDR cells to MDR-related drugs. Results MDR variants, CEM/VLB10-2, CEM/VLB55-8 and CEM/VLB100 cells, with gradually increased levels of P-gp derived from human lymphoblastic leukemia CEM cells, were gradually more susceptible to TRAIL-induced apoptosis and cytotoxicity than parental CEM cells. The P-gp level of MDR variants was positively correlated with the levels of DNA-PKcs, pAkt, pGSK-3β and c-Myc as well as DR5 and negatively correlated with the level of c-FLIPs. Hypersensitivity of CEM/VLB100 cells to TRAIL was accompanied by the activation of mitochondrial apoptotic pathway as well as the activation of initiator caspases. In addition, TRAIL-induced down-regulation of DNA-PKcs/Akt/GSK-3β pathway and c-FLIP and up-regulation of cell surface expression of death receptors were associated with the increased susceptibility to TRAIL of MDR cells. Moreover, TRAIL inhibited P-gp efflux function via caspase-3-dependent degradation of P-gp as well as DNA-PKcs and subsequently sensitized MDR cells to MDR-related drugs such as vinblastine and doxorubicin. We also found that suppression of DNA-PKcs by siRNA enhanced the susceptibility of MDR cells to vincristine as well as TRAIL via down-regulation of c-FLIP and P-gp expression and up-regulation of DR5. Conclusion This study showed for the first time that the MDR variant of CEM cells was hypersensitive to TRAIL due to up-regulation of DR5 and concomitant down-regulation of c-FLIP, and degradation of P-gp and DNA-PKcs by

  3. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca{sup 2+} influx

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Dong-Oh [Department of Biology Education, Daegu University, Gyungsan, Gyeongbuk 712–714 (Korea, Republic of); Kang, Chang-Hee; Kang, Sang-Hyuck [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of); Choi, Yung-Hyun [Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614–054 (Korea, Republic of); Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree [School of Medicine, Jeju National University, Jeju-si 690–756 (Korea, Republic of); Kim, Gi-Young, E-mail: immunkim@jejunu.ac.kr [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of)

    2012-02-15

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  4. Possible novel therapy for malignant gliomas with secretable trimeric TRAIL.

    Directory of Open Access Journals (Sweden)

    Moonsup Jeong

    Full Text Available Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and many novel therapeutic approaches, average survival for the patients with malignant gliomas is only about 1 year. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancers, but concerns over delivery and toxicity have limited progress. We have developed a secretable trimeric TRAIL (stTRAIL and here evaluated the therapeutic potential of this stTRAIL-based gene therapy in brain tumors. An adenovirus (Ad-stTRAIL delivering stTRAIL was injected into intra-cranial human glioma tumors established in nude mice and tumor growth monitored using the magnetic resonance imaging (MRI. Ad-stTRAIL gene therapy showed potent tumor suppressor activity with no toxic side effects at therapeutically effective doses. When compared with 1, 3-bis(2-chloroethyl-1-nitrosourea (BCNU, a conventional therapy for malignant gliomas, Ad-stTRAIL suppressed tumor growth more potently. The combination of Ad-stTRAIL and BCNU significantly increased survival compared to the control mice or mice receiving Ad-stTRAIL alone. Our data indicate that Ad-stTRAIL, either alone or combined with BCNU, has promise as a novel therapy for malignant gliomas.

  5. DIRBE Comet Trails

    Science.gov (United States)

    Arendt, Richard G.

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of \\lt 0.1 and \\lt 0.15 MJy sr-1, respectively, which is \\lt 1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  6. DIRBE Comet Trails

    CERN Document Server

    Arendt, Richard G

    2014-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 micron surface brightnesses of <0.1 and <0.15 MJy/sr, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  7. DRBE comet trails

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G., E-mail: Richard.G.Arendt@nasa.gov [CREST/UMBC, Code 665, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  8. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    Science.gov (United States)

    De Miguel, Diego; Gallego-Lleyda, Ana; María Ayuso, José; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; José Fernández, Luis; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  9. TourismTrails_GMNFTRAILS

    Data.gov (United States)

    Vermont Center for Geographic Information — GMNFTRAILS contains minor Forest Service roads and all trails within the proclamation boundary of the Green Mountain National Forest and many of the public roads...

  10. Continental Divide Trail

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This shapefile was created to show the proximity of the Continental Divide to the Continental Divide National Scenic Trail in New Mexico. This work was done as part...

  11. State Park Trails

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set is a collection of ArcView shapefiles (by park) of trails within statutory boundaries of individual MN State Parks, State Recreation Areas and State...

  12. Minnesota Water Trails

    Data.gov (United States)

    Minnesota Department of Natural Resources — This shapefile describes water trails in the State of Minnesota as designated through legislation and recognized by the Department of Natural Resources. The...

  13. Parthenolide enhances sensitivity of colorectal cancer cells to TRAIL by inducing death receptor 5 and promotes TRAIL-induced apoptosis.

    Science.gov (United States)

    Kim, Se-Lim; Liu, Yu-Chuan; Park, Young Ran; Seo, Seung Young; Kim, Seong Hun; Kim, In Hee; Lee, Seung Ok; Lee, Soo Teik; Kim, Dae-Ghon; Kim, Sang-Wook

    2015-03-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent. Recombinant human TRAIL has been evaluated in clinical trials, however, various malignant tumors are resistant to TRAIL. Parthenolide (PT) has recently been demonstrated as a highly effective anticancer agent and has been suggested to be used for combination therapy with other anticancer agents. In this study, we investigate the molecular mechanisms by which PT sensitizes colorectal cancer (CRC) cells to TRAIL-induced apoptosis. HT-29 (TRAIL-resistant) and HCT116 (TRAIL-sensitive) cells were treated with PT and/or TRAIL. The results demonstrated that combined treatment induced apoptosis which was determined using MTT, cell cycle analysis, Annexin V assay and Hoechst 33258 staining. Interestingly, we confirmed that HCT116 cells have much higher death receptor (DR) 5 than HT-29 cells and PT upregulates DR5 protein level and surface expression in both cell lines. Apoptosis through the mitochondrial pathway was confirmed by detecting regulation of Bcl-2 family members, p53 cytochrome C release, and caspase cascades. These results suggest that PT sensitizes TRAIL-induced apoptosis via upregulation of DR5 and mitochondria-dependent pathway. Combination treatment using PT and TRAIL may offer an effective strategy to overcome TRAIL resistance of certain CRC cells. PMID:25502339

  14. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei;

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL...... siRNA on drug sensitization of A549 cells to TRAIL treatment. The results showed that treatment of A549 cells with HSP27 siRNA down-regulated HSP27 expression but did not induce significant apoptosis. However, combination of HSP27 siRNA with TRAIL-induced significant apoptosis in TRAIL-resistant A549...... cells. In addition to inducing caspases activation and apoptosis, combined treatment with HSP27 siRNA and TRAIL also increased JNK and p53 expression and activity. Collectively, these findings provide a conclusion that siRNA targeting of the HSP27 gene specifically down-regulated HSP27 expression in A...

  15. Human umbilical cord-drived mesenchymal stem cells as vehicles of CD20 specific-TRAIL fusion protein against non-Hodgkin’ s lymphoma%脐带间充质干细胞运载scFvCD20:sTRAIL融合蛋白对B-淋巴瘤细胞的生长抑制作用

    Institute of Scientific and Technical Information of China (English)

    范冬梅; 张晓龙; 张晴; 卢杨; 杨圆圆; 袁向飞; 张砚君; 熊冬生

    2016-01-01

    migrated to tumor site, secreted a novel fusion protein scFvCD20:sTRAIL,and thus locally concentrated scFvCD20:sTRAIL extended antigen-restricted anti-tumor activity. The engineered HUMSCs secreting scFvCD20:sTRAIL showed potent effect on inhibiting tumor growth in BJAB lymphoma malignancy,which may play an essential role in the clinical research .%目的::探讨脐带间充质干细胞运载scFvCD20:sTRAIL融合蛋白的新型双重靶向系统对CD20+ BJAB细胞的生长抑制作用。方法:采用传统分子生物学技术构建 pLenR. scFvCD20:sTRAIL、pLenR. ISZ-sTRAIL、pLenR. scFvCD20及pLenR. copGFP四种慢病毒表达载体,利用四质粒慢病毒包装系统于293T细胞中包装慢病毒颗粒,并感染人脐带组织来源的MSCs( HUMSCs),使其稳定表达融合蛋白。于体外采用CCK8细胞增殖抑制实验检测scFvCD20:sTRAIL融合蛋白对CD20阳性BJAB细胞和Raji细胞、CD20阴性Jurkat细胞以及正常人外周血单个核细胞( PBMCs)的生长抑制作用。建立NOD/SCID鼠BJAB细胞皮下移植瘤模型,将MSC. scFvCD20:sTRAIL经尾静脉注射入小鼠体内,每3 d测量瘤体积,根据肿瘤体积计算抑瘤率。结果:成功构建了慢病毒表达载体pLenR. scFvCD20:sTRAIL、 pLenR. ISZ-sTRAIL、pLenR. scFvCD20及pLenR. copGFP,且经慢病毒感染可在HUMSCs中稳定表达。体外实验显示,scFvCD20:sTRAIL融合蛋白可不同程度地提高对CD20阳性BJAB和Raji细胞的生长抑制作用,而对CD20阴性Jurkat细胞的生长抑制作用降低;而且不影响PBMCs的生长。体内实验表明, MSC. scFvCD20:sTRAIL可显著抑制BJAB淋巴瘤的生长,初始治疗后第24天,抑瘤率达65.2%,与MSC. ISZ:sTRAIL治疗组比较(抑瘤率为52.7%),具统计学差异(P<0.05)。结论:建立了HUMSCs运载scFvCD20:sTRAIL融合蛋白的双重靶向治疗系统,HUMSCs可向BJAB淋巴瘤部位归巢并表达分泌scFvCD20:sTRAIL融合蛋白,后者在局部经scFvCD20的二次导向发挥CD20特异

  16. Evolution of the Total Lightning Activity in a Leading-Line and Trailing Stratiform Mesoscale Convective System over Beijing

    Institute of Scientific and Technical Information of China (English)

    LIU Dongxia; QIE Xiushu; XIONG Yajun; FENG Guili

    2011-01-01

    Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) mesoscale convective system (MCS) over Beijing on 31 July 2007. Most of the lightning in the LLTS-MCSwas intracloud (IC) lightning, while the mean ratio of positive cloud-to-ground (+CG) lightning to -CG lightning was 1:4, which was higher than the average value from previous studies. The majority of CG limhtning occurred in the convective region of the radar echo, particularly at the leading edge of the front.Little IC lightning and little +CG lightning occurred in the stratiform region. The distribution of the CG lightning indicated that the storm had a tilted dipole structure given the wind shear or the tripole charge structure. During the storm's development, most of the IC lightning occurred at an altitude of ~9.5 km;the lightning rate reached its maximum at 10.5 kmn, the altitude of IC lightning in the mature stage of the storm. When the thunderstorm began to dissipate, the altitude of the IC lightning decreased gradually. The spatial distribution of lightning was well correlated with the rainfall on the ground, although the peak value of rainfall appeared 75 min later than the peak lightning rate.

  17. Degradation of Activated Protein Kinases by Ubiquitination

    OpenAIRE

    Lu, Zhimin; Hunter, Tony

    2009-01-01

    Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.

  18. Low Dose Total Body Irradiation Combined With Recombinant CD19-Ligand × Soluble TRAIL Fusion Protein is Highly Effective Against Radiation-resistant B-precursor Acute Lymphoblastic Leukemia in Mice

    Directory of Open Access Journals (Sweden)

    Fatih M. Uckun

    2015-04-01

    Full Text Available In high-risk remission B-precursor acute lymphoblastic leukemia (BPL patients, relapse rates have remained high post-hematopoietic stem cell transplantation (HSCT even after the use of very intensive total body irradiation (TBI-based conditioning regimens, especially in patients with a high “minimal residual disease” (MRD burden. New agents capable of killing radiation-resistant BPL cells and selectively augmenting their radiation sensitivity are therefore urgently needed. We report preclinical proof-of-principle that the potency of radiation therapy against BPL can be augmented by combining radiation with recombinant human CD19-Ligand × soluble TRAIL (“CD19L–sTRAIL” fusion protein. CD19L–sTRAIL consistently killed radiation-resistant primary leukemia cells from BPL patients as well as BPL xenograft cells and their leukemia-initiating in vivo clonogenic fraction. Low dose total body irradiation (TBI combined with CD19L–sTRAIL was highly effective against (1 xenografted CD19+ radiochemotherapy-resistant human BPL in NOD/SCID (NS mice challenged with an otherwise invariably fatal dose of xenograft cells derived from relapsed BPL patients as well as (2 radiation-resistant advanced stage CD19+ murine BPL with lymphomatous features in CD22ΔE12xBCR-ABL double transgenic mice. We hypothesize that the incorporation of CD19L–sTRAIL into the pre-transplant TBI regimens of patients with very high-risk BPL will improve their survival outcome after HSCT.

  19. The confining trailing string

    Energy Technology Data Exchange (ETDEWEB)

    Kiritsis, Elias [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Crete Center for Theoretical Physics, Department of Physics, University of Crete,71003 Heraklion (Greece); Mazzanti, Liuba [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Nitti, Francesco [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France)

    2014-02-19

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  20. The confining trailing string

    CERN Document Server

    Kiritsis, E; Nitti, F

    2014-01-01

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  1. Salinomycin potentiates the cytotoxic effects of TRAIL on glioblastoma cell lines.

    Directory of Open Access Journals (Sweden)

    Alessia Calzolari

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL has been reported to exhibit therapeutic activity in cancer. However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic effects of TRAIL could be used for combinatorial therapy. Here we found that the ionophore antibiotic salinomycin acts in synergism with TRAIL, enhancing TRAIL-induced apoptosis in glioma cells. Treatment with low doses of salinomycin in combination with TRAIL augmented the activation of caspase-3 and increased TRAIL-R2 cell surface expression. TRAIL-R2 upmodulation was required for mediating the stimulatory effect of salinomycin on TRAIL-mediated apoptosis, since it was abrogated by siRNA-mediated TRAIL-R2 knockdown. Salinomycin in synergism with TRAIL exerts a marked anti-tumor effect in nude mice xenografted with human glioblastoma cells. Our results suggest that the combination of TRAIL and salinomycin may be a useful tool to overcome TRAIL resistance in glioma cells and may represent a potential drug for treatment of these tumors. Importantly, salinomycin+TRAIL were able to induce cell death of well-defined glioblastoma stem-like lines.

  2. 9th TRAIL Congress 2006, TRAIL in MOTION

    OpenAIRE

    TRAIL RESEARCH SCHOOL

    2006-01-01

    TRAIL is a Research School on Transport, Infrastructure and Logistics. TRAIL trains Ph.D. candidates and performs scientific and applied scientific research in the fields of mobility, transport, logistics, traffic, infrastructure and transport systems. TRAIL is a collaborative initiative of five Dutch universities, and is accredited as research school since 1997

  3. Sustainable Trail Management in Costa Rica National Parks: The use of photography for trail surfacing decisions under tropical rainforest conditions

    Directory of Open Access Journals (Sweden)

    Aguirre G., Juan A.

    2009-01-01

    Full Text Available Volcan Poas National Park (VPNP is Costa Rica’s most visited park. Its facilities, accessibility, and proximity to the major cities of the country make VPNP a preferred destination for local and foreigner visitors. Aside from its active volcanic cone, the park trails are a major asset. The extremely wet conditions prevailing throughout the year and heavy visitation made it essential to determine visitor’s trail surface preferences to guarantee park trail sustainability. The purpose of this study was to explore the feasibility of using photos in combination with a regular survey to identify the socio-demographic characteristics and other trail related variables that affect trail surface selection to guide management decisions and resource allocation related to trail design, construction, and maintenance. The study was conducted during May, June and July of 2005.

  4. Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast

    Institute of Scientific and Technical Information of China (English)

    YANG Zongqi; LI yinü; CHEN Feng; LI Dong; ZHANG Zhifang; LIU Yanxin; ZHENG Dexian; WANG Yong; SHEN Guifang

    2006-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces selectively apoptosis in various tumor cells and virus-infected cells, but rarely in normal cells. A chloroplast expression vector, p64TRAIL, containing the cDNA coding for the soluble TRAIL (sTRAIL), was constructed with clpP-trnL-petB-chlL-rpl23-rpl2 as Chlamydomonas reinhardtii plastid homologous recombinant fragments and spectinomycin-resistant aadA gene as a select marker. The plasmid p64TRAIL was transferred into the chloroplast genome of C. reinhardtii by the biolistic method. Three independently transformed lines were obtained by 100 mg/L spectinomycin selection. PCR amplification, Southern blot analysis of the sTRAIL coding region DNA and cultivation cells in the dark all showed that the exogenous DNA had been integrated into chloroplast genome of C. reinhardtii. Western blot analysis showed that human soluble TRAIL was expressed in C. reinhardtii chloroplast. The densitometric analysis of Western blot indicated that the expressed human sTRAIL protein in the chloroplasts of C. reinhardtii accounted for about 0.43%-0.67% of the total soluble proteins.These experimental results demonstrated the possibility of using transgenic chloroplasts of green alga as bioreactors for production of biopharmaceuticals.

  5. Expression of TRAIL in Mouse Uterine Endometrium during Embryo Implantation

    Institute of Scientific and Technical Information of China (English)

    Dong-mei TAN; Ming-zhong HE; Qi CHEN; Guo-qi LAI; Li-zhi WANG; Yi TAN

    2006-01-01

    Objective To investigate the expression of TRAIL in mouse uterine endometrium during embryo implantation and its role in the apoptosis of decidual cells.Methods Expression of TRAIL in uterine endometrium of pregnant mouse from d 1 to d 8 was detected with RT-PCR and immunohistochemistry.Results The expressed level of TRAIL mRNA in uterine endometrium of pregnant mouse from d 1 to d 8 was higher during embryo implantation than that prior to embryo implantation (P<0. 05). No expression of TRAIL protein in mouse utrine endometrium was detected through d 1 to d 3. However, TRAIL protein was found in the luminal epithelial cells to which embryos attached on d 4. Moreover, TRAIL was expressed solely in decidual cells around invadting embryos through d 5 to d 6 while in trophoblastic cells adjacent to decidua through d 7 to d 8.Conclusion Apoptosis of luminal epithelial cells of endometrium induced by TRAIL could be one of mechanisms with which embryos penertrated the epithelial barrier,and apoptosis of both decidual cells and trophoblastic cells induced by TRAIL may play an important role during accruate invasion of trophoblastic cells.

  6. The flavonoid casticin enhances TRAIL-induced apoptosis of colon cancer cells through endoplasmic reticulum stress-mediated up-regulation of DR5

    Institute of Scientific and Technical Information of China (English)

    Sanyuan Tang; Guangjin Yuan; Zhengyang Yu; Leilan Yin; Hao Jiang

    2013-01-01

    Objective: The aim of this study was to explore the mechanisms by which the flavonoid casticin enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in colon cancer cells. Methods: Human colon cancer HT-29 cells were treated with TRAIL or casticin. Cytotoxicity was examined by MTT assay, and apoptosis determined by morphological observation and flow cytometric analysis. Death receptor 5 (DR5), DR4, and endoplasmic reticulum (ER) stress response markers, including glucose regulating protein 78 (GRP78), activating transcription factor 4 (ATF4) and CHOP (CCAAT/enhancer binding protein homologous protein), were examined with western blot. Small interfering RNA (siRNA) transfection was employed to knock down CHOP. Results: HT-29 cells were resistance to TRAIL-induced apoptosis, but casticin, at subtoxic concentrations, potentiated HT-29 cells to TRAIL-induced apoptosis. Casticin up-regulated the expression of DR5 time- and dose-dependent manners, but had no effect on the expression of DR4. Also, casticin increased the levels of ER stress response markers (GRP78, ATF4 and CHOP) in a similar way to DR5. Knockdown of CHOP by specific siRNA, or salubrinal, an ER stress inhibitor, abolished the up-regulation of DR5 and enhancement of TRAIL-induced apoptosis by casticin. Conclusion: Casticin enhances TRAIL-induced apoptosis of colon cancer cells by ER stress-mediated up-regulation of DR5.

  7. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  8. Modulation of TRAIL resistance in colon carcinoma cells: Different contributions of DR4 and DR5

    Directory of Open Access Journals (Sweden)

    de Vries Elisabeth GE

    2011-01-01

    Full Text Available Abstract Background rhTRAIL is a therapeutic agent, derived from the TRAIL cytokine, which induces apoptosis in cancer cells by activating the membrane death receptors 4 and 5 (DR4 and DR5. Here, we investigated each receptor's contribution to rhTRAIL sensitivity and rhTRAIL resistance. We assessed whether agonistic DR4 or DR5 antibodies could be used to circumvent rhTRAIL resistance, alone or in combination with various chemotherapies. Methods Our study was performed in an isogenic model comprised of the SW948 human colon carcinoma cell line and its rhTRAIL resistant sub-line SW948-TR. Effects of rhTRAIL and agonistic DR4/DR5 antibodies on cell viability were measured using MTT assays and identification of morphological changes characteristic of apoptosis, after acridine orange staining. Sensitivity to the different death receptor ligands was stimulated using pretreatment with the cytokine IFN-gamma and the proteasome inhibitor MG-132. To investigate the mechanisms underlying the changes in rhTRAIL sensitivity, alterations in expression levels of targets of interest were measured by Western blot analysis. Co-immunoprecipitation was used to determine the composition of the death-inducing signalling complex at the cell membrane. Results SW948 cells were sensitive to all three of the DR-targeting agents tested, although the agonistic DR5 antibody induced only weak caspase 8 cleavage and limited apoptosis. Surprisingly, agonistic DR4 and DR5 antibodies induced equivalent DISC formation and caspase 8 cleavage at the level of their individual receptors, suggesting impairment of further caspase 8 processing upon DR5 stimulation. SW948-TR cells were cross-resistant to all DR-targeting agents as a result of decreased caspase 8 expression levels. Caspase 8 protein expression was restored by MG-132 and IFN-gamma pretreatment, which also re-established sensitivity to rhTRAIL and agonistic DR4 antibody in SW948-TR. Surprisingly, MG-132 but not IFN

  9. Protein-water dynamics in antifreeze protein III activity

    Science.gov (United States)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  10. Activity assay of membrane transport proteins

    Institute of Scientific and Technical Information of China (English)

    Hao Xie

    2008-01-01

    Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters,transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiological assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.

  11. Expression of TNF-related apoptosis-inducing ligand (TRAIL in keratinocytes mediates apoptotic cell death in allogenic T cells

    Directory of Open Access Journals (Sweden)

    Kiefer Paul

    2009-11-01

    Full Text Available Abstract The objective of the present study was to evaluate the aptitude of TRAIL gene expression for inducing apoptosis in co-cultivated T-cells. This should allow preparing a strategy for the development of a durable, allogenic skin substitute based on the induction of an immune-privileged transplant. In order to counteract the significant potential of rejection in transplanted allogenic keratinocytes, we created a murine keratinocyte cell line which expressed TRAIL through stable gene transfer. The exogenic protein was localized on the cellular surface and was not found in soluble condition as sTRAIL. Contact to TRAIL expressing cells in co-culture induced cell death in sensitive Jurkat-cells, which was further intensified by lymphocyte activation. This cytotoxic effect is due to the induction of apoptosis. We therefore assume that the de-novo expression of TRAIL in keratinocytes can trigger apoptosis in activated lymphocytes and thus prevent the rejection of keratinocytes in allogenic, immune-privileged transplants.

  12. Activity-Based Protein Profiling of Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Wright, Aaron T.

    2015-02-01

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include: enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.

  13. Does HPA-axis activity mediate the relationship between obstetric complications and externalizing behavior problems? The TRAILS study.

    NARCIS (Netherlands)

    Marsman, R.; Rosmalen, J.G.; Oldehinkel, A.J.; Ormel, J.; Buitelaar, J.K.

    2009-01-01

    To examine whether HPA-axis activity mediates the relationship between obstetric complications (OCs) and externalizing behavior problems, and to investigate whether this model is different for boys and girls. In a population-based cohort of 1,768 10- to 12-year-old early adolescents, we assessed the

  14. BCDC Bay Trail Alignment 2009

    Data.gov (United States)

    California Department of Resources — The Bay Trail provides easily accessible recreational opportunities for outdoor enthusiasts, including hikers, joggers, bicyclists and skaters. It also offers a...

  15. Inhibition of methyltransferases accelerates degradation of cFLIP and sensitizes B-cell lymphoma cells to TRAIL-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Frank K Braun

    Full Text Available Non-Hodgkin lymphomas (NHLs are characterized by specific abnormalities that alter cell cycle regulation, DNA damage response, and apoptotic signaling. It is believed that cancer cells are particularly sensitive to cell death induced by tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL. However, many cancer cells show blocked TRAIL signaling due to up-regulated expression of anti-apoptotic factors, such as cFLIP. This hurdle to TRAIL's tumor cytotoxicity might be overcome by combining TRAIL-based therapy with drugs that reverse blockages of its apoptotic signaling. In this study, we investigated the impact of a pan-methyltransferase inhibitor (3-deazaneplanocin A, or DZNep on TRAIL-induced apoptosis in aggressive B-cell NHLs: mantle cell, Burkitt, and diffuse large B-cell lymphomas. We characterized TRAIL apoptosis regulation and caspase activation in several NHL-derived cell lines pre-treated with DZNep. We found that DZNep increased cancer cell sensitivity to TRAIL signaling by promoting caspase-8 processing through accelerated cFLIP degradation. No change in cFLIP mRNA level indicated independence of promoter methylation alterations in methyltransferase activity induced by DZNep profoundly affected cFLIP mRNA stability and protein stability. This appears to be in part through increased levels of cFLIP-targeting microRNAs (miR-512-3p and miR-346. However, additional microRNAs and cFLIP-regulating mechanisms appear to be involved in DZNep-mediated enhanced response to extrinsic apoptotic stimuli. The capacity of DZNep to target cFLIP expression on multiple levels underscores DZNep's potential in TRAIL-based therapies for B-cell NHLs.

  16. Hydrogen peroxide activates activator protein-1 and mitogen-activated protein kinases in pancreatic stellate cells.

    Science.gov (United States)

    Kikuta, Kazuhiro; Masamune, Atsushi; Satoh, Masahiro; Suzuki, Noriaki; Satoh, Kennichi; Shimosegawa, Tooru

    2006-10-01

    Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis, where oxidative stress is thought to play a key role. Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) may act as a second messenger to mediate the actions of growth factors and cytokines. But the role of reactive oxygen species in the activation and regulation of cell functions in PSCs remains largely unknown. We here examined the effects of H(2)O(2) on the activation of signal transduction pathways and cell functions in PSCs. PSCs were isolated from the pancreas of male Wistar rats, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay. Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. The effects of H(2)O(2) on proliferation, alpha(1)(I)procollagen gene expression, and monocyte chemoattractant protein-1 production were evaluated. The effect of H(2)O(2) on the transformation of freshly isolated PSCs in culture was also assessed. H(2)O(2) at non-cytotoxic concentrations (up to 100 microM) induced oxidative stress in PSCs. H(2)O(2) activated activator protein-1, but not nuclear factor kappaB. In addition, H(2)O(2) activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. H(2)O(2) induced alpha(1)(I)procollagen gene expression but did not induce proliferation or monocyte chemoattractant protein-1 production. H(2)O(2) did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype. Specific activation of these signal transduction pathways and collagen gene expression by H(2)O(2) may play a role in the pathogenesis of pancreatic fibrosis.

  17. Computational Introduction of Catalytic Activity into Proteins.

    Science.gov (United States)

    Bertolani, Steve J; Carlin, Dylan Alexander; Siegel, Justin B

    2016-01-01

    Recently, there have been several successful cases of introducing catalytic activity into proteins. One method that has been used successfully to achieve this is the theozyme placement and enzyme design algorithms implemented in Rosetta Molecular Modeling Suite. Here, we illustrate how to use this software to recapitulate the placement of catalytic residues and ligand into a protein using a theozyme, protein scaffold, and catalytic constraints as input. PMID:27094294

  18. On Entropy Trail

    Science.gov (United States)

    Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn

    2015-11-01

    Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.

  19. Doxorubicin potentiates TRAIL cytotoxicity and apoptosis and can overcome TRAIL-resistance in rhabdomyosarcoma cells

    NARCIS (Netherlands)

    Komdeur, R; Meijer, C; Van Zweeden, M; De Jong, S; Wesseling, J; Hoekstra, HJ; van der Graaf, WTA

    2004-01-01

    Doxorubicin (DOX) and ifosfamide (IFO) are the most active single agents in soft tissue sarcomas (STS). Tumour necrosis factor-alpha (TNF-alpha) is used for STS in the setting of isolated limb perfusions. Like TNF-alpha, TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis. In contrast to

  20. Synaptic vesicle proteins and active zone plasticity

    Directory of Open Access Journals (Sweden)

    Robert J Kittel

    2016-04-01

    Full Text Available Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone. The complex molecular architecture of active zones mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of active zones vary significantly, even for a given connection. Thus, there appear to be distinct active zone states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the active zone.The protein-rich cytomatrix at the active zone (CAZ provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1 and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and active zone states, which has heretofore received little attention.

  1. Fiscal Year 2013 Trails Management Program Mitigation Action Plan Annual Report, October 2013

    Energy Technology Data Exchange (ETDEWEB)

    Pava, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-25

    This Trails Management Program Mitigation Action Plan Annual Report (Trails MAPAR) has been prepared for the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) as part of implementing the 2003 Final Environmental Assessment for the Proposed Los Alamos National Laboratory Trails Management Program (DOE 2003). The Trails Mitigation Action Plan (MAP) is now a part of the Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (DOE/EIS 0380) Mitigation Action Plan (2008 SWEIS MAP) (DOE 2008). The MAP provides guidance for the continued implementation of the Trails Management Program at Los Alamos National Laboratory (LANL) and integration of future mitigation actions into the 2008 SWEIS MAP to decrease impacts associated with recreational trails use at LANL. This eighth MAPAR includes a summary of Trails Management Program activities and actions during Fiscal Year (FY) 2013, from October 2012 through September 2013.

  2. DNA-based control of protein activity.

    Science.gov (United States)

    Engelen, W; Janssen, B M G; Merkx, M

    2016-03-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  3. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW;

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray......, approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...

  4. Coal Discovery Trail officially opens

    Energy Technology Data Exchange (ETDEWEB)

    Gallinger, C. [Elk Valley Coal Corporation, Sparwood, BC (Canada)

    2004-09-01

    The opening of the 30-kilometre Coal Discovery Trail in August is described. The trail, through a pine, spruce, and larch forest, extends from Sparwood to Fernie and passes through Hosmer, a historic mining site. The trail, part of the Elk Valley Coal Discovery Centre, will be used for hiking, bicycling, horseback riding, and cross-country skiing. The Coal Discovery Centre will provide an interpretive centre that concentrates on history of coal mining and miners, preservation of mining artifacts and sites, and existing technology. 3 figs.

  5. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  6. Reduction of airfoil trailing edge noise by trailing edge blowing

    Science.gov (United States)

    Gerhard, T.; Erbslöh, S.; Carolus, T.

    2014-06-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length.

  7. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  8. Differences in the impacts of formal and informal recreational trails on urban forest loss and tree structure.

    Science.gov (United States)

    Ballantyne, Mark; Pickering, Catherine Marina

    2015-08-15

    Recreational trails are one of the most common types of infrastructure used for nature-based activities such as hiking and mountain biking worldwide. Depending on their design, location, construction, maintenance and use, these trails differ in their environmental impacts. There are few studies, however, comparing the impacts of different trail types including between formal management-created trails and informal visitor-created trails. Although both types of trails can be found in remote natural areas, dense networks of them often occur in forests close to cities where they experience intense visitor use. To assess the relative impacts of different recreational trails in urban forests, we compared the condition of the trail surface, loss of forest strata and changes in tree structure caused by seven types of trails (total network 46.1 km) traversing 17 remnants of an endangered urban forest in Australia. After mapping and classifying all trails, we assessed their impact on the forest condition at 125 sites (15 sites per trail type, plus 15 control sites within undisturbed forest). On the trail sites, the condition of the trail surface, distance from the trail edge to four forest strata (litter, understory, midstorey and tree cover) and structure of the tree-line were assessed. Informal trails generally had poorer surface conditions and were poorly-designed and located. Per site, formal and informal trails resulted in similar loss of forest strata, with wider trails resulting in greater loss of forest. Because there were more informal trails, however, they accounted for the greatest cumulative forest loss. Structural impacts varied, with the widest informal trails and all formal hardened trails resulting in similar reductions in canopy cover and tree density but an increase in saplings. These structural impacts are likely a function of the unregulated and intense use of large informal trails, and disturbance from the construction and maintenance of formal trails

  9. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy

    Directory of Open Access Journals (Sweden)

    P. Brandolini

    2006-01-01

    Full Text Available The many trails existing in the coastal area of Portofino Promontory are used by tourists for trekking or as pathways to small villages and beaches. The aim of this paper is to define geomorphological hazard and tourist vulnerability in this area, within the framework of the management and planning of hiking activities in Portofino Natural Park. In particular, processes triggered by gravity, running waters and wave motion, affecting the slopes and the cliff, are considered. The typology of the trails and trail maintenance are also taken into account in relation to weather conditions that can make the excursion routes dangerous for tourists. In conclusion, an operative model is applied for the definition of possible risk scenarios. This model is founded on an inventory and the quantification of geomorphological hazards and tourist vulnerability, in comparison with trail rescue data. The model can be applied to other environments and tourist areas.

  10. TRAIL restores DCA/metformin-mediated cell death in hypoxia.

    Science.gov (United States)

    Hong, Sung-Eun; Kim, Chang Soon; An, Sungkwan; Kim, Hyun-Ah; Hwang, Sang-Gu; Song, Jie-Young; Lee, Jin Kyung; Hong, Jungil; Kim, Jong-Il; Noh, Woo Chul; Jin, Hyeon-Ok; Park, In-Chul

    2016-09-23

    Previous studies have shown that hypoxia can reverse DCA/metformin-induced cell death in breast cancer cells. Therefore, targeting hypoxia is necessary for therapies targeting cancer metabolism. In the present study, we found that TRAIL can overcome the effect of hypoxia on the cell death induced by treatment of DCA and metformin in breast cancer cells. Unexpectedly, DR5 is upregulated in the cells treated with DCA/metformin, and sustained under hypoxia. Blocking DR5 by siRNA inhibited DCA/metformin/TRAIL-induced cell death, indicating that DR5 upregulation plays an important role in sensitizing cancer cells to TRAIL-induced cell death. Furthermore, we found that activation of JNK and c-Jun is responsible for upregulation of DR5 induced by DCA/metformin. These findings support the potential application of combining TRAIL and metabolism-targeting drugs in the treatment of cancers under hypoxia. PMID:27569287

  11. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy)

    Science.gov (United States)

    Brandolini, P.; Faccini, F.; Piccazzo, M.

    2006-06-01

    The many trails existing in the coastal area of Portofino Promontory are used by tourists for trekking or as pathways to small villages and beaches. The aim of this paper is to define geomorphological hazard and tourist vulnerability in this area, within the framework of the management and planning of hiking activities in Portofino Natural Park. In particular, processes triggered by gravity, running waters and wave motion, affecting the slopes and the cliff, are considered. The typology of the trails and trail maintenance are also taken into account in relation to weather conditions that can make the excursion routes dangerous for tourists. In conclusion, an operative model is applied for the definition of possible risk scenarios. This model is founded on an inventory and the quantification of geomorphological hazards and tourist vulnerability, in comparison with trail rescue data. The model can be applied to other environments and tourist areas.

  12. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells : discord in the death receptor family

    NARCIS (Netherlands)

    Azijli, K.; Weyhenmeyer, B.; Peters, G. J.; de Jong, S.; Kruyt, F. A. E.

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based therapy is currently evaluated in clinical studies as a tumor cell selective pro-apoptotic approach. However, besides activating canonical caspase-dependent apoptosis by binding to TRAIL-specific death receptors, the TRAIL ligand

  13. Casticin potentiates TRAIL-induced apoptosis of gastric cancer cells through endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Yuan Zhou

    Full Text Available BACKGROUND: Casticin is one of the main active components obtained from Fructus Viticis and has been reported to exert anti-carcinogenic activity on a variety of cancer cells but the precise mechanism underlying this activity remains unclear. MATERIALS AND METHODS: Apoptotic activities of casticin (1.0 µmol/l and TRAIL (25, 50 ng/ml alone or in combination in the gastric cancer cell lines BGC-823, SGC-7901 and MGC-803 were detected by the use of a cell apoptosis ELISA detection kit, flow cytometry (FCM with propidium iodide (PI staining and activities of caspase-3, -8 and -9 by ELISA and cleavage of polyADP-ribose polymerase (PARP protein using western blot analysis. Death receptors (DR expression levels were evaluated using FCM analysis and western blotting. 2', 7'-dichlorofluorescein diacetate (DCFH-DA was used as a probe to measure the increase in reactive oxygen species (ROS levels in cells. Multiple interventions, such as siRNA transfection and pharmacological inhibitors were used to explore the mechanisms of these actions. RESULTS: Subtoxic concentrations of casticin significantly potentiated TRAIL-induced cytotoxicity and apoptosis in BGC-823, SGC-7901 and MGC-803 cells. Casticin dramatically upregulated DR5 receptor expression but had no effects on DR4 or decoy receptors. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by the co-application of TRAIL and casticin. Gene silencing of the CCAAT/enhancer binding protein homologous protein (CHOP and pretreatment with salubrinal, an endoplasmic reticulum (ER stress inhibitor, attenuated casticin-induced DR5 receptor expression, and apoptosis and ROS production. Casticin downregulated the expression levels of the cell survival proteins cFLIP, Bcl-2, XIAP, and survivin. In addition, casticin also induced the expressions of DR5 protein in other gastric cancer cells (SGC-7901 and MGC-803. CONCLUSION/SIGNIFICANCE: Casticin enhances TRAIL-induced apoptosis through the

  14. Access Control Based on Trail Inference

    Directory of Open Access Journals (Sweden)

    ALBARELO, P. C.

    2015-06-01

    Full Text Available Professionals are constantly seeking qualification and consequently increasing their knowledge in their area of expertise. Thus, it is interesting to develop a computer system that knows its users and their work history. Using this information, even in the case of professional role change, the system could allow the renewed authorization for activities, based on previously authorized use. This article proposes a model for user access control that is embedded in a context-aware environment. The model applies the concept of trails to manage access control, recording activities usage in contexts and applying this history as a criterion to grant new accesses. Despite the fact that previous related research works consider contexts, none of them uses the concept of trails. Hence, the main contribution of this work is the use of a new access control criterion, namely, the history of previous accesses (trails. A prototype was implemented and applied in an evaluation based on scenarios. The results demonstrate the feasibility of the proposal, allowing for access control systems to use an alternative way to support access rights.

  15. 旅游活动对九华山风景区游道附近植物群落的影响%Effects of Tourism Activities on Plants Communities of Trail Neighborhool in Mount. Jiuhua Scenic Region

    Institute of Scientific and Technical Information of China (English)

    晋秀龙; 陆林; 郝朝运; 王立龙; 巩劼

    2011-01-01

    Vegetation is one of the most sensitive environmental factors in the scenic area ecosystem influenced by tourism activities, and also the focus of the ecological environment research. 6 main trails have been chosen and 21 investigation belt transects have been set up in Mount. Jiuhua scenic area. Each sampling belt from near to far in the direction of trails is followed by four consecutive quadrats, and each quadrat area is set to 1 m2. Targets of the vegetation have been recorded, such as types, quantities, heights, and coverages. Index of plant community impact, plant diversity and importance values of anthropochory have been used for analyzing and counting the obtained investigation targets.Besides, multiple comparisons and Pearson correlation of SPSS13 were prepared for testing significances and correlation on the results. The results are as follows: 1 ) The coverage and the average height of plant community increase gradually as the distance increases along the tour roads, and the differences are significant ( P < 0. 05 ); the more distant that is from the trails, the smaller the changes of floristic dissimilarity are; index of plant community impact decreases from near to far in the direction of tour roads; 2)Index of plant community diversity, evenness and dominance have relation with the intensity of tourism activities. The greater the intensity is, the more significant the changes are; 3 ) Among all species of the investigated plant, the species of anthropochory account for 19. 49%, large quantities of anthropochory appear in the quadrats near trails, and reduced significantly in quadrats away from the trails, anthropochory important value distribution reduce gradually along the trails to the internal; 4) The number of tourists showed a positive correlation with the degree of impacts on plant communities, the degree of which decline as the distance increases along the tour roads, but the differences are not significant(P > 0. 05); 5) The impacts of

  16. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  17. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  18. MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Andrea Turner

    Full Text Available The Map kinase Activating Death Domain containing protein (MADD isoform of the IG20 gene is over-expressed in different types of cancer tissues and cell lines and it functions as a negative regulator of apoptosis. Therefore, we speculated that MADD might be over-expressed in human breast cancer tissues and that MADD knock-down might synergize with chemotherapeutic or TRAIL-induced apoptosis of breast cancer cells. Analyses of breast tissue microarrays revealed over-expression of MADD in ductal and invasive carcinomas relative to benign tissues. MADD knockdown resulted in enhanced spontaneous apoptosis in human breast cancer cell lines. Moreover, MADD knockdown followed by treatment with TRAIL or doxorubicin resulted in increased cell death compared to either treatment alone. Enhanced cell death was found to be secondary to increased caspase-8 activation. These data indicate that strategies to decrease MADD expression or function in breast cancer may be utilized to increase tumor cell sensitivity to TRAIL and doxorubicin induced apoptosis.

  19. Cytotoxicity of CD56bright NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A

    DEFF Research Database (Denmark)

    Nielsen, Natasja; Ødum, Niels; Ursø, Birgitte;

    2012-01-01

    In mouse models of chronic inflammatory diseases, Natural Killer (NK) cells can play an immunoregulatory role by eliminating chronically activated leukocytes. Indirect evidence suggests that NK cells may also be immunoregulatory in humans. Two subsets of human NK cells can be phenotypically...... distinguished as CD16(+)CD56(dim) and CD16(dim/-)CD56(bright). An expansion in the CD56(bright) NK cell subset has been associated with clinical responses to therapy in various autoimmune diseases, suggesting an immunoregulatory role for this subset in vivo. Here we compared the regulation of activated human CD......4(+) T cells by CD56(dim) and CD56(bright) autologous NK cells in vitro. Both subsets efficiently killed activated, but not resting, CD4(+) T cells. The activating receptor NKG2D, as well as the integrin LFA-1 and the TRAIL pathway, played important roles in this process. Degranulation by NK cells...

  20. Activation and activities of the p53 tumour suppressor protein

    OpenAIRE

    Bálint, É; Vousden, K H

    2001-01-01

    The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pat...

  1. Cryptolepine, isolated from Sida acuta, sensitizes human gastric adenocarcinoma cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Ahmed, Firoj; Toume, Kazufumi; Ohtsuki, Takashi; Rahman, Mahmudur; Sadhu, Samir Kumar; Ishibashi, Masami

    2011-01-01

    Bioassay guided separation of Sida acuta whole plants led to the isolation of an alkaloid, cryptolepine (1), along with two kaempferol glycosides (2-3). Compound 1 showed strong activity in overcoming TRAIL-resistance in human gastric adenocarcinoma (AGS) cells at 1.25, 2.5 and 5 μm. Combined treatment of 1 and TRAIL sensitized AGS cells to TRAIL-induced apoptosis at the aforementioned concentrations.

  2. Analysis of the impact of recreational trail usage for prioritising management decisions: a regression tree approach

    Science.gov (United States)

    Tomczyk, Aleksandra; Ewertowski, Marek; White, Piran; Kasprzak, Leszek

    2016-04-01

    The dual role of many Protected Natural Areas in providing benefits for both conservation and recreation poses challenges for management. Although recreation-based damage to ecosystems can occur very quickly, restoration can take many years. The protection of conservation interests at the same as providing for recreation requires decisions to be made about how to prioritise and direct management actions. Trails are commonly used to divert visitors from the most important areas of a site, but high visitor pressure can lead to increases in trail width and a concomitant increase in soil erosion. Here we use detailed field data on condition of recreational trails in Gorce National Park, Poland, as the basis for a regression tree analysis to determine the factors influencing trail deterioration, and link specific trail impacts with environmental, use related and managerial factors. We distinguished 12 types of trails, characterised by four levels of degradation: (1) trails with an acceptable level of degradation; (2) threatened trails; (3) damaged trails; and (4) heavily damaged trails. Damaged trails were the most vulnerable of all trails and should be prioritised for appropriate conservation and restoration. We also proposed five types of monitoring of recreational trail conditions: (1) rapid inventory of negative impacts; (2) monitoring visitor numbers and variation in type of use; (3) change-oriented monitoring focusing on sections of trail which were subjected to changes in type or level of use or subjected to extreme weather events; (4) monitoring of dynamics of trail conditions; and (5) full assessment of trail conditions, to be carried out every 10-15 years. The application of the proposed framework can enhance the ability of Park managers to prioritise their trail management activities, enhancing trail conditions and visitor safety, while minimising adverse impacts on the conservation value of the ecosystem. A.M.T. was supported by the Polish Ministry of

  3. Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity.

    Science.gov (United States)

    O'Leary, L; van der Sloot, A M; Reis, C R; Deegan, S; Ryan, A E; Dhami, S P S; Murillo, L S; Cool, R H; Correa de Sampaio, P; Thompson, K; Murphy, G; Quax, W J; Serrano, L; Samali, A; Szegezdi, E

    2016-03-10

    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand cytokine known for its cytotoxic activity against malignantly transformed cells. TRAIL induces cell death through binding to death receptors DR4 and DR5. The inhibitory decoy receptors (DcR1 and DcR2) co-expressed with death receptor 4 (DR4)/DR5 on the same cell can block the transmission of the apoptotic signal. Here, we show that DcRs also regulate TRAIL sensitivity at a supracellular level and thus represent a mechanism by which the microenvironment can diminish tumour TRAIL sensitivity. Mathematical modelling and layered or spheroid stroma-extracellular matrix-tumour cultures were used to model the tumour microenvironment. By engineering TRAIL to escape binding by DcRs, we found that DcRs do not only act in a cell-autonomous or cis-regulatory manner, but also exert trans-cellular regulation originating from stromal cells and affect tumour cells, highlighting the potent inhibitory effect of DcRs in the tumour tissue and the necessity of selective targeting of the two death-inducing TRAIL receptors to maximise efficacy. PMID:26050621

  4. Total Cellular RNA Modulates Protein Activity.

    Science.gov (United States)

    Majumder, Subhabrata; DeMott, Christopher M; Reverdatto, Sergey; Burz, David S; Shekhtman, Alexander

    2016-08-16

    RNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source. Total RNA isolated from cells grown in methanol increases β-galactosidase activity relative to that seen with RNA isolated from cells grown in the presence of dextrose and methanol. Because the total cellular RNA content changes with growth medium, protein-RNA quinary interactions can alter in-cell protein biochemistry and may play an important role in cell adaptation, critical to many physiological and pathological states. PMID:27456029

  5. Raman optical activity of proteins and glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, E

    2000-03-01

    Raman optical activity (ROA), measured in this project as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarised incident laser light, offers the potential to provide more information about the structure of biological molecules in aqueous solution than conventional spectroscopic techniques. Chapter one contains a general discussion of the relative merits of different spectroscopic techniques for structure determination of biomolecules, as well as a brief introduction to ROA. In Chapter two a theoretical analysis of ROA is developed, which extends the discussion in chapter one. The spectrometer setup and sample preparation is then discussed in chapter three. Instrument and sample conditions are monitored to ensure that the best results are obtained. As with any experimental project problems occur, which may result in a degradation of the spectra obtained. The cause of these problems was explored and remedied whenever possible. Chapter four introduces a brief account of protein, glycoprotein and carbohydrate structure and function, with a particular emphasis on the structure of proteins. In the remaining chapters experimental ROA results on proteins and glycoproteins, with some carbohydrate samples, from a wide range of sources are examined. For example, in chapter five some {beta}-sheet proteins are examined. Structural features in these proteins are examined in the extended amide III region of their ROA spectra, revealing that ROA is sensitive to the rigidity or flexibility inherent in proteins. Chapter six concentrates on a group of proteins (usually glycoproteins) known as the serine proteinase inhibitors (serpins). Medically, the serpins are one of the most important groups of proteins of current interest, with wide-ranging implications in conditions such as Down's syndrome, Alzheimer's disease, and emphysema with associated cirrhosis of the liver. With favourable samples and conditions ROA

  6. Mitogen-activated protein kinases in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Dorota Bryk

    2014-01-01

    Full Text Available Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase, JNK (c-Jun N-terminal kinase and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis.

  7. Synaptic Vesicle Proteins and Active Zone Plasticity.

    Science.gov (United States)

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  8. Nimbolide Sensitizes Human Colon Cancer Cells to TRAIL through Reactive Oxygen Species- and ERK-dependent Up-regulation of Death Receptors, p53, and Bax*

    OpenAIRE

    Gupta, Subash C.; Reuter, Simone; Phromnoi, Kanokkarn; Park, Byoungduck; Hema, Padmanabhan S.; Nair, Mangalam; Aggarwal, Bharat B.

    2010-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) shows promise as a cancer treatment, but acquired tumor resistance to TRAIL is a roadblock. Here we investigated whether nimbolide, a limonoid, could sensitize human colon cancer cells to TRAIL. As indicated by assays that measure esterase activity, sub-G1 fractions, mitochondrial activity, and activation of caspases, nimbolide potentiated the effect of TRAIL. This limonoid also enhanced expression of death receptors (DRs) DR5 and DR4 in cancer ce...

  9. TRAIL deficiency contributes to diabetic nephropathy in fat-fed ApoE-/- mice.

    Directory of Open Access Journals (Sweden)

    Siân P Cartland

    Full Text Available BACKGROUND: We recently demonstrated that TNF-related apoptosis-inducing ligand (TRAIL is protective of diet-induced diabetes in mice. While TRAIL has been implicated in chronic kidney disease, its role in vivo in diabetic nephropathy is not clear. The present study investigated the role of TRAIL in the pathogenesis of diabetic nephropathy using TRAIL(-/-ApoE(-/- mice. METHODS: TRAIL(-/-ApoE(-/- and ApoE(-/- mice were fed a high fat diet for 20 w. Plasma glucose and insulin levels were assessed over 0, 5, 8 and 20 w. At 20 w, markers of kidney function including creatinine, phosphate, calcium and cystatin C were measured. Changes in mRNA expression of MMPs, TIMP-1, IL-1β and IL-18 were assessed in the kidney. Functional and histological changes in kidneys were examined. Glucose and insulin tolerance tests were performed. RESULTS: TRAIL(-/-ApoE(-/- mice had significantly increased urine protein, urine protein:creatinine ratio, plasma phosphorous, and plasma cystatin C, with accelerated nephropathy. Histologically, increased extracellular matrix, mesangial expansion and mesangial cell proliferation in the glomeruli were observed. Moreover, TRAIL(-/-ApoE(-/- kidneys displayed loss of the brush border and disorganisation of tubular epithelium, with increased fibrosis. TRAIL-deficient kidneys also had increased expression of MMPs, TIMP-1, PAI-1, IL-1β and IL-18, markers of renal injury and inflammation. Compared with ApoE(-/- mice, TRAIL-/-ApoE-/- mice displayed insulin resistance and type-2 diabetic features with reduced renal insulin-receptor expression. CONCLUSIONS: Here, we show that TRAIL-deficiency in ApoE(-/- mice exacerbates nephropathy and insulin resistance. Understanding TRAIL signalling in kidney disease and diabetes, may therefore lead to novel strategies for the treatment of diabetic nephropathy.

  10. Full-scale test of trailing edge flaps on a Vestas V27 wind turbine: active load reduction and system identification

    DEFF Research Database (Denmark)

    Castaignet, Damien; Barlas, Thanasis K.; Buhl, Thomas;

    2014-01-01

    predictive control was tested successfully on this demonstrator turbine. An average flapwise blade root load reduction of 14% was achieved during a 38 minute test, and a reduction of 20% of the amplitude of the 1P loads was measured. A system identification test was also performed, and an identified linear...... model, from trailing edge flap angle to flapwise blade root moment, was derived and compared with the linear analytical model used in the model predictive control design model. Flex5 simulations run with the same model predictive control showed a good correlation between the simulations...... and the measurements in terms of flapwise blade root moment spectral densities, in spite of significant differences between the identified linear model and the model predictive control design model....

  11. MADD Knock-Down Enhances Doxorubicin and TRAIL Induced Apoptosis in Breast Cancer Cells

    OpenAIRE

    Andrea Turner; Liang-Cheng Li; Tania Pilli; Lixia Qian; Elizabeth Louise Wiley; Suman Setty; Konstantin Christov; Lakshmy Ganesh; Maker, Ajay V; Peifeng Li; Prasad Kanteti; Tapas K Das Gupta; Prabhakar, Bellur S.

    2013-01-01

    The Map kinase Activating Death Domain containing protein (MADD) isoform of the IG20 gene is over-expressed in different types of cancer tissues and cell lines and it functions as a negative regulator of apoptosis. Therefore, we speculated that MADD might be over-expressed in human breast cancer tissues and that MADD knock-down might synergize with chemotherapeutic or TRAIL-induced apoptosis of breast cancer cells. Analyses of breast tissue microarrays revealed over-expression of MADD in duct...

  12. Accumulation of reactivity to MBP sensitizes TRAIL mediated oligodendrocyte apoptosis in adult sub cortical white matter in a model for human multiple sclerosis.

    Science.gov (United States)

    Mir, Sajad; Ali, Farrah; Chauhan, Deepika; Arora, Rajesh; Khan, Haider A

    2016-04-01

    Reactivity to myelin associated proteins is the hallmark of human multiple sclerosis (M.S) and its experimental counterparts. However, the nature of such reactivity has not been described fully. Herein, we report that myelin basic protein (MBP) reactivity accumulates in a rat model for M.S. over a period of time and sensitizes TRAIL mediated progressive oligodendrocyte apoptosis. We used active immunization by Myelin Oligodendrocyte Glycoprotein (MOG, 50 μg) to study chronic remitting relapsing encephalomyelitis in rats. A time point analysis of the progressive disease revealed cumulative accumulation of anti myelin basic protein antibodies during the disease progression with minimal change in the anti-MOG antibodies. Increased reactivity to MBP was studied to sensitize TNF related apoptosis-inducing ligand (TRAIL) and other proinflammatory cytokines in a cumulative fashion leading to the Caspase dependent apoptosis of oligodendrocytes and myelin loss. In a rescue experiment, we could limit the demyelination and prevent disease progression by neutralizing the effector, TRAIL in an early stage of the disease. This is the first study to identify the accumulation of MBP antibodies in MOG induced EAE which possibly leads to TRAIL sensitized oligodendrocyte apoptosis in the white mater of EAE rats. This finding stresses on the need to study MBP antibody titers in M.S. patients and therefore might serve as an alternate marker for progressive demyelination. PMID:26477945

  13. Alaska gold rush trails study: Preliminary draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Preliminary study draft, with maps, of seven gold rush trails in Alaska, to determine suitability for inclusion in the National Scenic Trails system and their...

  14. Recreational Trails in the State of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This file represents the locations of trails in Iowa. The original trail file was created by the Iowa Department of Transportation (IDOT), and included developed...

  15. The Trail Inventory of Aransas [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Aransas National Wildlife Refuge. Trails in this inventory are eligible...

  16. Trail formation based on directed pheromone deposition

    OpenAIRE

    Boissard, Emmanuel; Degond, Pierre; Motsch, Sébastien

    2011-01-01

    We propose an Individual-Based Model of ant-trail formation. The ants are modeled as self-propelled particles which deposit directed pheromones and interact with them through alignment interaction. The directed pheromones intend to model pieces of trails, while the alignment interaction translates the tendency for an ant to follow a trail when it meets it. Thanks to adequate quantitative descriptors of the trail patterns, the existence of a phase transition as the ant-pheromone interaction fr...

  17. c - FLIP 调节 TRAIL 诱导胃癌细胞凋亡敏感性的研究%Study ni the regulatini nf c-FLIP fnr the seisitivity nf TRAIL-iiduced annntnsis nf gastric caicer cells

    Institute of Scientific and Technical Information of China (English)

    蔡军; 尹杰; 郑智; 张军

    2015-01-01

    Objective To explore the role of c - FLIP in TRAIL induced cell apoptosis in gastric carcinoma cells. Methnds The surviv-al rate of cells was detected by MTT. Two SiRNAs targeting c - FLIP genes were transfected into SGC - 7901 cells by lipofectamine 2000 reagent. The effect of decrease of expression of c - FLIP was detected by qPCR and Western blot. The apoptotic rate of SGC - 7901 cells after treatment with TRAIL was analyzed by Hoechst 33258 staining and flow cytometry. Caspase - 8 and activated caspase - 8 were detected by Western blot. Results c - FLIP mRNA and protein were significantly decreased by c - FLIP siRNAs,especially the second siRNA. At 24 h after exposure of gastric carcinoma cells in TRAIL with different dosages of 1,10,100,and 1 000 ng/ ml,the cell survival rates were 98. 9% ,94. 8% ,91. 7%and 83. 7% respectively. There was no significant difference between control group and TRAIL group. After treatment with 100 ng/ ml TRAIL for 24 h,cell survival rate was significantly declined when the c - FLIP gene was knocked down,and the survival rate was 62. 8% in control group. After treatment with 100 ng/ ml TRAIL for 24 h,the rates of apoptotic cells detected by Hoechst 33258 staining were 12. 5% in TRAIL treatment group,17. 4% in TRAIL combined with c - FLIP - Si - NC treatment group,and 48. 7 % in TRAIL combined with c - FLIP - SiRNA treatment group. The results of FCM showed that the rate of apoptotic cells was 14. 76% ,it was higher than that of other two groups( P 0.05)。凋亡实验显示在二者共同作用 SGC7901细胞24 h 后,能够促进细胞的凋亡。Western blot 结果显示二者共同作用24 h 后,c - FLIP 显著降低、caspase -8及激活型 caspase -8(p -18)的表达均显著升高。结论抑制 c - FLIP 的表达增强了 TRAIL 诱导胃癌细胞 SGC7901的凋亡。

  18. Perceptual Geography through Urban Trails.

    Science.gov (United States)

    Dove, Jane

    1997-01-01

    Describes a project whereby geography students were charged with designing an urban trail (city walk with informational markers) that would accommodate specific groups. Chosen groups included people with physical disabilities, 10-year olds, and those interested in local street art. Discusses the cognitive, psychomotor, and affective objectives of…

  19. Carving a New Assessment Trail

    Science.gov (United States)

    Morriston, Terry

    2007-01-01

    TRAILS (Tool for Real-Time Assessment of Information Literacy Skills), is a free online test of student information-handling skills. It was formulated by the Institute for Library and Information Literacy Education and Kent State University Libraries. Based on the Ohio Academic Content Standards and the philosophy of Information Power, it assesses…

  20. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  1. Down-regulation of protein kinase Ceta potentiates the cytotoxic effects of exogenous tumor necrosis factor-related apoptosis-inducing ligand in PC-3 prostate cancer cells.

    Science.gov (United States)

    Sonnemann, Jürgen; Gekeler, Volker; Sagrauske, Antje; Müller, Cornelia; Hofmann, Hans-Peter; Beck, James F

    2004-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a highly promising candidate for the treatment of cancer because it elicits cell death in the majority of tumor cells while sparing most normal cells. Some cancers, however, display resistance to TRAIL, suggesting that treatment with TRAIL alone may be insufficient for cancer therapy. In the present study, we explored whether the apoptotic responsiveness of PC-3 prostate cancer cells to TRAIL could be enhanced by targeting the novel protein kinase C (PKC) isoform eta. Transfection of PC-3 cells with second-generation chimeric antisense oligonucleotides against PKCeta caused a time- and dose-dependent knockdown of PKCeta, as revealed by real-time RT-PCR and Western blot analyses. Knockdown of PKCeta resulted in a marked amplification of TRAIL's cytotoxic activity. Cell killing could be substantially prevented by the pan-caspase inhibitor z-VAD-fmk. In addition, PKCeta knockdown and administration of TRAIL significantly synergized in activation of caspase-3 and internucleosomal DNA fragmentation. Knockdown of PKCeta augmented TRAIL-induced dissipation of the mitochondrial transmembrane potential and release of cytochrome c from mitochondria into the cytosol, indicating that PKCeta acts upstream of mitochondria. We conclude that PKCeta represents a considerable resistance factor with respect to TRAIL and a promising target to exploit the therapeutic potential of TRAIL. PMID:15252138

  2. Overcoming Hypoxic-Resistance of Tumor Cells to TRAIL-Induced Apoptosis through Melatonin

    Directory of Open Access Journals (Sweden)

    You-Jin Lee

    2014-07-01

    Full Text Available A solid tumor is often exposed to hypoxic or anoxic conditions; thus, tumor cell responses to hypoxia are important for tumor progression as well as tumor therapy. Our previous studies indicated that tumor cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-induced cell apoptosis under hypoxic conditions. Melatonin inhibits cell proliferation in many cancer types and induces apoptosis in some particular cancer types. Here, we examined the effects of melatonin on hypoxic resistant cells against TRAIL-induced apoptosis and the possible mechanisms of melatonin in the hypoxic response. Melatonin treatment increased TRAIL-induced A549 cell death under hypoxic conditions, although hypoxia inhibited TRAIL-mediated cell apoptosis. In a mechanistic study, hypoxia inducible factor-1α and prolyl-hydroxylase 2 proteins, which increase following exposure to hypoxia, were dose-dependently down-regulated by melatonin treatment. Melatonin also blocked the hypoxic responses that reduced pro-apoptotic proteins and increased anti-apoptotic proteins including Bcl-2 and Bcl-xL. Furthermore, melatonin treatment reduced TRAIL resistance by regulating the mitochondrial transmembrane potential and Bax translocation. Our results first demonstrated that melatonin treatment induces apoptosis in TRAIL-resistant hypoxic tumor cells by diminishing the anti-apoptotic signals mediated by hypoxia and also suggest that melatonin could be a tumor therapeutic tool by combining with other apoptotic ligands including TRAIL, particularly in solid tumor cells exposed to hypoxia.

  3. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    Science.gov (United States)

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  4. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  5. The science of trail surveys: Recreation ecology provides new tools for managing wilderness trails

    Science.gov (United States)

    Marion, Jeffrey L.; Wimpey, Jeremy F.; Park, Logan O.

    2011-01-01

    Recreation ecology examines the effects of recreation on protected area ecosystems. One core focus of recreation ecology research is trail science, including the development of efficient protocols to assess and monitor the type and severity of resource impacts, analyses to improve knowledge of factors that influence trail conditions, and studies to assist land managers in improving trail design, maintenance, and visitor management. This article reviews alternative trail survey methodologies most useful for the management of wilderness and backcountry trail networks. Illustrations and implications from survey data for trail planning, design, and management are included.

  6. Observation of microtubule-based motor protein activity.

    Science.gov (United States)

    Sloboda, Roger D

    2015-02-01

    It is possible to detect the presence of motor proteins that have the ability to translocate particles along microtubules. The two procedures described here were developed to detect microtubule-dependent motor protein activity in cell lysates or of purified proteins. In the first procedure, latex beads bound to the putative motor protein are assayed for their ability to translocate along microtubules in an ATP-dependent fashion. If motor protein activity is present, it will bind to the beads and translocate them unidirectionally along the microtubules. In the second procedure, motor proteins induce microtubule gliding over a glass coverslip surface that is coated with active motor protein. Because the mass of a microtubule is negligible compared to that of a coverslip or slide, the microtubule glides over the glass surface when the surface is coated with active motor protein. Also included here are descriptions of assays designed to determine the directionality of movement of microtubule-based motor proteins. PMID:25646501

  7. Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities

    OpenAIRE

    Trevor Lithgow; Lisa Martin; Hsin-Hui Shen

    2013-01-01

    The function of any given biological membrane is determined largely by the specific set of integral membrane proteins embedded in it, and the peripheral membrane proteins attached to the membrane surface. The activity of these proteins, in turn, can be modulated by the phospholipid composition of the membrane. The reconstitution of membrane proteins into a model membrane allows investigation of individual features and activities of a given cell membrane component. However, the activity of mem...

  8. The Rim Trail at Pipe Spring National Monument, Arizona (pisp_trail)

    Data.gov (United States)

    National Park Service, Department of the Interior — This is an Arc/Info coverage consisting of 4 arcs representing The Rim Trail at Pipe Spring National Monument, Arizona. The Rim Trail was collected by a Trimble...

  9. Trails, Other, Trails, Published in 2007, 1:24000 (1in=2000ft) scale, Juab County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Trails, Other dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2007. It is described as 'Trails'....

  10. Protein C activity in dogs envenomed by Vipera palaestinae.

    Science.gov (United States)

    Hadar, Gil; Kelmer, Efrat; Segev, Gilad; Bruchim, Yaron; Aroch, Itamar

    2014-09-01

    Vipera palaestinae is responsible for most envenomations in humans and domestic animal in Israel. Its venom has pro- and anticoagulant properties. Protein C is a major natural anticoagulant, preventing excess clotting and thrombosis. This study investigated protein C activity and its prognostic value, as well as several other hemostatic analytes in dogs (Canis familiaris) accidently envenomed by V. palaestinae. Protein C activity was compared between envenomed dogs and 33 healthy control dogs. Mean protein C was lower in dogs envenomed by V. palaestinae compared to controls (12.9% vs. 22.9%, respectively; P Dogs diagnosed with consumptive coagulopathy (14%) tended to have lower protein C activity compared to others; however, their mortality did differ from that of other dogs. This is the first study assessing protein C activity in V. palaestinae victims. Decreased protein C activity in such dogs may play a role in formation of thrombosis and hemostatic derangement as well as inflammation in V. palaestinae envenomations.

  11. Trails at LANL - Public Meeting and Forum - July 26, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Pava, Daniel Seth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-26

    These are the slides of a meeting about trails at Los Alamos National Laboratory. The meeting goals are the folllowing: to inform and educate citizens about LANL trails management issues that include resource protection, safety, security and trails etiquette; to explain how and why LANL trails can be closed and reopened; and to understand your concerns and ideas about LANL trails use.

  12. 30 CFR 75.603 - Temporary splice of trailing cable.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  13. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    徐进平; 叶林柏

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  14. Deterring off-trail hiking in protected natural areas: Evaluating options with surveys and unobtrusive observation: Final report

    Science.gov (United States)

    Hockett, K.A.; Clark, Y.F.; Leung, J.L.; ,; Park, L.

    2010-01-01

    This report presents the results of research conducted on the 96-acre Bear Island along the Billy Goat Trail, Section A (BGT) that evaluated visitor motivations for off-trail hiking and the efficacy of four treatments designed to reduce this activity. This research was prompted by concerns about the impact of an extensive informal (visitor-created) trail network on Bear Island, because it provides habitat for more than 50 species of rare, threatened or endangered plant and animal species.

  15. Cytotoxicity of CD56(bright NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A.

    Directory of Open Access Journals (Sweden)

    Natasja Nielsen

    Full Text Available In mouse models of chronic inflammatory diseases, Natural Killer (NK cells can play an immunoregulatory role by eliminating chronically activated leukocytes. Indirect evidence suggests that NK cells may also be immunoregulatory in humans. Two subsets of human NK cells can be phenotypically distinguished as CD16(+CD56(dim and CD16(dim/-CD56(bright. An expansion in the CD56(bright NK cell subset has been associated with clinical responses to therapy in various autoimmune diseases, suggesting an immunoregulatory role for this subset in vivo. Here we compared the regulation of activated human CD4(+ T cells by CD56(dim and CD56(bright autologous NK cells in vitro. Both subsets efficiently killed activated, but not resting, CD4(+ T cells. The activating receptor NKG2D, as well as the integrin LFA-1 and the TRAIL pathway, played important roles in this process. Degranulation by NK cells towards activated CD4(+ T cells was enhanced by IL-2, IL-15, IL-12+IL-18 and IFN-α. Interestingly, IL-7 and IL-21 stimulated degranulation by CD56(bright NK cells but not by CD56(dim NK cells. NK cell killing of activated CD4(+ T cells was suppressed by HLA-E on CD4(+ T cells, as blocking the interaction between HLA-E and the inhibitory CD94/NKG2A NK cell receptor enhanced NK cell degranulation. This study provides new insight into CD56(dim and CD56(bright NK cell-mediated elimination of activated autologous CD4(+ T cells, which potentially may provide an opportunity for therapeutic treatment of chronic inflammation.

  16. Cytotoxicity of CD56(bright) NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A.

    Science.gov (United States)

    Nielsen, Natasja; Ødum, Niels; Ursø, Birgitte; Lanier, Lewis L; Spee, Pieter

    2012-01-01

    In mouse models of chronic inflammatory diseases, Natural Killer (NK) cells can play an immunoregulatory role by eliminating chronically activated leukocytes. Indirect evidence suggests that NK cells may also be immunoregulatory in humans. Two subsets of human NK cells can be phenotypically distinguished as CD16(+)CD56(dim) and CD16(dim/-)CD56(bright). An expansion in the CD56(bright) NK cell subset has been associated with clinical responses to therapy in various autoimmune diseases, suggesting an immunoregulatory role for this subset in vivo. Here we compared the regulation of activated human CD4(+) T cells by CD56(dim) and CD56(bright) autologous NK cells in vitro. Both subsets efficiently killed activated, but not resting, CD4(+) T cells. The activating receptor NKG2D, as well as the integrin LFA-1 and the TRAIL pathway, played important roles in this process. Degranulation by NK cells towards activated CD4(+) T cells was enhanced by IL-2, IL-15, IL-12+IL-18 and IFN-α. Interestingly, IL-7 and IL-21 stimulated degranulation by CD56(bright) NK cells but not by CD56(dim) NK cells. NK cell killing of activated CD4(+) T cells was suppressed by HLA-E on CD4(+) T cells, as blocking the interaction between HLA-E and the inhibitory CD94/NKG2A NK cell receptor enhanced NK cell degranulation. This study provides new insight into CD56(dim) and CD56(bright) NK cell-mediated elimination of activated autologous CD4(+) T cells, which potentially may provide an opportunity for therapeutic treatment of chronic inflammation. PMID:22384114

  17. Activated protein C to heal pressure ulcers.

    Science.gov (United States)

    Wijewardena, Aruna; Lajevardi, Sepehr S; Vandervord, Elle; Vandervord, John; Lang, Thomas C; Fulcher, Gregory; Jackson, Christopher J

    2016-10-01

    Pressure ulcers present a major clinical challenge, are physically debilitating and place the patient at risk of serious comorbidities such as septic shock. Recombinant human activated protein C (APC) is an anticoagulant with anti-inflammatory, cytoprotective and angiogenic effects that promote rapid wound healing. Topical negative pressure wound therapy (TNP) has become widely used as a treatment modality in wounds although its efficacy has not been proven through randomised controlled trials. The aim of this study was to determine the preliminary efficacy and safety of treatment with APC for severe chronic pressure sores with and without TNP. This case presentation describes the history, management and outcome of two patients each with a severe chronic non-healing pressure ulcer that had failed to respond to conventional therapy. TNP was added to conservative management of both ulcers with no improvement seen. Then local application of small doses of APC was added to TNP and with conservative management, resulted in significant clinical improvement and rapid healing of both ulcers, displaying rapid growth of vascular granulation tissue with subsequent epithelialisation. Patients tolerated the treatment well and improvements suggested by long-term follow-up were provided. Randomised placebo-controlled double blind trials are needed to quantify the efficacy, safety, cost-effectiveness, optimal dose and quality of life changes seen from treatment with APC.

  18. 4-hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Kikuta; Atsushi Masamune; Masahiro Satoh; Noriaki Suzuki; Tooru Shimosegawa

    2004-01-01

    AIM: Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis,where oxidative stress is thought to play a key role. 4-hydroxy2,3-nonenal (HNE) is generated endogenously during the process of lipid peroxidation, and has been accepted as a mediator of oxidative stress. The aim of this study was to clarify the effects of HNE on the activation of signal transduction pathways and cellular functions in PSCs.METHODS: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase P, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. PSCs were treated with physiologically relevant and non-cytotoxic concentrations (up to 5 μmol/L)of HNE. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay.Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine. Production of type Ⅰ collagen and monocyte chemoattractant protein-1was determined by enzyme-linked immunosorbent assay.The effect of HNE on the transformation of freshly isolated PSCs in culture was also assessed.RESULTS: HNE activated activator protein-1, but not nuclear factor κB. In addition, HNE activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. HNE increased type Ⅰ collagen production through the activation of p38 MAP kinase and c-Jun N-terminal kinase. HNE did not alter the proliferation,or monocyte chemoattractant protein-1 production. HNE did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype.CONCLUSION: Specific activation of these signal transduction pathways and altered cell functions such as collagen production by HNE may play a role in the pathogenesis of pancreatic

  19. Spatially Characterizing Visitor Use and Its Association with Informal Trails in Yosemite Valley Meadows

    Science.gov (United States)

    Walden-Schreiner, Chelsey; Leung, Yu-Fai

    2013-07-01

    Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.

  20. The emphysematous lung is abnormally sensitive to TRAIL-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Milot Julie

    2011-08-01

    Full Text Available Abstract Background Alveolar apoptosis is increased in the emphysematous lung. However, mechanisms involved are not fully understood. Recently, we demonstrated that levels of TRAIL receptor 1 and 2, levels of p53, and Bax/Bcl-xL ratio were elevated in the lung of subjects with emphysema, despite smoking cessation. Thus, we postulate that due to chronic pulmonary oxidative stress, the emphysematous lung would be abnormally sensitive to TRAIL-mediated apoptosis. Methodology A549 cells were exposed to rTRAIL, cigarette smoke extract, and/or H2O2 prior to caspase-3 activity measurement and annexin V staining assessment. In addition, freshly resected lung samples were obtained from non-emphysematous and emphysematous subjects and exposed ex vivo to rTRAIL for up to 18 hours. Lung samples were harvested and levels of active caspase-3 and caspase-8 were measured from tissue lysates. Results Both cigarette smoke extract and H2O2 were able to sensitize A549 cells to TRAIL-mediated apoptosis. Moreover, following exposure to rTRAIL, caspase-3 and -8 were activated in lung explants from emphysematous subjects while being decreased in lung explants from non-emphysematous subjects. Significance of the study Alveolar sensitivity to TRAIL-mediated apoptosis is strongly increased in the emphysematous lung due to the presence of oxidative stress. This might be a new mechanism leading to increased alveolar apoptosis and persistent alveolar destruction following smoking cessation.

  1. Beam Trail Tracking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab; Carmichael, Linden Ralph [Fermilab; Neswold, Richard [Fermilab; Yuan, Zongwei [Fermilab

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  2. Microgravity Induction of TRAIL Expression in Preosteoclast Cells Enhances Osteoclast Differentiation

    Science.gov (United States)

    Sambandam, Yuvaraj; Baird, Kelsey L.; Stroebel, Maxwell; Kowal, Emily; Balasubramanian, Sundaravadivel; Reddy, Sakamuri V.

    2016-05-01

    Evidence indicates that astronauts experience significant bone loss in space. We previously showed that simulated microgravity (μXg) using the NASA developed rotary cell culture system (RCCS) enhanced bone resorbing osteoclast (OCL) differentiation. However, the mechanism by which μXg increases OCL formation is unclear. RANK/RANKL signaling pathway is critical for OCL differentiation. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to increase osteoclastogenesis. We hypothesize that TRAIL may play an important role in μXg enhanced OCL differentiation. In this study, we identified by RT profiler PCR array screening that μXg induces high levels of TRAIL expression in murine preosteoclast cells in the absence of RANKL stimulation compared to ground based (Xg) cultures. We further identified that μXg elevated the adaptor protein TRAF-6 and fusion genes OC-STAMP and DC-STAMP expression in preosteoclast cells. Interestingly, neutralizing antibody against TRAIL significantly reduced μXg induced OCL formation. We further identified that over-expression of pTRAIL in RAW 264.7 cells enhanced OCL differentiation. These results indicate that TRAIL signaling plays an important role in the μXg increased OCL differentiation. Therefore, inhibition of TRAIL expression could be an effective countermeasure for μXg induced bone loss.

  3. Influence of expressed TRAIL on biophysical properties of the human leukemic cell line Jurkat

    Institute of Scientific and Technical Information of China (English)

    Kai CHEN; Zong Yao WEN; Shu CHIEN; Dan LI; Yu Hui JIANG; Wei Juan YAO; Xin Juan WANG; Xiao Chao WEI; Jing GAO; Li De XIE; Zong Yi YAN

    2004-01-01

    The cDNA fragment of human TRAIL (TNF-related apoptosis inducing ligand) was cloned into RevTet-On, a Tetregulated and high-level gene expression system. The gene expression system was constructed in a human leukemic cell line: Jurkat. By using RevTet-On TRAIL gene expression system in Jurkat as a cell model, we studied the influence of TRAIL gene on the changes of cellular apoptosis before and after the TRAIL gene expression, which was induced by adding tetracycline derivative doxycycline (Dox). The results indicated that the cellular apoptosis ratio was largely dependent on the TRAIL gene expression level. Moreover, it was found that the apoptosis-inducing TRAIL could cause significant changes in the biophysical properties of Jurkat cells. The cell surface charge density decreased, the membrane fluidity declined, the elastic coefficients K1 increased, and the proportion of o-helix in membrane protein secondary structure decreased. Thus, the apoptosis-inducing TRAIL gene caused significant changes on the biomechanic properties of Jurkat cells.

  4. Heat dissipation guides activation in signaling proteins

    OpenAIRE

    Weber, Jeffrey K.; Shukla, Diwakar; Pande, Vijay S.

    2015-01-01

    As with their macroscopic counterparts, the moving parts of nanoscale protein machines grow hot while in operation. A portion of the energy biomolecules harness to perform meaningful work is always dissipated as heat into the surroundings. Here, we feature a methodology by which dominant dissipative trajectories can be extracted from detailed models of protein dynamics. In two important classes of signaling proteins [kinases and G-protein–coupled receptors (GPCRs)], we find that the regions o...

  5. Antitumor Effects of Soluble TRAIL in Human Hepatocellular Carcinoma

    Institute of Scientific and Technical Information of China (English)

    HE Songqing; CHEN Yan; CHEN Xiaoping; ZHAO Yongzhong; WANG Haiping; ZHANG Wanguang; WANG Shaofa

    2005-01-01

    The therapeutic potential of soluble TRAIL (sTRAIL) in hepatocellular carcinoma(HCC) was studied. The expression of TRAIL receptors was detected in 60 HCC tissues, 20 normal liver samples and 2 HCC cell lines (HepG2 and SMMC-7721) by in situ hybridization. Before and after HepG2 and SMMC-7721 were treated with sTRAIL protein with various concentrations,the apoptosis rate was observed by using flow cytometry and in situ terminal deoxynucleotidyl tranferase (TdT) labeling. The results showed death receptor 4 (DR4) and DR5 were expressed in 60 HCC tissues and 20 normal liver samples, while the expression intensity of DR in HCC tissues was stronger than in normal liver samples. DcR1and DcR2 were not detectable in 54 (90 %) and 25 (41.7 %)HCC tissues, while in 20 normalliver samples, DcR was detectable. The high expressionof DR and low expression of DcR in HCC tissues were significantly differed from the low expression and high expression in normal liver samples. The expression of DR5, DR4 and DcR2 in both HCC cell lines was detectable, but the expression of DcR1 was not detectable. The expression of DR in HCC tissues was related to the differentiation and grades of HCC. In the poor differentiated HCC, the expression of DR was decreased (P<0.01). The expression of DR in Ⅲ/Ⅳ grades was significantly lower than that in Ⅰ / Ⅱ grades (P<0.05). The expression of DR was not related to gender, age, HBsAg, AFP, tumor sizeand metastasis. The expression of DR in the HCC drugresistant lines was decreased. After treatment with TRAIL (100 ng/ml) for 24 h, the apoptosis rate of HCC cells, Jurkat cells and human cholangiocarcinoma cell line QBC939 was 10 %, 70 %,50 % respectively. It was suggested that the TRAILR expression is prevalent in HCC with different expression patterns of different receptor types. HCC is resistant to TRAIL-mediated apoptosis.The treatment of TRAIL alone has a limited effect on inducing apoptosis of HepG2 and SMMC-7721.

  6. Antioxidant activity of black bean (Phaseolus vulgaris L. protein hydrolysates

    Directory of Open Access Journals (Sweden)

    Jarine Amaral do EVANGELHO

    2016-01-01

    Full Text Available Abstract The objective of this work was to study the effect of enzymatic hydrolysis of black bean protein concentrate using different enzymes. Bean proteins were extracted and hydrolyzed over a period of 120 min using the enzymes pepsin or alcalase. The protein hydrolysates’ molecular weight was assayed by electrophoresis and the antioxidant activity was evaluated by the capturing methods of free radicals ABTS●+ and DPPH. Electrophoretic results showed that the bands above 50 kDa disappeared, when the beans protein was subjected to hydrolysis with pepsin. The bean protein hydrolysate obtained by hydrolysis with alcalase enzyme, showed higher antioxidant activity for inhibition of the radical ABTS●+. However, the hydrolysates obtained by hydrolysis with pepsin had higher antioxidant activity for inhibition of the radical DPPH. The use of pepsin and alcalase enzymes, under the same reaction time, produced black bean protein hydrolysates with different molecular weight profiles and superior antioxidant activity than the native bean protein.

  7. G protein activation by G protein coupled receptors: ternary complex formation or catalyzed reaction?

    Science.gov (United States)

    Roberts, David J; Waelbroeck, Magali

    2004-09-01

    G protein coupled receptors catalyze the GDP/GTP exchange on G proteins, thereby activating them. The ternary complex model, designed to describe agonist binding in the absence of GTP, is often extended to G protein activation. This is logically unsatisfactory as the ternary complex does not accumulate when G proteins are activated by GTP. Extended models taking into account nucleotide binding exist, but fail to explain catalytic G protein activation. This review puts forward an enzymatic model of G protein activation and compares its predictions with the ternary complex model and with observed receptor phenomenon. This alternative model does not merely provide a new set of formulae but leads to a new philosophical outlook and more readily accommodates experimental observations. The ternary complex model implies that, HRG being responsible for efficient G protein activation, it should be as stable as possible. In contrast, the enzyme model suggests that although a limited stabilization of HRG facilitates GDP release, HRG should not be "too stable" as this might trap the G protein in an inactive state and actually hinder G protein activation. The two models also differ completely in the definition of the receptor "active state": the ternary complex model implies that the active state corresponds to a single active receptor conformation (HRG); in contrast, the catalytic model predicts that the active receptor state is mobile, switching smoothly through various conformations with high and low affinities for agonists (HR, HRG, HRGGDP, HRGGTP, etc.).

  8. Serum paraoxonase activity and protein thiols in patients with hyperlipidemia

    Institute of Scientific and Technical Information of China (English)

    Mungli Prakash; Jeevan K Shetty; Sudeshna Tripathy; Pannuri Vikram; Manish Verma

    2009-01-01

    Objective: In the present study we evaluated the paraoxonase activity and protein thiols level in south Indian population with newly diagnosed hyperlipidemia. Methods: The study was conducted on 55 newly diagnosed hyperlipidemic pa-tients and 57 healthy controls. Serum paraoxonase activity and protein thiols were estimated by spectrophotometeric method and lipid profile by enzymatic kinetic assay method. Results: Serum paraoxonase activity, protein thiols and high density lipoprotein levels were low and total cholesterol, triglycerides and low density lipoprutein levels were high in patients with hyperlipidemia compared to healthy controls ( P < 0.01 ). Serum paranxonase activity correlated positively with protein thiols and high density lipoprotein (P<0.01). Conclusion: Decreased paraoxonase activity and protein thiols were found in patients with hyperlipi-demia. This may indicate the susceptibility of this population to accelerated atherogenesis and protein oxidation.

  9. Sulfur activation-related extracellular proteins of Acidithiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng-gui; ZHANG Rui-yong; XIA Jin-lan; ZHANG Qian; NIE Zhen-yuan

    2008-01-01

    The fractions of the extracellular proteins of Acidithiobacillus ferrooxidans grown on two different energy substrates,elemental sulfur and ferrous sulfate,were selectively prepared with hot water treatment and distinctly shown by two-dimensional gel electrophoresis.Some protein spots with apparently higher abundance in sulfur energy substrate than in ferrous sulfate energy substrate were identified by using MALDI-TOF/TOF.Based on peptide mass fingerprints and bioinformatical analysis,the extracellular proteins were classified according to their functions as conjugal transfer protein,pilin,vacJ lipoprotein,polysaccharide deacetylase family protein,Ser/Thr protein phosphatase family protein and hypothetical proteins.Several extracellular proteins were found abundant in thiol groups and with CXXC functional motif,these proteins may be directly involved in the sulfur activation by use of their thiol group (Pr-SH) to bond the elemental sulfur.

  10. Active Nuclear Import of Membrane Proteins Revisited

    NARCIS (Netherlands)

    Laba, Justyna K; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the m

  11. Riding a Trail of Debris

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 This image taken by NASA's Spitzer Space Telescope shows the comet Encke riding along its pebbly trail of debris (long diagonal line) between the orbits of Mars and Jupiter. This material actually encircles the solar system, following the path of Encke's orbit. Twin jets of material can also be seen shooting away from the comet in the short, fan-shaped emission, spreading horizontally from the comet. Encke, which orbits the Sun every 3.3 years, is well traveled. Having exhausted its supply of fine particles, it now leaves a long trail of larger more gravel-like debris, about one millimeter in size or greater. Every October, Earth passes through Encke's wake, resulting in the well-known Taurid meteor shower. This image was captured by Spitzer's multiband imaging photometer when Encke was 2.6 times farther away than Earth is from the Sun. It is the best yet mid-infrared view of the comet at this great distance. The data are helping astronomers understand how rotating comets eject particles as they circle the Sun.

  12. Distribution, abundance and trail characteristics of acorn worms at Australian continental margins

    Science.gov (United States)

    Anderson, T. J.; Przeslawski, R.; Tran, M.

    2011-04-01

    Acorn worms (Enteropneusta), which were previously thought to be a missing link in understanding the evolution of chordates, are an unusual and potentially important component of many deep-sea benthic environments, particularly for nutrient cycling. Very little is known about their distribution, abundance, or behaviour in deep-sea environments around the world, and almost nothing is known about their distribution within Australian waters. In this study, we take advantage of two large-scale deep-sea mapping surveys along the eastern (northern Lord Howe Rise) and western continental margins of Australia to quantify the distribution, abundance and trail-forming behaviour of this highly unusual taxon. This is the first study to quantify the abundance and trail behaviour of acorn worms within Australian waters and provides the first evidence of strong depth-related distributions. Acorn worm densities and trail activity were concentrated between transect-averaged depths of 1600 and 3000 m in both eastern and western continental margins. The shallow limit of their depth distribution was 1600 m. The deeper limit was less well-defined, as individuals were found in small numbers below 3000 down to 4225 m. This distributional pattern may reflect a preference for these depths, possibly due to higher availability of nutrients, rather than a physiological constraint to greater depths. Sediment characteristics alone were poor predictors of acorn worm densities and trail activity. High densities of acorn worms and trails were associated with sandy-mud sediments, but similar sediment characteristics in either shallower or deeper areas did not support similar densities of acorn worms or trails. Trail shapes varied between eastern and western margins, with proportionally more meandering trails recorded in the east, while spiral and meandering trails were both common in the west. Trail shape varied by depth, with spiral-shaped trails dominant in areas of high acorn worm densities

  13. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer.

    Science.gov (United States)

    Cousin, Fabien J; Jouan-Lanhouet, Sandrine; Théret, Nathalie; Brenner, Catherine; Jouan, Elodie; Le Moigne-Muller, Gwénaëlle; Dimanche-Boitrel, Marie-Thérèse; Jan, Gwénaël

    2016-02-01

    TNF-Related Apoptosis-Inducing Ligand (TRAIL) is a well-known apoptosis inducer, which activates the extrinsic death pathway. TRAIL is pro-apoptotic on colon cancer cells, while not cytotoxic towards normal healthy cells. However, its clinical use is limited by cell resistance to cell death which occurs in approximately 50% of cancer cells. Short Chain Fatty Acids (SCFA) are also known to specifically induce apoptosis of cancer cells. In accordance, we have shown that food grade dairy propionibacteria induce intrinsic apoptosis of colon cancer cells, via the production and release of SCFA (propionate and acetate) acting on mitochondria. Here, we investigated possible synergistic effect between Propionibacterium freudenreichii and TRAIL. Indeed, we hypothesized that acting on both extrinsic and intrinsic death pathways may exert a synergistic pro-apoptotic effect. Whole transcriptomic analysis demonstrated that propionibacterial supernatant or propionibacterial metabolites (propionate and acetate), in combination with TRAIL, increased pro-apoptotic gene expression (TRAIL-R2/DR5) and decreased anti-apoptotic gene expression (FLIP, XIAP) in HT29 human colon cancer cells. The revealed synergistic pro-apoptotic effect, depending on both death receptors (TRAIL-R1/DR4, TRAIL-R2/DR5) and caspases (caspase-8, -9 and -3) activation, was lethal on cancer cells but not on normal human intestinal epithelial cells (HIEC), and was inhibited by Bcl-2 expression. Finally, milk fermented by P. freudenreichii induced HT29 cells apoptosis and enhanced TRAIL cytotoxic activity, as did P. freudenreichii DMEM culture supernatants or its SCFA metabolites. These results open new perspectives for food grade P. freudenreichii-containing products in order to potentiate TRAIL-based cancer therapy in colorectal cancer.

  14. NF-κB targeting by way of IKK inhibition sensitizes lung cancer cells to adenovirus delivery of TRAIL

    International Nuclear Information System (INIS)

    Lung cancer causes the highest rate of cancer-related deaths both in men and women. As many current treatment modalities are inadequate in increasing patient survival, new therapeutic strategies are required. TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in tumor cells but not in normal cells, prompting its current evaluation in a number of clinical trials. The successful therapeutic employment of TRAIL is restricted by the fact that many tumor cells are resistant to TRAIL. The goal of the present study was to test a novel combinatorial gene therapy modality involving adenoviral delivery of TRAIL (Ad5hTRAIL) and IKK inhibition (AdIKKβKA) to overcome TRAIL resistance in lung cancer cells. Fluorescent microscopy and flow cytometry were used to detect optimum doses of adenovirus vectors to transduce lung cancer cells. Cell viability was assessed via a live/dead cell viability assay. Luciferase assays were employed to monitor cellular NF-κB activity. Apoptosis was confirmed using Annexin V binding. Neither Ad5hTRAIL nor AdIKKβKA infection alone induced apoptosis in A549 lung cancer cells, but the combined use of Ad5hTRAIL and AdIKKβKA significantly increased the amount of A549 apoptosis. Luciferase assays demonstrated that both endogenous and TRAIL-induced NF-κB activity was down-regulated by AdIKKβKA expression. Combination treatment with Ad5hTRAIL and AdIKKβKA induced significant apoptosis of TRAIL-resistant A549 cells, suggesting that dual gene therapy strategy involving exogenous TRAIL gene expression with concurrent IKK inhibition may be a promising novel gene therapy modality to treat lung cancer

  15. NF-κB targeting by way of IKK inhibition sensitizes lung cancer cells to adenovirus delivery of TRAIL

    Directory of Open Access Journals (Sweden)

    Karacay Bahri

    2010-10-01

    Full Text Available Abstract Background Lung cancer causes the highest rate of cancer-related deaths both in men and women. As many current treatment modalities are inadequate in increasing patient survival, new therapeutic strategies are required. TNF-related apoptosis-inducing ligand (TRAIL selectively induces apoptosis in tumor cells but not in normal cells, prompting its current evaluation in a number of clinical trials. The successful therapeutic employment of TRAIL is restricted by the fact that many tumor cells are resistant to TRAIL. The goal of the present study was to test a novel combinatorial gene therapy modality involving adenoviral delivery of TRAIL (Ad5hTRAIL and IKK inhibition (AdIKKβKA to overcome TRAIL resistance in lung cancer cells. Methods Fluorescent microscopy and flow cytometry were used to detect optimum doses of adenovirus vectors to transduce lung cancer cells. Cell viability was assessed via a live/dead cell viability assay. Luciferase assays were employed to monitor cellular NF-κB activity. Apoptosis was confirmed using Annexin V binding. Results Neither Ad5hTRAIL nor AdIKKβKA infection alone induced apoptosis in A549 lung cancer cells, but the combined use of Ad5hTRAIL and AdIKKβKA significantly increased the amount of A549 apoptosis. Luciferase assays demonstrated that both endogenous and TRAIL-induced NF-κB activity was down-regulated by AdIKKβKA expression. Conclusions Combination treatment with Ad5hTRAIL and AdIKKβKA induced significant apoptosis of TRAIL-resistant A549 cells, suggesting that dual gene therapy strategy involving exogenous TRAIL gene expression with concurrent IKK inhibition may be a promising novel gene therapy modality to treat lung cancer.

  16. In-Trail Procedure (ITP) Algorithm Design

    Science.gov (United States)

    Munoz, Cesar A.; Siminiceanu, Radu I.

    2007-01-01

    The primary objective of this document is to provide a detailed description of the In-Trail Procedure (ITP) algorithm, which is part of the Airborne Traffic Situational Awareness In-Trail Procedure (ATSA-ITP) application. To this end, the document presents a high level description of the ITP Algorithm and a prototype implementation of this algorithm in the programming language C.

  17. Bradford routes to peace heritage trail

    OpenAIRE

    Chalcraft, Ben; Hadwen, Diane

    2013-01-01

    Mini-guide book to support a trail around BD1, exploring the City’s peace and social reform heritage through the built environment; content to be researched and delivered by young people and then ‘passed on’ by them to others in the community who follow the trail.

  18. Antioxidant activity of whey protein hydrolysates in milk beverage system

    OpenAIRE

    Mann, Bimlesh; Kumari, Anuradha; Kumar, Rajesh; Sharma, Rajan; Prajapati, Kishore; Mahboob, Shaik; Athira, S.

    2014-01-01

    The aim of the present study was to evaluate the antioxidant activity of flavoured milk enriched with antioxidative whey protein hydrolysates (WPHs) by radical scavenging method. Whey protein concentrate (WPC) was hydrolyzed by using three commercial proteases; flavouzyme, alcalase and corolase PP and these WPHs were analyzed for degree of hydrolysis and antioxidant activity. The antioxidant activities of these WPHs were evaluated using ABTS method. Trolox equivalent antioxidant activity of a...

  19. Trail impacts and trail impact management related to ecotourism visitation at Torres del Paine National Park, Chile

    Science.gov (United States)

    Farrell, T.A.; Marion, J.L.

    2002-01-01

    Ecotourism and protected area visitation in Central and South America are largely dependent upon a relatively undisturbed quality of natural resources. However, visitation may impact vegetation, soil, water and wildlife resources, and degrade visitor facilities such as recreation sites and trails. Findings are reported from trail impact research conducted at Torres del Paine National Park in Patagonia, Chile. The frequency and magnitude of selected trail impacts and the relative effect of the amount of use, vegetation type, trail position and trail grade are investigated. Findings differed from previous studies in that amount of use was significantly related to both trail width increases and trail erosion. Management actions to minimize trail impacts are offered.

  20. Potential prognostic significance of decreased serum levels of TRAIL after acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    Full Text Available BACKGROUND: Since soluble TRAIL exhibits anti-inflammatory and anti-atherosclerotic activities both in vitro and in animal models, this study was designed to assess the relationship between the serum levels of TRAIL and clinical outcomes in patients with acute myocardial infarction (AMI. METHODOLOGY/PRINCIPAL FINDINGS: Levels of TRAIL were measured by ELISA in serial serum samples obtained from 60 patients admitted for AMI, both during hospitalization and in a follow-up of 12 months, as well as in 60 healthy control subjects. Serum levels of TRAIL were significantly decreased in patients with AMI at baseline (within 24 hours from admission, compared with healthy controls, and showed a significant inverse correlation with a series of negative prognostic markers, such as CK, CK-MB and BNP. TRAIL serum levels progressively increased at discharge, but normalized only at 6-12 months after AMI. Of note, low TRAIL levels at the patient discharge were associated with increased incidence of cardiac death and heart failure in the 12-month follow-up, even after adjustment for demographic and clinical risk parameters (hazard ratio [HR] of 0.93 [95% CI, 0.89 to 0.97]; p = 0.001. CONCLUSIONS/SIGNIFICANCE: Although the number of patients studied was limited, our findings indicate for the first time that circulating TRAIL might represent an important predictor of cardiovascular events, independent of conventional risk markers.

  1. Recombinant Newcastle Disease Virus Anhinga Strain and TRAIL Protein Cooperate to Kill Cancer Cells in Culture%重组新城疫病毒Anhinga株与TRAIL蛋白协同杀伤肿瘤细胞

    Institute of Scientific and Technical Information of China (English)

    郝景波; 王文飞; 吴云舟; 刘铭瑶; 高振秋; 张巧; 颜世君; 李德山

    2011-01-01

    将新城疫病毒(Newscastle disease virus,NDV)Anhinga株的全长基因组cDNA克隆质粒、pTM1-L、pTM1-P、pTM1-NP表达质粒共转染稳定表达T7 RNA聚合酶的BSRT7/5细胞,得到拯救NDV病毒.通过PCR、酶切法、测序证明拯救病毒中存在引入的分子标签.通过血凝实验、蚀斑测定证明成功拯救病毒.并研究了该重组病毒对4种不同人肿瘤细胞的体外杀伤效果.首次证明重组Anhinga株对SMMC-7721细胞、A549细胞、HepG2细胞和SH-SY5Y细胞均有杀伤作用.该重组病毒主要诱导SMMC-7721细胞和A549细胞凋亡,诱导HepG2细胞和SH-SY5Y细胞坏死.TNF家族成员TRAIL蛋白可以显著增强NDV杀伤肿瘤细胞的效果.本实验为进一步研究重组NDV用于肿瘤治疗奠定基础.%The plasmid containing the full -length cDNA from Newcastle disease virus (NDV) Anhinga strain was cotransfected with helper plasmids encoding viral nucleoprotein, phosphoprotein and large polymerase protein into BSR T7/5 cells stably expressing the T7 RNA polymerase. The recombinant virus was rescued and amplified by inoculation of the supernatant from the transfected cells into the allantoic cavity of specific-pathogen free chicken embryos. By reverse transcriptase-PCR ( RT-PCR), restriction digestion and sequencing confirmation, the success of the rescue process was confirmed by identification of the unique molecular tag of the rescued virus. We also measured virus hemagglutination ( HA ) titer through the hemagglutination test ( HA test), and determined viral titers by plaque - formation units.Thus, we conclude that the virus was rescued successfully from the cDNA. We evaluated the cancer therapeutic potential of the rescued NDV in tumor cells, SH-SY5Y, A549, SMMC-7721 and HepG2 cells. Our data showed that the recombinant NDV could induce apoptosis in A549 and SMMC-7721 cells,and induce necrosis in SH-SY5Y and HepG-2 cells. The inhibitory effects of the recombinant virus on growth of the tumor cells

  2. Purification, renaturation, and reconstituted protein kinase activity of the Sendai virus large (L) protein: L protein phosphorylates the NP and P proteins in vitro.

    OpenAIRE

    Einberger, H; Mertz, R; Hofschneider, P H; Neubert, W J

    1990-01-01

    Sodium dodecyl sulfate-solubilized Sendai virus large (L) protein was highly purified by a one-step procedure, using hydroxylapatite column chromatography. Monoclonal antibodies addressed to the carboxyl-terminal amino acid sequence of the L protein were used for monitoring L protein during purification. By removing sodium dodecyl sulfate from purified L protein, a protein kinase activity was successfully renatured. P and NP proteins served as its substrates. After immunoprecipitation with an...

  3. RNA interference-mediated hTERT inhibition enhances TRAIL-induced apoptosis in resistant hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Ru-Gang; Zhao, Jing-Jing; Yang, Liu-Qin; Yang, Shi-Ming; Wang, Rong-Quan; Chen, Wen-Sheng; Peng, Gui-Yong; Fang, Dian-Chun

    2010-04-01

    TRAIL has been reported to induce apoptosis in a variety of tumor cell types including hepato-cellular carcinoma (HCC) cell lines. However, considerable numbers of HCC cells, especially some highly malignant tumors, show resistance to TRAIL-induced apoptosis. The molecular mechanisms that regulate sensitivity versus resistance of tumor cells to TRAIL-induced apoptosis remain poorly defined. It has been shown that human telomerase catalytic subunit (hTERT) is overexpressed in human HCCs. In this study, we investigated the effects and the mechanisms of hTERT RNAi on the TRAIL-induced apoptosis of HCC cells that exhibit resistance to TRAIL. Our results indicate that hTERT RNAi sensitizes TRAIL-resistant HCC cells to TRAIL-induced apoptosis. hTERT RNAi-mediated sensitization to TRAIL-induced apoptosis is accompanied up-regulation of procaspases-8 and -9, inhibition of telomerase activity and loss of telomere length. Our results suggest that hTERT RNAi overcame the resistance of the HCC cells against TRAIL, at least in part, via the mitochondrial type II apoptosis pathway and telomerase-dependent pathway. PMID:20204286

  4. Protein determination in seeds by proton activation

    Science.gov (United States)

    Morales, J. R.; Dinator, M. I.; Cerda, P.

    1989-04-01

    A proton beam of 6.6 MeV has been used to produce 11C and 13N in Araucaria Araucana seeds. Their positron decay allows determination of the N/C ratio. In seeds the nitrogen content is associated to proteins while carbon is spread in the organic material. Samples were irradiated for about 10 min with a beam intensity of 5 nA on areas of 1 mm 2. Slices of the seed were radially explored, showing a larger concentration of protein in the center.

  5. Protein determination in seeds by proton activation

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J.R.; Dinator, M.I. (Chile Univ., Santiago (Chile). Lab. de Fisica); Cerda, P. (Bio-Bio Univ., Chillan (Chile))

    1989-04-01

    A proton beam of 6.6 MeV has been used to produce /sup 11/C and /sup 13/N in Araucaria Araucana seeds. Their positron decay allows determination of the N/C ratio. In seeds the nitrogen content is associated to proteins while carbon is spread in the organic material. Samples were irradiated for about 10 min with a beam intensity of 5 nA on areas of 1 mm/sup 2/. Slices of the seed were radially explored, showing a larger concentration of protein in the center. (orig.).

  6. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro.

    Science.gov (United States)

    Feng, Shan; Madsen, Suzi H; Viller, Natasja N; Neutzsky-Wulff, Anita V; Geisler, Carsten; Karlsson, Lars; Söderström, Kalle

    2015-07-01

    Osteoclasts reside on bone and are the main bone resorbing cells playing an important role in bone homeostasis, while natural killer (NK) cells are bone-marrow-derived cells known to play a crucial role in immune defence against viral infections. Although mature NK cells traffic through bone marrow as well as to inflammatory sites associated with enhanced bone erosion, including the joints of patients with rheumatoid arthritis, little is known about the impact NK cells may have on mature osteoclasts and bone erosion. We studied the interaction between human NK cells and autologous monocyte-derived osteoclasts from healthy donors in vitro. We show that osteoclasts express numerous ligands for receptors present on activated NK cells. Co-culture experiments revealed that interleukin-15-activated, but not resting, NK cells trigger osteoclast apoptosis in a dose-dependent manner, resulting in drastically decreased bone erosion. Suppression of bone erosion requires contact between NK cells and osteoclasts, but soluble factors also play a minor role. Antibodies masking leucocyte function-associated antigen-1, DNAX accessory molecule-1 or tumour necrosis factor-related apoptosis-inducing ligand enhance osteoclast survival when co-cultured with activated NK cells and restore the capacity of osteoclasts to erode bone. These results suggest that interleukin-15-activated NK cells may directly affect bone erosion under physiological and pathological conditions.

  7. HPA-axis activity and externalizing behavior problems in early adolescents from the general population : the role of comorbidity and gender The TRAILS study

    NARCIS (Netherlands)

    Marsman, Rianne; Swinkels, Sophie H. N.; Rosmalen, Judith G. M.; Oldehinkel, Albertine J.; Ormel, Johan; Buitelaar, Jan K.

    2008-01-01

    Contradictory findings on the relationship between hypothalamus-pituitary-adrenal (HPA)-axis activity and externalizing behavior problems could be due to studies not accounting for issues of comorbidity and gender. In a population-based cohort of 1768 (10- to 12-year-old) early adolescents, we used

  8. HPA-axis activity and externalizing behavior problems in early adolescents from the general population: the role of comorbidity and gender The TRAILS study.

    NARCIS (Netherlands)

    Marsman, R.; Swinkels, S.H.N.; Rosmalen, J.G.; Oldehinkel, A.J.; Ormel, J.; Buitelaar, J.K.

    2008-01-01

    Contradictory findings on the relationship between hypothalamus-pituitary-adrenal (HPA)-axis activity and externalizing behavior problems could be due to studies not accounting for issues of comorbidity and gender. In a population-based cohort of 1768 (10- to 12-year-old) early adolescents, we used

  9. Recreational trails as corridors for alien plants in the Rocky Mountains, USA

    Science.gov (United States)

    Wells, Floye H.; Lauenroth, William K.; Bradford, John B.

    2012-01-01

    Alien plant species often use areas of heavy human activity for habitat and dispersal. Roads and utility corridors have been shown to harbor more alien species than the surrounding vegetation and are therefore believed to contribute to alien plant persistence and spread. Recreational trails represent another corridor that could harbor alien species and aid their spread. Effective management of invasive species requires understanding how alien plants are distributed at trailheads and trails and how their dispersal may be influenced by native vegetation. Our overall goal was to investigate the distribution of alien plants at trailheads and trails in the Rocky Mountains of Colorado. At trailheads, we found that although the number of alien species was less than the number of native species, alien plant cover ( x̄=50%) did not differ from native plant cover, and we observed a large number of alien seedlings in the soil seed bank, suggesting that alien plants are a large component of trailhead communities and will continue to be so in the future. Along trails, we found higher alien species richness and cover on trail (as opposed to 4 m from the trail) in 3 out of 4 vegetation types, and we observed higher alien richness and cover in meadows than in other vegetation types. Plant communities at both trailheads and trails, as well as seed banks at trailheads, contain substantial diversity and abundance of alien plants. These results suggest that recreational trails in the Rocky Mountains of Colorado may function as corridors that facilitate the spread of alien species into wildlands. Our results suggest that control of alien plants should begin at trailheads where there are large numbers of aliens and that control efforts on trails should be prioritized by vegetation type.

  10. Pheromone disruption of Argentine ant trail integrity

    Science.gov (United States)

    Suckling, D.M.; Peck, R.W.; Manning, L.M.; Stringer, L.D.; Cappadonna, J.; El-Sayed, A. M.

    2008-01-01

    Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m2) to 1- and 4-m2 plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected. ?? 2008 Springer Science+Business Media, LLC.

  11. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy)

    OpenAIRE

    Brandolini, P.; F. Faccini; Piccazzo, M.

    2006-01-01

    International audience The many trails existing in the coastal area of Portofino Promontory are used by tourists for trekking or as pathways to small villages and beaches. The aim of this paper is to define geomorphological hazard and tourist vulnerability in this area, within the framework of the management and planning of hiking activities in Portofino Natural Park. In particular, processes triggered by gravity, running waters and wave motion, affecting the slopes and the cliff, are con...

  12. Measurement and Scaling of Trailing-Edge Noise

    OpenAIRE

    Herr, Michaela

    2009-01-01

    The presentation provides an overview on DLR’s research activity in trailing-edge (TE) noise source description. Current efforts aim at establish-ing the necessary data quality required for CAA validation. The specific challenges with regard to farfield TE noise measurements in open-jet wind-tunnels are pinpointed for the example of elliptic mirror measurements in the Acoustic Wind Tunnel Braunschweig (AWB) the results of which are compared to corresponding free-field microphone data. Th...

  13. Expression of osteoprotegerin and its ligands, RANKL and TRAIL, in rheumatoid arthritis

    OpenAIRE

    Sara Remuzgo-Martínez; Fernanda Genre; Raquel López-Mejías; Begoña Ubilla; Verónica Mijares; Trinitario Pina; Alfonso Corrales; Ricardo Blanco; Javier Martín; Javier Llorca; Miguel A. González-Gay

    2016-01-01

    Osteoprotegerin (OPG), receptor activator of nuclear factor-ΚB ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been involved in rheumatoid arthritis (RA) pathophysiology. In this study, we assessed messenger RNA (mRNA) expression of these molecules by qPCR in peripheral blood from 26 patients with RA (12 of them with ischemic heart disease –IHD) and 10 healthy controls. Correlation coefficients between OPG, RANKL and TRAIL expression levels in RA patien...

  14. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer

    OpenAIRE

    Cousin, Fabien J.; Jouan-Lanhouet, Sandrine; Théret, Nathalie; Brenner, Catherine; Jouan, Elodie; Le Moigne-Muller, Gwénaëlle; Dimanche-Boitrel, Marie-Thérèse; Jan, Gwénaël

    2016-01-01

    TNF-Related Apoptosis-Inducing Ligand (TRAIL) is a well-known apoptosis inducer, which activates the extrinsic death pathway. TRAIL is pro-apoptotic on colon cancer cells, while not cytotoxic towards normal healthy cells. However, its clinical use is limited by cell resistance to cell death which occurs in approximately 50% of cancer cells. Short Chain Fatty Acids (SCFA) are also known to specifically induce apoptosis of cancer cells. In accordance, we have shown that food grade dairy propion...

  15. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro

    DEFF Research Database (Denmark)

    Feng, Shan; Madsen, Suzi H; Viller, Natasja N;

    2015-01-01

    Osteoclasts reside on bone and are the main bone resorbing cells playing an important role in bone homeostasis, while natural killer (NK) cells are bone-marrow-derived cells known to play a crucial role in immune defence against viral infections. Although mature NK cells traffic through bone marrow...... as well as to inflammatory sites associated with enhanced bone erosion, including the joints of patients with rheumatoid arthritis, little is known about the impact NK cells may have on mature osteoclasts and bone erosion. We studied the interaction between human NK cells and autologous monocyte......-derived osteoclasts from healthy donors in vitro. We show that osteoclasts express numerous ligands for receptors present on activated NK cells. Co-culture experiments revealed that interleukin-15-activated, but not resting, NK cells trigger osteoclast apoptosis in a dose-dependent manner, resulting in drastically...

  16. TRIPPy: Python-based Trailed Source Photometry

    Science.gov (United States)

    Fraser, Wesley C.; Alexandersen, Mike; Schwamb, Megan E.; Marsset, Michael E.; Pike, Rosemary E.; Kavelaars, JJ; Bannister, Michele T.; Benecchi, Susan; Delsanti, Audrey

    2016-05-01

    TRIPPy (TRailed Image Photometry in Python) uses a pill-shaped aperture, a rectangle described by three parameters (trail length, angle, and radius) to improve photometry of moving sources over that done with circular apertures. It can generate accurate model and trailed point-spread functions from stationary background sources in sidereally tracked images. Appropriate aperture correction provides accurate, unbiased flux measurement. TRIPPy requires numpy, scipy, matplotlib, Astropy (ascl:1304.002), and stsci.numdisplay; emcee (ascl:1303.002) and SExtractor (ascl:1010.064) are optional.

  17. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL). TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4) expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3) on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells displayed very low levels of surface TRAIL-R4

  18. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Aydin Cigdem

    2005-05-01

    Full Text Available Abstract Background Tumor Necrosis Factor (TNF-Related Apoptosis-Inducing Ligand (TRAIL selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL. Methods TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. Results MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4 expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3 on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells

  19. Hydrodynamic collective effects of active proteins in biological membranes

    CERN Document Server

    Koyano, Yuki; Mikhailov, Alexander S

    2016-01-01

    Lipid bilayers forming biological membranes are known to behave as viscous 2D fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it has been shown [Proc. Nat. Acad. Sci. USA 112, E3639 (2015)] that such active proteins should in- duce non-thermal fluctuating lipid flows leading to diffusion enhancement and chemotaxis-like drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  20. Antioxidant activities of protein hydrolysates obtained from the housefly larvae.

    Science.gov (United States)

    Zhang, Huan; Wang, Pan; Zhang, Ai-Jun; Li, Xuan; Zhang, Ji-Hong; Qin, Qi-Lian; Wu, Yi-Jun

    2016-09-01

    The housefly is an important resource insect and the housefly larvae are ideal source of food additives. The housefly larvae protein hydrolysates were obtained by enzymatic hydrolysis by alcalase and neutral proteinase. Their antioxidant activities were investigated, including the superoxide and hydroxyl radicalscavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, reducing power and metal chelating activity. The antioxidant activities of both hydrolysates increased with their increasing concentrations. The alcalase hydrolysate (AH) showed higher scavenging activities against hydroxyl radical and superoxide anion radical at low concentrations and higher metal-chelating activity than the neutral proteinase hydrolysate (NPH). The NPH exhibited higher scavenging activity against DPPH free radical and higher reducing power than the AH. Both hydrolysates showed more than 50% superoxide anion radical-scavenging activity at 10 μg/mL. These results indicate that both housefly larvae protein hydrolysates display high antioxidant activities and they could serve as potential natural antioxidant food additives. PMID:27630047

  1. Systems Biology Strategy Reveals PKC-delta is Key for Sensitizing TRAIL-Resistant Human Fibrosarcoma

    Directory of Open Access Journals (Sweden)

    Kentaro eHayashi

    2015-01-01

    Full Text Available Cancer cells are highly variable and resistant to therapeutic intervention. Recently, the use of the tumor necrosis factor related apoptosis-inducing ligand (TRAIL induced treatment is gaining momentum, due to TRAIL’s ability to specifically target cancers with limited effect on normal cells. However, several malignant cancer types still remain non-sensitive to TRAIL. Previously, we developed a dynamic computational model, based on perturbation-response approach, and predicted protein kinase C (PKC as the most effective target, with over 95% capacity to kill human fibrosarcoma (HT1080 in TRAIL stimulation (Piras, V. et al. 2011, Scientific Reports. Here, to validate the model prediction, which has significant implications for cancer treatment, we conducted experiments on two TRAIL-resistant cancer cell lines (HT1080 and HT29. Using PKC inhibitor Bisindolylmaleimide I, we first demonstrate, as predicted by our previous model, cell viability is significantly impaired with over 95% death of both cancer types. Next, to identify crucial PKC isoform from 10 known members, we analyzed their mRNA expressions in HT1080 cells and shortlisted 4 isoforms for siRNA knock-down (KD experiments. From these KDs, PKC-delta produced the most cancer cell death in conjunction with TRAIL. Overall, systems biology approach, combining model prediction with experimental validation, holds promise for TRAIL-based cancer therapy.

  2. The impacts of trail infrastructure on vegetation and soils: Current literature and future directions.

    Science.gov (United States)

    Ballantyne, Mark; Pickering, Catherine Marina

    2015-12-01

    Reflecting the popularity of nature-based activities such as hiking and mountain biking, there are thousands of kilometres of recreational trails worldwide traversing a range of natural areas. These trails have environmental impacts on soils and vegetation, but where has there been research, what impacts have been found and how were they measured? Using a systematic quantitative literature review methodology, we assessed the impacts of trails on vegetation and soils, highlighting what is known, but also key knowledge gaps. Of the 59 original research papers identified on this topic that have been published in English language peer-reviewed academic journals, most were for research conducted in protected areas (71%), with few from developing countries (17%) or threatened ecosystems (14%). The research is concentrated in a few habitats and biodiversity hotspots, mainly temperate woodland, alpine grassland and Mediterranean habitats, often in the USA (32%) or Australia (20%). Most examined formal trails, with just 15% examining informal trails and 11% assessing both types. Nearly all papers report the results of observational surveys (90%), collecting quantitative data (66%) with 24% using geographic information systems. There was an emphasis on assessing trail impacts at a local scale, either on the trail itself and/or over short gradients away from the trail edge. Many assessed changes in composition and to some degree, structure, of vegetation and soils with the most common impacts documented including reduced vegetation cover, changes in plant species composition, trail widening, soil loss and soil compaction. There were 14 papers assessing how these local impacts can accumulate at the landscape scale. Few papers assessed differences in impacts among trails (7 papers), changes in impacts over time (4), species-specific responses (3) and only one assessed effects on plant community functioning. This review provides evidence that there are key research gaps

  3. Protein stability and enzyme activity at extreme biological temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Feller, Georges, E-mail: gfeller@ulg.ac.b [Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry B6a, University of Liege, B-4000 Liege (Belgium)

    2010-08-18

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 {sup 0}C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  4. Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates

    OpenAIRE

    Jarine Amaral do EVANGELHO; Jose de J. BERRIOS; Vânia Zanella PINTO; Mariana Dias ANTUNES; Nathan Levien VANIER; Elessandra da Rosa ZAVAREZE

    2016-01-01

    Abstract The objective of this work was to study the effect of enzymatic hydrolysis of black bean protein concentrate using different enzymes. Bean proteins were extracted and hydrolyzed over a period of 120 min using the enzymes pepsin or alcalase. The protein hydrolysates’ molecular weight was assayed by electrophoresis and the antioxidant activity was evaluated by the capturing methods of free radicals ABTS●+ and DPPH. Electrophoretic results showed that the bands above 50 kDa disappeared,...

  5. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    Energy Technology Data Exchange (ETDEWEB)

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  6. The quantitative assessing of trail impacts on giant panda activity based on field track points and GIS%基于野外痕迹点和GIS技术定量评估步道对大熊猫活动的影响

    Institute of Scientific and Technical Information of China (English)

    龚明昊; 侯盟; 蔺琛; 宋延龄; 欧阳志云

    2012-01-01

    Trails have been shown to have impacts on wildlife, which may include injury, death, habitat hindrance, and then cause small population or population isolation and increase species extinction risk. Road effect zone was widely used to examine the wildlife responses to roads and trails, but had shortages in quantifying the changes of causative factors, and meeting the data requirements for habitat evaluation. In this research, we evaluated the impacts of trails on giant panda activity based on giant panda tracking data. The study sites were centered in Foping and Changqing natural reserves, and 1,042 giant panda tracking points were collected in association with three major trails. By aids of GIS, the distance of every track point to the trails was obtained, and then the amount and frequencies of track points every 20 m from trail were calculated. To identify the impact threshold of trails on giant panda activity, we established the testing points every 100 m from the trail for analysis of the activity frequency pattern. The results showed that within 1,000 m from the trails, the giant panda activity frequencies increased with the distance. The tracking point frequency showed significant changes at 500 meters and 1,000 meters from the trails, which represent impact threshold of trails on giant panda activity. The method based on track points and impact threshold can provide a more feasible and a quantitative evaluation for disturbances of trails and other infrastructure on wildlife activity.%道路建设不仅直接导致野生动物死亡,还能对栖息地形成阻碍效应,导致小种群出现或隔离,增加物种灭绝的风险.生态学家在道路对野生动物影响研究中的一个重要进展是道路影响域(road-effect zone)的提出,但影响域既不能反映道路影响的变化性,也难以满足栖息地评估对数据的要求.为此,我们以大熊猫(Ailuropoda melanoleuca)为例来探讨道路影响的定量评估方法.在佛坪

  7. Mitogen activated protein kinases: a role in inflammatory bowel disease?

    DEFF Research Database (Denmark)

    Broom, O J; Widjaya, B; Troelsen, J;

    2009-01-01

    Since their discovery more than 15 years ago, the mitogen activated protein kinases (MAPK) have been implicated in an ever-increasingly diverse array of pathways, including inflammatory signalling cascades. Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease...... and their related signalling proteins in influencing the progression of IBD....

  8. Trails, Other, This would include horse trails, ATV Trails & cross country ski trails., Published in 2012, Not Applicable scale, Chippewa County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Trails, Other dataset, published at Not Applicable scale, was produced all or in part from Field Observation information as of 2012. It is described as 'This...

  9. Minnesota State Park Trails and Roads

    Data.gov (United States)

    Minnesota Department of Natural Resources — This shapefile covers the trails in the State of Minnesota Parks, Recreation Areas, and Waysides as designated through legislation and recognized by the Department...

  10. US Forest Service National Forest System Trails

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the world wide web that depicts National Forest Service trails that have been approved for publication. This service is used internally and...

  11. Dietary Protein Considerations to Support Active Aging

    OpenAIRE

    Wall, Benjamin T.; Cermak, Naomi M.; van Loon, Luc J. C.

    2014-01-01

    Given our rapidly aging world-wide population, the loss of skeletal muscle mass with healthy aging (sarcopenia) represents an important societal and public health concern. Maintaining or adopting an active lifestyle alleviates age-related muscle loss to a certain extent. Over time, even small losses of muscle tissue can hinder the ability to maintain an active lifestyle and, as such, contribute to the development of frailty and metabolic disease. Considerable research focus has addressed the ...

  12. Coactivator p100 protein enhances histone acetyltransferase activity of CBP

    Institute of Scientific and Technical Information of China (English)

    JIE YANG; HONG BAI; Li JIE DONG; JIE SHAO; OLLI SILVENNOINEN; ZHI YAO

    2006-01-01

    Human p100 protein consists of four repeated domains of staphylococcal nuclease (SN)-like domain, as well as a tudor (TD) domain thereafter. We have previously shown that the SN-like domain of p100 interacted with STAT6 and the large subunit of RNA pol Ⅱ, resulting in the enhancement of STAT6-mediated gene transcriptional activation. Here, we show that SN-like domain also interacted with CREB binding protein (CBP) and directly enhanced the acetyl transferase activity of CBP on histone. On the other hand, overexpression of CBP alone had no ability to significantly increase STAT6-dependent transcriptional activation, however, together with p100 protein, sufficiently enhanced the activation of transcription which was in line with the previous result that p100 protein bridged STAT6 with CBP.

  13. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A;

    2010-01-01

    show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1...... activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast......), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease...

  14. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Taylor David J

    2011-11-01

    Full Text Available Abstract Background Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. Methods FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Results Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward

  15. Acquired deficiencies of protein S. Protein S activity during oral anticoagulation, in liver disease, and in disseminated intravascular coagulation.

    OpenAIRE

    D'Angelo, A.; Vigano-D'Angelo, S; Esmon, C T; Comp, P C

    1988-01-01

    Protein S is a vitamin K-dependent plasma protein which serves as the cofactor for activated protein C. Protein S circulates in both an active, free form and in an inactive complex with C4b-binding protein. To elucidate the role of protein S in disease states and during oral anticoagulation, we developed a functional assay for protein S that permits evaluation of the distribution of protein S between free and bound forms and permits determination of the specific activity of the free protein S...

  16. Protein kinase D activity controls endothelial nitric oxide synthesis

    OpenAIRE

    Aicart-Ramos, Clara; Sánchez-Ruiloba, Lucía; Gómez-Parrizas, Mónica; Zaragoza, Carlos; Iglesias, Teresa; Rodríguez-Crespo, Ignacio

    2014-01-01

    Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase ...

  17. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  18. Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist.

    Science.gov (United States)

    Frew, Ailsa J; Lindemann, Ralph K; Martin, Ben P; Clarke, Christopher J P; Sharkey, Janelle; Anthony, Desiree A; Banks, Kellie-Marie; Haynes, Nicole M; Gangatirkar, Pradnya; Stanley, Kym; Bolden, Jessica E; Takeda, Kazuyoshi; Yagita, Hideo; Secrist, J Paul; Smyth, Mark J; Johnstone, Ricky W

    2008-08-12

    Histone deacetylase inhibitors (HDACi) and agents such as recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic anti-TRAIL receptor (TRAIL-R) antibodies are anticancer agents that have shown promise in preclinical settings and in early phase clinical trials as monotherapies. Although HDACi and activators of the TRAIL pathway have different molecular targets and mechanisms of action, they share the ability to induce tumor cell-selective apoptosis. The ability of HDACi to induce expression of TRAIL-R death receptors 4 and 5 (DR4/DR5), and induce tumor cell death via the intrinsic apoptotic pathway provides a molecular rationale to combine these agents with activators of the TRAIL pathway that activate the alternative (death receptor) apoptotic pathway. Herein, we demonstrate that the HDACi vorinostat synergizes with the mouse DR5-specific monoclonal antibody MD5-1 to induce rapid and robust tumor cell apoptosis in vitro and in vivo. Importantly, using a preclinical mouse breast cancer model, we show that the combination of vorinostat and MD5-1 is safe and induces regression of established tumors, whereas single agent treatment had little or no effect. Functional analyses revealed that rather than mediating enhanced tumor cell apoptosis via the simultaneous activation of the intrinsic and extrinsic apoptotic pathways, vorinostat augmented MD5-1-induced apoptosis concomitant with down-regulation of the intracellular apoptosis inhibitor cellular-FLIP (c-FLIP). These data demonstrate that combination therapies involving HDACi and activators of the TRAIL pathway can be efficacious for the treatment of cancer in experimental mouse models.

  19. Ruthenium Polypyridyl Complex Inhibits Growth and Metastasis of Breast Cancer Cells by Suppressing FAK signaling with Enhancement of TRAIL-induced Apoptosis

    Science.gov (United States)

    Cao, Wenqiang; Zheng, Wenjie; Chen, Tianfeng

    2015-03-01

    Ruthenium-based complexes have emerged as promising antitumor and antimetastatic agents during the past decades. However, the limited understanding of the antimetastatic mechanisms of these agents is a roadblock to their clinical application. Herein, we reported that, RuPOP, a ruthenium polypyridyl complex with potent antitumor activity, was able to effectively inhibit growth and metastasis of MDA-MB-231 cells and synergistically enhance TRAIL-induced apoptosis. The selective intracellular uptake and cytotoxic effect of RuPOP was found associated with transferring receptor (TfR)-mediated endocytosis. Further investigation on intracellular mechanisms reveled that RuPOP notably suppressed FAK-mediated ERK and Akt activation. Pretreatment of cells with ERK inhibitor (U0126) and PI3K inhibitor (LY294002) significantly potentiated the inhibitory effect of RuPOP on cell growth, migration and invasion. Moreover, the alternation in the expression levels of metastatic regulatory proteins, including uPA, MMP-2/-9, and inhibition of VEGF secretion were also observed after RuPOP treatment. These results demonstrate the inhibitory effect of RuPOP on the growth and metastasis of cancer cells and the enhancement of TRAIL-induced apoptosis though suppression of FAK-mediated signaling. Furthermore, RuPOP exhibits the potential to be developed as a metal-based antimetastatic agent and chemosensitizer of TRAIL for the treatment of human metastatic cancers.

  20. Dissociation of activated protein C functions by elimination of protein S cofactor enhancement.

    LENUS (Irish Health Repository)

    Harmon, Shona

    2008-11-07

    Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.

  1. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  2. Conserved interaction of the papillomavirus E2 transcriptional activator proteins with human and yeast TFIIB proteins.

    OpenAIRE

    Benson, J D; Lawande, R; Howley, P M

    1997-01-01

    Papillomavirus early gene expression is regulated by the virus gene-encoded E2 proteins. The best-characterized E2 protein, encoded by bovine papillomavirus type 1 (BPV-1), has been shown to interact with basal transcription factor IIB (TFIIB) and the TATA binding protein basal transcription factor (N. M. Rank and P. F. Lambert, J. Virol. 69:6323-6334, 1995). We demonstrate that the potent E2 transcriptional activator protein encoded by a gene of human PV type 16 also interacts with TFIIB in ...

  3. Low-Speed Fan Noise Reduction With Trailing Edge Blowing

    Science.gov (United States)

    Sutliff, Daniel L.; Tweedt, Daniel L.; Fite, E. Brian; Envia, Edmane

    2002-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a trailing edge slot. Composite hollow rotor blades with internal flow passages were designed based on analytical codes modeling the internal flow. The hollow blade with interior guide vanes creates flow channels through which externally supplied air flows from the root of the blade to the trailing edge. The impact of the rotor wake-stator interaction on the acoustics was also predicted analytically. The Active Noise Control Fan, located at the NASA Glenn Research Center, was used as the proof- of-concept test bed. In-duct mode and farfield directivity acoustic data were acquired at blowing rates (defined as mass supplied to trailing edge blowing system divided by fan mass flow) ranging from 0.5 to 2.0 percent. The first three blade passing frequency harmonics at fan rotational speeds of 1700 to 1900 rpm were analyzed. The acoustic tone power levels (PWL) in the inlet and exhaust were reduced 11.5 and -0.1, 7.2 and 11.4, 11.8 and 19.4 PWL dB, respectively. The farfield tone power levels at the first three harmonics were reduced 5.4, 10.6, and 12.4 dB PWL. At selected conditions, two-component hotwire and stator vane unsteady surface pressures were acquired. These measurements illustrate the physics behind the noise reduction.

  4. Nature Trails, Braille Trails, Foot Paths, Fragrance Gardens, Touch Museums for the Blind; Policy Statement.

    Science.gov (United States)

    American Foundation for the Blind, New York, NY.

    The policy statement by the American Foundation for the Blind deals with nature trails, braille trails, foot paths, fragrance gardens, and touch museums for the blind. It is stated that the foundation approves of services such as provision of tape recorded guides and planting of fragrant shrubs which would benefit all users while recognizing…

  5. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia;

    2003-01-01

    Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None...... of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant...

  6. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    Science.gov (United States)

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. PMID:27080133

  7. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    Science.gov (United States)

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.

  8. Organization, Structure and Activity of Proteins in Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Boucher,J.; Trudel, E.; Methot, M.; Desmeules, P.; Salesse, C.

    2007-01-01

    Many different processes take place at the cell membrane interface. Indeed, for instance, ligands bind membrane proteins which in turn activate peripheral membrane proteins, some of which are enzymes whose action is also located at the membrane interface. Native cell membranes are difficult to use to gain information on the activity of individual proteins at the membrane interface because of the large number of different proteins involved in membranous processes. Model membrane systems, such as monolayers at the air-water interface, have thus been extensively used during the last 50 years to reconstitute proteins and to gain information on their organization, structure and activity in membranes. In the present paper, we review the recent work we have performed with membrane and peripheral proteins as well as enzymes in monolayers at the air-water interface. We show that the structure and orientation of gramicidin has been determined by combining different methods. Furthermore, we demonstrate that the secondary structure of rhodopsin and bacteriorhodopsin is indistinguishable from that in native membranes when appropriate conditions are used. We also show that the kinetics and extent of monolayer binding of myristoylated recoverin is much faster than that of the nonmyristoylated form and that this binding is highly favored by the presence polyunsaturated phospholipids. Moreover, we show that the use of fragments of RPE65 allow determine which region of this protein is most likely involved in membrane binding. Monomolecular films were also used to further understand the hydrolysis of organized phospholipids by phospholipases A2 and C.

  9. G protein activation stimulates phospholipase D signaling in plants

    NARCIS (Netherlands)

    Munnik, T.; Arisz, S.A.; Vrije, de T.; Musgrave, A.

    1995-01-01

    We provide direct evidence for phospholipase D (PLD) signaling in plants by showing that this enzyme is stimulated by the G protein activators mastoparan, ethanol, and cholera toxin. An in vivo assay for PLD activity in plant cells was developed based on the use of a "reporter alcohol" rather than w

  10. Avaliação de atividade de Educação Ambiental em trilha interpretativa, dois a três anos após sua realização - DOI: 10.4025/actascibiolsci.174 Evaluation of environmental education activity in the interpretative trail, two to three years after its implementation - DOI: 10.4025/actascibiolsci.174

    Directory of Open Access Journals (Sweden)

    Ronaldo Angelini

    2007-11-01

    Full Text Available Objetivou-se neste trabalho conduzir uma avaliação de crianças que, nos anos de 2002 e 2003, foram submetidas a uma prática de Educação Ambiental (EA na Trilha Interpretativa da UEG. Essas crianças (grupo teste foram contatadas em suas escolas e juntamente com outras crianças, que nunca participaram da atividade (grupo controle, percorreram a trilha e responderam a um questionário. Os resultados dos questionários do grupo teste, em comparação com o desempenho da atividade anterior, evidenciaram ganhos cognitivos nesse intervalo de um ou dois anos da primeira exposição à atividade. Todavia, quando comparado com o grupo controle, essa diferença não foi estatisticamente significativa (pThe objective of this work was to carry out a re-evaluation of children which participated in an environmental education (EE activity in the Interpretative Trail of the UEG, during 2002 and 2003. These children (test group were contacted in their schools and together with other children, who had never participated in the activity (control group, they had to go through the trail and answer a questionnaire, which was compared with the after-trail questionnaire of the previous activity. Results show that: questionnaires of the test group evidenced cognitive profits in this interval of one or two years of the first exposition to the EE program; however, when compared with the control group, this difference was not significant (p<0.05. This shows that a punctual activity of EE could not be effective in knowledge upgrading. In this sense, many authors recognize the difficulties to evaluate and analyze the repercussions of EE activities.

  11. Factor H-related proteins determine complement-activating surfaces.

    Science.gov (United States)

    Józsi, Mihály; Tortajada, Agustin; Uzonyi, Barbara; Goicoechea de Jorge, Elena; Rodríguez de Córdoba, Santiago

    2015-06-01

    Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway.

  12. Inhibitory effects of recombinant plasmid pshuttle-Egr1-shTRAIL transfection in combination with X-irradiation on growth of liver cancer cells SMMC7721

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of recombinant plasmid pshuttle-Egr1-shTRAIL stable transfection in combination with X-ray irradiation on the TRAIL protein expression and the apoptosis in human SMMC7721 hepatoma cells. Methods: The pshuttle-Egr1-shTRAIL packaged with liposome was stably transfected into SMMC7721 cells in vitro. The shTRAIL protein expression were measured with ELISA assay, Annexin V-FITC kit was adopted to measure the apoptosis of pshuttle-Egr1-shTRAIL cells, and the changes in survival rate of SMMC7721 cells measured with cell cloning assay. Results: The TRAIL protein expressions in pshuttle-Egr1-shTRAIL plus different doses of irradiation groups were significantly increased compared with 0 Gy group (P<0.001). The percentage of apoptotic cells was significantly higher than that in 0 Gy group (P<0.05 or P<0.001), and the survival rate of SMMC7721 cells was decreased significantly (P<0.05 or P<0.001). Conclusion: The pshuttle-Egr1-shTRAIL stable transfection in combination with irradiation can significantly induce the apoptosis of SMMC7721 tumor cells and inhibit the cell proliferation. (authors)

  13. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include......Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation...... crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including...

  14. Redox Regulation of the AMP-Activated Protein Kinase

    OpenAIRE

    Yingying Han; Qilong Wang; Ping Song; Yi Zhu; Ming-Hui Zou

    2010-01-01

    Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death. Objectives The aim of this study is to determine if AMP-activated protein kinase (AMPK), a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC). Methods Bovine aortic endothelial cells (BAEC) were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation. Results In BAEC, Berberine caused a dos...

  15. Redox Regulation of Protein Tyrosine Phosphatase Activity by Hydroxyl Radical

    OpenAIRE

    Meng, Fan-Guo; Zhang, Zhong-Yin

    2012-01-01

    Substantial evidence suggests that transient production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) is an important signaling event triggered by the activation of various cell surface receptors. Major targets of H2O2 include protein tyrosine phosphatases (PTPs). Oxidation of the active site Cys by H2O2 abrogates PTP catalytic activity, thereby potentially furnishing a mechanism to ensure optimal tyrosine phosphorylation in response to a variety of physiological stimuli. ...

  16. Trailing edge modifications for flatback airfoils.

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Daniel L. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.

    2008-03-01

    The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.

  17. TRIPPy: Trailed Image Photometry in Python

    Science.gov (United States)

    Fraser, Wesley; Alexandersen, Mike; Schwamb, Megan E.; Marsset, Michaël; Pike, Rosemary E.; Kavelaars, J. J.; Bannister, Michele T.; Benecchi, Susan; Delsanti, Audrey

    2016-06-01

    Photometry of moving sources typically suffers from a reduced signal-to-noise ratio (S/N) or flux measurements biased to incorrect low values through the use of circular apertures. To address this issue, we present the software package, TRIPPy: TRailed Image Photometry in Python. TRIPPy introduces the pill aperture, which is the natural extension of the circular aperture appropriate for linearly trailed sources. The pill shape is a rectangle with two semicircular end-caps and is described by three parameters, the trail length and angle, and the radius. The TRIPPy software package also includes a new technique to generate accurate model point-spread functions (PSFs) and trailed PSFs (TSFs) from stationary background sources in sidereally tracked images. The TSF is merely the convolution of the model PSF, which consists of a moffat profile, and super-sampled lookup table. From the TSF, accurate pill aperture corrections can be estimated as a function of pill radius with an accuracy of 10 mmag for highly trailed sources. Analogous to the use of small circular apertures and associated aperture corrections, small radius pill apertures can be used to preserve S/Ns of low flux sources, with appropriate aperture correction applied to provide an accurate, unbiased flux measurement at all S/Ns.

  18. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-{kappa}B-STAT3-directed gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir N., E-mail: vni3@columbia.edu; Ghandhi, Shanaz A.; Zhou, Hongning; Huang, Sarah X.; Chai, Yunfei; Amundson, Sally A.; Hei, Tom K.

    2011-07-01

    Mitochondrial DNA depleted ({rho}{sup 0}) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-{kappa}B and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental {rho}{sup +} HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in {rho}{sup 0} cells compared to {rho}{sup +} HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, {Oota}L17{Beta}, {Oota}L18, {Oota}L19, and {Oota}L28{Beta}) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-{kappa}B and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-{kappa}B/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in {rho}{sup +} HSF, but this response was substantially decreased in {rho}{sup 0} HSF. Suppression of the IKK-NF-{kappa}B pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated {rho}{sup +} HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-{kappa}B activation was partially lost in {rho}{sup 0} HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-{kappa}B targets, further suppressing IL6

  19. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S;

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... to be an allosteric mechanism. Furthermore, we demonstrate that anisomycin- and tumor necrosis factor-alpha-induced phosphorylation of p53 at Ser-392, which is important for the transcriptional activity of this growth suppressor protein, requires p38 MAP kinase and CK2 activities....... in the human cervical carcinoma HeLa cells by up to 8-fold, and this could be blocked by the p38 MAP kinase inhibitor SB203580. We show that p38alpha MAP kinase, in a phosphorylation-dependent manner, can directly interact with the alpha and beta subunits of CK2 to activate the holoenzyme through what appears...

  20. Study on enhanced expression and anti-tumor effect of soluble TRAIL induced by 12C6+ heavy ion irradiation

    International Nuclear Information System (INIS)

    Objective: To construct pEgr-sTRAIL expression vector and investigate the apoptotic effect and survival level of its transient transfer on cervical cancer cell line HeLa followed by different doses of 12C6+ heavy ion irradiation. Methods: Human soluble TRAIL was cloned by SOEing method and then was linked with T-vector for sequencing. The correct fragment was inserted into pcDNA-Egr to construct pEgr-sTRAIL recombinant vector which can be activated and induced by ionizing irradiation. Then pEgr-sTRAIL recombinant vector was transferred into HeLa cells under mediation of GeneCompanionTM in vitro. After different doses of 12C6+ heavy ion irradiation, the expression of TRAIL was detected by RT-PCR, the early apoptosis of transfected cells was measured by FACScan and the cell survival level was determined by colony formation assay. Results: The expression vector pEgr-sTRAIL was successfully constructed. 12C6+ heavy ion irradiation could enhance the expression of pEgr-sTRAIL at mRNA level. After irradiated by 12C6+ heavy ion , the percentage of apoptotic cells in pEgr-sTRAIL transfected cells was significantly higher than that of non-transfected cells. The rate of colony formation of pEgr-sTRAIL transfected cells was significantly lower. Conclusion: 12C6+ heavy ion irradiation combined with pEgr-sTRAIL gene transfer can significantly induce the apoptosis of tumor cells and have strong anti-tumor effect in vitro. (authors)

  1. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer.

    Science.gov (United States)

    Guo, Liangran; Fan, Li; Ren, Jinfeng; Pang, Zhiqing; Ren, Yulong; Li, Jingwei; Wen, Ziyi; Qian, Yong; Zhang, Lin; Ma, Hang; Jiang, Xinguo

    2012-01-01

    The intractability of non-small cell lung cancer (NSCLC) to multimodality treatments plays a large part in its extremely poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cytokine for selective induction of apoptosis in cancer cells; however, many NSCLC cell lines are resistant to TRAIL-induced apoptosis. The therapeutic effect can be restored by treatments combining TRAIL with chemotherapeutic agents. Actinomycin D (ActD) can sensitize NSCLC cells to TRAIL-induced apoptosis by upregulation of death receptor 4 (DR4) or 5 (DR5). However, the use of ActD has significant drawbacks due to the side effects that result from its nonspecific biodistribution in vivo. In addition, the short half-life of TRAIL in serum also limits the antitumor effect of treatments combining TRAIL and ActD. In this study, we designed a combination treatment of long-circulating TRAIL liposomes and ActD liposomes with the aim of resolving these problems. The combination of TRAIL liposomes and ActD liposomes had a synergistic cytotoxic effect against A-549 cells. The mechanism behind this combination treatment includes both increased expression of DR5 and caspase activation. Moreover, systemic administration of the combination of TRAIL liposomes and ActD liposomes suppressed both tumor formation and growth of established subcutaneous NSCLC xenografts in nude mice, inducing apoptosis without causing significant general toxicity. These results provide preclinical proof-of-principle for a novel therapeutic strategy in which TRAIL liposomes are safely combined with ActD liposomes.

  2. Hydrodynamic collective effects of active proteins in biological membranes

    Science.gov (United States)

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S.

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015), 10.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  3. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells

    DEFF Research Database (Denmark)

    Frödin, M; Peraldi, P; Van Obberghen, E

    1994-01-01

    Mitogen-activated protein (MAP) kinases are activated in response to a large variety of extracellular signals, including growth factors, hormones, and neurotransmitters, which activate distinct intracellular signaling pathways. Their activation by the cAMP-dependent pathway, however, has not been...

  4. Study of airfoil trailing edge bluntness noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2010-01-01

    -Stokes equations. It provides us possibilities to study details about noise generation mechanism. The formulation of the semi-empirical model is based on acoustic analogy and then curve-fitted with experimental data. Due to its high efficiency, such empirical relation is used for purpose of low noise airfoil......This paper deals with airfoil trailing edge noise with special focus on airfoils with blunt trailing edges. Two methods are employed to calculate airfoil noise: The flow/acoustic splitting method and the semi-empirical method. The flow/acoustic splitting method is derived from compressible Navier...... design or optimization. Calculations from both methods are compared with exist experiments. The airfoil blunt noise is found as a function of trailing edge bluntness, Reynolds number, angle of attack, etc....

  5. Therapeutic applications of TRAIL receptor agonists in cancer and beyond.

    Science.gov (United States)

    Amarante-Mendes, Gustavo P; Griffith, Thomas S

    2015-11-01

    TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future. PMID:26343199

  6. Anti-tumor activities andapoptotic mechanism ofribosome-inactivating proteins

    Institute of Scientific and Technical Information of China (English)

    MeiqiZeng; ManyinZheng; DeshengLu; JunWang; WenqiJiang; OuSha

    2015-01-01

    Ribosome-inactivating proteins (RIPs) belong to a family of enzymes that attack eukaryotic ribosomes and potently inhibit cellular protein synthesis. RIPs possess several biomedical properties, including anti-viral and anti-tumor activi-ties. Multiple RIPs are known to inhibit tumor cell proliferation through inducing apoptosis in a variety of cancers, such as breast cancer, leukemia/lymphoma, and hepatoma. This review focuses on the anti-tumor activities of RIPs and their apoptotic effects through three closely related pathways: mitochondrial, death receptor, and endoplasmic reticulum pathways.

  7. Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis.

    Science.gov (United States)

    Kohansal-Nodehi, Mahdokht; Chua, John Je; Urlaub, Henning; Jahn, Reinhard; Czernik, Dominika

    2016-01-01

    Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity. PMID:27115346

  8. The Trail Inventory of Lake Ilo NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lake Ilo National Wildlife Refuge. Trails in this inventory are eligible...

  9. The Trail Inventory of Lake Ilo NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lake Ilo National Wildlife Refuge. Trails in this inventory are eligible...

  10. The Trail Inventory of Malheur National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Malheur National Wildlife Refuge. Trails in this inventory are eligible...

  11. The Trail Inventory of Mountain Longleaf NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Mountain Longleaf National Wildlife Refuge. Trails in this inventory are...

  12. The Trail Inventory of Ruby Lake NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Ruby Lake National Wildlife Refuge. Trails in this inventory are...

  13. The Trail Inventory of Ruby Lake NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Ruby Lake National Wildlife Refuge. Trails in this inventory are...

  14. The Trail Inventory of McNary NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on McNary National Wildlife Refuge. Trails in this inventory are eligible...

  15. The Trail Inventory of Welaka NFH [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Welaka National Fish Hatchery. Trails in this inventory are eligible for...

  16. The Trail Inventory of Alaska Maritime NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Alaska Maritime National Wildlife Refuge. Trails in this inventory are...

  17. The Trail Inventory of William L. Finley NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on William L. Finley National Wildlife Refuge. Trails in this inventory are...

  18. The Trail Inventory of Bill Williams River NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all nonmotorized trails on Bill Williams River National Wildlife Refuge. Trails in this inventory...

  19. The Trail Inventory of William L. Finley NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all nonmotorized trails on William L. Finley National Wildlife Refuge. Trails in this inventory are...

  20. The Trail Inventory of Kellys Slough NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Kellys Slough National Wildlife Refuge. Trails in this inventory are...

  1. The Trail Inventory of Kellys Slough NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Kellys Slough National Wildlife Refuge. Trails in this inventory are...

  2. Honeymoon Trail at Pipe Spring National Monument, Arizona (honeytrl)

    Data.gov (United States)

    National Park Service, Department of the Interior — This is an Arc/Info coverage consisting of 1 arc that represents the Honeymoon Trail inside of Pipe Spring National Monument, Arizona. The Honeymoon Trail was...

  3. The Trail Inventory of Umatilla NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Umatilla National Wildlife Refuge. Trails in this inventory are eligible...

  4. The Trail Inventory of Huron WMD [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all nonmotorized trails on Huron Wetland Management District. Trails in this inventory are eligible...

  5. The Trail Inventory of Imperial NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all nonmotorized trails on Imperial National Wildlife Refuge. Trails in this inventory are eligible...

  6. The Trail Inventory of Attwater Prairie Chicken NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Attwater Prairie Chicken National Wildlife Refuge. Trails in this...

  7. US Forest Service National Forest System Trails With Data Status

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the world wide web that depicts National Forest Service trails that have been approved for publication. It also depicts the availability of trails...

  8. The Trail Inventory of Berkshire National Fish Hatchery [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Berkshire Trout Hatchery. Trails in this inventory are eligible for...

  9. The Trail Inventory of Berkshire NFH [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Berkshire Trout Hatchery. Trails in this inventory are eligible for...

  10. The Trail Inventory of Berkshire NFH [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Berkshire Trout Hatchery. Trails in this inventory are eligible for...

  11. The Trail Inventory of Cabo Rojo NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Cabo Rojo National Wildlife Refuge. Trails in this inventory are...

  12. The Trail Inventory of Humboldt Bay NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Humboldt Bay National Wildlife Refuge. Trails in this inventory are...

  13. The Trail Inventory of Cameron Prairie NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Cameron Prairie National Wildlife Refuge. Trails in this inventory are...

  14. The Trail Inventory of Valentine NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Valentine National Wildlife Refuge. Trails in this inventory are...

  15. The Trail Inventory of Back Bay NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Back Bay National Wildlife Refuge. Trails in this inventory are eligible...

  16. The Trail Inventory of Back Bay NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Back Bay National Wildlife Refuge. Trails in this inventory are eligible...

  17. The Trail Inventory of Oxbow National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Oxbow National Wildlife Refuge. Trails in this inventory are eligible...

  18. The Trail Inventory of Oxbow NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Oxbow National Wildlife Refuge. Trails in this inventory are eligible...

  19. The Trail Inventory of Banks Lake NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Banks Lake National Wildlife Refuge. Trails in this inventory are...

  20. The Trail Inventory of Detroit Lakes WMD [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Detroit Lakes Wetland Management District. Trails in this inventory are...

  1. The Trail Inventory of Detroit Lakes WMD [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Detroit Lakes Wetland Management District. Trails in this inventory are...

  2. The Trail Inventory of Detroit River IWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Detroit River International Wildlife Refuge. Trails in this inventory...

  3. The Trail Inventory of Santee National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Santee National Wildlife Refuge. Trails in this inventory are eligible...

  4. The Trail Inventory of Santee NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Santee National Wildlife Refuge. Trails in this inventory are eligible...

  5. The Trail Inventory of Santee NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Santee National Wildlife Refuge. Trails in this inventory are eligible...

  6. The Trail Inventory of Umatilla National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Umatilla National Wildlife Refuge. Trails in this inventory are eligible...

  7. The Trail Inventory of Kenai NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all nonmotorized trails on Kenai National Wildlife Refuge. Trails in this inventory are eligible for...

  8. The Trail Inventory of Middle Mississippi River NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Middle Mississippi River National Wildlife Refuge. Trails in this...

  9. The Trail Inventory of Little Pend Oreille NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Little Pend Oreille National Wildlife Refuge. Trails in this inventory...

  10. The Trail Inventory of Merced National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Merced National Wildlife Refuge. Trails in this inventory are eligible...

  11. The Trail Inventory of Leavenworth NFH [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Leavenworth National Fish Hatchery. Trails in this inventory are...

  12. The Trail Inventory of Alamosa NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Alamosa National Wildlife Refuge. Trails in this inventory are eligible...

  13. The Trail Inventory of St. Marks NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on St. Marks National Wildlife Refuge. Trails in this inventory are...

  14. The Trail Inventory of Mandalay NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Mandalay National Wildlife Refuge. Trails in this inventory are eligible...

  15. The Trail Inventory of Boyer Chute NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Boyer Chute National Wildlife Refuge. Trails in this inventory are...

  16. The Trail Inventory of Lee Metcalf NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lee Metcalf National Wildlife Refuge. Trails in this inventory are...

  17. The Trail Inventory of Alaska Maritime NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Alaska Maritime National Wildlife Refuge. Trails in this inventory are...

  18. The Trail Inventory of Little White Salmon NFH [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Little White Salmon National Fish Hatchery. Trails in this inventory are...

  19. The Trail Inventory of Mason Neck NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Mason Neck National Wildlife Refuge. Trails in this inventory are...

  20. The Trail Inventory of Ankeny National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Ankeny National Wildlife Refuge. Trails in this inventory are eligible...

  1. The Trail Inventory of Mackay Island NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Mackay Island National Wildlife Refuge. Trails in this inventory are...

  2. The Trail Inventory of Las Vegas NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Las Vegas National Wildlife Refuge. Trails in this inventory are...

  3. The Trail Inventory of John H. Chafee NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on John H. Chafee National Wildlife Refuge. Trails in this inventory are...

  4. The Trail Inventory of Lower Hatchie NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lower Hatchie National Wildlife Refuge. Trails in this inventory are...

  5. The Trail Inventory of Aroostook NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Aroostook National Wildlife Refuge. Trails in this inventory are...

  6. The Trail Inventory of Chassahowitzka National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Chassahowitzka National Wildlife Refuge. Trails in this inventory are...

  7. The Trail Inventory of Ankeny NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Ankeny National Wildlife Refuge. Trails in this inventory are eligible...

  8. The Trail Inventory of Mattamuskeet NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Mattamuskeet National Wildlife Refuge. Trails in this inventory are...

  9. The Trail Inventory of Lake Ophelia NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lake Ophelia National Wildlife Refuge. Trails in this inventory are...

  10. The Trail Inventory of Seal Beach NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Seal Beach National Wildlife Refuge. Trails in this inventory are...

  11. The Trail Inventory of Piedmont NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Piedmont National Wildlife Refuge. Trails in this inventory are eligible...

  12. The Trail Inventory of Alaska Peninsula NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Alaska Peninsula National Wildlife Refuge. Trails in this inventory are...

  13. The Trail Inventory of Bosque Del Apache NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Bosque Del Apache National Wildlife Refuge. Trails in this inventory are...

  14. The Trail Inventory of Little River NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Little River National Wildlife Refuge. Trails in this inventory are...

  15. The Trail Inventory of Anahuac National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Anahuac National Wildlife Refuge. Trails in this inventory are eligible...

  16. The Trail Inventory of Mandalay National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Mandalay National Wildlife Refuge. Trails in this inventory are eligible...

  17. The Trail Inventory of Lostwood NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lostwood National Wildlife Refuge. Trails in this inventory are eligible...

  18. The Trail Inventory of Leadville National Fish Hatchery [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Leadville National Fish Hatchery. Trails in this inventory are eligible...

  19. The Trail Inventory of Alamosa National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Alamosa National Wildlife Refuge. Trails in this inventory are eligible...

  20. The Trail Inventory of Toppenish National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Toppenish National Wildlife Refuge. Trails in this inventory are...

  1. The Trail Inventory of Leslie Canyon NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Leslie Canyon National Wildlife Refuge. Trails in this inventory are...

  2. The Trail Inventory of Steigerwald Lake NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Steigerwald Lake National Wildlife Refuge. Trails in this inventory are...

  3. The Trail Inventory of Leavenworth National Fish Hatchery [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Leavenworth National Fish Hatchery. Trails in this inventory are...

  4. The Trail Inventory of Aroostook National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Aroostook National Wildlife Refuge. Trails in this inventory are...

  5. The Trail Inventory of Pendills Creek NFH [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Pendills Creek National Fish Hatchery. Trails in this inventory are...

  6. The Trail Inventory of Madison WMD [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Madison Wetland Management District. Trails in this inventory are...

  7. The Trail Inventory of Meredosia National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Meredosia National Wildlife Refuge. Trails in this inventory are...

  8. The Trail Inventory of Lake Woodruff NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lake Woodruff National Wildlife Refuge. Trails in this inventory are...

  9. The Trail Inventory of Swan Lake NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Swan Lake National Wildlife Refuge. Trails in this inventory are...

  10. The Trail Inventory of Maxwell NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Maxwell National Wildlife Refuge. Trails in this inventory are eligible...

  11. The Trail Inventory of Agassiz National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Agassiz National Wildlife Refuge. Trails in this inventory are eligible...

  12. The Trail Inventory of Malheur NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Malheur National Wildlife Refuge. Trails in this inventory are eligible...

  13. The Trail Inventory of Antioch NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Antioch Dunes National Wildlife Refuge. Trails in this inventory are...

  14. The Trail Inventory of Brazoria National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Brazoria National Wildlife Refuge. Trails in this inventory are eligible...

  15. The Trail Inventory of Anahuac NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Anahuac National Wildlife Refuge. Trails in this inventory are eligible...

  16. The Trail Inventory of Lower Klamath NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lower Klamath National Wildlife Refuge. Trails in this inventory are...

  17. The Trail Inventory of Leadville NFH [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Leadville National Fish Hatchery. Trails in this inventory are eligible...

  18. The Trail Inventory of Merced NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Merced National Wildlife Refuge. Trails in this inventory are eligible...

  19. The Trail Inventory of Medicine Lake NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Medicine Lake National Wildlife Refuge. Trails in this inventory are...

  20. The Trail Inventory of Lower Suwannee NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lower Suwannee National Wildlife Refuge. Trails in this inventory are...

  1. The Trail Inventory of Vieques National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Vieques National Wildlife Refuge. Trails in this inventory are eligible...

  2. The Trail Inventory of Arrowwood NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Arrowwood National Wildlife Refuge. Trails in this inventory are...

  3. The Trail Inventory of Meredosia NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Meredosia National Wildlife Refuge. Trails in this inventory are...

  4. The Trail Inventory of Salinas River NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Salinas River National Wildlife Refuge. Trails in this inventory are...

  5. The Trail Inventory of McNary NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on McNary National Wildlife Refuge. Trails in this inventory are eligible...

  6. Detergent activation of the binding protein in the folate radioassay

    International Nuclear Information System (INIS)

    A minor cow's whey protein associated with β-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to β-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants

  7. Controlling Protein Activity and Degradation Using Blue Light.

    Science.gov (United States)

    Lutz, Anne P; Renicke, Christian; Taxis, Christof

    2016-01-01

    Regulation of protein stability is a fundamental process in eukaryotic cells and pivotal to, e.g., cell cycle progression, faithful chromosome segregation, or protein quality control. Synthetic regulation of protein stability requires conditional degradation sequences (degrons) that induce a stability switch upon a specific signal. Fusion to a selected target protein permits to influence virtually every process in a cell. Light as signal is advantageous due to its precise applicability in time, space, quality, and quantity. Light control of protein stability was achieved by fusing the LOV2 photoreceptor domain of Arabidopsis thaliana phototropin1 with a synthetic degron (cODC1) derived from the carboxy-terminal degron of ornithine decarboxylase to obtain the photosensitive degron (psd) module. The psd module can be attached to the carboxy terminus of target proteins that are localized to the cytosol or nucleus to obtain light control over their stability. Blue light induces structural changes in the LOV2 domain, which in turn lead to activation of the degron and thus proteasomal degradation of the whole fusion protein. Variants of the psd module with diverse characteristics are useful to fine-tune the stability of a selected target at permissive (darkness) and restrictive conditions (blue light). PMID:26965116

  8. Installing hydrolytic activity into a completely de novo protein framework

    Science.gov (United States)

    Burton, Antony J.; Thomson, Andrew R.; Dawson, William M.; Brady, R. Leo; Woolfson, Derek N.

    2016-09-01

    The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine-histidine-glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis.

  9. Effect of Hydrofoil Trailing Edge Geometry on the Wake Dynamics

    OpenAIRE

    Zobeiri, Amirreza

    2012-01-01

    In the present study, the effect of a hydrofoil trailing edge shape on the wake dynamic and its interaction with the mechanical structure is investigated. This would help better describe the physical reasons for vibration reduction when using oblique and Donaldson trailing edges in comparison to a truncated trailing edge and subsequently allow its further optimization. Thus, hydrofoils with oblique and Donaldson trailing edges are tested in a high-spe...

  10. Molecular mechanisms of TRAIL-induced apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells but not of normal cells, pointing to the possibility of de-veloping TRAIL into a cancer drug[2-4]. This review will summary the molecular mechanisms of TRAIL-induced apoptosis and discuss the questions to be resolved in this field.

  11. The role of activated protein C in cancer progression

    NARCIS (Netherlands)

    G.L. van Sluis; H.R. Büller; C.A. Spek

    2010-01-01

    Activated protein C (APC) is best known as a natural anticoagulant that also has direct cell signaling properties which (among others) enhance vascular barrier function. We recently established the relevance of APC-induced barrier enhancement by showing that endogenous APC limits cancer cell extrava

  12. Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-05-01

    Full Text Available Objective(s: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its underlying mechanisms. Materials and Methods:NCI-H460 and A549 cells were treated with TRAIL alone, cisplatin alone or combination treatment in this study. The cytotoxicity was evaluated according to Sulforhodamine B assay, and apoptosis was examined using Hoechst 33342 staining and flow cytometry. The mRNA and protein levels of TRAIL receptors and apoptotic proteins including caspase-8, caspase-9, Bcl-2 and Bax were determined by RT-PCR and Western blotting, respectively. Results:Our results showed that NCI-H460 cells were sensitive to TRAIL, whereas A549 cells were resistant. However, subtoxic-dose cisplatin could enhance the both cells to TRAIL-mediated cell proliferation inhibition and apoptosis. The underlying mechanisms might be associated with the down-regulation of DcR2 and up-regulation of Caspase-8, Caspase-9 and Bax. Conclusion:Subtoxic-dose cisplatin could enhance both TRAIL- sensitive and TRAIL- resistant NSCLC cells to TRAIL-mediated apoptosis. These findings motivated further studies to evaluate such a combinatory therapeutic strategy against NSCLC in the animal models.

  13. 30 CFR 57.4057 - Underground trailing cables.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground trailing cables. 57.4057 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control § 57.4057 Underground trailing cables. Underground trailing cables shall be accepted...

  14. 30 CFR 75.828 - Trailing cable pulling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cable pulling. 75.828 Section 75.828... Longwalls § 75.828 Trailing cable pulling. The trailing cable must be de-energized prior to being pulled by any equipment other than the continuous mining machine. The cable manufacturer's recommended...

  15. 21 CFR 1311.215 - Internal audit trail.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Internal audit trail. 1311.215 Section 1311.215... ORDERS AND PRESCRIPTIONS (Eff. 6-1-10) Electronic Prescriptions § 1311.215 Internal audit trail. (a) The... with audit trail functions. (6) For application service providers, attempted or successful...

  16. Trails, Other, Bike and walking trails line database in Parks geodatabase, Published in unknown, City of Roswell, GA.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Trails, Other dataset as of unknown. It is described as 'Bike and walking trails line database in Parks geodatabase'. Data by this publisher are often provided...

  17. Trails, Other, trails, Published in 2008, 1:24000 (1in=2000ft) scale, Box Elder County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Trails, Other dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2008. It is described as 'trails'. The...

  18. Trails, Other, scouts trail districts, Published in 2006, 1:24000 (1in=2000ft) scale, Tooele County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Trails, Other dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2006. It is described as 'scouts trail...

  19. Trails, Other, scouts trail districts poly, Published in 2006, 1:24000 (1in=2000ft) scale, Tooele County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Trails, Other dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2006. It is described as 'scouts trail...

  20. Trails, Bike, Bike Trail, Published in 2005, 1:24000 (1in=2000ft) scale, Iron County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Trails, Bike dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2005. It is described as 'Bike Trail'....

  1. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Science.gov (United States)

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed. PMID:26745266

  2. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Directory of Open Access Journals (Sweden)

    Abdallah Khatib

    Full Text Available Comparative Gene Identification-58 (CGI-58 is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL, the initial enzyme responsible for the triacylglycerol (TAG catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  3. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Science.gov (United States)

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  4. In vitro antithrombotic activities of peanut protein hydrolysates.

    Science.gov (United States)

    Zhang, Shao Bing

    2016-07-01

    The antithrombotic activities of peanut protein hydrolysates were investigated using a microplates assay. When peanut proteins were hydrolyzed to a limited extent by various enzymes, their thrombin inhibitory abilities were significantly enhanced. However, the resultant hydrolysates showed significantly different activities even at the same degrees of hydrolysis. The hydrolysates generated by Alcalase 2.4L displayed the best antithrombotic activities and the hydrolysis process was further optimized by response surface methodology. The antithrombotic activities were increased to 86% based on a protein concentration of 50mg/ml under the optimal conditions: pH 8.5, enzyme concentration of 5000IU/g of peanut proteins, and 2h hydrolysis time at 50°C. The Alcalase 2.4L crude hydrolysates were then fractionated successively by preparative and semi-preparative reverse-phase high-performance liquid chromatography (RP-HPLC). The peptide fraction collected inhibited thrombin-catalyzed coagulation of fibrinogen completely at a concentration of 0.4mg/ml, with an antithrombotic activity close to that of heparin at quite a low concentration (0.2mg/ml). This peptide fraction was further analyzed by online reverse-phase ultra-performance liquid chromatography (RP-UPLC) coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and three new peptides were identified as Ser-Trp-Ala-Gln-Leu, Gly-Asn-His-Glu-Ala-Gly-Glu and Cys-Phe-Asn-Glu-Tyr-Glu, respectively. This research provided an effective way to produce antithrombotic peptides from peanut proteins, and also helped to elucidate the structure-function relationships of peanut peptides. PMID:26920259

  5. TRIPPy: Trailed Image Photometry in Python

    CERN Document Server

    Fraser, Wesley C; Schwamb, Megan E; Marsset, Michael E; Pike, Rosemary E; Kavelaars, JJ; Bannister, Michele T; Benecchi, Susan; Delsanti, Audrey

    2016-01-01

    Photometry of moving sources typically suffers from reduced signal-to-noise (SNR) or flux measurements biased to incorrect low values through the use of circular apertures. To address this issue we present the software package, TRIPPy: TRailed Image Photometry in Python. TRIPPy introduces the pill aperture, which is the natural extension of the circular aperture appropriate for linearly trailed sources. The pill shape is a rectangle with two semicircular end-caps, and is described by three parameters, the trail length and angle, and the radius. The TRIPPy software package also includes a new technique to generate accurate model point-spread functions (PSF) and trailed point-spread functions (TSF) from stationary background sources in sidereally tracked images. The TSF is merely the convolution of the model PSF, which consists of a moffat profile, and super sampled lookup table. From the TSF, accurate pill aperture corrections can be estimated as a function of pill radius with a accuracy of 10 millimags for hi...

  6. Tracing the X-Ray Trail

    Science.gov (United States)

    What you need to know about… Tracing the X-ray Trail If you’ve just completed an x-ray, computed tomography (CT), magnetic resonance (MR) Start here! or other diagnostic imaging procedure, you probably want to know when you will ... los rayos X Si acaba de hacerse una radiografía, tomografía ¡Empezar ...

  7. Certification trails and software design for testability

    Science.gov (United States)

    Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.

    1993-01-01

    Design techniques which may be applied to make program testing easier were investigated. Methods for modifying a program to generate additional data which we refer to as a certification trail are presented. This additional data is designed to allow the program output to be checked more quickly and effectively. Certification trails were described primarily from a theoretical perspective. A comprehensive attempt to assess experimentally the performance and overall value of the certification trail method is reported. The method was applied to nine fundamental, well-known algorithms for the following problems: convex hull, sorting, huffman tree, shortest path, closest pair, line segment intersection, longest increasing subsequence, skyline, and voronoi diagram. Run-time performance data for each of these problems is given, and selected problems are described in more detail. Our results indicate that there are many cases in which certification trails allow for significantly faster overall program execution time than a 2-version programming approach, and also give further evidence of the breadth of applicability of this method.

  8. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  9. RNF4-Dependent Oncogene Activation by Protein Stabilization.

    Science.gov (United States)

    Thomas, Jane J; Abed, Mona; Heuberger, Julian; Novak, Rostislav; Zohar, Yaniv; Beltran Lopez, Angela P; Trausch-Azar, Julie S; Ilagan, Ma Xenia G; Benhamou, David; Dittmar, Gunnar; Kopan, Raphael; Birchmeier, Walter; Schwartz, Alan L; Orian, Amir

    2016-09-20

    Ubiquitylation regulates signaling pathways critical for cancer development and, in many cases, targets proteins for degradation. Here, we report that ubiquitylation by RNF4 stabilizes otherwise short-lived oncogenic transcription factors, including β-catenin, Myc, c-Jun, and the Notch intracellular-domain (N-ICD) protein. RNF4 enhances the transcriptional activity of these factors, as well as Wnt- and Notch-dependent gene expression. While RNF4 is a SUMO-targeted ubiquitin ligase, protein stabilization requires the substrate's phosphorylation, rather than SUMOylation, and binding to RNF4's arginine-rich motif domain. Stabilization also involves generation of unusual polyubiquitin chains and docking of RNF4 to chromatin. Biologically, RNF4 enhances the tumor phenotype and is essential for cancer cell survival. High levels of RNF4 mRNA correlate with poor survival of a subgroup of breast cancer patients, and RNF4 protein levels are elevated in 30% of human colon adenocarcinomas. Thus, RNF4-dependent ubiquitylation translates transient phosphorylation signal(s) into long-term protein stabilization, resulting in enhanced oncoprotein activation. PMID:27653698

  10. NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein.

    Science.gov (United States)

    Chang, Szu-Wei; Tsao, Yeou-Ping; Lin, Chia-Yi; Chen, Show-Li

    2011-07-01

    Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression. PMID:21543494

  11. Protein kinase domain of twitchin has protein kinase activity and an autoinhibitory region.

    Science.gov (United States)

    Lei, J; Tang, X; Chambers, T C; Pohl, J; Benian, G M

    1994-08-19

    Twitchin is a 753-kDa polypeptide located in the muscle A-bands of the nematode, Caenorhabditis elegans. It consists of multiple copies of both fibronectin III and immunoglobulin C2 domains and, near the C terminus, a protein kinase domain with greatest homology to the catalytic domains of myosin light chain kinases. We have expressed and purified from Escherichia coli twitchin's protein kinase catalytic core and flanking sequences that do not include fibronectin III and immunoglobulin C2 domains. The protein was shown to phosphorylate a model substrate and to undergo autophosphorylation. The autophosphorylation occurs at a slow rate, attaining a maximum at 3 h with a stoichiometry of about 1.0 mol of phosphate/mol of protein, probably through an intramolecular mechanism. Sequence analysis of proteolytically derived phosphopeptides revealed that autophosphorylation occurred N-terminal to the catalytic core, predominantly at Thr-5910, with possible minor sites at Ser5912 and/or Ser-5913. This portion of twitchin (residues 5890-6268) was also phosphorylated in vitro by protein kinase C in the absence of calcium and phosphotidylserine, but not by cAMP-dependent protein kinase. By comparing the activities of three twitchin segments, the enzyme appears to be inhibited by the 60-amino acid residues lying just C-terminal to the kinase catalytic core. Thus, like a number of other protein kinases including myosin light chain kinases, the twitchin kinase appears to be autoregulated. PMID:8063727

  12. Protein kinase C controls activation of the DNA integrity checkpoint

    Science.gov (United States)

    Soriano-Carot, María; Quilis, Inma; Bañó, M. Carmen; Igual, J. Carlos

    2014-01-01

    The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans. PMID:24792164

  13. Enhancement of rabbit protein S anticoagulant cofactor activity in vivo by modulation of the protein S C4B binding protein interaction.

    OpenAIRE

    Weinstein, R E; Walker, F. J.

    1990-01-01

    The carboxy-terminal region of protein S has been recently been observed to be involved in the interaction between protein S and C4b-binding protein (Walker, F. J. 1989. J. Biol. Chem. 264:17645-17658). A synthetic peptide, GVQLDLDEAI, corresponding to that region of protein S has been used to investigate the protein S/C4b-binding protein interaction in vitro and in vivo. Rabbit activated protein C possesses species-specific anticoagulant activity for which rabbit protein S functions as a cof...

  14. The pleiotropic activity of heat-shock proteins

    Directory of Open Access Journals (Sweden)

    Arleta Kaźmierczuk

    2009-10-01

    Full Text Available Stress or heat-shock proteins (HSPs are highly conserved proteins present in cells of both prokaryotes and eukaryotes, providing them with protection from cellular and environmental stress factors. Based on molecular-weight, HSPs can be divided into the large (HSP100: 100–110 kDa and HSP90: 75–96 kDa, intermediate (HSP70: 66–78 kDa, HSP60, and HSP40, and small (sHSP: 8.5–40 kDa subfamilies. These proteins play an essential role as molecular chaperones/co-chaperones by assisting the correct folding of nascent and stress-accumulated protein-substrate assembly, preventing the aggregation of these proteins, as well as transport across membranes and the degradation of other proteins. Members of HSP family display dual activity depending on their intra- or extracellular distribution. Intracellular HSPs mainly play a protective role. Extracellular or membrane-bound HSPs mediate immunological functions. Among the functions of HSPs is their participation in cell signaling. This review deals with the structure and properties of the main members of the HSPs and their role in a large number of cellular/extracellular processes.

  15. Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metabolism

    Institute of Scientific and Technical Information of China (English)

    Fei DOU; Liu-Di YUAN; Jing-Jing ZHU

    2005-01-01

    Extracellular signal-regulated protein kinase (ERK) has been implicated in the pathogenesis of several nerve system diseases. As more and more kinases have been discovered to be the client proteins of the molecular chaperone Hsp90, the use of Hsp90 inhibitors to reduce abnormal kinase activity is a new treatment strategy for nerve system diseases. This study investigated the regulation of the ERK pathway by Hsp90. We showed that Hsp90 inhibitors reduce ERK phosphorylation without affecting the total ERK protein level. Further investigation showed that Raf, the upstream kinase in the Ras-Raf-MEK-ERK pathway,forms a complex with Hsp90 and Hsp70. Treating cells with Hsp90 inhibitors facilitates Raf degradation,thereby down-regulating the activity of ERK.

  16. Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Petra Hirsova

    Full Text Available Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH.

  17. SAHM:VisTrails (Software for Assisted Habitat Modeling for VisTrails): training course

    Science.gov (United States)

    Holcombe, Tracy

    2014-01-01

    VisTrails is an open-source management and scientific workflow system designed to integrate the best of both scientific workflow and scientific visualization systems. Developers can extend the functionality of the VisTrails system by creating custom modules for bundled VisTrails packages. The Invasive Species Science Branch of the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) and the U.S. Department of the Interior’s North Central Climate Science Center have teamed up to develop and implement such a module—the Software for Assisted Habitat Modeling (SAHM). SAHM expedites habitat modeling and helps maintain a record of the various input data, the steps before and after processing, and the modeling options incorporated in the construction of an ecological response model. There are four main advantages to using the SAHM:VisTrails combined package for species distribution modeling: (1) formalization and tractable recording of the entire modeling process; (2) easier collaboration through a common modeling framework; (3) a user-friendly graphical interface to manage file input, model runs, and output; and (4) extensibility to incorporate future and additional modeling routines and tools. In order to meet increased interest in the SAHM:VisTrails package, the FORT offers a training course twice a year. The course includes a combination of lecture, hands-on work, and discussion. Please join us and other ecological modelers to learn the capabilities of the SAHM:VisTrails package.

  18. Pharmacological activities in thermal proteins: relationships in molecular evolution

    Science.gov (United States)

    Fox, S. W.; Hefti, F.; Hartikka, J.; Junard, E.; Przybylski, A. T.; Vaughan, G.

    1987-01-01

    The model of protobiological events that has been presented in these pages has increasing relevance to pharmacological research. The thermal proteins that function as key substances in the proteinoid theory have recently been found to prolong the survival of rat forebrain neurons in culture and to stimulate the growth of neurites. A search for such activity in thermal proteins added to cultures of modern neurons was suggested by the fact that some of the microspheres assembled from proteinoids rich in hydrophobic amino acids themselves generate fibrous outgrowths.

  19. L-Alanylglutamine inhibits signaling proteins that activate protein degradation, but does not affect proteins that activate protein synthesis after an acute resistance exercise.

    Science.gov (United States)

    Wang, Wanyi; Choi, Ran Hee; Solares, Geoffrey J; Tseng, Hung-Min; Ding, Zhenping; Kim, Kyoungrae; Ivy, John L

    2015-07-01

    Sustamine™ (SUS) is a dipeptide composed of alanine and glutamine (AlaGln). Glutamine has been suggested to increase muscle protein accretion; however, the underlying molecular mechanisms of glutamine on muscle protein metabolism following resistance exercise have not been fully addressed. In the present study, 2-month-old rats climbed a ladder 10 times with a weight equal to 75 % of their body mass attached at the tail. Rats were then orally administered one of four solutions: placebo (PLA-glycine = 0.52 g/kg), whey protein (WP = 0.4 g/kg), low dose of SUS (LSUS = 0.1 g/kg), or high dose of SUS (HSUS = 0.5 g/kg). An additional group of sedentary (SED) rats was intubated with glycine (0.52 g/kg) at the same time as the ladder-climbing rats. Blood samples were collected immediately after exercise and at either 20 or 40 min after recovery. The flexor hallucis longus (FHL), a muscle used for climbing, was excised at 20 or 40 min post exercise and analyzed for proteins regulating protein synthesis and degradation. All supplements elevated the phosphorylation of FOXO3A above SED at 20 min post exercise, but only the SUS supplements significantly reduced the phosphorylation of AMPK and NF-kB p65. SUS supplements had no effect on mTOR signaling, but WP supplementation yielded a greater phosphorylation of mTOR, p70S6k, and rpS6 compared with PLA at 20 min post exercise. However, by 40 min post exercise, phosphorylation of mTOR and rpS6 in PLA had risen to levels not different than WP. These results suggest that SUS blocks the activation of intracellular signals for MPB, whereas WP accelerates mRNA translation. PMID:25837301

  20. Efficient expression and purification of biologically active human cystatin proteins.

    Science.gov (United States)

    Chauhan, Sakshi; Tomar, Raghuvir S

    2016-02-01

    Cystatins are reversible cysteine protease inhibitor proteins. They are known to play important roles in controlling cathepsins, neurodegenerative disease, and in immune system regulation. Production of recombinant cystatin proteins is important for biochemical and function characterization. In this study, we cloned and expressed human stefin A, stefin B and cystatin C in Escherichia coli. Human stefin A, stefin B and cystatin C were purified from soluble fraction. For cystatin C, we used various chaperone plasmids to make cystatin C soluble, as it is reported to localize in inclusion bodies. Trigger factor, GroES-GroEL, DnaK-DnaJ-GrpE chaperones lead to the presence of cystatin C in the soluble fraction. Immobilized metal affinity chromatography, glutathione sepharose and anion exchange chromatography techniques were employed for efficient purification of these proteins. Their biological activities were tested by inhibition assays against cathepsin L and H3 protease.

  1. Modulation of the protein kinase activity of mTOR.

    Science.gov (United States)

    Lawrence, J C; Lin, T A; McMahon, L P; Choi, K M

    2004-01-01

    mTOR is a founding member of a family of protein kinases having catalytic domains homologous to those in phosphatidylinositol 3-OH kinase. mTOR participates in the control by insulin of the phosphorylation of lipin, which is required for adipocyte differentiation, and the two translational regulators, p70S6K and PHAS-I. The phosphorylation of mTOR, itself, is stimulated by insulin in Ser2448, a site that is also phosphorylated by protein kinase B (PKB) in vitro and in response to activation of PKB activity in vivo. Ser2448 is located in a short stretch of amino acids not found in the two TOR proteins in yeast. A mutant mTOR lacking this stretch exhibited increased activity, and binding of the antibody, mTAb-1, to this region markedly increased mTOR activity. In contrast, rapamycin-FKBP12 inhibited mTOR activity towards both PHAS-I and p70S6K, although this complex inhibited the phosphorylation of some sites more than that of others. Mutating Ser2035 to Ile in the FKBP12-rapamycin binding domain rendered mTOR resistant to inhibition by rapamycin. Unexpectedly, this mutation markedly decreased the ability of mTOR to phosphorylate certain sites in both PHAS-I and p70S6K. The results support the hypotheses that rapamycin disrupts substrate recognition instead of directly inhibiting phosphotransferase activity and that mTOR activity in cells is controlled by the phosphorylation of an inhibitory regulatory domain containing the mTAb-1 epitope. PMID:14560959

  2. Antioxidant, Antibacterial, and Cytoprotective Activity of Agathi Leaf Protein

    Directory of Open Access Journals (Sweden)

    A. S. Zarena

    2014-01-01

    Full Text Available In the present study a protein termed agathi leaf protein (ALP from Sesbania grandiflora Linn. (agathi leaves was isolated after successive precipitation with 65% ammonium sulphate followed by purification on Sephadex G 75. The column chromatography of the crude protein resulted in four peaks of which Peak I (P I showed maximum inhibition activity against hydroxyl radical. SDS-PAGE analysis of P I indicated that the molecular weight of the protein is ≈29 kDa. The purity of the protein was 98.4% as determined by RP-HPLC and showed a single peak with a retention time of 19.9 min. ALP was able to reduce oxidative damage by scavenging lipid peroxidation against erythrocyte ghost (85.50 ± 6.25%, linolenic acid (87.67 ± 3.14% at 4.33 μM, ABTS anion (88 ± 3.22%, and DNA damage (83 ± 4.20% at 3.44 μM in a dose-dependent manner. The purified protein offered significant protection to lymphocyte (72% at 30 min induced damage by t-BOOH. In addition, ALP showed strong antibacterial activity against Pseudomonas aeruginosa (20 ± 3.64 mm and Staphylococcus aureus (19 ± 1.53 mm at 200 μg/mL. The safety assessment showed that ALP does not induce cytotoxicity towards human lymphocyte at the tested concentration of 0.8 mg/mL.

  3. Novel Biosensor of Membrane Protein Proximity Based on Fluorogen Activated Proteins.

    Science.gov (United States)

    Vasilev, Kalin V; Gallo, Eugenio; Shank, Nathaniel; Jarvik, Jonathan W

    2016-01-01

    We describe a novel biosensor system for reporting proximity between cell surface proteins in live cultured cells. The biosensor takes advantage of recently developed fluorogen-activating proteins (FAPs) that display fluorescence only when bound to otherwise-nonfluorescent fluorogen molecules. To demonstrate feasibility for the approach, two recombinant rapamycin-binding proteins were expressed as single-pass plasma membrane proteins in HeLa cells; one of the proteins (scAvd- FRB) carried an extracellular avidin tag; the other (HL1-TO1-FKBP) carried an extracellular FAP. Cells were incubated with a membrane-impermeable bivalent ligand (biotin-PEG2000-DIR) consisting of biotin joined to a dimethyl-indole red (DIR) fluorogen by a polyethylene glycol linker, thus tethering the fluorogen to the scAvd-FRB fusion protein. Addition of rapamycin, which promotes FKBP-FRB dimerization and thereby brings the FAP in close proximity to the tethered fluorogen, led to a significant increase in DIR fluorescence. We call the new proximity assay TEFLA, for tethered fluorogen assay. PMID:27055753

  4. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  5. Protein Kinase Cδ mediates the activation of Protein Kinase D2 in Platelets

    OpenAIRE

    Bhavanasi, Dheeraj; Kim, Soochong; Goldfinger, Lawrence E.; Kunapuli, Satya P.

    2011-01-01

    Protein Kinase D (PKD) is a subfamily of serine/threonine specific family of kinases, comprised of PKD1, PKD2 and PKD3 (PKCμ, PKD2 and PKCν in humans). It is known that PKCs activate PKD, but the relative expression of isoforms of PKD or the specific PKC isoform/s responsible for its activation in platelets is not known. This study is aimed at investigating the pathway involved in activation of PKD in platelets. We show that PKD2 is the major isoform of PKD that is expressed in human as well ...

  6. Stimulation of DNA Glycosylase Activities by XPC Protein Complex: Roles of Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Yuichiro Shimizu

    2010-01-01

    Full Text Available We showed that XPC complex, which is a DNA damage detector for nucleotide excision repair, stimulates activity of thymine DNA glycosylase (TDG that initiates base excision repair. XPC appeared to facilitate the enzymatic turnover of TDG by promoting displacement from its own product abasic site, although the precise mechanism underlying this stimulation has not been clarified. Here we show that XPC has only marginal effects on the activity of E. coli TDG homolog (EcMUG, which remains bound to the abasic site like human TDG but does not significantly interacts with XPC. On the contrary, XPC significantly stimulates the activities of sumoylated TDG and SMUG1, both of which exhibit quite different enzymatic kinetics from unmodified TDG but interact with XPC. These results point to importance of physical interactions for stimulation of DNA glycosylases by XPC and have implications in the molecular mechanisms underlying mutagenesis and carcinogenesis in XP-C patients.

  7. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  8. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2009-02-27

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  9. Study on antibacterial activity of hydrogel from irradiated silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Bunnak, J.; Chaisupakitsin, M. [King Mongkut' s Institute of Technology Lardkrabang, Bangkok (Thailand)

    2001-03-01

    Hydrogels for biomedical application were prepared from solution blends of 3% silk protein and 3%, 10% poly (vinyl alcohol) (PVA) and followed with irradiation. Mixture of hydrogels were gamma irradiated at 10, 20, 30, 40 and 50 kGy under N{sub 2} atmosphere. To clarify anti-bacterial activity of hydrogels, modified of the Agar disk diffusion method and American Association of Textile Chemists and Colorists, AATCC Test Method 90-1977, were carried out. The four kinds of bacteria such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, were used. It was found that a 1:3 volume ratio of 3% silk protein and 3% PVA respectively, at 50 kGy irradiation, is suitable conditions for preparation hydrogels and trend to indicate the highest of an antibacterial activity against E. coli, B. subtilis and S. aureus. However the antibacterial activity of hydrogels against S. epidermidis was not clearly. These results are very useful to expand the application of hydrogel from irradiated silk protein to the medical products. (author)

  10. Negative regulation of lymphocyte activation by the adaptor protein LAX.

    Science.gov (United States)

    Zhu, Minghua; Granillo, Olivia; Wen, Renren; Yang, Kaiyong; Dai, Xuezhi; Wang, Demin; Zhang, Weiguo

    2005-05-01

    The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.

  11. Study on antibacterial activity of hydrogel from irradiated silk protein

    International Nuclear Information System (INIS)

    Hydrogels for biomedical application were prepared from solution blends of 3% silk protein and 3%, 10% poly (vinyl alcohol) (PVA) and followed with irradiation. Mixture of hydrogels were gamma irradiated at 10, 20, 30, 40 and 50 kGy under N2 atmosphere. To clarify anti-bacterial activity of hydrogels, modified of the Agar disk diffusion method and American Association of Textile Chemists and Colorists, AATCC Test Method 90-1977, were carried out. The four kinds of bacteria such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, were used. It was found that a 1:3 volume ratio of 3% silk protein and 3% PVA respectively, at 50 kGy irradiation, is suitable conditions for preparation hydrogels and trend to indicate the highest of an antibacterial activity against E. coli, B. subtilis and S. aureus. However the antibacterial activity of hydrogels against S. epidermidis was not clearly. These results are very useful to expand the application of hydrogel from irradiated silk protein to the medical products. (author)

  12. Overinhibition of Mitogen-Activated Protein Kinase Inducing Tau Hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    LI Hong-lian; CHEN Juan; LIU Shi-jie; ZHANG Jia-yu; WANG Qun; WANG Jian-zhi

    2005-01-01

    To reveal the relationship between mitogen-activated protein kinase (MAPK) and tau phosphorylation, we used different concentration of PD98059, an inhibitor of MEK (MAPK kinase), to treat mice neuroblastma (N2a) cell line for 6 h. It showed that the activity of MAPK decreased in a dose-dependent manner. But Western blot and immunofluorescence revealed that just when the cells were treated with 16 μmol/L PD98059, tau was hyperphosphorylated at Ser396/404 and Ser199/202 sites. We obtained the conclusion that overinhibited MAPK induced tau hyperphosphorylation at Ser396/404 and Ser199/202 sites.

  13. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    DEFF Research Database (Denmark)

    Straarup, EM; Schousboe, P; Hansen, HQ;

    1997-01-01

    with either PMA or OAG, or at 2,500 cells ml-1. At 500 cells ml-1 PMA induced the in vivo phosphorylation of at least six proteins. The myelin basic protein fragment 4-14 was phosphorylated in vitro in crude extracts of a culture of 250,000 cells ml-1. Both the in vivo and the in vitro phosphorylation were......Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein...... kinase C activators phorbol 12-myristate 13-acetate (PMA) or 1-oleyl 2-acetate glycerol (OAG) when added to 250 cells ml-1 supported cell survival and proliferation. In the presence of the serine and threonine kinase inhibitor staurosporine the cells died both at 250 cells ml-1 in cultures supplemented...

  14. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen;

    2011-01-01

    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxicall...... and subsequent rise in cellular [G6P]....

  15. Computational Modeling for the Activation Cycle of G-proteins by G-protein-coupled Receptors

    CERN Document Server

    Bao, Yifei; Glavy, Joseph; White, Tommy; 10.4204/EPTCS.40.4

    2010-01-01

    In this paper, we survey five different computational modeling methods. For comparison, we use the activation cycle of G-proteins that regulate cellular signaling events downstream of G-protein-coupled receptors (GPCRs) as a driving example. Starting from an existing Ordinary Differential Equations (ODEs) model, we implement the G-protein cycle in the stochastic Pi-calculus using SPiM, as Petri-nets using Cell Illustrator, in the Kappa Language using Cellucidate, and in Bio-PEPA using the Bio-PEPA eclipse plug in. We also provide a high-level notation to abstract away from communication primitives that may be unfamiliar to the average biologist, and we show how to translate high-level programs into stochastic Pi-calculus processes and chemical reactions.

  16. Influence of pEgr1-hsTRAIL plasmid on radiosensitivity and DR4 and DR5 expression levels in lung adencarcinoma A549 cells

    International Nuclear Information System (INIS)

    Objective: To measure the changes of the radiosensitivity in human lung adenocarcinoma A549 cells transfected with pEgr1-hsTRAIL plasmid and the effect on death receptor (DR) 4 and DR5 expressions, and to explore the radiosensitizing effect of pEgr1-hsTRAIL plasmid and possible mechanism on inducing apoptosis. Methods: There were normal control, pEgr1-hsTRAIL, 6 Gy X-rays, and pEgr1-hsTRAIL + 6 Gy X-rays groups in the experiment. After the A549 cells were transfected with liposome, and irradiated with X-rays, colony formation assay was used to measure the radiosensitivity, and reverse transcription PCR (RT-PCR) was performed to detect the DR4 and DR5 mRNA expressions, and Western blotting was applied to determine the DR4 and DR5 protein expressions. Results: The D0 values of A549 cells in normal control group and pEgr1-hsTRAIL group were 3.26 and 1.91 Gy, respectively, it indicated that pEgr1-hsTRAIL plasmid could enhance the radiosensitivity in A549 cells. The RT-PCR results showed that as compared with normal control group, the DR4 and DR5 mRNA expression levels in pEgr1-hsTRAIL group had no significant change, but those in 6 Gy X-rays group were increased significantly (P<0.05), and those in pEgr1-hsTRAIL + 6 Gy X-rays group were also increased significantly (P<0.05); the DR5 mRNA expression level in pEgr1-hsTRAIL + 6 Gy X-rays group was higher than that in 6 Gy X-rays group (P<0.05). The Western blotting results showed that the DR4 and DR5 protein expressions in pEgr1-hsTRAIL group did not change obviously compared with normal control group, but those in 6 Gy X-rays and pEgr1-hsTRAIL + 6 Gy X-rays groups were increased, and the DR5 protein expression in pEgr1-hsTRAIL + 6 Gy X-rays group was increased mostly. Conclusion: The recombinant plasmid pEgr1-hsTRAIL can enhance the radiosensitivity of A549 cells, and has the enhancing effect on DR5 expression induced by radiation, but no same effect on DR4 expression. (authors)

  17. Influenza leaves a TRAIL to pulmonary edema.

    Science.gov (United States)

    Brauer, Rena; Chen, Peter

    2016-04-01

    Influenza infection can cause acute respiratory distress syndrome (ARDS), leading to poor disease outcome with high mortality. One of the driving features in the pathogenesis of ARDS is the accumulation of fluid in the alveoli, which causes severe pulmonary edema and impaired oxygen uptake. In this issue of the JCI, Peteranderl and colleagues define a paracrine communication between macrophages and type II alveolar epithelial cells during influenza infection where IFNα induces macrophage secretion of TRAIL that causes endocytosis of Na,K-ATPase by the alveolar epithelium. This reduction of Na,K-ATPase expression decreases alveolar fluid clearance, which in turn leads to pulmonary edema. Inhibition of the TRAIL signaling pathway has been shown to improve lung injury after influenza infection, and future studies will be needed to determine if blocking this pathway is a viable option in the treatment of ARDS. PMID:26999598

  18. Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways.

    Science.gov (United States)

    Rastogi, Ruchi; Jiang, Zhongliang; Ahmad, Nisar; Rosati, Rita; Liu, Yusen; Beuret, Laurent; Monks, Robert; Charron, Jean; Birnbaum, Morris J; Samavati, Lobelia

    2013-11-22

    Mitogen-activated protein kinase phosphatase-1 (MKP-1), also known as dual specificity phosphatase-1 (DUSP-1), plays a crucial role in the deactivation of MAPKs. Several drugs with immune-suppressive properties modulate MKP-1 expression as part of their mechanism of action. We investigated the effect of mTOR inhibition through rapamycin and a dual mTOR inhibitor (AZD2014) on MKP-1 expression. Low dose rapamycin led to a rapid activation of both AKT and ERK pathways with a subsequent increase in MKP-1 expression. Rapamycin treatment led to phosphorylation of CREB, transcription factor 1 (ATF1), and ATF2, three transcription factors that bind to the cyclic AMP-responsive elements on the Mkp-1 promoter. Inhibition of either the MEK/ERK or the AKT pathway attenuated rapamycin-mediated MKP-1 induction. AZD2014 did not activate AKT but activated the ERK pathway, leading to a moderate MKP-1 induction. Using bone marrow-derived macrophages (BMDMs) derived from wild-type (WT) mice or mice deficient in AKT1 and AKT2 isoforms or BMDM from targeted deficiency in MEK1 and MEK2, we show that rapamycin treatment led to an increased MKP1 expression in BMDM from WT but failed to do so in BMDMs lacking the AKT1 isoform or MEK1 and MEK2. Importantly, rapamycin pretreatment inhibited LPS-mediated p38 activation and decreased nitric oxide and IL-6 production. Our work provides a conceptual framework for the observed immune modulatory effect of mTOR inhibition.

  19. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy.

    Science.gov (United States)

    Yang, Minghua; Liu, Liying; Xie, Min; Sun, Xiaofang; Yu, Yan; Kang, Rui; Yang, Liangchun; Zhu, Shan; Cao, Lizhi; Tang, Daolin

    2015-01-01

    Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.

  20. Suppression of casein kinase 2 sensitizes tumor cells to antitumor TRAIL therapy by regulating the phosphorylation and localization of p65 in prostate cancer.

    Science.gov (United States)

    Gang, Xiaokun; Wang, Yao; Wang, Yingdi; Zhao, Yu; Ding, Liya; Zhao, Jingwen; Sun, Lin; Wang, Guixia

    2015-09-01

    In the United States, prostate cancer (PCa) is the most commonly diagnosed cancer in males. For PCa at the late hormone-refractory stage, substantial improvement in treatment strategies is critically needed. TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent, but both intrinsic and acquired resistance to TRAIL poses a huge problem in establishing clinically effective TRAIL therapies. In the present study, we examined the role played by casein kinase 2 (CK2) in the TRAIL‑induced nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB) pathway in a PCa cell line. Downregulation of CK2 combined with a sub-dose of TRAIL suppressed p65 phosphorylation at serine 536. The combination treatment of TRAIL and the CK2 inhibitor decreased p65 nuclear translocation. Under the treatment of a sub-dose of TRAIL, downregulation of CK2, using both genetic and pharmacological approaches, decreased the transcriptional activity of NF-κB and the expression of NF-κB downstream anti-apoptosis genes. Therefore, we provided novel molecular mechanistic insight reporting that CK2 regulates the sensitivity of PCa cells to the antitumor effect of TRAIL. This is important for understanding how the TRAIL pathway is disrupted in PCa and may help to develop an effective combinatorial therapy for PCa.

  1. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients.

    Directory of Open Access Journals (Sweden)

    Jakob G Jespersen

    Full Text Available BACKGROUND: Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR, glycogen synthase kinase 3β (GSK3β and forkhead box O (FoxO pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU patients compared with healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k, eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, and muscle ring finger protein 1 (MuRF1; and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1, FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6, tumor necrosis factor α (TNF-α and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2=0.36, p<0.05 between insulin infusion dose and phosphorylated Akt was demonstrated. CONCLUSIONS/SIGNIFICANCE: We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.

  2. TRAIL treatment provokes mutations in surviving cells

    OpenAIRE

    Lovric, M M; Hawkins, C J

    2010-01-01

    Chemotherapy and radiotherapy commonly damage DNA and trigger p53-dependent apoptosis through intrinsic apoptotic pathways. Two unfortunate consequences of this mechanism are resistance due to blockade of p53 or intrinsic apoptosis pathways, and mutagenesis of non-malignant surviving cells which can impair cellular function or provoke second malignancies. Death ligand-based drugs, such as tumor necrosis factor-related apoptosis inducing ligand (TRAIL), stimulate extrinsic apoptotic signaling,...

  3. Heavy water at Trail, British Columbia

    International Nuclear Information System (INIS)

    Today Canada stands on the threshold of a nuclear renaissance, based on the CANDU reactor family, which depends on heavy water as a moderator and for cooling. Canada has a long history with heavy water, with commercial interests beginning in 1934, a mere two years after its discovery. At one time Canada was the world's largest producer of heavy water. The Second World War stimulated interest in this rather rare substance, such that the worlds largest supply (185 kg) ended up in Canada in 1942 to support nuclear research work at the Montreal Laboratories of the National Research Council. A year later commercial production began at Trail, British Columbia, to support work that later became known as the P-9 project, associated with the Manhattan Project. The Trail plant produced heavy water from 1943 until 1956, when it was shut down. During the war years the project was so secret that Lesslie Thomson, Special Liaison Officer reporting on nuclear matters to C.D. Howe, Minister of Munitions and Supply, was discouraged from visiting Trail operations. Thomson never did visit the Trail facility during the war. In 2005 the remaining large, tall concrete exchange tower was demolished at a cost of about $2.4 million, about the same as it cost to construct the facility about 60 years ago. Thus no physical evidence remains of this historic facility and another important artifact from Canada's nuclear history has disappeared forever. It is planned to place a plaque at the site at some point in the future. (author)

  4. H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Chen; Ying Wang; Jing-Yan Li; Wen-Rong Xu; You-Li Zhang

    2006-01-01

    AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells.METHODS: A VacA (+) and CagA (+) standard Hpyloriline NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins.RESULTS: Incubation with Hpylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after incubation with Hpylori extract and appeared to be a sustained event. MAPK/ERK kinase (MEK) inhibitor PD98059abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pyloriextract increased c-Fos expression and SRE-dependentgene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract.CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal transduction cascade.

  5. Large eddy simulation of trailing edge noise

    Science.gov (United States)

    Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan

    2015-11-01

    Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.

  6. Berberine Promotes Glucose Consumption Independently of AMP-Activated Protein Kinase Activation

    OpenAIRE

    Miao Xu; Yuanyuan Xiao; Jun Yin; Wolin Hou; Xueying Yu; Li Shen; Fang Liu; Li Wei; Weiping Jia

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation wer...

  7. Involvement of Hypothalamic AMP-Activated Protein Kinase in Leptin-Induced Sympathetic Nerve Activation

    OpenAIRE

    Mamoru Tanida; Naoki Yamamoto; Toshishige Shibamoto; Kamal Rahmouni

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effec...

  8. Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit

    OpenAIRE

    Wu, Chongming; Guo, Yanshen; Su, Yan; Zhang, Xue; Luan, Hong; Zhang, Xiaopo; Zhu, Huixin; He, Huixia; Wang, Xiaoliang; Sun, Guibo; Sun, Xiaobo; Guo, Peng; Zhu, Ping

    2013-01-01

    Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP-activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin-induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)-elicited intracellular lipid accumulation and increased AMPK activity in...

  9. Superoxide dismutase activity of Cu-bound prion protein

    Science.gov (United States)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2009-03-01

    Misfolding of the prion protein, PrP, has been linked to a group of neurodegenerative diseases, including the mad cow disease in cattle and the Creutzfeldt-Jakob disease in humans. The normal function of PrP is still unknown, but it was found that the PrP can efficiently bind Cu(II) ions. Early experiments suggested that Cu-PrP complex possesses significant superoxide dismutase (SOD) activity, but later experiments failed to confirm it and at present this issue remains unresolved. Using a recently developed hybrid DFT/DFT method, which combines Kohn-Sham DFT for the solute and its first solvation shells with orbital-free DFT for the remainder of the solvent, we have investigated SOD activity of PrP. The PrP is capable of incorporating Cu(II) ions in several binding modes and our calculations find that each mode has a different SOD activity. The highest activity found is comparable to those of well-known SOD proteins, suggesting that the conflicting experimental results may be due to different bindings of Cu(II) in those experiments.

  10. Activity of lactoperoxidase when adsorbed on protein layers.

    Science.gov (United States)

    Haberska, Karolina; Svensson, Olof; Shleev, Sergey; Lindh, Liselott; Arnebrant, Thomas; Ruzgas, Tautgirdas

    2008-09-15

    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paper we have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gold surfaces resulting in an amount of LPO adsorbed of 2.9mg/m(2). A lower amount of adsorbed LPO is obtained if the gold surface is exposed to bovine serum albumin, bovine or human mucin prior to LPO adsorption. The enzymatic activity of the adsorbed enzyme is in general preserved at the experimental conditions and varies only moderately when comparing bare gold and gold surface pretreated with the selected proteins. The measurement of LPO specific activity, however, indicate that it is about 1.5 times higher if LPO is adsorbed on gold surfaces containing a small amount of preadsorbed mucin in comparison to the LPO directly adsorbed on bare gold.

  11. Activated G Protein Gαs Samples Multiple Endomembrane Compartments.

    Science.gov (United States)

    Martin, Brent R; Lambert, Nevin A

    2016-09-23

    Heterotrimeric G proteins are localized to the plasma membrane where they transduce extracellular signals to intracellular effectors. G proteins also act at intracellular locations, and can translocate between cellular compartments. For example, Gαs can leave the plasma membrane and move to the cell interior after activation. However, the mechanism of Gαs translocation and its intracellular destination are not known. Here we use bioluminescence resonance energy transfer (BRET) to show that after activation, Gαs rapidly associates with the endoplasmic reticulum, mitochondria, and endosomes, consistent with indiscriminate sampling of intracellular membranes from the cytosol rather than transport via a specific vesicular pathway. The primary source of Gαs for endosomal compartments is constitutive endocytosis rather than activity-dependent internalization. Recycling of Gαs to the plasma membrane is complete 25 min after stimulation is discontinued. We also show that an acylation-deacylation cycle is important for the steady-state localization of Gαs at the plasma membrane, but our results do not support a role for deacylation in activity-dependent Gαs internalization. PMID:27528603

  12. Conservation, variability and the modeling of active protein kinases.

    Directory of Open Access Journals (Sweden)

    James D R Knight

    Full Text Available The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.

  13. Trail communication regulated by two trail pheromone components in the fungus-growing termite Odontotermes formosanus (Shiraki.

    Directory of Open Access Journals (Sweden)

    Ping Wen

    Full Text Available The eusocial termites are well accomplished in chemical communication, but how they achieve the communication using trace amount of no more than two pheromone components is mostly unknown. In this study, the foraging process and trail pheromones of the fungus-growing termite Odontotermes formosanus (Shiraki were systematically studied and monitored in real-time using a combination of techniques, including video analysis, solid-phase microextraction, gas chromatography coupled with either mass spectrometry or an electroantennographic detector, and bioassays. The trail pheromone components in foraging workers were (3Z-dodec-3-en-1-ol and (3Z,6Z-dodeca-3,6-dien-1-ol secreted by their sternal glands. Interestingly, ratio of the two components changed according to the behaviors that the termites were displaying. This situation only occurs in termites whereas ratios of pheromone components are fixed and species-specific for other insect cuticular glands. Moreover, in bioassays, the active thresholds of the two components ranged from 1 fg/cm to 10 pg/cm according to the behavioral contexts or the pheromonal exposure of tested workers. The two components did not act in synergy. (3Z-Dodec-3-en-1-ol induced orientation behavior of termites that explore their environment, whereas (3Z,6Z-dodeca-3,6-dien-1-ol had both an orientation effect and a recruitment effect when food was discovered. The trail pheromone of O. formosanus was regulated both quantitatively by the increasing number of workers involved in the early phases of foraging process, and qualitatively by the change in ratio of the two pheromone components on sternal glandular cuticle in the food-collecting workers. In bioassays, the responses of workers to the pheromone were also affected by the variation in pheromone concentration and component ratio in the microenvironment. Thus, this termite could exchange more information with nestmates using the traces of the two trail pheromone components

  14. Trail communication regulated by two trail pheromone components in the fungus-growing termite Odontotermes formosanus (Shiraki).

    Science.gov (United States)

    Wen, Ping; Ji, Bao-Zhong; Sillam-Dussès, David

    2014-01-01

    The eusocial termites are well accomplished in chemical communication, but how they achieve the communication using trace amount of no more than two pheromone components is mostly unknown. In this study, the foraging process and trail pheromones of the fungus-growing termite Odontotermes formosanus (Shiraki) were systematically studied and monitored in real-time using a combination of techniques, including video analysis, solid-phase microextraction, gas chromatography coupled with either mass spectrometry or an electroantennographic detector, and bioassays. The trail pheromone components in foraging workers were (3Z)-dodec-3-en-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol secreted by their sternal glands. Interestingly, ratio of the two components changed according to the behaviors that the termites were displaying. This situation only occurs in termites whereas ratios of pheromone components are fixed and species-specific for other insect cuticular glands. Moreover, in bioassays, the active thresholds of the two components ranged from 1 fg/cm to 10 pg/cm according to the behavioral contexts or the pheromonal exposure of tested workers. The two components did not act in synergy. (3Z)-Dodec-3-en-1-ol induced orientation behavior of termites that explore their environment, whereas (3Z,6Z)-dodeca-3,6-dien-1-ol had both an orientation effect and a recruitment effect when food was discovered. The trail pheromone of O. formosanus was regulated both quantitatively by the increasing number of workers involved in the early phases of foraging process, and qualitatively by the change in ratio of the two pheromone components on sternal glandular cuticle in the food-collecting workers. In bioassays, the responses of workers to the pheromone were also affected by the variation in pheromone concentration and component ratio in the microenvironment. Thus, this termite could exchange more information with nestmates using the traces of the two trail pheromone components that can be easily

  15. Hepatitis B virus x protein induces autophagy via activating death-associated protein kinase.

    Science.gov (United States)

    Zhang, H-T; Chen, G G; Hu, B-G; Zhang, Z-Y; Yun, J-P; He, M-L; Lai, P B S

    2014-01-01

    Hepatitis B virus x protein (HBX), a product of hepatitis B virus (HBV), is a multifunctional protein that regulates viral replication and various cellular functions. Recently, HBX has been shown to induce autophagy; however, the responsible mechanism is not fully known. In this study, we established stable HBX-expressing epithelial Chang cells as the platform to study how HBX induced autophagy. The results showed that the overexpression of HBX resulted in starvation-induced autophagy. HBX-induced autophagy was related to its ability to dephosphorylate/activate death-associated protein kinase (DAPK). The block of DAPK by its siRNA significantly counteracted HBX-mediated autophagy, confirming the positive role of DAPK in this process. HBX also induced Beclin 1, which functions at the downstream of the DAPK-mediated autophagy pathway. Although HBX could activate JNK, a kinase known to participate in autophagy in certain conditions, the change in JNK failed to influence HBX-induced autophagy. In conclusion, HBX induces autophagy via activating DAPK in a pathway related to Beclin 1, but not JNK. This new finding should help us to understand the role of autophagy in HBX-mediated pathogenesis and thus may provide targets for intervening HBX-related disorders.

  16. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  17. Diurnal variation of non-specular meteor trails

    Directory of Open Access Journals (Sweden)

    J. Hinrichs

    2009-05-01

    Full Text Available We present results of simulated radar observations of meteor trails in an effort to show how non-specular meteor trails are expected to vary as a function of a number of key atmospheric, ionospheric and meteoroid parameters. This paper identifies which geophysical sources effect the variability in non-specular trail radar observations, and provides an approach that uses some of these parameter dependencies to determine meteoroid and atmospheric properties based upon the radar meteor observations. The numerical model used follows meteor evolution from ablation and ionization to head echo plasma generation and through formation of field aligned irregularities (FAI. Our main finding is that non-specular meteor trail duration is highly sensitive to the presence of lower thermospheric winds or electric fields and the background ionospheric electron density. In an effort to make key predictions we present the first results of how the same meteoroid is expected to produce dramatically different meteor trails as a function of location and local time. For example, we show that mid-latitude trail durations are often shorter lasting than equatorial trail observations because of the difference in mid-latitude wind speed and equatorial drift speed. The simulated trails also account for observations showing that equatorial nighttime non-specular meteor trails last significantly longer and are observed more often than daytime trails.

  18. TALE factors poise promoters for activation by Hox proteins.

    Science.gov (United States)

    Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G

    2014-01-27

    Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription.

  19. Eruptive Current Sheets Trailing SOHO/LASCO CMEs

    Science.gov (United States)

    Webb, David F.

    2015-04-01

    Current sheets are important signatures of magnetic reconnection during the eruption of solar magnetic structures. Many models of eruptive flare/Coronal Mass Ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with the post-eruption magnetic loop arcade. Current sheets have been interpreted in white light images as narrow rays trailing the outward-moving CME, in ultraviolet spectra as narrow, bright hot features, and with different manifestations in other wavebands. This study continues that of Webb et al. (2003), who analyzed SMM white light CMEs having candidate magnetic disconnection features at the base of the CME. About half of those were followed by coaxial, bright rays suggestive of newly formed current sheets, and Webb et al. (2003) presented detailed results of analysis of those structures. In this work we extend the study of white light eruptive current sheets to the more sensitive and extensive SOHO/LASCO coronagraph data on CMEs. We comprehensively examined all LASCO CMEs during two periods that we identify with the minimum and maximum activity of solar cycle 23. We identified ~130 ray/current sheets during these periods, nearly all of which trailed CMEs with concave-outward backs. The occurrence rate of the ray/current sheets is 6-7% of all CMEs, irrespective of the solar cycle. We analyze the rays for durations, speeds, alignments, and motions and compare the observational results with some model predictions.

  20. Fluctuation driven active molecular transport in passive channel proteins

    Science.gov (United States)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  1. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  2. Mycobacteriophage putative GTPase-activating protein can potentiate antibiotics.

    Science.gov (United States)

    Yan, Shuangquan; Xu, Mengmeng; Duan, Xiangke; Yu, Zhaoxiao; Li, Qiming; Xie, Longxiang; Fan, Xiangyu; Xie, Jianping

    2016-09-01

    The soaring incidences of infection by antimicrobial resistant (AR) pathogens and shortage of effective antibiotics with new mechanisms of action have renewed interest in phage therapy. This scenario is exemplified by resistant tuberculosis (TB), caused by resistant Mycobacterium tuberculosis. Mycobacteriophage SWU1 A321_gp67 encodes a putative GTPase-activating protein. Mycobacterium smegmatis with gp67 overexpression showed changed colony formation and biofilm morphology and supports the efficacy of streptomycin and capreomycin against Mycobacterium. gp67 down-regulated the transcription of genes involved in cell wall and biofilm development. To our knowledge, this is the first report to show that phage protein in addition to lysin or recombination components can synergize with existing antibiotics. Phage components might represent a promising new clue for better antibiotic potentiators. PMID:27345061

  3. Metals in the active site of native protein phosphatase-1.

    Science.gov (United States)

    Heroes, Ewald; Rip, Jens; Beullens, Monique; Van Meervelt, Luc; De Gendt, Stefan; Bollen, Mathieu

    2015-08-01

    Protein phosphatase-1 (PP1) is a major protein Ser/Thr phosphatase in eukaryotic cells. Its activity depends on two metal ions in the catalytic site, which were identified as manganese in the bacterially expressed phosphatase. However, the identity of the metal ions in native PP1 is unknown. In this study, total reflection X-ray fluorescence (TXRF) was used to detect iron and zinc in PP1 that was purified from rabbit skeletal muscle. Metal exchange experiments confirmed that the distinct substrate specificity of recombinant and native PP1 is determined by the nature of their associated metals. We also found that the iron level associated with native PP1 is decreased by incubation with inhibitor-2, consistent with a function of inhibitor-2 as a PP1 chaperone. PMID:25890482

  4. The Tourism Carrying Capacity of Underwater Trails in Isabel Island National Park, Mexico

    Science.gov (United States)

    Ríos-Jara, Eduardo; Galván-Villa, Cristian Moisés; Rodríguez-Zaragoza, Fabián Alejandro; López-Uriarte, Ernesto; Muñoz-Fernández, Vicente Teófilo

    2013-08-01

    The popularity of ecotourism in the marine protected areas of Mexico has increased over the last 10 years; in particular there is a large development of a SCUBA diving industry in the Mexican Pacific including Isabel Island. Given the risks associated with human activity in the marine environments around this island, we propose two ecotourism management strategies: (1) the creation and use of underwater trails, and (2) the estimation of the specific tourism carrying capacity (TCC) for each trail. Six underwater trails were selected in sites that presented elements of biological, geological, and scenic interest, using information obtained during field observations. The methodology used to estimate the TCC was based upon the physical and biological conditions of each site, the infrastructure and equipment available, and the characteristics of the service providers and the administrators of the park. Correction factors of the TCC included elements of the quality of the visit and the threat and vulnerability of the marine environment of each trail (e.g., divers' expertise, size and distance between groups of divers, accessibility, wind, coral coverage). The TCC values ranged between 1,252 and 1,642 dives/year/trail, with a total of 8,597 dives/year for all six trails. Although these numbers are higher than the actual number of recreational visitors to the island (~1,000 dives per year), there is a need for adequate preventive management if the diving sites are to maintain their esthetic appeal and biological characteristics. Such management might be initially directed toward using only the sites and the TCC proposed here.

  5. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1.

    Directory of Open Access Journals (Sweden)

    Marie-Thérèse Melki

    2010-04-01

    Full Text Available Early stages of Human Immunodeficiency Virus-1 (HIV-1 infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK cells and dendritic cells (DCs. Immature DCs (iDCs capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process" at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL-Death Receptor 4 (DR4 pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV. The escape of DC(HIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP and the cellular inhibitor of apoptosis 2 (c-IAP2, induced by NK-DC(HIV cognate interaction. High-mobility group box 1 (HMGB1, an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV. Finally, we demonstrate that restoration of DC(HIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific

  6. Amygdala kindling alters protein kinase C activity in dentate gyrus.

    Science.gov (United States)

    Chen, S J; Desai, M A; Klann, E; Winder, D G; Sweatt, J D; Conn, P J

    1992-11-01

    Kindling is a use-dependent form of synaptic plasticity and a widely used model of epilepsy. Although kindling has been widely studied, the molecular mechanisms underlying induction of this phenomenon are not well understood. We determined the effect of amygdala kindling on protein kinase C (PKC) activity in various regions of rat brain. Kindling stimulation markedly elevated basal (Ca(2+)-independent) and Ca(2+)-stimulated phosphorylation of an endogenous PKC substrate (which we have termed P17) in homogenates of dentate gyrus, assayed 2 h after kindling stimulation. The increase in P17 phosphorylation appeared to be due at least in part to persistent PKC activation, as basal PKC activity assayed in vitro using an exogenous peptide substrate was increased in kindled dentate gyrus 2 h after the last kindling stimulation. A similar increase in basal PKC activity was observed in dentate gyrus 2 h after the first kindling stimulation. These results document a kindling-associated persistent PKC activation and suggest that the increased activity of PKC could play a role in the induction of the kindling effect.

  7. Protein kinase D activity controls endothelial nitric oxide synthesis.

    Science.gov (United States)

    Aicart-Ramos, Clara; Sánchez-Ruiloba, Lucía; Gómez-Parrizas, Mónica; Zaragoza, Carlos; Iglesias, Teresa; Rodríguez-Crespo, Ignacio

    2014-08-01

    Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase specifically phosphorylates recombinant eNOS on Ser1179. Treatment of endothelial cells with VEGF or phorbol 12,13-dibutyrate (PDBu) activates PKD and increases eNOS Ser1179 phosphorylation. In addition, pharmacological inhibition of PKD and gene silencing of both PKD1 and PKD2 abrogate VEGF signaling, resulting in a clear diminished migration of endothelial cells in a wound healing assay. Finally, inhibition of PKD in mice results in an almost complete disappearance of the VEGF-induced vasodilatation, as monitored through determination of the diameter of the carotid artery. Hence, our data indicate that PKD is a new regulatory kinase of eNOS in endothelial cells whose activity orchestrates mammalian vascular tone. PMID:24928905

  8. Plasma cholesteryl ester transfer protein mass and phospholipid transfer protein activity are associated with leptin in type 2 diabetes mellitus

    NARCIS (Netherlands)

    Dullaart, R. P. F.; de Vries, R.; Dallinga-Thie, G. M.; van Tol, A.; Sluiter, W. J.

    2007-01-01

    Adipose tissue contributes to plasma levels of lipid transfer proteins and is also the major source of plasma adipokines. We hypothesized that plasma cholesteryl ester transfer protein (CETP) mass, phospholipid transfer protein (PLTP) activity and cholesteryl ester transfer (CET, a measure of CETP a

  9. Egg Activation at Fertilization by a Soluble Sperm Protein.

    Science.gov (United States)

    Swann, Karl; Lai, F Anthony

    2016-01-01

    The most fundamental unresolved issue of fertilization is to define how the sperm activates the egg to begin embryo development. Egg activation at fertilization in all species thus far examined is caused by some form of transient increase in the cytoplasmic free Ca(2+) concentration. What has not been clear, however, is precisely how the sperm triggers the large changes in Ca(2+) observed within the egg cytoplasm. Here, we review the studies indicating that the fertilizing sperm stimulates a cytosolic Ca(2+) increase in the egg specifically by delivering a soluble factor that diffuses into the cytosolic space of the egg upon gamete membrane fusion. Evidence is primarily considered in species of eggs where the sperm has been shown to elicit a cytosolic Ca(2+) increase by initiating Ca(2+) release from intracellular Ca(2+) stores. We suggest that our best understanding of these signaling events is in mammals, where the sperm triggers a prolonged series of intracellular Ca(2+) oscillations. The strongest empirical studies to date suggest that mammalian sperm-triggered Ca(2+) oscillations are caused by the introduction of a sperm-specific protein, called phospholipase C-zeta (PLCζ) that generates inositol trisphosphate within the egg. We will discuss the role and mechanism of action of PLCζ in detail at a molecular and cellular level. We will also consider some of the evidence that a soluble sperm protein might be involved in egg activation in nonmammalian species.

  10. Genome activation by raspberry bushy dwarf virus coat protein.

    Science.gov (United States)

    Macfarlane, Stuart A; McGavin, Wendy J

    2009-03-01

    Two sets of infectious cDNA clones of raspberry bushy dwarf virus (RBDV) have been constructed, enabling either the synthesis of infectious RNA transcripts or the delivery of infectious binary plasmid DNA by infiltration of Agrobacterium tumefaciens. In whole plants and in protoplasts, inoculation of RBDV RNA1 and RNA2 transcripts led to a low level of infection, which was greatly increased by the addition of RNA3, a subgenomic RNA coding for the RBDV coat protein (CP). Agroinfiltration of RNA1 and RNA2 constructs did not produce a detectable infection but, again, inclusion of a construct encoding the CP led to high levels of infection. Thus, RBDV replication is greatly stimulated by the presence of the CP, a mechanism that also operates with ilarviruses and alfalfa mosaic virus, where it is referred to as genome activation. Mutation to remove amino acids from the N terminus of the CP showed that the first 15 RBDV CP residues are not required for genome activation. Other experiments, in which overlapping regions at the CP N terminus were fused to the monomeric red fluorescent protein, showed that sequences downstream of the first 48 aa are not absolutely required for genome activation. PMID:19218221

  11. A protein tyrosine phosphatase-like protein from baculovirus has RNA 5'-triphosphatase and diphosphatase activities.

    Science.gov (United States)

    Takagi, T; Taylor, G S; Kusakabe, T; Charbonneau, H; Buratowski, S

    1998-08-18

    The superfamily of protein tyrosine phosphatases (PTPs) includes at least one enzyme with an RNA substrate. We recently showed that the RNA triphosphatase domain of the Caenorhabditis elegans mRNA capping enzyme is related to the PTP enzyme family by sequence similarity and mechanism. The PTP most similar in sequence to the capping enzyme triphosphatase is BVP, a dual-specificity PTP encoded by the Autographa californica nuclear polyhedrosis virus. Although BVP previously has been shown to have modest tyrosine and serine/threonine phosphatase activity, we find that it is much more potent as an RNA 5'-phosphatase. BVP sequentially removes gamma and beta phosphates from the 5' end of triphosphate-terminated RNA, leaving a 5'-monophosphate end. The activity was specific for polynucleotides; nucleotide triphosphates were not hydrolyzed. A mutant protein in which the active site cysteine was replaced with serine was inactive. Three other dual-specificity PTPs (VH1, VHR, and Cdc14) did not exhibit detectable RNA phosphatase activity. Therefore, capping enzyme and BVP are members of a distinct PTP-like subfamily that can remove phosphates from RNA. PMID:9707557

  12. Immersion freezing of ice nucleation active protein complexes

    Science.gov (United States)

    Hartmann, S.; Augustin, S.; Clauss, T.; Wex, H.; Šantl-Temkiv, T.; Voigtländer, J.; Niedermeier, D.; Stratmann, F.

    2013-06-01

    Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS), the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between -5 °C to -38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA) bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about -6 °C to about -10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei) which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a) the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b) the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice nucleation are attached

  13. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  14. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  15. Protein composition of catalytically active human telomerase from immortal cells

    DEFF Research Database (Denmark)

    Cohen, Scott B; Graham, Mark E; Lovrecz, George O;

    2007-01-01

    Telomerase is a ribonucleoprotein enzyme complex that adds 5'-TTAGGG-3' repeats onto the ends of human chromosomes, providing a telomere maintenance mechanism for approximately 90% of human cancers. We have purified human telomerase approximately 10(8)-fold, with the final elution dependent on the...... enzyme's ability to catalyze nucleotide addition onto a DNA oligonucleotide of telomeric sequence, thereby providing specificity for catalytically active telomerase. Mass spectrometric sequencing of the protein components and molecular size determination indicated an enzyme composition of two molecules...... each of telomerase reverse transcriptase, telomerase RNA, and dyskerin....

  16. Interaction of calreticulin with CD40 ligand, TRAIL and Fas ligand

    DEFF Research Database (Denmark)

    Duus, K; Pagh, R T; Holmskov, U;

    2007-01-01

    found to bind calreticulin strongly. A low level or no binding was observed for adiponectin, tumour necrosis factor-alpha (TNF-alpha), CD30L, surfactant protein-A and -D and collagen VIII. The interaction with calreticulin required a conformational change in CD40L, TRAIL and FasL and showed the same...... is utilized by many other functionally diverse molecules and in this work the interaction of calreticulin with C1q and structurally similar molecules was investigated. In addition to C1q and MBL, CD40 ligand (CD40L), tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) were...... characteristics as calreticulin's interaction with C1q and MBL: a time-dependent saturable binding to immobilized protein, which was initially sensitive to salt but gradually developed into a salt-insensitive interaction. Thus, the interaction requires a structural change in the interaction partner and leads...

  17. The Metastasis-associated Proteins 1 and 2 Form Distinct Protein Complexes with Histone Deacetylase Activity

    Institute of Scientific and Technical Information of China (English)

    Ya-LiYao; Wcn-MingYang

    2005-01-01

    The metastasis-associated protein MTA1 has been shown to express differentially to high levels in metastatic cells. MTA2, which is homologous to MTA1, is a component of the NURD ATP-dependcnt chromatin remodeling and histone deacetylase complex. Here we report evidence that although both human MTA1 and MTA2 repress transcription specifically, are located in the nucleus, and contain associated histone deacetylase activity, they exist in two biochemically distinct protein complexes and may perform different functions pertaining to tumor metastasis. Specifically, both MTA1 and MTA2 complexes exert histone deacetylase activity. However, the MTA1 complex contained HDAC1/2, RbAp46/48, and MBD3, but not Sin3 or Mi2, two important components of the MTA2 complex. Moreover, the MTA2 complex is similar to the HDAC1 complex, suggesting a housekeeping role of the MTA2 complex. The MTA1 complex could be further separated, resulting in acore MTA1-HDAC complex, showing that the histone deacetylase activity and transcriptional repression activity were integral properties of the MTA1 complex. Finally, MTA1, unlike MTA2, did not interact with the pleotropic transcription factor YY1 or the immunophilin FKBP25. We suggest that MTA1 associates with adifferent set of transcription factors from MTA2 and that this property may contribute to the metastatic potential of cells overexpressing MTA1. We also report the finding of human MTA3, which is highly homologous toboth MTA1 and MTA2. However, MTA3 does not repress transcription to a significant level and appears to have a diffused pattern of subcellular localization, suggesting a biological role distinct from that of the other two MTA proteins.

  18. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Guo LG

    2012-03-01

    Full Text Available Liangran Guo1,2,4, Li Fan1,2, Jinfeng Ren1,2, Zhiqing Pang1,2, Yulong Ren1,2, Jingwei Li1,2, Ziyi Wen1,3, Yong Qian1,2, Lin Zhang1,2, Hang Ma4, Xinguo Jiang1,2 1School of Pharmacy, Fudan University, Zhangheng Road, Shanghai, 2Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Shanghai, 3School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China; 4College of Pharmacy, University of Rhode Island, RI, USAAbstract: The intractability of non-small cell lung cancer (NSCLC to multimodality treatments plays a large part in its extremely poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising cytokine for selective induction of apoptosis in cancer cells; however, many NSCLC cell lines are resistant to TRAIL-induced apoptosis. The therapeutic effect can be restored by treatments combining TRAIL with chemotherapeutic agents. Actinomycin D (ActD can sensitize NSCLC cells to TRAIL-induced apoptosis by upregulation of death receptor 4 (DR4 or 5 (DR5. However, the use of ActD has significant drawbacks due to the side effects that result from its nonspecific biodistribution in vivo. In addition, the short half-life of TRAIL in serum also limits the antitumor effect of treatments combining TRAIL and ActD. In this study, we designed a combination treatment of long-circulating TRAIL liposomes and ActD liposomes with the aim of resolving these problems. The combination of TRAIL liposomes and ActD liposomes had a synergistic cytotoxic effect against A-549 cells. The mechanism behind this combination treatment includes both increased expression of DR5 and caspase activation. Moreover, systemic administration of the combination of TRAIL liposomes and ActD liposomes suppressed both tumor formation and growth of established subcutaneous NSCLC xenografts in nude mice, inducing apoptosis without causing significant general toxicity. These results provide preclinical proof

  19. Security information in production and operations: a study on audit trails in database systems

    OpenAIRE

    Rodrigo Roratto; Evandro Dotto Dias

    2015-01-01

    Special care should be taken to verify the integrity and to ensure that sensitive data is adequately protected. One of the key activities for data loss prevention is anaudit. And in order to be able to audit a system, it is important to have reliable records of its activities. Systems that store critical data, whether financial or productive, must have features such as audit log, also called audit trail, which records all activities on critical data. This allows to identify harmful actions th...

  20. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit

    OpenAIRE

    Ernst, Oliver P.; Gramse, Verena; Kolbe, Michael; Hofmann, Klaus Peter; Heck, Martin

    2007-01-01

    G protein-coupled receptors mediate biological signals by stimulating nucleotide exchange in heterotrimeric G proteins (Gαβγ). Receptor dimers have been proposed as the functional unit responsible for catalytic interaction with Gαβγ. To investigate whether a G protein-coupled receptor monomer can activate Gαβγ, we used the retinal photoreceptor rhodopsin and its cognate G protein transducin (Gt) to determine the stoichiometry of rhodopsin/Gt binding and the rate of catalyzed nucleotide exchan...

  1. Thermally activated charge transport in microbial protein nanowires.

    Science.gov (United States)

    Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  2. Physical activity and high-sensitivity C-reactive protein.

    Science.gov (United States)

    Plaisance, Eric P; Grandjean, Peter W

    2006-01-01

    Cardiovascular disease (CVD) remains one of the leading causes of death and disability in developed countries around the world despite the documented success of lifestyle and pharmacological interventions. This illustrates the multifactorial nature of atherosclerosis and the use of novel inflammatory markers as an adjunct to risk factor reduction strategies. As evidence continues to accumulate that inflammation is involved in all stages of the development and progression of atherosclerosis, markers of inflammation such as high-sensitivity C-reactive protein (CRP) may provide additional information regarding the biological status of the atherosclerotic lesion. Recent investigations suggest that physical activity reduces CRP levels. Higher levels of physical activity and cardiorespiratory fitness are consistently associated with 6-35% lower CRP levels. Longitudinal training studies that have demonstrated reductions in CRP concentrations range from 16% to 41%, an effect that may be independent of baseline levels of CRP, body composition or weight loss. The average change in CRP associated with physical activity appears to be at least as good, if not better, than currently prescribed pharmacological interventions in similar populations. The primary purpose of this review will be to present evidence from both cross-sectional and longitudinal investigations that physical activity lowers CRP levels in a dose-response manner. Finally, this review will examine factors such as body composition, sex, blood sample timing, diet and smoking, which may influence the CRP response to physical activity. PMID:16646631

  3. TALE proteins bind to both active and inactive chromatin.

    Science.gov (United States)

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  4. Literary Trails, Urban Space and the Actualization of Heritage

    OpenAIRE

    Anja Saretzki

    2013-01-01

    The look at the websites of tourist information offices of a lot of cities recently shows a new trend: walking tours on the trail of a novel, so-called literary trails. The city is explored following the trail of a fictional character. In novels drawing intensely on history, heritage sites become interlinked from a new perspective. Tourists follow these trails like neo-pilgrims. Hall’s circuit of culture can be used to describe these relationships. Heritage manifests itself not just in tradit...

  5. Gene activation by triplex-forming oligonucleotide coupled to the activating domain of protein VP16.

    OpenAIRE

    Kuznetsova, S.; Ait-Si-Ali, S; Nagibneva, I; Troalen, F; Le Villain, J P; Harel-Bellan, A; Svinarchuk, F

    1999-01-01

    Triplex-forming oligonucleotides (TFOs) are generally designed to inhibit transcription or DNA replication but can be used for more diverse purposes. Here we have designed a chimera peptide-TFO able to activate transcription from a target gene. The designed hybrid molecule contains a triplex-forming sequence, linked through a phosphoroamidate bond to several minimal transcriptional activation domains derived from Herpes simplex virus protein 16 (VP16). We show here that this TFO-peptide chime...

  6. Antistaphylococcal activity of bacteriophage derived chimeric protein P128

    Directory of Open Access Journals (Sweden)

    Vipra Aradhana A

    2012-03-01

    Full Text Available Abstract Background Bacterial drug resistance is one of the most significant challenges to human health today. In particular, effective antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA are urgently needed. A causal relationship between nasal commensal S. aureus and infection has been reported. Accordingly, elimination of nasal S. aureus reduces the risk of infection. Enzymes that degrade bacterial cell walls show promise as antibacterial agents. Bacteriophage-encoded bacterial cell wall-degrading enzymes exhibit intrinsic bactericidal activity. P128 is a chimeric protein that combines the lethal activity of the phage tail-associated muralytic enzyme of Phage K and the staphylococcal cell wall targeting-domain (SH3b of lysostaphin. Here we report results of in vitro studies evaluating the susceptibility of staphylococcal strains to this novel protein. Results Using the broth microdilution method adapted for lysostaphin, we found that P128 is effective against S. aureus clinical strains including MRSA, methicillin-sensitive S. aureus (MSSA, and a mupirocin-resistant S. aureus. Minimum bactericidal concentrations and minimum inhibitory concentrations of P128 (1-64 μg/mL were similar across the 32 S. aureus strains tested, demonstrating its bactericidal nature. In time-kill assays, P128 reduced colony-forming units by 99.99% within 1 h and inhibited growth up to 24 h. In an assay simulating topical application of P128 to skin or other biological surfaces, P128 hydrogel was efficacious when layered on cells seeded on solid media. P128 hydrogel was lethal to Staphylococci recovered from nares of healthy people and treated without any processing or culturing steps, indicating its in situ efficacy. This methodology used for in vitro assessment of P128 as an agent for eradicating nasal carriage is unique. Conclusions The novel chimeric protein P128 is a staphylococcal cell wall-degrading enzyme under development for

  7. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB

    International Nuclear Information System (INIS)

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells. The potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay. SH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression. These results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling

  8. Protein phosphatase-1 activates CDK9 by dephosphorylating Ser175.

    Directory of Open Access Journals (Sweden)

    Tatiana Ammosova

    Full Text Available The cyclin-dependent kinase CDK9/cyclin T1 induces HIV-1 transcription by phosphorylating the carboxyterminal domain (CTD of RNA polymerase II (RNAPII. CDK9 activity is regulated by protein phosphatase-1 (PP1 which was previously shown to dephosphorylate CDK9 Thr186. Here, we analyzed the effect of PP1 on RNAPII phosphorylation and CDK9 activity. The selective inhibition of PP1 by okadaic acid and by NIPP1 inhibited phosphorylation of RNAPII CTD in vitro and in vivo. Expression of the central domain of NIPP1 in cultured cells inhibited the enzymatic activity of CDK9 suggesting its activation by PP1. Comparison of dephosphorylation of CDK9 phosphorylated by ((32P in vivo and dephosphorylation of CDK9's Thr186 analyzed by Thr186 phospho-specific antibodies, indicated that a residue other than Thr186 might be dephosphorylated by PP1. Analysis of dephosphorylation of phosphorylated peptides derived from CDK9's T-loop suggested that PP1 dephosphorylates CDK9 Ser175. In cultured cells, CDK9 was found to be phosphorylated on Ser175 as determined by combination of Hunter 2D peptide mapping and LC-MS analysis. CDK9 S175A mutant was active and S175D--inactive, and dephosphorylation of CDK9's Ser175 upregulated HIV-1 transcription in PP1-dependent manner. Collectively, our results point to CDK9 Ser175 as novel PP1-regulatory site which dephosphorylation upregulates CDK9 activity and contribute to the activation of HIV-1 transcription.

  9. Exercise in rats does not alter hypothalamic AMP-activated protein kinase activity

    DEFF Research Database (Denmark)

    Andersson, Ulrika; Treebak, Jonas Thue; Nielsen, Jakob Nis;

    2005-01-01

    Recent studies have demonstrated that AMP-activated protein kinase (AMPK) in the hypothalamus is involved in the regulation of food intake. Because exercise is known to influence appetite and cause substrate depletion, it may also influence AMPK in the hypothalamus. Male rats that either rested...

  10. Osmotic cell shrinkage activates ezrin/radixin/moesin (ERM) proteins : activation mechanisms and physiological implications

    NARCIS (Netherlands)

    Rasmussen, M.; Alexander, R.T.; Darborg, B.V.; Mobjerg, N.; Hoffmann, E.K.; Kapus, A.; Pedersen, S.F.

    2008-01-01

    Hyperosmotic shrinkage induces multiple cellular responses, including activation of volume-regulatory ion transport, cytoskeletal reorganization, and cell death. Here we investigated the possible roles of ezrin/radixin/moesin (ERM) proteins in these events. Osmotic shrinkage of Ehrlich Lettre ascite

  11. Protein kinase C-dependent activation of P44/42 mitogen-activated protein kinase and heat shock protein 70 in signal transduction during hepatocyte ischemic preconditioning

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Yu-Qiang Shan; Ming-Xin Pan; Yu Wang; Li-Jun Tang; Hao Li; Zhi Zhang

    2004-01-01

    AIM: To investigate the significance of protein kinase C (PKC), P44/42 mitogen-activated protein kinase (MAPKs) and heat shock protein (HSP)70 signal transduction during hepatocyte ischemic preconditioning.METHODS: In this study we used an in vitro ischemic preconditioning (IP) model for hepatocytes and an in vivo model for rat liver to investigate the significance of protein kinase C (PKC), P44/42 mitogen-activated protein kinase (P44/42 MAPKs) and heat shock protein 70 (HSP70) signal transduction in IP. Through a normal liver cell hypoxic preconditioning (HP) model in which cultured normal liver cells were subjected to 3 cycles of 5 min of incubation under hypoxic conditions followed by 5 min of reoxygenation and subsequently exposed to hypoxia and reoxygenation for 6 h and 9 h respectively. PKC inhibitor, activator and MEK inhibitor were utilized to analyze the phosphorylation of PKC, the expression of P44/42 MAPKs and HSP70.Viability and cellular ultrastructure were also observed. By using rat liver as an in vivo model of liver preconditioning (3 cycles of 10-min occlusion and 10-min reperfusion),in vivo phosphorylation of PKC and P44/42MAPKs, HSP70 expression were further analyzed. AST/ALT concentration,cellular structure and ultrastruture were also observed.All the data were statistically analyzed.RESULTS: Similar results were obtained in both in vivo and in vitro IP models. Compared with the control without IP (or HP), the phosphorylation of PKC and P44/42 MAPKs and the expression of HSP70 were obviously increased in IP (or HP) treated model in which cytoprotection could be found. The effects of preconditioning were mimicked by stimulating PKC with 4β phorobol-12-myristate13-acetate (PMA). Conversely, inhibiting PKC with chelerythrine abolished the protection given by preconditioning. PD98059,inhibitor of MEK (the upstream kinase of P44/42MAPKs),also reverted the cytoprotection exerted by preconditioning.CONCLUSION: The results demonstrate that

  12. Opposing roles of TGF-β and EGF in the regulation of TRAIL-induced apoptosis in human breast epithelial cells.

    Science.gov (United States)

    Cano-González, Ana; López-Rivas, Abelardo

    2016-08-01

    Transforming growth factor-beta (TGF-β) induces the epithelial to mesenchymal transition (EMT) in breast epithelial cells and plays an important role in mammary morphogenesis and breast cancer. In non-transformed breast epithelial cells TGF-β antagonizes epidermal growth factor (EGF) action and induces growth inhibition. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to participate in lumen formation during morphogenesis of human breast epithelial cells. Our previous work indicated that sensitivity of human breast epithelial cells to TRAIL can be modulated through the activation of the epidermal growth factor receptor-1 (EGFR). Here, we show that TGF-β opposes EGF-mediated sensitization to TRAIL-induced caspase-8 activation and apoptosis in non-transformed breast epithelial cells. Death-inducing signalling complex (DISC) formation by TRAIL was significantly reduced in cells treated with TGF-β. TGF-β treatment activates cytoprotective autophagy and down-regulates TRAIL-R2 expression at the cell surface by promoting the intracellular accumulation of this receptor. Lastly, we demonstrate that EMT is not involved in the inhibitory effect of TGF-β on apoptosis by TRAIL. Together, the data reveal a fine regulation by EGF and TGF-β of sensitivity of human breast epithelial cells to TRAIL which may be relevant during morphogenesis. PMID:27208428

  13. Opposing roles of TGF-β and EGF in the regulation of TRAIL-induced apoptosis in human breast epithelial cells.

    Science.gov (United States)

    Cano-González, Ana; López-Rivas, Abelardo

    2016-08-01

    Transforming growth factor-beta (TGF-β) induces the epithelial to mesenchymal transition (EMT) in breast epithelial cells and plays an important role in mammary morphogenesis and breast cancer. In non-transformed breast epithelial cells TGF-β antagonizes epidermal growth factor (EGF) action and induces growth inhibition. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to participate in lumen formation during morphogenesis of human breast epithelial cells. Our previous work indicated that sensitivity of human breast epithelial cells to TRAIL can be modulated through the activation of the epidermal growth factor receptor-1 (EGFR). Here, we show that TGF-β opposes EGF-mediated sensitization to TRAIL-induced caspase-8 activation and apoptosis in non-transformed breast epithelial cells. Death-inducing signalling complex (DISC) formation by TRAIL was significantly reduced in cells treated with TGF-β. TGF-β treatment activates cytoprotective autophagy and down-regulates TRAIL-R2 expression at the cell surface by promoting the intracellular accumulation of this receptor. Lastly, we demonstrate that EMT is not involved in the inhibitory effect of TGF-β on apoptosis by TRAIL. Together, the data reveal a fine regulation by EGF and TGF-β of sensitivity of human breast epithelial cells to TRAIL which may be relevant during morphogenesis.

  14. From Ant Trails to Pedestrian Dynamics

    Directory of Open Access Journals (Sweden)

    Andreas Schadschneider

    2003-01-01

    Full Text Available This paper presents a model for the simulation of pedestrian dynamics inspired by the behaviour of ants in ant trails. Ants communicate by producing a pheromone that can be smelled by other ants. In this model, pedestrians produce a virtual pheromone that influences the motion of others. In this way all interactions are strictly local, and so even large crowds can be simulated very efficiently. Nevertheless, the model is able to reproduce the collective effects observed empirically, eg the formation of lanes in counterflow. As an application, we reproduce a surprising result found in experiments of evacuation from an aircraft.

  15. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    International Nuclear Information System (INIS)

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV) vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy

  16. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2012-04-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Methods Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. Results The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. Conclusion These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy.

  17. Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    PENG Kan-fu; WU Xiong-fei; ZHAO Hong-wen; SUN Yan

    2006-01-01

    Background Advanced oxidation protein products (AOPPs) are new uremic toxins reported by Witko-Sarsat in 1996, which are associated with the pathogenesis of atherosclerosis. However, the mechanisms by which AOPPs enhance atherosclerosis have not been fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which stimulates migration of monocytes and plays a critical role in the development of atherosclerosis. In this study, we investigated the effect of AOPPs on MCP-1 expression in cultured vascular smooth muscle cells (VSMCs).Methods VSMCs were cultured and then co-incubated with AOPP (200 μ mol/L, 400 μ mol/L) for different times with or without pretreatment with specific p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. RT-PCR and Western blott were used to detect MCP-1 mRNA and protein expression at different time points after AOPP stimulation in rat smooth muscle cells. Western blot was used to detect the expression of phosphorylated p38 MAPK.Results Treatment of VSMC with AOPPs resulted in a significant increase of the expression of MCP- 1 mRNA and protein in time- and dose-dependent manner, and could activated p38 MAPK. Pretreatment of VSMCs with SB203580 resulted in a dose-dependent inhibition of AOPPs-induced MCP-1 mRNA and protein expression.Conclusions AOPPs can stimulate MCP-1 expression via p38 MAPK in VSMCs. This suggests that AOPPs might contribute to the formation of atherosclerosis through this proinflammatory effect.

  18. Protein kinase A binds and activates heat shock factor 1.

    Directory of Open Access Journals (Sweden)

    Ayesha Murshid

    Full Text Available BACKGROUND: Many inducible transcription factors are regulated through batteries of posttranslational modifications that couple their activity to inducing stimuli. We have studied such regulation of Heat Shock Factor 1 (HSF1, a key protein in control of the heat shock response, and a participant in carcinogenisis, neurological health and aging. As the mechanisms involved in the intracellular regulation of HSF1 in good health and its dysregulation in disease are still incomplete we are investigating the role of posttranslational modifications in such regulation. METHODOLOGY/PRINCIPAL FINDINGS: In a proteomic study of HSF1 binding partners, we have discovered its association with the pleiotropic protein kinase A (PKA. HSF1 binds avidly to the catalytic subunit of PKA, (PKAcα and becomes phosphorylated on a novel serine phosphorylation site within its central regulatory domain (serine 320 or S320, both in vitro and in vivo. Intracellular PKAcα levels and phosphorylation of HSF1 at S320 were both required for HSF1 to be localized to the nucleus, bind to response elements in the promoter of an HSF1 target gene (hsp70.1 and activate hsp70.1 after stress. Reduction in PKAcα levels by small hairpin RNA led to HSF1 exclusion from the nucleus, its exodus from the hsp70.1 promoter and decreased hsp70.1 transcription. Likewise, null mutation of HSF1 at S320 by alanine substitution for serine led to an HSF1 species excluded from the nucleus and deficient in hsp70.1 activation. CONCLUSIONS: These findings of PKA regulation of HSF1 through S320 phosphorylation add to our knowledge of the signaling networks converging on this factor and may contribute to elucidating its complex roles in the stress response and understanding HSF1 dysregulation in disease.

  19. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  20. A Variable Light Domain Fluorogen Activating Protein Homodimerizes To Activate Dimethylindole Red

    Energy Technology Data Exchange (ETDEWEB)

    Senutovitch, Nina; Stanfield, Robyn L.; Bhattacharyya, Shantanu; Rule, Gordon S.; Wilson, Ian A.; Armitage, Bruce A.; Waggoner, Alan S.; Berget, Peter B. (Scripps); (CM)

    2012-07-11

    Novel fluorescent tools such as green fluorescent protein analogues and fluorogen activating proteins (FAPs) are useful in biological imaging for tracking protein dynamics in real time with a low fluorescence background. FAPs are single-chain variable fragments (scFvs) selected from a yeast surface display library that produce fluorescence upon binding a specific dye or fluorogen that is normally not fluorescent when present in solution. FAPs generally consist of human immunoglobulin variable heavy (V{sub H}) and variable light (V{sub L}) domains covalently attached via a glycine- and serine-rich linker. Previously, we determined that the yeast surface clone, V{sub H}-V{sub L} M8, could bind and activate the fluorogen dimethylindole red (DIR) but that the fluorogen activation properties were localized to the M8V{sub L} domain. We report here that both nuclear magnetic resonance and X-ray diffraction methods indicate the M8V{sub L} forms noncovalent, antiparallel homodimers that are the fluorogen activating species. The M8V{sub L} homodimers activate DIR by restriction of internal rotation of the bound dye. These structural results, together with directed evolution experiments with both V{sub H}-V{sub L} M8 and M8V{sub L}, led us to rationally design tandem, covalent homodimers of M8V{sub L} domains joined by a flexible linker that have a high affinity for DIR and good quantum yields.

  1. Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro

    Institute of Scientific and Technical Information of China (English)

    Rong ZHOU; Ling WANG; Xing XU; Jing CHEN; Li-hong HU; Li-li CHEN; Xu SHEN

    2013-01-01

    Aim:To discover the active compound on AMP-activated protein kinase (AMPK) activation and investigate the effects of the active compound 1,8-dihydroxyanthraquinone (danthron) from the traditional Chinese medicine rhubarb on AMPK-mediated lipid and glucose metabolism in vitro.Methods:HepG2 and C2C12 cells were used.Cell viability was determined using MTT assay.Real-time PCR was performed to measure the gene expression.Western blotting assay was applied to investigate the protein phosphorylation level.Enzymatic assay kits were used to detect the total cholesterol (TC),triglyceride (TG) and glucose contents.Results:Danthron (0.1,1,and 10 μmol/L) dose-dependently promoted the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC)in both HepG2 and C2C12 cells.Meanwhile,danthron treatment significantly reduced the lipid synthesis related sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthetase (FAS) gene expressions,and the TC and TG levels.In addition,danthron treatment efficiently increased glucose consumption.The actions of danthron on lipid and glucose metabolism were abolished or reversed by co-treatment with the AMPK inhibitor compound C.Conclusion:Danthron effectively reduces intracellular lipid contents and enhanced glucose consumption in vitro via activation of AMPK signaling pathway.

  2. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    Science.gov (United States)

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  3. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass

    OpenAIRE

    Shah, M; Kola, B; Bataveljic, A.; Arnett, T. R.; Viollet, B.; Saxon, L.; Korbonits, M.; C. Chenu

    2010-01-01

    Adenosine 5′-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cult...

  4. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    C.W. Galvão

    2012-12-01

    Full Text Available DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs can interact with the H. seropedicaeRecA protein (RecA Hs and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs. RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA, inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions.

  5. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Galvão, C.W. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Souza, E.M. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Etto, R.M. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Pedrosa, F.O.; Chubatsu, L.S.; Yates, M.G. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Schumacher, J.; Buck, M. [Department of Life Sciences, Imperial College London, London (United Kingdom); Steffens, M.B.R. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2012-10-15

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX{sub Hs}) can interact with the H. seropedicae RecA protein (RecA{sub Hs}) and that RecA{sub Hs} possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX{sub Hs} inhibited 90% of the RecA{sub Hs} DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA{sub Hs}. RecA{sub Hs} ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX{sub Hs} was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX{sub Hs} protein negatively modulates the RecA{sub Hs} activities by protein-protein interactions and also by DNA-protein interactions.

  6. Stimulation of IGF-binding protein-1 secretion by AMP-activated protein kinase.

    Science.gov (United States)

    Lewitt, M S

    2001-04-20

    Insulin-like growth factor-binding protein-1 (IGFBP-1) is stimulated during intensive exercise and in catabolic conditions to very high concentrations, which are not completely explained by known regulators such as insulin and glucocorticoids. The role of AMP-activated protein kinase (AMPK), an important signaling system in lipid and carbohydrate metabolism, in regulating IGFBP-1 was studied in H4-II-E rat hepatoma cells. Arsenic(III) oxide and 5-aminoimidazole-4-carboxamide-riboside (AICAR) were used as activators. AICAR (150 microM) stimulated IGFBP-1 secretion twofold during a 5-h incubation (P = 0.002). Insulin (100 ng/ml) inhibited IGFBP-1 by 80% (P < 0.001), but this was completely abolished in the presence of 150 microM AICAR. The effect of dexamethasone in stimulating IGFBP-1 threefold was additive to the effect of AICAR (P < 0.001) and, in the presence of AICAR, was incompletely inhibited by insulin. In conclusion AMPK is identified as a novel regulatory pathway for IGFBP-1, stimulating secretion and blocking the inhibitory effect of insulin. PMID:11302732

  7. The total protein content, protein fractions and proteases activities of drone prepupae of Apis mellifera due to varrosis.

    Science.gov (United States)

    Zółtowska, Krystyna; Lipiński, Zbigniew; Dmitryjuk, Małgorzata

    2005-01-01

    The proteins level and activities of acid and alkaline proteases in whole body extracts of drone prepupae of Apis mellifera naturally infested with Varroa destructor were studied. The infested and a non-infested group did not differ significantly in their total protein content. However, some differences in protein profiles were found. A lack of three protein fractions of moderate and lower molecular weight in infested prepupae was noted. Moreover, some differences in the quantity of protein in most of the fractions were observed. The activity of acid proteases from infested prepupae was lower (p < 0.05) compared with the activity of these proteases from the non-infested one group. The infested drone had higher activity of alkaline proteases than non-infested but this difference was not statisticaly significant. PMID:16841690

  8. 77 FR 1723 - Notice of Availability, Potomac Heritage National Scenic Trail

    Science.gov (United States)

    2012-01-11

    ... National Park Service Notice of Availability, Potomac Heritage National Scenic Trail AGENCY: National Park..., Management and Interpretation of Potomac Heritage National Scenic Trail Segments and for Coordination among..., Administration, Management and Interpretation of Potomac Heritage National Scenic Trail Segments and...

  9. Activation of mitogen-activated protein kinase pathway by extremely low-dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami [Nagasaki Univ., Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2003-07-01

    We demonstrated here that X-ray irradiation at very low doses of between 2 and 5 cGy stimulated activity of a member of mitogen-activated protein (MAP) kinase, the extracellular signal-regulated kinase (ERK) 1/2, in normal human diploid cells. Higher doses of irradiation at more than 1 Gy induced phosphorylation of ERK1/2 and accumulated p53 protein. Phosphorylation of ERK1/2 decreased with dose down to 50 cGy, however, doses of between 5 cGy and 2 cGy phosphorylated ERK1/2 as efficiently as higher doses of X-rays, while the p53 protein level was no longer changed by doses below 50 cGy. ATM-dependent phosphorylation of p53 protein at Ser15 and histone H2AX at Ser139 was only observed at higher doses at more than 10 cGy of X-rays. We found that MEK1 was phosphorylated with both 2 cGy and 6 Gy of X-rays, and that the MEK1 inhibitor, PD98059 decreased phosphorylation of the ERK1/2 proteins induced by 2 cGy or 6 Gy of X-rays. Similar suppressive effect was observed with the specific epidermal growth factor (EGF) receptor tyrosine kinase inhibitor, AG1478. These results indicate that a limited range of low dose ionizing radiation differentially activate ERK1/2 kinases via activation of EGF receptor and MEK, which mediates various effects of cells receiving very low doses of ionizing radiation. (author)

  10. Tinjauan Proses Perencanaan Heritage Trails Sebagai Produk Pariwisata dalam RIPPDA Kota Bandung

    Directory of Open Access Journals (Sweden)

    Teguh Amor Patria

    2013-11-01

    Full Text Available Despite the fact that Bandung boasts a large number of heritage buildings as tourism potentials which become one of priorities in Rencana Induk Pengembangan Pariwisata Daerah (RIPPDA Kota Bandung 2007-2016 (municipal tourism development plans, such plan is assumed as less detailed and comprehensive. It also emphasizes only on supply and spatial aspect. This paper reviewed the planning process of heritage trails as tourism product in the tourism development plan. A comparative study between actual and ideal condition was conducted and was presented in descriptive way. It consists of introduction, theoretical background relating to tourism product planning process and heritage tourism, research methodology, actual conditions of heritage trails development in Bandung, critical review of heritage trails in Bandung, and conclusion andrecommendation. Such findings reveal the actual condition of heritage trails development as a growing tourism product in Bandung today, which lacks details, depth, and comprehensiveness, data from the past, and review from supply side in order to plan for a better heritage tourism activity.

  11. Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit

    Science.gov (United States)

    Wu, Chongming; Guo, Yanshen; Su, Yan; Zhang, Xue; Luan, Hong; Zhang, Xiaopo; Zhu, Huixin; He, Huixia; Wang, Xiaoliang; Sun, Guibo; Sun, Xiaobo; Guo, Peng; Zhu, Ping

    2014-01-01

    Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP-activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin-induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)-elicited intracellular lipid accumulation and increased AMPK activity in a dose-dependent manner. Cordycepin-induced AMPK activation was not accompanied by changes in either the intracellular levels of AMP or the AMP/ATP ratio, nor was it influenced by calmodulin-dependent protein kinase kinase (CaMKK) inhibition; however, this activation was significantly suppressed by liver kinase B1 (LKB1) knockdown. Molecular docking, fluorescent and circular dichroism measurements showed that cordycepin interacted with the γ1 subunit of AMPK. Knockdown of AMPKγ1 by siRNA substantially abolished the effects of cordycepin on AMPK activation and lipid regulation. The modulating effects of cordycepin on the mRNA levels of key lipid regulatory genes were also largely reversed when AMPKγ1 expression was inhibited. Together, these data suggest that cordycepin may inhibit intracellular lipid accumulation through activation of AMPK via interaction with the γ1 subunit. PMID:24286368

  12. Wake evolution and trailing vortex instabilities

    Science.gov (United States)

    Odemark, Ylva; Fransson, Jens H. M.

    2011-11-01

    The production losses and inhomogeneous loads of wind power turbines placed in the wake of another turbine is a well-known problem when building new wind power farms, and a subject of intensive research. The present work aims at developing an increased understanding of the behaviour of turbine wakes, with special regard to wake evolution and the stability of the trailing vortices. Single point velocity measurements with hot-wire anemometry were performed in the wake of a small-scale model turbine. The model was placed in the middle of the wind tunnel test section, outside the boundary layers from the wind tunnel walls. In order to study the stability of the wake and the trailing vortices, a disturbance was introduced at the end of the nacelle. This was accomplished through two orifices perpendicular to the main flow, which were connected to a high-pressure tank and two fast-switching valves. Both varicose and sinusoidal modes of different frequencies could be triggered. By also triggering the measurements on the blade passage, the meandering of the wake and the disturbance frequency, phase averaged results could be computed. The results for different frequencies as well as studies of wake evolution will be presented.

  13. How do mice follow odor trails?

    Science.gov (United States)

    Zwicker, David; Trastour, Sophie; Mishra, Shruti; Mathis, Alexander; Murthy, Venkatesh; Brenner, Michael P.

    2015-11-01

    Mice are excellent at following odor trails e.g. to locate food or to find mates. However, it is not yet understood what navigation strategies they use. In principle, they could either evaluate temporal differences between sniffs or they could use concurrent input from the two nostrils. It is unknown to what extend these two strategies contribute to mice's performance. When mice follow trails, odors evaporate from the ground, are transported by flow in the air, and are then inhaled with the two nostrils. In order to differentiate between the two navigation strategies, we determine what information the mouse receives: first, we calculate the airflow by numerically solving the incompressible Navier-Stokes equations. We then determine the spatiotemporal odor concentration from the resulting advection-diffusion equations. Lastly, we determine the odor amount in each nostril by calculating the inhalation volumes using potential flow theory. Taken together, we determine the odor amount in each nostril during each sniff, allowing a detailed study of navigation strategies.

  14. Activation of purified calcium channels by stoichiometric protein phosphorylation

    International Nuclear Information System (INIS)

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of 45Ca2+ uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of 45Ca2+ uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd2+, Ni2+, and Mg2+. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels

  15. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems.

    Science.gov (United States)

    Niyonsaba, François; Nagaoka, Isao; Ogawa, Hideoki; Okumura, Ko

    2009-01-01

    In addition to the physical barrier of the stratum corneum, cutaneous innate immunity also includes the release of various humoral mediators, such as cytokines and chemokines, recruitment and activation of phagocytes, and the production of antimicrobial proteins/peptides (AMPs). AMPs form an innate epithelial chemical shield, which provides a front-line component in innate immunity to inhibit microbial invasion; however, this might be an oversimplification of the diverse functions of these molecules. In fact, apart from exhibiting a broad spectrum of microbicidal properties, it is increasingly evident that AMPs display additional activities that are related to the stimulation and modulation of the cutaneous immune system. These diverse functions include chemoattraction and activation of immune and/or inflammatory cells, the production and release of cytokines and chemokines, acceleration of angiogenesis, promotion of wound healing, neutralization of harmful microbial products, and bridging of both innate and adaptive immunity. Thus, better understanding of the functions of AMPs in skin and identification of their signaling mechanisms may offer new strategies for the development of potential therapeutics for the treatment of infection- and/or inflammation-related skin diseases. Here, we briefly outline the structure, regulation of expression, and multifunctional roles of principal skin-derived AMPs.

  16. Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Dikkers, Arne; Jurdzinski, Angelika; von Felden, Johann; Gaestel, Matthias; Bavendiek, Udo; Tietge, Uwe J. F.

    2014-01-01

    Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2(-

  17. Mitogen-activated protein kinase activator with WD40 repeats (MAWD) and MAWD-binding protein induce cell differentiation in gastric cancer

    OpenAIRE

    Li, Dongmei; Zhang, Jun; Xi, Yu; Zhang, Lei; Li, Wenmei; Cui, Jiantao; Xing, Rui; Pan, Yuanmin; Pan, Zemin; Li, Feng; Lu, Youyong

    2015-01-01

    Background Our previous proteomic analysis revealed that mitogen-activated protein kinase activator with WD40 repeats (MAWD) and MAWD-binding protein (MAWBP) were downregulated in gastric cancer (GC) tissues. These proteins interacted and formed complexes in GC cells. To investigate the role of MAWD and MAWBP in GC differentiation, we analyzed the relationship between MAWD/MAWBP and clinicopathologic characteristics of GC tissues and examined the expression of E-cadherin and pepsinogen C (PGC...

  18. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    Directory of Open Access Journals (Sweden)

    Hou Ssu-Yu

    2010-06-01

    Full Text Available Abstract Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors (statins have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin. Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2 formation, and phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP phosphorylation, and endothelial nitric oxide synthase (eNOS expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP

  19. Tribomechanical micronization and activation of whey protein concentrate and zeolite

    Indian Academy of Sciences (India)

    Z Herceg; V Lelas; M Brnčić; B Tripalo; D Ježek

    2004-02-01

    Tribomechanics is a part of physics that is concerned with the study of phenomena that appear during milling under dynamic conditions. Tribomechanical micronization and activation (TMA) of whey protein concentrates (WPC) and zeolites (type clinoptilolite) were carried out. Samples of powdered WPC and zeolite were treated with the laboratory TMA equipment. The treatment was carried out at two various rotor speeds: 16,000 and 22,000 r.p.m. at ambient temperature. Analyses of the particle size and distribution as well as the specific area and scanning electron microscopy were carried out on the powdered WPC and zeolite, before and after the TMA treatment. Suspensions of the WPC and zeolite were treated with ultrasound, just before determining the particle size distribution, at 50 kHz. The results showed that tribomechanical treatment causes significant decrease in particle size, change in particle size distribution and increase in specific area of WPC and zeolite. These changes of the treated materials depend on the type of the material, the level of inserting particles, the planned angle of the impact, internal rubbing and the planned number of impacts. The effects found became stronger as the rotor speed of the TMA equipment increased (16,000 to 22,000 rpm). Ultrasonic treatment of suspension of tribomechanically treated WPC resulted infurther breakdown of partly damaged protein globules as proved with the statistic analyses. No further changes in their granulometric composition were caused by ultrasonic treatment of a suspension of tribomechanically treated zeolite.

  20. Involvement of protein kinase C activation in L-leucine-induced stimulation of protein synthesis in l6 myotubes.

    Science.gov (United States)

    Yagasaki, Kazumi; Morisaki, Naoko; Kitahara, Yoshiro; Miura, Atsuhito; Funabiki, Ryuhei

    2003-11-01

    Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [(3)H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, alpha-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A(2) and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of proteinkinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. L-Leucine caused a rapid activation of protein kinase C in both cytosol and membrane fractions of the cells. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in L6 myotubes through activation of phospholipase C and protein kinase C. PMID:19003213