WorldWideScience

Sample records for active state transition

  1. Dark/light transition and vigilance states modulate jaw-closing muscle activity level in mice.

    Science.gov (United States)

    Katayama, Keisuke; Mochizuki, Ayako; Kato, Takafumi; Ikeda, Minako; Ikawa, Yasuha; Nakamura, Shiro; Nakayama, Kiyomi; Wakabayashi, Noriyuki; Baba, Kazuyoshi; Inoue, Tomio

    2015-12-01

    Bruxism is associated with an increase in the activity of the jaw-closing muscles during sleep and wakefulness. However, the changes in jaw-closing muscle activity across states of vigilance over a 24-h period are unclear. In this study, we investigated the effects of dark/light transition and sleep/wake state on EMG activity of the masseter (jaw-closing) muscle in comparison with the activity of the upper trapezius muscle (a neck muscle) over a 24-h period in mice. The activities of the masseter and neck muscles during wakefulness were much greater than during non-REM and REM sleep. In contrast, the activities of both muscles slightly, but significantly, decreased during the transition period from dark to light. Histograms of masseter activity during wakefulness and non-REM sleep showed bimodal distributions, whereas the neck muscle showed unimodal activation in all states. These results suggest that the activities of jaw-closing and neck muscles are modulated by both sleep/wake state and dark/light transition, with the latter being to a lesser degree. Furthermore, even during non-REM sleep, jaw-closing muscles display bimodal activation, which may contribute to the occurrence of exaggerated aberrant muscle activity, such as sleep bruxism. PMID:26188127

  2. A Semi-Continuous State-Transition Probability HMM-Based Voice Activity Detector

    Directory of Open Access Journals (Sweden)

    H. Othman

    2007-02-01

    Full Text Available We introduce an efficient hidden Markov model-based voice activity detection (VAD algorithm with time-variant state-transition probabilities in the underlying Markov chain. The transition probabilities vary in an exponential charge/discharge scheme and are softly merged with state conditional likelihood into a final VAD decision. Working in the domain of ITU-T G.729 parameters, with no additional cost for feature extraction, the proposed algorithm significantly outperforms G.729 Annex B VAD while providing a balanced tradeoff between clipping and false detection errors. The performance compares very favorably with the adaptive multirate VAD, option 2 (AMR2.

  3. A Semi-Continuous State-Transition Probability HMM-Based Voice Activity Detector

    Directory of Open Access Journals (Sweden)

    Othman H

    2007-01-01

    Full Text Available We introduce an efficient hidden Markov model-based voice activity detection (VAD algorithm with time-variant state-transition probabilities in the underlying Markov chain. The transition probabilities vary in an exponential charge/discharge scheme and are softly merged with state conditional likelihood into a final VAD decision. Working in the domain of ITU-T G.729 parameters, with no additional cost for feature extraction, the proposed algorithm significantly outperforms G.729 Annex B VAD while providing a balanced tradeoff between clipping and false detection errors. The performance compares very favorably with the adaptive multirate VAD, option 2 (AMR2.

  4. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition

    Science.gov (United States)

    Zhou, Shiming; Miao, Xianbing; Zhao, Xu; Ma, Chao; Qiu, Yuhao; Hu, Zhenpeng; Zhao, Jiyin; Shi, Lei; Zeng, Jie

    2016-05-01

    The activity of electrocatalysts exhibits a strongly dependence on their electronic structures. Specifically, for perovskite oxides, Shao-Horn and co-workers have reported a correlation between the oxygen evolution reaction activity and the eg orbital occupation of transition-metal ions, which provides guidelines for the design of highly active catalysts. Here we demonstrate a facile method to engineer the eg filling of perovskite cobaltite LaCoO3 for improving the oxygen evolution reaction activity. By reducing the particle size to ~80 nm, the eg filling of cobalt ions is successfully increased from unity to near the optimal configuration of 1.2 expected by Shao-Horn's principle. Consequently, the activity is significantly enhanced, comparable to those of recently reported cobalt oxides with eg~1.2 configurations. This enhancement is ascribed to the emergence of spin-state transition from low-spin to high-spin states for cobalt ions at the surface of the nanoparticles, leading to more active sites with increased reactivity.

  5. Improving the activity of Trichoderma reesei cel7B through stabilizing the transition state.

    Science.gov (United States)

    Wang, Yefei; Song, Xiangfei; Zhang, Shujun; Li, Jingwen; Shu, Zhiyu; He, Chunyan; Huang, Qingshan; Yao, Lishan

    2016-06-01

    Trichoderma reesei (Tr.) cellulases, which convert cellulose to reducing sugars, are a promising catalyst used in the lignocellulosic biofuel production. Improving Tr. cellulases activity, though very difficult, is highly desired due to the recalcitrance of lignocellulose. Meanwhile, it is preferable to enhance the cellulase's promiscuity so that substrates other than cellulose can also be hydrolyzed. In this work, an attempt is made to improve the catalytic activity of a major endogluanase Tr. Cel7B against xylan which crosslinks with cellulose in lignocellulose. By using quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations, the transition state of the xylo-oligosaccharide hydrolysis is identified. Then, mutations are introduced and their effect on the transition state stabilization is ranked based on the free energy calculations. Seven top ranked mutants are evaluated experimentally. Three mutants A208Q, A222D, and G230R show a higher activity than the wild-type Tr. Cel7B in the hydrolysis of xylan (by up to 47%) as well as filter paper (by up to 50%). The combination of the single mutants can further improve the enzyme activity. Our work demonstrates that the free energy method is effective in engineering the Tr. Cel7B activity against xylan and cellulose, and thus may also be useful for improving the activity of other Tr. cellulases. Biotechnol. Bioeng. 2016;113: 1171-1177. © 2015 Wiley Periodicals, Inc. PMID:26616246

  6. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition

    Science.gov (United States)

    Zhou, Shiming; Miao, Xianbing; Zhao, Xu; Ma, Chao; Qiu, Yuhao; Hu, Zhenpeng; Zhao, Jiyin; Shi, Lei; Zeng, Jie

    2016-01-01

    The activity of electrocatalysts exhibits a strongly dependence on their electronic structures. Specifically, for perovskite oxides, Shao-Horn and co-workers have reported a correlation between the oxygen evolution reaction activity and the eg orbital occupation of transition-metal ions, which provides guidelines for the design of highly active catalysts. Here we demonstrate a facile method to engineer the eg filling of perovskite cobaltite LaCoO3 for improving the oxygen evolution reaction activity. By reducing the particle size to ∼80 nm, the eg filling of cobalt ions is successfully increased from unity to near the optimal configuration of 1.2 expected by Shao-Horn's principle. Consequently, the activity is significantly enhanced, comparable to those of recently reported cobalt oxides with eg∼1.2 configurations. This enhancement is ascribed to the emergence of spin-state transition from low-spin to high-spin states for cobalt ions at the surface of the nanoparticles, leading to more active sites with increased reactivity. PMID:27187067

  7. Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge.

    Science.gov (United States)

    Vishnivetskiy, Sergey A; Hirsch, Joel A; Velez, Maria-Gabriela; Gurevich, Yulia V; Gurevich, Vsevolod V

    2002-11-15

    Arrestins selectively bind to the phosphorylated activated form of G protein-coupled receptors, thereby blocking further G protein activation. Structurally, arrestins consist of two domains topologically connected by a 12-residue long loop, which we term the "hinge" region. Both domains contain receptor-binding elements. The relative size and shape of arrestin and rhodopsin suggest that dramatic changes in arrestin conformation are required to bring all of its receptor-binding elements in contact with the cytoplasmic surface of the receptor. Here we use the visual arrestin/rhodopsin system to test the hypothesis that the transition of arrestin into its active receptor-binding state involves a movement of the two domains relative to each other that might be limited by the length of the hinge. We have introduced three insertions and 24 deletions in the hinge region and measured the binding of all of these mutants to light-activated phosphorylated (P-Rh*), dark phosphorylated (P-Rh), dark unphosphorylated (Rh), and light-activated unphosphorylated rhodopsin (Rh*). The addition of 1-3 extra residues to the hinge has no effect on arrestin function. In contrast, sequential elimination of 1-8 residues results in a progressive decrease in P-Rh* binding without changing arrestin selectivity for P-Rh*. These results suggest that there is a minimum length of the hinge region necessary for high affinity binding, consistent with the idea that the two domains move relative to each other in the process of arrestin transition into its active receptor-binding state. The same length of the hinge is also necessary for the binding of "constitutively active" arrestin mutants to P-Rh*, dark P-Rh, and Rh*, suggesting that the active (receptor-bound) arrestin conformation is essentially the same in both wild type and mutant forms.

  8. Variational Transition State Theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, Donald G. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-09-29

    This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.

  9. State Transition Algorithm

    CERN Document Server

    Zhou, Xiaojun; Gui, Weihua

    2012-01-01

    In terms of the concepts of state and state transition, a new heuristic random search algorithm named state transition algorithm is proposed. For continuous function optimization problems, four special transformation operators called rotation, translation, expansion and axesion are designed. Adjusting measures of the transformations are mainly studied to keep the balance of exploration and exploitation. Convergence analysis is also discussed about the algorithm based on random search method. In the meanwhile, to strengthen the search ability in high dimensional space, communication strategy is introduced into the basic algorithm and intermittent exchange is presented to prevent premature convergence. Finally, experiments are carried out for the algorithms. With 10 common benchmark unconstrained continuous functions used to test the performance, the results show that state transition algorithms are promising algorithms due to their good global search capability and convergence property when compared with some ...

  10. Variational transition state theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, D.G. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.

  11. Post-Transition State Dynamics in Gas Phase Reactivity: Importance of Bifurcations and Rotational Activation.

    Science.gov (United States)

    Martín-Sómer, Ana; Yáñez, Manuel; Hase, William L; Gaigeot, Marie-Pierre; Spezia, Riccardo

    2016-03-01

    Beyond the established use of thermodynamic vs kinetic control to explain chemical reaction selectivity, the concept of bifurcations on a potential energy surface (PES) is proving to be of pivotal importance with regard to selectivity. In this article, we studied by means of post-transition state (TS) direct dynamics simulations the effect that vibrational and rotational excitation at the TS may have on selectivity on a bifurcating PES. With this aim, we studied the post-TS unimolecular reactivity of the [Ca(formamide)](2+) ion, for which Coulomb explosion and neutral loss reactions compete. The PES exhibits different kinds of nonintrinsic reaction coordinate (IRC) dynamics, among them PES bifurcations, which direct the trajectories to multiple reaction paths after passing the TS. Direct dynamics simulations were used to distinguish between the bifurcation non-IRC dynamics and non-IRC dynamics arising from atomistic motions directing the trajectories away from the IRC. Overall, we corroborated the idea that kinetic selectivity often does not reduce to a simple choice between paths with different barrier heights and instead dynamical behavior after passing the TS may be crucial. Importantly, rotational excitation may play a pivotal role on the reaction selectivity favoring nonthermodynamic products.

  12. Optimal Trajectories of Brain State Transitions

    OpenAIRE

    Gu, Shi; Betzel, Richard F.; Cieslak, Matthew; Delio, Philip R; Grafton, Scott T; Pasqualetti, Fabio; Danielle S Bassett

    2016-01-01

    The complexity of neural dynamics stems in part from the complexity of the underlying anatomy. Yet how the organization of white matter architecture constrains how the brain transitions from one cognitive state to another remains unknown. Here we address this question from a computational perspective by defining a brain state as a pattern of activity across brain regions. Drawing on recent advances in network control theory, we model the underlying mechanisms of brain state transitions as eli...

  13. Exploring the Cross-sectional Association between Transit-Oriented Development Zoning and Active Travel and Transit Usage in the United States, 2010-2014

    Directory of Open Access Journals (Sweden)

    Emily eThrun

    2016-06-01

    Full Text Available Background: In response to traditional zoning codes that contribute to car-dependent, sprawling, and disconnected neighborhoods, communities are reforming their land use laws to create pedestrian-friendly areas that promote physical activity. One such reform is the adoption of transit-oriented developments or districts (TODs. TODs are higher-density, compact, mixed use areas located around transit stops that are designed to encourage walking.Purpose: To identify the characteristics of communities that have adopted TODs in their land use laws and examine if communities that have included TODs in their zoning codes are more likely to have adults that commute by any form of active transportation (i.e., walking, biking, or public transportation or by using public transportation specifically.Methods: Zoning codes effective as of 2010 were obtained for a purposeful sample of the largest 3,914 municipal jurisdictions located in 473 of the most populous US counties and consolidated cities within 48 states and the District of Columbia. They were evaluated to determine whether they included TOD districts or regulations using a coding tool developed by the study team. Descriptive statistics together with t-tests and Pearson’s chi-squared independence test were used to compare characteristics of jurisdictions with and without TOD zoning. Multivariate linear regressions were used to compute the adjusted association between TOD zoning and taking public or active transportation to work.Results: Jurisdictions with TOD zoning were located more in the South and West than non-TOD jurisdictions and were more populous, higher income, more racially diverse, and younger. Jurisdictions with TOD zoning had significantly higher percentages of occupied housing with no vehicle than those without TOD zoning. TOD zoning was associated with significantly higher rates of public transportation to work (β=2.10, 95% CI=0.88, 3.32 and active transportation to work (β=2.48, 95

  14. Quantum Transition-State Theory

    CERN Document Server

    Hele, Timothy J H

    2014-01-01

    This dissertation unifies one of the central methods of classical rate calculation, `Transition-State Theory' (TST), with quantum mechanics, thereby deriving a rigorous `Quantum Transition-State Theory' (QTST). The resulting QTST is identical to ring polymer molecular dynamics transition-state theory (RPMD-TST), which was previously considered a heuristic method, and whose results we thereby validate. The key step in deriving a QTST is alignment of the flux and side dividing surfaces in path-integral space to obtain a quantum flux-side time-correlation function with a non-zero $t\\to 0_+$ limit. We then prove that this produces the exact quantum rate in the absence of recrossing by the exact quantum dynamics, fulfilling the requirements of a QTST. Furthermore, strong evidence is presented that this is the only QTST with positive-definite Boltzmann statistics and therefore the pre-eminent method for computation of thermal quantum rates in direct reactions.

  15. Influence of new environmental state policy on gas industry activities in countries of economy in transition. Case of Poland

    International Nuclear Information System (INIS)

    Political and economical changes in Poland are accompanied by substantial transition of ecological policy of the state. A first sign of that policy is new law defining responsibilities of companies in minimising the environmental impacts of new investments and duties concerning waste management and disposal as well as pollutant emission reduction. These more stringent environmental rules influence force the Polish gas industry to fulfill new ecological requirements and, because of high ecological value of gas, they give it promising prospects of development. Since environmental condition improvement in Poland can not be achieved without the change in primary energy consumption structure the Gas Development Programme has been established. It assumes more than double increase in gas consumption up to 2010. Gas industry duties connected with environmental requirements have been presented and activities taken in order to meet ecological law rules have been specified for all stages of gas fuel chain from exploration to gas usage. Some measures taken to prevent environment damages have been discussed like ecological evaluation of drilling materials and wastes, elaborated strategy for water protection and Environmental Impact Assessment procedure. The problem of methane emissions from Polish gas system has also been discussed. (au)

  16. Transition-state theory and dynamical corrections

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Hansen, Flemming Yssing

    2002-01-01

    . The correction factor due to non-adiabatic dynamics is considered in relation to the non-activated dissociative sticking of N-2 on Fe(111). For this process, conventional transition-state theory gives a sticking probability which is about 10 times too large (at T = 300 K). We estimate that the sticking......We consider conventional transition-state theory, and show how quantum dynamical correction factors can be incorporated in a simple fashion, as a natural extension of the fundamental formulation. Corrections due to tunneling and non-adiabatic dynamics are discussed, with emphasis on the latter...

  17. Modified Transition State Theory for Evaporation and Condensation

    Institute of Scientific and Technical Information of China (English)

    王遵敬; 陈民; 过增元

    2002-01-01

    A modification of the transition state theory for evaporation and condensation is presented by analysing the kinetic characteristics of liquid-vapour interphase transport. In the modified transition state theory, the moving orientation of molecules is introduced into the calculation of the free volume of the activated complex. The condensation coefficients of argon at different temperatures are calculated with the modified transition state theory. The results agree well with those from molecular dynamics simulations.

  18. State Transitions in Semiarid Landscapes

    Science.gov (United States)

    Phillips, J. D.

    2012-04-01

    The U.S. Department of Agriculture has developed a large number of state-and-transition models (STM) to predict and interpret changes in vegetation communities in drylands of the southwestern U.S. These are represented as box-and-arrow models indicating potential changes in response to various combinations of management practices and environmental forcings. Analysis of the 320 STMs developed for areas within the state of Texas reveals two important aspects of environmental change in semiarid environments. First, the STMs are highly local—they are specific to very particular combinations of landform, soil, and climate. This is consistent with the perfect landscape concept in geomorphology, which emphasizes the irreducible importance of geographically and historically contingent local factors in addition to universal laws or principles in determining the state or condition of landscapes. Second, analysis of the STMs using algebraic graph theory shows that a majority of them have structures that tend to amplify effects of change and disturbances. In many cases the STMs represent a form of self-organization characterized by the potential of divergent behavior rather than convergence toward a dominant pattern or outcome. These results indicate that geomorphic, hydrologic, and ecological responses to climate and land use change are likely to be highly variable and idiosyncratic, both within and between semiarid landscapes of Texas.

  19. QM/MM Analysis of Transition States and Transition State Analogues in Metalloenzymes.

    Science.gov (United States)

    Roston, D; Cui, Q

    2016-01-01

    Enzymology is approaching an era where many problems can benefit from computational studies. While ample challenges remain in quantitatively predicting behavior for many enzyme systems, the insights that often come from computations are an important asset for the enzymology community. Here we provide a primer for enzymologists on the types of calculations that are most useful for mechanistic problems in enzymology. In particular, we emphasize the integration of models that range from small active-site motifs to fully solvated enzyme systems for cross-validation and dissection of specific contributions from the enzyme environment. We then use a case study of the enzyme alkaline phosphatase to illustrate specific application of the methods. The case study involves examination of the binding modes of putative transition state analogues (tungstate and vanadate) to the enzyme. The computations predict covalent binding of these ions to the enzymatic nucleophile and that they adopt the trigonal bipyramidal geometry of the expected transition state. By comparing these structures with transition states found through free energy simulations, we assess the degree to which the transition state analogues mimic the true transition states. Technical issues worth treating with care as well as several remaining challenges to quantitative analysis of metalloenzymes are also highlighted during the discussion. PMID:27498640

  20. Two-State Reactivity in Low-Valent Iron-Mediated C-H Activation and the Implications for Other First-Row Transition Metals.

    Science.gov (United States)

    Sun, Yihua; Tang, Hao; Chen, Kejuan; Hu, Lianrui; Yao, Jiannian; Shaik, Sason; Chen, Hui

    2016-03-23

    C-H bond activation/functionalization promoted by low-valent iron complexes has recently emerged as a promising approach for the utilization of earth-abundant first-row transition metals to carry out this difficult transformation. Herein we use extensive density functional theory and high-level ab initio coupled cluster calculations to shed light on the mechanism of these intriguing reactions. Our key mechanistic discovery for C-H arylation reactions reveals a two-state reactivity (TSR) scenario in which the low-spin Fe(II) singlet state, which is initially an excited state, crosses over the high-spin ground state and promotes C-H bond cleavage. Subsequently, aryl transmetalation occurs, followed by oxidation of Fe(II) to Fe(III) in a single-electron transfer (SET) step in which dichloroalkane serves as an oxidant, thus promoting the final C-C coupling and finalizing the C-H functionalization. Regeneration of the Fe(II) catalyst for the next round of C-H activation involves SET oxidation of the Fe(I) species generated after the C-C bond coupling. The ligand sphere of iron is found to play a crucial role in the TSR mechanism by stabilization of the reactive low-spin state that mediates the C-H activation. This is the first time that the successful TSR concept conceived for high-valent iron chemistry is shown to successfully rationalize the reactivity for a reaction promoted by low-valent iron complexes. A comparative study involving other divalent middle and late first-row transition metals implicates iron as the optimum metal in this TSR mechanism for C-H activation. It is predicted that stabilization of low-spin Mn(II) using an appropriate ligand sphere should produce another promising candidate for efficient C-H bond activation. This new TSR scenario therefore emerges as a new strategy for using low-valent first-row transition metals for C-H activation reactions.

  1. Final Technical Report: Variational Transition State Theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, Donald G. [University of Minnesota; Truhlar, Donald G. [University of Minnesota

    2016-09-15

    Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupledmode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multidimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MPVTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EAVTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical—reactions with 4, 6, and 14 saddle points.

  2. Transition States of Telecommunication Network

    Directory of Open Access Journals (Sweden)

    Gustav Cepciansky

    2004-01-01

    Full Text Available The dimensioning and performance of the telecommunication network take place according to the theory of teletrafficalways taking into account the stable state. But the utterance of the network being in an unstable state is less known. In this paper, wewould like to remind the network performance in the unstable state and to draw attention to the practical consequences of transitionstates.

  3. Transitions between compound states of spherical nuclei

    International Nuclear Information System (INIS)

    Wigner's statistical matrices are used to study the average reduced g widths and their dispersion for g transitions from a compound state c to another state f, with a lower excitation energy but of arbitrary complexity, for spherical nuclei. It is found that the Porter--Thomas distribution holds for the g widths for all cases of practical interest. In g transitions between compound states c and c' with E/sub g/< or =2 MeV, the most important transitions are M1 transitions involving the major many-quasiparticle components of state c and E1 transitions involving the minor components of state c. It is shown that the strength functions predicted by the various theories for M1 and E1 transitions between compound states with E/sub g/< or =2 MeV are similar. Preference is assigned to the M1-transition version because of experimental results on (n,ga) reactions with thermal and resonance neutrons

  4. Immobilization of the distal hinge in the labile serpin plasminogen activator inhibitor 1: identification of a transition state with distinct conformational and functional properties.

    Science.gov (United States)

    De Taeye, Bart; Compernolle, Griet; Dewilde, Maarten; Biesemans, Wouter; Declerck, Paul J

    2003-06-27

    The serpin plasminogen activator inhibitor-1 (PAI-1) plays an important role in the regulation of the fibrinolytic activity in blood. In plasma, PAI-1 circulates mainly in the active conformation. However, PAI-1 spontaneously converts to a latent conformation. This conversion comprises drastic conformational changes in both the distal and the proximal hinge region of the reactive center loop. To study the functional and conformational rearrangements associated solely with the mobility of the proximal hinge, disulfide bonds were introduced to immobilize the distal hinge region. These mutants exhibited specific activities comparable with that of PAI-1-wt. However, the engineered disulfide bond had a major effect on the conformational and associated functional transitions. Strikingly, in contrast to PAI-1-wt, inactivation of these mutants yielded a virtually complete conversion to a substrate-like conformation. Comparison of the digestion pattern (with trypsin and elastase) of the mutants and PAI-1-wt revealed that the inactivated mutants have a conformation differing from that of latent and active PAI-1-wt. Unique trypsin-susceptible cleavage sites arose upon inactivation of these mutants. The localization of these exposed residues provides evidence that a displacement of alphahF has occurred, indicating that the proximal hinge is partly inserted between s3A and s5A. In conclusion, immobilization of the distal hinge region in PAI-1 allowed the identification of an "intermediate" conformation characterized by a partial insertion of the proximal hinge region. We hypothesize that locking PAI-1 in this transition state between active and latent conformations is associated with a displacement of alphahF, subsequently resulting in substrate behavior.

  5. Analysis of transition state theory for condensation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By statistically analyzing the condensation process and reconsidering the transition state theory for condensation and evaporation, we first presented a completed theoretical formula of the condensation coefficient. Namely, the unknown parameters contained within the transition state theoretical calculation of the condensation coefficient are determined. The condensation coefficients calculated from this formula agree well with those from molecular dynamics simulations. With this formula, the classical expression of the condensation flux developed from the gas kinetic theory can be used to predict the condensation flux.

  6. On primordial equation of state transitions

    CERN Document Server

    Aravind, Aditya; Paban, Sonia

    2016-01-01

    We revisit the physics of transitions from a general equation of state parameter to the final stage of slow-roll inflation. We show that it is unlikely for the modes comprising the cosmic microwave background to contain imprints from a pre-inflationary equation of state transition and still be consistent with observations. We accomplish this by considering observational consistency bounds on the amplitude of excitations resulting from such a transition. As a result, the physics which initially led to inflation likely cannot be probed with observations of the cosmic microwave background. Furthermore, we show that it is unlikely that equation of state transitions may explain the observed low multipole power suppression anomaly.

  7. A Reconciliation of Collision Theory and Transition State Theory

    OpenAIRE

    Yi, Y. G.

    2001-01-01

    A statistical-mechanical treatment of collision leads to a formal connection with transition-state theory, suggesting that collision theory and transition-state theory might be joined ultimately as a collision induced transition state theory.

  8. Soil, resilience, and state and transition models

    Science.gov (United States)

    State and transition models are based on the assumption that less resilient systems are more susceptible to state changes. The objective of this paper is to show how two different types of soil properties contribute to resilience through their direct and indirect effects on ecosystem processes, and ...

  9. Operationalizing resilience using state and transition models

    Science.gov (United States)

    In management, restoration, and policy contexts, the notion of resilience can be confusing. Systematic development of conceptual models of ecological state change (state transition models; STMs) can help overcome semantic confusion and promote a mechanistic understanding of resilience. Drawing on ex...

  10. Transition of polymers from rubbery elastic state to fluid state

    Institute of Scientific and Technical Information of China (English)

    Renyuan QIAN; Yansheng YU

    2009-01-01

    On increasing the temperature of a polymer,the transition of the polymer from a rubbery elastic state to a fluid state could occur. The transition temperature is termed the fluid temperature of the polymer, Tf, which has a direct relationship with the polymer molecular weight.As one of polymer parameters, Tf is as important as the glass transition temperature of a polymer, Tg. Moreover,special attention to Tf should be paid for polymer processing. In research on the transition of a polymer from a rubbery elastic state to a fluid state, the concept of Tfwould be more reasonable and more effective than the concept of T1,1 because it is neglected in the concept of T1,1in that the molecular weight of a polymer may affect the transition of the polymer. In this paper the discussion on the fluid temperature involves the characters of polymers,such as the deformation-temperature curve, the tempera-ture range of the rubbery state and the shear viscosity of polymer melt. From the viewpoint of the cohesional state of polymers, the transition of a polymer from a rubbery elastic state to a fluid state responds to destruction and construction of the cohesional entanglement network in the polymer. The relaxing network of polymer melt would be worthy to be considered as an object of study.

  11. Calculating state-to-state transition probabilities within TDDFT

    OpenAIRE

    Rohringer, Nina; Peter, Simone; Burgdörfer, Joachim

    2005-01-01

    The determination of the elements of the S-matrix within the framework of time-dependent density-functional theory (TDDFT) has remained a widely open question. We explore two different methods to calculate state-to-state transition probabilities. The first method closely follows the extraction of the S-matrix from the time-dependent Hartree-Fock approximation. This method suffers from cross-channel correlations resulting in oscillating transition probabilities in the asymptotic channels. An a...

  12. Merging transition-metal activation and aminocatalysis

    OpenAIRE

    Rios, Ramon; Meazza, Marta

    2015-01-01

    In this review the principal enantioselective methodologies merging transition-metal catalysis and aminocatalysis are disclosed. 1 Introduction 2 Transition-Metal and Enamine Catalysis 3 Transition-Metal and Iminium Catalysis 4 Transition-Metal Catalysis and Organocascade (Iminium/Enamine) Activation 5 Conclusions and Perspectives

  13. Cassini State Transitions with a Fossil Figure

    Science.gov (United States)

    Matsuyama, Isamu; Tuttle Keane, James

    2016-10-01

    The Moon has experienced large obliquity variations during Cassini state transitions which greatly impact tidal heating, and the long-term stability of polar volatiles. It has been known for centuries that the lunar rotational and tidal bulges are much larger than expected. The South Pole-Aitken basin can explain a large fraction of the excess deformation. Accounting for the contribution of this basin (and other large basins), the remaining excess deformation arises due to a fossil figure established when the Moon orbited much closer to Earth than it does today. Previous studies assume that the present, excess deformation is entirely preserved throughout Cassini state transitions. This ignores basin contributions to the excess deformation, and requires an interior with infinite rigidity. We consider Cassini state transition models that take into account basin contributions to the excess deformation, and the effect of finite rigidity on the fossil figure.

  14. State transition algorithm for traveling salesman problem

    CERN Document Server

    Chunhua, Yang; Xiaojun, Zhou; Weihua, Gui

    2012-01-01

    Discrete version of state transition algorithm is proposed in order to solve the traveling salesman problem. Three special operators for discrete optimization problem named swap, shift and symmetry transformations are presented. Convergence analysis and time complexity of the algorithm are also considered. To make the algorithm simple and efficient, no parameter adjusting is suggested in current version. Experiments are carried out to test the performance of the strategy, and comparisons with simulated annealing and ant colony optimization have demonstrated the effectiveness of the proposed algorithm. The results also show that the discrete state transition algorithm consumes much less time and has better search ability than its counterparts, which indicates that state transition algorithm is with strong adaptability.

  15. Transition problems and play as transitory activity

    DEFF Research Database (Denmark)

    Broström, Stig

    2005-01-01

    functions, among others the development of children's learning motive. From the view of activity theori, transition to formal education entails crossing boundaries from the activity system play to the activity system of school learning. The transition can be facilitated by developing a 'transitory activity......Because too many children experience the transition to school as a culture shock, during the past decade teachers have implemented so-called transition activities in order to bridge the gap betwen pre-school and schoo. However, transition to school also calls for a development of higher mental...

  16. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  17. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  18. Comparison of quasi-classical, transition state theory, and quantum calculations of rate constants and activation energies for the collinear reaction X + F2 → XF + F (X = Mu, H, D, T)

    International Nuclear Information System (INIS)

    Accurate quantum total reaction probabilities for the collinear reaction X + F2 (upsilon = 0.1) → XF + F (X = Mu, H, D, T) have been used to calculate collinear rate constants and activation energies. Comparison is made with collinear quasi-classical trajectory calculations and transition state theory assuming classical motion along a separable reaction coordinate and vibrational adiabaticity. Considerable differences between the quantum and quasi-classical and transition state theory results are found only for the Mu reaction at low temperatures. 5 figures, 35 references, 6 tables

  19. On the Role of the Transition State Nucleus in Fission

    International Nuclear Information System (INIS)

    Although it is well-known that times. In order for fission to compete favourably with gamma-ray and neutron emission, a fixed amount of energy, equivalent to an activation energy in a chemical reaction, must be supplied to the heavy nucleus. This energy (often referred to as the fission threshold) is approximately 5 to 6 MeV for U238, and is the minimum energy required to produce the deformed transition state nucleus (zero internal excitation energy). In the process of stretching the original nucleus into the transition state nucleus (whose distortion is sometimes described as the saddle-point deformation), the increase in energy due to the short-range nuclear forces (surface tension) is greater than the decrease in energy due to the long-range Coulomb forces. However, as the particular distortion defining the transition state nucleus is approached, the decrease in Coulomb energy becomes equal to the increase in surface energy. The degree of distortion needed to produce the transition state nucleus is a function of several nuclear parameters and, hence, the saddle shape and threshold energy for fission change markedly for different nuclei. Since a large fraction of the excitation energy of the initial compound nucleus is consumed in deformation energy in passing to the fission saddle point, the transition state nucleus is thermodynamically ''cold''. Hence, for low excitation energies where the non-fission degrees of freedom favour the passage of the barrier with only a small kinetic energy, it seems reasonable to postulate that the traversal time of the saddle or the lifetime of the transition state nucleus is many orders of magnitude longer than the characteristic nuclear time. This leads to the prediction that the highly deformed transition state nucleus will have properties, including a spectrum of excited states, analogous to those of normal nuclei. Information on highly deformed transition state nuclei obtained by fission-fragment angular distribution studies

  20. State-transition diagrams for biologists.

    Science.gov (United States)

    Bersini, Hugues; Klatzmann, David; Six, Adrien; Thomas-Vaslin, Véronique

    2012-01-01

    It is clearly in the tradition of biologists to conceptualize the dynamical evolution of biological systems in terms of state-transitions of biological objects. This paper is mainly concerned with (but obviously not limited too) the immunological branch of biology and shows how the adoption of UML (Unified Modeling Language) state-transition diagrams can ease the modeling, the understanding, the coding, the manipulation or the documentation of population-based immune software model generally defined as a set of ordinary differential equations (ODE), describing the evolution in time of populations of various biological objects. Moreover, that same UML adoption naturally entails a far from negligible representational economy since one graphical item of the diagram might have to be repeated in various places of the mathematical model. First, the main graphical elements of the UML state-transition diagram and how they can be mapped onto a corresponding ODE mathematical model are presented. Then, two already published immune models of thymocyte behavior and time evolution in the thymus, the first one originally conceived as an ODE population-based model whereas the second one as an agent-based one, are refactored and expressed in a state-transition form so as to make them much easier to understand and their respective code easier to access, to modify and run. As an illustrative proof, for any immunologist, it should be possible to understand faithfully enough what the two software models are supposed to reproduce and how they execute with no need to plunge into the Java or Fortran lines.

  1. Function of the chloroplast hydrogenase in the microalga Chlamydomonas: the role of hydrogenase and state transitions during photosynthetic activation in anaerobiosis.

    Directory of Open Access Journals (Sweden)

    Bart Ghysels

    Full Text Available Like a majority of photosynthetic microorganisms, the green unicellular alga Chlamydomonas reinhardtii may encounter O2 deprived conditions on a regular basis. In response to anaerobiosis or in a respiration defective context, the photosynthetic electron transport chain of Chlamydomonas is remodeled by a state transition process to a conformation that favours the photoproduction of ATP at the expense of reductant synthesis. In some unicellular green algae including Chlamydomonas, anoxia also triggers the induction of a chloroplast-located, oxygen sensitive hydrogenase, which accepts electrons from reduced ferredoxin to convert protons into molecular hydrogen. Although microalgal hydrogen evolution has received much interest for its biotechnological potential, its physiological role remains unclear. By using specific Chlamydomonas mutants, we demonstrate that the state transition ability and the hydrogenase function are both critical for induction of photosynthesis in anoxia. These two processes are thus important for survival of the cells when they are transiently placed in an anaerobic environment.

  2. Function of the chloroplast hydrogenase in the microalga Chlamydomonas: the role of hydrogenase and state transitions during photosynthetic activation in anaerobiosis.

    Science.gov (United States)

    Ghysels, Bart; Godaux, Damien; Matagne, René F; Cardol, Pierre; Franck, Fabrice

    2013-01-01

    Like a majority of photosynthetic microorganisms, the green unicellular alga Chlamydomonas reinhardtii may encounter O2 deprived conditions on a regular basis. In response to anaerobiosis or in a respiration defective context, the photosynthetic electron transport chain of Chlamydomonas is remodeled by a state transition process to a conformation that favours the photoproduction of ATP at the expense of reductant synthesis. In some unicellular green algae including Chlamydomonas, anoxia also triggers the induction of a chloroplast-located, oxygen sensitive hydrogenase, which accepts electrons from reduced ferredoxin to convert protons into molecular hydrogen. Although microalgal hydrogen evolution has received much interest for its biotechnological potential, its physiological role remains unclear. By using specific Chlamydomonas mutants, we demonstrate that the state transition ability and the hydrogenase function are both critical for induction of photosynthesis in anoxia. These two processes are thus important for survival of the cells when they are transiently placed in an anaerobic environment. PMID:23717558

  3. Multistate transitions and quantum oscillations of optical activity

    CERN Document Server

    Blanco, Celia; 10.1103/PhysRevA.00.002100

    2012-01-01

    We consider the effects of multistate transitions on the tunneling racemization of chiral molecules. This requires going beyond simple two-state models of enantiomers and to include transitions within a multiple-level quantum-mechanical system.We derive an effective two-level description which accounts for transitions from the enantiomers to an arbitrary number of excited states as an application of the Weisskopf-Wigner approximation scheme. Modifications to the optical activity from these additional states are considered in general terms under the assumption of \\textit{CPT} invariance and then under T invariance. Some formal dynamical analogies between enantiomers and the neutral K-meson system are discussed.

  4. Immigration Control in Transit States: The Case of Turkey

    OpenAIRE

    Zeynep Sahin-Mencütek

    2012-01-01

    Transit countries exhibit many similarities with respect to state-led anti-transit and more restrictive actions toward contemporary transit migration flows. This paper examines the changes after 1990s in state concerns, behaviors, and policies regarding transit migration by taking Turkey as a case study. Which factors led to Turkey's increased attention to immigration, specifically transit migration in spite of its long history of immigration, emigration and the transit migration. Why has Tur...

  5. Serine 83 in DosR, a response regulator from Mycobacterium tuberculosis, promotes its transition from an activated, phosphorylated state to an inactive, unphosphorylated state.

    Science.gov (United States)

    Cho, Ha Yeon; Kang, Beom Sik

    2014-02-21

    A sensor kinase, DosS, and its corresponding response regulator, DosR, constitute a two component system for regulating gene expression under hypoxic conditions in Mycobacterium tuberculosis. Among response regulators in M. tuberculosis, NarL has high sequence similarity to DosR, and autophosphorylated DosS transfers its phosphate group not only to DosR but also to NarL. Phosphorylated DosR is more rapidly dephosphorylated than phosphorylated NarL. DosR and NarL differ with respect to the amino acids at positions T+1 and T+2 around the phosphorylation sites in the N-terminal phosphoacceptor domain; NarL has S83 and Y84, whereas DosR has A90 and H91. A DosR S83A mutant shows prolonged phosphorylation. Structural comparison with a histidinol phosphate phosphatase suggests that the hydroxyl group of DosR S83 could play a role in activating the water molecule involved in the triggering of autodephosphorylation.

  6. Phase Transitions in Model Active Systems

    Science.gov (United States)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  7. Transitioning Towards a Low-Carbon Hydrogen Economy in the United States: Role of Transition Management

    OpenAIRE

    Jacqueline C. K. Lam; Peter Hills; Esther C. T. Wong

    2012-01-01

    This paper describes the process of transitioning to a low-carbon hydrogen economy in the United States and the role of transition management (TM) in this process. Focusing on the transition process for hydrogen-based energy and transport systems in the United States, especially California, this study outlines the key characteristics of TM that have been employed in managing the transition. Several characteristics of TM have been noted in the United States’ hydrogen transition, including: (...

  8. Physiologic Measures of Animal Stress during Transitional States of Consciousness

    Directory of Open Access Journals (Sweden)

    Robert E. Meyer

    2015-08-01

    Full Text Available Determination of the humaneness of methods used to produce unconsciousness in animals, whether for anesthesia, euthanasia, humane slaughter, or depopulation, relies on our ability to assess stress, pain, and consciousness within the contexts of method and application. Determining the subjective experience of animals during transitional states of consciousness, however, can be quite difficult; further, loss of consciousness with different agents or methods may occur at substantially different rates. Stress and distress may manifest behaviorally (e.g., overt escape behaviors, approach-avoidance preferences [aversion] or physiologically (e.g., movement, vocalization, changes in electroencephalographic activity, heart rate, sympathetic nervous system [SNS] activity, hypothalamic-pituitary axis [HPA] activity, such that a one-size-fits-all approach cannot be easily applied to evaluate methods or determine specific species applications. The purpose of this review is to discuss methods of evaluating stress in animals using physiologic methods, with emphasis on the transition between the conscious and unconscious states.

  9. Stellar Transits in Active Galactic Nuclei

    Science.gov (United States)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 106 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ~10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  10. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  11. A P-loop Mutation in G[alpha] Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, Dustin E.; Willard, Francis S.; Ramanujam, Ravikrishna; Kimple, Adam J.; Willard, Melinda D.; Naqvi, Naweed I.; Siderovski, David P. (UNC); (Singapore)

    2012-10-23

    Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active G{alpha}{beta}{gamma} heterotrimer relies on nucleotide cycling by the G{alpha} subunit: exchange of GTP for GDP activates G{alpha}, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting G{alpha} to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of G{alpha} subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that G{alpha}(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon G{alpha}{sub i1}(G42R) binding to GDP {center_dot} AlF{sub 4}{sup -} or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. G{alpha}(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with G{beta}{gamma} and GoLoco motifs in any nucleotide state. The corresponding G{alpha}{sub q}(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the G{alpha} subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two G{alpha} mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants.

  12. Quantum Transition State Theory for proton transfer reactions in enzymes

    CERN Document Server

    Bothma, Jacques P; McKenzie, Ross H

    2009-01-01

    We consider the role of quantum effects in the transfer of hyrogen-like species in enzyme-catalysed reactions. This study is stimulated by claims that the observed magnitude and temperature dependence of kinetic isotope effects imply that quantum tunneling below the energy barrier associated with the transition state significantly enhances the reaction rate in many enzymes. We use a path integral approach which provides a general framework to understand tunneling in a quantum system which interacts with an environment at non-zero temperature. Here the quantum system is the active site of the enzyme and the environment is the surrounding protein and water. Tunneling well below the barrier only occurs for temperatures less than a temperature $T_0$ which is determined by the curvature of potential energy surface near the top of the barrier. We argue that for most enzymes this temperature is less than room temperature. For physically reasonable parameters quantum transition state theory gives a quantitative descr...

  13. Stellar transits in active galactic nuclei

    CERN Document Server

    Béky, Bence

    2012-01-01

    Supermassive black holes (SMBH) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGN) produce a characteristic transit lightcurve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit lightcurves using the Novikov--Thorne thin accretion disk model, including general relatistic effects. Based on the expected properties of stellar cusps, we find that around 10^6 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low mass AGNs to 1% photometric accuracy in optical, or ~ 10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Su...

  14. Savannah River Site prioritization of transition activities

    International Nuclear Information System (INIS)

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D ampersand D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities

  15. Savannah River Site prioritization of transition activities

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  16. Magneto-thermally activated spin-state transition in La0.95Ca0.05CoO3: magnetically-tunable dipolar glass and giant magneto-electricity.

    Science.gov (United States)

    Pandey, Suchita; Kumar, Jitender; Awasthi, A M

    2016-03-01

    The magneto-dielectric spectroscopy of La0.95Ca0.05CoO3 covering the crossover of spin states reveals the strong coupling of its spin and dipolar degrees of freedom. The signature of the spin-state transition at 30 K clearly manifests in the magnetization data at a 1 Tesla optimal field. Our Co L3,2-edge X-ray absorption spectrum on the doped specimen is consistent with its suppressed low-to-intermediate spin-state transition temperature at ∼30 K compared to ∼150 K, documented for pure LaCoO3. The dispersive activation step in the dielectric constant with the associated relaxation peak in imaginary permittivity characterize the allied influence of coexistent spin-states on the dielectric character. Dipolar relaxation in the low-spin regime below the transition temperature is partly segmental (Vogel-Fulcher-Tamman (VFT) kinetics) and features magnetic-field tunability, whereas in the low/intermediate-spin disordered state above ∼30 K, it is uncorrelated (Arrhenic kinetics) and almost impervious to the magnetic field H. Kinetics-switchover defines the dipolar-glass transition temperature Tg(H) (=27 K|0T), below which their magneto-thermally-activated cooperative relaxations freeze out by the VFT temperature T0(H) (=15 K|0T). An applied magnetic field facilitates thermal activation in toggling the low spins up into the intermediate states. Consequently, the downsized dipolar-glass segments in the low-spin state and the independent dipoles in the intermediate state exhibit accelerated dynamics. A critical 5 Tesla field collapses the entire relaxation kinetics into a single Arrhenic behaviour, signaling that the dipolar glass is completely devitrified under all higher fields. The magneto-electricity (ME) spanning sizeable thermo-spectral range registers diverse signatures here in kinetic, spectral, and field behaviors, in contrast to the static/perturbative ME observed close to the spin-ordering in typical multiferroics. Intrinsic magneto-dielectricity (50%) along

  17. The transition to the metallic state in low density hydrogen.

    Science.gov (United States)

    McMinis, Jeremy; Morales, Miguel A; Ceperley, David M; Kim, Jeongnim

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3) a0. We compare our results to previously reported density functional theory, Hedin's GW approximation, and dynamical mean field theory results. PMID:26590549

  18. Locating transition states using double-ended classical trajectories

    CERN Document Server

    Matro, A; Doll, J D

    1994-01-01

    In this paper we present a method for locating transition states and higher-order saddles on potential energy surfaces using double-ended classical trajectories. We then apply this method to 7- and 8-atom Lennard-Jones clusters, finding one previously unreported transition state for the 7-atom cluster and two for the 8-atom cluster.

  19. Systematics of α -decay transitions to excited states

    Science.gov (United States)

    Delion, D. S.; Dumitrescu, A.

    2015-08-01

    We systematize the available experimental material concerning α -decay transitions to low-lying excited states in even-even and odd-mass emitters. We generalize our previous theoretical prediction concerning the linear dependence between hindrance factors and the excitation energy for transitions in even-even α emitters. Thus, we show that α intensities for transitions to excited states depend linearly upon the excitation energy for all known even-even and odd-mass α emitters. It turns out that the well-known Viola-Seaborg law for α -decay transitions between ground states can be generalized for transitions to excited states. This rule can be used to predict any α -decay half-life to a low-lying excited state.

  20. Magnetic Ground State Properties of Transition Metals

    DEFF Research Database (Denmark)

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.;

    1977-01-01

    We review a simple one-electron theory of the magnetic and cohesive properties of ferro- and nearly ferromagnetic transition metals at 0 K. The theory is based on the density functional formalism, it makes use of the local spin density and atomic sphere approximations and it may, with further app...

  1. Improving Upon String Methods for Transition State Discovery.

    Science.gov (United States)

    Chaffey-Millar, Hugh; Nikodem, Astrid; Matveev, Alexei V; Krüger, Sven; Rösch, Notker

    2012-02-14

    Transition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method. The developed methods have led to a reduction in the number of gradient calls required to optimize a transition state, as compared to existing methods. The Searching String method reported here places new beads on a reaction pathway at the midpoint between existing beads, such that the resolution of the path discretization in the region containing the transition state grows exponentially with the number of beads. This approach leads to favorable convergence behavior and generates more accurate estimates of transition states from which convergence to the final transition states occurs more readily. Several techniques for generating improved estimates of transition states from a converged string or nudged elastic band have been developed and benchmarked on 13 chemical test cases. Optimization approaches for string methods, and pitfalls therein, are discussed.

  2. Care transition and network activation in Portugal

    OpenAIRE

    Santana, Silvina; M. Viana

    2012-01-01

    Purpose To report on the use of a user-centred model and methodology to assess the quality of care transition and network activation action, in light of an ongoing home supported discharge procedure for stroke patients in Portugal. Theory In Portugal, the health care system presents weaknesses resulting from a remarkable diversity of entry points, inadequate use of scarce and expensive resources and difficult information flow between institutions and professionals. The social care network is ...

  3. Critical Transitions in Social Network Activity

    DEFF Research Database (Denmark)

    Kuehn, Christian; Martens, Erik Andreas; Romero, Daniel M

    2014-01-01

    a priori known events are preceded by variance and autocorrelation growth. Our findings thus clearly establish the necessary starting point to further investigate the relationship between abstract mathematical theory and various classes of critical transitions in social networks.......A large variety of complex systems in ecology, climate science, biomedicine and engineering have been observed to exhibit tipping points, where the dynamical state of the system abruptly changes. For example, such critical transitions may result in the sudden change of ecological environments...... for a priori unknown events in society are present in social networks is an exciting open problem, to which at present only highly speculative answers can be given. Here, we instead provide a first step towards tackling a simpler question by focusing on a priori known events and analyse a social media data set...

  4. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms.

    Science.gov (United States)

    Petzold, Anne; Valencia, Miguel; Pál, Balázs; Mena-Segovia, Juan

    2015-01-01

    Cholinergic neurons of the pedunculopontine nucleus (PPN) are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here, we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state (AS). During the transition, neurons were predominantly excited (phasically or tonically), but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.

  5. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms

    Directory of Open Access Journals (Sweden)

    Anne ePetzold

    2015-10-01

    Full Text Available Cholinergic neurons of the pedunculopontine nucleus (PPN are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state. During the transition, neurons were predominantly excited (phasically or tonically, but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.

  6. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms

    Science.gov (United States)

    Petzold, Anne; Valencia, Miguel; Pál, Balázs; Mena-Segovia, Juan

    2015-01-01

    Cholinergic neurons of the pedunculopontine nucleus (PPN) are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here, we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state (AS). During the transition, neurons were predominantly excited (phasically or tonically), but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation. PMID:26582977

  7. Religion, state, society and identity in transition: Ukraine

    NARCIS (Netherlands)

    R. van der Laarse; M.N. Cherenkov; V.V. Proshak; T. Mykhalchuk

    2015-01-01

    State-society-identity relations could be defined as interaction(s) between state institutions, societal groups and individuals living within the borders of a (political) community/ state. These relations are never static, but vibrant, being in constant transition under the influence of cultural, re

  8. 2014 Report: Wetland State-and-transition Model Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report from the 2014 field season of the Wetland State-and-Transition Project. Many National Wildlife Refuges in the Intermountain West and Prairie Pothole regions...

  9. Transition state theory and the dynamics of hard disks

    Science.gov (United States)

    Barnett-Jones, M.; Dickinson, P. A.; Godfrey, M. J.; Grundy, T.; Moore, M. A.

    2013-11-01

    The dynamics of two- and five-disk systems confined in a square has been studied using molecular dynamics simulations and compared with the predictions of transition state theory. We determine the partition functions Z and Z‡ of transition state theory using a procedure first used by Salsburg and Wood for the pressure. Our simulations show this procedure and transition state theory are in excellent agreement with the simulations. A generalization of the transition state theory to the case of a large number of disks N is made and shown to be in full agreement with simulations of disks moving in a narrow channel. The same procedure for hard spheres in three dimensions leads to the Vogel-Fulcher-Tammann formula for their alpha relaxation time.

  10. Formalization of Abstract State Transition Systems for SAT

    CERN Document Server

    Marić, Filip

    2011-01-01

    We present a formalization of modern SAT solvers and their properties in a form of abstract state transition systems. SAT solving procedures are described as transition relations over states that represent the values of the solver's global variables. Several different SAT solvers are formalized, including both the classical DPLL procedure and its state-of-the-art successors. The formalization is made within the Isabelle/HOL system and the total correctness (soundness, termination, completeness) is shown for each presented system (with respect to a simple notion of satisfiability that can be manually checked). The systems are defined in a general way and cover procedures used in a wide range of modern SAT solvers. Our formalization builds up on the previous work on state transition systems for SAT, but it gives machine-verifiable proofs, somewhat more general specifications, and weaker assumptions that ensure the key correctness properties. The presented proofs of formal correctness of the transition systems c...

  11. Transition state theory and the dynamics of hard disks.

    Science.gov (United States)

    Barnett-Jones, M; Dickinson, P A; Godfrey, M J; Grundy, T; Moore, M A

    2013-11-01

    The dynamics of two- and five-disk systems confined in a square has been studied using molecular dynamics simulations and compared with the predictions of transition state theory. We determine the partition functions Z and Z(‡) of transition state theory using a procedure first used by Salsburg and Wood for the pressure. Our simulations show this procedure and transition state theory are in excellent agreement with the simulations. A generalization of the transition state theory to the case of a large number of disks N is made and shown to be in full agreement with simulations of disks moving in a narrow channel. The same procedure for hard spheres in three dimensions leads to the Vogel-Fulcher-Tammann formula for their alpha relaxation time.

  12. Gamma transitions between compound states in spherical nuclei

    International Nuclear Information System (INIS)

    Average values of the reduced γ widths and their dispersions are investigated, basing on the Wigner statistical matrix method, for γ transitions from a compound state c into a less-energy excited state f of an arbitrary complexity in spherical nuclei. It is shown that in all the cases of practical interest the Porter-Thomas distribution is valid for the γ widths. It is found that in the γ transitions between compound states c and c' with Esub(γ) <= 2 MeV the dominating role is played by the M1 transitions due to the main multiquasiparticle states of c, and by the E1 transitions, due to small components of the state c. In framework of the existent theoretical schemes it is shown that the strength functions of the M1 and E1 transitions between the compound states with Esub(γ) <2 MeV are close. It is deduced thet the variant of the M1 transitions is preferable in view of the experimental results on the (n, γα) reactions induced by thermal and resonance neutrons

  13. Mixed ligand complexation of some transition metal ions in solution and solid state: Spectral characterization, antimicrobial, antioxidant, DNA cleavage activities and molecular modeling

    Science.gov (United States)

    Shobana, Sutha; Dharmaraja, Jeyaprakash; Selvaraj, Shanmugaperumal

    2013-04-01

    Equilibrium studies of Ni(II), Cu(II) and Zn(II) mixed ligand complexes involving a primary ligand 5-fluorouracil (5-FU; A) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) as co-ligands(B) were carried out pH-metrically in aqueous medium at 310 ± 0.1 K with I = 0.15 M (NaClO4). In solution state, the stoichiometry of MABH, MAB and MAB2 species have been detected. The primary ligand(A) binds the central M(II) ions in a monodentate manner whereas him, bim, hist and his co-ligands(B) bind in mono, mono, bi and tridentate modes respectively. The calculated Δ log K, log X and log X' values indicate higher stability of the mixed ligand complexes in comparison to binary species. Stability of the mixed ligand complex equilibria follows the Irving-Williams order of stability. In vitro biological evaluations of the free ligand(A) and their metal complexes by well diffusion technique show moderate activities against common bacterial and fungal strains. Oxidative cleavage interaction of ligand(A) and their copper complexes with CT DNA is also studied by gel electrophoresis method in the presence of oxidant. In vitro antioxidant evaluations of the primary ligand(A), CuA and CuAB complexes by DPPH free radical scavenging model were carried out. In solid, the MAB type of M(II)sbnd 5-FU(A)sbnd his(B) complexes were isolated and characterized by various physico-chemical and spectral techniques. Both the magnetic susceptibility and electronic spectral analysis suggest distorted octahedral geometry. Thermal studies on the synthesized mixed ligand complexes show loss of coordinated water molecule in the first step followed by decomposition of the organic residues subsequently. XRD and SEM analysis suggest that the microcrystalline nature and homogeneous morphology of MAB complexes. Further, the 3D molecular modeling and analysis for the mixed ligand MAB complexes have also been carried out.

  14. The transition to the metallic state in low density hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    McMinis, Jeremy; Morales, Miguel A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ceperley, David M. [Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States); Kim, Jeongnim [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r{sub s} = 2.27(3) a{sub 0}. We compare our results to previously reported density functional theory, Hedin’s GW approximation, and dynamical mean field theory results.

  15. Resilience-based application of state-and-transition models

    Science.gov (United States)

    We recommend that several conceptual modifications be incorporated into the state-and-transition model (STM) framework to: 1) explicitly link this framework to the concept of ecological resilience, 2) direct management attention away from thresholds and toward the maintenance of state resilience, an...

  16. Activation of Wnt/β-Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS Function and Promotes Phenotypic Transition to More Metastatic Cell States.

    Science.gov (United States)

    Pedersen, Elisabeth A; Menon, Rajasree; Bailey, Kelly M; Thomas, Dafydd G; Van Noord, Raelene A; Tran, Jenny; Wang, Hongwei; Qu, Ping Ping; Hoering, Antje; Fearon, Eric R; Chugh, Rashmi; Lawlor, Elizabeth R

    2016-09-01

    Ewing sarcomas are characterized by the presence of EWS/ETS fusion genes in the absence of other recurrent genetic alterations and mechanisms of tumor heterogeneity that contribute to disease progression remain unclear. Mutations in the Wnt/β-catenin pathway are rare in Ewing sarcoma but the Wnt pathway modulator LGR5 is often highly expressed, suggesting a potential role for the axis in tumor pathogenesis. We evaluated β-catenin and LGR5 expression in Ewing sarcoma cell lines and tumors and noted marked intra- and inter-tumor heterogeneity. Tumors with evidence of active Wnt/β-catenin signaling were associated with increased incidence of tumor relapse and worse overall survival. Paradoxically, RNA sequencing revealed a marked antagonism of EWS/ETS transcriptional activity in Wnt/β-catenin-activated tumor cells. Consistent with this, Wnt/β-catenin-activated cells displayed a phenotype that was reminiscent of Ewing sarcoma cells with partial EWS/ETS loss of function. Specifically, activation of Wnt/β-catenin induced alterations to the actin cytoskeleton, acquisition of a migratory phenotype, and upregulation of EWS/ETS-repressed genes. Notably, activation of Wnt/β-catenin signaling led to marked induction of tenascin C (TNC), an established promoter of cancer metastasis, and an EWS/ETS-repressed target gene. Loss of TNC function in Ewing sarcoma cells profoundly inhibited their migratory and metastatic potential. Our studies reveal that heterogeneous activation of Wnt/β-catenin signaling in subpopulations of tumor cells contributes to phenotypic heterogeneity and disease progression in Ewing sarcoma. Significantly, this is mediated, at least in part, by inhibition of EWS/ETS fusion protein function that results in derepression of metastasis-associated gene programs. Cancer Res; 76(17); 5040-53. ©2016 AACR.

  17. TPmsm: Estimation of the Transition Probabilities in 3-State Models

    Directory of Open Access Journals (Sweden)

    Artur Araújo

    2014-12-01

    Full Text Available One major goal in clinical applications of multi-state models is the estimation of transition probabilities. The usual nonparametric estimator of the transition matrix for non-homogeneous Markov processes is the Aalen-Johansen estimator (Aalen and Johansen 1978. However, two problems may arise from using this estimator: first, its standard error may be large in heavy censored scenarios; second, the estimator may be inconsistent if the process is non-Markovian. The development of the R package TPmsm has been motivated by several recent contributions that account for these estimation problems. Estimation and statistical inference for transition probabilities can be performed using TPmsm. The TPmsm package provides seven different approaches to three-state illness-death modeling. In two of these approaches the transition probabilities are estimated conditionally on current or past covariate measures. Two real data examples are included for illustration of software usage.

  18. Labour market states, mobility and entrepreneurship in transition economies

    OpenAIRE

    Mark Dutz; Celine Kauffmann; Serineh Najarian; Peter Sanfey; Ruslan Yemtsov

    2001-01-01

    This paper examines the different strategies adopted by individuals in transition economies to cope with labour market restructuring. Using micro-data from seven countries at different stages of transition, we focus on “active” coping strategies, in particular mobility and entrepreneurship. Our results show that there is significant mobility across labour market states in most countries, but little inflow into entrepreneurship from unemployment or inactivity. Entrepreneurship is a high-reward...

  19. Complexity and state-transitions in social dependence networks

    Directory of Open Access Journals (Sweden)

    Giuliano Pistolesi

    2001-01-01

    Full Text Available Computation of complexity in Social Dependence Networks is an interesting research domain to understand evolution processes and group exchange dynamics in natural and artificial intelligent Multi-Agent Systems. We perform an agent-based simulation by NET-PLEX (Conte and Pistolesi, 2000, a new software system able both to build interdependence networks tipically emerging in Multi-Agent System scenarios and to investigate complexity phenomena, i.e., unstability and state-transitions like Hopf bifurcation (Nowak and Lewenstein, 1994, and to describe social self organization phenomena emerging in these artificial social systems by means of complexity measures similar to those introduced by Hubermann and Hogg (1986. By performing analysis of complexity in these kind of artificial societies we observed interesting phenomena in emerging organizations that suggest state-transitions induced by critical configurations of parameters describing the social system similar to those observed in many studies on state-transitions in bifurcation chaos (Schuster, 1988; Ruelle, 1989.

  20. Analysis of slow transitions between nonequilibrium steady states

    Science.gov (United States)

    Mandal, Dibyendu; Jarzynski, Christopher

    2016-06-01

    Transitions between nonequilibrium steady states obey a generalized Clausius inequality, which becomes an equality in the quasistatic limit. For slow but finite transitions, we show that the behavior of the system is described by a response matrix whose elements are given by a far-from-equilibrium Green-Kubo formula, involving the decay of correlations evaluated in the nonequilibrium steady state. This result leads to a fluctuation-dissipation relation between the mean and variance of the nonadiabatic entropy production, Δ {{s}\\text{na}} . Furthermore, our results extend—to nonequilibrium steady states—the thermodynamic metric structure introduced by Sivak and Crooks for analyzing minimal-dissipation protocols for transitions between equilibrium states.

  1. Physical activity patterns in Greenland: A country in transition

    DEFF Research Database (Denmark)

    Dahl-Petersen, Inger; Jørgensen, Marit E; Bjerregaard, Peter

    2011-01-01

    To examine differences in physical activity patterns among Inuit in Greenland in relation to social transition. The Inuit in Greenland are an indigenous population in the circumpolar north who are experiencing rapid social transition.......To examine differences in physical activity patterns among Inuit in Greenland in relation to social transition. The Inuit in Greenland are an indigenous population in the circumpolar north who are experiencing rapid social transition....

  2. EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G;

    2010-01-01

    an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across...... the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens...... are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major...

  3. Factorised steady states and condensation transitions in nonequilibrium systems

    Indian Academy of Sciences (India)

    M R Evans

    2005-06-01

    Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase transitions in one-dimensional systems. In this talk I will review a simple model of a nonequilibrium system known as the `zero-range process' and its recent developments. The nonequilibrium stationary state of this model factorises and this property allows a detailed analysis of several `condensation' transitions wherein a finite fraction of the constituent particles condenses onto a single lattice site. I will then consider a more general class of mass transport models, encompassing continuous mass variables and discrete time updating, and present a necessary and sufficient condition for the steady state to factorise. The property of factorisation again allows an analysis of the condensation transitions which may occur.

  4. Critical Transitions in Social Network Activity

    CERN Document Server

    Kuehn, Christian; Romero, Daniel

    2013-01-01

    A large variety of complex systems in ecology, climate science, biomedicine and engineering have been observed to exhibit tipping points, where the internal dynamical state of the system abruptly changes. For example, such critical transitions may result in the sudden change of ecological environments and climate conditions. Data and models suggest that some of these drastic events may be preceded by detectable early-warning signs. This view is also corroborated by abstract mathematical theory for generic bifurcations in stochastic multi-scale systems. Whether early-warnings are also present in social networks that anticipate \\textit{a-priori unknown} events in society is an open problem to which only highly speculative answers can be given at present. Here, we focus on \\textit{a-priori known} events and analyze a social network data set with a focus on classical variance and autocorrelation warning signs. We find that several a-priori known events are preceded by variance and autocorrelation growth as predic...

  5. Planar Homotropenylium Cation : A Transition State with Reversed Aromaticity

    NARCIS (Netherlands)

    Gibson, Christopher M.; Havenith, Remco W. A.; Fowler, Patrick W.; Jenneskens, Leonardus W.

    2015-01-01

    In contrast to the equilibrium structure of the homoaromatic C-s homotropenylium cation, C8H9+ (1), which supports a pinched diatropic ring current, the C(2)v transition state (2) for inversion of the methylene bridge of 1 is antiaromatic and supports a two-lobe paratropic pi current, as detected by

  6. Transition Strategies to Ensure Active Student Engagement

    Science.gov (United States)

    Korbel, Donna M.; McGuire, Joan M.; Banerjee, Manju; Saunders, Sue A.

    2011-01-01

    Transition into college for students with disabilities has been written about extensively over the past decade, due in part to legislative mandates implemented at the secondary level. With significant increases in the number of these students in the college population, a focus on their transition through college is imperative to improve retention…

  7. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.

    Science.gov (United States)

    Wulff, Günter; Liu, Junqiu

    2012-02-21

    The impressive efficiency and selectivity of biological catalysts has engendered a long-standing effort to understand the details of enzyme action. It is widely accepted that enzymes accelerate reactions through their steric and electronic complementarity to the reactants in the rate-determining transition states. Thus, tight binding to the transition state of a reactant (rather than to the corresponding substrate) lowers the activation energy of the reaction, providing strong catalytic activity. Debates concerning the fundamentals of enzyme catalysis continue, however, and non-natural enzyme mimics offer important additional insight in this area. Molecular structures that mimic enzymes through the design of a predetermined binding site that stabilizes the transition state of a desired reaction are invaluable in this regard. Catalytic antibodies, which can be quite active when raised against stable transition state analogues of the corresponding reaction, represent particularly successful examples. Recently, synthetic chemistry has begun to match nature's ability to produce antibody-like binding sites with high affinities for the transition state. Thus, synthetic, molecularly imprinted polymers have been engineered to provide enzyme-like specificity and activity, and they now represent a powerful tool for creating highly efficient catalysts. In this Account, we review recent efforts to develop enzyme models through the concept of transition state stabilization. In particular, models for carboxypeptidase A were prepared through the molecular imprinting of synthetic polymers. On the basis of successful experiments with phosphonic esters as templates to arrange amidinium groups in the active site, the method was further improved by combining the concept of transition state stabilization with the introduction of special catalytic moieties, such as metal ions in a defined orientation in the active site. In this way, the imprinted polymers were able to provide both an

  8. State transitions of actin cortices in vitro and in vivo

    Science.gov (United States)

    Tan, Tzer Han; Keren, Kinneret; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Most animal cells are enveloped by a thin layer of actin cortex which governs the cell mechanics. A functional cortex must be rigid to provide mechanical support while being flexible to allow for rapid restructuring events such as cell division. To satisfy these requirements, the actin cortex is highly dynamic with fast actin turnover and myosin-driven contractility. The regulatory mechanism responsible for the transition between a mechanically stable state and a restructuring state is not well understood. Here, we develop a technique to map the dynamics of reconstituted actin cortices in emulsion droplets using IR fluorescent single-walled carbon nanotubes (SWNTs). By increasing crosslinker concentration, we find that a homogeneous cortex transitions to an intermediate state with broken rotational symmetry and a globally contractile state which further breaks translational symmetry. We apply this new dynamic mapping technique to cortices of live starfish oocytes in various developmental stages. To identify the regulatory mechanism for steady state transitions, we subject the oocytes to actin and myosin disrupting drugs.

  9. Raman transitions between hyperfine clock states in a magnetic trap

    CERN Document Server

    Naber, J B; Hubert, T; Spreeuw, R J C

    2016-01-01

    We present our experimental investigation of an optical Raman transition between the magnetic clock states of $^{87}$Rb in an atom chip magnetic trap. The transfer of atomic population is induced by a pair of diode lasers which couple the two clock states off-resonantly to an intermediate state manifold. This transition is subject to destructive interference of two excitation paths, which leads to a reduction of the effective two-photon Rabi-frequency. Furthermore, we find that the transition frequency is highly sensitive to the intensity ratio of the diode lasers. Our results are well described in terms of light shifts in the multi-level structure of $^{87}$Rb. The differential light shifts vanish at an optimal intensity ratio, which we observe as a narrowing of the transition linewidth. We also observe the temporal dynamics of the population transfer and find good agreement with a model based on the system's master equation and a Gaussian laser beam profile. Finally, we identify several sources of decoheren...

  10. Excited-state quantum phase transitions in Dicke superradiance models.

    Science.gov (United States)

    Brandes, Tobias

    2013-09-01

    We derive analytical results for various quantities related to the excited-state quantum phase transitions in a class of Dicke superradiance models in the semiclassical limit. Based on a calculation of a partition sum restricted to Dicke states, we discuss the singular behavior of the derivative of the density of states and find observables such as the mean (atomic) inversion and the boson (photon) number and its fluctuations at arbitrary energies. Criticality depends on energy and a parameter that quantifies the relative weight of rotating versus counterrotating terms, and we find a close analogy to the logarithmic and jump-type nonanalyticities known from the Lipkin-Meshkov-Glick model. PMID:24125239

  11. Female Employment and Timing of Births Decisions: A Multiple State Transition Model

    OpenAIRE

    Bloemen, H.G.; A.S. Kalwij

    1996-01-01

    In this paper we estimate a multiple state transition model, describing transitions into maternity and labor market transitions for women.Each state is characterized by two components: the labor market state and the maternity state. This enables us to investigate to disentangle the effects of socio-economic variables on the timing of births and on labor market transitions.We find that the transition intensities into maternity are significantly higher for non-employed women than for employed w...

  12. Identification and Analysis of Transition and Metastable Markov States

    CERN Document Server

    Martini, Linda; Hummer, Gerhard; Buchete, Nicolae-Viorel; Rosta, Edina

    2016-01-01

    We present a new method that enables the identification and analysis of both transition and metastable conformational states from atomistic or coarse-grained molecular dynamics (MD) trajectories. Our algorithm is presented and studied by using both analytical and actual examples from MD simulations of the helix-forming peptide Ala5, and of a larger system, the epidermal growth factor receptor (EGFR) protein. In all cases, our method identifies automatically the corresponding transition states and metastable conformations in an optimal way, with the input of a set of relevant coordinates, by capturing accurately the intrinsic slowest relaxation rate. Our approach provides a general and easy to implement analysis method that provides unique insight into the molecular mechanism and the rare but crucial rate limiting conformational pathways occurring in complex dynamical systems such as molecular trajectories.

  13. Pion charge-exchange reactions: The analog state transitions

    International Nuclear Information System (INIS)

    The general features of pion charge-exchange reactions leading to nuclear-isobaric-analog states (IAS) and double-isobaric-analog states (DIAS), as they have emerged from studies over the past ten years, are reviewed. The energy range investigated is 20 to 550 MeV for IAS transitions and 20 to 300 MeV for DIAS transitions. These data are seen to play an important role in characterizing the pion optical potential, in determining the Δ-N interaction in nuclei, and in the study of nucleon correlations in nuclei. Recent progress achieved in understanding the role of such correlations in double-charge-exchange reactions is reviewed. 55 refs., 43 figs., 3 tabs

  14. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...... of this variation is due to changes in the enzyme structure at distances more than 5 Å from the active site. There are significant differences between the results obtained by pure quantum methods and those from mixed quantum and molecular mechanics methods....

  15. Reliable Transition State Searches Integrated with the Growing String Method.

    Science.gov (United States)

    Zimmerman, Paul

    2013-07-01

    The growing string method (GSM) is highly useful for locating reaction paths connecting two molecular intermediates. GSM has often been used in a two-step procedure to locate exact transition states (TS), where GSM creates a quality initial structure for a local TS search. This procedure and others like it, however, do not always converge to the desired transition state because the local search is sensitive to the quality of the initial guess. This article describes an integrated technique for simultaneous reaction path and exact transition state search. This is achieved by implementing an eigenvector following optimization algorithm in internal coordinates with Hessian update techniques. After partial convergence of the string, an exact saddle point search begins under the constraint that the maximized eigenmode of the TS node Hessian has significant overlap with the string tangent near the TS. Subsequent optimization maintains connectivity of the string to the TS as well as locks in the TS direction, all but eliminating the possibility that the local search leads to the wrong TS. To verify the robustness of this approach, reaction paths and TSs are found for a benchmark set of more than 100 elementary reactions.

  16. Biosynthetic consequences of multiple sequential post-transition-state bifurcations

    Science.gov (United States)

    Hong, Young Joo; Tantillo, Dean J.

    2014-02-01

    Selectivity in chemical reactions that form complex molecular architectures from simpler precursors is usually rationalized by comparing competing transition-state structures that lead to different possible products. Herein we describe a system for which a single transition-state structure leads to the formation of many isomeric products via pathways that feature multiple sequential bifurcations. The reaction network described connects the pimar-15-en-8-yl cation to miltiradiene, a tricyclic diterpene natural product, and isomers via cyclizations and/or rearrangements. The results suggest that the selectivity of the reaction is controlled by (post-transition-state) dynamic effects, that is, how the carbocation structure changes in response to the distribution of energy in its vibrational modes. The inherent dynamical effects revealed herein (characterized through quasiclassical direct dynamics calculations using density functional theory) have implications not only for the general principles of selectivity prediction in systems with complex potential energy surfaces, but also for the mechanisms of terpene synthase enzymes and their evolution. These findings redefine the challenges faced by nature in controlling the biosynthesis of complex natural products.

  17. Excited-state quantum phase transition in the Rabi model

    Science.gov (United States)

    Puebla, Ricardo; Hwang, Myung-Joong; Plenio, Martin B.

    2016-08-01

    The Rabi model, a two-level atom coupled to a harmonic oscillator, can undergo a second-order quantum phase transition (QPT) [M.-J. Hwang et al., Phys. Rev. Lett. 115, 180404 (2015), 10.1103/PhysRevLett.115.180404]. Here we show that the Rabi QPT accompanies critical behavior in the higher-energy excited states, i.e., the excited-state QPT (ESQPT). We derive analytic expressions for the semiclassical density of states, which show a logarithmic divergence at a critical energy eigenvalue in the broken symmetry (superradiant) phase. Moreover, we find that the logarithmic singularities in the density of states lead to singularities in the relevant observables in the system such as photon number and atomic polarization. We corroborate our analytical semiclassical prediction of the ESQPT in the Rabi model with its numerically exact quantum mechanical solution.

  18. Modeling of Cancer Stem Cell State Transitions Predicts Therapeutic Response.

    Directory of Open Access Journals (Sweden)

    Mary E Sehl

    Full Text Available Cancer stem cells (CSCs possess capacity to both self-renew and generate all cells within a tumor, and are thought to drive tumor recurrence. Targeting the stem cell niche to eradicate CSCs represents an important area of therapeutic development. The complex nature of many interacting elements of the stem cell niche, including both intracellular signals and microenvironmental growth factors and cytokines, creates a challenge in choosing which elements to target, alone or in combination. Stochastic stimulation techniques allow for the careful study of complex systems in biology and medicine and are ideal for the investigation of strategies aimed at CSC eradication. We present a mathematical model of the breast cancer stem cell (BCSC niche to predict population dynamics during carcinogenesis and in response to treatment. Using data from cell line and mouse xenograft experiments, we estimate rates of interconversion between mesenchymal and epithelial states in BCSCs and find that EMT/MET transitions occur frequently. We examine bulk tumor growth dynamics in response to alterations in the rate of symmetric self-renewal of BCSCs and find that small changes in BCSC behavior can give rise to the Gompertzian growth pattern observed in breast tumors. Finally, we examine stochastic reaction kinetic simulations in which elements of the breast cancer stem cell niche are inhibited individually and in combination. We find that slowing self-renewal and disrupting the positive feedback loop between IL-6, Stat3 activation, and NF-κB signaling by simultaneous inhibition of IL-6 and HER2 is the most effective combination to eliminate both mesenchymal and epithelial populations of BCSCs. Predictions from our model and simulations show excellent agreement with experimental data showing the efficacy of combined HER2 and Il-6 blockade in reducing BCSC populations. Our findings will be directly examined in a planned clinical trial of combined HER2 and IL-6 targeted

  19. Matrix Metalloproteinase Inhibition by Heterotrimeric Triple-Helical Peptide Transition State Analogs

    OpenAIRE

    Bhowmick, Manishabrata; Stawikowska, Roma; Tokmina-Roszyk, Dorota; Fields, Gregg B.

    2015-01-01

    Matrix metalloproteinases (MMPs) have been implicated in numerous pathologies. An overall lack of selectivity has rendered active site targeted MMP inhibitors problematic. The present study describes MMP inhibitors that function by binding both secondary binding sites (exosites) and the active site. Heterotrimeric triple-helical peptide transition-state analog inhibitors (THPIs) were assembled utilizing click chemistry. Three different heterotrimers were constructed, allowing for the inhibito...

  20. Fate of Extended States and Localization Transition at Weak Fields

    Science.gov (United States)

    Yang, Kun

    1997-03-01

    The reconciliation between the nonexistence of extended states in two dimensions in zero magnetic field, and the existence of critical energies in the high field limit, first addressed qualitatively (D. E. Khmelnitskii, Phys. Lett. A 106), 182 (1984); R. B. Laughlin, Phys. Rev. Lett. 52, 2304 (1984). a decade ago, has reemerged as a subject of considerable interest and debate, following experimental investigations in the two dimensional electron gas at low fields. We have addressed the problem on two fronts. For strong magnetic fields, where Landau level mixing effects are weak, we have developed a systematic analytic expansion in powers of 1\\over B. (F. D. M. Haldane and Kun Yang, Phys. Rev. Lett. 78), to appear. We find the dominant level repulsion effect (of order 1\\over B^2), lowers the energies of typical states in a Landau band. The critical energies, however, are not affected at this order. In contrast, we find that, the extended state energies levitates to order 1\\over B^3, thus reconciling levitation of extended states with level repulsion due to Landau level mixing. In the regime of weak magnetic field and strong Landau level mixing, where the perturbative approach is not applicable, we have performed a numerical study on lattice models, (Kun Yang and R. N. Bhatt, Phys. Rev. Lett. 76), 1316 (1996). which provides evidence for this levitation at weak magnetic field. Furthermore, we obtain a localization transition to an insulating phase at weak field, and a finite size scaling analysis shows that the localization length diverges at this transition with an exponent that is the same as that of the plateau transitions in the strong field regime, ν≈ 2.3. Relations between our theoretical results and experimental findings will be discussed.

  1. Mechanical induction of transitions into mesenchymal and amoeboid states

    Science.gov (United States)

    Liphardt, Jan

    One of the fundamental mysteries of biology lies in the ability of cells to convert from one phenotype to another in response to external control inputs. We have been studying the Epithelial-to-Mesenchymal Transition (EMT), which allows organized assemblies of epithelial cells to scatter into lone mesenchymal cells. EMT is critical for normal development and wound healing, and may be important for cancer metastasis. I'll present recent data on disorganizing mammary epithelial structures. We have used CRISPR to insert fluorescent tags directly into eight EMT-related genes (such as E-cadherin and Vimentin), which allows us to monitor the dynamics of the transition in real time, subject only to delays imposed by fluorophore folding/maturation times. With this information, we can begin to order events in time (temporal resolution 30 minutes), starting with external signal inputs and proceeding through a secession of intracellular changes of gene expression on the path to the mesenchymal state.

  2. TRANSITING THE SUN. II. THE IMPACT OF STELLAR ACTIVITY ON Lyα TRANSITS

    Energy Technology Data Exchange (ETDEWEB)

    Llama, J.; Shkolnik, E. L., E-mail: joe.llama@lowell.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-01-20

    High-energy observations of the Sun provide an opportunity to test the limits of our ability to accurately measure the properties of transiting exoplanets in the presence of stellar activity. Here we insert the transit of a hot Jupiter into continuous disk integrated data of the Sun in Lyα from NASA’s Solar Dynamics Observatory/EVE instrument to assess the impact of stellar activity on the measured planet-to-star radius ratio (R{sub p}/R{sub ⋆}). In 75% of our simulated light curves, we measure the correct radius ratio; however, incorrect values can be measured if there is significant short-term variability in the light curve. The maximum measured value of R{sub p}/R{sub ⋆} is 50% larger than the input value, which is much smaller than the large Lyα transit depths that have been reported in the literature, suggesting that for stars with activity levels comparable to the Sun, stellar activity alone cannot account for these deep transits. We ran simulations without a transit and found that stellar activity cannot mimic the Lyα transit of 55 Cancari b, strengthening the conclusion that this planet has a partially transiting exopshere. We were able to compare our simulations to more active stars by artificially increasing the variability in the Solar Lyα light curve. In the higher variability data, the largest value of R{sub p}/R{sub ⋆} we measured is <3× the input value, which again is not large enough to reproduce the Lyα transit depth reported for the more active stars HD 189733 and GJ 436, supporting the interpretation that these planets have extended atmospheres and possible cometary tails.

  3. Approximate State Transition Matrix and Secular Orbit Model

    Directory of Open Access Journals (Sweden)

    M. P. Ramachandran

    2015-01-01

    Full Text Available The state transition matrix (STM is a part of the onboard orbit determination system. It is used to control the satellite’s orbital motion to a predefined reference orbit. Firstly in this paper a simple orbit model that captures the secular behavior of the orbital motion in the presence of all perturbation forces is derived. Next, an approximate STM to match the secular effects in the orbit due to oblate earth effect and later in the presence of all perturbation forces is derived. Numerical experiments are provided for illustration.

  4. Transition state theory demonstrated at the micron scale with out-of-equilibrium transport in a confined environment

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Mikkelsen, Morten Bo Lindholm; Reisner, Walter;

    2016-01-01

    Transition state theory (TST) provides a simple interpretation of many thermally activated processes. It applies successfully on timescales and length scales that differ several orders of magnitude: to chemical reactions, breaking of chemical bonds, unfolding of proteins and RNA structures and po...... of the applied force. The states of equilibrium and transition are separated by micrometres as compared with angstroms/nanometres for chemical bonds....

  5. Green's function approach to edge states in transition metal dichalcogenides

    Science.gov (United States)

    Farmanbar, Mojtaba; Amlaki, Taher; Brocks, Geert

    2016-05-01

    The semiconducting two-dimensional transition metal dichalcogenides MX 2 show an abundance of one-dimensional metallic edges and grain boundaries. Standard techniques for calculating edge states typically model nanoribbons, and require the use of supercells. In this paper, we formulate a Green's function technique for calculating edge states of (semi-)infinite two-dimensional systems with a single well-defined edge or grain boundary. We express Green's functions in terms of Bloch matrices, constructed from the solutions of a quadratic eigenvalue equation. The technique can be applied to any localized basis representation of the Hamiltonian. Here, we use it to calculate edge states of MX 2 monolayers by means of tight-binding models. Aside from the basic zigzag and armchair edges, we study edges with a more general orientation, structurally modifed edges, and grain boundaries. A simple three-band model captures an important part of the edge electronic structures. An 11-band model comprising all valence orbitals of the M and X atoms is required to obtain all edge states with energies in the MX 2 band gap. Here, states of odd symmetry with respect to a mirror plane through the layer of M atoms have a dangling-bond character, and tend to pin the Fermi level.

  6. Theory of Interface States at Silicon / Transition - - Silicide Interfaces.

    Science.gov (United States)

    Lim, Hunhwa

    The Si/NiSi(,2)(111) interface is of both fundamental and techno- logical interest: From the fundamental point of view, it is the best characterized of all semiconductor/metal interfaces, with two well-determined geometries (A and B) involving nearly perfect bonding. (This is because Si and NiSi(,2) have nearly the same lattice spacing.) Consequently, a theoretical treatment of this system makes sense--as it would not for messier systems--and one can have some confidence that the theoretical predictions are relevant to experimental observa- tions. From the technological point of view, Si/NiSi(,2) is representative of the class of semiconductor/metal interfaces that are currently of greatest interest in regard to electronic devices--Si/transition -metal-silicide interfaces. The calculations of this dissertation are for the intrinsic interface states of Si/NiSi(,2)-A geometry. These calculations also provide a foundation for later studies of defects at this interface, and for studies of other related systems, such as CoSi(,2). The calculations employ empirical tight-binding Hamiltonians for both Si and NiSi(,2) (with the parameters fitted to prior calculations of the bulk band structures, which appear to be in agreement with the available experimental data on bulk Si and NiSi(,2)). They also employ Green's function techniques--in particular, the subspace Hamiltonian technique. Our principal results are the following: (1) Interface state disper- sion curves are predicted along the symmetry lines (')(GAMMA)(')M, (')M(')K and (')K(')(GAMMA) of the surface Brillouin zone. (2) A prominent band of interface states is found which disperses downward from an energy within the Si band gap to an energy below the Si valence band edge E(,(upsilon)) as the planar wavevector (')k increases from (')(GAMMA) ((')k = 0) to (')M or (')K (symmetry points at boundary of the surface Brillouin zone). This band of inter- face states should be observable. It produces a peak in the surface

  7. Lagrangian Descriptors of Thermalized Transition States on Time-Varying Energy Surfaces

    Science.gov (United States)

    Craven, Galen T.; Hernandez, Rigoberto

    2015-10-01

    Thermalized chemical reactions driven under dynamical load are characteristic of activated dynamics for arbitrary nonautonomous systems. Recent generalizations of transition state theory to obtain formally exact rates have required the construction of a time-dependent transition state trajectory. Here, we show that Lagrangian descriptors can be used to obtain this structure directly. By developing a phase space separatrix that is void of recrossings, these constructs allow for the principal criterion in the implementation of modern rate theories to be satisfied. Thus, the reactive flux over a time-varying barrier can be determined without ambiguity in chemical reactions. The generality of the formalism suggests that this approach is applicable to any activated system subjected to arbitrary driving and thermal fluctuations.

  8. Lagrangian Descriptors of Thermalized Transition States on Time-Varying Energy Surfaces.

    Science.gov (United States)

    Craven, Galen T; Hernandez, Rigoberto

    2015-10-01

    Thermalized chemical reactions driven under dynamical load are characteristic of activated dynamics for arbitrary nonautonomous systems. Recent generalizations of transition state theory to obtain formally exact rates have required the construction of a time-dependent transition state trajectory. Here, we show that Lagrangian descriptors can be used to obtain this structure directly. By developing a phase space separatrix that is void of recrossings, these constructs allow for the principal criterion in the implementation of modern rate theories to be satisfied. Thus, the reactive flux over a time-varying barrier can be determined without ambiguity in chemical reactions. The generality of the formalism suggests that this approach is applicable to any activated system subjected to arbitrary driving and thermal fluctuations. PMID:26551825

  9. Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics

    Science.gov (United States)

    Turner, Robert M.; Jack, Robert L.; Garrahan, Juan P.

    2015-08-01

    We consider thermodynamic and dynamic phase transitions in plaquette spin models of glasses. The thermodynamic transitions involve coupled (annealed) replicas of the model. We map these coupled-replica systems to a single replica in a magnetic field, which allows us to analyze the resulting phase transitions in detail. For the triangular plaquette model (TPM), we find for the coupled-replica system a phase transition between high- and low-overlap phases, occurring at a coupling ɛ*(T ) , which vanishes in the low-temperature limit. Using computational path sampling techniques, we show that a single TPM also displays "space-time" transitions between active and inactive dynamical phases. These first-order dynamical transitions occur at a critical counting field sc(T ) ≳0 that appears to vanish at zero temperature in a manner reminiscent of the thermodynamic overlap transition. In order to extend the ideas to three dimensions, we introduce the square pyramid model, which also displays both overlap and activity transitions. We discuss a possible common origin of these various phase transitions, based on long-lived (metastable) glassy states.

  10. Capturing the state transitions of seizure-like events using Hidden Markov models.

    Science.gov (United States)

    Guirgis, Mirna; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L

    2011-01-01

    The purpose of this study was to investigate the number of states present in the progression of a seizure-like event (SLE). Of particular interest is to determine if there are more than two clearly defined states, as this would suggest that there is a distinct state preceding an SLE. Whole-intact hippocampus from C57/BL mice was used to model epileptiform activity induced by the perfusion of a low Mg(2+)/high K(+) solution while extracellular field potentials were recorded from CA3 pyramidal neurons. Hidden Markov models (HMM) were used to model the state transitions of the recorded SLEs by incorporating various features of the Hilbert transform into the training algorithm; specifically, 2- and 3-state HMMs were explored. Although the 2-state model was able to distinguish between SLE and nonSLE behavior, it provided no improvements compared to visual inspection alone. However, the 3-state model was able to capture two distinct nonSLE states that visual inspection failed to discriminate. Moreover, by developing an HMM based system a priori knowledge of the state transitions was not required making this an ideal platform for seizure prediction algorithms. PMID:22254742

  11. Experiments on the active control of transitional boundary layers

    Science.gov (United States)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  12. Public works for Poland? Active labour market policies during transition

    OpenAIRE

    Puhani, Patrick A.; Steiner, Viktor

    1996-01-01

    Following the predominance of macroeconomic stabilisation policies and passive income support schemes in the first phase of transition, active labour market policies (ALMPs) have now come to play a more important role in transition economies. This paper looks at the Polish experience and provides empirical evidence on the effectiveness of ALMPs. We use the Polish Labour Force Survey of August 1994 in combination with its Supplement on the Evaluation of Labour Market Policies together with dat...

  13. A Stochastic Description of Transition Between Granular Flow States

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two-dimensional granular flow in a channel with small exit is studied by molecular dynamics simulations. We Erstly define a key area near the exit, which is considered to be the choke area of the system. Then we observe the time variation of the local packing fraction and flow rate in this area for several fixed inflow rate, and find that these quantities change abruptly when the transition from dilute How state to dense Bow state happens. A relationship between the local flow rate and the local packing fraction in the key area is also given. The relationship is a continuous function under the fixed particle number condition, and has the characteristic that the flow rate has a maximum at a moderate packing fraction and the packing fraction is terminated at a high value with negative slope. By use of the relationship, the properties of the How states under the fixed inflow rate condition are discussed in detail, and the discontinuities and the complex time variation behavior observed in the preexisting works are naturally explained by a stochastic process.

  14. Estimating state-transition probabilities for unobservable states using capture-recapture/resighting data

    Science.gov (United States)

    Kendall, W.L.; Nichols, J.D.

    2002-01-01

    Temporary emigration was identified some time ago as causing potential problems in capture-recapture studies, and in the last five years approaches have been developed for dealing with special cases of this general problem. Temporary emigration can be viewed more generally as involving transitions to and from an unobservable state, and frequently the state itself is one of biological interest (e.g., 'nonbreeder'). Development of models that permit estimation of relevant parameters in the presence of an unobservable state requires either extra information (e.g., as supplied by Pollock's robust design) or the following classes of model constraints: reducing the order of Markovian transition probabilities, imposing a degree of determinism on transition probabilities, removing state specificity of survival probabilities, and imposing temporal constancy of parameters. The objective of the work described in this paper is to investigate estimability of model parameters under a variety of models that include an unobservable state. Beginning with a very general model and no extra information, we used numerical methods to systematically investigate the use of ancillary information and constraints to yield models that are useful for estimation. The result is a catalog of models for which estimation is possible. An example analysis of sea turtle capture-recapture data under two different models showed similar point estimates but increased precision for the model that incorporated ancillary data (the robust design) when compared to the model with deterministic transitions only. This comparison and the results of our numerical investigation of model structures lead to design suggestions for capture-recapture studies in the presence of an unobservable state.

  15. Co-operativity in a nanocrystalline solid-state transition.

    Science.gov (United States)

    White, Sarah L; Smith, Jeremy G; Behl, Mayank; Jain, Prashant K

    2013-01-01

    Co-operativity is a remarkable phenomenon mostly seen in biology, where initial reaction events significantly alter the propensity of subsequent reaction events, giving rise to a nonlinear tightly regulated synergistic response. Here we have found unique evidence of atomic level co-operativity in an inorganic material. A thousand-atom nanocrystal (NC) of the inorganic solid cadmium selenide exhibits strong positive co-operativity in its reaction with copper ions. A NC doped with a few copper impurities becomes highly prone to be doped even further, driving an abrupt transition of the entire NC to the copper selenide phase, as manifested by a strongly sigmoidal response in optical spectroscopy and electron diffraction measurements. The examples presented here suggest that cooperative phenomena may have an important role in the solid state, especially in the nucleation of new chemical phases, crystal growth, and other materials' transformations.

  16. Bound states of quarks and gluons and hadronic transitions

    International Nuclear Information System (INIS)

    A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs

  17. Co-operativity in a nanocrystalline solid-state transition

    Science.gov (United States)

    White, Sarah L.; Smith, Jeremy G.; Behl, Mayank; Jain, Prashant K.

    2013-12-01

    Co-operativity is a remarkable phenomenon mostly seen in biology, where initial reaction events significantly alter the propensity of subsequent reaction events, giving rise to a nonlinear tightly regulated synergistic response. Here we have found unique evidence of atomic level co-operativity in an inorganic material. A thousand-atom nanocrystal (NC) of the inorganic solid cadmium selenide exhibits strong positive co-operativity in its reaction with copper ions. A NC doped with a few copper impurities becomes highly prone to be doped even further, driving an abrupt transition of the entire NC to the copper selenide phase, as manifested by a strongly sigmoidal response in optical spectroscopy and electron diffraction measurements. The examples presented here suggest that cooperative phenomena may have an important role in the solid state, especially in the nucleation of new chemical phases, crystal growth, and other materials’ transformations.

  18. Gas-phase chemistry of the yttrium-imido cation YNH{sup +} with alkenes: {Beta}-hydrogen activation by a d{sup 0} system via a multicentered transition state

    Energy Technology Data Exchange (ETDEWEB)

    Ranatunga, D.R.A.; Hill, Y.D.; Freiser, B.S. [Purdue Univ., West Lafayette, IN (United States)

    1996-02-20

    The gas-phase chemistry of the yttrium-imido carbon cations with alkenes was studied by using Fourier transform mass spectrometry to explore the chemistry of transition metal ion complexes with low-valence metal centers. The YNH{sup +} species was synthesized by reacting Y{sup +}, generated by laser desorption, with ammonia. The dehydrogenation reaction is exothermic, yielding a lower limit for the imido bond energy of D{degree}(Y{sup +}-NH) > 101 kcal/mol. Due to the electron deficiency of the metal center upon binding to NH, the further reactivity of YNH{sup +} can only be explained by a reaction mechanism involving a multicentered transition state. YNH{sup +} reacts with ethene predominantly by dehydrogenation to produce YC{sub 2}H{sub 3}N{sup +}. Thus, instead of the metathesis reaction involving the cleavage of the 2-aza-1-metallacyclobutane intermediate, a {beta}-hydrogen transfers to the metal center and is then eliminated with a hydrogen from the remaining CH{sub 2} group to complete the reaction. All three linear butenes, 1-butene, cis-2-butene, and trans-2-butene, react very similarly with YNH{sup +}, yielding a variety of product ions with the predominant loss of NH{sub 3} resulting in the formation of YCH{sub 4}H{sub 6}{sup +}. Structural studies on this ion suggest that it is bent metallacyclopent-3-ene, not the butadiene isomer. 34 refs., 1 fig.

  19. Multi-state succession in wetlands: a novel use of state and transition models

    Science.gov (United States)

    Zweig, Christa L.; Kitchens, Wiley M.

    2009-01-01

    The complexity of ecosystems and mechanisms of succession are often simplified by linear and mathematical models used to understand and predict system behavior. Such models often do not incorporate multivariate, nonlinear feedbacks in pattern and process that include multiple scales of organization inherent within real-world systems. Wetlands are ecosystems with unique, nonlinear patterns of succession due to the regular, but often inconstant, presence of water on the landscape. We develop a general, nonspatial state and transition (S and T) succession conceptual model for wetlands and apply the general framework by creating annotated succession/management models and hypotheses for use in impact analysis on a portion of an imperiled wetland. The S and T models for our study area, Water Conservation Area 3A South (WCA3), Florida, USA, included hydrologic and peat depth values from multivariate analyses and classification and regression trees. We used the freeware Vegetation Dynamics Development Tool as an exploratory application to evaluate our S and T models with different management actions (equal chance [a control condition], deeper conditions, dry conditions, and increased hydrologic range) for three communities: slough, sawgrass (Cladium jamaicense), and wet prairie. Deeper conditions and increased hydrologic range behaved similarly, with the transition of community states to deeper states, particularly for sawgrass and slough. Hydrology is the primary mechanism for multi-state transitions within our study period, and we show both an immediate and lagged effect on vegetation, depending on community state. We consider these S and T succession models as a fraction of the framework for the Everglades. They are hypotheses for use in adaptive management, represent the community response to hydrology, and illustrate which aspects of hydrologic variability are important to community structure. We intend for these models to act as a foundation for further restoration

  20. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.

    Science.gov (United States)

    Burschowsky, Daniel; van Eerde, André; Ökvist, Mats; Kienhöfer, Alexander; Kast, Peter; Hilvert, Donald; Krengel, Ute

    2014-12-01

    For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.

  1. Passive and active control of boundary layer transition

    Science.gov (United States)

    Nosenchuck, Daniel Mark

    It is well known that laminar-turbulent boundary layer transition is initiated by the formation of Tollmien-Schlichting laminar instability waves. The amplification rates of these waves are strongly dependent on the shape of the boundary layer velocity profile. Consequently, the transition process can be controlled by modifying the velocity profile. This can be accomplished by controlling the pressure gradient (dp/dx), using boundary layer suction, installing surface roughness elements, or by surface heating or cooling. Methods used to modify the transition process through changes in the mean velocity profile are called "passive" in this paper. There exists a large set of experiments and theory on the application of passive methods for boundary layer control. In the present work only surface heating will be addressed.Transition measurements were made on a heated flat plate in water. Results are presented for several plate wall temperature distributions. An increase by a factor of 2.5 in transition Reynolds number was observed for a 5°C isothermal wall overheat. Buoyancy effects on transition were minimal due to the small Richardson and Grashof numbers encountered in the experiments.The amplification of laminar instability waves is comparatively to process, taking place over many boundary layer thicknesses. After the slow amplification of the laminar instability waves, transition occurs by a strong three dimensional dynamic instability. It appears possible to attenuate (or reinforce) the instability waves by introducing amplitude-and phase-controlled perturbations into the laminar boundary layer using feedback control system. This method is called "active" control and forms the larger part of the research reported in this thesis.A combination of sensors, activators and feedback control electronics is required for active control. The sensors used in the experiments are flush-mounted hot film wall shear robes. A new type of activator was developed using thin, flush

  2. Transiting the Sun II: The impact of stellar activity on Lyman-$\\alpha$ transits

    CERN Document Server

    Llama, J

    2015-01-01

    High-energy observations of the Sun provide an opportunity to test the limits of our ability to accurately measure properties of transiting exoplanets in the presence of stellar activity. Here we insert transits of a hot Jupiter into continuous disk integrated data of the Sun in Lyman-alpha (Ly$\\alpha$) from NASA's SDO/EVE instrument to assess the impact of stellar activity on the measured planet-to-star radius ratio $(\\textrm{R}_\\textrm{p}/\\textrm{R}_\\star)$. In 75% of our simulated light curves we measure the correct radius ratio; however, incorrect values can be measured if there is significant short term variability in the light curve. The maximum measured value of $(\\textrm{R}_\\textrm{p}/\\textrm{R}_\\star)$ is $50\\%$ larger than the input value, which is much smaller than the large Ly$\\alpha$ transit depths that have been reported in the literature, suggesting that for stars with activity levels comparable to the Sun, stellar activity alone cannot account for these deep transits. We ran simulations withou...

  3. Equation of State and the Finite Temperature Transition in QCD

    CERN Document Server

    Gupta, Rajan

    2009-01-01

    This talk provides a summary of the results obtained by the HotQCD collaboration on the equation of state and the crossover transition in 2+1 flavor QCD. We investigate bulk thermodynamic quantities - energy density, pressure, entropy density, and the speed of sound over the temperature range 140 < T < 540 MeV. These results have been obtained on lattices of temporal size N_tau = 6 and 8 and with two improved staggered fermion actions, asqtad and p4. Our most extensive results are with masses of the two degenerate light quarks set at m_l = 0.1 m_s corresponding to the Goldstone pion mass m_pi between 220-260 MeV. In these simulations, the strange quark mass is tuned to its physical value and constant values of m_l/m_s define lines of constant physics. We also summarize the current state of results on observables sensitive to the chiral and deconfining physics -- the light and strange quark number susceptibilities, the chiral condensate and its susceptibility, and the renormalized Polyakov loop. Our resu...

  4. Analysis of the chloroplast protein kinase Stt7 during state transitions.

    Directory of Open Access Journals (Sweden)

    Sylvain Lemeille

    2009-03-01

    Full Text Available State transitions allow for the balancing of the light excitation energy between photosystem I and photosystem II and for optimal photosynthetic activity when photosynthetic organisms are subjected to changing light conditions. This process is regulated by the redox state of the plastoquinone pool through the Stt7/STN7 protein kinase required for phosphorylation of the light-harvesting complex LHCII and for the reversible displacement of the mobile LHCII between the photosystems. We show that Stt7 is associated with photosynthetic complexes including LHCII, photosystem I, and the cytochrome b6f complex. Our data reveal that Stt7 acts in catalytic amounts. We also provide evidence that Stt7 contains a transmembrane region that separates its catalytic kinase domain on the stromal side from its N-terminal end in the thylakoid lumen with two conserved Cys that are critical for its activity and state transitions. On the basis of these data, we propose that the activity of Stt7 is regulated through its transmembrane domain and that a disulfide bond between the two lumen Cys is essential for its activity. The high-light-induced reduction of this bond may occur through a transthylakoid thiol-reducing pathway driven by the ferredoxin-thioredoxin system which is also required for cytochrome b6f assembly and heme biogenesis.

  5. Studies of transition states and radicals by negative ion photodetachment

    Energy Technology Data Exchange (ETDEWEB)

    Metz, R.B.

    1991-12-01

    Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY{sup {minus}} anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY {yields} XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH{sub 2}NO{sub 2} by photoelectron spectroscopy of CH{sub 2}NO{sub 2}{sup {minus}}, determining the electron affinity of CH{sub 2}NO{sub 2}, gaining insight on the bonding of the {sup 2}B{sub 1} ground state and observing the {sup 2}A{sub 2} excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH{sub 2}NO{sub 2} at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.

  6. A comparison of transition state of phenol in H-atom abstraction by methyl and methylperoxyl radicals

    Institute of Scientific and Technical Information of China (English)

    SUN YouMin; WU JunSen; LIU ChengBu

    2007-01-01

    DFT method was employed to locate transition state for H-atom transfer from phenol by methyl radical and methylperoxyl radical. The reaction pathway energy profiles and the structure of transition state show that a common feature is the out-of-plane structure of the transition state: in contrast to the energetic minima of a hydrogen-bonded intermediate, the hydrogen bond in transition structures is considerably twisted out of the aromatic ring. From the values of enthalpy (△H) and activation energy (Ea)obtained, it is found that the rate of the reaction of peroxyl radical with phenolic antioxidant is higher than that of alkyl radical with antioxidant. Spin density distributions show that the electron transmission is between methyl (methylperoxyl) radical and phenol.

  7. Implementing Secondary Transition Evidence-Based Practices: A Multi-State Survey of Transition Service Providers

    Science.gov (United States)

    Mazzotti, Valerie L.; Plotner, Anthony J.

    2016-01-01

    Inadequate transition outcomes for youth with disabilities have produced a call for enhanced transition service delivery that includes implementation of evidence-based practices (EBPs). However, research indicates transition service providers still lack the knowledge and skills to effectively implement EBPs to ensure youth with disabilities…

  8. Account of states with indefinite spin in calculations of intercombination collisional transitions

    International Nuclear Information System (INIS)

    States with indefinite spin are used in the second order of the perturbation theory as intermediate states for calculating electronic collisional transitions with changing spin between excited states of atoms. The rate coefficient for 41P-43D transition in helium is estimated

  9. Three-photon transitions from ground state to bound states in atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thayyullathil, Ramesh Babu [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India); Radhakrishnan, R [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India); Seema, M [Department of Physics, Indian Institute of Technology, New Delhi 110 016 (India)

    2003-08-08

    In this paper, we present an efficient alternative method for the evaluation of the three-photon transition matrix element in the dipole approximation from the ground state to bound states in atomic hydrogen. This method is a variation of the Dalgarno-Lewis method for the treatment of the second-order Stark effect in the hydrogen atom. In this approach, the infinite double sum over the complete set of states including the continuum states present in the third-order perturbation theory result is treated exactly. The closed analytical expression obtained for the matrix element, as a function of incident photon energy, clearly displays all singularities present in the original third-order perturbation theory result.

  10. The 10 Hz Frequency: A Fulcrum For Transitional Brain States

    Science.gov (United States)

    Garcia-Rill, E.; D’Onofrio, S.; Luster, B.; Mahaffey, S.; Urbano, F. J.; Phillips, C.

    2016-01-01

    A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest (mu rhythm), in the superior and middle temporal lobe (tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are “replaced” by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness.

  11. Observation of magnetic supercooling of the transition to the vortex state

    International Nuclear Information System (INIS)

    The magnetic hysteresis of an individual magnetic disc switching in and out of the vortex state has been exhaustively measured using nanomechanical torsional resonator torque magnetometry. Each individual hysteresis loop pinpoints two sharp events, a single vortex creation and an annihilation, with a bias field precision of 0.02 kA m-1. Statistical analysis of thousands of hysteresis loops reveals a dramatic difference in the sensitivity of the vortex creation and annihilation field distributions to the measurement conditions. The data sets measured at different magnetic field sweep rates demonstrate that the transition from the high-field state to the vortex state is not well modeled as a conventional thermal activation process in which it is assumed that the 'true' nucleation field is lower than any of the observed switching fields. Instead, the results are suggestive of the classic supercooling signature of a first-order phase transition, or more specifically here, its magnetic equivalent. This phenomenological evidence is consistent with a theoretical picture of the vortex nucleation process as a modified Landau first-order phase transition.

  12. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  13. Enzyme activity below the dynamical transition at 220 K.

    OpenAIRE

    Daniel, R M; Smith, J. C.; Ferrand, M; Héry, S; Dunn, R; Finney, J L

    1998-01-01

    Enzyme activity requires the activation of anharmonic motions, such as jumps between potential energy wells. However, in general, the forms and time scales of the functionally important anharmonic dynamics coupled to motion along the reaction coordinate remain to be determined. In particular, the question arises whether the temperature-dependent dynamical transition from harmonic to anharmonic motion in proteins, which has been observed experimentally and using molecular dynamics simulation, ...

  14. Iterative minimization algorithm for efficient calculations of transition states

    Science.gov (United States)

    Gao, Weiguo; Leng, Jing; Zhou, Xiang

    2016-03-01

    This paper presents an efficient algorithmic implementation of the iterative minimization formulation (IMF) for fast local search of transition state on potential energy surface. The IMF is a second order iterative scheme providing a general and rigorous description for the eigenvector-following (min-mode following) methodology. We offer a unified interpretation in numerics via the IMF for existing eigenvector-following methods, such as the gentlest ascent dynamics, the dimer method and many other variants. We then propose our new algorithm based on the IMF. The main feature of our algorithm is that the translation step is replaced by solving an optimization subproblem associated with an auxiliary objective function which is constructed from the min-mode information. We show that using an efficient scheme for the inexact solver and enforcing an adaptive stopping criterion for this subproblem, the overall computational cost will be effectively reduced and a super-linear rate between the accuracy and the computational cost can be achieved. A series of numerical tests demonstrate the significant improvement in the computational efficiency for the new algorithm.

  15. Fourth-Order Vibrational Transition State Theory and Chemical Kinetics

    Science.gov (United States)

    Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.

    2015-06-01

    Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.

  16. Transition-state theory predicts clogging at the microscale

    Science.gov (United States)

    Laar, T. Van De; Klooster, S. Ten; Schroën, K.; Sprakel, J.

    2016-06-01

    Clogging is one of the main failure mechanisms encountered in industrial processes such as membrane filtration. Our understanding of the factors that govern the build-up of fouling layers and the emergence of clogs is largely incomplete, so that prevention of clogging remains an immense and costly challenge. In this paper we use a microfluidic model combined with quantitative real-time imaging to explore the influence of pore geometry and particle interactions on suspension clogging in constrictions, two crucial factors which remain relatively unexplored. We find a distinct dependence of the clogging rate on the entrance angle to a membrane pore which we explain quantitatively by deriving a model, based on transition-state theory, which describes the effect of viscous forces on the rate with which particles accumulate at the channel walls. With the same model we can also predict the effect of the particle interaction potential on the clogging rate. In both cases we find excellent agreement between our experimental data and theory. A better understanding of these clogging mechanisms and the influence of design parameters could form a stepping stone to delay or prevent clogging by rational membrane design.

  17. Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy

    CERN Document Server

    Wade, Christopher G; Keaveney, James; Adams, Charles S; Weatherill, Kevin J

    2014-01-01

    We describe a method to observe the dynamics of an excited-state transition in a room temperature atomic vapor using hyperfine quantum beats. Our experiment using cesium atoms consists of a pulsed excitation of the D2 transition, and continuous-wave driving of an excited-state transition from the 6P$_{3/2}$ state to the 7S$_{1/2}$ state. We observe quantum beats in the fluorescence from the 6P$_{3/2}$ state which are modified by the driving of the excited-state transition. The Fourier spectrum of the beat signal yields evidence of Autler-Townes splitting of the 6P$_{3/2}$, F = 5 hyperfine level and Rabi oscillations on the excited-state transition. A detailed model provides qualitative agreement with the data, giving insight to the physical processes involved.

  18. Research for the energy turnaround. Phase transitions actively shape. Contributions

    International Nuclear Information System (INIS)

    The Annual Conference 2014 of the Renewable Energy Research Association was held in Berlin on 6 and 7 November 2014. This book documents the contributions of the conference on research for the energy turnaround, phase transitions actively shape. After an introduction and two contributions to the political framework, the contributions to the economic phases of the energy transition, the phase of the current turn, the phases of social energy revolution, the stages of heat turnaround (Waermewende), and the stages of the mobility turn deal with the stages of development of the energy system. Finally, the Research Association Renewable Energy is briefly presented.

  19. Activated phosphors having matrices of yttrium-transition metal compound

    Science.gov (United States)

    De Kalb, E.L.; Fassel, V.A.

    1975-07-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO$sub 4$ with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence. (auth)

  20. Liquid-Gas Phase Transition in Nuclear Equation of State

    CERN Document Server

    Lee, S J

    1997-01-01

    A canonical ensemble model is used to describe a caloric curve of nuclear liquid-gas phase transition. Allowing a discontinuity in the freeze out density from one spinodal density to another for a given initial temperature, the nuclear liquid-gas phase transition can be described as first order. Averaging over various freeze out densities of all the possible initial temperatures for a given total reaction energy, the first order characteristics of liquid-gas phase transition is smeared out to a smooth transition. Two experiments, one at low beam energy and one at high beam energy show different caloric behaviors and are discussed.

  1. Neutrons transition densities for the $2^+-8^+$ multiplet of states in $^{90}$Zr

    OpenAIRE

    Onegin, M. S.; Plavko, A. V.

    2003-01-01

    The neutron transition densities of the $2^+-8^+$ levels in $^{90}$Zr were extracted in the process of analysing ({\\bf p},p') scattering at 400 Mev. Its comparison with the proton transition densities for these levels was undertaken. The radial shapes of the experimental neutron and proton transition densities for each state were found to be different.

  2. Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation

    Directory of Open Access Journals (Sweden)

    Sarah Phillips

    2014-05-01

    Full Text Available Perturbations in stem cell activity and differentiation can lead to developmental defects and cancer. We use an approach involving a quantitative model of cell-state transitions in vitro to gain insights into how SLUG/SNAI2, a key developmental transcription factor, modulates mammary epithelial stem cell activity and differentiation in vivo. In the absence of SLUG, stem cells fail to transition into basal progenitor cells, while existing basal progenitor cells undergo luminal differentiation; together, these changes result in abnormal mammary architecture and defects in tissue function. Furthermore, we show that in the absence of SLUG, mammary stem cell activity necessary for tissue regeneration and cancer initiation is lost. Mechanistically, SLUG regulates differentiation and cellular plasticity by recruiting the chromatin modifier lysine-specific demethylase 1 (LSD1 to promoters of lineage-specific genes to repress transcription. Together, these results demonstrate that SLUG plays a dual role in repressing luminal epithelial differentiation while unlocking stem cell transitions necessary for tumorigenesis.

  3. Active State Model for Autonomous Systems

    Science.gov (United States)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  4. Pseudo-transition Analysis Identifies the Key Regulators of Dynamic Metabolic Adaptations from Steady-State Data.

    Science.gov (United States)

    Gerosa, Luca; Haverkorn van Rijsewijk, Bart R B; Christodoulou, Dimitris; Kochanowski, Karl; Schmidt, Thomas S B; Noor, Elad; Sauer, Uwe

    2015-10-28

    Hundreds of molecular-level changes within central metabolism allow a cell to adapt to the changing environment. A primary challenge in cell physiology is to identify which of these molecular-level changes are active regulatory events. Here, we introduce pseudo-transition analysis, an approach that uses multiple steady-state observations of (13)C-resolved fluxes, metabolites, and transcripts to infer which regulatory events drive metabolic adaptations following environmental transitions. Pseudo-transition analysis recapitulates known biology and identifies an unexpectedly sparse, transition-dependent regulatory landscape: typically a handful of regulatory events drive adaptation between carbon sources, with transcription mainly regulating TCA cycle flux and reactants regulating EMP pathway flux. We verify these observations using time-resolved measurements of the diauxic shift, demonstrating that some dynamic transitions can be approximated as monotonic shifts between steady-state extremes. Overall, we show that pseudo-transition analysis can explore the vast regulatory landscape of dynamic transitions using relatively few steady-state data, thereby guiding time-consuming, hypothesis-driven molecular validations. PMID:27136056

  5. Possible enhancement of magnetic dipole transition strength between Gamow-Teller and isobaric analog states

    International Nuclear Information System (INIS)

    The non-energy weighted sum rule of M1 transitions between IAS and GT states is found to be significantly enhanced compared to the sum rule of parent nucleus. Mechanism of this enhancement is explained. Transition strengths between specific states in 48Sc, 90Nb and 208Bi are calculated to investigate whether the enhancement of the sum rule is reflected in these transitions. Measurement of M1 transitions between IAS and GT states is recommended to obtain more information on the spin-isospin response in medium and heavy nuclei. (orig.)

  6. On the way of classifying new states of active matter

    Science.gov (United States)

    Menzel, Andreas M.

    2016-07-01

    With ongoing research into the collective behavior of self-propelled particles, new states of active matter are revealed. Some of them are entirely based on the non-equilibrium character and do not have an immediate equilibrium counterpart. In their recent work, Romanczuk et al (2016 New J. Phys. 18 063015) concentrate on the characterization of smectic-like states of active matter. A new type, referred to by the authors as smectic P, is described. In this state, the active particles form stacked layers and self-propel along them. Identifying and classifying states and phases of non-equilibrium matter, including the transitions between them, is an up-to-date effort that will certainly extend for a longer period into the future.

  7. Spin-state transition and phase separation in multi-orbital Hubbard model

    OpenAIRE

    Suzuki, Ryo; Watanabe, Tsutomu; Ishihara, Sumio

    2009-01-01

    We study spin-state transition and phase separation involving this transition based on the milti-orbital Hubbard model. Multiple spin states are realized by changing the energy separation between the two orbitals and the on-site Hund coupling. By utilizing the variational Monte-Carlo simulation, we analyze the electronic and magnetic structures in hole doped and undoped states. Electronic phase separation occurs between the low-spin band insulating state and the high-spin ferromagnetic metall...

  8. 19 CFR 123.42 - Truck shipments transiting the United States.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Truck shipments transiting the United States. 123.42 Section 123.42 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS RELATIONS WITH CANADA AND MEXICO United States and Canada In-Transit Truck Procedures § 123.42 Truck...

  9. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition.

    Science.gov (United States)

    Hsiung, Chris C-S; Bartman, Caroline R; Huang, Peng; Ginart, Paul; Stonestrom, Aaron J; Keller, Cheryl A; Face, Carolyne; Jahn, Kristen S; Evans, Perry; Sankaranarayanan, Laavanya; Giardine, Belinda; Hardison, Ross C; Raj, Arjun; Blobel, Gerd A

    2016-06-15

    During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis-G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis-G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer-promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis-G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis-G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis-G1 transition might predispose cells to diverge in gene expression states.

  10. On the transmission- to reprocessing-dominated spectral state transitions in Seyfert 2 galaxies

    CERN Document Server

    Guainazzi, M; Iwasawa, K; Matt, G; Fiore, F

    2004-01-01

    We present Chandra and XMM-Newton observations of a small sample (11 objects) of optically-selected Seyfert~2 galaxies, for which ASCA and BeppoSAX had suggested Compton-thick obscuration of the Active Nucleus (AGN). The main goal of this study is to estimate the rate of transitions between "transmission-" and "reprocessing-dominated" states. We discover one new transition in NGC4939, with a possible additional candidate in NGC5643. This indicates a typical occurrence rate of at least ~0.02/year. These transitions could be due to large changes of the obscuring gas column density, or to a transient dimming of the AGN activity, the latter scenario being supported by detailed analysis of the best studied events. Independently of the ultimate mechanism, comparison of the observed spectral dynamics with Monte-Carlo simulations demonstrates that the obscuring gas is largely inhomogeneous, with multiple absorbing components possibly spread through the whole range of distances from the nucleus between a fraction of p...

  11. Expanding the applicability of electrostatic potentials to the realm of transition states.

    Science.gov (United States)

    Bhasi, Priya; Nhlabatsi, Zanele P; Sitha, Sanyasi

    2016-05-14

    Central to any reaction mechanism study, and sometimes a challenging job, is tracing a transition state in a reaction path. For the first time, electrostatic potentials (ESP) of the reactants were used as guiding tactics to predict whether there is a possibility of any transition state in a reaction surface. The main motive behind this strategy is to see whether the directionality nature of the transition state has something to do with the anisotropic natures of the ESP with their embedded directionalities. Strategically, some atmospherically important, but simple, reactions have been chosen for this study, which heretofore were believed to be barrierless. By carefully analysing the ESP maps of the reactants, regions of possible interactions were located. Using the bilinear interpolation of the 2D grids of the ESP surfaces, search co-ordinates were fine-tuned for a local gradient based approach for the search of a transition state. Out of the three reactions studied in this work, we were able to successfully locate transition states, for the first time, in two cases and the third one still proved to be barrierless. This gives a clear indication that though ESP maps can qualitatively predict the possibility of a transition state; it is not always true that there should definitely be a transition state, as some of the reaction surfaces may genuinely be barrierless. But, nevertheless this strategy definitely has credential to be tested for many more reactions, either new or already established, and may be applied to create the initial search co-ordinates for any well-established transition state search method. Moreover, we have observed that the analysis of the ESP maps of the reactants were very much useful in explaining the nature of interactions existing in those observed transition states and we hope the same can also be extended to any transition state in an electrostatically driven reaction potential energy surface. PMID:27108668

  12. Lithuanian health care in transitional state: ethical problems

    Directory of Open Access Journals (Sweden)

    Žekas Romualdas

    2005-11-01

    Full Text Available Abstract Background Throughout the economic and political reforms in post-communist countries, significant changes have also occurred in public morality. One of the tasks of the Lithuanian health policy is to create mechanisms for strengthening the significance of ethical considerations in the decision-making processes concerning health care of individuals and groups of individuals, as well as considering the positions of physicians and the health care system itself in a general way. Thus, health care ethics could be analyzed at two levels: the micro level (the ethics of doctor-patient relationships and the macro level (the ethics of health policy-making, which can be realized by applying the principles of equal access, reasonable quality, affordable care and shared responsibilities. To date, the first level remains dominant, but the need arises for our attention to refocus now from the micro level to the patterns of managing and delivering care, managing the health care resources, and conducting business practices. Discussion In attempting to increase the efficiency of health services in Lithuania, a common strategy has been in place for the last fifteen years. Decentralization and privatization have been implemented as part of its policy to achieve greater efficiency. Although decentralization in theory is supposed to improve efficiency, in practice the reform of decentralization has still to be completely implemented in Lithuania. Debates on health policy in Lithuania also include the issue of private versus public health care. Although the approach of private health care is changing in a positive way, it is obvious that reduced access to health services is the most vulnerable aspect. In the Lithuanian Health Program adopted in July 1998, the target of equity was stressed, stating that by 2010, differences in health and health care between various socio-economic groups should be reduced by 25%. Summary The restructuring of health care system

  13. School-travel by public transit: Rethinking active transportation

    OpenAIRE

    Christine Voss; Meghan Winters; Amanda Frazer; Heather McKay

    2015-01-01

    Background: Walking and cycling to school is a source of physical activity (PA). Little is known about public transit use for travel to school and whether it is a physically active alternative to car use for those who live too far to walk. Purpose: To describe school-trip characteristics, including PA, across travel modes and to assess the association between PA with walk distance. Methods: High school students (13.3 ± 0.7 years, 37% female) from Downtown Vancouver wore accelerometers (...

  14. Observation of Electric Quadrupole Transitions to Rydberg nd States of Ultracold Rubidium Atoms

    CERN Document Server

    Tong, D; Van Kempen, E G M; Pavlovic, Z; Stanojevic, J; Côté, R; Eyler, E E; Gould, P L

    2008-01-01

    We report the observation of dipole-forbidden, but quadrupole-allowed, one-photon transitions to high Rydberg states in Rb. Using pulsed UV excitation of ultracold atoms in a magneto-optical trap, we excite $5s \\to nd$ transitions over a range of principal quantum numbers $n=27-59$. Compared to dipole-allowed (E1) transitions from $5s \\to np$, these E2 transitions are weaker by a factor of approximately 2000. We also report measurements of the anomalous $np_{3/2} : np_{1/2}$ fine-structure transition strength ratio for $n=28-75$. Both results are in agreement with theoretical predictions.

  15. The transition from fracton to phonon states in a Sierpinski triangle lattice

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, E.L. da, E-mail: edroaldo@gmail.co [Departamento de Engenharia Eletrica, Universidade Federal de Santa Catarina, Florianopolis-SC 88040-900 (Brazil); Cunha, C.R. da, E-mail: creq@eel.ufsc.b [Departamento de Engenharia Eletrica, Universidade Federal de Santa Catarina, Florianopolis-SC 88040-900 (Brazil)

    2011-04-15

    Research highlights: A Sierpinski triangle was studied with different self-similarity levels and disorder. A transition from fracton to phonon states was observed for low disorder. A second transition was observed from extended to localized phonon states. The transitions correspond to a change in topology in the average density of states. - Abstract: Lattice dynamics of a Sierpinski triangle submitted to different levels of disorder was studied via atomistic Green's functions. It was found that there is a critical level of disorder that separates two regions of thermal transport. The first is characterized by a fast destruction of fracton states and the formation of spatially extended phonon states. The second region is characterized by a transition from extended to localized phonon states as predicted by the Anderson model.

  16. Transition of vegetation states positively affects harvester ants in the Great Basin, United States

    Science.gov (United States)

    Holbrook, Joseph D.; Pilliod, David; Arkle, Robert; Rachlow, Janet L.; Vierling, Kerri T.; Wiest, Michelle M.

    2016-01-01

    Invasions by non-native plants can alter ecosystems such that new ecological states are reached, but less is known about how these transitions influence animal populations. Sagebrush (Artemisia tridentata) ecosystems are experiencing state changes because of fire and invasion by exotic annual grasses. Our goal was to study the effects of these state changes on the Owyhee and western harvester ants (Pogonomyrmex salinusOlsen and P. occidentalis Cresson, respectively). We sampled 358 1-ha plots across the northern Great Basin, which captured unburned and burned conditions across 1 −≥31 years postfire. Our results indicated an immediate and consistent change in vegetation states from shrubland to grassland between 1 and 31 years postfire. Harvester ant occupancy was unrelated to time since fire, whereas we observed a positive effect of fire on nest density. Similarly, we discovered that fire and invasion by exotic annuals were weak predictors of harvester ant occupancy but strong predictors of nest density. Occupancy of harvester ants was more likely in areas with finer-textured soils, low precipitation, abundant native forbs, and low shrub cover. Nest density was higher in arid locations that recently burned and exhibited abundant exotic annual and perennial (exotic and native) grasses. Finally, we discovered that burned areas that received postfire restoration had minimal influence on harvester ant occupancy or nest density compared with burned and untreated areas. These results suggest that fire-induced state changes from native shrublands to grasslands dominated by non-native grasses have a positive effect on density of harvester ants (but not occupancy), and that postfire restoration does not appear to positively or negatively affect harvester ants. Although wildfire and invasion by exotic annual grasses may negatively affect other species, harvester ants may indeed be one of the few winners among a myriad of losers linked to vegetation state changes within

  17. Testing the transition state theory in stochastic dynamics of a genetic switch

    OpenAIRE

    Ushikubo, Tomohiro; Inoue, Wataru; Yoda, Mitsumasa; Sasai, Masaki

    2006-01-01

    Stochastic dynamics of chemical reactions in a mutually repressing two-gene circuit is numerically simulated. The circuit has a rich variety of different states when the kinetic change of DNA status is slow. The stochastic switching transition between those states are compared with the theoretical estimation of the switching rate derived from the idea similar to the transition state theory. Even though the circuit is kept far from equilibrium, the method gives a consistent explanation of the ...

  18. Classification of EGC output and Mental State Transition Networkusing Self Organizing Map

    OpenAIRE

    Mera, Kazuya; Ichimura, Takumi

    2011-01-01

    Mental State Transition Network which consists of mental states connected one another is a basic concept of approximating to human psychological and mental responses. It can represent transition from an emotional state to other one with stimulus by calculating Emotion Generating Calculations method. However, this method ignores most of emotions except for an emotion which has the strongest effect although EGC can calculate the degree of 20 emotions in parallel. In this pa...

  19. Vibrational energy transfer near a dissociative adsorption transition state: State-to-state study of HCl collisions at Au(111)

    Science.gov (United States)

    Geweke, Jan; Shirhatti, Pranav R.; Rahinov, Igor; Bartels, Christof; Wodtke, Alec M.

    2016-08-01

    In this work we seek to examine the nature of collisional energy transfer between HCl and Au(111) for nonreactive scattering events that sample geometries near the transition state for dissociative adsorption by varying both the vibrational and translational energy of the incident HCl molecules in the range near the dissociation barrier. Specifically, we report absolute vibrational excitation probabilities for HCl(v = 0 → 1) and HCl(v = 1 → 2) scattering from clean Au(111) as a function of surface temperature and incidence translational energy. The HCl(v = 2 → 3) channel could not be observed—presumably due to the onset of dissociation. The excitation probabilities can be decomposed into adiabatic and nonadiabatic contributions. We find that both contributions strongly increase with incidence vibrational state by a factor of 24 and 9, respectively. This suggests that V-T as well as V-EHP coupling can be enhanced near the transition state for dissociative adsorption at a metal surface. We also show that previously reported HCl(v = 0 → 1) excitation probabilities [Q. Ran et al., Phys. Rev. Lett. 98, 237601 (2007)]—50 times smaller than those reported here—were influenced by erroneous assignment of spectroscopic lines used in the data analysis.

  20. Quantum manifestation of systems on the macro-scale – the concept of transition state and transition amplitude wave

    Indian Academy of Sciences (India)

    Ram K Varma

    2007-06-01

    Quantum effects which have usually been associated with micro-scale phenomena can also arise on the macro-scale in situations other than the well-known macro-quantum phenomena of superconductivity and superfluidity. Such situations have been shown here to arise in processes involving inelastic scattering with bound or partially bound systems (not bound in all degrees of freedom), and the macro-quantum behaviour is associated with the state of the total system in transition in the process of scattering. Such a state is designated as a `transition-state'. It is pointed out that we have already observed such manifestations for a particular system, the charged particles in a magnetic field where interference effects involving macro-scale matter waves along the magnetic field have been reported [R K Varma et al, Phys. Rev. E65, 026503 (2002)].

  1. Transition-state inhibitors of purine salvage and other prospective enzyme targets in malaria.

    Science.gov (United States)

    Ducati, Rodrigo G; Namanja-Magliano, Hilda A; Schramm, Vern L

    2013-07-01

    Malaria is a leading cause of human death within the tropics. The gradual generation of drug resistance imposes an urgent need for the development of new and selective antimalarial agents. Kinetic isotope effects coupled to computational chemistry have provided the relevant details on geometry and charge of enzymatic transition states to facilitate the design of transition-state analogs. These features have been reproduced into chemically stable mimics through synthetic chemistry, generating inhibitors with dissociation constants in the pico- to femto-molar range. Transition-state analogs are expected to contribute to the control of malaria.

  2. Semiclassical vibration-rotation transition probabilities for motion in molecular state averaged potentials.

    Science.gov (United States)

    Stallcop, J. R.

    1971-01-01

    Collision-induced vibration-rotation transition probabilities are calculated from a semiclassical three-dimensional model, in which the collision trajectory is determined by the classical motion in the interaction potential that is averaged over the molecular rotational state, and compared with those for which the motion is governed by a spherically averaged potential. For molecules that are in highly excited rotational states, thus dominating the vibrational relaxation rate at high temperature, it is found that the transition probability for rotational state averaging is smaller than that for spherical averaging. For typical collisions, the transition cross section is decreased by a factor of about 1.5 to 2.

  3. Estimation and asymptotic theory for transition probabilities in Markov Renewal Multi–state models

    OpenAIRE

    Spitoni, Cristian; Verduijn, Marion; Putter, Hein

    2012-01-01

    In this paper we discuss estimation of transition probabilities for semi-Markov multi-state models. Non-parametric and semi-parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional delta method and the use of resampling is proposed to derive confidence bands for the transition probabilities. The last part of the paper concerns the presentation of the main ideas of the R implementa...

  4. Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states.

    Science.gov (United States)

    Podlesnyak, A; Streule, S; Mesot, J; Medarde, M; Pomjakushina, E; Conder, K; Tanaka, A; Haverkort, M W; Khomskii, D I

    2006-12-15

    A gradual spin-state transition occurs in LaCoO3 around T approximately 80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering and found that with increasing temperature an excitation at approximately 0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal-field interaction and spin-orbit coupling, we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (t(2g)(5)e(g)(1), S=1) versus high-spin (t(2g)(4)e(g)(2), S=2) states. Since the g factor obtained from the field dependence of the inelastic neutron scattering is g approximately 3, the second interpretation is definitely favored.

  5. Oscillator strength, transition rates and lifetimes for n=3 states in Al-like ions

    International Nuclear Information System (INIS)

    Transition rates, oscillator strengths, and line strengths are calculated for the 3220 possible electric-dipole (E1) transitions between the 73 even-parity 3s3p2, 3s23d, 3p23d, 3d23s and 3d3 states and the 75 odd-parity 3s23p, 3p3, 3s3p3d, and 3d23p states in Al-like ions with the nuclear charges ranging from Z=15 to 100. Relativistic many-body perturbation theory (MBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s22s22p6 Dirac-Fock potential. First-order MBPT is used to obtain intermediate coupling coefficients and second-order MBPT is used to calculate transition matrix elements. Contributions from negative-energy states are included in the second order E1 matrix elements to ensure gauge-independence of transition amplitudes. The transition energies used in the calculation of oscillator strengths and transition rates are from second-order MBPT. Transition rates, line strengths, and oscillator strengths are compared with critically evaluated experimental values and with results from other recent calculations. As a result, we present data for the selected transition, that includes transitions between the 10 even-parity 3s3p2, 3s23p states and the 29 odd-parity 3s23p, 3p3, and 3s3p3d states in Al-like ions. Trends of the transition rates as functions of Z are illustrates graphically for the 220 transitions. Lifetimes of the 10 possible even-parity lower levels and the 27 possible odd-parity upper levels are given for Z=15-100. (author)

  6. Confinement-deconfinement transition in the algebraic RVB states

    Science.gov (United States)

    Pei, Ji-Quan; Jian, Shao-Kai; Yao, Hong

    2015-03-01

    Deconfined algebraic spin liquids are usually expected when Gutzwiller projecting the non-interacting wave function of half-filled electrons on the square lattice with staggered flux ϕ. However, our large-scale variational Monte Carlo simulations show that there is the confinement-deconfinement transition at ϕ =ϕc where ϕc ~ 0 . 2 is the critical flux. When 0 Gutzwiller projected wave function might be due to the large anisotropy of Fermi velocity of Dirac fermions.

  7. Study on State Transition Method Applied to Motion Planning for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2008-11-01

    Full Text Available This paper presents an approach of motion planning for a humanoid robot using a state transition method. In this method, motion planning is simplified by introducing a state-space to describe the whole motion series. And each state in the state-space corresponds to a contact state specified during the motion. The continuous motion is represented by a sequence of discrete states. The concept of the transition between two neighboring states, that is the state transition, can be realized by using some traditional path planning methods. Considering the dynamical stability of the robot, a state transition method based on search strategy is proposed. Different sets of trajectories are generated by using a variable 5th-order polynomial interpolation method. After quantifying the stabilities of these trajectories, the trajectories with the largest stability margin are selected as the final state transition trajectories. Rising motion process is exemplified to validate the method and the simulation results show the proposed method to be feasible and effective.

  8. Human P-glycoprotein exhibits reduced affinity for substrates during a catalytic transition state.

    Science.gov (United States)

    Ramachandra, M; Ambudkar, S V; Chen, D; Hrycyna, C A; Dey, S; Gottesman, M M; Pastan, I

    1998-04-01

    Human P-glycoprotein (Pgp), a plasma membrane protein that confers multidrug resistance, functions as an ATP-dependent drug efflux pump. Pgp contains two ATP binding/utilization sites and exhibits ATPase activity that is stimulated in the presence of substrates and modulating agents. The mechanism of coupling of ATP hydrolysis to drug transport is not known. To understand the role of ATP hydrolysis in drug binding, it is necessary to develop methods for purifying and reconstituting Pgp that retains properties including stimulation of ATPase activity by known substrates to an extent similar to that in the native membrane. In this study, (His)6-tagged Pgp was expressed in Trichoplusia ni (High Five) cells using the recombinant baculovirus system and purified by metal affinity chromatography. Upon reconstitution into phospholipid vesicles, purified Pgp exhibited specific binding to analogues of substrates and ATP in affinity labeling experiments and displayed a high level of drug-stimulated ATPase activity (specific activity ranging from 4.5 to 6.5 micromol min-1 mg-1). The ATPase activity was inhibited by ADP in a competitive manner, and by vanadate and N-ethylmaleimide at low concentrations. Vanadate which is known to inhibit ATPase activity by trapping MgADP at the catalytic site inhibited photoaffinity labeling of Pgp with substrate analogues, [125I]iodoarylazidoprazosin and [3H]azidopine, only under ATP hydrolysis conditions. Because vanadate-trapped Pgp is known to resemble the ADP and phosphate-bound catalytic transition state, our findings indicate that ATP hydrolysis results in a conformation with reduced affinity for substrates. A catalytic transition conformation with reduced affinity would essentially result in substrate dissociation and supports a model for drug transport in which an ATP hydrolysis-induced conformational change leads to drug release toward the extracellular medium.

  9. Equation of state description of the dark energy transition between quintessence and phantom regimes

    International Nuclear Information System (INIS)

    The dark energy crossing of the cosmological constant boundary (the transition between the quintessence and phantom regimes) is described in terms of the implicitly defined dark energy equation of state. The generalizations of the models explicitly constructed to exhibit the crossing provide the insight into the cancellation mechanism which makes the transition possible

  10. Estimation and asymptotic theory for transition probabilities in Markov Renewal Multi–state models

    NARCIS (Netherlands)

    Spitoni, C.; Verduijn, M.; Putter, H.

    2012-01-01

    In this paper we discuss estimation of transition probabilities for semi–Markov multi–state models. Non–parametric and semi–parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional delta

  11. Landau-Zener transition in quadratic-nonlinear two-state systems

    OpenAIRE

    Ishkhanyan, A. M.

    2009-01-01

    A comprehensive theory of the Landau-Zener transition in quadratic nonlinear two-state systems is developed. A compact analytic formula involving elementary functions only is derived for the final transition probability. The formula provides a highly accurate approximation for the whole rage of the variation of the Landau-Zener parameter.

  12. Shape transition of state density for bosonic systems

    Indian Academy of Sciences (India)

    Harshal N Deota; N D Chavda; V Potbhare

    2013-12-01

    For a finite boson system, the ensemble-averaged state density has been computed with respect to the body interaction rank . The shape of such a state density changes from Gaussian to semicircle as the body rank of the interaction increases. This state density is expressed as a linear superposition of Gaussian and semicircular states. The nearest-neighbour spacing distribution (NNSD), which is one of the most important spectral properties of a system, is studied. The NNSDs are rather independent of body rank and show a Wigner distribution throughout.

  13. Mean transit times and the sites of synthesis and catabolism of tissue plasminogen activator and plasminogen activator inhibitor type 1 in young subjects

    DEFF Research Database (Denmark)

    Jørgensen, M; Petersen, K R; Vinberg, N;

    2001-01-01

    Using an invasive technique, we studied the mean transit time, the net quantitative turnover rate, and the sites of synthesis and catabolism of tissue plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1) in healthy young volunteers in the fasting, steady state. Blood wa...

  14. Discontinuous phase transition in an annealed multi-state majority-vote model

    Science.gov (United States)

    Li, Guofeng; Chen, Hanshuang; Huang, Feng; Shen, Chuansheng

    2016-07-01

    In this paper, we generalize the original majority-vote (MV) model with noise from two states to arbitrary q states, where q is an integer no less than two. The main emphasis is paid to the comparison on the nature of phase transitions between the two-state MV (MV2) model and the three-state MV (MV3) model. By extensive Monte Carlo simulation and mean-field analysis, we find that the MV3 model undergoes a discontinuous order-disorder phase transition, in contrast to a continuous phase transition in the MV2 model. A central feature of such a discontinuous transition is a strong hysteresis behavior as noise intensity goes forward and backward. Within the hysteresis region, the disordered phase and ordered phase are coexisting.

  15. Thermoelectric signals of state transition in polycrystalline SmB6

    Science.gov (United States)

    Yue, Z. J.; Chen, Q. J.; Wang, X. L.

    2016-09-01

    Topological Kondo insulator SmB6 has attracted quite a lot of attention from the condensed matter physics community. A number of unique electronic properties, including low-temperature resistivity anomaly, 1D electronic transport and 2D Fermi surfaces have been observed in SmB6. Here, we report on thermoelectric transport properties of polycrystalline SmB6 over a broad temperature from 300 to 2 K. An anomalous transition in the temperature-dependent Seebeck coefficient S from S(T) \\propto T -1 to S(T) \\propto T was observed around 12 K. Such a transition demonstrates a transition of conductivity from 3D metallic bulk states to 2D metallic surface states with insulating bulk states. Our results suggest that the thermotransport measurements could be used for the characterization of state transition in topological insulators.

  16. Discontinuous phase transition in a multi-state majority-vote model

    CERN Document Server

    Li, Guofeng; Huang, Feng; Shen, Chuansheng

    2016-01-01

    In this paper, we generalize the original majority-vote (MV) model with noise from two states to arbitrary $q$ states, where $q$ is an integer no less than two. The main emphasis is paid to the comparison on the nature of phase transitions between the two-state MV (MV2) model and the three-state MV (MV3) model. By extensive Monte Carlo simulation and mean-field analysis, we find that the MV3 model undergoes a discontinuous order-disorder phase transition, in contrast to a continuous phase transition in the MV2 model. A central feature of such a discontinuous transition is a strong hysteresis behavior as noise intensity goes forward and backward. Within the hysteresis region, the disordered phase and ordered phase are coexisting.

  17. Determining Transition State Geometries in Liquids Using 2D-IR

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Charles; Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.

    2007-12-11

    Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.

  18. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states

    Science.gov (United States)

    Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui

    2016-04-01

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

  19. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states.

    Science.gov (United States)

    Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui

    2016-04-21

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments. PMID:27389209

  20. Evolution of the phonon density of states of LaCoO3 over the spin state transition

    Energy Technology Data Exchange (ETDEWEB)

    Golosova, N. O. [Joint Institute for Nuclear Research, Dubna, Russia; Kozlenko, D. P. [Joint Institute for Nuclear Research, Dubna, Russia; Kolesnikov, Alexander I [ORNL; Kazimirov, V. Yu. [Joint Institute for Nuclear Research, Dubna, Russia; Smirnov, M. B. [St. Petersburg State University, St. Petersburg, Russia; Jirak, Z. [Institute of Physics, Czech Republic; Savenko, B. N. [Joint Institute for Nuclear Research, Dubna, Russia

    2011-01-01

    The phonon spectra of LaCoO3 were studied by inelastic neutron scattering in the temperature range of 4 120 K. The DFT calculations of the lattice dynamics have been made for interpretation of the experimental data. The observed and calculated phonon frequencies were found to be in a reasonable agreement. The evolution of the phonon density of states over the spin state transition was analyzed. In the low-temperature range (T < 50 K), an increase in the energy of resolved breathing, stretching, and bending phonon modes was found, followed by their softening and broadening at higher temperatures due to the spin state transition and relevant orbital-phonon coupling.

  1. Exact transition probabilities in a 6-state Landau-Zener system with path interference

    OpenAIRE

    Sinitsyn, N. A.

    2015-01-01

    We identify a nontrivial multistate Landau-Zener model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. In the semiclassical picture, this model features the possibility of interference of different trajectories that connect the same initial and final states. Hence, transition probabilities are generally not described by the incoherent successive application of the Landau-Zener formula. We discuss reasons for integrability of t...

  2. Social Media Activism and State Censorship

    OpenAIRE

    Poell, T.

    2015-01-01

    This chapter interrogates how activist social media communication in authoritarian contexts is shaped through the mutual articulation of social media user practices, business models, and technological architectures, as well as through the controlling efforts of states. It specifically focuses on social media protest activity and contention in China, Tunisia, and Iran, authoritarian states which have made a large effort to control online activity. The analysis shows that instead of blocking or...

  3. Transition state for the gas-phase reaction of uranium hexafluoride with water.

    Science.gov (United States)

    Garrison, Stephen L; Becnel, James M

    2008-06-19

    Density functional theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transition states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF 6, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F 5, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structures and relative energies of the reacting complex and transition state. However, a significant change in the structure of the product complex was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF 4, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF 6 with water. PMID:18500792

  4. TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S; James Becnel, J

    2008-03-18

    Density Functional Theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF{sub 6}, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F{sub 5}, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structure and relative energies of the reacting complex and transition state. However, a significant change in the product complex structure was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF{sub 4}, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF{sub 6} with water.

  5. Transition temperature range of thermally activated nickel-titanium archwires

    Directory of Open Access Journals (Sweden)

    Tatiana Sobottka SPINI

    2014-04-01

    Full Text Available Objectives: The shape memory resulting from the superelasticity and thermoelastic effect is the main characteristic of thermally activated NiTi archwires and is closely related to the transition temperature range (TTR. The aim of this study was to evaluate the TTR of thermally activated NiTi archwires commercially available. Material and Methods: Seven different brands of 0.019"x0.025" thermally activated nickel-titanium archwires were tested as received by differential scanning calorimetry (DSC over the temperature range from -100°C to 150°C at 10°C/min. Results: All thermally activated NiTi archwires analyzed presented stage transformation during thermal scanning with final austenitic temperature (Af ranging from 20.39°C to 45.42°C. Three brands of NiTi archwires presented Af close to the room temperature and, this way, do not present properties of shape memory and pseudoelasticity that are desirable in clinical applications. Conclusions: The thermally activated NiTi archwires present great variability in the TTR and the elastic parameters of each NiTi archwire should be provided by the manufacturers, to allow achievement of the best clinical performance possible.

  6. Is strong hydrogen bonding in the transition state enough to account for the observed rate acceleration in a mutant of papain?

    OpenAIRE

    Zheng, Ya-Jun; Bruice, Thomas C.

    1997-01-01

    Nitriles are good inhibitors for the cysteine protease papain. However, a single amino acid mutation (Gln-19 → Glu-19) in the active site makes the mutant enzyme a good catalyst for nitrile hydrolysis. A theoretical approach was used to examine the differential transition state stabilization in the papain mutant relative to the wild-type enzyme. Based on this study, we concluded that strong hydrogen bonding in the transition state is responsible for the observed rate enhancement of 4 × 105.

  7. Transitions: the state of the automotive industry–a summary

    OpenAIRE

    Emily Engel; William A. Strauss

    2007-01-01

    The United States automotive industry has been undergoing tremendous changes in recent years. Speakers at a recent Chicago Fed conference explored these changes and considered the road to the future for the auto industry.

  8. New transition in the vortex liquid state of YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    We have carried out angular dependent magneto-transport measurements on optimally doped, untwinned YBa2Cu3O7-δ crystals irradiated with high energy heavy ions to determine the onset of vortex line tension in the vortex liquid state. The dose matching field was controlled and kept at a low level to partially preserve the first order vortex lattice melting transition. A Bose glass transition is observed below the lower critical point which then transforms into a first order phase transition near 4 T. We find that the locus of points which indicates the onset of vortex line tension overlaps with the Bose glass transition line at low fields and then deviates at higher fields, indicating a new transition line in the vortex liquid state. This new line in the vortex liquid phase is dose independent and extends beyond the upper critical point

  9. Solid-state dimer method for calculating solid-solid phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Penghao; Henkelman, Graeme, E-mail: henkelman@cm.utexas.edu [Department of Chemistry and the Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712 (United States); Sheppard, Daniel [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rogal, Jutta [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum (Germany)

    2014-05-07

    The dimer method is a minimum mode following algorithm for finding saddle points on a potential energy surface of atomic systems. Here, the dimer method is extended to include the cell degrees of freedom for periodic solid-state systems. Using this method, reaction pathways of solid-solid phase transitions can be determined without having to specify the final state structure or reaction mechanism. Example calculations include concerted phase transitions between CdSe polymorphs and a nucleation and growth mechanism for the A15 to BCC transition in Mo.

  10. Transition probabilities of normal states determine the Jordan structure of a quantum system

    OpenAIRE

    Leung, Chi-Wai; Ng, Chi-Keung; Wong, Ngai-Ching

    2015-01-01

    Let $\\Phi:\\mathfrak{S}(M_1)\\to \\mathfrak{S}(M_2)$ be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras $M_1$ and $M_2$, respectively. This paper concerns with the situation when $\\Phi$ preserves (or partially preserves) one of the following three notions of "transition probability" on the normal state spaces: the Uhlmann transition probability $P_U$, the Raggio transition probabi...

  11. Exact transition probabilities in a 6-state Landau–Zener system with path interference

    International Nuclear Information System (INIS)

    We identify a nontrivial multistate Landau–Zener (LZ) model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. In the semiclassical picture, this model features the possibility of interference of different trajectories that connect the same initial and final states. Hence, transition probabilities are generally not described by the incoherent successive application of the LZ formula. We discuss reasons for integrability of this system and provide numerical tests of the suggested expression for the transition probability matrix. (paper)

  12. Transitional discharge based on therapeutic relationships: state of the art.

    Science.gov (United States)

    Forchuk, Cheryl; Reynolds, William; Sharkey, Siobhan; Martin, Mary-Lou; Jensen, Elsabeth

    2007-04-01

    The Transitional Discharge Model (TDM) has been used to facilitate effective discharge from psychiatric hospital to community. A summary of the research to date on TDM is given. The model is based on the provision of therapeutic relationships to provide a safety net throughout the discharge and community reintegration processes. These relationships include both staff and peer involvement; hospital inpatient staff continue to remain involved with the client until a therapeutic relationship is established with a community care provider, and peer support is offered from a former consumer of mental health services who is currently living in the community. Studies found that the TDM facilitates increased discharge rates, lower readmission rates, and cost savings--making it a collaborative, cost-effective method of providing quality patient care and positive health care outcomes. The TDM Plan of Research is presented and reflects the collaboration between stakeholders and the integration of consumer advocacy, clinical practice, education, policy, and research in various countries.

  13. Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT.

    Directory of Open Access Journals (Sweden)

    Ashish Misra

    Full Text Available Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial-Mesenchymal Transition (EMT. EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor. Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.

  14. Tuned Transition from Quantum to Classical for Macroscopic Quantum States

    NARCIS (Netherlands)

    Fedorov, A.; Macha, P.; Feofanov, A.K.; Harmans, C.J.P.M.; Mooij, J.E.

    2011-01-01

    The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1  μA carried by a

  15. 40 CFR 70.4 - State program submittals and transition.

    Science.gov (United States)

    2010-07-01

    ... of the employees. The State need not submit complete job descriptions for every employee carrying out... program submission. The submission shall contain the following: (1) A complete program description... for monitoring source compliance (e.g., inspection strategies). (5) A complete description of...

  16. Spectral properties of transitions between soft and hard state in GX 339-4

    CERN Document Server

    Stiele, H; Muñoz-Darias, T; Belloni, T M

    2011-01-01

    We present a study of the spectral properties during state transition of GX 339-4. Data are taken from the 2010 outburst of GX 339-4, which is densely covered by Rossi X-ray Timing Explorer, providing an excellent coverage of the state transitions between the low/hard state and the high/soft state. We select all observations within a certain hardness ratio range during the soft intermediate state (SIMS). This sample was chosen in such a way to comprise all observations that show a type-B quasi-periodic oscillation (QPO). In addition, we also investigate the spectra of hard intermediate state observations. The spectra, obtained from Proportional Counter Array data in the 10 to 40 keV range, are fitted with a power law and an additional high energy cut-off if needed. We find that the spectra are significantly harder during the SIMS of the soft-to-hard transition than they are during the hard-to-soft transition. This demonstrates that during the SIMS of the soft-to-hard transition not only the luminosity and pea...

  17. Examining the Link Between Public Transit Use and Active Commuting

    Directory of Open Access Journals (Sweden)

    Melissa Bopp

    2015-04-01

    Full Text Available Background: An established relationship exists between public transportation (PT use and physical activity. However, there is limited literature that examines the link between PT use and active commuting (AC behavior. This study examines this link to determine if PT users commute more by active modes. Methods: A volunteer, convenience sample of adults (n = 748 completed an online survey about AC/PT patterns, demographic, psychosocial, community and environmental factors. t-test compared differences between PT riders and non-PT riders. Binary logistic regression analyses examined the effect of multiple factors on AC and a full logistic regression model was conducted to examine AC. Results: Non-PT riders (n = 596 reported less AC than PT riders. There were several significant relationships with AC for demographic, interpersonal, worksite, community and environmental factors when considering PT use. The logistic multivariate analysis for included age, number of children and perceived distance to work as negative predictors and PT use, feelings of bad weather and lack of on-street bike lanes as a barrier to AC, perceived behavioral control and spouse AC were positive predictors. Conclusions: This study revealed the complex relationship between AC and PT use. Further research should investigate how AC and public transit use are related.

  18. Travel Patterns And Characteristics Of Transit Users In New York State

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho-Ling [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Daniel W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reuscher, Tim [Macrosys, Arlington, VA (United States); Chin, Shih-Miao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Taylor, Rob D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    This research is a detailed examination of the travel behaviors and patterns of transit users within New York State (NYS), primarily based on travel data provided by the National Household Travel Survey (NHTS) in 2009 and the associated Add-on sample households purchased by the New York State Department of Transportation (NYSDOT). Other data sources analyzed in this study include: NYS General Transit Feed Specification (GTFS) to assist in analyzing spatial relationships for access to transit and the creation of Transit Shed geographic areas of 1, 2.5, and 5 miles from transit stop locations, LandScan population database to understand transit coverage, and Census Bureau s American Community Survey (ACS) data to examine general transit patterns and trends in NYS over time. The majority of analyses performed in this research aimed at identifying transit trip locations, understanding differences in transit usage by traveler demographics, as well as producing trip/mode-specific summary statistics including travel distance, trip duration, time of trip, and travel purpose of transit trips made by NYS residents, while also analyzing regional differences and unique travel characteristics and patterns. The analysis was divided into two aggregated geographic regions: New York Metropolitan Transportation Council (NYMTC) and NYS minus NYMTC (Rest of NYS). The inclusion of NYMTC in all analysis would likely produce misleading conclusions for other regions in NYS. TRANSIT COVERAGE The NYS transit network has significant coverage in terms of transit stop locations across the state s population. Out of the 19.3 million NYS population in 2011, about 15.3 million (or 79%) resided within the 1-mile transit shed. This NYS population transit coverage increased to 16.9 million (or 88%) when a 2.5-mile transit shed was considered; and raised to 17.7 million (or 92%) when the 5-mile transit shed was applied. KEY FINDINGS Based on 2009 NHTS data, about 40% of NYMTC households used transit

  19. Active states and structure transformations in accreting white dwarfs

    Science.gov (United States)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  20. The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 → H2 + CH3 reaction

    International Nuclear Information System (INIS)

    Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via H–H–CH3-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES

  1. The State and Curriculum in the Transition to Socialism: The Zimbabwean Experience.

    Science.gov (United States)

    Jansen, Jonathan

    1991-01-01

    Uses a case study of curriculum innovation in Zimbabwe to assess existing explanations of why colonial curriculum content persists in many postcolonial states despite radical policy efforts. Argues for the primacy of conflict, history, and politics as determinants of school curriculum in Third World transition states. Contains 47 references. (SV)

  2. An assessment of state-and-transition models: Perceptions following two decades of development and implementation

    Science.gov (United States)

    State and transition models (STMs) are being developed for many areas in the United States and represent an important tool for assessing and managing public and private rangelands. Substantial resources have been invested in model development, yet minimal efforts have been made to evaluate the utili...

  3. The activation energy for the FCC rolling texture transition and the activation energy for cross slip

    DEFF Research Database (Denmark)

    Leffers, T.; Pedersen, O.B.

    2002-01-01

    Already in 1968 one of the present authors determined the activation energy for the rolling-texture transition in Cu-5%Zn as a spin off of an investigation of the strain-rate dependence of the rolling texture. In the present work this determination of theactivation energy is explained and discuss...

  4. First order phase transition of the q-state Potts model in two dimensions

    CERN Document Server

    Arisue, H

    2000-01-01

    We have calculated the large-$q$ series of the energy cumulants, the magnetization cumulants and the correlation length at the first order phase transition point both in the ordered and disordered phases for the $q$-state Potts model in two dimensions. The series enables us to estimate the numerical values of the quantities more precisely by a factor of $10^2 - 10^4$ than the Monte Carlo simulations. From the large-$q$ series of the eigenvalues of the transfer matrix, we also find that the excited states form a continuum spectrum and there is no particle state at the first order phase transition point.

  5. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANG An-Mei; XIE Wen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  6. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANGAn-Mei; XIEWen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matr/x. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  7. The Transition States for CO2 Capture by Substituted Ethanolamines

    NARCIS (Netherlands)

    Gangarapu, S.; Marcelis, A.T.M.; Alhamed, Y.A.; Zuilhof, H.

    2015-01-01

    Quantum chemical studies are used to understand the electronic and steric effects on the mechanisms of the reaction of substituted ethanolamines with CO2. SCS-MP2/6-311+G(2d,2p) calculations are used to obtain the activation energy barriers and reaction energies for both the carbamate and bicarbonat

  8. Lasing and high temperature phase transitions in atomic systems with dressed state polaritons

    CERN Document Server

    Chestnov, I Yu

    2013-01-01

    We consider the fundamental problem of high temperature phase transitions in the system of high density two-level atoms off-resonantly interacting with a pump field in the presence of optical collisions (OCs) and placed in the cavity. OCs are considered in the framework of thermalization of atomic dressed state (DS) population. For the case of a strong atom-field coupling condition we analyze the problem of thermodynamically equilibrium superradiant phase transition for the order parameter representing a real amplitude of cavity mode and taking place as a result of atomic DSs thermalization process. Such transition is also connected with condensed (coherent) properties of low branch (LB) DS-polaritons occurring in the cavity. For describing non-equilibrium phase transitions we derive Maxwell-Bloch like equations which account for cavity decay rate, collisional decay rate and spontaneous emission. Various aspects of transitions to laser field formation by using atomic DS levels for both positive and negative d...

  9. Density-matrix renormalization-group study of current and activity fluctuations near nonequilibrium phase transitions.

    Science.gov (United States)

    Gorissen, Mieke; Hooyberghs, Jef; Vanderzande, Carlo

    2009-02-01

    Cumulants of a fluctuating current can be obtained from a free-energy-like generating function, which for Markov processes equals the largest eigenvalue of a generalized generator. We determine this eigenvalue with the density-matrix renormalization group for stochastic systems. We calculate the variance of the current in the different phases, and at the phase transitions, of the totally asymmetric exclusion process. Our results can be described in the terms of a scaling ansatz that involves the dynamical exponent z . We also calculate the generating function of the dynamical activity (total number of configuration changes) near the absorbing-state transition of the contact process. Its scaling properties can be expressed in terms of known critical exponents. PMID:19391693

  10. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states.

    Science.gov (United States)

    de Oliveira, M M; da Luz, M G E; Fiore, C E

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions-to single and infinitely many absorbing states-are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems. PMID:26764651

  11. Laboratory rotational ground state transitions of NH3D+ and CF+

    Science.gov (United States)

    Stoffels, A.; Kluge, L.; Schlemmer, S.; Brünken, S.

    2016-09-01

    Aims: This paper reports accurate laboratory frequencies of the rotational ground state transitions of two astronomically relevant molecular ions, NH3D+ and CF+. Methods: Spectra in the millimetre-wave band were recorded by the method of rotational state-selective attachment of He atoms to the molecular ions stored and cooled in a cryogenic ion trap held at 4 K. The lowest rotational transition in the A state (ortho state) of NH3D+ (JK = 10-00), and the two hyperfine components of the ground state transition of CF+ (J = 1-0) were measured with a relative precision better than 10-7. Results: For both target ions, the experimental transition frequencies agree with recent observations of the same lines in different astronomical environments. In the case of NH3D+ the high-accuracy laboratory measurements lend support to its tentative identification in the interstellar medium. For CF+ the experimentally determined hyperfine splitting confirms previous quantum-chemical calculations and the intrinsic spectroscopic nature of a double-peaked line profile observed in the J = 1-0 transition towards the Horsehead photon-dominated region (PDR).

  12. A physical scenario for the high and low X-ray luminosity states in the transitional pulsar PSR J1023+0038

    Science.gov (United States)

    Campana, S.; Coti Zelati, F.; Papitto, A.; Rea, N.; Torres, D. F.; Baglio, M. C.; D'Avanzo, P.

    2016-10-01

    The binary system PSR J1023+0038 (J1023) hosts a neutron star and a low-mass companion. J1023 is the best studied transitional pulsar, alternating a faint eclipsing millisecond radio pulsar state to a brighter X-ray active state. At variance with other low-mass X-ray binaries, this active state reaches luminosities of only ~1034 erg s-1, showing strong, fast variability. In the active state, J1023 displays: i) a high state (LX ~ 7 × 1033 erg s-1, 0.3-80 keV) occurring ~80% of the time and during which X-ray pulsations at the neutron star spin period are detected (pulsed fraction ~ 8%); ii) a low state (LX ~ 1033 erg s-1) during which pulsations are not detected (≲ 3%); and iii) a flaring state during which sporadic flares occur in excess of ~ 1034 erg s-1, with no pulsation too. The transition between the high and the low states is very rapid, on a ~10 s timescale. Here we propose a plausible physical interpretation of the high and low states based on the (fast) transition among the propeller state and the radio pulsar state. We modelled the XMM-Newton spectra of the high, low and radio pulsar states, and found a good agreement with this physical picture.

  13. Satellites of Xe transitions induced by infrared active vibrational modes of CF4 and C2F6 molecules.

    Science.gov (United States)

    Alekseev, Vadim A; Schwentner, Nikolaus

    2011-07-28

    Absorption and luminescence excitation spectra of Xe/CF(4) mixtures were studied in the vacuum UV region at high resolution using tunable synchrotron radiation. Pressure-broadened resonance bands and bands associated with dipole-forbidden states of the Xe atom due to collision-induced breakdown of the optical selection rules are reported. The spectra display in addition numerous satellite bands corresponding to transitions to vibrationally excited states of a Xe-CF(4) collisional complex. These satellites are located at energies of Xe atom transition increased by one quantum energy in the IR active v(3) vibrational mode of CF(4) (v(3) = 1281 cm(-1)). Satellites of both resonance and dipole-forbidden transitions were observed. Satellites of low lying resonance states are spectrally broad bands closely resembling in shape their parent pressure-broadened resonance bands. In contrast, satellites of dipole-forbidden states and of high lying resonance states are spectrally narrow bands (FWHM ∼10 cm(-1)). The satellites of dipole-forbidden states are orders of magnitude stronger than transitions to their parent states due to collision-induced breakdown of the optical selection rules. These satellites are attributed to a coupling of dipole-forbidden and resonance states induced by the electric field of the transient CF(4) (v(3) = 0 ↔ v(3) = 1) dipole. Similar satellites are present in spectra of Xe/C(2)F(6) mixtures where these bands are induced by the IR active v(10) mode of C(2)F(6). Transitions to vibrationally excited states of Xe-CF(4)(C(2)F(6)) collision pairs were also observed in two-photon LIF spectra.

  14. GBM Monitoring of Cyg X-1 During the Recent State Transition

    CERN Document Server

    Case, G L; Cherry, M L; Camero-Arranz, A; Finger, M; Jenke, P; Wilson-Hodge, C A; Chaplin, V

    2011-01-01

    Cygnus X-1 is a high-mass x-ray binary with a black hole compact object. It is normally extremely bright in hard x-rays and low energy gamma rays and resides in the canonical hard spectral state. Recently, however, Cyg X-1 made a transition to the canonical soft state, with a rise in the soft x-ray flux and a decrease in the flux in the hard x-ray and low energy gamma-ray energy bands. We have been using the Gamma-Ray Burst Monitor on Fermi to monitor the fluxes of a number of sources in the 8--1000 keV energy range, including Cyg X-1. We present light curves of Cyg X-1 showing the flux decrease in hard x-ray and low energy gamma-ray energy bands during the state transition as well as the several long flares observed in these higher energies during the soft state. We also present preliminary spectra from GBM for the pre-transition state, showing the spectral evolution to the soft state, and the post-transition state.

  15. Exploring the nature of the liquid-liquid transition in silicon: a non-activated transformation.

    Science.gov (United States)

    Lü, Y J; Zhang, X X; Chen, M; Jiang, Jian-Zhong

    2015-10-28

    In contrast to other glass formers, silicon exhibits a thermodynamic discontinuity between its liquid and amorphous solid states. Some researchers have conjectured that a first-order phase transition occurs between two forms of liquid silicon: the high-density liquid (HDL) and the low-density liquid (LDL). Despite the fact that several computer simulations have supported a liquid-liquid phase transition (LLPT) in silicon, recent work based on surface free energy calculations contradicts its existence and the authors of this work have argued that the proposed LLPT has been mistakenly interpreted [J. Chem. Phys., 2013, 138, 214504]. A similar controversy has also arisen in the case of water because of discrepancies in the calculation of its free energy surface [Nature, 2014, 510, 385; J. Chem. Phys., 2013, 138, 214504]. Current evidence supporting or not supporting the LLPT is mostly derived from the thermodynamic stability of the LDL phase. Provided that the HDL-LDL transition is a first-order transition, the formation of LDL silicon should be an activated process. Following this idea, the nature of the LLPT should be clarified by tracing the kinetic path toward LDL silicon. In this work, we focus on the transformation process from HDL to LDL phases and use the mean first passage time (MFPT) method to examine thermodynamic and dynamic trajectories. The MFPT results show that the presumed HDL-LDL transition is not characterized by a thermodynamic activated process but by a continuous dynamic transformation. LDL silicon is actually a mixture of the high-density liquid and a low-density tetrahedral network. We show that the five-membered Si-Si rings in the LDL network play a critical role in stabilizing the low-density network and suppressing the crystallization. PMID:26415631

  16. Magnetic Properties and Spin State Transition of Gallium Doped Perovskite Cobaltite Oxide

    Institute of Scientific and Technical Information of China (English)

    WU Zhi-Min; WANG Xin-Qiang; WANG Fang-Wei

    2007-01-01

    A series ofGa doping perovskite cobaltite La2/3Sr1/3(Co1-yGay)O3 (y=0,0.1,0.2,0.3 and 0.4) are prepared by the standard solid-state reaction method. Their magnetic properties and Co ions spin state transitions are studied. Upon doping, no appreciable structure changes can be found. However, the corresponding Curie temperature sharply decreases and the magnetization is greatly reduced, indicating that Ga doping destroys the ferromagnetic interaction in the system. In addition, the high temperature magnetization data follow the Curie-Weiss law. At least one kind of Co ions (Co3+ or Co4+) favours the mixed spin state, and most Co ions are at the lower spin state (low and intermediate state). With increasing Ga content, more Co ions transit to the higher spin state.

  17. SUMOylation inhibits FOXM1 activity and delays mitotic transition.

    Science.gov (United States)

    Myatt, S S; Kongsema, M; Man, C W-Y; Kelly, D J; Gomes, A R; Khongkow, P; Karunarathna, U; Zona, S; Langer, J K; Dunsby, C W; Coombes, R C; French, P M; Brosens, J J; Lam, E W-F

    2014-08-21

    The forkhead box transcription factor FOXM1 is an essential effector of G2/M-phase transition, mitosis and the DNA damage response. As such, it is frequently deregulated during tumorigenesis. Here we report that FOXM1 is dynamically modified by SUMO1 but not by SUMO2/3 at multiple sites. We show that FOXM1 SUMOylation is enhanced in MCF-7 breast cancer cells in response to treatment with epirubicin and mitotic inhibitors. Mutation of five consensus conjugation motifs yielded a SUMOylation-deficient mutant FOXM1. Conversely, fusion of the E2 ligase Ubc9 to FOXM1 generated an auto-SUMOylating mutant (FOXM1-Ubc9). Analysis of wild-type FOXM1 and mutants revealed that SUMOylation inhibits FOXM1 activity, promotes translocation to the cytoplasm and enhances APC/Cdh1-mediated ubiquitination and degradation. Further, expression of the SUMOylation-deficient mutant enhanced cell proliferation compared with wild-type FOXM1, whereas the FOXM1-Ubc9 fusion protein resulted in persistent cyclin B1 expression and slowed the time from mitotic entry to exit. In summary, our findings suggest that SUMOylation attenuates FOXM1 activity and causes mitotic delay in cytotoxic drug response.

  18. Transition States in Africa : A Comparative Study: The Case of Ghana & Zambia

    OpenAIRE

    Gustafsson, Oscar

    2007-01-01

    Background & Problem The author believes that there are important lessons to be learned from the states in Africa that have managed to achieve successful transitions from one-party regimes to multy-party regimes. However, Africa today displays countries that suffer from enormous problems and many of them are mired in political and economical development. A main theme of this thesis is the search for the differences, how can we explain the transitions and the outcomes of them? Purpose The ...

  19. Transition States in Africa : A Comparative Study: The Case of Ghana and Zambia

    OpenAIRE

    Ekdahl, Oscar

    2007-01-01

    Abstract Background & Problem The author believes that there are important lessons to be learned from the states in Africa that have managed to achieve successful transitions from one-party regimes to multy-party regimes. However, Africa today displays countries that suffer from enormous problems and many of them are mired in political and economical development. A main theme of this thesis is the search for the differences, how can we explain the transitions and the outcomes of them? Pur...

  20. Exact transition probabilities in the three-state Landau–Zener–Coulomb model

    International Nuclear Information System (INIS)

    We obtain the exact expression for the matrix of nonadiabatic transition probabilities in the model of three interacting states with a time-dependent Hamiltonian. Unlike other known solvable Landau–Zener-like problems, our solution is generally expressed in terms of hypergeometric functions that have relatively complex behavior, e.g. the obtained transition probabilities may show multiple oscillations as functions of parameters of the model Hamiltonian. (paper)

  1. Exact transition probabilities in the three-state Landau-Zener-Coulomb model

    OpenAIRE

    Lin, Jeffmin; Sinitsyn, N. A.

    2013-01-01

    We obtain the exact expression for the matrix of nonadiabatic transition probabilities in the model of three interacting states with a time-dependent Hamiltonian. Unlike other known solvable Landau-Zener-like problems, our solution is generally expressed in terms of hypergeometric functions that have relatively complex behavior, e.g. the obtained transition probabilities may show multiple oscillations as functions of parameters of the model Hamiltonian.

  2. State Estimation for Nonlinear Discrete-Time Systems with Markov Jumps and Nonhomogeneous Transition Probabilities

    OpenAIRE

    Shunyi Zhao; Zhiguo Wang; Fei Liu

    2013-01-01

    State estimation problem is addressed for a class of nonlinear discrete-time systems with Markov parameters and nonhomogeneous transition probabilities (TPs). In this paper, the optimal estimation mechanism of transition probability matrix is proposed in the minimum mean square error sense to show some critical points. Based on this mechanism, the extended Kalman filters are employed as the subfilters to obtain the subestimates with corresponding models. A novel operator which fuses the prior...

  3. Forbidden Electronic Transitions between the Singlet Ground State and the Triplet Excited State of Pt(II) Complexes.

    Science.gov (United States)

    Zheng, Greg Y.; Rillema, D. Paul; DePriest, Jeff; Woods, Clifton

    1998-07-13

    Direct access to the triplet emitting state from the ground state is observed for Pt(II) complexes containing heterocyclic (CwedgeC', CwedgeN, NwedgeN') and bis(diphenylphosphino)alkane (PwedgeP') ligands. Extinction coefficients for such transitions are in the range 4-25 M(-)(1) cm(-)(1). Emission quantum yields resulting from singlet-to-triplet excitation are as high as 61-77 times the emission quantum yields resulting from singlet-to-singlet excitation at 296 K. The intersystem crossing quantum yield from the singlet excited state to triplet emitting state is lower than 2% at 296 K but is greatly enhanced at 77 K. The forbidden electronic transition observed for Pt(II) complexes is attributed to result from spin-orbit coupling due to the presence of Pt(II) in the skeleton structure. The importance of excitation spectra on the computation of emission quantum yields is discussed.

  4. Prediction of monomer reactivity in radical copolymerizations from transition state quantum chemical descriptors

    Directory of Open Access Journals (Sweden)

    Zhengde Tan

    2013-01-01

    Full Text Available In comparison with the Q-e scheme, the Revised Patterns Scheme: the U, V Version (the U-V scheme has greatly improved both its accessibility and its accuracy in interpreting and predicting the reactivity of a monomer in free-radical copolymerizations. Quantitative structure-activity relationship (QSAR models were developed to predict the reactivity parameters u and v of the U-V scheme, by applying genetic algorithm (GA and support vector machine (SVM techniques. Quantum chemical descriptors used for QSAR models were calculated from transition state species with structures C¹H3 - C²HR³• or •C¹H2 - C²H2R³ (formed from vinyl monomers C¹H²=C²HR³ + H•, using density functional theory (DFT, at the UB3LYP level of theory with 6-31G(d basis set. The optimum support vector regression (SVR model of the reactivity parameter u based on Gaussian radial basis function (RBF kernel (C = 10, ε = 10- 5 and γ = 1.0 produced root-mean-square (rms errors for the training, validation and prediction sets being 0.220, 0.326 and 0.345, respectively. The optimal SVR model for v with the RBF kernel (C = 20, ε = 10- 4 and γ = 1.2 produced rms errors for the training set of 0.123, the validation set of 0.206 and the prediction set of 0.238. The feasibility of applying the transition state quantum chemical descriptors to develop SVM models for reactivity parameters u and v in the U-V scheme has been demonstrated.

  5. Phase Transitions in q-States Signal Reconstruction

    Institute of Scientific and Technical Information of China (English)

    孙怡帆

    2012-01-01

    Compressed sensing is a new signM acquisition method that acquires signal in a compressed form and then recovers the signal by the use of computational tools and techniques. This means fewer measurements of signal are needed and thus it will save huge amount of time and storage space. We, in this paper, consider the compressed sensing of sparse integer-valued signal (referred as "q-states signal" throughout the paper). In order to accelerate the speed of reconstruction, we adopt the sparse rather than dense measurement matrices. Using methods and tools developed in statistical physics, we locate the reconstruction limit for Lo-reconstruction method and propose a belief propagation- based algorithm that can deal with instance with large size and its typical reconstruction performance are also analyzed.

  6. 1 and 2 transitions in the ground-state configuration of atomic manganese

    Indian Academy of Sciences (India)

    S Kabakçi; B Karaçoban Usta; L Özdemir

    2015-10-01

    Using the multiconfiguration Hartree–Fock approximation within the framework of the Breit–Pauli Hamiltonian (MCHF+BP) and the relativistic Hartree–Fock (HFR) approximation, we have calculated the forbidden transition (1 and 2) parameters such as transition energies, logarithmic weighted oscillator strengths and transition probabilities between the fine-structure levels in the ground-state configuration of 3d5 4s2 for atomic manganese (Mn I, Z =25). A discussion of these calculations for manganese using MCHF+BP and HFR methods is given here.

  7. Equation of State of Dense Liquid Nitrogen in the Region of the Dissociative Phase Transition

    Institute of Scientific and Technical Information of China (English)

    孟川民; 施尚春; 董石; 孙悦; 焦荣珍; 杨向东

    2002-01-01

    We have measured the equation of state for liquid nitrogen compressed dynamically to a pressure of 10-60 GPa by employing a two-stage light-gas gun. The data show a continuous phase transition above the shock pressure of 33 GPa, as indicated previously by shock wave experiments. A theoretical model has been derived to examine the experimental data by inducing a molecular dissociative fraction. According to theoretical and experimental data the phase transition was thought to be a molecular dissociative phase transition.

  8. Scope and forms of state support to enterprises in Poland in period of transition

    OpenAIRE

    Kurowski, Piotr

    2011-01-01

    In centrally planned economies state subsidies were the main instrument of supporting the economic sector. Most of them had also social functions (e.g. through subsidising the consumption of households). In the period of transition, with the withdraw all of the state from economic decisions of the enterprises, new social problems appeared. The paper analyses the process of granting state support to economic units - its scope and forms - in the 90-ties.

  9. Oscillator strength, transition rates and lifetimes for n=3 states in Al-like ions

    CERN Document Server

    Safronova, U I; Safronova, M S; Sataka, M

    2002-01-01

    Transition rates, oscillator strengths, and line strengths are calculated for the 3220 possible electric-dipole (E1) transitions between the 73 even-parity 3s3p sup 2 , 3s sup 2 3d, 3p sup 2 3d, 3d sup 2 3s and 3d sup 3 states and the 75 odd-parity 3s sup 2 3p, 3p sup 3 , 3s3p3d, and 3d sup 2 3p states in Al-like ions with the nuclear charges ranging from Z=15 to 100. Relativistic many-body perturbation theory (MBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s sup 2 2s sup 2 2p sup 6 Dirac-Fock potential. First-order MBPT is used to obtain intermediate coupling coefficients and second-order MBPT is used to calculate transition matrix elements. Contributions from negative-energy states are included in the second order E1 matrix elements to ensure gauge-independence of transition amplitudes. The transition energies used in the calculation of oscillator strengths and transition rates are from second-order MBPT. T...

  10. Transitions, cross sections and neutron binding energy in 186Re by Prompt Gamma Activation Analysis

    Science.gov (United States)

    Lerch, A. G.; Hurst, A. M.; Firestone, R. B.; Revay, Zs.; Szentmiklosi, L.; McHale, S. R.; McClory, J. W.; Detwiler, B.; Carroll, J. J.

    2014-03-01

    The nuclide 186Re possesses an isomer with 200,000 year half-life while its ground state has a half-life of 3.718 days. It is also odd-odd and well-deformed nucleus, so should exhibit a variety of other interesting nuclear-structure phenomena. However, the available nuclear data is rather sparse; for example, the energy of the isomer is only known to within + 7 keV and, with the exception of the J?=1- ground state, every proposed level is tentative in the ENSDF. Previously, Prompt Gamma Activation Analysis (PGAA) was utilized to study natRe with 186,188Re being produced via thermal neutron capture. Recently, an enriched 185Re target was irradiated by thermal neutrons at the Budapest Research Reactor to build on those results. Prompt (primary and secondary) and delayed gamma-ray transitions were measured with a large-volume, Compton-suppressed HPGe detector. Absolute cross sections for each gamma transition were deduced and corrected for self attenuation within the sample. Fifty-two primary gamma-ray transitions were newly identified and used to determine a revised value of the neutron binding energy. DICEBOX was used to simulate the decay scheme and the total radiative thermal neutron capture cross section was found to be 97+/-3 b Supported by DTRA (Detwiler) through HDTRA1-08-1-0014.

  11. Motion, Universality of Velocities, Masses in Wave Universe. Transitive States (Resonances) - Mass Spectrum

    CERN Document Server

    Chechelnitsky, A M

    2001-01-01

    Wave Universe Concept (WU Concept) opens new wide possibilities for the effective description of Elementar Objects of Matter (EOM) hierarchy, in particular, of particles, resonances mass spectrum of subatomic (and HEP) physics. The special attention to analysis and precise description of wide and important set - Transitive states (resonances) of EOM is payed. Its are obtained sufficiently precise representations for mass values, cross relations between masses of wide set objects of particle physics - metastable resonances - (fast moving) Transitive states - in terms of representations of Wave Universe Concept (WU Concept). Wide set of observed in experiments effects and connected with its resonances (including - Darmstadt effect, ABC effect,etc.) may be effectively interpreted in WU Concept and described with use of mass formula - as manifestation of rapidly moving, physically distinguished transitive states (resonances)

  12. Anaerobiosis induced state transition: a non photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Sreedhar Nellaepalli

    Full Text Available BACKGROUND: Non photochemical reduction of PQ pool and mobilization of LHCII between PSII and PSI are found to be linked under abiotic stress conditions. The interaction of non photochemical reduction of PQ pool and state transitions associated physiological changes are critically important under anaerobic condition in higher plants. METHODOLOGY/FINDINGS: The present study focused on the effect of anaerobiosis on non-photochemical reduction of PQ pool which trigger state II transition in Arabidopsis thaliana. Upon exposure to dark-anaerobic condition the shape of the OJIP transient rise is completely altered where as in aerobic treated leaves the rise is unaltered. Rise in F(o and F(J was due to the loss of oxidized PQ pool as the PQ pool becomes more reduced. The increase in F(o' was due to the non photochemical reduction of PQ pool which activated STN7 kinase and induced LHCII phosphorylation under anaerobic condition. Further, it was observed that the phosphorylated LHCII is migrated and associated with PSI supercomplex increasing its absorption cross-section. Furthermore, evidences from crr2-2 (NDH mutant and pgr5 mutants (deficient in non NDH pathway of cyclic electron transport have indicated that NDH is responsible for non photochemical reduction of the PQ pool. We propose that dark anaerobic condition accelerates production of reducing equivalents (such as NADPH by various metabolic pathways which reduce PQ pool and is mediated by NDH leading to state II transition. CONCLUSIONS/SIGNIFICANCE: Anaerobic condition triggers non photochemical reduction of PQ pool mediated by NDH complex. The reduced PQ pool activates STN7 kinase leading to state II transition in A. thaliana.

  13. Jump Markov models and transition state theory: the Quasi-Stationary Distribution approach

    CERN Document Server

    Di Gesù, Giacomo; Peutrec, Dorian Le; Nectoux, Boris

    2016-01-01

    We are interested in the connection between a metastable continuous state space Markov process (satisfying e.g. the Langevin or overdamped Langevin equation) and a jump Markov process in a discrete state space. More precisely, we use the notion of quasi-stationary distribution within a metastable state for the continuous state space Markov process to parametrize the exit event from the state. This approach is useful to analyze and justify methods which use the jump Markov process underlying a metastable dynamics as a support to efficiently sample the state-to-state dynamics (accelerated dynamics techniques). Moreover, it is possible by this approach to quantify the error on the exit event when the parametrization of the jump Markov model is based on the Eyring-Kramers formula. This therefore provides a mathematical framework to justify the use of transition state theory and the Eyring-Kramers formula to build kinetic Monte Carlo or Markov state models.

  14. Solvent molecules bridge the mechanical unfolding transition state of a protein

    OpenAIRE

    Dougan, Lorna; Feng, Gang; Lu, Hui; Fernandez, Julio M.

    2008-01-01

    We demonstrate a combination of single molecule force spectroscopy and solvent substitution that captures the presence of solvent molecules in the transition state structure. We measure the effect of solvent substitution on the rate of unfolding of the I27 titin module, placed under a constant stretching force. From the force dependency of the unfolding rate, we determine Δxu, the distance to the transition state. Unfolding the I27 protein in water gives a Δxu = 2.5 Å, a distance that compare...

  15. Kinetic Analysis for Macrocyclizations Involving Anionic Template at the Transition State

    Directory of Open Access Journals (Sweden)

    Vicente Martí-Centelles

    2012-01-01

    competitive oligomerization/polymerization processes yielding undesired oligomeric/polymeric byproducts. The effect of anions has also been included in the kinetic models, as they can act as catalytic templates in the transition state reducing and stabilizing the transition state. The corresponding differential equation systems for each kinetic model can be solved numerically. Through a comprehensive analysis of these results, it is possible to obtain a better understanding of the different parameters that are involved in the macrocyclization reaction mechanism and to develop strategies for the optimization of the desired processes.

  16. The charge percolation mechanism and simulation of Ziegler–Natta polymerizations Part III. Oxidation states of transition metals

    Directory of Open Access Journals (Sweden)

    BRANKA PILIC

    2006-04-01

    Full Text Available The oxidation state of the transition metal (Mt active centre is the most disputable question in the polymerization of olefins by Ziegler–Natta (ZN and metallocene complexes. In this paper the importance and the changes of the Mt active centres are presented and discussed on the basis of a charge percolation mechanism (CPM of olefin polymerization. Mt atoms can exist in different oxidation states and can be easily transformed from one to another state during activation. In all cases, the Mt atoms are present in several oxidation states, i.e., Mt+(n-1, Mt+(n to Mt+(n+1, producing an irregular charge distribution over the support surface. There is a tendency to equalize the oxidation states by a charge transfer from Mt+(n–1 (donor toMt+(n+1 (acceptor. This cannot occur since the different oxidation states are highly separated on the support. However, monomer molecules are adsorbed on the support producing clusters with stacked p-bonds, making a p-bond bridge between a donor and an acceptor. Once a bridge is formed (percolation moment, charge transfer occurs. The donor and acceptor equalize their oxidation states simultaneously with the polymerization of the monomer. The polymer chain is desorbed from the support, freeing the surface for subsequent monomer adsorption. The whole process is repeated with the oxidation-reduction of other donor-acceptor ensembles.

  17. Laboratory rotational ground state transitions of NH$_3$D$^+$ and CF$^+$

    CERN Document Server

    Stoffels, Alexander; Schlemmer, Stephan; Brünken, Sandra

    2016-01-01

    Aims. This paper reports accurate laboratory frequencies of the rotational ground state transitions of two astronomically relevant molecular ions, NH3D+ and CF+. Methods. Spectra in the millimeter-wave band were recorded by the method of rotational state-selective attachment of He-atoms to the molecular ions stored and cooled in a cryogenic ion trap held at 4 K. The lowest rotational transition in the A state (ortho state) of NH$_3$D$^+$ ($J_K = 1_0 - 0_0$), and the two hyperfine components of the ground state transition of CF$^+$($J = 1 - 0$) were measured with a relative precision better than $10^{-7}$. Results. For both target ions the experimental transition frequencies agree with recent observations of the same lines in different astronomical environments. In the case of NH$_3$D$^+$ the high-accuracy laboratory measurements lend support to its tentative identification in the interstellar medium. For CF$^+$ the experimentally determined hyperfine splitting confirms previous quantum-chemical calculations a...

  18. Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Jagau, Thomas-C.; Krylov, Anna I. [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States)

    2016-02-07

    The theoretical description of electronic resonances is extended beyond calculations of energies and lifetimes. We present the formalism for calculating Dyson orbitals and transition dipole moments within the equation-of-motion coupled-cluster singles and doubles method for electron-attached states augmented by a complex absorbing potential (CAP-EOM-EA-CCSD). The capabilities of the new methodology are illustrated by calculations of Dyson orbitals of various transient anions. We also present calculations of transition dipole moments between transient and stable anionic states as well as between different transient states. Dyson orbitals characterize the differences between the initial neutral and final electron-attached states without invoking the mean-field approximation. By extending the molecular-orbital description to correlated many-electron wave functions, they deliver qualitative insights into the character of resonance states. Dyson orbitals and transition moments are also needed for calculating experimental observables such as spectra and cross sections. Physically meaningful results for those quantities are obtained only in the framework of non-Hermitian quantum mechanics, e.g., in the presence of a complex absorbing potential (CAP), when studying resonances. We investigate the dependence of Dyson orbitals and transition moments on the CAP strength and illustrate how Dyson orbitals help understand the properties of metastable species and how they are affected by replacing the usual scalar product by the so-called c-product.

  19. A Cbx8-containing polycomb complex facilitates the transition to gene activation during ES cell differentiation.

    Directory of Open Access Journals (Sweden)

    Catherine Creppe

    2014-12-01

    Full Text Available Polycomb proteins play an essential role in maintaining the repression of developmental genes in self-renewing embryonic stem cells. The exact mechanism allowing the derepression of polycomb target genes during cell differentiation remains unclear. Our project aimed to identify Cbx8 binding sites in differentiating mouse embryonic stem cells. Therefore, we used a genome-wide chromatin immunoprecipitation of endogenous Cbx8 coupled to direct massive parallel sequencing (ChIP-Seq. Our analysis identified 171 high confidence peaks. By crossing our data with previously published microarray analysis, we show that several differentiation genes transiently recruit Cbx8 during their early activation. Depletion of Cbx8 partially impairs the transcriptional activation of these genes. Both interaction analysis, as well as chromatin immunoprecipitation experiments support the idea that activating Cbx8 acts in the context of an intact PRC1 complex. Prolonged gene activation results in eviction of PRC1 despite persisting H3K27me3 and H2A ubiquitination. The composition of PRC1 is highly modular and changes when embryonic stem cells commit to differentiation. We further demonstrate that the exchange of Cbx7 for Cbx8 is required for the effective activation of differentiation genes. Taken together, our results establish a function for a Cbx8-containing complex in facilitating the transition from a Polycomb-repressed chromatin state to an active state. As this affects several key regulatory differentiation genes this mechanism is likely to contribute to the robust execution of differentiation programs.

  20. Electronic states and spin-forbidden cooling transitions of AlH and AlF.

    Science.gov (United States)

    Wells, Nathan; Lane, Ian C

    2011-11-14

    The feasibility of laser cooling AlH and AlF is investigated using ab initio quantum chemistry. All the electronic states corresponding to the ground and lowest two excited states of the Al atom are calculated using multi-reference configuration interaction (MRCI) and the large AV6Z basis set for AlH. The smaller AVQZ basis set is used to calculate the valence electronic states of AlF. Theoretical Franck-Condon factors are determined for the A(1)Π→ X(1)Σ(+) transitions in both radicals and found to agree with the highly diagonal factors found experimentally, suggesting computational chemistry is an effective method for screening suitable laser cooling candidates. AlH does not appear to have a transition quite as diagonal as that in SrF (which has been laser cooled) but the A(1)Π→ X(1)Σ(+) transition transition of AlF is a strong candidate for cooling with just a single laser, though the cooling frequency is deep in the UV. Furthermore, the a(3)Π→ X(1)Σ(+) transitions are also strongly diagonal and in AlF is a practical method for obtaining very low final temperatures around 3 μK.

  1. Electron-impact fine-structure transitions in Cu XX from its ground state

    International Nuclear Information System (INIS)

    The R-matrix method is used to calculate collision strengths for electron-impact excitation of Cu XX from its ground state. Configuration interaction wavefunctions are used to represent the lowest 15 LS coupled states which are retained in the R-matrix expansion. Effective collisions strengths are calculated for transitions from the ground state to fine-structure levels of the excited states by employing a transformation of the LS coupled reactance matrices, and by assuming a Maxwellian distribution for the incident electron. This is the first detailed calculation on this ion in which the effects of exchange, channel couplings and short-range correlation effects are taken into account. (author)

  2. Self-organization of stress patterns drives state transitions in actin cortices

    CERN Document Server

    Tan, Tzer Han; Abu-Shah, Enas; Li, Junang; Sharma, Abhinav; MacKintosh, Fred C; Keren, Kinneret; Schmidt, Christoph F; Fakhri, Nikta

    2016-01-01

    Biological functions rely on ordered structures and intricately controlled collective dynamics. In contrast to systems in thermodynamic equilibrium, order is typically established and sustained in stationary states by continuous dissipation of energy. Non-equilibrium dynamics is a necessary condition to make the systems highly susceptible to signals that cause transitions between different states. How cellular processes self-organize under this general principle is not fully understood. Here, we find that model actomyosin cortices, in the presence of rapid turnover, display distinct steady states, each distinguished by characteristic order and dynamics as a function of network connectivity. The different states arise from a subtle interaction between mechanical percolation of the actin network and myosin-generated stresses. Remarkably, myosin motors generate actin architectures, which in turn, force the emergence of ordered stress patterns. Reminiscent of second order phase transitions, the emergence of order...

  3. Localized charged states and phase separation near second order phase transition

    OpenAIRE

    Kabanov, V. V.; Mamin, R. F.; Shaposhnikova, T. S.

    2008-01-01

    Localized charged states and phase segregation are described in the framework of the phenomenological Ginzburg-Landau theory of phase transitions. The Coulomb interactions determines the charge distribution and the characteristic length of the phase separated states. The phase separation with charge segregation becomes possible because of the large dielectric constant and the small density of extra charge in the range of charge localization. The phase diagram is calculated and the energy gain...

  4. Transitions between sleep and feeding states in rat ventral striatum neurons

    OpenAIRE

    Tellez, Luis A; Perez, Isaac O.; Simon, Sidney A.; Gutierrez, Ranier

    2012-01-01

    Neurons in the nucleus accumbens (NAc) have been shown to participate in several behavioral states, including feeding and sleep. However, it is not known if the same neuron participates in both states and, if so, how similar are the responses. In addition, since the NAc contains several cell types, it is not known if each type participates in the transitions associated with feeding and sleep. Such knowledge is important for understanding the interaction between two different neural networks. ...

  5. Comparison of 3D Classical Trajectory and Transition-State Theory Reaction Cross Sections

    Science.gov (United States)

    Koeppl, G. W.; Karplus, Martin

    1970-10-01

    Although there is excellent agreement for a system such as H+H{sub 2} --> H{sub 2}+H, in which both the potential and the particle masses are symmetric, significant deviations occur for more asymmetric reactions. A detailed analysis show that the calculated differences are from the violation of two assumptions of transition-state theory.

  6. State-and-transition model archetypes: a global taxonomy of rangeland change

    Science.gov (United States)

    State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...

  7. Molecular dynamics simulations from putative transition states of alpha-spectrin SH3 domain

    NARCIS (Netherlands)

    Periole, Xavier; Vendruscolo, Michele; Mark, Alan E.

    2007-01-01

    A series of molecular dynamics simulations in explicit solvent were started from nine structural models of the transition state of the SH3 domain of alpha-spectrin, which were generated by Lindorff Larsen et al. (Nat Struct Mol Biol 2004;11:443-449) using molecular dynamics simulations in which expe

  8. Burnup credit activities in the United States

    International Nuclear Information System (INIS)

    This report covers progress in burnup credit activities that have occurred in the United States of America (USA) since the International Atomic Energy Agency's (IAEA's) Advisory Group Meeting (AGM) on Burnup Credit was convened in October 1997. The Proceeding of the AGM were issued in April 1998 (IAEA-TECDOC-1013, April 1998). The three applications of the use of burnup credit that are discussed in this report are spent fuel storage, spent fuel transportation, and spent fuel disposal. (author)

  9. Evolutionary transitions in enzyme activity of ant fungus gardens

    OpenAIRE

    de Fine Licht, Henrik Hjarvard; Schiøtt, M.; Mueller, U. G.; Boomsma, J.J.

    2010-01-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparat...

  10. Novel states of pre-transition edge turbulence emerging from shearing mode competition

    International Nuclear Information System (INIS)

    Recent experiments have noted the coexistence of multiple shearing fields in edge turbulence, and have observed that the shearing population ratios evolve as the L-H transition is approached. A novel model including zonal flows (ZFs), geodesic acoustic modes (GAMs) and turbulence as a zero-dimensional self-consistent two predator-one prey system with multiple frequency shearings is proposed. ZF with finite frequency (i.e. GAM) can have different shearing dynamics from that with zero frequency, because of the finite shearing field autocorrelation times. Decomposing the broadband ZF spectrum into the two populations enables us to assign different shearing weights to the components of the shearing field. We define states with no ZF and GAM as an L-mode-like state, that with ZF and without GAM as an ZF-only state, with GAM and without ZF as a GAM-only state and both with ZF and GAM as the coexistence state. To resolve the origins of multiple shear coexistence, mode-competition effects are introduced. These originate from higher order perturbation of wave populations. The model exhibits a sequence of transitions between various states as the net driving flux increases. For some parameters, bistability of ZF and GAM is evident, which predicts hysteretic behaviour in the turbulence intensity field during power ramp up/down studies. The presence of noise due to ambient turbulence offers a mechanism to explain the bursts and pulsations observed in the turbulence field prior to the L-H transition.

  11. Systematic study of the single-state dominance in 2 nu beta beta decay transitions

    CERN Document Server

    Civitarese, O

    1999-01-01

    The single-state-dominance hypothesis (SSDH) states that the decay rates of the two-neutrino double-beta decay are governed by a virtual two-step transition connecting the initial and final ground states through the first 1 sup + state, 1 sup + sub 1 , of the intermediate odd-odd nucleus, for those odd-odd nuclei where the 1 sup + sub 1 state is the ground state. To investigate the validity of the SSDH we have performed a systematical theoretical analysis of all known double-beta-decay transitions where the SSDH conditions are fulfilled. The calculations are based on the quasiparticle randon-phase approximation (QRPA) and the results have been obtained by using realistic single-particle bases and realistic interactions. We have studied the double beta sup - decays of sup 1 sup 0 sup 0 Mo, sup 1 sup 1 sup 0 Pd, sup 1 sup 1 sup 4 Cd, sup 1 sup 1 sup 6 Cd and sup 1 sup 2 sup 8 Te and the double electron-capture transitions in sup 1 sup 0 sup 6 Cd and sup 1 sup 3 sup 6 Ce. The analysis shows that the SSDH is real...

  12. Electronic Transition Dipole Moment and Radiative Lifetime Calculations of Lithium Dimer Ion-Pair States

    Science.gov (United States)

    Sanli, Aydin; Beecher, David; Lyyra, Marjatta; Magnier, Sylvie; Ahmed, Ergin

    2016-05-01

    Lithium dimer molecular electronic states exhibit double wells and shoulders due to the interaction with the Li+ + Li- ion-pair configuration. The double well behavior is predominantly observed for higher lying electronic states of 1Σg+ symmetry at larger internuclear distance. The ion-pair character of these potential energy curves makes their lifetimes also interesting because of the unusual behavior of their transition dipole moments which exhibit rapid changes around potential curve shoulders and double wells. In this work we present a computational study of lifetimes and transition dipole moment matrix elements for the lithium dimer ion-pair states. We report here the ab initio calculated electronic transition dipole moments between the n1Σg+ states and the A1Σu+ state, that vary strongly as a function of internuclear distance. In addition, we have calculated the radiative lifetimes, τ, of these ion-pair states and compare them with experimental results from literature when available.

  13. Phase transitions and dark-state physics in two-color superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Hayn, Mathias; Emary, Clive; Brandes, Tobias [Institut fuer Theoretische Physik, Technische Universitaet Berlin, D-10623 Berlin (Germany)

    2011-11-15

    We theoretically study an extension of the Dicke model, where the single-particle Hamiltonian has three energy levels in Lambda configuration (i.e., the excited state is coupled to two nondegenerate ground states via two independent quantized light fields). The corresponding many-body Hamiltonian can be diagonalized in the thermodynamic limit with the help of a generalized Holstein-Primakoff transformation. Analyzing the ground-state energy and the excitation energies, we identify one normal and two superradiant phases, separated by phase transitions of both first and second oder. A phase with both superradiant states coexisting is not stable. In addition, in the limit of two degenerate ground states a dark state emerges, which seems to be analogous to the dark state appearing in the well-known stimulated Raman adiabatic passage scheme.

  14. Energy use, efficiency gains and emission abatement in transitional industrialised economies. Poland and the Baltic states

    Energy Technology Data Exchange (ETDEWEB)

    Salay, Juergen

    1999-05-01

    This thesis is a study of how energy use and air pollution in Poland, Estonia, Latvia and Lithuania have been affected by the economic transition after 1989. It consists of six articles, which examine three different aspects of these changes. The first group of articles analyses the structure of energy use in the Baltic states (Article 1) and Poland (Articles 2 and 3) at the outset of transition. The results show that these countries had a primary energy consumption per GDP which was two to three times higher than in developed market economics because of a more energy intensive structure of the economy and higher specific energy intensities in many sectors of the economy. They also had significantly higher levels of air pollution per primary energy consumption and GDP because of a heavy reliance on fossil fuels, an energy intensive economy and an ineffective control of emissions. The deep fall in energy consumption during the first phase of transition was due to a sharp drop in industrial output and higher fuel prices. In the Baltic states, part of the fall in energy consumption was the result of shortfalls in the supply of oil and gas from Russia. The second group of articles (Articles 4 and 5) examines changes in electricity production, fuel consumption, generation efficiency and sulphur dioxide (SO{sub 2}) emissions in the Polish power industry between 1988 and 1997. The results show that SO{sub 2} emissions dropped by 45 per cent between 1988 and 1997. The drop in emissions was partly the result of a fall in economic activity and electricity production in the early 1990s. Other reasons were more important. One reason was the restructuring of the power industry, during which hard budget constraints were introduced and the price of coal was raised. Another reason for the fall in emissions was the reorganisation and stricter enforcement of environmental protection. Together, these reforms created strong incentives for power plants to switch to high-quality coal

  15. Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids

    Energy Technology Data Exchange (ETDEWEB)

    Deshlahra, Prashant; Carr, Robert T.; Iglesia, Enrique

    2014-10-29

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POM clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE–reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born–Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.

  16. Ionic and covalent stabilization of intermediates and transition states in catalysis by solid acids.

    Science.gov (United States)

    Deshlahra, Prashant; Carr, Robert T; Iglesia, Enrique

    2014-10-29

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POM clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE-reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born-Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.

  17. Simulation study on dynamics transition in neuronal activity during sleep cycle by using asynchronous and symmetry neural network model.

    Science.gov (United States)

    Nakao, M; Takahashi, T; Mizutani, Y; Yamamoto, M

    1990-01-01

    We have found that single neuronal activities in different regions in the brain commonly exhibit the distinct dynamics transition during sleep-waking cycle in cats. Especially, power spectral densities of single neuronal activities change their profiles from the white to the 1/f along with sleep cycle from slow wave sleep (SWS) to paradoxical sleep (PS). Each region has different neural network structure and physiological function. This suggests a globally working mechanism may be underlying the dynamics transition we concern. Pharmacological studies have shown that a change in a wide-spread serotonergic input to these regions possibly causes the neuronal dynamics transition during sleep cycle. In this paper, based on these experimental results, an asynchronous and symmetry neural network model including inhibitory input, which represents the role of the serotonergic system, is utilized to examine the reality of our idea that the inhibitory input level varying during sleep cycle induce that transition. Simulation results show that the globally applied inhibitory input can control the dynamics of single neuronal state evolution in the artificial neural network: 1/f-like power spectral density profiles result under weak inhibition, which possibly corresponds to PS, and white profiles under strong inhibition, which possibly corresponds to SWS. An asynchronous neural network is known to change its state according to its energy function. The geometrical structure of network energy function is thought to vary along with the change in inhibitory level, which is expected to cause the dynamics transition of neuronal state evolution in the network model. These simulation results support the possibility that the serotonergic system is essential for the dynamics transition of single neuronal activities during sleep cycle.

  18. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.

    Science.gov (United States)

    Nicolas, A; Egmond, M; Verrips, C T; de Vlieg, J; Longhi, S; Cambillau, C; Martinez, C

    1996-01-16

    Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively.

  19. Chaotic state to self-organized critical state transition of serrated flow dynamics during brittle-to-ductile transition in metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Wang, W. H.; Bai, H. Y., E-mail: hybai@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, B. A. [Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2016-02-07

    We study serrated flow dynamics during brittle-to-ductile transition induced by tuning the sample aspect ratio in a Zr-based metallic glass. The statistical analysis reveals that the serrated flow dynamics transforms from a chaotic state characterized by Gaussian-distribution serrations corresponding to stick-slip motion of randomly generated and uncorrelated single shear band and brittle behavior, into a self-organized critical state featured by intermittent scale-free distribution of shear avalanches corresponding to a collective motion of multiple shear bands and ductile behavior. The correlation found between serrated flow dynamics and plastic deformation might shed light on the plastic deformation dynamic and mechanism in metallic glasses.

  20. Topological phase transition and quantum spin Hall edge states of antimony few layers

    Science.gov (United States)

    Kim, Sung Hwan; Jin, Kyung-Hwan; Park, Joonbum; Kim, Jun Sung; Jhi, Seung-Hoon; Yeom, Han Woong

    2016-09-01

    While two-dimensional (2D) topological insulators (TI’s) initiated the field of topological materials, only very few materials were discovered to date and the direct access to their quantum spin Hall edge states has been challenging due to material issues. Here, we introduce a new 2D TI material, Sb few layer films. Electronic structures of ultrathin Sb islands grown on Bi2Te2Se are investigated by scanning tunneling microscopy. The maps of local density of states clearly identify robust edge electronic states over the thickness of three bilayers in clear contrast to thinner islands. This indicates that topological edge states emerge through a 2D topological phase transition predicted between three and four bilayer films in recent theory. The non-trivial phase transition and edge states are confirmed for epitaxial films by extensive density-functional-theory calculations. This work provides an important material platform to exploit microscopic aspects of the quantum spin Hall phase and its quantum phase transition.

  1. Efficient dynamical correction of the transition state theory rate estimate for a flat energy barrier

    Science.gov (United States)

    Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes

    2016-09-01

    The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort.

  2. Ferroelasticity and spin-state transitions of LaCoO3

    Science.gov (United States)

    Araki, Wakako; Abe, Takehiro; Arai, Yoshio

    2014-07-01

    A uniaxial compression test of polycrystalline lanthanum cobaltite (LCO) was performed to investigate mechanical behavior of LCO in the temperature range of 83-553 K. Prepared by solid-state reaction, the electrical resistivity and the linear expansion coefficient of polycrystalline LCO, measured between 80 and 1273 K, exhibit distinct changes attributed to spin-state transitions of cobalt ions around 100-200 K and 400-600 K, but are relatively constant between 200 and 400 K. The stress-strain curve obtained under uniaxial compression shows strong nonlinearity due to ferroelastic domain switching process between 83 and 553 K. Initial Young's moduli, critical stress, and dissipated energy evaluated from the stress-strain curves decrease by about a half with increasing the temperature, whereas there was no drastic changes even around the spin-state transition temperatures. The initial modulus agrees with the temperature dependence of the apparent Young's modulus measured under low-stress cyclic loading.

  3. Monopole transitions to cluster states in $^{10}$Be and $^9$Li

    CERN Document Server

    Kanada-En'yo, Yoshiko

    2016-01-01

    Isoscalar monopole transitions from the ground states to cluster states in $\\Be$ and $\\Li$ are investigated with $\\He+\\alpha$ and $\\He+t$ cluster models, respectively. In $\\Be$, significant monopole strengths to $\\He+\\alpha$ cluster resonances of $\\Be(0^+_{3,4})$ above the $\\alpha$-decay threshold are obtained, whereas those to $\\He+t$ cluster resonances in $^9$Li are not enhanced because of the large fragmentation of the strengths in the corresponding energy region. The monopole transition to $\\Be(0^+_2)$ having the molecular orbital structure is relatively weak compared with those to $\\He+\\alpha$ cluster resonances. Monopole strength distributions do not directly correspond to distributions of $\\He(0^+)+\\alpha$ and $\\He(0+)+t$ components but they reflect component of the deformed $\\He$ cluster with a specific orientation, which is originally embedded in the ground state.

  4. Forbidden Transition Probabilities of Astrophysical Interest among Low-lying States of V III

    Indian Academy of Sciences (India)

    Andrei Irimia

    2007-06-01

    Electric and magnetic multipole transitions among low-lying states of doubly ionized vanadium were computed using the multi-configuration Hartree–Fock (MCHF) method with Breit–Pauli (BP) corrections to a non-relativistic Hamiltonian. Energy levels were determined up to and including 32(1)4 b 27/2 and computed energies were found to be in good agreement with experiment and other theories. In addition to Einstein coefficients for some E2 and M1 transitions, lifetime data and selected weighted oscillator strengths are also reported.

  5. High-pressure resistance and equation-of-state anomalies in Zn: a possible Lifshitz transition

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Alka B.; Vijayakumar, V.; Modak, P.; Gaitonde, D.M.; Rao, R.S.; Godwal, B.K.; Sikka, S.K. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2002-09-30

    Experimental results on electrical resistance variation with pressure up to 25 GPa are presented for zinc; they reveal the signature of an electronic topological transition. Theoretical estimates based on the results of first-principles band structure calculations corroborate the observed variation of the resistance. The Lifshitz transition, which is hardly observable in experimental P-V data, becomes discernible via the equation of state, in the universal as well as in Holzapfel's form. Another anomaly in the measured resistance is also observed around 20 GPa pressure. The resistance variation with pressure exhibits considerable hysteresis. (author)

  6. Alternation of up and down states at a dynamical phase-transition of a neural networkwith spatiotemporal attractors

    Directory of Open Access Journals (Sweden)

    Silvia eScarpetta

    2014-05-01

    Full Text Available Complex collective activity emerges spontaneously in cortical circuits in-vivo and in-vitro, such as alternation of up and down states, precise spatiotemporal patterns replay, and power law scaling of neural avalanches. We focus on such critical features observed in cortical slices.We study spontaneous dynamics emerging in noisy recurrent networks of spiking neurons with sparse structured connectivity.The emerging spontaneous dynamics is studied, in presence of noise, with fixed connections. Note that no short-term synaptic depression is used. Two different regimes of spontaneous activity emerge changing the connection strength or noise intensity: a low activity regime, characterized by a nearly exponential distribution of firing rates with a maximum at rate zero, and a high activity regime, characterized by a nearly Gaussian distribution peaked at a high rate for high activity, with long-lasting replay of stored patterns. Between this two regimes, a transition region is observed, where firing rates show a bimodal distribution, with alternation of up and down states. In this region, one observes neuronal avalanches exhibiting power laws in size and duration, and a waiting time distribution between successive avalanches which shows a non-monotonic behaviour. During periods of high activity (up states consecutive avalanches are correlated, since they are part of a short transient replay initiated by noise focusing, and waiting times show a power law distribution. One can think at this critical dynamics as a reservoire of dynamical patterns for memory functions.

  7. Ab initio multi-configuration Dirac-Fock calculation of M1 visible transitions among the ground state multiplets of the W26+ ion

    International Nuclear Information System (INIS)

    The development of fusion reactors has generated a demand for improved knowledge of the atomic properties of tungsten. Using a multi-configuration Dirac-Fock (MCDF) method with a restricted active space treatment, the wavelengths and transition probabilities of the M1 and E2 transitions in the visible light region are calculated for the ground state multiplets of W26+ ions. The theoretical wavelength (388.43 nm) for the 3H5 → 3H4 magnetic dipole transition agrees quite well with the experimental value (389.41 nm). Other transitions theoretically predicted at longer wavelengths are also in good agreement with new experimental observations. The results also indicate that the core-core correlation contributions from the 4d shell are essential to determine the transition properties accurately.

  8. State-transition modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--3.

    Science.gov (United States)

    Siebert, Uwe; Alagoz, Oguzhan; Bayoumi, Ahmed M; Jahn, Beate; Owens, Douglas K; Cohen, David J; Kuntz, Karen M

    2012-01-01

    State-transition modeling is an intuitive, flexible, and transparent approach of computer-based decision-analytic modeling including both Markov model cohort simulation and individual-based (first-order Monte Carlo) microsimulation. Conceptualizing a decision problem in terms of a set of (health) states and transitions among these states, state-transition modeling is one of the most widespread modeling techniques in clinical decision analysis, health technology assessment, and health-economic evaluation. State-transition models have been used in many different populations and diseases, and their applications range from personalized health care strategies to public health programs. Most frequently, state-transition models are used in the evaluation of risk factor interventions, screening, diagnostic procedures, treatment strategies, and disease management programs. The goal of this article was to provide consensus-based guidelines for the application of state-transition models in the context of health care. We structured the best practice recommendations in the following sections: choice of model type (cohort vs. individual-level model), model structure, model parameters, analysis, reporting, and communication. In each of these sections, we give a brief description, address the issues that are of particular relevance to the application of state-transition models, give specific examples from the literature, and provide best practice recommendations for state-transition modeling. These recommendations are directed both to modelers and to users of modeling results such as clinicians, clinical guideline developers, manufacturers, or policymakers. PMID:22999130

  9. Tuning of Electron States of Transition Metal’s Catalysts Using Acceptor’s Atoms: ab initio Calculation

    Directory of Open Access Journals (Sweden)

    R.M. Balabai

    2016-06-01

    Full Text Available Within the methods of density functional theory and ab initio pseudopotential, we have obtained the spatial distributions of the density of valence electron and the electronic energy spectrum for the small clusters from the atoms of Cu, Ni, Co, O, Si with the aim to determine the mechanisms of their high catalytic activity. Electron’s levels of catalyst guide course of chemical reaction. We explored, that the organization of electronic states of nanocatalysts on the basis of transition metals possible control by changing the spatial organization of clusters and adding electronegative atoms.

  10. Noise-induced precursors of state transitions in the stochastic Wilson-cowan model.

    Science.gov (United States)

    Negahbani, Ehsan; Steyn-Ross, D Alistair; Steyn-Ross, Moira L; Wilson, Marcus T; Sleigh, Jamie W

    2015-01-01

    The Wilson-Cowan neural field equations describe the dynamical behavior of a 1-D continuum of excitatory and inhibitory cortical neural aggregates, using a pair of coupled integro-differential equations. Here we use bifurcation theory and small-noise linear stochastics to study the range of a phase transitions-sudden qualitative changes in the state of a dynamical system emerging from a bifurcation-accessible to the Wilson-Cowan network. Specifically, we examine saddle-node, Hopf, Turing, and Turing-Hopf instabilities. We introduce stochasticity by adding small-amplitude spatio-temporal white noise, and analyze the resulting subthreshold fluctuations using an Ornstein-Uhlenbeck linearization. This analysis predicts divergent changes in correlation and spectral characteristics of neural activity during close approach to bifurcation from below. We validate these theoretical predictions using numerical simulations. The results demonstrate the role of noise in the emergence of critically slowed precursors in both space and time, and suggest that these early-warning signals are a universal feature of a neural system close to bifurcation. In particular, these precursor signals are likely to have neurobiological significance as early warnings of impending state change in the cortex. We support this claim with an analysis of the in vitro local field potentials recorded from slices of mouse-brain tissue. We show that in the period leading up to emergence of spontaneous seizure-like events, the mouse field potentials show a characteristic spectral focusing toward lower frequencies concomitant with a growth in fluctuation variance, consistent with critical slowing near a bifurcation point. This observation of biological criticality has clear implications regarding the feasibility of seizure prediction. PMID:25859420

  11. Collective state transitions of exciton-polaritons loaded into a periodic potential

    Science.gov (United States)

    Winkler, K.; Egorov, O. A.; Savenko, I. G.; Ma, X.; Estrecho, E.; Gao, T.; Müller, S.; Kamp, M.; Liew, T. C. H.; Ostrovskaya, E. A.; Höfling, S.; Schneider, C.

    2016-03-01

    We study the loading of a nonequilibrium, dissipative system of composite bosons—exciton polaritons—into a one-dimensional periodic lattice potential. Utilizing momentum resolved photoluminescence spectroscopy, we observe a transition between an incoherent Bose gas and a polariton condensate, which undergoes further transitions between different energy states in the band-gap spectrum of the periodic potential with increasing pumping power. We demonstrate controlled loading into distinct energy bands by modifying the size and shape of the excitation beam. The observed effects are comprehensively described in the framework of a nonequilibrium model of polariton condensation. In particular, we implement a stochastic treatment of quantum and thermal fluctuations in the system and conclude that polariton-phonon scattering is a plausible energy relaxation mechanism enabling transitions from the highly nonequilibrium polariton condensate in the gap to the ground band condensation for large pump powers.

  12. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.

    Science.gov (United States)

    Sunoj, Raghavan B

    2016-05-17

    In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling

  13. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.

    Science.gov (United States)

    Sunoj, Raghavan B

    2016-05-17

    In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling

  14. Short communication: Proteins from circulating exosomes represent metabolic state in transition dairy cows.

    Science.gov (United States)

    Crookenden, M A; Walker, C G; Peiris, H; Koh, Y; Heiser, A; Loor, J J; Moyes, K M; Murray, A; Dukkipati, V S R; Kay, J K; Meier, S; Roche, J R; Mitchell, M D

    2016-09-01

    Biomarkers that identify prepathological disease could enhance preventive management, improve animal health and productivity, and reduce costs. Circulating extracellular vesicles, particularly exosomes, are considered to be long-distance, intercellular communication systems in human medicine. Exosomes provide tissue-specific messages of functional state and can alter the cellular activity of recipient tissues through their protein and microRNA content. We hypothesized that exosomes circulating in the blood of cows during early lactation would contain proteins representative of the metabolic state of important tissues, such as liver, which play integral roles in regulating the physiology of cows postpartum. From a total of 150 cows of known metabolic phenotype, 10 cows were selected with high (n=5; high risk) and low (n=5; low risk) concentrations of nonesterified fatty acids, β-hydroxybutyrate, and liver triacylglycerol during wk 1 and 2 after calving. Exosomes were extracted from blood on the day of calving (d 0) and postcalving at wk 1 and wk 4, and their protein composition was determined by mass spectroscopy. Extracellular vesicle protein concentration and the number of exosome vesicles were not affected by risk category; however, the exosome protein cargo differed between the groups, with proteins at each time point identified as being unique to the high- and low-risk groups. The proteins α-2 macroglobulin, fibrinogen, and oncoprotein-induced transcript 3 were unique to the high-risk cows on d 0 and have been associated with metabolic syndrome and liver function in humans. Their presence may indicate a more severe inflammatory state and a greater degree of liver dysfunction in the high-risk cows than in the low-risk cows, consistent with the high-risk cows' greater plasma β-hydroxybutyrate and liver triacylglycerol concentrations. The commonly shared proteins and those unique to the low-risk category indicate a role for exosomes in immune function. The data

  15. Spectral hardening as a viable alternative to disc truncation in black hole state transitions

    CERN Document Server

    Salvesen, Greg; Reis, Rubens C; Begelman, Mitchell C

    2013-01-01

    Constraining the accretion flow geometry of black hole binaries in outburst is complicated by the inability of simplified multi-colour disc models to distinguish between changes in the inner disc radius and alterations to the emergent spectrum, parameterised by the phenomenological colour correction factor, f_col. We analyse Rossi X-ray Timing Explorer observations of the low mass Galactic black hole X-ray binary, GX 339-4, taken over seven epochs when the source was experiencing a state transition. The accretion disc component is isolated using a pipeline resulting in robust detections for disc luminosities, 0.001 < L_disc / L_Edd < 0.5. Assuming that the inner disc remains situated at the innermost stable circular orbit over the course of a state transition, we measure the relative degree of change in f_col required to explain the spectral evolution of the disc component. A variable f_col that increases by a factor of ~ 2.0 - 3.5 as the source transitions from the high/soft state to the low/hard state...

  16. Cygnus X-3 transition from the ultrasoft to the hard state

    CERN Document Server

    Beckmann, V; Bélanger, G; Brandt, S; Caballero-Garcia, M D; De Cesare, G; Gehrels, N; Grebenev, S; Vilhu, O; Von Kienlin, A; Courvoisier, T J -L

    2007-01-01

    Aims: The nature of Cygnus X-3 is still not understood well. This binary system might host a black hole or a neutron star. Recent observations by INTEGRAL have shown that Cygnus X-3 was again in an extremely ultrasoft state. Here we present our analysis of the transition from the ultrasoft state, dominated by blackbody radiation at soft X-rays plus non-thermal emission in the hard X-rays, to the low hard state. Methods: INTEGRAL observed Cyg X-3 six times during three weeks in late May and early June 2007. Data from IBIS/ISGRI and JEM-X1 were analysed to show the spectral transition. Results: During the ultrasoft state, the soft X-ray spectrum is well-described by an absorbed (NH = 1.5E22 1/cm**2) black body model, whereas the X-ray spectrum above 20 keV appears to be extremely low and hard (Gamma = 1.7). During the transition, the radio flux rises to a level of >1 Jy, and the soft X-ray emission drops by a factor of 3, while the hard X-ray emission rises by a factor of 14 and becomes steeper (up to Gamma = 4...

  17. Cygnus X-3 transition from the ultrasoft to the hard state

    DEFF Research Database (Denmark)

    Beckmann, V.; Soldi, S.; Belanger, G.;

    2007-01-01

    Aims. The nature of Cygnus X-3 is still not understood well. This binary system might host a black hole or a neutron star. Recent observations by INTEGRAL have shown that Cygnus X- 3 was again in an extremely ultrasoft state. Here we present our analysis of the transition from the ultrasoft state......, dominated by blackbody radiation at soft X- rays plus non-thermal emission in the hard X- rays, to the low hard state. Methods. INTEGRAL observed Cyg X-3 six times during three weeks in late May and early June 2007. Data from IBIS/ISGRI and JEM-X1 were analysed to show the spectral transition. Results....... During the ultrasoft state, the soft X-ray spectrum is well-described by an absorbed (NH = 1.5 x 10(22) cm(-2)) black body model, whereas the X-ray spectrum above 20 keV appears to be extremely low and hard (Gamma similar or equal to 1.7). During the transition, the radio flux rises to a level of > 1 Jy...

  18. Temperature induced structural transitions from native to unfolded aggregated states of tobacco etch virus protease

    Science.gov (United States)

    Zhu, Guo-Fei; Ren, Si-Yan; Xi, Lei; Du, Lin-Fang; Zhu, Xiao-Feng

    2015-02-01

    Tobacco etch virus protease (TEVp) is widely used to remove fusion tags from recombinant proteins because of its high and unique specificity. This work describes the conformational and the thermodynamic properties in the unfolding/refolding process of TEVp3M (three-point mutant: L56V/S135G/S219V) induced by temperature. With temperature increasing from 20 to 100 °C, the CD spectra showed a transition trend from α-helix to β-sheet, and the fluorescence emission, synchronous fluorescence, ANS and RLS spectroscopy consistently revealed that the temperature-induced unfolding process behaved in a three-state manner, for there was a relatively stable intermediate state observed around 50 °C. The reversibility of thermal unfolding of TEVp3M further showed that the transition from the native to the intermediate state was reversible (below 50 °C), however the transition from the intermediate to the unfolded state was irreversible (above 60 °C). Moreover, aggregates were observed above 60 °C as revealed by SDS-PAGE, Thioflavin-T fluorescence and Congo red absorbance.

  19. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    Science.gov (United States)

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming

    2016-06-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.

  20. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n ≤ 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  1. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O{sub 3}{sup {minus}}. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO{sub 2}, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO{sub 2} molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO{sub 2} reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C{sub 2}{sup {minus}} {minus} C{sub 11}{sup {minus}}), and van der Waals clusters (X{sup {minus}}(CO{sub 2}){sub n}, X = I, Br, Cl; n {le} 13 and I{sup {minus}} (N{sub 2}O){sub n=1--11}). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X{sup {minus}}(CO{sub 2})n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  2. Characterization of dynamical phase transitions in quantum jump trajectories beyond the properties of the stationary state.

    Science.gov (United States)

    Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P

    2013-04-12

    We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states. PMID:25167231

  3. Random field disorder at an absorbing state transition in one and two dimensions

    Science.gov (United States)

    Barghathi, Hatem; Vojta, Thomas

    2016-02-01

    We investigate the behavior of nonequilibrium phase transitions under the influence of disorder that locally breaks the symmetry between two symmetrical macroscopic absorbing states. In equilibrium systems such "random-field" disorder destroys the phase transition in low dimensions by preventing spontaneous symmetry breaking. In contrast, we show here that random-field disorder fails to destroy the nonequilibrium phase transition of the one- and two-dimensional generalized contact process. Instead, it modifies the dynamics in the symmetry-broken phase. Specifically, the dynamics in the one-dimensional case is described by a Sinai walk of the domain walls between two different absorbing states. In the two-dimensional case, we map the dynamics onto that of the well studied low-temperature random-field Ising model. We also study the critical behavior of the nonequilibrium phase transition and characterize its universality class in one dimension. We support our results by large-scale Monte Carlo simulations, and we discuss the applicability of our theory to other systems.

  4. Thermodynamics and phase transitions in dense hydrogen - the role of bound state energy shifts

    International Nuclear Information System (INIS)

    In recent papers we have investigated the effects of Pauli blocking on the energy shifts in dense hydrogen. As Pauli blocking we denote effects on the shifts which result from the antisymmetry of the electronic wave functions. Here we study of the thermodynamic properties of dense hydrogen including the influence of energy shifts. Of special interest is the region where a transition from insulating behavior to metal-like conductivity has been shown experimentally. In this region, Pauli blocking effects have a deciding influence on this transition. Assuming that the system is a gas-like mixture of chemical species, the ionization equilibrium is treated by an advanced chemical approach. We calculate the Pauli and Fock shifts by perturbation theory and variational methods and construct useful interpolation formulae. Results for the ionization equilibrium are presented for temperatures between 4000 K23 cm-3 where the transition from a neutral hydrogen gas to a highly ionized plasma occurs. The results for the equation of state and the relative pressure indicate that the transition to a highly conducting state is softer than derived in earlier work. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  6. Disruption of the ndhF1 gene affects Chl fluorescence through state transition in the Cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis.

    Science.gov (United States)

    Ogawa, Takako; Harada, Tetsuyuki; Ozaki, Hiroshi; Sonoike, Kintake

    2013-07-01

    In Synechocystis sp. PCC 6803, the disruption of the ndhF1 gene (slr0844), which encodes a subunit of one of the NDH-1 complexes (NDH-1L complex) serving for respiratory electron transfer, causes the largest change in Chl fluorescence induction kinetics among the kinetics of 750 disruptants searched in the Fluorome, the cyanobacterial Chl fluorescence database. The cause of the explicit phenotype of the ndhF1 disruptant was examined by measurements of the photosynthetic rate, Chl fluorescence and state transition. The results demonstrate that the defects in respiratory electron transfer obviously have great impact on Chl fluorescence in cyanobacteria. The inactivation of NDH-1L complexes involving electron transfer from NDH-1 to plastoquinone (PQ) would result in the oxidation of the PQ pool, leading to the transition to State 1, where the yield of Chl fluorescence is high. Apparently, respiration, although its rate is far lower than that of photosynthesis, could affect Chl fluorescence through the state transition as leverage. The disruption of the ndhF1 gene caused lower oxygen-evolving activity but the estimated electron transport rate from Chl fluorescence measurements was faster in the mutant than in the wild-type cells. The discrepancy could be ascribed to the decreased level of non-photochemical quenching due to state transition. One must be cautious when using the Chl fluorescence parameter to estimate photosynthesis in mutants defective in state transition.

  7. Supersymmetrically bounding of asymmetric states and quantum phase transitions by anti-crossing of symmetric states

    CERN Document Server

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    Von Neumann and Wigner theorized bounding of asymmetric eigenstates and anti-crossing of symmetric eigenstates. Experiments have shown that owing to anti-crossing and similar radiation rates, graphene-like resonance of inhomogeneously strained photonic eigenstates can generate pseudomagnetic field, bandgaps and Landau levels, while dissimilar rates induce non-Hermicity. Here, we showed experimentally higher-order supersymmetry and quantum phase transitions by resonance between similar one dimensional lattices. The lattices consisted of inhomgeneously strain-like phases of triangular solitons. The resonance created two dimensional inhomogeneously deformed photonic graphene. All parent eigenstates are annihilated. Where eigenstates of mildly strained solitons are annihilated with similar (power law) rates through one tail only and generated Hermitianally bounded eigenstates. The strongly strained solitons, positive defects are annihilated exponentially through both tails with dissimilar rates. Which bounded eig...

  8. Development of a True Transition State Force Field from Quantum Mechanical Calculations.

    Science.gov (United States)

    Madarász, Ádám; Berta, Dénes; Paton, Robert S

    2016-04-12

    Transition state force fields (TSFF) treated the TS structure as an artificial minimum on the potential energy surface in the past decades. The necessary parameters were developed either manually or by the Quantum-to-molecular mechanics method (Q2MM). In contrast with these approaches, here we propose to model the TS structures as genuine saddle points at the molecular mechanics level. Different methods were tested on small model systems of general chemical reactions such as protonation, nucleophilic attack, and substitution, and the new procedure led to more accurate models than the Q2MM-type parametrization. To demonstrate the practicality of our approach, transferrable parameters have been developed for Mo-catalyzed olefin metathesis using quantum mechanical properties as reference data. Based on the proposed strategy, any force field can be extended with true transition state force field (TTSFF) parameters, and they can be readily applied in several molecular mechanics programs as well. PMID:26925858

  9. Ground state phase transition in the Nilsson mean-field plus standard pairing model

    Science.gov (United States)

    Guan, Xin; Xu, Haocheng; Zhang, Yu; Pan, Feng; Draayer, Jerry P.

    2016-08-01

    The ground state phase transition in Nd, Sm, and Gd isotopes is investigated by using the Nilsson mean-field plus standard pairing model based on the exact solutions obtained from the extended Heine-Stieltjes correspondence. The results of the model calculations successfully reproduce the critical phenomena observed experimentally in the odd-even mass differences, odd-even differences of two-neutron separation energy, and the α -decay and double β--decay energies of these isotopes. Since the odd-even effects are the most important signatures of pairing interactions in nuclei, the model calculations yield microscopic insight into the nature of the ground state phase transition manifested by the standard pairing interaction.

  10. A mesoscopic approach on stability and phase transition between different traffic flow states

    CERN Document Server

    Qian, Wei-Liang; Lin, Kai; Machado, Romuel F; Hama, Yogiro

    2015-01-01

    It is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evoltuion of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examing closely the physical properties and mathematical constraints of the phase transitons therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connection to the instability and phase transitions. In addition to the one-dimensional configuration space, we generalize our discussion to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce main features of the observed fundamental diagram including the inverse-$\\lambda$ shape and the...

  11. State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas.

    Science.gov (United States)

    Nawrocki, Wojciech J; Santabarbara, Stefano; Mosebach, Laura; Wollman, Francis-André; Rappaport, Fabrice

    2016-01-01

    Photosynthesis converts sunlight into biologically useful compounds, thus fuelling practically the entire biosphere. This process involves two photosystems acting in series powered by light harvesting complexes (LHCs) that dramatically increase the energy flux to the reaction centres. These complexes are the main targets of the regulatory processes that allow photosynthetic organisms to thrive across a broad range of light intensities. In microalgae, one mechanism for adjusting the flow of energy to the photosystems, state transitions, has a much larger amplitude than in terrestrial plants, whereas thermal dissipation of energy, the dominant regulatory mechanism in plants, only takes place after acclimation to high light. Here we show that, at variance with recent reports, microalgal state transitions do not dissipate light energy but redistribute it between the two photosystems, thereby allowing a well-balanced influx of excitation energy. PMID:27249564

  12. 3He- and 4He-induced nuclear fission -- A test of the transition state method

    International Nuclear Information System (INIS)

    Fission in 3H and 4He induced reactions at excitation energies between the fission barrier and 140 MeV has been investigated. Twenty-three fission excitation functions of various compound nuclei in different mass regions are shown to scale exactly according to the transition state prediction once the shell effects are accounted for. New precise measurements of excitation functions in a mass region where shell effects are very strong, allow one to test the predictions with an even higher accuracy. The fact that no deviations from the transition state method have been observed within the experimentally investigated excitation energy regime allows one to assign limits for the fission transient time. The precise measurement of fission excitation functions of neighboring isotopes enables one to experimentally estimate the first chance fission probability. Even if only first chance fission is investigated, no evidence for fission transient times larger than 30 zs can be found

  13. Single-step linking transition from superdeformed to spherical states in {sup 143}Eu

    Energy Technology Data Exchange (ETDEWEB)

    Atac, A.; Axelsson, A.; Persson, J. [Uppsala Univ. (Sweden)] [and others

    1996-12-31

    A discrete {gamma}-ray transition which connects the second lowest SD state with a normally deformed one in {sup 143}Eu has been discovered. It has an energy of 3360.6 keV and carries 3.2 % of the full intensity of the SD band. It feeds into a nearly spherical state which is above the I = 35/2{sup +}, E=4947 keV level. The exact placement of the single-step link could, however, not be established due to the especially complicated level scheme in the region of interest. The angular correlation study favours a stretched dipole character for the 3360.6 keV transition. The single-step link agrees well with the previously determined two-step links, both with respect to energy and spin.

  14. Propeller driven spectral state transition in LMXB 4U 1608-52

    CERN Document Server

    Chen, X; Ding, G Q; Chen, Xie; Zhang, Shuang Nan; Ding, Guo Qiang

    2006-01-01

    Spectral state transitions in neutron star LMXB systems have been widely observed yet not well understood. Here we report an abrupt spectral change in 4U 1608-52, a typical atoll source, during its decay phase of the 2004 outburst. The source is found to undergo sudden changes in its spectral hardness and other properties. The transition occurred when its luminosity is between (3.3-5.3) E36 ergs/s, assuming a distance of 3.6 kpc. Interpreting this event in terms of the propeller effect, we infer the neutron star surface magnetic field as (1.4-1.8) E8 Gauss. We also briefly discuss similarities and differences between the spectral states of neutron star and black hole binary systems.

  15. Spectral variability modes of GX 339-4 in a hard-to-soft state transition

    OpenAIRE

    Del Santo, M.; J. Malzac; Ubertini, P.; Belloni, T.

    2006-01-01

    We report on INTEGRAL observations performed during the 2004 outburst of the bright black hole transient GX 339-4. We analysed IBIS and JEM-X public data starting on 9th August and lasting about one month. During this period GX 339-4 showed spectral state transitions. In order to seek for variability patterns, a principal component analysis (PCA) has been used.

  16. Motion, Universality of Velocities, Masses in Wave Universe. Transitive States (Resonances) - Mass Spectrum

    OpenAIRE

    Chechelnitsky, A. M.

    2001-01-01

    Wave Universe Concept (WU Concept) opens new wide possibilities for the effective description of Elementar Objects of Matter (EOM) hierarchy, in particular, of particles, resonances mass spectrum of subatomic (and HEP) physics. The special attention to analysis and precise description of wide and important set - Transitive states (resonances) of EOM is payed. Its are obtained sufficiently precise representations for mass values, cross relations between masses of wide set objects of particle p...

  17. Altered Enthalpy-Entropy Compensation in Picomolar Transition State Analogues of Human Purine Nucleoside Phosphorylase†

    OpenAIRE

    Edwards, Achelle A.; Mason, Jennifer M.; Clinch, Keith; Tyler, Peter C.; Evans, Gary B.; Schramm, Vern L.

    2009-01-01

    Human purine nucleoside phosphorylase (PNP) belongs to the trimeric class of PNPs and is essential for catabolism of deoxyguanosine. Genetic deficiency of PNP in humans causes a specific T-cell immune deficiency and transition state analogue inhibitors of PNP are in development for treatment of T-cell cancers and autoimmune disorders. Four generations of Immucillins have been developed, each of which contains inhibitors binding with picomolar affinity to human PNP. Full inhibition of PNP occu...

  18. Multiple transition states and roaming in ion-molecule reactions: A phase space perspective

    Science.gov (United States)

    Mauguière, Frédéric A. L.; Collins, Peter; Ezra, Gregory S.; Farantos, Stavros C.; Wiggins, Stephen

    2014-01-01

    We provide a dynamical interpretation of the recently identified ‘roaming' mechanism for molecular dissociation reactions in terms of geometrical structures in phase space. These are NHIMs (Normally Hyperbolic Invariant Manifolds) and their stable/unstable manifolds that define transition states for ion-molecule association or dissociation reactions. The associated dividing surfaces rigorously define a roaming region of phase space, in which both reactive and non reactive trajectories can be trapped for arbitrarily long times.

  19. Multiple Transition States and Roaming in Ion-Molecule Reactions: a Phase Space Perspective

    OpenAIRE

    Mauguiere, Frederic A L; Collins, Peter; Ezra, Gregory S.; Farantos, Stavros C.; Wiggins, Stephen

    2013-01-01

    We provide a dynamical interpretation of the recently identified `roaming' mechanism for molecular dissociation reactions in terms of geometrical structures in phase space. These are NHIMs (Normally Hyperbolic Invariant Manifolds) and their stable/unstable manifolds that define transition states for ion-molecule association or dissociation reactions. The associated dividing surfaces rigorously define a roaming region of phase space, in which both reactive and nonreactive trajectories can be t...

  20. Multiple Transition States and Roaming in Ion-Molecule Reactions: a Phase Space Perspective

    CERN Document Server

    Mauguiere, Frederic A L; Ezra, Gregory S; Farantos, Stavros C; Wiggins, Stephen

    2013-01-01

    We provide a dynamical interpretation of the recently identified `roaming' mechanism for molecular dissociation reactions in terms of geometrical structures in phase space. These are NHIMs (Normally Hyperbolic Invariant Manifolds) and their stable/unstable manifolds that define transition states for ion-molecule association or dissociation reactions. The associated dividing surfaces rigorously define a roaming region of phase space, in which both reactive and nonreactive trajectories can be trapped for arbitrarily long times.

  1. Bending crystals. Solid state photomechanical properties of transition metal complexes containing semiquinonate ligands

    Indian Academy of Sciences (India)

    Cortlandt G Pierpont

    2002-08-01

    The properties of transition metal complexes containing catecholate and radical semiquinonate ligands have often been found to be unusual and unexpected. Crystals of Rh(CO)2(3,6-DBSQ), containing the 3,6-di-tert-butyl-1,2-semiquinonate ligand, form as long thin needles that are observed to bend reversibly upon irradiation with NIR light. Crystallographic characterization reveals a stacked solid state lattice with planar molecules aligned with metal atoms atop one another. Electronic spectra recorded in the solid state and in solution show an intense band at 1600 nm that maps the energy dependence of crystal bend angle. The transition is a property of the stacked assembly, rather than of an individual complex molecule, and appears associated with an MLCT process that transfers charge from an antibonding band formed by interacting Rh $d_{z}^{2}$ orbitals to the vacant quinone * orbital. Related observations have been made on the [Co(-pyz)(3,6-DBSQ)(3,6-DBCat)] polymer. Photomechanical properties appear associated with electronic transitions that lead to a physical change in axial length of a linear polymer, coupled with a soft solid state lattice that permits axial contraction/expansion without crystal fracture.

  2. Transition to Democracy in Post-Soviet States: Success or Failure. Case Study Analysis.

    Directory of Open Access Journals (Sweden)

    Ceyhun Valiyev

    2012-07-01

    Full Text Available The democratization of Post-Soviet states in past two decades is the subject of this academic study. The main question of this research is that why most of the Post-Soviet states haven’t gone through successful transition to democracy. Five countries; Azerbaijan, Belorussia, Georgia, Lithuania and Uzbekistan are the casesof this study to analyze and evaluate as empirical part of this work. I haven’t chosen the countries that have standard and equal level of success or failure. For instance, Lithuania is among those countries that have gone through quite successful process of democratization, whereas others have similar or different problems hindering the full-fledged democratization across the Post-Soviet area. Insome other cases, such as in Georgia the transition has not been fully successful but some measures of democracy are considered to be existent in state institutions and society. Several hypotheses have been developed throughout this study all arguing the preconditions that lead to democratization, then these hypotheses are checked ifthey are applicable in the cases used in this study. The conclusion is that not all these hypotheses are correct in every single case and each case study has its own characteristic causes that lead to failure or success in transition to democracy.

  3. Radiative transition probabilities for all vibrational levels in the X 1Sigma(+) state of HF

    Science.gov (United States)

    Zemke, Warren T.; Stwalley, William C.; Langhoff, Stephen R.; Valderrama, Giuseppe L.; Berry, Michael J.

    1991-01-01

    Recent analyses have led to an experimentally-based potential energy curve for the ground state of HF which includes nonadiabatic corrections and which joins smoothly to the long-range potential at an accurately determined dissociation limit. Using this potential curve and a new ab initio dipole moment function, accurate radiative transition probabilities among all vibrational levels of the ground state of HF have been calculated for selected rotational quantum numbers. Comparisons of Einstein A spontaneous emission coefficients, dipole moment absorption matrix elements, and Herman-Wallis factors for absorption bands are presented.

  4. Ground State Transitions of Four-Electron Quantum Dots in Zero Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; XIE Wen-Fang; LIU Yi-Ming; SHI Ting-Yun

    2008-01-01

    In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular momenta transitions as a function of the confined strength are investigated. We find that the confinement may cause accidental degeneracies between levels with different low-lying states and the inversion of the energy values. The present results are useful to understand the optical properties and internal electron-electron correlations of quantum dot materials.

  5. The effects of an ionic liquid on unimolecular substitution processes: the importance of the extent of transition state solvation.

    Science.gov (United States)

    Keaveney, Sinead T; White, Benjamin P; Haines, Ronald S; Harper, Jason B

    2016-02-28

    The reaction of bromodiphenylmethane and 3-chloropyridine, which proceeds concurrently through both unimolecular and bimolecular mechanisms, was examined in mixtures of acetonitrile and an ionic liquid. As predicted, the bimolecular rate constant (k2) gradually increased as the amount of ionic liquid in the reaction mixture increased, as a result of a minor enthalpic cost offset by a more significant entropic benefit. Addition of an ionic liquid had a substantial effect on the unimolecular rate constant (k1) of the reaction, with at least a 5-fold rate enhancement relative to acetonitrile, which was found to be due to a significant decrease in the enthalpy of activation, partially offset by the associated decrease in the entropy of activation. This is in contrast to the effects seen previously for aliphatic carbocation formation, where the entropic cost dominated reaction outcome. This change is attributed to a lessened ionic liquid-transition state interaction, as the incipient charges in the transition state were delocalized across the neighbouring π systems. By varying the mole fraction of ionic liquid in the reaction mixture the ratio between k1 and k2 could be altered, highlighting the potential to use ionic liquids to control which pathway a reaction proceeds through.

  6. Interface states, negative differential resistance, and rectification in molecular junctions with transition-metal contacts

    Science.gov (United States)

    Dalgleish, Hugh; Kirczenow, George

    2006-06-01

    We present a theory of nonlinear transport phenomena in molecular junctions where single thiolated organic molecules bridge transition metal nanocontacts whose densities of states have strong d orbital components near the Fermi level. At moderate bias, we find electron transmission between the contacts to be mediated by interface states within the molecular highest-occupied-molecular-orbital-lowest-unoccupied-molecular-orbital gap that arise from hybridization between the thiol-terminated ends of the molecules and the d orbitals of the transition metals. Because these interface states are localized mainly within the metal electrodes, we find their energies to accurately track the electrochemical potentials of the contacts when a variable bias is applied across the junction. We predict resonant enhancement and reduction of the interface state transmission as the applied bias is varied, resulting in negative differential resistance (NDR) in molecular junctions with Pd nanocontacts. We show that these nonlinear phenomena can be tailored by suitably choosing the nanocontact materials: If a Rh electrode is substituted for one Pd contact, we predict enhancement of these NDR effects. The same mechanism is also predicted to give rise to rectification in Pd/molecule/Au junctions. The dependences of the interface state resonances on the orientation of the metal interface, the adsorption site of the molecule, and the separation between the thiolated ends of the molecule and the metal contacts are also discussed.

  7. Study of thermally induced spin state transition in NdCoO3 single crystal

    Science.gov (United States)

    Janaki, J.; Nithya, R.; Ganesamoorthy, S.; Sairam, T. N.; Ravindran, T. R.; Vinod, K.; Bharathi, A.

    2013-02-01

    We have carried out Magnetization, Raman spectroscopy and IR spectroscopy studies as a function of temperature to investigate the spin state transition in NdCoO3 single crystal. The crystal has been grown by Optical Float Zone technique and characterized by Synchrotron X-ray Diffraction. Our results indicate that the spin crossover from low spin state (LS) to intermediate spin state (IS) occurs continuously over a wide range of temperature above 200K. The wide temperature range of the spin crossover reflects possible electronic or magnetic in-homogeneity at the microscopic level, which is a common feature of some cobalt perovskites. The magnetization studies indicate a spin gap which is higher than that of LaCoO3 (180 K) and Raman spectroscopy studies reveal a Jahn Teller vibration mode characteristic of the intermediate spin state similar to that reported for LaCoO3 in literature.

  8. Laminar-Turbulent Transition: The change of the flow state temperature with the Reynolds number

    CERN Document Server

    Chekmarev, Sergei F

    2014-01-01

    Using the previously developed model to describe laminar/turbulent states of a viscous fluid flow, which treats the flow as a collection of coherent structures of various size (Chekmarev, Chaos, 2013, 013144), the statistical temperature of the flow state is determined as a function of the Reynolds number. It is shown that at small Reynolds numbers, associated with laminar states, the temperature is positive, while at large Reynolds numbers, associated with turbulent states, it is negative. At intermediate Reynolds numbers, the temperature changes from positive to negative as the size of the coherent structures increases, similar to what was predicted by Onsager for a system of parallel point-vortices in an inviscid fluid. It is also shown that in the range of intermediate Reynolds numbers the temperature exhibits a power-law divergence characteristic of second-order phase transitions.

  9. Bias stress instability involving subgap state transitions in a-IGZO Schottky barrier diodes

    Science.gov (United States)

    Qian, Huimin; Wu, Chenfei; Lu, Hai; Xu, Weizong; Zhou, Dong; Ren, Fangfang; Chen, Dunjun; Zhang, Rong; Zheng, Youdou

    2016-10-01

    Vertical Schottky barrier diodes (SBDs) based on amorphous indium-gallium-zinc-oxide (a-IGZO) with either a top or bottom Schottky contact are fabricated by controlling the oxygen partial pressure during a-IGZO deposition. Although Au electrodes are employed for both Schottky and Ohmic contacts, it is found that Schottky contacts are preferentially formed on a-IGZO film in lower oxygen vacancy concentrations. The effect of negative bias stress on device performance is studied. The Schottky barrier height and series resistance of the a-IGZO SBD are found to increase upon negative bias stress, which is correlated with a reduction of the trap state and background carrier concentration within the a-IGZO film. A physical model based on subgap state transitions from ionized V\\text{O}2+ states to neutralized V O states is proposed to explain the observed electrical instability behavior.

  10. State governance evolution in resource-rich transition economies: An application to Russia and Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnova, Yelena; Nygaard, Christian [The Centre for Euro-Asian Studies, The University of Reading, Whiteknights, PO Box, Reading RG6 6AA (United Kingdom)

    2008-06-15

    Following a decade of transition in the Former Soviet Union (FSU), governance of the oil and gas sectors has evolved to economic nationalism. In the newly independent states this has manifested itself through greater (direct) state ownership or participation in oil and gas production, at the expense of both domestic (in the case of Russia) and international oil companies, as well as legislative developments that increase the flow of oil and gas value to the state. Here we analyse some of the dynamics giving rise to economic nationalism within a model of a state capacity and the ability to implement policy and extract value. Our analysis is based on the institutional and economic functioning of the oil and gas sector. We analyse a vector of institutions and examine Production Sharing Agreements and National Oil Companies. (author)

  11. First identification of the 02+ state in 30Mg via its E0 transition

    International Nuclear Information System (INIS)

    The known 1789 keV level in 30Mg turned out to be a candidate for the 02+ state due to its long lifetime of 3.9(4) ns and the absence of a γ transition to the ground state. This triggered our search on the 02+→01+ E0 transition in 30Mg following the β decay of 30Na: β decay electrons were detected in a scintillation detector, while conversion electrons were focused onto a cooled Si(Li) detector using a Mini-Orange and detected with high resolution, which simultaneously suppresses the high background of β decay electrons. Due to the large Q value of the β decay of 30Na (17.3 MeV) the suppression of the coincident background induced by high-energy γ rays and subsequently Compton-scattered electrons turned out to be the key challenge for the success of this experiment. In order to optimise the background suppression and thus the sensitivity to weak E0 transitions, offline test measurements using an 90Y and a 152Eu source were performed together with GEANT4 simulations. Resulting from these test measurements a highly sensitive experimental setup was designed and built, consequently minimising the amount of high-Z material in the target chamber, reducing X-ray production. As a by-product from test measurements the database value of the half-life of the 02+ state in 90Zr could be corrected by more than 30 % to be t1/2=41(1) ns. Finally, in a β decay experiment at the ISOLDE facility at CERN the 02+→01+ E0 transition in 30Mg could be identified at the expected transition energy of 1788 keV proving for the first time shape coexistence at the borderline of the 'Island of Inversion'. This identification allows to determine the electric monopole strength as ρ2(E0)=26.2(7.5) x 10-3, indicating a rather weak mixing between the states in two potential minima in a simplified two-level mixing model. This result allows to extract the mixing amplitude between the two 0+ states as a=0.179(83). This experimental finding represents the first case in light nuclei where an E0

  12. A physical scenario for the high and low X-ray luminosity states in the transitional pulsar PSR J1023+0038

    CERN Document Server

    Campana, S; Papitto, A; Rea, N; Torres, D F; Baglio, M C; D'Avanzo, P

    2016-01-01

    PSR J1023+0038 (J1023) is a binary system hosting a neutron star and a low mass companion. J1023 is the best studied transitional pulsar, alternating a faint eclipsing millisecond radio pulsar state to a brighter X-ray active state. At variance with other Low Mass X-ray binaries, this active state reaches luminosities of only ~$10^{34}$ erg s$^{-1}$, showing strong, fast variability. In the active state, J1023 displays: i) a high state ($L_X\\sim7\\times10^{33}$ erg s$^{-1}$, 0.3-80 keV) occurring ~80% of the time and during which X-ray pulsations at the neutron star spin period are detected (pulsed fraction ~8%); ii) a low state ($L_X~10^{33}$ erg s$^{-1}$) during which pulsations are not detected (~<3%); and iii) a flaring state during which sporadic flares occur in excess of ~$10^{34}$ erg s$^{-1}$, with no pulsation too. The transition between the high and the low states is very rapid, on a ~10 s timescale. Here we put forward a plausible physical interpretation of the high and low states based on the (f...

  13. Stakeholder and Social Capital Approaches as Explanations for Relationships between SMEs and State Officials in Different Transition Economies

    OpenAIRE

    Ivanova, Y

    2010-01-01

    This study targets the determination of support that small and medium enterprises (SMEs) provide to government representatives of their choice (in the form of donations, influence through their networks, information, and votes). The study tests stakeholder and social capital approaches as legitimate explanations for SMEs' relationships with state representatives in different transition economies, specifically Belarus as a state-controlled transition economy and Ukraine as a rent-seeking state...

  14. Association between body weight, physical activity and food choices among metropolitan transit workers

    OpenAIRE

    Hannan Peter J; Toomey Traci L; Harnack Lisa J; French Simone A

    2007-01-01

    Abstract Background Associations between body weight, physical activity and dietary intake among a population of metropolitan transit workers are described. Methods Data were collected during October through December, 2005, as part of the baseline measures for a worksite weight gain prevention intervention in four metro transit bus garages. All garage employees were invited to complete behavioral surveys that assessed food choices and physical activity, and weight and height were directly mea...

  15. Spectroscopic analysis of transition state energy levels - Bending-rotational spectrum and lifetime analysis of H3 quasibound states

    Science.gov (United States)

    Zhao, Meishan; Mladenovic, Mirjana; Truhlar, Donald G.; Schwenke, David W.; Sharafeddin, Omar

    1989-11-01

    Converged quantum mechanical calculations of scattering matrices and transition probabilities are reported for the reaction of H with H2 with total angular momentum 0, 1, and 4 as functions of total energy in the range 0.85-1.15 eV on an accurate potential energy surface. The resonance structure is illustrated with Argand diagrams. State-to-state reactive collision delay times and lifetimes are presented. For J = 0, 1, and 4, the lowest-energy H3 resonance is at total energies of 0.983, 0.985, and 1.01 eV, respectively, with lifetimes of about 16-17 fs. For J = 1 and 4 there is a higher-energy resonance at 1.10-1.11 eV. For J = 1 the lifetime is about 4 fs and for J = 4 it is about 1 fs.

  16. Mott insulating states and quantum phase transitions of correlated SU(2 N ) Dirac fermions

    Science.gov (United States)

    Zhou, Zhichao; Wang, Da; Meng, Zi Yang; Wang, Yu; Wu, Congjun

    2016-06-01

    The interplay between charge and spin degrees of freedom in strongly correlated fermionic systems, in particular of Dirac fermions, is a long-standing problem in condensed matter physics. We investigate the competing orders in the half-filled SU (2 N ) Hubbard model on a honeycomb lattice, which can be accurately realized in optical lattices with ultracold large-spin alkaline-earth fermions. Employing large-scale projector determinant quantum Monte Carlo simulations, we have explored quantum phase transitions from the gapless Dirac semimetals to the gapped Mott insulating phases in the SU(4) and SU(6) cases. Both of these Mott insulating states are found to be columnar valence bond solid (cVBS) and to be absent of the antiferromagnetic Néel ordering and the loop current ordering. Inside the cVBS phases, the dimer ordering is enhanced by increasing fermion components and behaves nonmonotonically as the interaction strength increases. Although the transitions generally should be of first order due to a cubic invariance possessed by the cVBS order, the coupling to gapless Dirac fermions can soften the transitions to second order through a nonanalytic term in the free energy. Our simulations provide important guidance for the experimental explorations of novel states of matter with ultracold alkaline-earth fermions.

  17. Efficient dynamical correction of the transition state theory rate estimate for a flat energy barrier

    CERN Document Server

    Mökkönen, Harri; Jónsson, Hannes

    2016-01-01

    The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates i...

  18. Transitions between dynamical states of differing stability in the human brain

    OpenAIRE

    Meyer-Lindenberg, Andreas; Ziemann, Ulf; Hajak, Göran; Cohen, Leonardo; Berman, Karen Faith

    2002-01-01

    What mechanisms underlie the flexible formation, adaptation, synchronization, and dissolution of large-scale neural assemblies from the 1010 densely interconnected, continuously active neurons of the human brain? Nonlinear dynamics provides a unifying perspective on self-organization. It shows that the emergence of patterns in open, nonequilibrium systems is governed by their stability in response to small disturbances and predicts macroscopic transitions between patterns of differing stabili...

  19. Compact acid-induced state of Clitoria ternatea agglutinin retains its biological activity.

    Science.gov (United States)

    Naeem, A; Saleemuddin, M; Khan, R H

    2009-10-01

    The effects of pH on Clitoria ternatea agglutinin (CTA) were studied by spectroscopy, size-exclusion chromatography, and by measuring carbohydrate specificity. At pH 2.6, CTA lacks well-defined tertiary structure, as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of 50% native-like secondary structure. The mean residue ellipticity at 217 nm plotted against pH showed a transition around pH 4.0 with loss of secondary structure leading to the formation of an acid-unfolded state. This state is relatively less denatured than the state induced by 6 M guanidine hydrochloride. With a further decrease in pH, this unfolded state regains ~75% secondary structure at pH 1.2, leading to the formation of the A-state with native-like near-UV CD spectral features. Enhanced 8-anilino-1-naphthalene-sulfonate binding was observed in A-state, indicating a "molten-globule" like conformation with exposed hydrophobic residues. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a compact conformation at low pH. Size-exclusion chromatography shows the presence of a compact intermediate with hydrodynamic size corresponding to a monomer. Thermal denaturation of the native state was cooperative single-step transition and of the A-state was non-cooperative two-step transition. A-State regains 72% of the carbohydrate-binding activity. PMID:19916921

  20. Transition quadrupole moments of high-spin states in 170W

    International Nuclear Information System (INIS)

    Lifetimes of states in 170W have been measured by the Doppler-shift recoil-distance and Doppler-broadened line-shape (DBLS) methods using the reaction 122Sn(52Cr, 4n)170W at a bombarding energy of 230 MeV. The data were collected in the γγ-coincidence mode in order to reduce the complexities of the γ-ray spectra and to avoid some of the problems associated with side-feeding to excited states. The experimental transition quadrupole moments, Qt, cluster around a value of 6 e.b up through spin of I=24 h. This is the trend predicted by cranked Hartree-Fock-Bogoliubov (HFB) calculations and by the calculated systematics of triaxial-shape-driving forces which originate from the aligned i13/2 neutron orbitals around N=96. The interaction strength vertical stroke V vertical stroke between the g- and the s-band extracted from the data is 60±5 keV. The Qt values of several states in the negative-parity band (-, 1) also cluster around a value of 6 e.b. The El transition probabilities for the decay of states in the (π, α)=(-, 1) band to states in the ground-state band range between 10-5 to 3.5x10-4 W.u. The B(E1, I→I+1) is one order of magnitude larger than the B(E1, I→I-1). The origin of these effects can probably be understood in terms of a predominant admixture of Coriolis-coupled octupole vibrational-state wave functions in the (-, 1) band of 170W at low spin. ((orig.))

  1. Phase transition in PT symmetric active plasmonic systems

    CERN Document Server

    Mattheakis, M; Molina, M I; Tsironis, G P

    2015-01-01

    Surface plasmon polaritons (SPPs) are coherent electromagnetic surface waves trapped on an insulator-conductor interface. The SPPs decay exponentially along the propagation due to conductor losses, restricting the SPPs propagation length to few microns. Gain materials can be used to counterbalance the aforementioned losses. We provide an exact expression for the gain, in terms of the optical properties of the interface, for which the losses are eliminated. In addition, we show that systems characterized by lossless SPP propagation are related to PT symmetric systems. Furthermore, we derive an analytical critical value of the gain describing a phase transition between lossless and prohibited SPPs propagation. The regime of the aforementioned propagation can be directed by the optical properties of the system under scrutiny. Finally, we perform COMSOL simulations verifying the theoretical findings.

  2. High-spin states in the transitional odd-odd nuclei 150Eu and 152Tb

    International Nuclear Information System (INIS)

    The (7Li, 5n) and (11B, 5n) reactions have been used to study the high-spin states in the two odd-odd nuclei 150Eu and 152Tb. Three decoupled bands have been evidenced in each nucleus belonging to the same configurations [f 7/2]sub(n) [h 11/2]sub(p), [h 9/2]sub(n) [h 11/2 ]sub(p) and [i 13/2]sub(n) [h 11/2]sub(p). The latter one is well developped and improves our knowledge of this system between the spherical and deformed region. The analysis of the collective moment of inertia and transition ratios strongly suggests an increase of the deformation when the rotational frequency increases in these two transitional nuclei 150Eu and 152Tb

  3. Control of Steam-Turbine Regulators at Transition to an Island State

    Science.gov (United States)

    Georgiev, Georgi

    2009-01-01

    The simple operating algorithm is presented for steam turbine regulators of type Simadin (Siemens) at emergency switching-off of the generator from system together with some, unknown in advance, load. The given situation is known as "a transition to an island state (regime)". Keeping of turbine speed and preservation of its rating value at a generator blackout when its own needs will be load only, is an easy problem. When the generator remains in its island it is necessary to solve "on-line" two additional problems: to reveal a situation "island" and to estimate the island load for translating a regulator on the new task and providing dynamic stability of transition. The algorithm was tried and entered successfully into practice on Varna TPP, CEZ GROUP (Prague), in 2008.

  4. Controlling the transition of bright and dark states via scanning dressing field

    Science.gov (United States)

    Li, Peiying; Zheng, Huaibin; Zhang, Yiqi; Sun, Jia; Li, Changbiao; Huang, Gaoping; Zhang, Zhaoyang; Li, Yuanyuan; Zhang, Yanpeng

    2013-03-01

    We report the transitions between the bright and dark states of singly-dressed four-wave mixing (FWM) and doubly-dressed FWMs, and the corresponding probe transmissions by scanning the dressing field frequency detuning in a five-level atomic system. Moreover, doubly-dressed six-wave mixing with avoided-crossing plots and triple-dressed eight-wave mixing with the comparison of scanning probe field and dressing field are studied. Such controlled transitions of the nonlinear optical signals can be realizable not only in atomic vapors but also in solid medium. The investigations maybe have potential applications in optical communication, quantum information processing and optoelectronic devices, and maybe also provide a sensitive probe method to study the dressing effect.

  5. Solid state theory. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides.

    Science.gov (United States)

    Qian, Xiaofeng; Liu, Junwei; Fu, Liang; Li, Ju

    2014-12-12

    Quantum spin Hall (QSH) effect materials feature edge states that are topologically protected from backscattering. However, the small band gap in materials that have been identified as QSH insulators limits applications. We use first-principles calculations to predict a class of large-gap QSH insulators in two-dimensional transition metal dichalcogenides with 1T' structure, namely, 1T'-MX2 with M = (tungsten or molybdenum) and X = (tellurium, selenium, or sulfur). A structural distortion causes an intrinsic band inversion between chalcogenide-p and metal-d bands. Additionally, spin-orbit coupling opens a gap that is tunable by vertical electric field and strain. We propose a topological field effect transistor made of van der Waals heterostructures of 1T'-MX2 and two-dimensional dielectric layers that can be rapidly switched off by electric field through a topological phase transition instead of carrier depletion.

  6. A Latent Transition Analysis Model for Latent-State-Dependent Nonignorable Missingness.

    Science.gov (United States)

    Sterba, Sonya K

    2016-06-01

    Psychologists often use latent transition analysis (LTA) to investigate state-to-state change in discrete latent constructs involving delinquent or risky behaviors. In this setting, latent-state-dependent nonignorable missingness is a potential concern. For some longitudinal models (e.g., growth models), a large literature has addressed extensions to accommodate nonignorable missingness. In contrast, little research has addressed how to extend the LTA to accommodate nonignorable missingness. Here we present a shared parameter LTA that can reduce bias due to latent-state-dependent nonignorable missingness: a parallel-process missing-not-at-random (MNAR-PP) LTA. The MNAR-PP LTA allows outcome process parameters to be interpreted as in the conventional LTA, which facilitates sensitivity analyses assessing changes in estimates between LTA and MNAR-PP LTA. In a sensitivity analysis for our empirical example, previous and current membership in high-delinquency states predicted adolescents' membership in missingness states that had high nonresponse probabilities for some or all items. A conventional LTA overestimated the proportion of adolescents ending up in a low-delinquency state, compared to an MNAR-PP LTA. PMID:25697371

  7. Rivastigmine hydrogen tartrate polymorphs: Solid-state characterisation of transition and polymorphic conversion via milling

    Science.gov (United States)

    Amaro, Maria Inês; Simon, Alice; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira; Healy, Anne Marie

    2015-11-01

    Rivastigmine (RHT) is an active pharmaceutical ingredient that is used for the treatment of mild to moderately severe dementia in Alzheimer's disease, and is known to present two polymorphic forms and to amorphise upon granulation. To date there is no information in the scientific or patent literature on polymorphic transition and stability. Hence, the aim of the current study was to gain a fundamental understanding of the polymorphic forms by (1) evaluating RHT thermodynamic stability (monotropy or enantiotropy) and (2) investigating the potential for polymorphic transformation upon milling. The two polymorphic and amorphous forms were characterised using X-ray powder diffractometry, thermal analyses, infra-red spectroscopy and water sorption analysis. The polymorphic transition was found to be spontaneous (ΔG0 < 0) and exothermic (ΔH0 < 0), indicative of a monotropic polymorph pair. The kinetic studies showed a fast initial polymorphic transition characterised by a heterogeneous nucleation, followed by a slow crystal growth. Ball milling can be used to promote the polymorphic transition and for the production of RHT amorphous form.

  8. Transitions to Care in the Community for Prison Releasees with HIV: a Qualitative Study of Facilitators and Challenges in Two States.

    Science.gov (United States)

    Hammett, Theodore M; Donahue, Sara; LeRoy, Lisa; Montague, Brian T; Rosen, David L; Solomon, Liza; Costa, Michael; Wohl, David; Rich, Josiah D

    2015-08-01

    One in seven people living with HIV in the USA passes through a prison or jail each year, and almost all will return to the community. Discharge planning and transitional programs are critical but challenging elements in ensuring continuity of care, maintaining treatment outcomes achieved in prison, and preventing further viral transmission. This paper describes facilitators and challenges of in-prison care, transitional interventions, and access to and continuity of care in the community in Rhode Island and North Carolina based on qualitative data gathered as part of the mixed-methods Link Into Care Study of prisoners and releasees with HIV. We conducted 65 interviews with correctional and community-based providers and administrators and analyzed the transcripts using NVivo 10 to identify major themes. Facilitators of effective transitional systems in both states included the following: health providers affiliated with academic institutions or other entities independent of the corrections department; organizational philosophy emphasizing a patient-centered, personal, and holistic approach; strong leadership with effective "champions"; a team approach with coordination, collaboration and integration throughout the system, mutual respect and learning between corrections and health providers, staff dedicated to transitional services, and effective communication and information sharing among providers; comprehensive transitional activities and services including HIV, mental health and substance use services in prisons, timely and comprehensive discharge planning with specific linkages/appointments, supplies of medications on release, access to benefits and entitlements, case management and proactive follow-up on missed appointments; and releasees' commitment to transitional plans. These elements were generally present in both study states but their absence, which also sometimes occurred, represent ongoing challenges to success. The qualitative findings on the

  9. Metallocarbene Artificial Enzymes : Extending Transition Metal Selectivity and Protein Activity

    NARCIS (Netherlands)

    Basauri Molina, M.

    2015-01-01

    A series of new semi-synthetic metalloprotein hybrids were created via the covalent binding of organometallic species in the active site of lipases, accordingly resulting in the first active site-directed (ASD) homogeneous artificial metalloenzymes. The use of this method promises the generation of

  10. Suppression of spin-state transition in epitaxially strained LaCoO3

    Science.gov (United States)

    Pinta, C.; Fuchs, D.; Merz, M.; Wissinger, M.; Arac, E.; v. Löhneysen, H.; Samartsev, A.; Nagel, P.; Schuppler, S.

    2008-11-01

    Epitaxial thin films of LaCoO3 (e-LCO) exhibit ferromagnetic order with a transition temperature TC=85K while polycrystalline thin LaCoO3 films (p-LCO) remain paramagnetic. The temperature-dependent spin-state structure for both e-LCO and p-LCO was studied by x-ray absorption spectroscopy at the CoL2,3 and OK edges. Considerable spectral redistributions over temperature are observed for p-LCO . The spectra for e-LCO , on the other hand, do not show any significant changes for temperatures between 30 and 450 K at both edges, indicating that the spin state remains constant and that the epitaxial strain inhibits any population of the low-spin (S=0) state with decreasing temperature. This observation identifies an important prerequisite for ferromagnetism in e-LCO thin films.

  11. Clustering of capnogram features to track state transitions during procedural sedation.

    Science.gov (United States)

    Mieloszyk, Rebecca J; Guo, Margaret G; Verghese, George C; Andolfatto, Gary; Heldt, Thomas; Krauss, Baruch S

    2015-08-01

    Procedural sedation has allowed many painful interventions to be conducted outside the operating room. During such procedures, it is important to maintain an appropriate level of sedation to minimize the risk of respiratory depression if patients are over-sedated and added pain or anxiety if under-sedated. However, there is currently no objective way to measure the patient's evolving level of sedation during a procedure. We investigated the use of capnography-derived features as an objective measure of sedation level. Time-based capnograms were recorded from 30 patients during sedation for cardioversion. Through causal k-means clustering of selected features, we sequentially assigned each exhalation to one of three distinct clusters, or states. Transitions between these states correlated to events during sedation (drug administration, procedure start and end, and clinical interventions). Similar clustering of capnogram recordings from 26 healthy, non-sedated subjects did not reveal distinctly separated states. PMID:26736604

  12. Phase transitions in definite total spin states of two-component Fermi gases

    CERN Document Server

    Yurovsky, Vladimir A

    2016-01-01

    Symmetry under permutations of indistinguishable particles, contained in each medium, is one of the fundamental symmetries. Generally, a change in symmetry affects the medium's thermodynamic properties, leading to phase transitions. Permutation symmetry can be changed since, in addition to the conventional symmetric and anti-symmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. However, the thermodynamic effects of non-Abelian symmetry are unknown. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, saturated and unsaturated phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respe...

  13. Seismic interferometry of the mantle transition zone beneath the western United States

    Science.gov (United States)

    Anderson, H. R.; Thorne, M. S.; Schmerr, N. C.; Brown, S. P.

    2011-12-01

    Determination of mantle structure is critical in understanding the ongoing dynamic processes in the Earth's interior and determining how the deep interior is connected to volcanic and tectonic features at the surface. Discontinuities within the mantle originating from solid-to-solid mineralogical phase transitions of olivine are important indicators of mantle temperature and composition, and provide key clues for interpreting velocity heterogeneity imaged by seismic tomography. Here we develop a new cross-correlation interferometry technique, to image the detailed topography of discontinuity surfaces and associated phase transitions within the mantle transition zone. Our interferometric technique is applied to 185 events originating along the South American subduction zone, recorded as transverse component broadband seismograms at dense seismic arrays in North America, including EarthScope's Transportable Array, and at the Japanese F-net seismic network. To retrieve upper mantle discontinuity structure, we study underside reflections of S-wave energy from the upper mantle discontinuities, arriving as precursory energy to the seismic phase SS. Our interferometric analysis consists of migrating the direct S-wave energy transmitted through the transition zone discontinuities recorded at North American seismic arrays with SS precursor energy reflecting off the underside of the discontinuities recorded at the F-net seismic array. This approach removes uncertainties in earthquake location and seismic velocity structure on the source side of the underside reflection point, providing enhanced vertical resolution of discontinuity topography over past studies. We present newly detailed images of the mantle discontinuity structure beneath the western United States, and compare our results with tomographic imaging. Initial results indicate large variations in mantle temperature and composition across the western United States associated with the subducting Juan de Fuca slab

  14. An Accurate Calculation of Potential Energy Curves and Transition Dipole Moment for Low-Lying Electronic States of CO

    Institute of Scientific and Technical Information of China (English)

    LU Peng-Fei; YAN Lei; YU Zhong-Yuan; GAO Yu-Feng; GAO Tao

    2013-01-01

    In this paper,potential energy curves for the X1∑+,a3∏,a'3∑+,d3△,A1∏ and I1∑-states of CO have been calculated using complete active space self-consistent field and multi-reference configuration interaction methods.The calculations have been performed at 108 nuclear separations from 0.7 to 4.0 (A) by the aug-cc-PV5Z basis set.Spectroscopic constants for the six low-lying electronic states are found in good agreement with experimental data.The vibrational states of the X1∑+ and A1∏ states are also calculated,which are reliable and accurate by comparison with the experimental data and the other theoretical values.The transition dipole moment (TDM) shows that the TDM of the two states (X1∑+ → A1∏) are reduced strongly with increase of bond length.

  15. Linking Pattern Formation and Alternative Stable States: Ecohydrologic Thresholds and Critical Transitions in the Everglades Peatlands

    Science.gov (United States)

    Heffernan, J. B.; Ross, M. S.; Sah, J. P.; Isherwood, E.; Cohen, M. J.

    2015-12-01

    Spatial patterning occurs in a variety of ecosystems, and is important for the functional properties of landscapes; for testing spatial models of ecological processes; and as an indicator of landscape condition and resilience. Theory suggests that regular patterns arise from coupled local- and landscape-scale feedbacks that can also create multiple stable landscape states. In the Florida Everglades, hydrologic modification has degraded much of the historically-extensive ridge-slough landscape, a patterned peatland mosaic with distinct, flow-parallel patches. However, in the Everglades and in general, the hypothesis that patterned landscapes have homogeneous alternative states has little direct empirical support. Here we use microtopographic and vegetative heterogeneity, and their relation to hydrologic conditions, to infer the existence of multiple landscape equilibria and identify the hydrologic thresholds for critical transitions between these states. Dual relationships between elevation variance and water depth, and bi-modal distributions of both elevation variance and plant community distinctness, are consistent with generic predictions of multiple states, and covariation between these measures suggests that microtopography is the leading indicator of landscape degradation. Furthermore, a simple ecohydrologic multiple-state model correctly predicts the hydrologic thresholds for persistence of distinct ridges and sloughs. Predicted ridge-slough elevation differences and their relation to water depth are much greater than observed in the contemporary Everglades, but correspond closely with historical observations of pre-drainage conditions. These multiple lines of evidence represent the broadest and most direct support for the link between regular spatial pattern and landscape-scale alternative states in any ecosystem, and suggest that other patterned landscapes could undergo sudden collapse in response to changing environmental conditions. Hydrologic thresholds

  16. 19 CFR 123.64 - Baggage in transit through the United States between ports in Canada or in Mexico.

    Science.gov (United States)

    2010-04-01

    ... between ports in Canada or in Mexico. 123.64 Section 123.64 Customs Duties U.S. CUSTOMS AND BORDER... MEXICO Baggage § 123.64 Baggage in transit through the United States between ports in Canada or in Mexico. (a) Procedure. Baggage in transit from point to point in Canada or Mexico through the United...

  17. Rapid increases in ventilation accompany the transition from passive to active movement.

    Science.gov (United States)

    Bell, Harold J; Duffin, James

    2006-06-01

    We used a novel movement transition technique to look for evidence of a rapid onset drive to breathe related to the active component of exercise in humans. Ten volunteers performed the following transitions in a specially designed tandem exercise chair apparatus: rest to passive movement, passive to active movement, and rest to active movement. The transition from rest to active exercise was accompanied by an immediate increase in ventilation, as was the transition from rest to passive leg movement (Delta = 6.06 +/- 1.09 l min(-1), p ventilation again increased immediately and significantly (Delta = 2.55 +/- 0.52 l min(-1), p = 0.032). Ventilation at the first point of active exercise was the same when started either from rest or from a background of passive leg movement (p = 1.00). We conclude that the use of a transition from passive to active leg movements in humans recruits a ventilatory drive related to the active component of exercise, and this can be discerned as a rapid increase in breathing.

  18. Variational transition-state theory. Progress report, February 1981-January 1983

    International Nuclear Information System (INIS)

    During the past two years we have extended the variational transition-state theory in several ways. Especially notable is that we have developed several new methods for calculating tunneling probabilities, including two general techniques applicable to systems with small and large reaction-path curvature. We have tested these methods successfully against accurate quantal calculations, and we have applied them to real systems in three dimensions. We have also developed general algorithms for variational transition state theory calculations on polyatomic systems and we have applied these to the combustion reaction OH + H2 → H2O + H. We have developed and successfully applied a statistical-diabatic theory for state-selected rates. We made a totally ab initio prediction of an absolute chemical reaction rate, for the reaction Mu + H2 → MuH + H, using an accurate potential energy surface and ethods that we had demonstrated to be reliable by tests against accurate quantal collinear results. This prediction has now been confirmed by unpublished experiments; I believe that this is the first reliable ab initio prediction of a chemical rection rate prior to its measurement. In the rest of this technical progress report we give further details of these and other studies we have carried out in the last two years under this contract

  19. Transition from spin accumulation into interface states to spin injection in silicon and germanium conduction bands

    Science.gov (United States)

    Jain, Abhinav; Rojas-Sanchez, Juan-Carlos; Cubukcu, Murat; Peiro, Julian; Le Breton, Jean-Christophe; Vergnaud, Céline; Augendre, Emmanuel; Vila, Laurent; Attané, Jean-Philippe; Gambarelli, Serge; Jaffrès, Henri; George, Jean-Marie; Jamet, Matthieu

    2013-04-01

    Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in the electrical spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. Here we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of n-Si and n-Ge using a CoFeB/MgO tunnel contact. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from approximately 150 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with the standard spin diffusion model. More interestingly, in the case of germanium, we demonstrate a significant modulation of the spin signal by applying a back-gate voltage to the conduction channel. We also observe the inverse spin Hall effect in Ge by spin pumping from the CoFeB electrode. Both observations are consistent with spin accumulation in the Ge conduction band.

  20. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    CERN Document Server

    Wu, Mao-Chun; Yuan, Ye-Fei; Gan, Zhao-Ming

    2016-01-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron-self Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value $\\dot M \\sim 3\\alpha\\ \\dot M_{\\rm Edd}$, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down onto the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary our results are consistent with the truncated accretion scenari...

  1. Transition of radiative recombination channels from delocalized states to localized states in a GaInP alloy with partial atomic ordering: a direct optical signature of Mott transition?

    Science.gov (United States)

    Su, Z. C.; Ning, J. Q.; Deng, Z.; Wang, X. H.; Xu, S. J.; Wang, R. X.; Lu, S. L.; Dong, J. R.; Yang, H.

    2016-03-01

    Anderson localization is a predominant phenomenon in condensed matter and materials physics. In fact, localized and delocalized states often co-exist in one material. They are separated by a boundary called the mobility edge. Mott transition may take place between these two regimes. However, it is widely recognized that an apparent demonstration of Anderson localization or Mott transition is a challenging task. In this article, we present a direct optical observation of a transition of radiative recombination dominant channels from delocalized (i.e., local extended) states to Anderson localized states in the GaInP base layer of a GaInP/GaAs single junction solar cell by the means of the variable-temperature electroluminescence (EL) technique. It is found that by increasing temperature, we can boost a remarkable transition of radiative recombination dominant channels from the delocalized states to the localized states. The delocalized states are induced by the local atomic ordering domains (InP/GaP monolayer superlattices) while the localized states are caused by random distribution of indium (gallium) content. The efficient transfer and thermal redistribution of carriers between the two kinds of electronic states was revealed to result in both a distinct EL mechanism transition and an electrical resistance evolution with temperature. Our study gives rise to a self-consistent precise picture for carrier localization and transfer in a GaInP alloy, which is an extremely technologically important energy material for fabricating high-efficiency photovoltaic devices.

  2. Tropical Forest Restoration within Galapagos National Park: Application of a State-transition Model

    Directory of Open Access Journals (Sweden)

    F. K. A. Schmiegelow

    2005-06-01

    Full Text Available Current theory on non-equilibrium communities, thresholds of irreversibility, and ecological resilience suggests the goal of ecological restoration of degraded communities is not to achieve one target, but to reestablish the temporal and spatial diversity inherent in natural ecosystems. Few restoration models, however, address ecological and management issues across the vegetation mosaic of a landscape. Because of a lack of scientific knowledge and funds, restoration practitioners focus instead on site-specific prescriptions and reactive rather than proactive approaches to restoration; this approach often dooms restoration projects to failure. We applied a state-transition model as a decision-making tool to identify and achieve short- and long-term restoration goals for a tropical, moist, evergreen forest on the island of Santa Cruz, Galapagos. The model guided the process of identifying current and desirable forest states, as well as the natural and human disturbances and management actions that caused transitions between them. This process facilitated assessment of opportunities for ecosystem restoration, expansion of the definition of restoration success for the system, and realization that, although site- or species-specific prescriptions may be available, they cannot succeed until broader landscape restoration issues are identified and addressed. The model provides a decision-making framework to allocate resources effectively to maximize these opportunities across the landscape, and to achieve long-term restoration success. Other restoration models have been limited by lack of scientific knowledge of the system. State-transition models for restoration incorporate current knowledge and funds, are adaptive, and can provide direction for restoration research and conservation management in other degraded systems.

  3. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator

    Science.gov (United States)

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R.; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N. Phuan

    2016-01-01

    A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T1 ~ 70 mK and T2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. PMID:27482539

  4. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator.

    Science.gov (United States)

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N Phuan

    2016-07-01

    A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T 1 ~ 70 mK and T 2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. PMID:27482539

  5. Superfluid phase transition with activated velocity fluctuations: Renormalization group approach.

    Science.gov (United States)

    Dančo, Michal; Hnatič, Michal; Komarova, Marina V; Lučivjanský, Tomáš; Nalimov, Mikhail Yu

    2016-01-01

    A quantum field model that incorporates Bose-condensed systems near their phase transition into a superfluid phase and velocity fluctuations is proposed. The stochastic Navier-Stokes equation is used for a generation of the velocity fluctuations. As such this model generalizes model F of critical dynamics. The field-theoretic action is derived using the Martin-Siggia-Rose formalism and path integral approach. The regime of equilibrium fluctuations is analyzed within the perturbative renormalization group method. The double (ε,δ)-expansion scheme is employed, where ε is a deviation from space dimension 4 and δ describes scaling of velocity fluctuations. The renormalization procedure is performed to the leading order. The main corollary gained from the analysis of the thermal equilibrium regime suggests that one-loop calculations of the presented models are not sufficient to make a definite conclusion about the stability of fixed points. We also show that critical exponents are drastically changed as a result of the turbulent background and critical fluctuations are in fact destroyed by the developed turbulence fluctuations. The scaling exponent of effective viscosity is calculated and agrees with expected value 4/3.

  6. E1 transitions between states with n = 1 to 6 in helium-like carbon, nitrogen, oxygen, neon, silicon, and argon

    OpenAIRE

    Johnson, W. R.; Savukov, I. M.; Safronova, U. I.; Dalgarno, A.

    2002-01-01

    Wavelengths and transition rates are given for E1 transitions between singlet S, P, D, and F states, between triplet S, P, and D states, and between triplet P and singlet S states in ions of astrophysical interest: helium-like carbon, nitrogen, oxygen, neon, silicon, and argon. All possible E1 transitions between states with J < 4 and n < 7 are considered. Energy levels and wave functions used in calculations of the transition rates are obtained from relativistic configuration-interaction cal...

  7. Role of Entropy and Structural Parameters in the Spin State Transition of LaCoO3

    Science.gov (United States)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    The spin state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge consistent Density Functional Theory + Dynamical Mean Field Theory (DFT+DMFT). We show, from first principles, that LaCoO3 cannot be described by a single, pure spin state at any temperature, but instead shows a gradual change in the population of higher spin multiples as temperature is increased. We explicitly elucidate the critical role of the lattice expansion and oxygen octahedral rotations in the spin state transition. We also show that the spin state transition and the metal-insulator transition in the compound occur at different temperatures. In addition, our results shed light on the importance of electronic entropy, which has so far been ignored in all first principles studies of this material.

  8. A picomolar transition state analogue inhibitor of MTAN as a specific antibiotic for H. pylori

    OpenAIRE

    Wang, Shanzhi; Haapalainen, Antti M.; Yan, Funing; Du, Quan; Tyler, Peter C.; Evans, Gary B.; Rinaldo-Matthis, Agnes; Brown, Rosemary L.; Norris, Gillian E.; Almo, Steven C.; Schramm, Vern L.

    2012-01-01

    Campylobacter and Helicobacter species express a 6-amino-6-deoxyfutalosine N-ribosylhydrolase (HpM-TAN) proposed to function in menaquinone synthesis. BuT-DADMe-ImmA is a 36 pM transition state analogue of HpM-TAN and the crystal structure of the enzyme-inhibitor complex reveals the mechanism of inhibition. BuT-DADMe-ImmA has a MIC90 value of < 8 ng/ml for H. pylori growth but does not cause growth arrest in other common clinical pathogens, thus demonstrating potential as an H. pylori-specifi...

  9. The Welfare to Work Transition in the United States: Implications for Work-Related Learning

    Science.gov (United States)

    Fisher, James C.; Martin, Larry G.

    2000-11-01

    This paper summarizes the legislation upon which the current welfare-to-work transition in the United States is based and describes characteristics of the former welfare population from which various tiers of employment options have emerged: unsubsidized-employed workers, subsidized-employed workers, subsidized-unemployed recipients, and unsubsidized-unemployed individuals. It also discusses current program emphases, and presents a format for directions for future program development which includes academic programs, situated cognition programs, integrated literacy/occupational skills programs, and integrated literacy/soft skills training.

  10. Density induced phase transitions in QED$_\\mathrm{2}$ - A study with matrix product states

    CERN Document Server

    Bañuls, Mari Carmen; Cirac, J Ignacio; Jansen, Karl; Kühn, Stefan

    2016-01-01

    We numerically study the zero temperature phase structure of the multi-flavor Schwinger model at non-zero chemical potential. Using matrix product states, we reproduce analytical results for the phase structure for two flavors in the massless case and extend the computation to the massive case, where no analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-chemical potential plane with great precision, and provide a concrete example of tensor networks overcoming the sign problem in a lattice gauge theory calculation.

  11. Experimental and theoretical examples of the value and limitations of transition state theory

    Science.gov (United States)

    Golden, D. M.

    1979-01-01

    Value and limitations of transition-state theory (TST) are reviewed. TST analyses of the temperature dependence of the 'direct' reactions CH3 + CH3CHO yields CH4 + CH3CO(1) and O + CH4 yields OH + CH3(2) are presented in detail, and other examples of TST usefulness are recalled. Limitations are discussed for bimolecular processes in terms of 'complex' vs. 'direct' mechanisms. The reaction OH + CO yields CO2 + H is discussed in this context. Limitations for unimolecular processes seem to arise only for simple bond fission processes, and recent advances are noted.

  12. The Urban Mortality Transition in the United States, 1800-1940

    OpenAIRE

    Michael R. Haines

    2001-01-01

    In the United States in the 19th and early 20th centuries, there was a substantial mortality 'penalty' to living in urban places. This circumstance was shared with other nations. By around 1940, this penalty had been largely eliminated, and it was healthier, in many cases, to reside in the city than in the countryside. Despite the lack of systematic national data before 1933, it is possible to describe the phenomenon of the urban mortality transition. Early in the 19th century, the United Sta...

  13. Transition State Theory for solvated reactions beyond recrossing-free dividing surfaces

    CERN Document Server

    Revuelta, F; Garcia-Muller, P L; Hernandez, Rigoberto; Benito, R M; Borondo, F

    2016-01-01

    The accuracy of rate constants calculated using transition state theory depends crucially on the correct identification of a recrossing--free dividing surface. We show here that it is possible to define such optimal dividing surface in systems with non--Markovian friction. However, a more direct approach to rate calculation is based on invariant manifolds and avoids the use of a dividing surface altogether, Using that method we obtain an explicit expression for the rate of crossing an anharmonic potential barrier. The excellent performance of our method is illustrated with an application to a realistic model for LiNC$\\rightleftharpoons$LiCN isomerization.

  14. Transition state theory for solvated reactions beyond recrossing-free dividing surfaces.

    Science.gov (United States)

    Revuelta, F; Bartsch, Thomas; Garcia-Muller, P L; Hernandez, Rigoberto; Benito, R M; Borondo, F

    2016-06-01

    The accuracy of rate constants calculated using transition state theory depends crucially on the correct identification of a recrossing-free dividing surface. We show here that it is possible to define such optimal dividing surface in systems with non-Markovian friction. However, a more direct approach to rate calculation is based on invariant manifolds and avoids the use of a dividing surface altogether, Using that method we obtain an explicit expression for the rate of crossing an anharmonic potential barrier. The excellent performance of our method is illustrated with an application to a realistic model for LiNC⇌LiCN isomerization. PMID:27415277

  15. Transition state theory description of surface self-diffusion: Comparison with classical trajectory results

    International Nuclear Information System (INIS)

    We have computed the surface self-diffusion constants on four different crystal faces [fcc(111), fcc(100), bcc(110), and bcc(211)] using classical transition state theory methods. These results can be compared directly with previous classical-trajectory results which used the same Lennard-Jones 6-12 potential and template model; the agreement is good, though dynamical effects are evident for the fcc(111) and bcc(110) surfaces. Implications are discussed for low-temperature diffusion studies, which are inaccessible to direct molecular dynamics, and the use of ab initio potentials rather than approximate pairwise potentials

  16. Analytical determination of transition time between transient and steady state water infiltration

    Science.gov (United States)

    Lassabatere, Laurent; Angulo-Jaramillo, Rafael; di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo

    2016-04-01

    The hydraulic characterization of soil hydraulic properties is a prerequisite to the modelling of flow in the vadose zone. Since many years, numerous methods were developed to determine soil hydraulic properties. Many of these methods rely on water infiltration experiments and their analysis using analytical or numerical models. At the beginning, most models were developed for water infiltration at steady state. These models had the advantage to be easy to develop from a theoretical point of view. Yet, many drawbacks remain including the need to wait for a long time, leading to time-consuming experiments, the risk to infiltrate water in large volumes of soil, leading to a response affected by soil variability, and the uncertainty regarding the attainment of steady state (i.e. constant infiltration rate). More recently, infiltration models and mathematical developments addressed the case of consecutive transient and steady states. Yet, one main problem remain. In the field, the operator is never sure about the state of water infiltration data. This paper present analytical formulations for the estimation of a transition time. We consider the model developed by Haverkamp et al. (1994) linking 1D infiltration flux to cumulative infiltration and related approximated expansions. An analytical method based on scaling is proposed to define transition time values in terms of both scaled cumulative infiltration and times. Dimensional times are then calculated for a large variety of soils and initial conditions. These time database can be considered as a relevant tool for the guidance for operators who conduct water infiltration experiments and wants to know when to stop and also for modelers who want to know how to select the data to fit transient or steady state models. Haverkamp, R., Ross, P. J., Smetten, K. R. J., Parlange, J. Y. (1994), Three-dimensional analysis of infiltration from the disc infiltrometer: 2 Physically based infiltration equation. Water Resour. Res

  17. Hypothesis: could the signalling function of membrane microdomains involve a localized transition of lipids from liquid to solid state?

    Directory of Open Access Journals (Sweden)

    Joly Etienne

    2004-01-01

    Full Text Available Abstract Background Over the past decade, it has become apparent that specialised membrane microdomains, commonly called rafts, where lipids like sphingolipids and cholesterol are arranged compactly in a liquid ordered phase are involved in cell signalling. Hypothesis The core of the hypothesis presented here is that resting cells may actively maintain their plasma membrane in liquid phase, corresponding to a metastable thermodynamic state. Following a physiological stimulus such as ligands binding to their membrane receptors, the tendency of membrane components to undergo a localised transition towards a gel state would increase, resulting in initial minute solid structures. These few membrane components having undergone a liquid to solid state transition, would then act as seeds for the specific recruitment of additional membrane components whose properties are compatible with the crystalline growth of these initial docks. Cells could therefore be using the propensity of lipids to assemble selectively to generate stable platforms of particular cellular components either for intra-cellular transport or for signal transduction. Testing the hypothesis could presumably be done via biophysical approaches such as EPR spin labelling, X-ray diffraction or FRET coupled to direct microscopic observation of cells to which very localized stimuli would be delivered. Implications Such a model of selective growth of membrane docks would provide an explanation for the existence of different types of microdomains, and for the fact that, depending on the state of the cells and on the procedures used to isolate them, membrane microdomains can vary greatly in their properties and composition. Ultimately, a thorough understanding of how and why lipid domains are assembled in biological membranes will be essential for many aspects of cell biology and medicine.

  18. Leadership for Transitions of Care: An Active Learning Innovation.

    Science.gov (United States)

    Huber, Diane L; Joseph, M Lindell; Halbmaier, Katie Anne; Carlson, Molly; Crill, Stacy; Krieger, Kimberly; Matthys, Nicole; Mundisev, Amy

    2016-02-01

    Active learning assignments can be achieved in online discussions, resulting in creative linkages for innovation. This article describes how the teaching strategy of active learning assignment evolved into a group of student learners engaging in the development of a creative advanced clinical care scenario in an online graduate core course on leadership and management. The advanced clinical scenario that resulted from the students envisioning the assignment through the continuum of care was innovative and creative. Most importantly, the scenario stimulated vigorous conversation and excitement over the assignment, which promoted learning, pride in accomplishment, and on-the-job impact. This article serves as a model of ways to engage students in active learning for synthesis and evaluation to enable creativity and innovation. PMID:26840240

  19. Estimation of Time-Varying Channel State Transition Probabilities for Cognitive Radio Systems by means of Particle Swarm Optimization

    OpenAIRE

    A. Akbulut; T. Adiguzel; YILMAZ, A. E.

    2012-01-01

    In this study, Particle Swarm Optimization is applied for the estimation of the channel state transition probabilities. Unlike most other studies, where the channel state transition probabilities are assumed to be known and/or constant, in this study, these values are realistically considered to be time-varying parameters, which are unknown to the secondary users of the cognitive radio systems. The results of this study demonstrate the following: without any a priori information about the cha...

  20. Study of dipion transitions among Υ(3S), Υ(2S), and Υ(1S) states

    International Nuclear Information System (INIS)

    We present measurements of decay matrix elements for hadronic transitions of the form Υ(nS)→Υ(mS)ππ, where (n,m)=(3,1),(2,1),(3,2). We reconstruct charged and neutral pion modes with the final state Upsilon decaying to either μ+μ- or e+e-. Dalitz plot distributions for the 12 decay modes are fit individually as well as jointly assuming isospin symmetry, thereby measuring the matrix elements of the decay amplitude. We observe and account for the anomaly previously noted in the dipion invariant mass distribution for the Υ(3S)→Υ(1S)ππ transition and obtain good descriptions of the dynamics of the decay using the most general decay amplitude allowed by partial conservation of the axial-vector current considerations. The fits further indicate that the Υ(2S)→Υ(1S)ππ and Υ(3S)→Υ(2S)ππ transitions also show the presence of terms in the decay amplitude that were previously ignored, although at a relatively suppressed level

  1. Effect of stellar activity on the high precision transit light curve

    Directory of Open Access Journals (Sweden)

    Oshagh, M.

    2015-01-01

    Full Text Available Stellar activity features such as spots and plages can create difficulties in determining planetary parameters through spectroscopic and photometric observations. The overlap of a transiting planet and a stellar spot, for instance, can produce anomalies in the transit light curve that may lead to inaccurate estimation of the transit duration, depth, and timing. Such inaccuracies can affect the precise derivation of the planet’s radius. In this talk we will present the results of a quantitative study on the effects of stellar spots on high precision transit light curves. We show that spot anomalies can lead to the estimate of a planet radius that is 4% smaller than the real value. The effects on the transit duration can also be of the order of 4%, longer or shorter. Depending on the size and distribution of spots, anomalies can also produce transit timing variations with significant amplitudes. For instance, TTVs with signal amplitudes of 200 seconds can be produced by spots as large as the largest sunspot. Finally, we examine the impact of active regions on the transit depth measurements in different wavelengths, in order to probe the impact of this effect on transmission spectroscopy measurements. We show that significant (up to 10% underestimation/overestimation of the planet-to-star radius ratio can be measured, especially in the short wavelength regime.

  2. Protein palmitoylation activate zygotic gene expression during the maternal-to-zygotic transition.

    Science.gov (United States)

    Du, Zhaoxia; Chen, Xueran; Li, Xian; He, Kun; Ji, Shufang; Shi, Wei; Hao, Aijun

    2016-06-24

    Upon fertilization, maternal factors direct development and trigger zygotic genome activation at the maternal-to-zygotic transition (MZT). However, the factors that activate the zygotic program in vertebrates are not well defined. Here, we found that protein palmitoylation played an important role in acquiring transcriptional competency and orchestrating the clearance of the maternal program in zebrafish. After inhibition of protein palmitoylation, zebrafish embryos developed normally before the Mid-Blastula Transition (MBT); however, they did not initiate epiboly. Moreover, our results showed that protein palmitoylation is required to initiate the zygotic developmental program and induce clearance of the maternal program by activating miR-430 expression. PMID:27235108

  3. Solid-state UV-MALDI-MS assay of transition metal dithiocarbamate fungicides.

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2014-01-01

    The determination of transition metal containing dithiocarbamate fungicides represents a challenging aspect of analytical object. They have a low stability, low solubility and stabilize versatile coordination monomers, dimers, disulfides and/or S-oxidized derivatives. Their diverse biological activities and agricultural implementation encompass plant prevention and crop protection against a variety of plants containing fungi and diseases of 400 pathogens and 70 cultures. Nonetheless, those dithiocarbamates (DTCs) are banned for agricultural use in Europe or have expiration at years 2016-2017 because of their highly toxic degradation products and/or metabolites, in particular ethylene thiourea; they found large-scale implementations in materials research and medicine. Despite the broad interdisciplinary of DTC application, due to the above reasons, they have received little attention in the rapidly growing field of analytical chemistry, and in particular, the analytical mass spectrometry. Therefore, the study reported on qualitative, quantitative and structural analysis of ten DTCs (1-10), using the matrix assisted laser desorption/ionization (UV-MALDI)-Orbitrap-mass spectrometry (MS) contributed considerably to the implementation of the method for environmental and foodstuffs monitoring. Its ultrahigh resolving power and capacity for direct solid-state analysis, at limited number of sample pretreatment steps, at concentration levels of analytes of up to femtogram per gram resulted to achievement of a highly precise analytical information for these non-trivial objects. The presented fully validated method and technique is based on the successful ionization of DTCs embedded in three novel organic salts (M1-M3). In this regard, the reported MS and the single-crystal X-ray diffraction data as well as the quantum chemical one are able to correlate the molecular structures in condense and in the gas phase. Despite the novelty of the fundamental methodological character

  4. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus

    2012-08-10

    Faced with depleting fossil carbon sources, the search for alternative energy carriers and energy storage possibilities has become an important issue. Nature utilizes carbon dioxide as starting material for storing sun energy in plant hydrocarbons. A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation of CO 2 involve high temperatures and are often not selective. With the development of more sophisticated methods and better software, theoretical studies have become both increasingly widespread and useful. This concept article summarizes theoretical investigations of the current state of the feasibility of CO 2 activation with molecular transition metal catalysts, highlighting the most promising reactions of CO 2 with olefins to industrially relevant acrylic acid/acrylates, and the insertion of CO 2 into metal-element bonds, particularly for the synthesis of cyclic carbonates and polymers. Rapidly improving computational power and methods help to increase the importance and accuracy of calculations continuously and make computational chemistry a useful tool helping to solve some of the most important questions for the future. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular wave-packet dynamics on laser-controlled transition states

    CERN Document Server

    Fischer, Andreas; Cörlin, Philipp; Sperl, Alexander; Schönwald, Michael; Mizuno, Tomoya; Sansone, Giuseppe; Senftleben, Arne; Ullrich, Joachim; Feuerstein, Bernold; Pfeifer, Thomas; Moshammer, Robert

    2016-01-01

    Understanding and controlling the electronic as well as ro-vibrational motion and, thus, the entire chemical dynamics in molecules is the ultimate goal of ultrafast laser and imaging science. In photochemistry, laser-induced dissociation has become a valuable tool for modification and control of reaction pathways and kinetics. Here, we present a pump-probe study of the dissociation dynamics of H$_2^+$ using ultrashort extreme-ultraviolet (XUV) and near-infrared (IR) laser pulses. The reaction kinematics can be controlled by varying the pump-probe delay. We demonstrate that the nuclear motion through the transition state can be reduced to isolated pairs of initial vibrational states. The dynamics is well reproduced by intuitive semi-classical trajectories on a time-dependent potential curve. From this most fundamental scenario we gain insight in the underlying mechanisms which can be applied as design principles for molecular quantum control, particularly for ultrafast reactions involving protons.

  6. Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas

    Indian Academy of Sciences (India)

    Md Nurujjaman; A N Sekar Iyengar

    2006-08-01

    Transition from chaotic to ordered state has been observed during the initial stage of a discharge in a cylindrical DC glow discharge plasma. Initially it shows a chaotic behavior but increasing the discharge voltage changes the characteristics of the discharge glow and shows a period subtraction of order 7 period → 5 period → 3 period → 1 period, i.e. the system goes to single mode through odd cycle subtraction. On further increasing the discharge voltage, the system goes through period doubling, like 1 period → 2 period → 4 period. On further increasing the voltage, the system goes to stable state through two period subtraction, like 4 period → 2 period → stable.

  7. Observation of the transition state for pressure-induced BO₃→ BO₄ conversion in glass.

    Science.gov (United States)

    Edwards, Trenton; Endo, Takatsugu; Walton, Jeffrey H; Sen, Sabyasachi

    2014-08-29

    A fundamental mechanistic understanding of the pressure- and/or temperature-induced facile transformation of the coordination environment of boron is important for changing the physical properties of glass. We have used in situ high-pressure (up to 2 gigapascals) boron-11 solid-state nuclear magnetic resonance spectroscopy in combination with ab initio calculations to investigate the nature of the transition state for the pressure-induced BO3→ BO4 conversion in a borosilicate glass at ambient temperature. The results indicate an anisotropic elastic deformation of the BO3 planar triangle, under isotropic stress, into a trigonal pyramid that likely serves as a precursor for the subsequent formation of a BO4 tetrahedron. PMID:25170146

  8. Floquet topological phase transitions and chiral edge states in a kagome lattice

    Energy Technology Data Exchange (ETDEWEB)

    He, Chaocheng; Zhang, Zhiyong, E-mail: zyzhang@nju.edu.cn

    2014-09-05

    The Floquet topological phases and chiral edge states in a kagome lattice under a circularly-polarized driving field are studied. In the off-resonant case, the system exhibits the similar character as the kagome lattice model with staggered magnetic fluxes, but the total band width is damped in oscillation. In the on-resonant case, the degeneracy splitting at the Γ point does not always result in a gap. The positions of the other two gaps are influenced by the flat band. With the field intensity increased, these two gaps undergo closing-then-reopening processes, accompanied with the changing of the winding numbers. - Highlights: • A kagome lattice under a circularly-polarized driving field is studied. • The band structures and chiral edge states are studied via exact Floquet method. • Various modifications of the Floquet band structure are found. • Floquet topological phase transitions appear in both off- and on-resonant cases.

  9. Absorbing phase transition in a four-state predator-prey model in one dimension

    Science.gov (United States)

    Chatterjee, Rakesh; Mohanty, P. K.; Basu, Abhik

    2011-05-01

    The model of competition between densities of two different species, called predator and prey, is studied on a one-dimensional periodic lattice, where each site can be in one of the four states, say, empty, or occupied by a single predator, or occupied by a single prey, or by both. Along with the pairwise death of predators and growth of prey, we introduce an interaction where the predators can eat one of the neighboring prey and reproduce a new predator there instantly. The model shows a non-equilibrium phase transition into an unusual absorbing state where predators are absent and the lattice is fully occupied by prey. The critical exponents of the system are found to be different from those of the directed percolation universality class and they are robust against addition of explicit diffusion.

  10. Generation of multi-atom W states via Raman transition in an optical cavity

    International Nuclear Information System (INIS)

    A simple scheme is proposed to generate the W state of N λ-type neutral atoms trapped in an optical cavity via Raman transition. Conditional on no photon leakage from the cavity, the N-qubit W state can be prepared perfectly by turning on a classical coupling field for an appropriate time. Compared with the previous ones, our scheme requires neither individual laser addressing of the atoms, nor demand for controlling N atoms to go through an optical cavity simultaneously with a constant velocity. We investigate the influence of cavity decay using the quantum jump approach and show that the preparation time decreases and the success probability increases with atom number because of a collective enhancement of the coupling. (general)

  11. X-ray absorption to determine the metal oxidation state of transition metal compounds

    Science.gov (United States)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Carabalí-Sandoval, G.; Herrera-Pérez, G.; Chavira, E.; Yang, W.-L.; Denlinger, J.

    2013-07-01

    We present three examples where x-ray absorption at the transition metal L2,3 edges is used to investigate the valence states of various strongly correlated (SC) and technological relevant materials. Comparison with ligand field multiplet calculations is needed to determine the metal oxidation states. The examples are CrF2, the La1-xSrxCoO3 family and YVO3. For CrF2 the results indicate a disproportionation reaction that generates Cr+, Cr2+ and Cr3+ in different proportions that can be quantified directly from the x-ray spectra. Additionally, it is shown that Co2+ is present in the catalytic La1-xSrxCoO3 perovskite family. Finally, surface effects that change the vanadium valence are also found in YVO3 nanocrystals.

  12. Probing the transition state region in catalytic CO oxidation on Ru

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, H. [Stockholm Univ. (Sweden); Oberg, H. [Stockholm Univ. (Sweden); Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Gladh, J. [Stockholm Univ. (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [Stockholm Univ. (Sweden); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hantschmann, M. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Kuhn, D. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mitra, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Moeller, S. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Persson, M. [The Univ. of Liverpool, Liverpool (United Kingdom); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Abild-Pedersen, F. [Stanford Univ., Stanford, CA (United States); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pettersson, L. G. M. [Stockholm Univ. (Sweden); Nilsson, A. [Stockholm Univ. (Sweden); SLAC National Accelerator Lab., Menlo Park, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-12

    Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

  13. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.

    Science.gov (United States)

    Cheng, Qianyi; Gu, Jiande; Compaan, Katherine R; Schaefer, Henry F

    2010-10-18

    In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm

  14. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of...

  15. Phase-Transfer Activation of Transition Metal Catalysts.

    Science.gov (United States)

    Tuba, Robert; Xi, Zhenxing; Bazzi, Hassan S; Gladysz, John A

    2015-11-01

    With metal-based catalysts, it is quite common that a ligand (L) must first dissociate from a catalyst precursor (L'n M-L) to activate the catalyst. The resulting coordinatively unsaturated active species (L'n M) can either back react with the ligand in a k-1 step, or combine with the substrate in a k2 step. When dissociation is not rate determining and k-1 [L] is greater than or comparable to k2 [substrate], this slows the rate of reaction. By introducing a phase label onto the ligand L and providing a suitable orthogonal liquid or solid phase, dramatic rate accelerations can be achieved. This phenomenon is termed "phase-transfer activation". In this Concept, some historical antecedents are reviewed, followed by successful applications involving fluorous/organic and aqueous/organic liquid/liquid biphasic catalysis, and liquid/solid biphasic catalysis. Variants that include a chemical trap for the phase-labeled ligands are also described. PMID:26338471

  16. Association between body weight, physical activity and food choices among metropolitan transit workers

    Directory of Open Access Journals (Sweden)

    Hannan Peter J

    2007-11-01

    Full Text Available Abstract Background Associations between body weight, physical activity and dietary intake among a population of metropolitan transit workers are described. Methods Data were collected during October through December, 2005, as part of the baseline measures for a worksite weight gain prevention intervention in four metro transit bus garages. All garage employees were invited to complete behavioral surveys that assessed food choices and physical activity, and weight and height were directly measured. Seventy-eight percent (N = 1092 of all employees participated. Results The prevalence of obesity (BMI >= 30 kg/m2 was 56%. Over half of the transit workers reported consuming fruit (55% and vegetables (59% ≥ 3/week. Reported fast food restaurant frequency was low (13% visited ≥ 3/week. Drivers reported high levels of physical activity (eg. walking 93 minutes/day. However, an objective measure of physical activity measured only 16 minutes moderate/vigorous per day. Compared to other drivers, obese drivers reported significantly less vigorous physical activity, more time sitting, and more time watching television. Healthy eating, physical activity and weight management were perceived to be difficult at the worksite, particularly among obese transit workers, and perceived social support for these behaviors was modest. However, most workers perceived weight management and increased physical activity to be personally important for their health. Conclusion Although transit workers' self-report of fruit and vegetable intake, and physical activity was high, perceived access to physical activity and healthful eating opportunities at the worksite was low. Obese workers were significantly less physically active and were more likely to report work environmental barriers to physical activity.

  17. State transitions and feedback mechanisms control hydrology in the constructed catchment ´Chicken Creeḱ

    Science.gov (United States)

    Schaaf, Wolfgang; Gerwin, Werner; Hinz, Christoph; Zaplata, Markus

    2016-04-01

    Landscapes and ecosystems are complex systems with many feedback mechanisms acting between the various abiotic and biotic components. The knowledge about these interacting processes is mainly derived from mature ecosystems. The initial development of ecosystem complexity may involve state transitions following catastrophic shifts, disturbances or transgression of thresholds. The Chicken Creek catchment was constructed in 2005 in the mining area of Lusatia/Germany to study processes and feedback mechanisms during ecosystem evolution. The hillslope-shaped 6 ha site has defined boundary conditions and well-documented inner structures. The dominating substrate above the underlying clay layer is Pleistocene sandy material representing mainly the lower C horizon of the former landscape. Since 2005, the unrestricted, unmanaged development of the catchment was intensively monitored. During the ten years since then, we observed characteristic state transitions in catchment functioning driven by feedbacks between original substrate properties, surface structures, soil development and vegetation succession. Whereas surface runoff induced by surface crusting and infiltration dominated catchment hydrology in the first years, the impact of vegetation on hydrological pathways and groundwater levels became more and more evident during the last years. Discharge from the catchment changed from episodic events driven by precipitation and surface runoff to groundwater driven. This general picture is overlain by spatial patterns and single episodic events of external drivers. The scientific value of the Chicken Creek site with known boundary conditions and structure information could help in disentangling general feedback mechanisms between hydrologic, pedogenic, biological and geomorphological processes as well as a in gaining a more integrative view of succession and its drivers during the transition from initial, less complex systems to more mature ecosystems. Long-term time series

  18. Nonequilibrium arrhythmic states and transitions in a mathematical model for diffuse fibrosis in human cardiac tissue.

    Directory of Open Access Journals (Sweden)

    Rupamanjari Majumder

    Full Text Available We present a comprehensive numerical study of spiral- and scroll-wave dynamics in a state-of-the-art mathematical model for human ventricular tissue with fiber rotation, transmural heterogeneity, myocytes, and fibroblasts. Our mathematical model introduces fibroblasts randomly, to mimic diffuse fibrosis, in the ten Tusscher-Noble-Noble-Panfilov (TNNP model for human ventricular tissue; the passive fibroblasts in our model do not exhibit an action potential in the absence of coupling with myocytes; and we allow for a coupling between nearby myocytes and fibroblasts. Our study of a single myocyte-fibroblast (MF composite, with a single myocyte coupled to N(f fibroblasts via a gap-junctional conductance G(gap, reveals five qualitatively different responses for this composite. Our investigations of two-dimensional domains with a random distribution of fibroblasts in a myocyte background reveal that, as the percentage P(f of fibroblasts increases, the conduction velocity of a plane wave decreases until there is conduction failure. If we consider spiral-wave dynamics in such a medium we find, in two dimensions, a variety of nonequilibrium states, temporally periodic, quasiperiodic, chaotic, and quiescent, and an intricate sequence of transitions between them; we also study the analogous sequence of transitions for three-dimensional scroll waves in a three-dimensional version of our mathematical model that includes both fiber rotation and transmural heterogeneity. We thus elucidate random-fibrosis-induced nonequilibrium transitions, which lead to conduction block for spiral waves in two dimensions and scroll waves in three dimensions. We explore possible experimental implications of our mathematical and numerical studies for plane-, spiral-, and scroll-wave dynamics in cardiac tissue with fibrosis.

  19. Topological states and phase transitions in Sb2Te3-GeTe multilayers

    Science.gov (United States)

    Nguyen, Thuy-Anh; Backes, Dirk; Singh, Angadjit; Mansell, Rhodri; Barnes, Crispin; Ritchie, David A.; Mussler, Gregor; Lanius, Martin; Grützmacher, Detlev; Narayan, Vijay

    2016-06-01

    Topological insulators (TIs) are bulk insulators with exotic ‘topologically protected’ surface conducting modes. It has recently been pointed out that when stacked together, interactions between surface modes can induce diverse phases including the TI, Dirac semimetal, and Weyl semimetal. However, currently a full experimental understanding of the conditions under which topological modes interact is lacking. Here, working with multilayers of the TI Sb2Te3 and the band insulator GeTe, we provide experimental evidence of multiple topological modes in a single Sb2Te3-GeTe-Sb2Te3 structure. Furthermore, we show that reducing the thickness of the GeTe layer induces a phase transition from a Dirac-like phase to a gapped phase. By comparing different multilayer structures we demonstrate that this transition occurs due to the hybridisation of states associated with different TI films. Our results demonstrate that the Sb2Te3-GeTe system offers strong potential towards manipulating topological states as well as towards controlledly inducing various topological phases.

  20. Crossing the dividing surface of transition state theory. III. Once and only once. Selecting reactive trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Lorquet, J. C., E-mail: jc.lorquet@ulg.ac.be [Department of Chemistry, University of Liège, Sart-Tilman (Bâtiment B6), B-4000 Liège 1 (Belgium)

    2015-09-14

    The purpose of the present work is to determine initial conditions that generate reacting, recrossing-free trajectories that cross the conventional dividing surface of transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) without ever returning to it. Local analytical equations of motion valid in the neighborhood of this planar surface have been derived as an expansion in Poisson brackets. We show that the mere presence of a saddle point implies that reactivity criteria can be quite simply formulated in terms of elements of this series, irrespective of the shape of the potential energy function. Some of these elements are demonstrated to be equal to a sum of squares and thus to be necessarily positive, which has a profound impact on the dynamics. The method is then applied to a three-dimensional model describing an atom-diatom interaction. A particular relation between initial conditions is shown to generate a bundle of reactive trajectories that form reactive cylinders (or conduits) in phase space. This relation considerably reduces the phase space volume of initial conditions that generate recrossing-free trajectories. Loci in phase space of reactive initial conditions are presented. Reactivity is influenced by symmetry, as shown by a comparative study of collinear and bent transition states. Finally, it is argued that the rules that have been derived to generate reactive trajectories in classical mechanics are also useful to build up a reactive wave packet.

  1. A structural analysis of the A5/1 state transition graph

    Directory of Open Access Journals (Sweden)

    Andreas Beckmann

    2012-10-01

    Full Text Available We describe efficient algorithms to analyze the cycle structure of the graph induced by the state transition function of the A5/1 stream cipher used in GSM mobile phones and report on the results of the implementation. The analysis is performed in five steps utilizing HPC clusters, GPGPU and external memory computation. A great reduction of this huge state transition graph of 2^64 nodes is achieved by focusing on special nodes in the first step and removing leaf nodes that can be detected with limited effort in the second step. This step does not break the overall structure of the graph and keeps at least one node on every cycle. In the third step the nodes of the reduced graph are connected by weighted edges. Since the number of nodes is still huge an efficient bitslice approach is presented that is implemented with NVIDIA's CUDA framework and executed on several GPUs concurrently. An external memory algorithm based on the STXXL library and its parallel pipelining feature further reduces the graph in the fourth step. The result is a graph containing only cycles that can be further analyzed in internal memory to count the number and size of the cycles. This full analysis which previously would take months can now be completed within a few days and allows to present structural results for the full graph for the first time. The structure of the A5/1 graph deviates notably from the theoretical results for random mappings.

  2. Direct measurement of the low-temperature spin-state transition in LaCoO3.

    Science.gov (United States)

    Klie, R F; Zheng, J C; Zhu, Y; Varela, M; Wu, J; Leighton, C

    2007-07-27

    LaCoO3 exhibits an anomaly in its magnetic susceptibility around 80 K associated with a thermally excited transition of the Co3+-ion spin. We show that electron energy-loss spectroscopy is sensitive to this Co3+-ion spin-state transition, and that the O K edge prepeak provides a direct measure of the Co3+ spin state in LaCoO3 as a function of temperature. Our experimental results are confirmed by first-principles calculations, and we conclude that the thermally excited spin-state transition occurs from a low to an intermediate spin state, which can be distinguished from the high-spin state.

  3. Intra-urban human mobility and activity transition: evidence from social media check-in data.

    Directory of Open Access Journals (Sweden)

    Lun Wu

    Full Text Available Most existing human mobility literature focuses on exterior characteristics of movements but neglects activities, the driving force that underlies human movements. In this research, we combine activity-based analysis with a movement-based approach to model the intra-urban human mobility observed from about 15 million check-in records during a yearlong period in Shanghai, China. The proposed model is activity-based and includes two parts: the transition of travel demands during a specific time period and the movement between locations. For the first part, we find the transition probability between activities varies over time, and then we construct a temporal transition probability matrix to represent the transition probability of travel demands during a time interval. For the second part, we suggest that the travel demands can be divided into two classes, locationally mandatory activity (LMA and locationally stochastic activity (LSA, according to whether the demand is associated with fixed location or not. By judging the combination of predecessor activity type and successor activity type we determine three trip patterns, each associated with a different decay parameter. To validate the model, we adopt the mechanism of an agent-based model and compare the simulated results with the observed pattern from the displacement distance distribution, the spatio-temporal distribution of activities, and the temporal distribution of travel demand transitions. The results show that the simulated patterns fit the observed data well, indicating that these findings open new directions for combining activity-based analysis with a movement-based approach using social media check-in data.

  4. Active cognitive lifestyle is associated with positive cognitive health transitions and compression of morbidity from age sixty-five.

    Directory of Open Access Journals (Sweden)

    Riccardo E Marioni

    Full Text Available BACKGROUND: Three factors commonly used as measures of cognitive lifestyle are education, occupation, and social engagement. This study determined the relative importance of each variable to long term cognitive health in those with and without severe cognitive impairment. METHODS: Data came from 12,470 participants from a multi-centre population-based cohort (Medical Research Council Cognitive Function and Ageing Study. Respondents were aged 65 years and over and were followed-up over 16 years. Cognitive states of no impairment, slight impairment, and moderate/severe impairment were defined, based on scores from the Mini-Mental State Examination. Multi-state modelling was used to investigate links between component cognitive lifestyle variables, cognitive state transitions over time, and death. RESULTS: Higher educational attainment and a more complex mid-life occupation were associated with a lower risk of moving from a non-impaired to a slightly impaired state (hazard ratios 0.5 and 0.8, but with increased mortality from a severely impaired state (1.3 and 1.1. More socially engaged individuals had a decreased risk of moving from a slightly impaired state to a moderately/severely impaired state (0.7. All three cognitive lifestyle variables were linked to an increased chance of cognitive recovery back to the non-impaired state. CONCLUSIONS: In those without severe cognitive impairment, different aspects of cognitive lifestyle predict positive cognitive transitions over time, and in those with severe cognitive impairment, a reduced life-expectancy. An active cognitive lifestyle is therefore linked to compression of cognitive morbidity in late life.

  5. Validity Evidence for the State Mindfulness Scale for Physical Activity

    Science.gov (United States)

    Cox, Anne E.; Ullrich-French, Sarah; French, Brian F.

    2016-01-01

    Being attentive to and aware of one's experiences in the present moment with qualities of acceptance and openness reflects the state of mindfulness. Positive associations exist between state mindfulness and state autonomous motivation for everyday activities. Though this suggests that state mindfulness links with adaptive motivational experiences,…

  6. Molecular motions and conformational transition between different conformational states of HIV-1 gp120 envelope glycoprotein

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The HIV-1 gp120 exterior envelope glycoprotein undergoes a series of conformational rearrangements while sequentially interacting with the receptor CD4 and coreceptor CCR5 or CXCR4 on the surface of host cells to initiate virus entry. Both the crystal structures of the HIV-1 gp120 core bound by the CD4 and antigen 17b and the SIV gp120 core prebound by CD4 are known. Despite the wealth of knowledge on these static snapshots of molecular conformations, the details of molecular motions involved in conformational transition that are crucial to intervention remain elusive. We presented comprehensive comparative analyses of the dynamics behaviors of the gp120 in its CD4-complexed, CD4-free and CD4-unliganded states based on the homology models with modeled V3 and V4 loops by means of CONCOORD computer simulation to generate ensembles of feasible protein structures that were subsequently analysed by essential dynamics analyses to identify preferred concerted motions. The revealed collective fluctuations are dominated by complex modes of combinational motions of the rotation/twisting, flexing/closure, and shortness/elongation between or within the inner, outer, and bridging-sheet domains, and these modes are related to the CD4 association and HIV neutralization avoidance. Further essential subspace overlap analyses were performed to quantitatively distinguish the preference for conformational transitions between the three states, revealing that the unliganded gp120 has a greater potential to translate its conformation into the conformational state adopted by the CD4-complexed gp120 than by the CD4-free gp120, whereas the CD4-free gp120 has a greater potential to translate its conformation into the unliganded state than the CD4-complexed gp120 does. These dy-namics data of gp120 in its different conformations are helpful in understanding the relationship be-tween the molecular motion/conformational transition and the function of gp120, and in gp120-structure-based subunit

  7. Electric-Field Induced Activation of Dark Excitonic States in Carbon Nanotubes.

    Science.gov (United States)

    Uda, T; Yoshida, M; Ishii, A; Kato, Y K

    2016-04-13

    Electrical activation of optical transitions to parity-forbidden dark excitonic states in individual carbon nanotubes is reported. We examine electric-field effects on various excitonic states by simultaneously measuring photocurrent and photoluminescence. As the applied field increases, we observe an emergence of new absorption peaks in the excitation spectra. From the diameter dependence of the energy separation between the new peaks and the ground state of E11 excitons, we attribute the peaks to the dark excited states which became optically active due to the applied field. Field-induced exciton dissociation can explain the photocurrent threshold field, and the edge of the E11 continuum states has been identified by extrapolating to zero threshold. PMID:26999284

  8. Transitions between turbulent and laminar superfluid vorticity states in the outer core of a neutron star

    CERN Document Server

    Peralta, C; Giacobello, M; Ooi, A

    2006-01-01

    We investigate the global transition from a turbulent state of superfluid vorticity to a laminar state, and vice versa, in the outer core of a neutron star. By solving numerically the hydrodynamic Hall-Vinen-Bekarevich-Khalatnikov equations for a rotating superfluid in a differentially rotating spherical shell, we find that the meridional counterflow driven by Ekman pumping exceeds the Donnelly-Glaberson threshold throughout most of the outer core, exciting unstable Kelvin waves which disrupt the rectilinear vortex array, creating a vortex tangle. In the turbulent state, the torque exerted on the crust oscillates, and the crust-core coupling is weaker than in the laminar state. This leads to a new scenario for the rotational glitches observed in radio pulsars: a vortex tangle is sustained in the differentially rotating outer core by the meridional counterflow, a sudden spin-up event brings the crust and core into corotation, the vortex tangle relaxes back to a rectilinear vortex array, then the crust spins do...

  9. Active Affordance Learning in Continuous State and Action Spaces

    NARCIS (Netherlands)

    Wang, C.; Hindriks, K.V.; Babuska, R.

    2014-01-01

    Learning object affordances and manipulation skills is essential for developing cognitive service robots. We propose an active affordance learning approach in continuous state and action spaces without manual discretization of states or exploratory motor primitives. During exploration in the action

  10. Inhibition and Structure of Trichomonas vaginalis Purine Nucleoside Phosphorylase with Picomolar Transition State Analogues

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldo-Matthis,A.; Wing, C.; Ghanem, M.; Deng, H.; Wu, P.; Gupta, A.; Tyler, P.; Evans, G.; Furneaux, R.; et al.

    2007-01-01

    Trichomonas vaginalis is a parasitic protozoan purine auxotroph possessing a unique purine salvage pathway consisting of a bacterial type purine nucleoside phosphorylase (PNP) and a purine nucleoside kinase. Thus, T. vaginalis PNP (TvPNP) functions in the reverse direction relative to the PNPs in other organisms. Immucillin-A (ImmA) and DADMe-Immucillin-A (DADMe-ImmA) are transition stte mimics of adenosine with geometric and electrostatic features that resemble early and late transition states of adenosine at the transition state stabilized by TvPNP. ImmA demonstrates slow-onset tight-binding inhibition with TvPNP, to give an equilibrium dissociation constant of 87 pM, an inhibitor release half-time of 17.2 min, and a K{sub m}/K{sub d} ratio of 70,100. DADMe-ImmA resembles a late ribooxacarbenium ion transition state for TvPNP to give a dissociation constant of 30 pM, an inhibitor release half-time of 64 min, and a K{sub m}/K{sub d} ratio of 203,300. The tight binding of DADMe-ImmA supports a late S{sub N}1 transition state. Despite their tight binding to TvPNP, ImmA and DADMe-ImmA are weak inhibitors of human and P. falciparum PNPs. The crystal structures of the TvPNP-ImmA{center_dot}PO{sub 4} and TvPNP{center_dot}DADMe-ImmA{center_dot}PO{sub 4} ternary complexes differ from previous structures with substrate anologues. The tight binding with DADMe-ImmA is in part due to a 2.7 {angstrom} ionic interaction between a PO{sub 4} oxygen and the N1 cation of the hydroxypyrrolidine and is weaker in the TvPNP{center_dot}ImmA{center_dot}PO{sub 4} structure at 3.5 {angstrom}. However, the TvPNP{center_dot}ImmA{center_dot}PO{sub 4} structure includes hydrogen bonds between the 2'-hydroxyl and the protein that are not present in TvPNP{center_dot}DADMe-ImmA{center_dot}PO{sub 4}. These structures explain why DADMe-ImmA binds tighter than ImmA. Immucillin-H is a 12 nM inhibitor of TvPNP but a 56 pM inhibitor of human PNP. And this difference is explained by isotope

  11. New avenues for redox-active ligands: Non-classical reactivity with late transition metals facilitated by o-aminophenol derived architectures

    NARCIS (Netherlands)

    D.L.J. Broere

    2016-01-01

    Many homogeneous and heterogeneous catalyst systems contain one or more transition metals. The widespread employment of these metals as catalysts is ascribed to their accessible d-orbitals to activate chemical bonds, and the ability to undergo metal-based oxidation state changes to facilitate desira

  12. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  13. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    International Nuclear Information System (INIS)

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, 'Overall Employment in a Hydrogen Economy', requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment (types) in the United States. As required by Section 1820, the present report considers: (1) Replacement effects of new goods and services; (2) International competition; (3) Workforce training requirements; (4) Multiple possible fuel cycles, including usage of raw materials; (5) Rates of market penetration of technologies; (6) Regional variations based on geography; and (7) Specific recommendations of the study Both the Administration's National Energy Policy and the Department's Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America's future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  14. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Institute of Scientific and Technical Information of China (English)

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  15. Active-duty military service, cohabiting unions, and the transition to marriage

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available A small but growing body of research has begun to identify the consequences of military service during the all-voluntary era. In this article, we examine the relationship between military service and the likelihood that cohabiting unions will be converted into marriages. Our paper extends previous research by making a distinction between the effects of active-duty verses reserve-duty service on the transition to marriage using data from the 1979-2004 National Longitudinal Survey of Youth (NLSY. Our findings indicate that there is a positive relationship between active-duty service and cohabitors transitioning to marriage.

  16. UP states protect ongoing cortical activity from thalamic inputs.

    Directory of Open Access Journals (Sweden)

    Brendon O Watson

    Full Text Available Cortical neurons in vitro and in vivo fluctuate spontaneously between two stable membrane potentials: a depolarized UP state and a hyperpolarized DOWN state. UP states temporally correspond with multineuronal firing sequences which may be important for information processing. To examine how thalamic inputs interact with ongoing cortical UP state activity, we used calcium imaging and targeted whole-cell recordings of activated neurons in thalamocortical slices of mouse somatosensory cortex. Whereas thalamic stimulation during DOWN states generated multineuronal, synchronized UP states, identical stimulation during UP states had no effect on the subthreshold membrane dynamics of the vast majority of cells or on ongoing multineuronal temporal patterns. Both thalamocortical and corticocortical PSPs were significantly reduced and neuronal input resistance was significantly decreased during cortical UP states -- mechanistically consistent with UP state insensitivity. Our results demonstrate that cortical dynamics during UP states are insensitive to thalamic inputs.

  17. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    Science.gov (United States)

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics. PMID:17930285

  18. First evidence for linking transitions between the superdeformed yrast band and the normal deformed states in Gd-149

    NARCIS (Netherlands)

    Finck, C; Stezowski, O; Kintz, N; Vivien, JP; Zuber, K; Nourreddine, A; Appelbe, DE; Beausang, CW; Beck, FA; Byrski, T; Courtin, S; Curien, D; de France, G; Duchene, G; Erturk, S; Gall, BJP; Haas, B; Khadiri, N; Pachoud, E; Rigollet, C; Smith, M; Theisen, C; Twin, PJ

    1999-01-01

    Double step resolved gamma-ray transitions linking the yrast superdeformed (SD) band of Gd-149 to the normal deformed (ND) level scheme have been observed using the EUROGAM phase II spectrometer. The excitation energy of the 47/2(-) SD state above the 7/2(-) ground state has thus been determined to

  19. State-transition modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-3.

    Science.gov (United States)

    Siebert, Uwe; Alagoz, Oguzhan; Bayoumi, Ahmed M; Jahn, Beate; Owens, Douglas K; Cohen, David J; Kuntz, Karen M

    2012-01-01

    State-transition modeling (STM) is an intuitive, flexible, and transparent approach of computer-based decision-analytic modeling, including both Markov model cohort simulation as well as individual-based (first-order Monte Carlo) microsimulation. Conceptualizing a decision problem in terms of a set of (health) states and transitions among these states, STM is one of the most widespread modeling techniques in clinical decision analysis, health technology assessment, and health-economic evaluation. STMs have been used in many different populations and diseases, and their applications range from personalized health care strategies to public health programs. Most frequently, state-transition models are used in the evaluation of risk factor interventions, screening, diagnostic procedures, treatment strategies, and disease management programs. PMID:22990084

  20. Line Strengths of Rovibrational and Rotational Transitions in the X$^2\\Pi$ Ground State of OH

    CERN Document Server

    Brooke, James S A; Western, Colin M; Sneden, Christopher; Afşar, Melike; Li, Gang; Gordon, Iouli E

    2015-01-01

    A new line list including positions and absolute intensities (in the form of Einstein $A$ values and oscillator strengths) has been produced for the OH ground X\\DP\\ state rovibrational (Meinel system) and pure rotational transitions. All possible transitions are included with v$\\primed$ and v$\\Dprimed$ up to 13, and $J$ up to between 9.5 and 59.5, depending on the band. An updated fit to determine molecular constants has been performed, which includes some new rotational data and a simultaneous fitting of all molecular constants. The absolute line intensities are based on a new dipole moment function, which is a combination of two high level ab initio calculations. The calculations show good agreement with an experimental v=1 lifetime, experimental $\\mu_\\mathrm{v}$ values, and $\\Delta$v=2 line intensity ratios from an observed spectrum. To achieve this good agreement, an alteration in the method of converting matrix elements from Hund's case (b) to (a) was made. Partitions sums have been calculated using the ...

  1. Generation of vertical convective vortex in the transition from anomalous to normal steady-state convection

    Science.gov (United States)

    Sharifulin, Albert; Poludnitsin, Anatoly

    2010-11-01

    This phenomenon was discovered in the framework of experimental attempt[1] to define form of bifurcation curve in enclosed cavity with boulders temperature state of which could slowly deviate from condition of directly from bottom heating. In order to verify the discovered regularity experiment with slow cubic cell inclination form direct form bottom heat position was performed. The transition process from abnormal convection flow(When heated, and therefore more light, fluid moves down) to normal one during bifurcation curve crossing appeared to be completely unexpected and in radical contrast to served one in our 2D calculations and of other authors. The transition process appears as a fast, for 1-2 seconds, the rotation around the vertical axis of the entire mass of fluid filling the cavity. In the presentation the effect theoretical investigations results are discussed. Series of new problems concerned with the effect of existence borders definition and with possibility to control the effect through fluid properties and heat conditions is formulated Possibility of spontaneous vertical convective vortex generation application to atmospheric behavior explanation and to Earth's mantle one is discussed. [1] A.N. Sharifulin, A.N. Poludnitsin A.N., A.S. Kravchuk Laboratory Scale Simulation of Nonlocal Generation of a Tropical Cyclone. Journal of Experimental and Theoretical Physics, 2008, Vol.107, No.6, pp.1090-1093.

  2. Phase transition and equation of state of paratellurite (TeO2) under high pressure

    Science.gov (United States)

    Liu, Xun; Mashimo, Tsutomu; Kawai, Nobuaki; Sekine, Toshimori; Zeng, Zhaoyi; Zhou, Xianming

    2016-07-01

    The Hugoniot data for TeO2 single crystals were obtained for pressures up to ∼85 GPa along both the (a-axis) and (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun or two-stage light gas gun. The Hugoniot-elastic limit of TeO2 was determined to be 3.3–4.3 GPa along the c-axes. The shock velocity (U s) versus particle velocity (U p) relation for TeO2 shows a kink around U p = 1.0 km s‑1, which suggests a phase transition completes at ∼26 ± 2 GPa. The Hugoniot relations of the low and high pressure phase are given by U s = 3.13(5) + 1.10(6)U p for U p 1.0 km s‑1, respectively. First-principles geometry optimizations based on the generalized gradient approximation after Perdew, Burke and Ernzerhof method were also performed on TeO2. It suggested that a continuous structure distortion occurs up to 22 GPa, and the lattice parameters b and c abruptly increase and decrease at 22 GPa, respectively, indicating a first-order phase transition to the cotunnite structure phase. The equation of state of the cotunnite phase TeO2 is discussed based on the experimental and simulation results.

  3. 'Teaching for transitions: a review of teaching for transitions related to teaching and learning activity and research'

    OpenAIRE

    O'Mahony, Catherine; Higgs, Betty; Alexander, D; Kilcommins, Shane; A. C. Ryan; Blackshields, Daniel; McCarthy, Marian; O'sullivan, Kathryn; Cronin, James

    2015-01-01

    peer-reviewed The ‘Scholarship of Teaching for Transitions’ research project aimed to provide a snapshot of existing national and international scholarship on teaching for transitions, with a particular emphasis on pedagogies for transitions. The research concentrated on the student’s journey as it relates to Higher Education, i.e. transitions in, through and out of third level.

  4. Cosmological implications of the transition from the false vacuum to the true vacuum state

    CERN Document Server

    Stachowski, Aleksander; Urbanowski, Krzysztof

    2016-01-01

    We study the cosmology with the running dark energy. The parametrization of dark energy with the respect to the redshift is derived from the first principles of quantum mechanics. Energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. This is the class of the extended interacting $\\Lambda$CDM models. We consider the energy density of dark energy parametrization $\\rho_\\text{de}(t)$, which follows from the Breit-Wigner energy distribution function which is used to model the quantum unstable systems. The idea that properties of the process of the quantum mechanical decay of unstable states can help to understand the properties of the observed universe was formulated by Krauss and Dent and this idea was used in our considerations. In the cosmological model with the mentioned parametrization there is an energy transfer between the dark matter and dark energy. In such a evolutional scenario the universe is starting from the false vacuum...

  5. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering.

    Science.gov (United States)

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-28

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail. PMID:27250291

  6. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering

    Science.gov (United States)

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-01

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.

  7. Theoretical direct WIMP detection rates for transitions to nuclear excited states

    CERN Document Server

    Vergados, J D; Pirinen, P; Srivastava, P C; Kortelainen, M; Suhonen, J

    2015-01-01

    The recent WMAP and Planck data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Many extensions of the standard model provide dark matter candidates, in particular Weakly Interacting Massive Particles (WIMPs). Thus the direct dark matter detection is central to particle physics and cosmology. Most of the research on this issue has hitherto focused on the detection of the recoiling nucleus. In this paper we study transitions to the excited states, possible in some nuclei, which have sufficiently low lying excited states. Examples considered previously were the first excited states of $^{127}$I and $^{129}$Xe. We examine here $^{83}$Kr, which offers some kinematical advantages and is currently considered as a possible target. We find appreciable branching ratios for the inelastic scattering mediated by the spin cross sections, with an inelastic event rate of $4.4\\times 10^{-4}$kg$^{-1}$d$^{-1}$. So, the extra signature of the gamma ra...

  8. Microstructure-alone induced transition from hydrophilic to hydrophobic wetting state on silicon

    Science.gov (United States)

    Ems, Henry; Ndao, Sidy

    2015-06-01

    Surface hydrophobicity is primarily attained through the use of low surface energy materials. Experimental attempts to turn hydrophilic surfaces to hydrophobic have consisted of coating and thin film deposition. However, in many applications low surface energy materials and coatings are not practical, though hydrophobicity is still desired. In this paper, we demonstrate the transition from hydrophilic to hydrophobic wetting states on an intrinsically hydrophilic surface (contact angle less than 45°) using only surface microstructuring. The surface microstructures consist of re-entrant microcavities which interfere with the complete wetting of the surface, causing a liquid droplet to sit on the surface in a Cassie wetting state. The microstructures were fabricated on a silicon-on-insulator (SOI) wafer through steps of photolithography, etching, and bonding. Contact angle measurements demonstrated the ability of the microfabricated surfaces to sustain large contact angles above 100°, compared to a bare silicon surface which has a contact angle of 40°. Energy-dispersive X-ray spectroscopy showed silicon to be the only chemical element on the surface, while optical observations with an inverted microscope hinted to the existence of a Cassie wetting state.

  9. Novel Insights Into The Mode of Inhibition of Class A SHV-1 Beta-Lactamases Revealed by Boronic Acid Transition State Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    W Ke; J Sampson; C Ori; F Prati; S Drawz; C Bethel; R Bonomo; F van den Akker

    2011-12-31

    Boronic acid transition state inhibitors (BATSIs) are potent class A and C {beta}-lactamase inactivators and are of particular interest due to their reversible nature mimicking the transition state. Here, we present structural and kinetic data describing the inhibition of the SHV-1 {beta}-lactamase, a clinically important enzyme found in Klebsiella pneumoniae, by BATSI compounds possessing the R1 side chains of ceftazidime and cefoperazone and designed variants of the latter, compounds 1 and 2. The ceftazidime and cefoperazone BATSI compounds inhibit the SHV-1 {beta}-lactamase with micromolar affinity that is considerably weaker than their inhibition of other {beta}-lactamases. The solved crystal structures of these two BATSIs in complex with SHV-1 reveal a possible reason for SHV-1's relative resistance to inhibition, as the BATSIs adopt a deacylation transition state conformation compared to the usual acylation transition state conformation when complexed to other {beta}-lactamases. Active-site comparison suggests that these conformational differences might be attributed to a subtle shift of residue A237 in SHV-1. The ceftazidime BATSI structure revealed that the carboxyl-dimethyl moiety is positioned in SHV-1's carboxyl binding pocket. In contrast, the cefoperazone BATSI has its R1 group pointing away from the active site such that its phenol moiety moves residue Y105 from the active site via end-on stacking interactions. To work toward improving the affinity of the cefoperazone BATSI, we synthesized two variants in which either one or two extra carbons were added to the phenol linker. Both variants yielded improved affinity against SHV-1, possibly as a consequence of releasing the strain of its interaction with the unusual Y105 conformation.

  10. Social Media Activism and State Censorship

    NARCIS (Netherlands)

    T. Poell

    2015-01-01

    This chapter interrogates how activist social media communication in authoritarian contexts is shaped through the mutual articulation of social media user practices, business models, and technological architectures, as well as through the controlling efforts of states. It specifically focuses on soc

  11. On the emergence of natural singularities and state transitions in living patterns

    CERN Document Server

    Dobay, Akos

    2014-01-01

    As far as human perceptions and rational thinking are concerned, contradictions constitute a non negligible part of our reality. We often refer to these phenomena, in a more informal way, as the chicken or the egg causality dilemma. However, it is not clear whether the chicken or the egg dilemma exists only within the scope of our perceptions, or contradictions have a deeper meaning towards our understanding of reality. Here we argue that if there is an element of reality such that can be adequately described in terms of the chicken or the egg dilemma, then it might lead to a spontaneous symmetry breaking by creating an alternate entity, capable of ultimately separating the chicken from the egg. We propose a formalism to describe such mechanism and discuss how it can be applied to phenomena to describe the natural emergence of singularities and state transitions in living systems.

  12. Alpha-decay-induced fracturing in zircon - The transition from the crystalline to the metamict state

    Science.gov (United States)

    Chakoumakos, Bryan C.; Murakami, Takashi; Lumpkin, Gregory R.; Ewing, Rodney C.

    1987-06-01

    Zonation due to alpha-decay damage in a natural single crystal of zircon from Sri Lanka is discussed. The zones vary in thickness on a scale from one to hundreds of microns. The uranium and thorium concentrations vary from zone to zone such that the alpha decay dose is between 0.2 x 10 to the 16th and 0.8 x 10 to the 16th alpha-events per milligram. The transition from the crystalline to the aperiodic metamict state occurs over this dose range. At doses greater than 0.8 x 10 to the 16th alpha events/mg there is no evidence for long-range order. This type of damage will accumulate in actinide-bearing, ceramic nuclear waste forms. The systematic pattern of fractures would occur in crystalline phases that are zoned with respect to actinide radionuclides.

  13. CP Asymmetries in Many-Body Final States in Beauty & Charm Transitions

    CERN Document Server

    Bigi, I I

    2015-01-01

    Our community has focused on two-body final states (FS) in $B$ & $D$ decays. The SM produces at least the leading source of CP violation in $B$ transitions; none has been established yet in charm decays. It is crucial to measure three- and four-body FS with accuracy and to compare with predictions based on refined theoretical tools. Correlations between different FS based on CPT invariance are often not obvious, how to apply them and where. We have to probe regional asymmetries and use refined parametrization of the CKM matrix. One uses (broken) U- & V-spin symmetries for spectroscopy. The situations with weak decays of hadrons are much more complex. The impact of strong re-scattering is large, and it connects U- \\& V-spin symmetries. Drawing diagrams often does not mean we understand the underlying dynamics. We have to probe the decays of beauty \\& charm baryons. I discuss the `strategies' more than the `tactics'.

  14. Removing External Degrees of Freedom from Transition-State Search Methods using Quaternions

    CERN Document Server

    Melander, Marko; Jonsson, Hannes

    2015-01-01

    In finite systems, such as nanoparticles and gas-phase molecules, calculations of minimum energy paths (MEPs) connecting initial and final states of transitions as well as searches for saddle points are complicated by the presence of external degrees of freedom, such as overall translation and rotation. A method based on quaternion algebra for removing the external degrees of freedom is described here and applied in calculations using two commonly used methods: the nudged elastic band (NEB) method for MEPs and the DIMER method for finding the minimum mode in minimum mode following searches of first-order saddle points. With the quaternion approach, fewer images in the NEB are needed to represent MEPs accurately. In both NEB and DIMER calculations of finite systems, the number of iterations required to reach convergence is significantly reduced. The algorithms have been implemented in the Atomic Simulation Environment (ASE) open source software.

  15. Removing External Degrees of Freedom from Transition-State Search Methods using Quaternions.

    Science.gov (United States)

    Melander, Marko; Laasonen, Kari; Jónsson, Hannes

    2015-03-10

    In finite systems, such as nanoparticles and gas-phase molecules, calculations of minimum energy paths (MEPs) connecting initial and final states of transitions as well as searches for saddle points are complicated by the presence of external degrees of freedom, such as overall translation and rotation. A method based on quaternion algebra for removing the external degrees of freedom is described here and applied in calculations using two commonly used methods: the nudged elastic band (NEB) method for MEPs and the DIMER method for finding the minimum mode in minimum mode following searches of first-order saddle points. With the quaternion approach, fewer images in the NEB are needed to represent MEPs accurately. In both NEB and DIMER calculations of finite systems, the number of iterations required to reach convergence is significantly reduced. The algorithms have been implemented in the Atomic Simulation Environment (ASE) open source software. PMID:26579757

  16. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Amber; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 (United States)

    2015-10-07

    We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.

  17. An Extensible Dialogue Script for a Robot Based on Unification of State-Transition Models

    Directory of Open Access Journals (Sweden)

    Yosuke Matsusaka

    2010-01-01

    development of communication function of the robot. Compared to previous extension-by-connection method used in behavior-based communication robot developments, the extension-by-unification method has the ability to decompose the script into components. The decomposed components can be recomposed to build a new application easily. In this paper, first we, explain a reformulation we have applied to the conventional state-transition model. Second, we explain a set of algorithms to decompose, recompose, and detect the conflict of each component. Third, we explain a dialogue engine and a script management server we have developed. The script management server has a function to propose reusable components to the developer in real time by implementing the conflict detection algorithm. The dialogue engine SEAT (Speech Event-Action Translator has flexible adapter mechanism to enable quick integration to robotic systems. We have confirmed that by the application of three robots, development efficiency has improved by 30%.

  18. Amorphous state in the mixed phase of quark-hadron phase transition in protoneutron stars

    CERN Document Server

    Yasutake, Nobutoshi; Tatsumi, Toshitaka

    2012-01-01

    We study the quark-hadron mixed phase in protoneutron stars, where neutrinos are trapped and lepton number becomes a conserved quantity besides the baryon number and electric charge. Considering protoneutron star matter as a ternary system, the Gibbs conditions are applied together with the Coulomb interaction. We find there appears no crystalline ("pasta") structure in the regime of high lepton-number fraction; the size of pasta becomes very large and the geometrical structure becomes mechanically unstable due to the charge screening effect. Consequently the whole system is separated into two bulk regions like an amorphous state, where the surface effect is safely neglected. The local charge neutrality is approximately attained there. After neutrinos are ejected, the matter becomes a binary system. Charge neutrality is globally ensured and the pasta structures appear there. These features are important to consider the quark-hadron phase transition during the evolution of protoneutron stars.

  19. Transition moments between excited electronic states from the Hermitian formulation of the coupled cluster quadratic response function

    CERN Document Server

    Tucholska, Aleksandra; Moszynski, Robert

    2016-01-01

    We introduce a new method for the computation of the transition moments between the excited electronic states based on the expectation value formalism of the coupled cluster theory [B. Jeziorski and R. Moszynski, Int. J. Quant. Chem. 48, 161 (1993)]. The working expressions of the new method solely employ the coupled cluster amplitudes. In the approximation adopted in the present paper the cluster expansion is limited to single, double, and linear triple excitations. The computed dipole transition probabilities for the singlet-singlet and triplet-triplet transitions in alkali earth atoms agree well with the available theoretical and experimental data. In contrast to the existing coupled cluster response theory, the matrix elements obtained by using our approach satisfy the Hermitian symmetry even if the excitations in the cluster operator are truncated. As a part of the numerical evidence for the new method, we report calculations of the transition moments between the excited triplet states which have not yet...

  20. Effects of home telemonitoring on transitions between frailty states and death for older adults: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Upatising B

    2013-03-01

    Full Text Available Benjavan Upatising,1 Gregory J Hanson,2 Young L Kim,3 Stephen S Cha,4 Yuehwern Yih,1 Paul Y Takahashi21School of Industrial Engineering, Purdue University, West Lafayette, IN, USA; 2Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; 3School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; 4Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USABackground: Two primary objectives when caring for older adults are to slow the decline to a worsened frailty state and to prevent disability. Telemedicine may be one method of improving care in this population. We conducted a secondary analysis of the Tele-ERA study to evaluate the effect of home telemonitoring in reducing the rate of deterioration into a frailty state and death in older adults with comorbid health problems.Methods: This trial involved 205 adults over the age of 60 years with a high risk of hospitalization and emergency department visits. For 12 months, the intervention group received usual medical care and telemonitoring case management, and the control group received usual care alone. The primary outcome was frailty, which was based on five criteria, ie, weight loss, weakness, exhaustion, low activity, and slow gait speed. Participants were classified as frail if they met three or more criteria; prefrail if they met 1–2 criteria; and not frail if they met no criteria. Both groups were assessed for frailty at baseline, and at 6 and 12 months. Frailty transition analyses were performed using a multiple logistic regression method. Kaplan–Meier and Cox proportional hazards methods were used to evaluate each frailty criteria for mortality and to compute unadjusted hazard ratios associated with being telemonitored, respectively. A retrospective power analysis was computed.Results: During the first 6 months, 19 (25% telemonitoring participants declined in frailty status or died, compared with 17 (19% in usual care (odds ratio

  1. Transition by breaking of analyticity in the ground state of Josephson junction arrays as a static signature of the vortex jamming transition

    KAUST Repository

    Nogawa, Tomoaki

    2012-05-22

    We investigate the ground state of the irrationally frustrated Josephson junction array with a controlling anisotropy parameter λ that is the ratio of the longitudinal Josephson coupling to the transverse one. We find that the ground state has one-dimensional periodicity whose reciprocal lattice vector depends on λ and is incommensurate with the substrate lattice. Approaching the isotropic point λ=1, the so-called hull function of the ground state exhibits analyticity breaking similar to the Aubry transition in the Frenkel-Kontorova model. We find a scaling law for the harmonic spectrum of the hull functions, which suggests the existence of a characteristic length scale diverging at the isotropic point. This critical behavior is directly connected to the jamming transition previously observed in the current-voltage characteristics by a numerical simulation. On top of the ground state there is a gapless continuous band of metastable states, which exhibit the same critical behavior as the ground state. © 2012 American Physical Society.

  2. Using state-and-transition modeling to account for imperfect detection in invasive species management

    Science.gov (United States)

    Frid, Leonardo; Holcombe, Tracy; Morisette, Jeffrey T.; Olsson, Aaryn D.; Brigham, Lindy; Bean, Travis M.; Betancourt, Julio L.; Bryan, Katherine

    2013-01-01

    Buffelgrass, a highly competitive and flammable African bunchgrass, is spreading rapidly across both urban and natural areas in the Sonoran Desert of southern and central Arizona. Damages include increased fire risk, losses in biodiversity, and diminished revenues and quality of life. Feasibility of sustained and successful mitigation will depend heavily on rates of spread, treatment capacity, and cost–benefit analysis. We created a decision support model for the wildland–urban interface north of Tucson, AZ, using a spatial state-and-transition simulation modeling framework, the Tool for Exploratory Landscape Scenario Analyses. We addressed the issues of undetected invasions, identifying potentially suitable habitat and calibrating spread rates, while answering questions about how to allocate resources among inventory, treatment, and maintenance. Inputs to the model include a state-and-transition simulation model to describe the succession and control of buffelgrass, a habitat suitability model, management planning zones, spread vectors, estimated dispersal kernels for buffelgrass, and maps of current distribution. Our spatial simulations showed that without treatment, buffelgrass infestations that started with as little as 80 ha (198 ac) could grow to more than 6,000 ha by the year 2060. In contrast, applying unlimited management resources could limit 2060 infestation levels to approximately 50 ha. The application of sufficient resources toward inventory is important because undetected patches of buffelgrass will tend to grow exponentially. In our simulations, areas affected by buffelgrass may increase substantially over the next 50 yr, but a large, upfront investment in buffelgrass control could reduce the infested area and overall management costs.

  3. Transit times of water particles in the vadose zone across catchment states and catchments functional units

    Science.gov (United States)

    Sprenger, Matthias; Weiler, Markus

    2014-05-01

    Understanding the water movement in the vadose zone and its associated transport of solutes are of major interest to reduce nutrient leaching, pollution transport or other risks to water quality. Soil physical models are widely used to asses such transport processes, while the site specific parameterization of these models remains challenging. Inverse modeling is a common method to adjust the soil physical parameters in a way that the observed water movement or soil water dynamics are reproduced by the simulation. We have shown that the pore water stable isotope concentration can serve as an additional fitting target to simulate the solute transport and water balance in the unsaturated zone. In the presented study, the Mualem- van Genuchten parameters for the Richards equation and diffusivity parameter for the convection-dispersion equation have been parameterized using the inverse model approach with Hydrus-1D for 46 experimental sites of different land use, topography, pedology and geology in the Attert basin in Luxembourg. With the best parameter set we simulated the transport of a conservative solute that was introduced via a pulse input at different points in time. Thus, the transit times in the upper 2 m of the soil for different catchment states could be inferred for each location. It has been shown that the time a particle needs to pass the -2 m depth plane highly varies from the systems state and the systems forcing during and after infiltration of that particle. Differences in transit times among the study sites within the Attert basin were investigated with regards to its governing factors to test the concept of functional units. The study shows the potential of pore water stable isotope concentration for residence times and transport analyses in the unsaturated zone leading to a better understanding of the time variable subsurface processes across the catchment.

  4. Structure-composition-activity relationships in transition-metal oxide and oxyhydroxide oxygen-evolution electrocatalysts

    Science.gov (United States)

    Trotochaud, Lena

    Solar water-splitting is a potentially transformative renewable energy technology. Slow kinetics of the oxygen evolution reaction (OER) limit the efficiency of solar-watersplitting devices, thus constituting a hurdle to widespread implementation of this technology. Catalysts must be stable under highly oxidizing conditions in aqueous electrolyte and minimally absorb light. A grand goal of OER catalysis research is the design of new materials with higher efficiencies enabled by comprehensive understanding of the fundamental chemistry behind catalyst activity. However, little progress has been made towards this goal to date. This dissertation details work addressing major challenges in the field of OER catalysis. Chapter I introduces the current state-of-the-art and challenges in the field. Chapter II highlights work using ultra-thin films as a platform for fundamental study and comparison of catalyst activity. Key results of this work are (1) the identification of a Ni0.9Fe0.1OOH catalyst displaying the highest OER activity in base to date and (2) that in base, many transition-metal oxides transform to layered oxyhydroxide materials which are the active catalysts. The latter result is critical in the context of understanding structure-activity relationships in OER catalysts. Chapter III explores the optical properties of these catalysts, using in situ spectroelectrochemistry to quantify their optical absorption. A new figure-of-merit for catalyst performance is developed which considers both optical and kinetic losses due to the catalyst and describes how these factors together affect the efficiency of composite semiconductor/catalyst photoanodes. In Chapter IV, the fundamental structure-composition-activity relationships in Ni1--xFexOOH catalysts are systematically investigated. This work shows that nearly all previous studies of Ni-based catalysts were likely affected by the presence of Fe impurities, a realization which holds significant weight for future study

  5. Downscaling global land-use/land-cover projections for use in region-level state-and-transition simulation modeling

    Directory of Open Access Journals (Sweden)

    Jason T. Sherba

    2015-06-01

    Full Text Available Global land-use/land-cover (LULC change projections and historical datasets are typically available at coarse grid resolutions and are often incompatible with modeling applications at local to regional scales. The difficulty of downscaling and reapportioning global gridded LULC change projections to regional boundaries is a barrier to the use of these datasets in a state-and-transition simulation model (STSM framework. Here we compare three downscaling techniques to transform gridded LULC transitions into spatial scales and thematic LULC classes appropriate for use in a regional STSM. For each downscaling approach, Intergovernmental Panel on Climate Change (IPCC Representative Concentration Pathway (RCP LULC projections, at the 0.5 × 0.5 cell resolution, were downscaled to seven Level III ecoregions in the Pacific Northwest, United States. RCP transition values at each cell were downscaled based on the proportional distribution between ecoregions of (1 cell area, (2 land-cover composition derived from remotely-sensed imagery, and (3 historic LULC transition values from a LULC history database. Resulting downscaled LULC transition values were aggregated according to their bounding ecoregion and “cross-walked” to relevant LULC classes. Ecoregion-level LULC transition values were applied in a STSM projecting LULC change between 2005 and 2100. While each downscaling methods had advantages and disadvantages, downscaling using the historical land-use history dataset consistently apportioned RCP LULC transitions in agreement with historical observations. Regardless of the downscaling method, some LULC projections remain improbable and require further investigation.

  6. Transition Metal–α-Amino Acid Complexes with Antibiotic Activity against Mycobacterium spp.

    OpenAIRE

    Karpin, George W.; Merola, Joseph S.; Joseph O. Falkinham

    2013-01-01

    Synthetic iridium-, rhodium-, and ruthenium-amino acid complexes with hydrophobic l-amino acids have antibiotic activity against Mycobacterium spp., including Mycobacterium bovis BCG and the rapidly growing species Mycobacterium abscessus and Mycobacterium chelonae. Concentrations of transition metal-amino acid complexes demonstrating hemolysis or cytotoxicity were 10- to 25-fold higher than were the MICs.

  7. 25 CFR 170.152 - What transit facilities and activities are eligible for IRR Program funding?

    Science.gov (United States)

    2010-04-01

    ... IRR Program funding? 170.152 Section 170.152 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE... funding? Transit facilities and activities eligible for IRR Program funding include, but are not limited... facilities for use in mass transportation; (f) Third-party contracts for otherwise eligible...

  8. Structures of the dehydrogenation products of methane activation by 5d transition metal cations

    NARCIS (Netherlands)

    Lapoutre, V. J. F.; Redlich, B.; van der Meer, A. F. G.; Oomens, J.; Bakker, J. M.; Sweeney, A.; Mookherjee, A.; Armentrout, P. B.

    2013-01-01

    The activation of methane by gas-phase transition metal cations (M +) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H]+ and H2. However, the structure of the dehydrogenation

  9. Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts

    DEFF Research Database (Denmark)

    Peterson, Andrew; Nørskov, Jens K.

    2012-01-01

    . In this work, we compare trends in binding energies for the intermediates in CO2 electrochemical reduction and present an activity “volcano” based on this analysis. This analysis describes the experimentally observed variations in transition-metal catalysts, including why copper is the best-known metal...

  10. Structures of the Dehydrogenation Products of Methane Activation by 5d Transition Metal Cations

    NARCIS (Netherlands)

    V.J.F. Lapoutre; B. Redlich; A.F.G. Meer; J. Oomens; J.M. Bakker; A. Sweeney; A. Mookherjee; P.B. Armentrout

    2013-01-01

    The activation of methane by gas-phase transition metal cations (M+) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H](+) and H-2. However, the structure of the dehydrogenati

  11. State-of-the-Art Hip Surgeries for Active Adults

    Science.gov (United States)

    STATE-OF-THE-ART HIP SURGERIES FOR ACTIVE ADULTS Thomas Jefferson University Hospital Philadelphia, PA September 24, 2008 00:00:09 ANNOUNCER: Welcome ... surgeons will demonstrate and discuss state- of-the-art surgical options for young and active older adults ...

  12. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available STATE-OF-THE-ART HIP SURGERIES FOR ACTIVE ADULTS Thomas Jefferson University Hospital Philadelphia, PA September 24, 2008 00:00:09 ANNOUNCER: Welcome ... surgeons will demonstrate and discuss state- of-the-art surgical options for young and active older adults ...

  13. Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowicz, M J; MacCormick, C; Kowalczyk, A; Bergamini, S [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK6 7AA (United Kingdom); Beterov, I I; Yakshina, E A, E-mail: c.maccormick@open.ac.uk, E-mail: s.bergamini@open.ac.uk [Institute of Semiconductor Physics, Lavrentyeva Avenue 13, 630090 Novosibirsk (Russian Federation)

    2011-09-15

    We present the direct measurements of electric dipole moments for 5P{sub 3/2}{yields}nD{sub 5/2} transitions with 20states. To the best of our knowledge, this is the first systematic measurement of the electric dipole moments for transitions from low excited states of rubidium to Rydberg states. Due to its simplicity and versatility, this method can be easily extended to other transitions and other atomic species with few constraints. The good agreement seen between the experimental results and the theory proves the reliability of the measurement method.

  14. On stimulated transitions between the self-trapped states of the nonlinear Schrödinger equation

    CERN Document Server

    Elyutin, P V

    1999-01-01

    The studied model describes a particle that obeys a one-dimensional nonlinear Schrödinger equation in the potential of a double-well. Transitions between the two lowest self-trapped states of this system under the influence of the external time-dependent perturbation are studied in the two-mode approximation. If the perturbation dependence on time is harmonic with the frequency $\\omega$, then transitions between the states become possible if the amplitude of the perturbation $F$ exceeds some threshold value $F_c(\\omega)$; above the threshold motion of the system becomes chaotic. If the perturbation is a broadband noise, then transitions between the states are possible at arbitrarily small $F$ and occur in the process of the system's energy diffusion.

  15. Girlhood, Sport and Physical Activity: The Construction of Young Femininities in the Transition to Secondary School

    OpenAIRE

    Clark, Sheryl

    2010-01-01

    This thesis deals with issues of sport, gender and identity within schooling. It focuses on six physically active girls as they made the transition to secondary schools in London and considers the social and educational contexts that framed their involvement in physical activity and sport over this period. The research involved in-depth interviews with the girls, and their parents, teachers and friends, over a period of four years, beginning when the girls were in Year 5 and finishing when...

  16. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    OpenAIRE

    О. Davydova

    2013-01-01

    In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namel...

  17. Promoting better health through public transit use : another step towards active, sustainable transportation

    Energy Technology Data Exchange (ETDEWEB)

    Noxon, G. [Noxon Associates Ltd., Ottawa, ON (Canada)

    2001-07-01

    A study was conducted on behalf of the Canadian Urban Transit Association and the Federation of Canadian Municipalities, aimed at determining the contribution of public transit to public health in Canada. Health and transportation are linked together in their impact on air quality, climate change and safety, to name a few. The author defined sustainable transportation, limited growth, modal shift and modal efficiency. The benefits to be derived from sustainable transportation include health, with the emphasis being placed on urban transportation. Transportation in Toronto causes 90 per cent of carbon dioxide emissions, 83 per cent of nitrogen oxide emissions, and 60 per cent of sulphur dioxide emissions. Air quality is vastly improved and pollution reduced through the use of public transit. Alternative fuels, such as clean diesel, natural gas and biomass pollute a lot less. The use of auto and urban travel represent major sources of greenhouse gases and have an effect on global climate change. Some of the measures being considered involve the use of fare technologies, tax-exempt transit benefits, pricing strategies, service improvements, vehicle/fuel technologies. Road safety has improved but vehicle accidents still represent the major cause of death among young people. Canadians are not active enough, and physical activity is critical to good health. It was recommended that walking and cycling be used for short trips. Health also improves with income and social standing. Low income families end up spending more on transportation than they do on food. Some of the challenges facing equity in access to public transit are route elimination, fare increases, and paratransit demand. More research is needed to better address public transit contribution to public health, especially air quality, climate change, safety, physical activity (multimodal lifestyles and trips) and equity of access. figs.

  18. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H2O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H2O → H2 + OH reaction. The strong enhancement of reactivity by the H2O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  19. E1 transition probabilities from K/sup π/ = 0- and K/sup π/ = 1- states of 238Pu

    International Nuclear Information System (INIS)

    Levels of 238Pu were studied in the β- decay of 238Np and the α decay of 242Cm. Thirteen γ-ray transitions were observed for the first time, and additional information about multipolarities and mixing ratios was obtained. An analysis of the γ-ray branching ratios gives a measure of the E1 transition probabilities between octupole-vibrational states and the ground-state band, corresponding to F/sub W/ = 4.3 x 104 for ΔK = 1 transitions and F/sub W/ = 1.5 x 104 for ΔK = 0. The latter transitions are three orders of magnitude faster than those that occur in the isotone 236U, for which F/sub W/(ΔK = 0) = 2.2 x 107, from a direct measurement of the half-life of the 0,1- state. Estimates of the hindrance factors for E1 transitions from octupole states in other heavy nuclei are given, and the validity of the calculations on which they are based is discussed

  20. Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains

    Science.gov (United States)

    Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.

    2016-09-01

    The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.

  1. Interplay of collective and single-particle states in neutron deficient transitional nuclei

    International Nuclear Information System (INIS)

    This thesis reports several in-beam γ-ray spectroscopic studies of rotational states in neutron deficient nuclei in the transitional A = 120 and A = 170 mass regions following heavy-ion reactions. The experiments were performed using high-resolution multidetector arrays at Daresbury Laboratory, England and the Tandem Accelerator Laboratory, Niels Bohr Institute, Denmark. The Daresbury Recoil Separator and a 4π charged particle Si-detector system in conjunction with 11 neutron detectors were used in order to identify some of the very neutron deficient and previously unknown residual nuclei that were produced in the reactions. The experimental results are compared to theoretical mean field calculations which minimize the total energy of the nucleus as a function of rotational frequency and deformation, for various configurations. Within the limitations of these so called Total Routhian Surface (TRS) calculations it is possible to draw conclusions of the underlying microscopic mechanisms behind the experimentally observed properties of rotational band structures. The emphasis is put on studies of the shape polarizing properties of different single-particle orbits, especially on the role of deformed intruder states. (39 refs.) (au)

  2. High P-T phase transitions and P-V-T equation of state of hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Hrubiak, Rostislav; Drozd, Vadym; Karbasi, Ali; Saxena, Surendra K. (FIU)

    2016-07-29

    We measured the volume of hafnium at several pressures up to 67 GPa and at temperatures between 300 to 780 K using a resistively heated diamond anvil cell with synchrotron x-ray diffraction at the Advanced Photon Source. The measured data allows us to determine the P-V-T equation of state of hafnium. The previously described [Xia et al., Phys. Rev. B 42, 6736-6738 (1990)] phase transition from hcp ({alpha}) to simple hexagonal ({omega}) phase at 38 GPa at room temperature was not observed even up to 51 GPa. The {omega} phase was only observed at elevated temperatures. Our measurements have also improved the experimental constraint on the high P-T phase boundary between the {omega} phase and high pressure bcc ({beta}) phase of hafnium. Isothermal room temperature bulk modulus and its pressure derivative for the {alpha}-phase of hafnium were measured to be B{sub 0} = 112.9{+-}0.5 GPa and B{sub 0}'=3.29{+-}0.05, respectively. P-V-T data for the {alpha}-phase of hafnium was used to obtain a fit to a thermodynamic P-V-T equation of state based on model by Brosh et al. [CALPHAD 31, 173-185 (2007)].

  3. Spin-valley locking in the normal state of a transition-metal dichalcogenide superconductor.

    Science.gov (United States)

    Bawden, L; Cooil, S P; Mazzola, F; Riley, J M; Collins-McIntyre, L J; Sunko, V; Hunvik, K W B; Leandersson, M; Polley, C M; Balasubramanian, T; Kim, T K; Hoesch, M; Wells, J W; Balakrishnan, G; Bahramy, M S; King, P D C

    2016-01-01

    Metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing from a charge-density wave state. The interplay between such phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved controversial. Here, we study a prototypical example, 2H-NbSe2, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterized by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking, while interlayer coupling further drives a rich three-dimensional momentum dependence of the underlying Fermi-surface spin texture. These findings necessitate a re-investigation of the nature of charge order and superconducting pairing in NbSe2 and related TMDCs.

  4. Spin-valley locking in the normal state of a transition-metal dichalcogenide superconductor

    Science.gov (United States)

    Bawden, L.; Cooil, S. P.; Mazzola, F.; Riley, J. M.; Collins-McIntyre, L. J.; Sunko, V.; Hunvik, K. W. B.; Leandersson, M.; Polley, C. M.; Balasubramanian, T.; Kim, T. K.; Hoesch, M.; Wells, J. W.; Balakrishnan, G.; Bahramy, M. S.; King, P. D. C.

    2016-05-01

    Metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing from a charge-density wave state. The interplay between such phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved controversial. Here, we study a prototypical example, 2H-NbSe2, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterized by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking, while interlayer coupling further drives a rich three-dimensional momentum dependence of the underlying Fermi-surface spin texture. These findings necessitate a re-investigation of the nature of charge order and superconducting pairing in NbSe2 and related TMDCs.

  5. Zero-momentum coupling induced transitions of ground states in Rashba spin–orbit coupled Bose–Einstein condensates

    International Nuclear Information System (INIS)

    We investigate the transitions of ground states induced by zero momentum (ZM) coupling in pseudospin-1/2 Rashba spin–orbit coupled Bose–Einstein condensates confined in a harmonic trap. In a weak harmonic trap, the condensate presents a plane wave (PW) state, a stripe state or a spin polarized ZM state, and the particle distribution of the stripe state is weighted equally at two points in the momentum space without ZM coupling. The presence of ZM coupling induces an imbalanced particle distribution in the momentum space, and leads to the decrease of the amplitude of the stripe state. When its strength exceeds a critical value, the system experiences the transition from stripe phase to PW phase. The boundary of these two phases is shifted and a new phase diagram spanned by the ZM coupling and the interatomic interactions is obtained. The presence of ZM coupling can also achieve the transition from ZM phase to PW phase. In a strong harmonic trap, the condensate exhibits a vortex lattice state without ZM coupling. For the positive effective Rabi frequency of ZM coupling, the condensate is driven from a vortex lattice state to a vortex-free lattice state and finally to a PW state with the increase of coupling strength. In addition, for the negative effective Rabi frequency, the condensate is driven from a vortex lattice state to a stripe state, and finally to a PW state. The stripe state found in the strong harmonic trap is different from that in previous works because of its nonzero superfluid velocity along the stripes. We also discuss the influences of the ZM coupling on the spin textures, and indicate that the spin textures are squeezed transversely by the ZM coupling. (paper)

  6. Molecular Dissociation in Presence of a Catalyst II: The bond breaking role of the transition from virtual to localized states

    CERN Document Server

    Ruderman, Andres; Santos, Elizabeth; Pastawski, Horacio Miguel

    2016-01-01

    We address a molecular dissociation mechanism that is known to occur when a H 2 molecule approaches a catalyst with its molecular axis parallel to the surface. It is found that molecular dissociation is a form of quantum dynamical phase transition associated to an ana- lytic discontinuity of quite unusual nature: the molecule is destabilized by the transition from non-physical virtual states into actual local- ized states. Current description complements our recent results for a molecule approaching the catalyst with its molecular axis perpendicu- lar to the surface. Also, such a description can be seen as a further successful implementation of a non-Hermitian Hamiltonian in a well defined model.

  7. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    CERN Document Server

    Beterov, I I; Yakshina, E A; Ryabtsev, I I; Tretyakov, D B; Entin, V M; MacCormick, C; Piotrowicz, M J; Kowalczyk, A; Bergamini, S

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transitions between rubidium Rydberg states has been found.

  8. The approximate state transition matrix based on non-orthogonal decomposition and its application in orbit determination

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Unit Vector Method (UVM) is an orbit determination method extensively applied. In this paper, the UVM and classical Differential Orbit Improvement (DOI) are compared, and a fusion method is given for the orbit determination with different kind data. Based on non-orthogonal decomposition of position and velocity vectors, an approximation scheme is constructed to calculate the state transition matrix. This method simplifies the calculation of the approximate state transition matrix, analyzes the convergence mechanism of the UVM, and makes clear the defect of weight strategy in UVM. Results of orbit the determination with simulating and real data show that this method has good numerical stability and rational weight distribution.

  9. THE PRACTEAM MODEL REGARDING SCHOOL TO ACTIVE LIFE TRANSITION. STUDENTS’ EXPECTANCIES

    Directory of Open Access Journals (Sweden)

    Dodescu Anca Otilia

    2013-07-01

    Full Text Available The project “Practical training of economist’s students. Inter-regional partnership in the labor market between universities and the business environment” focuses on student’s transition from school to labor market. Concretely, it tries to highlight the general role of practical training – specifically the field related practical training set as a mandatory discipline in the curriculum, by identifying possibilities of interventions from supervisors. Starting with literature review regarding determinants of school to active life transition, the present contribution discusses the outline of the practical training set as a mandatory discipline in the curriculum. Within PRACTeam project the practical training itself is accompanied with a series of supplementary services (aptitude testing, counseling, career guidance, mentoring by a trained tutor, granting financial aid, awarding excellence over contests and internships. It represents an active partnership on the labor market meant to address directly students’ expectations regarding practical training, work, and entrepreneurship. At least two main benefits may be derived from the training and tutoring. First, as a dual type model of transition from school to active life, allowing students to become insiders in the labor market. Secondly, changes in supervisor’ patterns of interactions and behavior/attitudes toward work and employees may also occur, which in turn may improve the work. A pretest-posttest non-experimental design was applied for the PRACTeam evaluation. Using administered questionnaires and focus group method to students before and after they completed their practical stages we examined their attitudes and behavior towards elements of the dual model of transition. The paper concludes that a dual type model of transition from school to active life - that implies the education and practice occur simultaneously, successfully meets students’ expectancies and may be

  10. Activated scaling in disorder-rounded first-order quantum phase transitions

    Science.gov (United States)

    Bellafard, Arash; Chakravarty, Sudip

    2016-09-01

    First-order phase transitions, classical or quantum, subject to randomness coupled to energylike variables (bond randomness) can be rounded, resulting in continuous transitions (emergent criticality). We study perhaps the simplest such model, the quantum three-color Ashkin-Teller model, and show that the quantum critical point in (1 +1 ) dimension is an unusual one, with activated scaling at the critical point and Griffiths-McCoy phase away from it. The behavior is similar to the transverse random field Ising model, even though the pure system has a first-order transition in this case. We believe that this fact must be attended to when discussing quantum critical points in numerous physical systems.

  11. The inactive-active phase transition in the noisy additive (exclusive-or) probabilistic cellular automaton

    Science.gov (United States)

    Mendonça, J. Ricardo G.

    2016-07-01

    We investigate the inactive-active phase transition in an array of additive (exclusive-or) cellular automata (CA) under noise. The model is closely related with the Domany-Kinzel (DK) probabilistic cellular automaton (PCA), for which there are rigorous as well as numerical estimates on the transition probabilities. Here, we characterize the critical behavior of the noisy additive cellular automaton by mean field analysis and finite-size scaling and show that its phase transition belongs to the directed percolation universality class of critical behavior. As a by-product of our analysis, we argue that the critical behavior of the noisy elementary CA 90 and 102 (in Wolfram’s enumeration scheme) must be the same. We also perform an empirical investigation of the mean field equations to assess their quality and find that away from the critical point (but not necessarily very far away) the mean field approximations provide a reasonably good description of the dynamics of the PCA.

  12. Transition metal complexes of some biologically active ligands; synthesis characterization and bioactivities

    International Nuclear Information System (INIS)

    Transition/representative transition metals complexes of biologically active chelating agent 1,2-dipyrolodinoethane were synthesized and characterized through spectral and analytical data. The complexes are of the formula (M(L)X/sub 2/). Where (M = Co (II), Ni (II), Cu (II), Zn (II), Hg (II) and Cd (II) and X = CI, Br, NO/sub 3/). Tetrahedral geometry has been proposed to these-metal complexes with the help of magnetic measurements, elemental analysis, chemical stoichiometry and spectroscopic data Antibacterial activity of the ligand and its metal complexes were screened against Eschereschi coli, Klebsiello pneumonia, Proteus mirabilis, Proteus vulhari, Streptococcus pneumonia, Salmonella Iyphi, Bacilh,s anthrax, Streptococcus fecalis and Staphylococcus aureus. Complexes were found to be active against Eschereschi coli, Klebsiella pneumonia, Proteus mirabilis and Proteus vulharis. (author)

  13. Gallium-67 activated charcoal: a new method for preparation of radioactive capsules for colonic transit study

    International Nuclear Information System (INIS)

    Indium-111 is currently the radionuclide of choice for colonic transit study. However, it is expensive and not available in many hospitals. Technetium-99m has been proposed for colonic transit study but the short half-life has limited its use. Gallium-67 citrate is inexpensive and available in most countries. Most importantly, it has a suitable half-life for colonic transit study. Attempts have been made in some studies to use 67Ga citrate to label activated charcoal, but the results have not been good because of poor stability. In this study, we successfully labelled activated charcoal with 67Ga citrate by adding alcohol and 5% glucose solution. To evaluate the in vitro stability, the 67Ga-activated charcoal was incubated in a milieu mimicking the intestinal content, containing lipase, trypsin and glycochenodeoxycholate at different pH values (6.0, 7.0, 7.4 and 8.0) and for different durations (0 h, 24 h, 48 h, 72 h and 96 h). For the in vivo study, the 67Ga-activated charcoal was loaded into a commercial empty enteric capsule. Colonic transit scintigraphy was performed in five volunteers, including three healthy people and two constipated patients, after intake of the radioactive capsule. Images were obtained at 2 h, 4 h, 6 h, 8 h, 24h, 48 h, 72 h etc. until no radioactivity was detected in the bowel. Our data show that the in vitro stability of 67Ga-activated charcoal was good. The labelling efficiency still exceeded 91% at 96 h at pH values of 6.0, 7.0 and 7.4. In the group with a pH value of 8.0, the labelling efficiency gradually fell during the 4-day incubation but was still higher than 88% at the end of the fourth day. In the in vivo study, most capsules disintegrated in the caecum/colon region, and the 67Ga-activated charcoal mixed very well with bowel content. In addition, the radioactive charcoal could be detected clearly on the 72-h image, which is very important for the evaluation of colonic transit time in patients with constipation. In conclusion

  14. Active Learning of Nondeterministic Finite State Machines

    Directory of Open Access Journals (Sweden)

    Warawoot Pacharoen

    2013-01-01

    Full Text Available We consider the problem of learning nondeterministic finite state machines (NFSMs from systems where their internal structures are implicit and nondeterministic. Recently, an algorithm for inferring observable NFSMs (ONFSMs, which are the potentially learnable subclass of NFSMs, has been proposed based on the hypothesis that the complete testing assumption is satisfied. According to this assumption, with an input sequence (query, the complete set of all possible output sequences is given by the so-called Teacher, so the number of times for asking the same query is not taken into account in the algorithm. In this paper, we propose LNM*, a refined ONFSM learning algorithm that considers the amount for repeating the same query as one parameter. Unlike the previous work, our approach does not require all possible output sequences in one answer. Instead, it tries to observe the possible output sequences by asking the same query many times to the Teacher. We have proved that LNM* can infer the corresponding ONFSMs of the unknown systems when the number of tries for the same query is adequate to guarantee the complete testing assumption. Moreover, the proof shows that our algorithm will eventually terminate no matter whether the assumption is fulfilled or not. We also present the theoretical time complexity analysis of LNM*. In addition, experimental results demonstrate the practical efficiency of our approach.

  15. CMS Grid Activities in the United States

    Institute of Scientific and Technical Information of China (English)

    I.Fisk; J.Amundson; 等

    2001-01-01

    The CMS groups in the USA are actively involved in several grid-elated projects,including the DoE-funded Particle Physics Data Grid(PPDG)and the NSFfunded Grid Physics Network(GriPhyN).We present developments of :the Grid data Management Pilot (GDMP) software;a Java Analysis Studio-based prototype remote analysis service for CMS data;tools for automating job submission schemes for large scale distributed simulation and reconstruction runs for CMS;modeling and development of job scheduling schemes using the MONARC toolkit;a robust execution service for distributed processors.The deployment and use of these tools at prototype Tier1 and Tier2 computing centers in the USA is described.

  16. State opportunities for action: Update of states' combined heat and power activities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Elizabeth [American Council for an Energy-Efficient Economy, Washington, D.C. (United States); Elliott, R. Neal [American Council for an Energy-Efficient Economy, Washington, D.C. (United States)

    2003-10-01

    This report updates the review of state policies with regard to CHP that the American Council for and Energy Efficient Economy completed in 2002. It describes the current activities of states with programs during the initial survey and also reviews new programs offered by the states.

  17. Stimulating Investment Development through Transformation of State Banks Activity

    Directory of Open Access Journals (Sweden)

    Kulpinska Lidiya K.

    2013-12-01

    Full Text Available The article considers significance of state corporations and state financial institutions in stimulation of investments into the fixed capital of the country and considers problems of increase of efficiency of activity of these institutions in the world and Ukraine. It considers the state sector of the developing countries through the prism of activity of state financial and non-financial corporations. It analyses theories of positive and negative features of carrying out state investing through state-owned banks. It analyses the role of state financial corporations in Ukraine, in particular, in crediting and expansion of the portfolio of acquired governmental bonds and offers ways of its increase in the context of necessity of directing funds into investment development.

  18. 34 CFR 403.70 - How must funds be used under the State Programs and State Leadership Activities?

    Science.gov (United States)

    2010-07-01

    ... State Leadership Activities? 403.70 Section 403.70 Education Regulations of the Offices of the... the Basic Programs? State Programs and State Leadership Activities § 403.70 How must funds be used under the State Programs and State Leadership Activities? A State shall use funds reserved under...

  19. Assessment of the transition-rates importance of Markovian systems at steady state using the unscented transformation

    International Nuclear Information System (INIS)

    The Unscented Transformation (UT) is a technique to understand and compute how the uncertainty of a set of random variables, with known mean and variance is propagated on the outputs of a model, through a reduced set of model evaluations as compared with other approaches (e.g., Monte Carlo). This computational effort reduction along with the definition of a proper UT model allows proposing an alternative approach to quantify the transition rates (TR) having the highest contribution to the variance of the steady-state probability, for each possible state of a system represented by a Markov model. The so called “main effects” of each transition rate, as well as high order component interactions are efficiently derived from the solution of only (2n+1) linear system of simultaneous equations, being n the number of transition rates in the model. - Highlights: • Evaluation of the effects of uncertainty in transition rates. • Uncertainty propagation of steady-state probabilities through a reduced number of evaluations. • Immediate computation of transition rate importances. • Application to real Markovian systems

  20. Accurate spectroscopic properties of 10 Λ-S states and 25 Ω states of BS+ cation including the electronic transition properties

    Science.gov (United States)

    Wang, Xinxin; Shi, Deheng; Zhou, Dan; Zhu, Zunlue; Sun, Jinfeng

    2015-11-01

    The potential energy curves of 10 Λ-S states of BS+ yielded from the first four dissociation limits are calculated by the internally contracted multireference configuration interaction approach with the Davidson correction. The core-valence correlation and scalar relativistic corrections are included. Basis on the calculated potential energy curves, the spectroscopic parameters are evaluated. All the PECs are extrapolated to the complete basis set limit. The spin-orbit coupling are taken into account by the state interaction method with the Breit-Pauli Hamiltonian. Finally, the transition dipole moments, Franck-Condon Factors and radiative lifetimes of transitions from the 23Π0-, 23Π0+, 23Σ0- and 23Σ1- states to ground state 13Π2 are predicted for future experiment.

  1. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Van Kuppevelt, Toin H. [Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 280 P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan)

    2013-01-18

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  2. Survey of United States uranium marketing activity

    International Nuclear Information System (INIS)

    Uranium marketing activity was much lower in 1977 than during 1976, which was the largest procurement year to date. Results from the survey suggest that there is an adequate supply of uranium--at least through 1985--in light of apparent buyer concepts of demand. Unfilled requirements were reduced by additional procurement and slippages in requirements. U.S. buyers continue to concentrate almost exclusively on U.S. sources for procurement. Buyer and producer inventories changed only slightly during the year. The average price reported for 1977 deliveries was $19.75 per pound of U3O8, compared to the $17.20 estimate reported as of July 1, 1977. An average of $17.40 was reported for 1978. Settlements of market prices in 1977 averaged $41.50 and for 1978 averaged $43.95. Most market price contracts have a base price. These prices are much higher than average contract prics and are closer to market price settlements. Producers estimate they will be able to offer for sale substantial additional quantities of uranium, indicating that they expect to expand production considerably

  3. Exact results for state-to-state transition probabilities in the multistate Landau-Zener model by non-stationary perturbation theory

    OpenAIRE

    Volkov, M.V.; Ostrovsky, V. N.

    2006-01-01

    Multistate generalizations of Landau-Zener model are studied by summing entire series of perturbation theory. A new technique for analysis of the series is developed. Analytical expressions for probabilities of survival at the diabatic potential curves with extreme slope are proved. Degenerate situations are considered when there are several potential curves with extreme slope. New expressions for some state-to-state transition probabilities are derived in degenerate cases.

  4. Effective collision strengths for fine structure transitions from the ground state to n = 3 levels in Ca XI

    International Nuclear Information System (INIS)

    The R-matrix method is used to calculate electron impact collision strength in Ca XI from its ground state. Configuration interactions are used to represent the first fifteen LS coupled states which are retained in the R-matrix expansion. Effective collision strengths are calculated for transitions between the fine structure levels of the ground state and those of the excited states by employing a transformation of the LS-coupled reactance matrices, and by assuming a Maxwellian velocity distribution for the incident electrons. (orig.)

  5. Theoretical transition probabilities between the lowest 2S, 2P and 2D states of Na, K, Rb and Cs

    Science.gov (United States)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1985-01-01

    Theoretical transition probabilities between the lowest 2S, 2P and 2D states of the alkali atoms Na through Cs have been computed using near Hartree-Fock quality Slater basis sets. The important core-valence correlation effects are incorporated explicitly by a configuration-interaction procedure. For Cs, the calculations were repeated using a Gaussian basis set so that relativistic effects could be incorporated through an effective core potential procedure. The best calculated electric quadrupole Einstein coefficients are Na(196.3/s), K(103.6/s), Rb(72.4/s) and Cs(19.7/s). Core-valence effects become increasingly important down the column, and reduce the quadrupole transition strengths to about the same degree as for the 2P-2S and 2D-2P dipole-allowed transitions. Relativistic effects increase the quadrupole moment of Cs, but less so than in Ba, presumably because the alkali 2D states are more diffuse.

  6. 34 CFR 403.140 - What activities does the Secretary support under the State Assistance for Vocational Education...

    Science.gov (United States)

    2010-07-01

    ... subsequent entrance into vocational education, employment, or other education and training. (2) Transitional... 34 Education 3 2010-07-01 2010-07-01 false What activities does the Secretary support under the State Assistance for Vocational Education Support Programs by Community-Based Organizations?...

  7. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2015-12-15

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  8. Spin-Free CC2 Implementation of Induced Transitions between Singlet Ground and Triplet Excited States.

    Science.gov (United States)

    Helmich-Paris, Benjamin; Hättig, Christof; van Wüllen, Christoph

    2016-04-12

    In most organic molecules, phosphorescence has its origin in transitions from triplet exited states to the singlet ground state, which are spin-forbidden in nonrelativistic quantum mechanics. A sufficiently accurate description of phosphorescence lifetimes for molecules that contain only light elements can be achieved by treating the spin-orbit coupling (SOC) with perturbation theory (PT). We present an efficient implementation of this approach for the approximate coupled cluster singles and doubles model CC2 in combination with the resolution-of-the-identity approximation for the electron repulsion integrals. The induced oscillator strengths and phosphorescence lifetimes from SOC-PT are computed within the response theory framework. In contrast to previous work, we employ an explicitly spin-coupled basis for singlet and triplet operators. Thereby, a spin-orbital treatment can be entirely avoided for closed-shell molecules. For compounds containing only light elements, the phosphorescence lifetimes obtained with SOC-PT-CC2 are in good agreement with those of exact two-component (X2C) CC2, whereas the calculations are roughly 12 times faster than with X2C. Phosphorescence lifetimes computed for two thioketones with the SOC-PT-CC2 approach agree very well with reference results from experiment and are similar to those obtained with multireference spin-orbit configuration interaction and with X2C-CC2. An application to phosphorescent emitters for metal-free organic light-emitting diodes (OLEDs) with almost 60 atoms and more than 1800 basis functions demonstrates how the approach extends the applicability of coupled cluster methods for studying phosphorescence. The results indicate that other decay channels like vibrational relaxation may become important in such systems if lifetimes are large.

  9. Rupture and Adaptation: British Technical Expertise to the Singapore Polytechnic and the Transition to a Nation-State

    Science.gov (United States)

    Seng, Loh Kah

    2015-01-01

    The Singapore Polytechnic underwent a period of both rupture and adaptation as British advisers worked with the post-colonial government to facilitate technical education reform and Singapore's transition to a nation-state. Established in 1958 and based on the metropolitan model, the Singapore Polytechnic constituted an imperial project for…

  10. Effects of a transition to a hydrogen economy on employment in the United States Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-07-01

    DOE's Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress estimates the employment effects of a transformation of the U.S. economy to the use of hydrogen in the 2020 to 2050 timeframe. This report fulfills requirements of section 1820 of the Energy Policy Act of 2005.

  11. The political-economic transition and the building of the welfare state in Spain (1975-1986

    Directory of Open Access Journals (Sweden)

    Rafael Muñoz de Bustillo Llorente

    2008-12-01

    Full Text Available This article analyses the economic policy in Spain during the govern- ments of the Spanish political transition from 1975 to 1986. It considers the different areas of economic policy with special emphasis on the development of welfare state issues in this period. Taking into account the difficult economic and political situation in 1975, there were some important advances in social policy and progressive taxation during the period. The transition to democracy in Spain changed the role and size of the public sector above all from 1975 to 1986. The social demands over the political system were possible improvements in the progressive and redistributive policies in education, health, and social programs. Spain’s transition to democracy and the first period of welfare state show a mutually reinforcing and its consequences were the modernization of the Spanish economy. However, from 1986 the economic develop- ment and the progress of welfare state have had a different growth.Key words: Welfare state, Economic transition, Spain.

  12. The effect of deuteration on the transition into a charge ordered state of (TMTTF)2X salts

    International Nuclear Information System (INIS)

    From dielectric permittivity measurements, we show that deuteration yields a large increase of the transition temperature for the charge ordered state of (TMTTF)2X (X = AsF6, SbF6, ReO4) salts. We propose an explanation of this phenomenon, suggesting that deuteration induces a modification of the (TMTTF)2X crystal unit cell. (letter to the editor)

  13. 19 CFR 123.65 - Domestic baggage transiting Canada or Mexico between ports in the United States.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Domestic baggage transiting Canada or Mexico between ports in the United States. 123.65 Section 123.65 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS RELATIONS WITH CANADA AND MEXICO Baggage § 123.65 Domestic baggage...

  14. AC-field-induced quantum phase transitions in density of states

    Science.gov (United States)

    Yang, Kai-Hua; Liu, Kai-Di; Wang, Huai-Yu; Qin, Chang-Dong

    2016-02-01

    We investigate the joint effects of the intralead electron interaction and an external alternating gate voltage on the time-averaged local density of states (DOSs) of a quantum dot coupled to two Luttinger-liquid leads in the Kondo regime. A rich dependence of the DOSs on the driving amplitude and intralead interaction is demonstrated. We show that the feature is quite different for different interaction strengths in the presence of the ac field. It is shown that the photon-assisted transport processes cause an additional splitting of the Kondo peak or dip, which exhibits photon-assisted single-channel (1CK) or two-channel Kondo (2CK) physics behavior. The phase transition between photon-assisted 1CK and 2CK physics occurs when the interaction strength is moderately strong. The inelastic channels associated with photon-assisted electron tunneling can dominate electron transport for weak interaction when the ac amplitude is greater than the frequency by one order of magnitude. In the limit of strong interaction the DOSs scale as a power-law behavior which is strongly affected by the ac field.

  15. Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing.

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, J.; Crowder, T; Rinaldo-Matthis, A; Ho, M; Almo, S; Schramm, V

    2009-01-01

    5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme involved in S-adenosylmethionine-related quorum sensing pathways that induce bacterial pathogenesis factors. Transition state analogs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A and BuT-DADMe-Immucillin-A are slow-onset, tight-binding inhibitors of Vibrio cholerae MTAN (VcMTAN), with equilibrium dissociation constants of 73, 70 and 208 pM, respectively. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. We found that in V. cholerae cells, these compounds are potent MTAN inhibitors with IC50 values of 27, 31 and 6 nM for MT-, EtT- and BuT-DADMe-Immucillin-A, respectively; the compounds disrupt autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe-Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic Escherichia coli O157:H7 with IC{sub 50} values of 600 and 125 nM, respectively. BuT-DADMe-Immucillin-A inhibition of autoinducer-2 production in both strains persisted for several generations and caused reduction in biofilm formation. These results support MTAN's role in quorum sensing and its potential as a target for bacterial anti-infective drug design.

  16. An unified model for superluminal motion and state transition on microquasars and quasars

    CERN Document Server

    Gong, B

    2006-01-01

    Superluminal motion has been interpreted as relativistically moving out flow. The increasing observations of such sources provide chance to investigate their mechanism in detail. This paper proposes that superluminal motion may be jet precession induced blob motion. This model can interpret a number of observational phenomena which are not well understood under the scenario of bulk motion, such as the absence of the receding blob after the outburst and the receding blob becomes brighter than the approaching one in XTE J1550-564 . Moreover the compton scattering of photos from a warped accretion disk may form a structured jet. And the precession of the structured jet may lead to the complicated state transitions observed in microquasars like GRS 1915+105. Applying to AGNs, the model may explain the scales of length and time of the phenomena proportioning to the mass of the black hole. The new model can be tested easily on microquasars, i.e., XTE J1550-564, on which the previous receding blob should move toward...

  17. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension

    Science.gov (United States)

    Greene, Samuel M.; Shan, Xiao; Clary, David C.

    2016-06-01

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  18. Rapid solid-state metathesis route to transition-metal doped titanias

    Science.gov (United States)

    Coleman, Nathaniel; Perera, Sujith; Gillan, Edward G.

    2015-12-01

    Rapid solid-state metathesis (SSM) reactions are often short-lived highly exothermic reactions that yield a molten alkali halide salt that aids in product growth and crystallization. SSM reactions may also produce kinetically stabilized structures due to the short (seconds) reaction times. This report describes the investigation of rapid SSM reactions in the synthesis of transition-metal doped titanias (M-TiO2). The dopant targeted compositions were ten mol percent and based on elemental analysis, many of the M-TiO2 samples were close to this targeted level. Based on surface analysis, some samples showed large enrichment in surface dopant content, particularly chromium and manganese doped samples. Due to the highly exothermic nature of these reactions, rutile structured TiO2 was observed in all cases. The M-TiO2 samples are visible colored and show magnetic and optical properties consistent with the dopant in an oxide environment. UV and visible photocatalytic experiments with these visibly colored rutile M-TiO2 powders showed that many of them are strongly absorbent for methylene blue dye and degrade the dye under both UV and visible light illumination. This work may open up SSM reactions as an alternate non-thermodynamic reaction strategy for dopant incorporation into a wide range of oxide and non-oxides.

  19. Alpha-decay-induced fracturing in zircon: the transition from the crystalline to the metamict state

    International Nuclear Information System (INIS)

    A natural single crystal of zircon, ZrSiO4, from Sri Lanka exhibited zonation due to alpha-decay damage. The zones vary in thickness on a scale from one to hundreds of micrometers. The uranium and thorium concentrations vary from zone to zone such that the alpha-decay dose is between 0.2 x 1016 and 0.8 x 1016 alpha-event per milligram (0.15 to 0.60 displacement per atom). The transition from the crystalline to the aperiodic metamict state occurs over this dose range. Differential expansion of individual layers due to variations in their alpha-decay dose caused a systematic pattern of fractures that do not propagate across aperiodic layers. High-resolution transmission electron microscopy revealed a systematic change in the microstructure from a periodic atomic array to an aperiodic array with increasing alpha-decay dose. At doses greater than 0.8 x 1016 alpha-events per milligram there is no evidence for long-range order. This type of damage will accumulate in actinide-bearing, ceramic nuclear waste forms. The systematic pattern of fractures would occur in crystalline phases that are zoned with respect to actinide radionuclides

  20. Alpha-decay--induced fracturing in zircon: the transition from the crystalline to the metamict state.

    Science.gov (United States)

    Chakoumakos, B C; Murakami, T; Lumpkin, G R; Ewing, R C

    1987-06-19

    A natural single crystal of zircon, ZrSiO(4,) from Sri Lanka exhibited zonation due to alpha-decay damage. The zones vary in thickness on a scale from one to hundreds of micrometers. The uranium and thorium concentrations vary from zone to zone such that the alpha-decay dose is between 0.2 x 10(16) and 0.8 x 10(16) alpha-events per milligram (0.15 to 0.60 displacement per atom). The transition from the crystalline to the aperiodic metamict state occurs over this dose range. Differential expansion of individual layers due to variations in their alpha-decay dose caused a systematic pattern of fractures that do not propagate across aperiodic layers. High-resolution transmission electron microscopy revealed a systematic change in the microstructure from a periodic atomic array to an aperiodic array with increasing alpha-decay dose. At doses greater than 0.8 x 10(16) alpha-events per milligram there is no evidence for long-range order. This type of damage will accumulate in actinide-bearing, ceramic nuclear waste forms. The systematic pattern of fractures would occur in crystalline phases that are zoned with respect to actinide radionuclides. PMID:17835739

  1. Predicting state transitions in the transcriptome and metabolome using a linear dynamical system model

    Science.gov (United States)

    Morioka, Ryoko; Kanaya, Shigehiko; Hirai, Masami Y; Yano, Mitsuru; Ogasawara, Naotake; Saito, Kazuki

    2007-01-01

    Background Modelling of time series data should not be an approximation of input data profiles, but rather be able to detect and evaluate dynamical changes in the time series data. Objective criteria that can be used to evaluate dynamical changes in data are therefore important to filter experimental noise and to enable extraction of unexpected, biologically important information. Results Here we demonstrate the effectiveness of a Markov model, named the Linear Dynamical System, to simulate the dynamics of a transcript or metabolite time series, and propose a probabilistic index that enables detection of time-sensitive changes. This method was applied to time series datasets from Bacillus subtilis and Arabidopsis thaliana grown under stress conditions; in the former, only gene expression was studied, whereas in the latter, both gene expression and metabolite accumulation. Our method not only identified well-known changes in gene expression and metabolite accumulation, but also detected novel changes that are likely to be responsible for each stress response condition. Conclusion This general approach can be applied to any time-series data profile from which one wishes to identify elements responsible for state transitions, such as rapid environmental adaptation by an organism. PMID:17875221

  2. Partial transition-state inhibitors of glyoxalase I from human erythrocytes, yeast and rat liver.

    Science.gov (United States)

    Douglas, K T; Gohel, D I; Nadvi, I N; Quilter, A J; Seddon, A P

    1985-05-20

    Glyoxalase I (lactoylglutathione lyase, EC 4.4.1.5) converts the hemithiolacetal of glutathione and an alpha-ketoaldehyde to S-D-lactoylglutathione which is hydrolysed under the catalytic influence of glyoxalase II to produce D-lactate and regenerate glutathione. There is much evidence that glyoxalase I operates via an enediol intermediate, and in this study a number of inhibitors are described which were designed based on the enediol moiety of this reactive intermediate. These enediol and paene-enediol moieties were combined with groups designed to make use of an adjacent hydrophobic site and can be described as partial transition-state analogues. Derivatives of lapachol and kojic acid were good competitive inhibitors of glyoxalase I from various sources unless the free hydroxy group was blocked or replaced. Flavones with strong inhibitors of glyoxalase I and gallocyanine (a dye) showed spectral changes on binding to glyoxalase I indicative of binding to a metal-ion site (probably Zn2+ or Mg2+). The use of the enediol-binding determinant to produce glyoxalase I inhibitors is discussed as a route to potential antitumour derivatives. PMID:3888271

  3. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension.

    Science.gov (United States)

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods. PMID:27369506

  4. Tools for Resilience Management: Multidisciplinary Development of State-and-Transition Models for Northwest Colorado

    Directory of Open Access Journals (Sweden)

    Emily J. Kachergis

    2013-12-01

    Full Text Available Building models is an important way of integrating knowledge. Testing and updating models of social-ecological systems can inform management decisions and, ultimately, improve resilience. We report on the outcomes of a six-year, multidisciplinary model development process in the sagebrush steppe, USA. We focused on creating state-and-transition models (STMs, conceptual models of ecosystem change that represent nonlinear dynamics and are being adopted worldwide as tools for managing ecosystems. STM development occurred in four steps with four distinct sets of models: (1 local knowledge elicitation using semistructured interviews; (2 ecological data collection using an observational study; (3 model integration using participatory workshops; and (4 model simplification upon review of the literature by a multidisciplinary team. We found that different knowledge types are ultimately complementary. Many of the benefits of the STM-building process flowed from the knowledge integration steps, including improved communication, identification of uncertainties, and production of more broadly credible STMs that can be applied in diverse situations. The STM development process also generated hypotheses about sagebrush steppe dynamics that could be tested by future adaptive management and research. We conclude that multidisciplinary development of STMs has great potential for producing credible, useful tools for managing resilience of social-ecological systems. Based on this experience, we outline a streamlined, participatory STM development process that integrates multiple types of knowledge and incorporates adaptive management.

  5. Can quantum transition state theory be defined as a t=0+ limit?

    CERN Document Server

    Jang, Seogjoo

    2015-01-01

    The definition of classical transition state theory (TST) as the $t\\rightarrow 0_+$ limit of a flux-side time correlation function relies on the assumption that simultaneous measurement of population and flux is a well defined physical process. However, the noncommutativity of the two measurements in quantum mechanics makes the extension of such a concept to the quantum regime impossible. For this reason, quantum TST (QTST) has been generally accepted as any kind of quantum rate theory that can reproduce the TST in the proper classical limit, which is not guaranteed to be unique. Indeed, there have been various versions of QTST based on different formulations and approximations. Recently, contrary to this commonly accepted view, Hele and Althorpe (HA) [J. Chem. Phys. {\\bf 138}, 084108 (2013)] made an argument that a true and unique QTST can be defined as the exact $t\\rightarrow 0_+$ limit of a certain quantum flux-side time correlation function and that it is equivalent to the rate expression from the ring po...

  6. Dynamics of Phase Transitions: The 3D 3-state Potts model

    CERN Document Server

    Berg, B A; Velytsky, A; Berg, Bernd A.; Meyer-Ortmanns, Hildegard; Velytsky, Alexander

    2004-01-01

    In studies of the QCD deconfining phase transition or cross-over by means of heavy ion experiments, one ought to be concerned about non-equilibrium effects due to heating and cooling of the system. In this paper we extend our previous study of Glauber dynamics of 2D Potts models to the 3D 3-state Potts model, which serves as an effective model for some QCD properties. We investigate the linear theory of spinodal decomposition in some detail. It describes the early time evolution of the 3D model under a quench from the disordered into the ordered phase well, but fails in 2D. Further, the quench leads to competing vacuum domains, which are difficult to equilibrate, even in the presence of a small external magnetic field. From our hysteresis study we find, as before, a dynamics dominated by spinodal decomposition. There is evidence that some effects survive in the case of a cross-over. But the infinite volume extrapolation is difficult to control, even with lattices as large as 120^3.

  7. Provision of recreational activities in hospices in the United States.

    Science.gov (United States)

    DeMong, S A

    1997-01-01

    Quality of life issues encompass the philosophies of both hospice and recreation participation. This study examines the status of recreational activities provision in hospices in the United States. The offering, frequency of offering, and location of offering of 39 recreational activities in a random sample of hospices in the United States were surveyed. The functional levels of participating patients were also recorded. Reading to patients at bedside daily was determined to be the most frequently provided recreational activity. Recreational activities are being offered in 40% of the larger U.S. hospices on a varying schedule in different locations. PMID:9305025

  8. From Crisis to Transition: The State of Russian Science Based on Focus Groups with Nuclear Physicists

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, T P; Ball, D Y

    2001-12-09

    can attract foreign investment and fuel renewed economic progress in Russia. Russian scientists could also be an important source of support for democratic norms: sociologists of science have long argued that scientists tend to support democracy because it provides them with the freedom in which their research can flourish. At the same time, a more recent study suggests that funding shortages may override the researcher's need for freedom and drive scientists to align themselves with the economic policies espoused by Nationalists and Communists in order to survive. Therefore, much turns on the question: ''What is the state of science in Russia today?'' The good news is that focus group interviews with Russian nuclear physicists conducted in October 2001 suggest that the ''science in crisis'' image is one-sided and misleading. Though scientists still complained about low salaries, lack of respect in society, and other similar issues, the participants in the focus groups also expressed positive sentiments about recent changes in the field of science. To be sure, the financing of science remains at a considerably lower level than during the heyday of Soviet times. Yet, it is now possible to earn a decent living as a scientist because of the greater availability of foreign and domestic grants and contracts. In addition, state funding has stabilized over the past few years. Thus, it is more accurate to say that Russian science is in a state of transition rather than in a state of crisis.

  9. Dicke phase transition with multiple superradiant states in quantum chaotic resonators

    KAUST Repository

    Liu, C.

    2014-06-12

    We experimentally investigate the Dicke phase transition in chaotic optical resonators realized with two-dimensional photonics crystals. This setup circumvents the constraints of the system originally investigated by Dicke and allows a detailed study of the various properties of the superradiant transition. Our experimental results, analytical prediction, and numerical modeling based on random-matrix theory demonstrate that the probability density P? of the resonance widths provides a new criterion to test the occurrence of the Dicke transition.

  10. NuSTAR observations of the state transition of millisecond pulsar binary PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Tendulkar, Shriharsh P.; Bellm, Eric; Harrison, Fiona A. [California Institute of Technology, 1200 E California Blvd, MC 249-17, Pasadena, CA 91125 (United States); Yang, Chengwei; An, Hongjun; Kaspi, Victoria M. [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada); Archibald, Anne M.; Bassa, Cees; Hessels, Jason W. T.; Janssen, Gemma H. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Lyne, Andrew G.; Stappers, Benjamin [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Patruno, Alessandro [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Chakrabarty, Deepto [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States); Christensen, Finn E., E-mail: spt@astro.caltech.edu [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); and others

    2014-08-20

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. Between June 10 and 12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Γ=1.17{sub −0.07}{sup +0.08} (at 90% confidence) with a 3-79 keV luminosity of 7.4 ± 0.4 × 10{sup 32} erg s{sup –1}. Significant orbital modulation was observed with a modulation fraction of 36% ± 10%. During the October 19-21 observation, the spectrum is described by a softer power law (Γ=1.66{sub −0.05}{sup +0.06}) with an average luminosity of 5.8 ± 0.2 × 10{sup 33} erg s{sup –1} and a peak luminosity of ≈1.2 × 10{sup 34} erg s{sup –1} observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multiwavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp-edged, flat-bottomed dips are observed with widths between 30 and 1000 s and ingress and egress timescales of 30-60 s. No change in hardness ratio was observed during the dips. Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824–2452I and XSS J1227.0–4859 and discuss possible interpretations based on the transitions in the inner disk.

  11. Debt and Economic Activity in the United States

    OpenAIRE

    Benjamin M. Friedman

    1981-01-01

    This paper documents a long-standing stability in the relationship between outstanding debt and economic activity in the United States, and explores the implications for capital formation of several hypotheses that could explain this observed phenomenon. The aggregate of outstanding credit liabilities of all nonfinancial borrowers in the United States bears as close a relationship to U.S. non- financial economic activity as do the more familiar asset aggregates like the money stock (however m...

  12. Perceived role of marketing activities in the context of transitional economy

    OpenAIRE

    Sigitas Urbonavičius; Vytautas Dikčius

    2009-01-01

    The role and importance of various marketing activities within a company is a function of numerous internal and external factors, including those that are typical of transitional economies. These factors are integrated and shaped by managerial perceptions about their overall importance and suitability at a specific moment. Authors analyze opinions among managers of Lithuanian companies about the overall importance of the marketing function in their companies as well as about the importance of...

  13. Transition from Knudsen to molecular diffusion in activity of absorbing irregular interfaces

    OpenAIRE

    Andrade Jr., J. S.; da Silva, H. F.; Baquil, M.; Sapoval, B.

    2003-01-01

    We investigate through molecular dynamics the transition from Knudsen to molecular diffusion transport towards 2d absorbing interfaces with irregular geometry. Our results indicate that the length of the active zone decreases continuously with density from the Knudsen to the molecular diffusion regime. In the limit where molecular diffusion dominates, we find that this length approaches a constant value of the order of the system size, in agreement with theoretical predictions for Laplacian t...

  14. Monitoring Affect States during Effortful Problem Solving Activities

    Science.gov (United States)

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  15. 34 CFR 300.812 - Reservation for State activities.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Reservation for State activities. 300.812 Section 300.812 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  16. Positron Lifetime Study of the Transition from Glassy to Normal Liquid State for Two Phenyl Ethers

    DEFF Research Database (Denmark)

    Pethrick, R. A.; Jacobsen, F. M.; Mogensen, O. E.;

    1980-01-01

    at ≈ 233 K is associated with the glass transition for these liquids. A further change in the temperature dependence of the o-Ps lifetime was observed above 313 K where it becomes once more only weakly temperature dependent. Below the glass transition (Tg) Ps is probably trapped in pre-existing holes...

  17. Modern Education in the United States: Teaching for New Fashioned Reaction or Socialist Transition.

    Science.gov (United States)

    Wieder, Alan

    1979-01-01

    Seeing our society at a transition point, the author describes educational approaches which can either hinder the development of socialistic consciousness by training the young as bosses-to-be or help the transition to socialism by presenting students with the reality of classism, racism, and impersonalism. (SJL)

  18. Influence of the nuclear equation of state on the hadron-quark phase transition in neutron stars

    Institute of Scientific and Technical Information of China (English)

    YANG Fang; SHEN Hong

    2008-01-01

    We study the hadron-quark phase transition in the interior of neutron stars, and examine the influence of the nuclear equation of state on the phase transition and neutron star properties. The relativistic mean field theory with several parameter sets is used to construct the nuclear equation of state, while the Nambu-Jona-Lasinio model is used for the description of the deconfined quark phase. Our results show that a harder nuclear equation of state leads to an earlier onset of a mixed phase of hadronic and quark matter. We find that a massive neutron star possesses a mixed phase core, but it is not dense enough to possess a pure quark core.

  19. A detailed study on the transition from the blocked to the superparamagnetic state of reduction-precipitated iron oxide nanoparticles

    Science.gov (United States)

    Witte, K.; Bodnar, W.; Mix, T.; Schell, N.; Fulda, G.; Woodcock, T. G.; Burkel, E.

    2016-04-01

    Magnetic iron oxide nanoparticles were prepared by salt-assisted solid-state chemical precipitation method with alternating fractions of the ferric iron content. The physical properties of the precipitated nanoparticles mainly consisting of magnetite were investigated by means of transmission electron microscopy, high energy X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. With particle sizes ranging from 16.3 nm to 2.1 nm, a gradual transition from the blocked state to the superparamagnetic state was observed. The transition was described as a dependence of the ferric iron content used during the precipitation. Composition, mean particle size, coercivity, saturation polarisation, as well as hyperfine interaction parameters and their evolution were studied systematically over the whole series of iron oxide nanoparticles.

  20. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    International Nuclear Information System (INIS)

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models