Energy Technology Data Exchange (ETDEWEB)
Fradin, J.
1958-12-03
This report presents a system aimed at sampling active solution from a specific transport container (SCRGR model) while transferring this solution with a maximum safety. The sampling principle is described (a flexible tube connected to the receiving container, with a needle at the other end which goes through a rubber membrane and enters a plunger tube). Its benefits are outlined (operator protection, reduction of contamination risk; only the rubber membrane is removed and replaced). Some manufacturing details are described concerning the membrane and the cover.
Agarkova, Irina; Dunigan, David; Gurnon, James; Greiner, Timo; Barres, Julia; Thiel, Gerhard; Van Etten, James L
2008-12-01
Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.
Schot, P.P.
1991-01-01
This thesis deals with solute transport by groundwater flow and the way in which solute transport is affected by human activities. This in relation to wetland ecosystems. Wetlands in the eastern part of the Vecht river plain in The Netherlands are historically renown for their great variety of
DEFF Research Database (Denmark)
Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær
2000-01-01
those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute......A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux...
Liu, Xiaoyang; Abbott, Nicholas L
2011-04-15
We report principles for a continuous flow process that can separate solutes based on a driving force for selective transport that is generated by a lateral concentration gradient of a redox-active surfactant across a microfluidic channel. Microfluidic channels fabricated with gold electrodes lining each vertical wall were used to electrochemically generate concentration gradients of the redox-active surfactant 11-ferrocenylundecyl-trimethylammonium bromide (FTMA) in a direction perpendicular to the flow. The interactions of three solutes (a hydrophobic dye, 1-phenylazo-2-naphthylamine (yellow AB), an amphiphilic molecule, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY C(5)-HPC), and an organic salt, 1-methylpyridinium-3-sulfonate (MPS)) with the lateral gradients in surfactant/micelle concentration were shown to drive the formation of solute-specific concentration gradients. Two distinct physical mechanisms were identified to lead to the solute concentration gradients: solubilization of solutes by micelles and differential adsorption of the solutes onto the walls of the microchannels in the presence of the surfactant concentration gradient. These two mechanisms were used to demonstrate delipidation of a mixture of BODIPY C(5)-HPC (lipid) and MPS and purification of BODIPY C(5)-HPC from a mixture of BODIPY C(5)-HPC and yellow AB. Overall, the results of this study demonstrate that lateral concentration gradients of redox-active surfactants formed within microfluidic channels can be used to transport solutes across the microfluidic channels in a solute-dependent manner. The approach employs electrical potentials (solutions having high ionic strength (>0.1M), and offers the basis of continuous processes for the purification or separation of solutes in microscale systems. © 2011 American Chemical Society
Reexamining ultrafiltration and solute transport in groundwater
Neuzil, C. E.; Person, Mark
2017-06-01
Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.
International Nuclear Information System (INIS)
Torok, J.; Buckley, L.P.; Woods, B.L.
1989-01-01
Laboratory-scale lysimeter experiments were performed with simulated waste forms placed in candidate buffer materials which have been chosen for a low-level radioactive waste repository. Radionuclide releases into the effluent water and radionuclide capture by the buffer material were determined. The results could not be explained by traditional solution transport mechanisms, and transport by particles released from the waste form and/or transport by buffer particles were suspected as the dominant mechanism for radionuclide release from the lysimeters. To elucidate the relative contribution of particle and solution transport, the waste forms were replaced by a wafer of neutron-activated buffer soaked with selected soluble isotopes. Particle transport was determined by the movement of gamma-emitting neutron-activation products through the lysimeter. Solution transport was quantified by comparing the migration of soluble radionuclides relative to the transport of neutron activation products. The new approach for monitoring radionuclide migration in soil is presented. It facilitates the determination of most of the fundamental coefficients required to model the transport process
Solute carrier transporters: Pharmacogenomics research ...
African Journals Online (AJOL)
Aghogho
2010-12-27
Dec 27, 2010 ... This paper reviews the solute carrier transporters and highlights the fact that there is much to be learnt from .... transporters, drug targets, effect or proteins and meta- ... basolateral or apical plasma membrane of polarized cells,.
Assessment of Physical Activity and Active Transport Among School ...
International Development Research Centre (IDRC) Digital Library (Canada)
Assessment of Physical Activity and Active Transport Among School Children in Kenya, Nigeria, and Mozambique ... International Water Resources Association, in close collaboration with IDRC, is holding a webinar titled “Climate change and adaptive water management: Innovative solutions from the Global South”.
Quantifying the relative contributions of different solute carriers to aggregate substrate transport
Taslimifar, Mehdi; Oparija, Lalita; Verrey, Francois; Kurtcuoglu, Vartan; Olgac, Ufuk; Makrides, Victoria
2017-01-01
Determining the contributions of different transporter species to overall cellular transport is fundamental for understanding the physiological regulation of solutes. We calculated the relative activities of Solute Carrier (SLC) transporters using the Michaelis-Menten equation and global fitting to estimate the normalized maximum transport rate for each transporter (Vmax). Data input were the normalized measured uptake of the essential neutral amino acid (AA) L-leucine (Leu) from concentration-dependence assays performed using Xenopus laevis oocytes. Our methodology was verified by calculating Leu and L-phenylalanine (Phe) data in the presence of competitive substrates and/or inhibitors. Among 9 potentially expressed endogenous X. laevis oocyte Leu transporter species, activities of only the uniporters SLC43A2/LAT4 (and/or SLC43A1/LAT3) and the sodium symporter SLC6A19/B0AT1 were required to account for total uptake. Furthermore, Leu and Phe uptake by heterologously expressed human SLC6A14/ATB0,+ and SLC43A2/LAT4 was accurately calculated. This versatile systems biology approach is useful for analyses where the kinetics of each active protein species can be represented by the Hill equation. Furthermore, its applicable even in the absence of protein expression data. It could potentially be applied, for example, to quantify drug transporter activities in target cells to improve specificity. PMID:28091567
Peritoneal fluid transport in CAPD patients with different transport rates of small solutes.
Sobiecka, Danuta; Waniewski, Jacek; Weryński, Andrzej; Lindholm, Bengt
2004-01-01
Continuous ambulatory peritoneal dialysis (CAPD) patients with high peritoneal solute transport rate often have inadequate peritoneal fluid transport. It is not known whether this inadequate fluid transport is due solely to a too rapid fall of osmotic pressure, or if the decreased effectiveness of fluid transport is also a contributing factor. To analyze fluid transport parameters and the effectiveness of dialysis fluid osmotic pressure in the induction of fluid flow in CAPD patients with different small solute transport rates. 44 CAPD patients were placed in low (n = 6), low-average (n = 13), high-average (n = 19), and high (n = 6) transport groups according to a modified peritoneal equilibration test (PET). The study involved a 6-hour peritoneal dialysis dwell with 2 L 3.86% glucose dialysis fluid for each patient. Radioisotopically labeled serum albumin was added as a volume marker.The fluid transport parameters (osmotic conductance and fluid absorption rate) were estimated using three mathematical models of fluid transport: (1) Pyle model (model P), which describes ultrafiltration rate as an exponential function of time; (2) model OS, which is based on the linear relationship of ultrafiltration rate and overall osmolality gradient between dialysis fluid and blood; and (3) model G, which is based on the linear relationship between ultrafiltration rate and glucose concentration gradient between dialysis fluid and blood. Diffusive mass transport coefficients (K(BD)) for glucose, urea, creatinine, potassium, and sodium were estimated using the modified Babb-Randerson-Farrell model. The high transport group had significantly lower dialysate volume and glucose and osmolality gradients between dialysate and blood, but significantly higher K(BD) for small solutes compared with the other transport groups. Osmotic conductance, fluid absorption rate, and initial ultrafiltration rate did not differ among the transport groups for model OS and model P. Model G yielded
A quasilinear model for solute transport under unsaturated flow
International Nuclear Information System (INIS)
Houseworth, J.E.; Leem, J.
2009-01-01
We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.
Mathematical modeling of solute transport in the subsurface
International Nuclear Information System (INIS)
Naymik, T.G.
1987-01-01
A review of key works on solute transport models indicates that solute transport processes with the exception of advection are still poorly understood. Solute transport models generally do a good job when they are used to test scientific concepts and hypotheses, investigate natural processes, systematically store and manage data, and simulate mass balance of solutes under certain natural conditions. Solute transport models generally are not good for predicting future conditions with a high degree of certainty, or for determining concentrations precisely. The mathematical treatment of solute transport far surpasses their understanding of the process. Investigations of the extent of groundwater contamination and methods to remedy existing problems show the along-term nature of the hazard. Industrial organic compounds may be immiscible in water, highly volatile, or complexed with inorganic as well as other organic compounds; many remain stable in nature almost indefinitely. In the worst case, future disposal of hazardous waste may be restricted to deep burial, as is proposed for radioactive wastes. For investigations pertinent to transport of radionuclides from a geologic repository, the process cannot be fully understood without adequate thermodynamic and kinetic data bases
International Nuclear Information System (INIS)
George J. Moridis
2001-01-01
In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity
A Finite-Difference Solution of Solute Transport through a Membrane Bioreactor
Directory of Open Access Journals (Sweden)
B. Godongwana
2015-01-01
Full Text Available The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR, immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM. An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i the radial and axial convective velocity, (ii the convective mass transfer rates, (iii the reaction rates, (iv the fraction retentate, and (v the aspect ratio.
Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.
Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung
2018-01-01
The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.
Directory of Open Access Journals (Sweden)
Yucundo Mendoza-Tolentino
2014-01-01
Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.
Composite Transport Model and Water and Solute Transport across Plant Roots: An Update
Directory of Open Access Journals (Sweden)
Yangmin X. Kim
2018-02-01
Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.
Exact solution of the neutron transport equation in spherical geometry
Energy Technology Data Exchange (ETDEWEB)
Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters
2017-03-15
Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.
Nonrelativistic grey Sn-transport radiative-shock solutions
International Nuclear Information System (INIS)
Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.
2017-01-01
We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.
Transport Visualization for Studying Mass Transfer and Solute Transport in Permeable Media
International Nuclear Information System (INIS)
Roy Haggerty
2004-01-01
Understanding and predicting mass transfer coupled with solute transport in permeable media is central to several energy-related programs at the US Department of Energy (e.g., CO 2 sequestration, nuclear waste disposal, hydrocarbon extraction, and groundwater remediation). Mass transfer is the set of processes that control movement of a chemical between mobile (advection-dominated) domains and immobile (diffusion- or sorption-dominated) domains within a permeable medium. Consequences of mass transfer on solute transport are numerous and may include (1) increased sequestration time within geologic formations; (2) reduction in average solute transport velocity by as much as several orders of magnitude; (3) long ''tails'' in concentration histories during removal of a solute from a permeable medium; (4) poor predictions of solute behavior over long time scales; and (5) changes in reaction rates due to mass transfer influences on pore-scale mixing of solutes. Our work produced four principle contributions: (1) the first comprehensive visualization of solute transport and mass transfer in heterogeneous porous media; (2) the beginnings of a theoretical framework that encompasses both macrodispersion and mass transfer within a single set of equations; (3) experimental and analytical tools necessary for understanding mixing and aqueous reaction in heterogeneous, granular porous media; (4) a clear experimental demonstration that reactive transport is often not accurately described by a simple coupling of the convection-dispersion equation with chemical reaction equations. The work shows that solute transport in heterogeneous media can be divided into 3 regimes--macrodispersion, advective mass transfer, and diffusive mass transfer--and that these regimes can be predicted quantitatively in binary media. We successfully predicted mass transfer in each of these regimes and verified the prediction by completing quantitative visualization experiments in each of the regimes, the
Solute transport across the articular surface of injured cartilage.
Chin, Hooi Chuan; Moeini, Mohammad; Quinn, Thomas M
2013-07-15
Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.
Warsta, L.; Karvonen, T.
2017-12-01
There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the
Zee, van der S.E.A.T.M.; Leijnse, A.
2013-01-01
Solute transport is of importance in view of the movement of nutrient elements, e.g. towards the plant root system, and because of a broad range of pollutants. Pollution is not necessarily man induced, but may be due to geological or geohydrological causes, e.g. in the cases of pollution with
Effects of turbulent hyporheic mixing on reach-scale solute transport
Roche, K. R.; Li, A.; Packman, A. I.
2017-12-01
Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of
TRACKING AND TRACING SOLUTION FOR DANGEROUS GOODS CARRIED BY INTERMODAL TRANSPORT
Directory of Open Access Journals (Sweden)
Marek Kvet
2014-03-01
Full Text Available This paper deals with the problem of designing a complex tracking and tracing solution for dangerous goods transportation with the support of modern information technologies. This research activity presents a part of the “ChemLogTT” [2] project solved at the University of Žilina. The main goal of our contribution is to present basic conception of a complex developed software tool for monitoring and analyzing mentioned dangerous goods transportation.
The secret to successful solute-transport modeling
Konikow, Leonard F.
2011-01-01
Modeling subsurface solute transport is difﬁcult—more so than modeling heads and ﬂows. The classical governing equation does not always adequately represent what we see at the ﬁeld scale. In such cases, commonly used numerical models are solving the wrong equation. Also, the transport equation is hyperbolic where advection is dominant, and parabolic where hydrodynamic dispersion is dominant. No single numerical method works well for all conditions, and for any given complex ﬁeld problem, where seepage velocity is highly variable, no one method will be optimal everywhere. Although we normally expect a numerically accurate solution to the governing groundwater-ﬂow equation, errors in concentrations from numerical dispersion and/or oscillations may be large in some cases. The accuracy and efﬁciency of the numerical solution to the solute-transport equation are more sensitive to the numerical method chosen than for typical groundwater-ﬂow problems. However, numerical errors can be kept within acceptable limits if sufﬁcient computational effort is expended. But impractically long
Modeling water flow and solute transport in unsaturated zone inside NSRAWD project
International Nuclear Information System (INIS)
Constantin, A.; Diaconu, D.; Bucur, C.; Genty, A.
2015-01-01
The NSRAWD project (2010-2013) - Numerical Simulations for Radioactive Waste Disposal was initiated under a collaboration agreement between the Institute for Nuclear Research and the French Alternative Energies and Atomic Energy Commission (CEA). The context of the project was favorable to combine the modeling activities with an experimental part in order to improve and validate the numerical models used so far to simulate water flow and solute transport at Saligny site, Romania. The numerical models developed in the project were refined and validated on new hydrological data gathered between 2010-2012 by a monitoring station existent on site which performs automatic determination of soil water content and matrix potential, as well as several climate parameters (wind, temperature and precipitations). Water flow and solute transport was modeled in transient conditions, by taking into consideration, as well as neglecting the evapotranspiration phenomenon, on the basis of a tracer test launched on site. The determination of dispersivities for solute transport was targeted from the solute plume. The paper presents the main results achieved in the NSRAWD project related to water flow and solute transport in the unsaturated area of the Saligny site. The results indicated satisfactory predictions for the simulation of water flow in the unsaturated area, in steady state and transient conditions. In the case of tracer transport modeling, dispersivity coefficients could not be finally well fitted for the data measured on site and in order to obtain a realistic preview over the values of these parameters, further investigations are recommended. The article is followed by the slides of the presentation
Directory of Open Access Journals (Sweden)
Djordjevich Alexandar
2017-12-01
Full Text Available The two-dimensional advection-diffusion equation with variable coefficients is solved by the explicit finitedifference method for the transport of solutes through a homogenous two-dimensional domain that is finite and porous. Retardation by adsorption, periodic seepage velocity, and a dispersion coefficient proportional to this velocity are permitted. The transport is from a pulse-type point source (that ceases after a period of activity. Included are the firstorder decay and zero-order production parameters proportional to the seepage velocity, and periodic boundary conditions at the origin and at the end of the domain. Results agree well with analytical solutions that were reported in the literature for special cases. It is shown that the solute concentration profile is influenced strongly by periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the coefficients in the advection-diffusion equation are obtainable as particular cases of the one demonstrated here. This further attests to the effectiveness of the explicit finite difference method for solving two-dimensional advection-diffusion equation with variable coefficients in finite media, which is especially important when arbitrary initial and boundary conditions are required.
Coester, Annemieke M.; Smit, Watske; Struijk, Dirk G.; Krediet, Raymond T.
2009-01-01
Ultrafiltration in peritoneal dialysis occurs through endothelial water channels (free water transport) and together with solutes across small pores: solute coupled water transport. A review is given of cross-sectional studies and on the results of longitudinal follow-up
Water and Solute Transport in Arid Vadose Zones: Innovations in Measurement and Analysis
International Nuclear Information System (INIS)
Tyler, S W.; Scanlon, Bridget R.; Gee, Glendon W.; Allison, G B.; Parlange, M. B.; Hopmans, J. W.
1999-01-01
Understanding the physics of flow and transport through the vadose zone has advanced significantly in the last three decades. These advances have been made primarily in humid regions or in irrigated agricultural settings. While some of the techniques are useful, many are not suited to arid regions. The fluxes of water and solutes typically found in arid regions are often orders of magnitude smaller than those found in agricultural settings, while the time scales for transport can be orders of magnitude larger. The depth over which transport must be characterized is also often much greater than in humid regions. Rather than relying on advances in applied tracers, arid-zone researchers have developed natural tracer techniques that are capable of quantifying transport over tens to thousands of years. Techniques have been developed to measure the hydraulic properties of sediments at all water contents, including the very dry range and at far greater depths. As arid and semiarid regions come under increased development pressures for such activities as hazardous- and radioactive-waste disposal, the development of techniques and the understanding of water and solute transport have become crucial components in defining the environmental impacts of activities at the landsurface
Solute transport in aggregated and layered porous media
International Nuclear Information System (INIS)
Koch, S.
1993-01-01
This work is a contribution to research in soil physics dealing with solute transport in porous media. The influence of structural inhomogeneities on solute transport is investigated. Detailed experiments at the laboratory scale are used to enlighten distinct processes which cannot be studied separately at field scale. Two main aspects are followed up: (i) to show the influence of aggregation of a porous medium on breakthrough time and spreading of an inert tracer and consequences on the estimation of parameter values of models describing solute transport in aggregated systems, (ii) to investigate the influences on the dispersion process when stratification is perpendicular to the direction of flow. Several concepts of modelling solute transport in soil are discussed. Models based on the convection-dispersion equation (CDE) are emphasized because they are used here to model solute transport experiments conducted with aggregated porous media. Stochastic concepts are introduced to show the limitations of the deterministic CDE approaches. Experiments are done in columns containing two kinds of solid phases and were saturated with water. The solid phases are porous and solid glass beads exhibiting a distinctly unimodal or bimodal pore size distribution. Experimental breakthrough curves (BTCs) are modelled with the CDE, a bicontinuum model with a phenomenological mass transfer rate and a bicontinuum spherical diffusion model. Experiments are also done in columns that are unsaturated containing porous materials that are layered. Flow is made at a steady rate. It is shown that layer boundaries have a severe influence on lateral mixing. They may force streamlines to converge or cause a lateral redistribution of solutes. (author) figs., tabs., 122 refs
A three-dimensional neutron transport benchmark solution
International Nuclear Information System (INIS)
Ganapol, B.D.; Kornreich, D.E.
1993-01-01
For one-group neutron transport theory in one dimension, several powerful analytical techniques have been developed to solve the neutron transport equation, including Caseology, Wiener-Hopf factorization, and Fourier and Laplace transform methods. In addition, after a Fourier transform in the transverse plane and formulation of a pseudo problem, two-dimensional (2-D) and three-dimensional (3-D) problems can be solved using the techniques specifically developed for the one-dimensional (1-D) case. Numerical evaluation of the resulting expressions requiring an inversion in the transverse plane have been successful for 2-D problems but becomes exceedingly difficult in the 3-D case. In this paper, we show that by using the symmetry along the beam direction, a 2-D problem can be transformed into a 3-D problem in an infinite medium. The numerical solution to the 3-D problem is then demonstrated. Thus, a true 3-D transport benchmark solution can be obtained from a well-established numerical solution to a 2-D problem
Coupling between solute transport and chemical reactions models
International Nuclear Information System (INIS)
Samper, J.; Ajora, C.
1993-01-01
During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs
Pathogen transport in groundwater systems: contrasts with traditional solute transport
Hunt, Randall J.; Johnson, William P.
2017-06-01
Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.
Wolf, Sabine; Janzen, Annette; Vékony, Nicole; Martiné, Ursula; Strand, Dennis; Closs, Ellen I
2002-01-01
Member 4 of human solute carrier family 7 (SLC7A4) exhibits significant sequence homology with the SLC7 subfamily of human cationic amino acid transporters (hCATs) [Sperandeo, Borsani, Incerti, Zollo, Rossi, Zuffardi, Castaldo, Taglialatela, Andria and Sebastio (1998) Genomics 49, 230-236]. It is therefore often referred to as hCAT-4 even though no convincing transport activity has been shown for this protein. We expressed SLC7A4 in Xenopus laevis oocytes, but could not detect any transport a...
Assessment of applications of transport models on regional scale solute transport
Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.
2017-12-01
Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.
Fluid flow and convective transport of solutes within the intervertebral disc.
Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P
2004-02-01
Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.
Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media
International Nuclear Information System (INIS)
Moridis, G.J.; Bodvarsson, G.S.
2001-01-01
In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. 239 Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species
Sustainable freight transport in South Africa:Domestic intermodal solutions
Directory of Open Access Journals (Sweden)
Jan H. Havenga
2011-11-01
Full Text Available Due to the rapid deregulation of freight transport in South Africa two decades ago, and low historical investment in rail (with resultant poor service delivery, an integrated alternative to road and rail competition was never developed. High national freight logistics costs, significant road infrastructure challenges and environmental impact concerns of a road-dominated freight transport market have, however, fuelled renewed interest in intermodal transport solutions. In this article, a high-level business case for domestic intermodal solutions in South Africa is presented. The results demonstrate that building three intermodal terminals to connect the three major industrial hubs (i.e. Gauteng, Durban and Cape Town through an intermodal solution could reduce transport costs (including externalities for the identified 11.5 million tons of intermodalfriendly freight flows on the Cape and Natal corridors by 42% (including externalities.
The solute carrier 6 family of transporters
DEFF Research Database (Denmark)
Bröer, Stefan; Gether, Ulrik
2012-01-01
of these transporters is associated with a variety of diseases. Pharmacological inhibition of the neurotransmitter transporters in this family is an important strategy in the management of neurological and psychiatric disorders. This review provides an overview of the biochemical and pharmacological properties......The solute carrier 6 (SLC6) family of the human genome comprises transporters for neurotransmitters, amino acids, osmolytes and energy metabolites. Members of this family play critical roles in neurotransmission, cellular and whole body homeostasis. Malfunction or altered expression...... of the SLC6 family transporters....
A single continuum approximation of the solute transport in fractured porous media
International Nuclear Information System (INIS)
Jeong, J.T.; Lee, K.J.
1992-01-01
Solute transport in fractured porous media is described by the single continuum model, i.e., equivalent porous medium model. In this model, one-dimensional solute transport in the fracture and two-dimensional solute transport in the porous rock matrix is considered. The network of fractures embedded in the porous rock matrix is idealized as two orthogonally intersecting families of equally spaced, parallel fractures directed at 45 o to the regional groundwater flow direction. Governing equations are solved by the finite element method, and an upstream weighting technique is used in order to prevent the oscillation of the solution in the case of highly advection dominated transport. Breakthrough curves, similar to those of the one-dimensional solute transport problem in ordinary porous media, are obtained as a function of time according to volume or flux averaging of the concentration profile across the width of the flow region. The equivalent parameters, i.e., porosity and overall coefficient of longitudinal dispersivity, are obtained by a trial-and-error method. Analyses for the non-sorbing solute transport case show that within the range of considered parameters, and except for the region very close to the source, application of the single continuum model in the idealized fracture system is sufficient for modeling solute transport in fractured porous media. This numerical scheme is shown to be applicable to a sorbing solute and radionuclide transport. (author)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
The future of public transport in light of solutions for sustainable transport development
Directory of Open Access Journals (Sweden)
Kazimierz LEJDA
2017-06-01
Full Text Available The paper highlights possible directions in the development of sustainable public transport solutions. When appropriately identified and implemented, such solutions can contribute to improved quality of urban life by reducing the adverse effects of transport on human health and the natural environment. The paper also raises questions about implementing pedestrian traffic zones, expanding the level of cycling, and introducing a workable parking policy, congestion charges, electromobility and intelligent systems for road traffic management in conurbations.
Determination of chemical solute transport parameters effecting radiostrontium interbed sediments
International Nuclear Information System (INIS)
Hemming, C.; Bunde, R.L.; Rosentreter, J.J.
1993-01-01
The extent to which radionuclides migrate in an aquifer system is a function of various physical, chemical, and biological processes. A measure of this migration rate is of primary concern when locating suitable storage sites for such species. Parameters including water-rock interactions, infiltration rates, chemical phase modification, and biochemical reactions all affect solute transport. While these different types of chemical reactions can influence solute transport in subsurface waters, distribution coefficients (Kd) can be send to effectively summarize the net chemical factors which dictate transport efficiency. This coefficient describes the partitioning of the solute between the solution and solid phase. Methodology used in determining and interpreting the distribution coefficient for radiostrontium in well characterized sediments will be presented
Reactive solute transport in an asymmetrical fracture-rock matrix system
Zhou, Renjie; Zhan, Hongbin
2018-02-01
The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance
One-dimensional spatially dependent solute transport in semi ...
African Journals Online (AJOL)
Initially porous domain is considered solute free and the input source condition is ... parameters for description of solute transport in porous media. ... flow assuming uniform initial concentration with first and third type boundary conditions. Aral.
Mass transfer processes and field-scale transport of organic solutes
International Nuclear Information System (INIS)
Brusseau, M.L.
1990-01-01
The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)
Study of reactive solutes transport and PAH migration in unsaturated soils
International Nuclear Information System (INIS)
Gujisaite, V.; Simonnot, M.O.; Gujisaite, V.; Morel, J.L.; Ouvrard, S.; Simonnot, M.O.; Gaudet, J.P.
2005-01-01
Experimental studies about solute transport in soil have most of the time been conducted under saturated conditions, whereas studies with unsaturated media are usually limited to hydrodynamic analysis. Those are mainly concerning the prediction of water flow, which is the main vector for the transport of contaminants in soil. Only a few studies have made the link between unsaturated flow and physical, chemical and biological interactions, which are controlling the availability of pollutants. However, the presence of a gaseous phase in soil can modify not only the movement of soil solution, but also chemical interactions and exchanges between soil aggregates and solution. Study of reactive solute transport in the vadose zone seems thus to be a necessary stage to predict contaminant fate in natural soils, for risk assessment as well as for the design of effective processes for the remediation of contaminated soils. This question is the main objective of the present work developed in the frame of our French Scientific Interest Group Industrial Wastelands called 'GISFI' (www.gisfi.prd.fr), based around a scientific and technological project dedicated to acquisition of knowledge for sustainable requalification of degraded sites polluted by past industrial activities. We will focus here on Polycyclic Aromatic Hydrocarbons (PAH), which are among the most widely discussed environmental contaminants because of their toxicity for human health and ecosystems. They are present in large quantities in soils polluted by former industrial activities, especially in relation to the coal extraction, exploitation and treatment. An experimental system has been specifically designed at the laboratory scale to carry out experiments under controlled conditions, with an unsaturated steady-state flow. The first experiments are performed on model soils, in order to investigate unsaturated steady-state flow in relation to interactions mechanisms. We have thus chosen to use a sandy
End-Member Formulation of Solid Solutions and Reactive Transport
Energy Technology Data Exchange (ETDEWEB)
Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.
dispersion equation parameters of solute transport in agricultural
African Journals Online (AJOL)
Jane
2011-08-31
Aug 31, 2011 ... fields for predicting soil quality property. Key words: ... The classical approach of modeling solute transport in porous media uses the deterministic ... concentration of the solution in the liquid phase, u0 is the mean velocity and ...
Facilitated transport of Hg(II) through novel activated composite membranes
Energy Technology Data Exchange (ETDEWEB)
Paez-Hernandez, M.E. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Area de Ciencia de los Materiales, Col. Reynosa-Tamaulipas (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Pachuca, Hidalgo (Mexico); Aguilar-Arteaga, K. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Pachuca, Hidalgo (Mexico); Valiente, M. [Universitat Autonoma de Barcelona, Departament de Quimica, Unitat Analitica, Centre GTS, Facultat de Ciencies, Bellaterra, Barcelona (Spain); Ramirez-Silva, M.T. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Area de Quimica Analitica, Laboratorio R-105, Col. Vicentina, Mexico D.F. (Mexico); Romero-Romo, M.; Palomar-Pardave, M. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Area de Ciencia de los Materiales, Col. Reynosa-Tamaulipas (Mexico)
2004-10-01
The results presented in this work deal with the prime application of activated composite membranes (ACMs) for the transport of Hg(II) ions in a continuous extraction-re-extraction system using di-(2-ethylhexyl)dithiophosphoric acid (DTPA) as carrier. The effects of variables such as the pH, the nature of the acid and the concentration of the casting solutions on the transport of Hg(II) are also investigated. When the ACM was prepared with a 0.5 M DTPA solution and when the feed solution contained 2.5 x 10{sup -4} M Hg(II) in 0.1 M HCl, the amount of mercury extracted was greater than 76%. The re-extracted mercury was subsequently recovered by means of a stripping phase comprising 0.3 M thiourea solution in 2 M H{sub 2}SO{sub 4}, yielding 54% of the initial amount of mercury after transport had taken place for 180 min. (orig.)
Mihaela, Istrate; Alexandru, Boroiu; Viorel, Nicolae; Ionel, Vieru
2017-10-01
One of the major problems facing the Pitesti city is the road congestion that occurs in the central area of the city during the peak hours. With all the measures taken in recent years - the widening of road arteries, increasing the number of parking spaces, the creation of overground road passages - it is obvious that the problem can only be solved by a new philosophy regarding urban mobility: it is no longer possible to continue through solutions to increase the accessibility of the central area of the city, but it is necessary, on the contrary, to promote a policy of discouraging the penetration of vehicles in the city center, coupled with a policy of improving the connection between urban public transport and county public transport. This new approach is also proposed in the new Urban Mobility Plan of Pitesti city, under development. The most convincing argument for the necessity of this new orientation in the Pitesti city mobility plan is based on the analysis of the current situation of passenger transport on the territory of Pitesti city: the analysis of “public transport versus private transport” reveals a very low occupancy rate for cars and the fact that the road surface required for a passenger (the dynamic area) is much higher in the case of private transport than in the case of public transport. Measurements of passenger flows and vehicle flows on the 6 penetration ways in the city have been made and the calculations clearly demonstrate the benefits of an urban public transport system connected by “transshipment buses” to be made at the edge of the city, to the county public transport system. In terms of inter-county transport, it will continue to be connected to the urban public transport system by existing bus Station, within the city: South Bus Station and North Bus Station. The usefulness of the paper is that it identifies the solutions for sustainable mobility in Pitesti city and proposes concrete solutions for the development of the
Electrolyte solution transport in electropolar nanotubes
International Nuclear Information System (INIS)
Zhao Jianbing; Culligan, Patricia J; Chen Xi; Qiao Yu; Zhou Qulan; Li Yibing; Tak, Moonho; Park, Taehyo
2010-01-01
Electrolyte transport in nanochannels plays an important role in a number of emerging areas. Using non-equilibrium molecular dynamics (NEMD) simulations, the fundamental transport behavior of an electrolyte/water solution in a confined model nanoenvironment is systematically investigated by varying the nanochannel dimension, solid phase, electrolyte phase, ion concentration and transport rate. It is found that the shear resistance encountered by the nanofluid strongly depends on these material/system parameters; furthermore, several effects are coupled. The mechanisms of the nanofluidic transport characteristics are explained by considering the unique molecular/ion structure formed inside the nanochannel. The lower shear resistance observed in some of the systems studies could be beneficial for nanoconductors, while the higher shear resistance (or higher effective viscosity) observed in other systems might enhance the performance of energy dissipation devices.
A biomechanical triphasic approach to the transport of nondilute solutions in articular cartilage.
Abazari, Alireza; Elliott, Janet A W; Law, Garson K; McGann, Locksley E; Jomha, Nadr M
2009-12-16
Biomechanical models for biological tissues such as articular cartilage generally contain an ideal, dilute solution assumption. In this article, a biomechanical triphasic model of cartilage is described that includes nondilute treatment of concentrated solutions such as those applied in vitrification of biological tissues. The chemical potential equations of the triphasic model are modified and the transport equations are adjusted for the volume fraction and frictional coefficients of the solutes that are not negligible in such solutions. Four transport parameters, i.e., water permeability, solute permeability, diffusion coefficient of solute in solvent within the cartilage, and the cartilage stiffness modulus, are defined as four degrees of freedom for the model. Water and solute transport in cartilage were simulated using the model and predictions of average concentration increase and cartilage weight were fit to experimental data to obtain the values of the four transport parameters. As far as we know, this is the first study to formulate the solvent and solute transport equations of nondilute solutions in the cartilage matrix. It is shown that the values obtained for the transport parameters are within the ranges reported in the available literature, which confirms the proposed model approach.
DEFF Research Database (Denmark)
Nielsen, Robert; Larsen, Erik Hviid
2007-01-01
(V) with a [Na+] of the transported fluid of 130+/-24 mM ([Na+]Ringer's solution = 117.4 mM). Addition of bumetanide to the inside solution reduced J(V). Water was transported uphill and J(V) reversed at an excess outside osmotic concentration, deltaC(S,rev) = 28.9+/-3.9 mOsm, amiloride decreased delta......C(S,rev) to 7.5+/-1.5 mOsm. It is concluded that water uptake is accomplished by osmotic coupling in the lateral intercellular space (lis), and hypothesized that a small fraction of the Na+ flux pumped into lis is recirculated via basolateral NKCC transporters.......Transepithelial potential (V(T)), conductance (G(T)), and water flow (J(V)) were measured simultaneously with good time resolution (min) in isolated toad (Bufo bufo) skin epithelium with Ringer on both sides. Inside application of 5 microM isoproterenol resulted in the fast increase in G(T) from 1...
International Nuclear Information System (INIS)
Savovic, S.; Djordjevich, A.; Ristic, G.
2012-01-01
A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required. (authors)
Coupled Spatio-Temporal Patterns of Solute Transport, Metabolism and Nutrient Uptake in Streams
Kurz, M. J.; Schmidt, C.
2017-12-01
Slower flow velocities and longer residence times within stream transient storage (TS) zones facilitate interaction between solutes and microbial communities, potentially increasing local rates of metabolic activity. Multiple factors, including channel morphology and substrate, variable hydrology, and seasonal changes in biological and physical parameters, result in changes in the solute transport dynamics and reactivity of TS zones over time and space. These changes would be expected to, in turn, influence rates of whole-stream ecosystem functions such as metabolism and nutrient uptake. However, the linkages between solute transport and ecosystem functioning within TS zones, and the contribution of TS zones to whole-stream functioning, are not always so straight forward. This may be due, in part, to methodological challenges. In this study we investigated the influence of stream channel hydro-morphology and substrate type on reach (103 m) and sub-reach (102 m) scale TS and ecosystem functioning. Patterns in solute transport, metabolism and nitrate uptake were tracked from April through October in two contrasting upland streams using several methods. The two streams, located in the Harz Mountains, Germany, are characterized by differing size (0.02 vs. 0.3 m3/s), dominant stream channel substrate (bedrock vs. alluvium) and sub-reach morphology (predominance of pools, riffles and glides). Solute transport parameters and respiration rates at the reach and sub-reach scale were estimated monthly from coupled pulse injections of the reactive tracer resazurin (Raz) and conservative tracers uranine and salt. Raz, a weakly fluorescent dye, irreversibly transforms to resorufin (Rru) under mildly reducing conditions, providing a proxy for aerobic respiration. Daily rates of primary productivity, respiration and nitrate retention at the reach scale were estimated using the diel cycles in dissolved oxygen and nitrate concentrations measured by in-situ sensors. Preliminary
Directory of Open Access Journals (Sweden)
Jacek Waniewski
2016-01-01
Full Text Available During peritoneal dialysis (PD, the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87 years; median time on PD 19 (3–100 months underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS, fraction of ultrasmall pores (αu, osmotic conductance for glucose (OCG, and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters. Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.
Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia
2016-01-01
During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87) years; median time on PD 19 (3–100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane. PMID:26989432
DEFF Research Database (Denmark)
Koestel, J. K.; Nørgaard, Trine; Loung, N. M.
2013-01-01
It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables......, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field...... to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column...
New methods For Modeling Transport Of Water And Solutes In Soils
DEFF Research Database (Denmark)
Møldrup, Per
Recent models for water and solute transport in unsaturated soils have been mechanistically based but numerically very involved. This dissertation concerns the development of mechanistically-based but numerically simple models for calculating and analyzing transport of water and solutes in soil...
Improved performance of organic solar cells with solution processed hole transport layer
Bhargav, Ranoo; Gairola, S. P.; Patra, Asit; Naqvi, Samya; Dhawan, S. K.
2018-06-01
This work is based on Cobalt Oxide as solution processed, inexpensive and effective hole transport layer (HTL) for efficient organic photovoltaic applications (OPVs). In Organic solar cell (OSC) devices ITO coated glass substrate used as a transparent anode electrode for light incident, HTL material Co3O4 dissolve in DMF solvent deposited on anode electrode, after that active layer material (donor/acceptor) deposited on to HTL and finally Al were deposited by thermal evaporation used as cathode electrode. These devices were fabricated with PCDTBT well known low band gap donor material in OSCs and blended with PC71BM as an acceptor material using simplest device structure ITO/Co3O4/active layer/Al at ambient conditions. The power conversion efficiencies (PCEs) based on Co3O4 and PEDOT:PSS have been achieved to up to 3.21% and 1.47% with PCDTBT respectively. In this study we reported that the devices fabricated with Co3O4 showed better performance as compare to the devices fabricated with well known and most studied solution processed HTL material PEDOT:PSS under identical environmental conditions. The surface morphology of the HTL film was characterized by (AFM). Lastly, we have provided Co3O4 as an efficient hole transport material HTL for solution processed organic photovoltaic applications.
International Nuclear Information System (INIS)
Kong, Rong; Spanier, Jerome
2013-01-01
In this paper we develop novel extensions of collision and track length estimators for the complete space-angle solutions of radiative transport problems. We derive the relevant equations, prove that our new estimators are unbiased, and compare their performance with that of more conventional estimators. Such comparisons based on numerical solutions of simple one dimensional slab problems indicate the the potential superiority of the new estimators for a wide variety of more general transport problems
Mathematical modeling of fluid and solute transport in peritoneal dialysis
Waniewski, Jacek
2001-01-01
Optimization of peritoneal dialysis schedule and dialysis fluid composition needs, among others, methods for quantitative assessment of fluid and solute transport. Furthermore, an integrative quantitative description of physiological processes within the tissue, which contribute to the net transfer of fluid and solutes, is necessary for interpretation of the data and for predictions of the outcome of possible intervention into the peritoneal transport system. The current pro...
Regulators of Slc4 bicarbonate transporter activity
Directory of Open Access Journals (Sweden)
Ian M. Thornell
2015-06-01
Full Text Available The Slc4 family of transporters is comprised of anion exchangers (AE1-4, Na-coupled bicarbonate transporters (NCBTs including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2, electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2, and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE, as well as a borate transporter (BTR1. These transporters regulate intracellular pH (pHi and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO3– either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO3– transporter contributes to a cell’s ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s (e.g., Na+ or Cl–. In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both classical and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Solute transport model for radioisotopes in layered soil
International Nuclear Information System (INIS)
Essel, P.
2010-01-01
The study considered the transport of a radioactive solute in solution from the surface of the earth down through the soil to the ground water when there is an accidental or intentional spillage of a radioactive material on the surface. The finite difference method was used to model the spatial and temporal profile of moisture content in a soil column using the θ-based Richard's equation leading to solution of the convective-dispersive equation for non-adsorbing solutes numerically. A matlab code has been generated to predict the transport of the radioactive contaminant, spilled on the surface of a vertically heterogeneous soil made up of two layers to determine the residence time of the solute in the unsaturated zone, the time it takes the contaminant to reach the groundwater and the amount of the solute entering the groundwater in various times and the levels of pollution in those times. The model predicted that, then there is a spillage of 7.2g of tritium, on the surface of the ground at the study area, it will take two years for the radionuclide to enter the groundwater and fifteen years to totally leave the unsaturated zone. There is therefore the need to try as much as possible to avoid intentional or accidental spillage of the radionuclide since it has long term effect. (au)
Positive solution of a time and energy dependent neutron transport problem
International Nuclear Information System (INIS)
Pao, C.V.
1975-01-01
A constructive method is given for the determination of a solution and an existence--uniqueness theorem for some nonlinear time and energy dependent neutron transport problems, including the linear transport system. The geometry of the medium under consideration is allowed to be either bounded or unbounded which includes the geometry of a finite or infinite cylinder, a half-space and the whole space R/subm/ (m=1,2,center-dotcenter-dotcenter-dot). Our approach to the problem is by successive approximation which leads to various recursion formulas for the approximations in terms of explicit integrations. It is shown under some Lipschitz conditions on the nonlinear functions, which describe the process of neutrons absorption, fission, and scattering, that the sequence of approximations converges to a unique positive solution. Since these conditions are satisfied by the linear transport equation, all the results for the nonlinear system are valid for the linear transport problem. In the general nonlinear problem, the existence of both local and global solutions are discussed, and an iterative process for the construction of the solution is given
Transport of organic solutes through amorphous teflon AF films.
Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G
2005-11-02
Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.
Analytical solution to the hybrid diffusion-transport equation
International Nuclear Information System (INIS)
Nanneh, M.M.; Williams, M.M.R.
1986-01-01
A special integral equation was derived in previous work using a hybrid diffusion-transport theory method for calculating the flux distribution in slab lattices. In this paper an analytical solution of this equation has been carried out on a finite reactor lattice. The analytical results of disadvantage factors are shown to be accurate in comparison with the numerical results and accurate transport theory calculations. (author)
Geological entropy and solute transport in heterogeneous porous media
Bianchi, Marco; Pedretti, Daniele
2017-06-01
We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.
Hsueh, Chia-Hsiang; Yoshida, Kenta; Zhao, Ping; Meyer, Timothy W; Zhang, Lei; Huang, Shiew-Mei; Giacomini, Kathleen M
2016-09-06
One of the characteristics of chronic kidney disease (CKD) is the accumulation of uremic solutes in the plasma. Less is known about the effects of uremic solutes on transporters that may play critical roles in pharmacokinetics. We evaluated the effect of 72 uremic solutes on organic anion transporter 1 and 3 (OAT1 and OAT3) using a fluorescent probe substrate, 6-carboxyfluorescein. A total of 12 and 13 solutes were identified as inhibitors of OAT1 and OAT3, respectively. Several of them inhibited OAT1 or OAT3 at clinically relevant concentrations and reduced the transport of other OAT1/3 substrates in vitro. Review of clinical studies showed that the active secretion of most drugs that are known substrates of OAT1/3 deteriorated faster than the renal filtration in CKD. Collectively, these data suggest that through inhibition of OAT1 and OAT3, uremic solutes contribute to the decline in renal drug clearance in patients with CKD.
Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.
2013-02-01
It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.
Active water transport in unicellular algae: where, why, and how.
Raven, John A; Doblin, Martina A
2014-12-01
The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ground-water solute transport modeling using a three-dimensional scaled model
International Nuclear Information System (INIS)
Crider, S.S.
1987-01-01
Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport
Predictability of solute transport in diffusion-controlled hydrogeologic regimes
International Nuclear Information System (INIS)
Gillham, R.W.; Cherry, J.A.
1983-01-01
Hydrogeologic regimes that are favourable for the subsurface management of low-level radioactive wastes must have transport properties that will limit the migration velocity of contaminants to some acceptably low value. Of equal importance, for the purpose of impact assessment and licensing, is the need to be able to predict, with a reasonable degree of certainty and over long time periods, what the migration velocity of the various contaminants of interest will be. This paper presents arguments to show that in addition to having favourable velocity characteristics, transport in saturated, diffusion-controlled hydrogeologic regimes is considerably more predictable than in the most common alternatives. The classical transport models for unsaturated, saturated-advection-controlled and saturated-diffusion-controlled environments are compared, with particular consideration being given to the difficulties associated with the characterization of the respective transport parameters. Results are presented which show that the diffusion of non-reactive solutes and solutes that react according to a constant partitioning ratio (K/sub d/) are highly predictable under laboratory conditions and that the diffusion coefficients for the reactive solutes can be determined with a reasonable degree of accuracy from independent measurements of bulk density, porosity, distribution coefficient and tortuosity. Field evidence is presented which shows that the distribution of environmental isotopes and chloride in thick clayey deposits is consistent with a diffusion-type transport process in these media. These results are particularly important in that they not only demonstrate the occurrence of diffusion-controlled hydrogeologic regimes, but they also demonstrate the predictability of the migration characteristics over very long time periods
Transport of Liquid Phase Organic Solutes in Liquid Crystalline Membranes
Han, Sangil
2010-01-01
Porous cellulose nitrate membranes were impregnated with 8CB and PCH5 LCs (liquid crystals) and separations of solutes dissolved in aqueous phases were performed while monitoring solute concentration via UV-VIS spectrometry. The diffusing organic solutes, which consist of one aromatic ring and various functional groups, were selected to exclude molecular size effects on the diffusion and sorption. We studied the effects on solute transport of solute intra-molecular hydrogen bonding and so...
Solute transport with periodic input point source in one-dimensional ...
African Journals Online (AJOL)
JOY
groundwater flow velocity is considered proportional to multiple of temporal function and ζ th ... One-dimensional solute transport through porous media with or without .... solute free. ... the periodic concentration at source of the boundary i.e.,. 0.
Kulasiri, Don
2002-01-01
Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...
Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.
2014-12-01
Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.
New diffusion-like solutions of one-speed transport equations in spherical geometry
International Nuclear Information System (INIS)
Sahni, D.C.
1988-01-01
Stationary, one-speed, spherically symmetric transport equations are considered in a conservative medium. Closed-form expressions are obtained for the angular flux ψ(r, μ) that yield a total flux varying as 1/r by using Sonine transforms. Properties of this solution are studied and it is shown that the solution can not be identified as a diffusion mode solution of the transport equation. Limitations of the Sonine transform technique are noted. (author)
Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters
Walker, Aisha L.; Franke, Ryan M.; Sparreboom, Alex; Ware, Russell E.
2015-01-01
Objective Hydroxyurea has proven laboratory and clinical therapeutic benefits for sickle cell anemia (SCA) and other diseases, yet many questions remain regarding its in vivo pharmacokinetic and pharmacodynamic profiles. Previous reports suggest that hydroxyurea passively diffuses across cells, but its observed rapid absorption and distribution are more consistent with facilitated or active transport. We investigated the potential role of solute carrier (SLC) transporters in cellular uptake and accumulation of hydroxyurea. Materials and Methods Passive diffusion of hydroxyurea across cell membranes was determined using the parallel artificial membrane permeability assay. SLC transporter screens were conducted using in vitro intracellular drug accumulation and transcellular transport assays in cell lines and oocytes overexpressing SLC transporters. Gene expression of SLC transporters was measured by real-time PCR in human tissues and cell lines. Results Hydroxyurea had minimal diffusion across a lipid bilayer but was a substrate for 5 different SLC transporters belonging to the OCTN and OATP families of transporters and urea transporters A and B. Further characterization of hydroxyurea transport revealed that cellular uptake by OATP1B3 is time and temperature dependent and inhibited by known substrates of OATP1B3. Urea transporters A and B are expressed differentially in human tissues and erythroid cells, and transport hydroxyurea bidirectionally via facilitated diffusion. Conclusions These studies provide new insight into drug transport proteins that may be involved in the in vivo absorption, cellular distribution, and elimination of hydroxyurea. Elucidation of hydroxyurea transcellular movement should improve our understanding of its pharmacokinetics and pharmacodynamics, and may help explain some of the inter-patient drug variability observed in patients with SCA. PMID:21256917
Fluid flow and convective transport of solutes within the intervertebral disc
Ferguson, S.J.; Ito, K.; Nolte, L.P.
2004-01-01
Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport
Stable solutions of nonlocal electron heat transport equations
International Nuclear Information System (INIS)
Prasad, M.K.; Kershaw, D.S.
1991-01-01
Electron heat transport equations with a nonlocal heat flux are in general ill-posed and intrinsically unstable, as proved by the present authors [Phys. Fluids B 1, 2430 (1989)]. A straightforward numerical solution of these equations will therefore lead to absurd results. It is shown here that by imposing a minimal set of constraints on the problem it is possible to arrive at a globally stable, consistent, and energy conserving numerical solution
International Nuclear Information System (INIS)
Khokhryakov, V.F.; Suslova, K.G.; Tseveloyova, I.A.; Aladova, E.E.; Filipy, R.E.
1998-01-01
This report describes a method by which potentially inhaled workplace aerosols containing plutonium compounds are classified on the basis of measured transportability in Ringer's solution. It is suggested that the criterion 'transportability' be used in the ICRP respiratory tract model. Transportability is measured as the fraction of plutonium alpha activity, deposited on a collecting filter, that passes through a semi-permeable membrane in Ringer's physiological solution during two days of dialysis. First order kinetic equations are used for explanation of dialysis results. The dissolution characteristics of alpha-active aerosols are important in interpretation of their passage from the lungs after inhalation. (author)
Energy Technology Data Exchange (ETDEWEB)
Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)
2012-07-01
Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr
Stochastic analysis of transport of conservative solutes in caisson experiments
International Nuclear Information System (INIS)
Dagan, G.
1995-01-01
The Los Alamos National Laboratory has conducted in the past a series of experiments of transport of conservative and reactive solutes. The experimental setup and the experimental results are presented in a series of reports. The main aim of the experiments was to validate models of transport of solutes in unsaturated flow at the caisson intermediate scale, which is much larger than the one pertaining to laboratory columns. First attempts to analyze the experimental results were by one-dimensional convective-dispersion models. These models could not explain the observed solute breakthrough curves and particularly the large solute dispersion in the caisson effluent Since there were some question marks about the uniformity of water distribution at the caisson top, the transport experiments were repeated under conditions of saturated flow. In these experiments constant heads were applied at the top and the bottom of the caisson and the number of concentration monitoring stations was quadrupled. The analysis of the measurements by the same one-dimensional model indicated clearly that the fitted dispersivity is much larger than the pore-sole dispersivity and that it grows with the distance in an approximately linear fashion. This led to the conclusion, raised before, that transport in the caisson is dominated by heterogeneity effects, i.e. by spatial variability of the material Such effects cannot be captured by traditional one-dimensional models. In order to account for the effect of heterogeneity, the saturated flow experiments have been analyzed by using stochastic transport modeling. The apparent linear growth of dispersivity with distance suggested that the system behaves like a stratified one. Consequently, the model of Dagan and Bresier has been adopted in order to interpret concentration measurements. In this simple model the caisson is viewed as a bundle of columns of different permeabilities, which are characterized by a p.d.f. (probability denasity function)
Energy Technology Data Exchange (ETDEWEB)
Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))
2008-12-15
The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest
Colloid transport in porous media: impact of hyper-saline solutions.
Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander
2011-05-01
The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during
Used Fuel Logistics: Decades of Experience with transportation and Interim storage solutions
Energy Technology Data Exchange (ETDEWEB)
Orban, G.; Shelton, C.
2015-07-01
Used fuel inventories are growing worldwide. While some countries have opted for a closed cycle with recycling, numerous countries must expand their interim storage solutions as implementation of permanent repositories is taking more time than foreseen. In both cases transportation capabilities will have to be developed. AREVA TN has an unparalleled expertise with transportation of used fuel. For more than 50 years AREVA TN has safely shipped more than 7,000 used fuel transport casks. The transportation model that was initially developed in the 1970s has been adapted and enhanced over the years to meet more restrictive regulatory requirements and evolving customer needs, and to address public concerns. The numerous “lessons learned” have offered data and guidance that have allowed for also efficient and consistent improvement over the decades. AREVA TN has also an extensive experience with interim dry storage solutions in many countries on-site but also is working with partners to developed consolidated interim storage facility. Both expertise with storage and transportation contribute to safe, secure and smooth continuity of the operations. This paper will describe decades of experience with a very successful transportation program as well as interim storage solutions. (Author)
Optimal solution of full fuzzy transportation problems using total integral ranking
Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.
2018-03-01
Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.
International Nuclear Information System (INIS)
Deniau, Helene; Gagner, Laurent; Gendreau, Francoise; Presta, Anne
2006-01-01
With major projects ongoing or being planned, and also with the daily management of radioactive waste from nuclear facilities, the role of transport and/or storage packaging has been often overlooked. Indeed, the packaging development process and transport solutions implemented are a key part of the waste management challenge: protection of people and environment. During over four decades, the AREVA Group has developed a complete and coherent system for the transport of waste produced by nuclear industries. The transport solutions integrate the factors to consider, as industrial transportation needs, various waste forms, associated hazards and current regulations. Thus, COGEMA LOGISTICS has designed, licensed and manufactured a large number of different transport, storage and dual purpose cask models for residues and all kinds of radioactive wastes. The present paper proposes to illustrate how a company acting both as a cask designer and a carrier is key to the waste management issue and how it can support the waste management policy of nuclear producers through their operational choices. We will focus on the COGEMA LOGISTICS technical solutions implemented to guarantee safe and secure transportation and storage solutions. We will describe different aspects of the cask design process, insisting on how it enables to fulfill both customer needs and regulation requirements. We will also mention the associated services developed by the AREVA Business Unit Logistics (COGEMA LOGISTICS, TRANSNUCLEAR, MAINCO, and LEMARECHAL CELESTIN) in order to manage transportation of liquid and solid waste towards interim or final storage sites. The paper has the following contents: About radioactive waste; - Radioactive waste classification; - High level activity waste and long-lived intermediate level waste; - Long-lived low level waste; - Short-lived low- and intermediate level waste; - Very low level waste; - The radioactive waste in nuclear fuel cycle; - Packaging design and
Koohbor, Behshad; Fahs, Marwan; Ataie-Ashtiani, Behzad; Simmons, Craig T.; Younes, Anis
2018-05-01
Existing closed-form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be used to investigate contaminant transport in coastal aquifers where seawater intrusion induces a variable velocity field. An adaptation of the Fourier-Galerkin method is introduced to obtain semi-analytical solutions for contaminant transport in a confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. Two scenarios dealing with contaminant leakage from the aquifer top surface and contaminant migration from a source at the landward boundary are considered. Robust implementation of the Fourier-Galerkin method is developed to efficiently solve the coupled flow, salt and contaminant transport equations. Various illustrative examples are generated and the semi-analytical solutions are compared against an in-house numerical code. The Fourier series are used to evaluate relevant metrics characterizing contaminant transport such as the discharge flux to the sea, amount of contaminant persisting in the groundwater and solute flux from the source. These metrics represent quantitative data for numerical code validation and are relevant to understand the effect of seawater intrusion on contaminant transport. It is observed that, for the surface contamination scenario, seawater intrusion limits the spread of the contaminant but intensifies the contaminant discharge to the sea. For the landward contamination scenario, moderate seawater intrusion affects only the spatial distribution of the contaminant plume while extreme seawater intrusion can increase the contaminant discharge to the sea. The developed semi-analytical solution presents an efficient tool for the verification of numerical models. It provides a clear interpretation of the contaminant transport processes in coastal aquifers subject to seawater intrusion. For practical usage in further studies, the full
Green transportation logistics: the quest for win-win solutions
DEFF Research Database (Denmark)
measures and speed and route optimization; Sulphur emissions; Lifecycle emissions; Green rail transportation; Green air transportation; Green inland navigation and possible areas for further research. Throughout, the book pursues the goal of “win-win” solutions and analyzes the phenomenon of “push......This book examines the state of the art in green transportation logistics from the perspective of balancing environmental performance in the transportation supply chain while also satisfying traditional economic performance criteria. Part of the book is drawn from the recently completed European...... Union project Super Green, a three-year project intended to promote the development of European freight corridors in an environmentally friendly manner. Additional chapters cover both the methodological base and the application context of green transportation logistics. Individual chapters look...
Solute transport and storage mechanisms in wetlands of the Everglades, south Florida
Harvey, Judson W.; Saiers, James E.; Newlin, Jessica T.
2005-01-01
Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant‐rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open‐ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one‐dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the “main flow zone”). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h−1, respectively. Storage processes decreased the depth‐averaged velocity of surface water by 50% relative to the water velocity in the open part of the water
Cho, Kyu-Hyang; Do, Jun-Young; Park, Jong-Won; Yoon, Kyung-Woo; Kim, Yong-Lim
2013-01-01
Several studies have reported benefits for human peritoneal mesothelial cell function of a neutral-pH dialysate low in glucose degradation products (GDPs). However, the effects of low-GDP solution on ultrafiltration (UF), transport of solutes, and control of body water remain elusive. We therefore investigated the effect of low-GDP solution on UF, solute transport, and control of body water. Among 79 new continuous ambulatory peritoneal dialysis (CAPD) patients, 60 completed a 12-month protocol (28 in a lactate-based high-GDP solution group, 32 in a lactate-based low-GDP solution group). Clinical indices--including 24-hour UF volume (UFV), 24-hour urine volume (UV), residual renal function, and dialysis adequacy--were measured at months 1, 6, and 12. At months 1, 6, and 12, UFV, glucose absorption, 4-hour dialysate-to-plasma (D/P) creatinine, and 1-hour D/P Na(+) were assessed during a modified 4.25% peritoneal equilibration test (PET). Body composition by bioelectric impedance analysis was measured at months 1 and 12 in 26 CAPD patients. Daily UFV was lower in the low-GDP group. Despite similar solute transport and aquaporin function, the low-GDP group also showed lower UFV and higher glucose absorption during the PET. Factors associated with UFV during the PET were lactate-based high-GDP solution and 1-hour D/P Na(+). No differences in volume status and obesity at month 12 were observed, and improvements in hypervolemia were equal in both groups. Compared with the high-GDP group, the low-GDP group had a lower UFV during a PET and a lower daily UFV during the first year after peritoneal dialysis initiation. Although the low-GDP group had a lower daily UFV, no difficulties in controlling edema were encountered.
Product Lifecycle Management and the Quest for Sustainable Space Transportation Solutions
Caruso, Pamela W.
2009-01-01
This viewgraph presentation reviews NASA Marshall's effort to sustain space transportation solutions through product lines that include: 1) Propulsion and Transportation Systems; 2) Life Support Systems; and 3) and Earth and Space Science Spacecraft Systems, and Operations.
Efficient solution of a multi objective fuzzy transportation problem
Vidhya, V.; Ganesan, K.
2018-04-01
In this paper we present a methodology for the solution of multi-objective fuzzy transportation problem when all the cost and time coefficients are trapezoidal fuzzy numbers and the supply and demand are crisp numbers. Using a new fuzzy arithmetic on parametric form of trapezoidal fuzzy numbers and a new ranking method all efficient solutions are obtained. The proposed method is illustrated with an example.
International Nuclear Information System (INIS)
Gustafsson, Lars-Goeran; Sassner, Mona; Bosson, Emma
2008-12-01
The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest
A Review of Darcy's Law: Limitations and Alternatives for Predicting Solute Transport
Steenhuis, Tammo; Kung, K.-J. Sam; Jaynes, Dan; Helling, Charles S.; Gish, Tim; Kladivko, Eileen
2016-04-01
Darcy's Law that was derived originally empirically 160 years ago, has been used successfully in calculating the (Darcy) flux in porous media throughout the world. However, field and laboratory experiments have demonstrated that the Darcy flux employed in the convective disperse equation could only successfully predict solute transport under two conditions: (1) uniformly or densely packed porous media; and (2) field soils under relatively dry condition. Employing the Darcy flux for solute transport in porous media with preferential flow pathways was problematic. In this paper we examine the theoretical background behind these field and laboratory observations and then provide an alternative to predict solute movement. By examining the characteristics of the momentum conservation principles on which Darcy's law is based, we show under what conditions Darcy flux can predict solute transport in porous media of various complexity. We find that, based on several case studies with capillary pores, Darcy's Law inherently merges momentum and in that way erases information on pore-scale velocities. For that reason the Darcy flux cannot predict flow in media with preferential flow conduits where individual pore velocities are essential in predicting the shape of the breakthrough curve and especially "the early arrival" of solutes. To overcome the limitations of the assumption in Darcy's law, we use Jury's conceptualization and employ the measured chemical breakthrough curve as input to characterize the impact of individual preferential flow pathways on chemical transport. Specifically, we discuss how best to take advantage of Jury's conceptualization to extract the pore-scale flow velocity to accurately predict chemical transport through soils with preferential flow pathways.
Berezhkovskii, Alexander M; Bezrukov, Sergey M
2008-05-15
In this paper, we discuss the fluctuation theorem for channel-facilitated transport of solutes through a membrane separating two reservoirs. The transport is characterized by the probability, P(n)(t), that n solute particles have been transported from one reservoir to the other in time t. The fluctuation theorem establishes a relation between P(n)(t) and P-(n)(t): The ratio P(n)(t)/P-(n)(t) is independent of time and equal to exp(nbetaA), where betaA is the affinity measured in the thermal energy units. We show that the same fluctuation theorem is true for both single- and multichannel transport of noninteracting particles and particles which strongly repel each other.
Closing plant stomata requires a homolog of an aluminum-activated malate transporter.
Sasaki, Takayuki; Mori, Izumi C; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko
2010-03-01
Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.
Abrams , Robert H.; Loague, Keith
2000-01-01
This paper, the first of two parts [see Abrams and Loague, this issue], takes the compartmentalized approach for the geochemical evolution of redox zones presented by Abrams et al. [1998] and embeds it within a solute transport framework. In this paper the compartmentalized approach is generalized to facilitate the description of its incorporation into a solute transport simulator. An equivalent formulation is developed which removes any discontinuities that may occur when switching compartments. Rate‐limited redox reactions are modeled with a modified Monod relationship that allows either the organic substrate or the electron acceptor to be the rate‐limiting reactant. Thermodynamic constraints are used to inhibit lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium on the lower‐energy reactions. The procedure used allows any redox reaction to be simulated as being kinetically limited or thermodynamically limited, depending on local geochemical conditions. Empirical reaction inhibition methods are not needed. The sequential iteration approach (SIA), a technique which allows the number of solute transport equations to be reduced, is adopted to solve the coupled geochemical/solute transport problem. When the compartmentalized approach is embedded within the SIA, with the total analytical concentration of each component as the dependent variable in the transport equation, it is possible to reduce the number of transport equations even further than with the unmodified SIA. A one‐dimensional, coupled geochemical/solute transport simulation is presented in which redox zones evolve dynamically in time and space. The compartmentalized solute transport (COMPTRAN) model described in this paper enables the development of redox zones to be simulated under both kinetic and thermodynamic constraints. The modular design of COMPTRAN facilitates the use of many different, preexisting solute transport and
Shikuma, Nicholas J; Davis, Kimberly R; Fong, Jiunn N C; Yildiz, Fitnat H
2013-05-01
Vibrio cholerae inhabits aquatic environments and colonizes the human digestive tract to cause the disease cholera. In these environments, V. cholerae copes with fluctuations in salinity and osmolarity by producing and transporting small, organic, highly soluble molecules called compatible solutes, which counteract extracellular osmotic pressure. Currently, it is unclear how V. cholerae regulates the expression of genes important for the biosynthesis or transport of compatible solutes in response to changing salinity or osmolarity conditions. Through a genome-wide transcriptional analysis of the salinity response of V. cholerae, we identified a transcriptional regulator we name CosR for compatible solute regulator. The expression of cosR is regulated by ionic strength and not osmolarity. A transcriptome analysis of a ΔcosR mutant revealed that CosR represses genes involved in ectoine biosynthesis and compatible solute transport in a salinity-dependent manner. When grown in salinities similar to estuarine environments, CosR activates biofilm formation and represses motility independently of its function as an ectoine regulator. This is the first study to characterize a compatible solute regulator in V. cholerae and couples the regulation of osmotic tolerance with biofilm formation and motility. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Control and optimization of solute transport in a thin porous tube
Griffiths, I. M.; Howell, P. D.; Shipley, R. J.
2013-01-01
differentials upon the dispersive solute behaviour are investigated. The model is used to explore the control of solute transport across the membrane walls via the membrane permeability, and a parametric expression for the permeability required to generate a
International Nuclear Information System (INIS)
Jahshan, S.N.; Wemple, C.A.; Ganapol, B.D.
1993-01-01
A comparison of the numerical solutions of the transport equation describing the steady neutron slowing down in an infinite medium with constant cross sections is made with stochastic solutions obtained from tracking successive neutron histories in the same medium. The transport equation solution is obtained using a numerical Laplace transform inversion algorithm. The basis for the algorithm is an evaluation of the Bromwich integral without analytical continuation. Neither the transport nor the stochastic solution is limited in the number of scattering species allowed. The medium may contain an absorption component as well. (orig.)
A fully resolved active musculo-mechanical model for esophageal transport
Kou, Wenjun; Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2015-10-01
Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-reinforced tube. Before considering the full model of the esophagus, however, we first consider a standard benchmark problem of flow past a cylinder. Next a simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Finally, three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall resulting from the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function.
Solute transport modelling with the variable temporally dependent ...
Indian Academy of Sciences (India)
Pintu Das
2018-02-07
Feb 7, 2018 ... in a finite domain with time-dependent sources and dis- tance-dependent dispersivities. Also, existing ... solute transport in multi-layered porous media using gen- eralized integral transform technique with .... methods for solving the fractional reaction-–sub-diffusion equation. To solve numerically the Eqs.
Temporal moment analysis of solute transport in a coupled fracture ...
Indian Academy of Sciences (India)
by considering an inlet boundary condition of constant continuous source in a single fracture. The effect of various fracture-skin parameters like porosity, thickness and ... Study on fluid flow and transport of solute through fractures has been an .... of solutes is happening normal to the direction of flow due to the free molecular.
New numerical method for solving the solute transport equation
International Nuclear Information System (INIS)
Ross, B.; Koplik, C.M.
1978-01-01
The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste
Simulation of transportation of low enriched uranium solutions
International Nuclear Information System (INIS)
Hope, E.P.; Ades, M.J.
1996-01-01
A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes
Scaling and predicting solute transport processes in streams
R. González-Pinzón; R. Haggerty; M. Dentz
2013-01-01
We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in...
Analysis of the Sodium Recirculation Theory of Solute Coupled Water Transport in Small Intestine
DEFF Research Database (Denmark)
Larsen, E. H.; Sørensen, Jens Nørkær; Sørensen, J. B.
2002-01-01
Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions....... The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward...
Continuous time random walk analysis of solute transport in fractured porous media
Energy Technology Data Exchange (ETDEWEB)
Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens
2008-06-01
The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.
Numerical solution of the radionuclide transport equation
International Nuclear Information System (INIS)
Hadermann, J.; Roesel, F.
1983-11-01
A numerical solution of the one-dimensional geospheric radionuclide chain transport equation based on the pseudospectral method is developed. The advantages of this approach are flexibility in incorporating space and time dependent migration parameters, arbitrary boundary conditions and solute rock interactions as well as efficiency and reliability. As an application the authors investigate the impact of non-linear sorption isotherms on migration in crystalline rock. It is shown that non-linear sorption, in the present case a Freundlich isotherm, may reduce concentration at the geosphere outlet by orders of magnitude provided the migration time is comparable or larger than the half-life of the nuclide in question. The importance of fixing dispersivity within the continuum approach is stressed. (Auth.)
Muna, Joseph T.; Prescott, Kevin
2011-08-01
Traditionally, freight transport and telematics solutions that exploit the GPS capabilities of in- vehicle devices to provide innovative Location Based Services (LBS) including track and trace transport systems have been the preserve of a select cluster of transport operators and organisations with the financial resources to develop the requisite custom software and hardware on which they are deployed. The average cost of outfitting a typical transport vehicle or truck with the latest Intelligent Transport System (ITS) increases the cost of the vehicle by anything from a couple to several thousand Euros, depending on the complexity and completeness of the solution. Though this does not generally deter large fleet transport owners since they typically get Return on Investment (ROI) based on economies of scale, it presents a barrier for the smaller independent entities that constitute the majority of freight transport operators [1].The North Sea Freight Intelligent Transport Solution (NS FRITS), a project co-funded by the European Commission Interreg IVB North Sea Region Programme, aims to make acquisition of such transport solutions easier for those organisations that cannot afford the expensive, bespoke systems used by their larger competitors.The project addresses transport security threats by developing a system capable of informing major actors along the freight logistics supply chain, of changing circumstances within the region's major transport corridors and between transport modes. The project also addresses issues of freight volumes, inter-modality, congestion and eco-mobility [2].
Reactive solute transport in acidic streams
Broshears, R.E.
1996-01-01
Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.
International Nuclear Information System (INIS)
Kwong, S.; Jivkov, A.P.
2013-01-01
Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier system will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive
Water and solute transport across the peritoneal membrane.
Morelle, Johann; Devuyst, Olivier
2015-09-01
We review the molecular mechanisms of peritoneal transport and discuss how a better understanding of these mechanisms is relevant for dialysis therapy. Peritoneal dialysis involves diffusion and osmosis through the highly vascularized peritoneal membrane. Computer simulations, expression studies and functional analyses in Aqp1 knockout mice demonstrated the critical role of the water channel aquaporin-1 (AQP1) in water removal during peritoneal dialysis. Pharmacologic regulation of AQP1, either through increased expression or gating, is associated with increased water transport in rodent models of peritoneal dialysis. Water transport is impaired during acute peritonitis, despite unchanged expression of AQP1, resulting from the increased microvascular area that dissipates the osmotic gradient across the membrane. In long-term peritoneal dialysis patients, the fibrotic interstitium also impairs water transport, resulting in ultrafiltration failure. Recent data suggest that stroke and drug intoxications might benefit from peritoneal dialysis and could represent novel applications of peritoneal transport in the future. A better understanding of the regulation of osmotic water transport across the peritoneum offers novel insights into the role of water channels in microvascular endothelia, the functional importance of structural changes in the peritoneal interstitium and the transport of water and solutes across biological membranes in general.
Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS
Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.
2013-01-01
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.
Large time behaviour of oscillatory nonlinear solute transport in porous media
Duijn, van C.J.; Zee, van der S.E.A.T.M.
2018-01-01
Oscillations in flow occur under many different situations in natural porous media, due to tidal, daily or seasonal patterns. In this paper, we investigate how such oscillations in flow affect the transport of an initially sharp solute front, if the solute undergoes nonlinear sorption and,
Smith, Alex J; Yao, Xiaoming; Dix, James A; Jin, Byung-Ju; Verkman, Alan S
2017-08-21
Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.
Energy Technology Data Exchange (ETDEWEB)
DeAngelis, D.L.; Yeh, G.T.; Huff, D.D.
1984-10-01
This report documents a model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix. The model should be useful in analyzing the possible transport of radionuclides from shallow-land burial sites in humid environments. The use of the model is restricted to transport through saturated zones. The report first discusses the general modeling approach used, which is based on the Integrated Compartmental Method. The basic equations of solute transport are then presented. The model, which assumes a known water velocity field, solves these equations on two different time scales; one related to rapid transport of solute along fractures and the other related to slower transport through the porous matrix. FRACPORT is validated by application to a simple example of fractured porous medium transport that has previously been analyzed by other methods. Then its utility is demonstrated in analyzing more complex cases of pulses of solute into a fractured matrix. The report serves as a user's guide to FRACPORT. A detailed description of data input, along with a listing of input for a sample problem, is provided. 16 references, 18 figures, 3 tables.
Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport
International Nuclear Information System (INIS)
Litvinenko, Yuri E.; Effenberger, Frederic
2014-01-01
Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.
Sn approach applied to the solution of transport equation
International Nuclear Information System (INIS)
Lopes, J.P.
1973-09-01
In this work the origin of the Transport Theory is considered and the Transport Equation for the movement of the neutron in a system is established in its more general form, using the laws of nuclear physics. This equation is used as the starting point for development, under adequate assumptions, of simpler models that render the problem suitable for numerical solution. Representation of this model in different geometries is presented. The different processes of nuclear physics are introduced briefly and discussed. In addition, the boundary conditions for the different cases and a general procedure for the application of the Conservation Law are stated. The last chapter deals specifically with the S n method, its development, definitions and generalities. Computational schemes for obtaining the S n solution in spherical and cylindrical geometry, and convergence acceleration methods are also developed. (author)
Solution of charged particle transport equation by Monte-Carlo method in the BRANDZ code system
International Nuclear Information System (INIS)
Artamonov, S.N.; Androsenko, P.A.; Androsenko, A.A.
1992-01-01
Consideration is given to the issues of Monte-Carlo employment for the solution of charged particle transport equation and its implementation in the BRANDZ code system under the conditions of real 3D geometry and all the data available on radiation-to-matter interaction in multicomponent and multilayer targets. For the solution of implantation problem the results of BRANDZ data comparison with the experiments and calculations by other codes in complexes systems are presented. The results of direct nuclear pumping process simulation for laser-active media by a proton beam are also included. 4 refs.; 7 figs
Control and optimization of solute transport in a thin porous tube
Griffiths, I. M.
2013-03-01
Predicting the distribution of solutes or particles in flows within porous-walled tubes is essential to inform the design of devices that rely on cross-flow filtration, such as those used in water purification, irrigation devices, field-flow fractionation, and hollow-fibre bioreactors for tissue-engineering applications. Motivated by these applications, a radially averaged model for fluid and solute transport in a tube with thin porous walls is derived by developing the classical ideas of Taylor dispersion. The model includes solute diffusion and advection via both radial and axial flow components, and the advection, diffusion, and uptake coefficients in the averaged equation are explicitly derived. The effect of wall permeability, slip, and pressure differentials upon the dispersive solute behaviour are investigated. The model is used to explore the control of solute transport across the membrane walls via the membrane permeability, and a parametric expression for the permeability required to generate a given solute distribution is derived. The theory is applied to the specific example of a hollow-fibre membrane bioreactor, where a uniform delivery of nutrient across the membrane walls to the extra-capillary space is required to promote spatially uniform cell growth. © 2013 American Institute of Physics.
Active Transportation Surveillance - United States, 1999-2012.
Whitfield, Geoffrey P; Paul, Prabasaj; Wendel, Arthur M
2015-08-28
Physical activity is a health-enhancing behavior, and most U.S. adults do not meet the 2008 Physical Activity Guidelines for Americans. Active transportation, such as by walking or bicycling, is one way that persons can be physically active. No comprehensive, multiyear assessments of active transportation surveillance in the United States have been conducted. 1999-2012. Five surveillance systems assess one or more components of active transportation. The American Community Survey and the National Household Travel Survey (NHTS) both assess the mode of transportation to work in the past week. From these systems, the proportion of respondents who reported walking or bicycling to work can be calculated. NHTS and the American Time Use Survey include 1-day assessments of trips or activities. With that information, the proportion of respondents who report any walking or bicycling for transportation can be calculated. The National Health and Nutrition Examination Survey and the National Health Interview Survey both assess recent (i.e., in the past week or past month) habitual physical activity behaviors, including those performed during active travel. From these systems, the proportion of respondents who report any recent habitual active transportation can be calculated. The prevalence of active transportation as the primary commute mode to work in the past week ranged from 2.6% to 3.4%. The 1-day assessment indicated that the prevalence of any active transportation ranged from 10.5% to 18.5%. The prevalence of any habitual active transportation ranged from 23.9% to 31.4%. No consistent trends in active transportation across time periods and surveillance systems were identified. Among systems, active transportation was usually more common among men, younger respondents, and minority racial/ethnic groups. Among education groups, the highest prevalence of active transportation was usually among the least or most educated groups, and active transportation tended to be more
Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.
2017-01-10
A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.
Yang, Jianwen
2012-04-01
A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.
Modeling of water flow and solute transport in unsaturated heterogeneous fields
International Nuclear Information System (INIS)
Bresler, E.; Dagan, G.
1982-01-01
A comprehensive model which considers dispersive solute transport, nonsteady moisture flow regimes and complex boundary conditions is described. The main assumptions are: vertical flow; spatial variability which is associated with the saturated hydraulic conductivity K/sub s/ occurs in the horizontal plane, but is constant in the profile, and has a lognormal probability distribution function (PDF); deterministic recharge and solute concentration are applied during infiltration; the soil is at uniform water content and salt concentration prior to infiltration. The problem is to solve, for arbitrary K/sub s/, the Richards' equation of flow simultaneously with the diffusion-convection equation for salt transport, with the boundary and initial conditions appropriate to infiltration-redistribution. Once this is achieved, the expectation and variance of various quantities of interest (solute concentration, moisture content) are obtained by using the statistical averaging procedure and the given PDF of K/sub s/. Since the solution of Richards' equation for the infiltration-redistribution cycle is extremely difficult (for a given K/sub s/), an approxiate solution is derived by using the concept of piston flow type wetting fronts. Similarly, accurate numerical solutions are used as input for the same statistical averaging procedure. The stochastic model is applied to two spatially variable soils by using both accurate numerical solutions and the simplified water and salt transport models. A comparison between the results shows that the approximate simplified models lead to quite accurate values of the expectations and variances of the flow variables for the entire field. It is suggested that in spatially variable fields, stochastic modeling represents the actual flow phenomena realistically, and provides the main statistical moments by using simplified flow models which can be used with confidence in applications
A variational solution of transport equation based on spherical geometry
International Nuclear Information System (INIS)
Liu Hui; Zhang Ben'ai
2002-01-01
A variational method with differential forms gives better precision for numerical solution of transport critical problem based on spherical geometry, and its computation seems simple than other approximate methods
Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock
International Nuclear Information System (INIS)
Chan, T.; Reid, J.A.K.
1987-01-01
This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions
Technology in rural transportation. Simple solution #6, traveler information on the internet
1997-01-01
This application was identified as a promising rural Intelligent Transportation Systems (ITS) solution under a project sponsored by the Federal Highway Administration (FHWA) and the ENTERPRISE program. This summary describes the solution as well as o...
Hyporheic less-mobile porosity and solute transport in porous media
MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.
2017-12-01
Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.
Effects of sorption and temperature on solute transport in unsaturated steady flow
International Nuclear Information System (INIS)
Fuentes, H.R.; Polzer, W.L.; Essington, E.H.
1986-01-01
It is known that temperature affects physical and chemical processes and that these processes may alter the transport of solutes in the environment. Laboratory column studies were performed in unsaturated flow conditions with a composite pulse containing iodide, cobalt, cesium and strontium each at 10 -3 M. The experiments were performed with Bandelier Tuff and produced breakthrough curves that indicate significant changes in transport due to a temperature change from 25 0 C to 5 0 C for nonconservative solutes. Also, the interpretation of the temperature and sorption data suggest that the differences in transport between 5 0 C and 25 0 C for nonconservative solutes may be predicted in a qualitative manner from batch equilibrium and nonequilibrium sorption data and the theory of sorption used in deriving the modified Freundlich isotherm equation. These effects should be of concern in modeling and management of spills and waste disposal within this range of environmental temperatures
Peritoneal solute transport and inflammation.
Davies, Simon J
2014-12-01
The speed with which small solutes cross the peritoneal membrane, termed peritoneal solute transport rate (PSTR), is a key measure of individual membrane performance. PSTR can be quantified easily by using the 4-hour dialysate to plasma creatinine ratio, which, although only an approximation to the diffusive characteristics of the membrane, has been well validated clinically in terms of its relationship to patient survival and changes in longitudinal membrane function. This has led to changes in peritoneal dialysis modality use and dialysis prescription. An important determinant of PSTR is intraperitoneal inflammation, as exemplified by local interleukin 6 production, which is largely independent of systemic inflammation and its relationship to comorbid conditions and increased mortality. There is no strong evidence to support the contention that the peritoneal membrane in some individuals with high PSTR is qualitatively different at the start of treatment; rather, it represents a spectrum that is determined in part by genetic factors. Both clinical and experimental evidence support the view that persistent intraperitoneal inflammation, detected as a continuously high or increasing PSTR, may predispose the membrane to progressive fibrosis. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Approximate solution of the transport equation by methods of Galerkin type
International Nuclear Information System (INIS)
Pitkaranta, J.
1977-01-01
Questions of the existence, uniqueness, and convergence of approximate solutions of transport equations by methods of the Galerkin type (where trial and weighting functions are the same) are discussed. The results presented do not exclude the infinite-dimensional case. Two strategies can be followed in the variational approximation of the transport operator: one proceeds from the original form of the transport equation, while the other is based on the partially symmetrized equation. Both principles are discussed in this paper. The transport equation is assumed in a discretized multigroup form
Coupled geochemical and solute transport code development
International Nuclear Information System (INIS)
Morrey, J.R.; Hostetler, C.J.
1985-01-01
A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code
Limit Theorems and Their Relation to Solute Transport in Simulated Fractured Media
Reeves, D. M.; Benson, D. A.; Meerschaert, M. M.
2003-12-01
Solute particles that travel through fracture networks are subject to wide velocity variations along a restricted set of directions. This may result in super-Fickian dispersion along a few primary scaling directions. The fractional advection-dispersion equation (FADE), a modification of the original advection-dispersion equation in which a fractional derivative replaces the integer-order dispersion term, has the ability to model rapid, non-Gaussian solute transport. The FADE assumes that solute particle motions converge to either α -stable or operator stable densities, which are modeled by spatial fractional derivatives. In multiple dimensions, the multi-fractional dispersion derivative dictates the order and weight of differentiation in all directions, which correspond to the statistics of large particle motions in all directions. This study numerically investigates the presence of super- Fickian solute transport through simulated two-dimensional fracture networks. An ensemble of networks is gen
Energy Technology Data Exchange (ETDEWEB)
Samper, J.; Ajora, C. (Instituto de Ciencias de la Tierra, CSIC, Barcerlona (Spain))
1993-01-01
During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs.
A stochastic solution of the advective transport equation with uncertainty
International Nuclear Information System (INIS)
Williams, M.M.R.
1991-01-01
A model has been developed for calculating the transport of water-borne radionuclides through layers of porous materials, such as rock or clay. The model is based upon a purely advective transport equation, in which the fluid velocity is a random variable, thereby simulating dispersion in a more realistic manner than the ad hoc introduction of a dispersivity. In addition to a random velocity field, which is an observable physical phenomenon, allowance is made for uncertainty in our knowledge of the parameters which enter the equation, e.g. the retardation coefficient. This too, is assumed to be a random variable and contributes to the stochasticity of the resulting partial differential equation of transport. The stochastic differential equation can be solved analytically and then ensemble averages taken over the associated probability distribution of velocity and retardation coefficient. A method based upon a novel form of the central limit theorem of statistics is employed to obtain tractable solutions of a system consisting of many serial legs of varying properties. One interesting conclusion is that the total flux out of a medium is significantly underestimated by using the deterministic solution with an average transit time compared with that from the stochastically averaged solution. The theory is illustrated numerically for a number of physically relevant cases. (author) 8 figs., 4 tabs., 7 refs
Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs
Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won
2018-04-01
Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).
International Nuclear Information System (INIS)
Ganapol, B.D.
1986-01-01
In a course on neutron transport theory and also in the analytical neutron transport theory literature, the pioneering work of Case et al. (CdHP) is often referenced. This work was truly a monumental effort in that it treated the fundamental mathematical properties of the one-group neutron Boltzmann equation in detail as well as the numerical evaluation of most of the resulting solutions. Many mathematically and numerically oriented dissertations were based on this classic monograph. In light of the considerable advances made both in numerical methods and computer technology since 1953, when the historic CdHP monograph first appeared, it seems appropriate to reevaluate the numerical benchmark solutions found therein with present-day computational technology. In most transport theory courses, the subject of proper benchmarking of numerical algorithms and transport codes is seldom addressed at any great length. This may be the reason that the benchmarking procedure is so rarely practiced in the nuclear community and when practiced is improperly applied. In this presentation, the development of a new benchmark for the one-group neutron flux in an infinite medium will be detailed with emphasis placed on the educational aspects of the benchmarking activity
The simulation of solute transport: An approach free of numerical dispersion
International Nuclear Information System (INIS)
Carrera, J.; Melloni, G.
1987-01-01
The applicability of most algorithms for simulation of solute transport is limited either by instability or by numerical dispersion, as seen by a review of existing methods. A new approach is proposed that is free of these two problems. The method is based on the mixed Eulerian-Lagrangian formulation of the mass-transport problem, thus ensuring stability. Advection is simulated by a variation of reverse-particle tracking that avoids the accumulation of interpolation errors, thus preventing numerical dispersion. The algorithm has been implemented in a one-dimensional code. Excellent results are obtained, in comparison with an analytical solution. 36 refs., 14 figs., 1 tab
A multi scale approximation solution for the time dependent Boltzmann-transport equation
International Nuclear Information System (INIS)
Merk, B.
2004-03-01
The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is
Hydrophilic solute transport across the rat blood-brain barrier
International Nuclear Information System (INIS)
Lucchesi, K.J.
1987-01-01
Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of 3 H-inulin and 14 C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients
International Nuclear Information System (INIS)
Travis, C.C.
1978-10-01
This report reviews selected literature related to the mathematical description of the transport of reactive solutes through soil. The primary areas of the literature reviewed are (1) mathematical models in current use for description of the adsorption-desorption interaction between the soil solution and the soil matrix and (2) analytic solutions of the differential equations describing the convective-dispersive transport of reactive solutes through soil
Influence of pore structure on solute transport in degraded and undegraded fen peat soils
Directory of Open Access Journals (Sweden)
C. Kleimeier
2017-10-01
Full Text Available In peat soils, decomposition and degradation reduce the proportion of large pores by breaking down plant debris into smaller fragments and infilling inter-particle pore spaces. This affects water flow and solute migration which, in turn, influence reactive transport processes and biogeochemical functions. In this study we conducted flow-through reactor experiments to investigate the interplay between pore structure and solute transport in samples of undegraded and degraded peat collected in Canada and Germany, respectively. The pore size distributions and transport parameters were characterised using the breakthrough curve and two-region non-equilibrium transport model analyses for a non-reactive solute. The results of transport characterisation showed a higher fraction of immobile pores in the degraded peat with higher diffusive exchanges of solutes between the mobile and immobile pores associated with the dual-porosity structure. The rates of steady-state potential nitrate reduction were compared with pore fractions and exchange coefficients to investigate the influence of pore structure on the rates of nitrate reduction. The results indicated that the degraded peat has potential to provide the necessary boundary conditions to support nitrate removal and serves as a favourable substrate for denitrification, due to the nature of its pore structure and its lower organic carbon content compared to undegraded peat.
Dam, van J.C.
2000-01-01
Water flow and solute transport in top soils are important elements in many environmental studies. The agro- and ecohydrological model SWAP (Soil-Water-Plant-Atmosphere) has been developed to simulate simultaneously water flow, solute transport, heat flow and crop growth at field scale
Monte Carlo methods for flux expansion solutions of transport problems
International Nuclear Information System (INIS)
Spanier, J.
1999-01-01
Adaptive Monte Carlo methods, based on the use of either correlated sampling or importance sampling, to obtain global solutions to certain transport problems have recently been described. The resulting learning algorithms are capable of achieving geometric convergence when applied to the estimation of a finite number of coefficients in a flux expansion representation of the global solution. However, because of the nonphysical nature of the random walk simulations needed to perform importance sampling, conventional transport estimators and source sampling techniques require modification to be used successfully in conjunction with such flux expansion methods. It is shown how these problems can be overcome. First, the traditional path length estimators in wide use in particle transport simulations are generalized to include rather general detector functions (which, in this application, are the individual basis functions chosen for the flus expansion). Second, it is shown how to sample from the signed probabilities that arise as source density functions in these applications, without destroying the zero variance property needed to ensure geometric convergence to zero error
GRRR. The EXPECT groundwater model for transport of solutes
Meijers R; Sauter FJ; Veling EJM; van Grinsven JJM; Leijnse A; Uffink GJM; MTV; CWM; LBG
1994-01-01
In this report the design and first test results are presented of the EXPECT groundwater module for transport of solutes GRRR (GRoundwater source Receptor Relationships). This model is one of the abiotic compartment modules of the EXPECT model. The EXPECT model is a tool for scenario development
An Experimental Study on Solute Transport in One-Dimensional Clay Soil Columns
Directory of Open Access Journals (Sweden)
Muhammad Zaheer
2017-01-01
Full Text Available Solute transport in low-permeability media such as clay has not been studied carefully up to present, and we are often unclear what the proper governing law is for describing the transport process in such media. In this study, we composed and analyzed the breakthrough curve (BTC data and the development of leaching in one-dimensional solute transport experiments in low-permeability homogeneous and saturated media at small scale, to identify key parameters controlling the transport process. Sodium chloride (NaCl was chosen to be the tracer. A number of tracer tests were conducted to inspect the transport process under different conditions. The observed velocity-time behavior for different columns indicated the decline of soil permeability when switching from tracer introducing to tracer flushing. The modeling approaches considered were the Advection-Dispersion Equation (ADE, Two-Region Model (TRM, Continuous Time Random Walk (CTRW, and Fractional Advection-Dispersion Equation (FADE. It was found that all the models can fit the transport process very well; however, ADE and TRM were somewhat unable to characterize the transport behavior in leaching. The CTRW and FADE models were better in capturing the full evaluation of tracer-breakthrough curve and late-time tailing in leaching.
Directory of Open Access Journals (Sweden)
Xun Yue
2012-01-01
Full Text Available Aquaporins are multifunctional membrane channels that facilitate the transmembrane transport of water and solutes. When transmembrane mineral nutrient transporters exhibit the same expression patterns as aquaporins under diverse temporal and physiological conditions, there is a greater probability that they interact. In this study, genome-wide temporal profiling of transcripts analysis and coexpression network-based approaches are used to examine the significant specificity correlation of aquaporins and transmembrane solute transporters in developing maize leaf. The results indicate that specific maize aquaporins are related to specific transmembrane solute transporters. The analysis demonstrates a systems-level correlation between aquaporins, nutrient transporters, and the homeostasis of mineral nutrients in developing maize leaf. Our results provide a resource for further studies into the physiological function of these aquaporins.
Solution to the monoenergetic time-dependent neutron transport equation with a time-varying source
International Nuclear Information System (INIS)
Ganapol, B.D.
1986-01-01
Even though fundamental time-dependent neutron transport problems have existed since the inception of neutron transport theory, it has only been recently that a reliable numerical solution to one of the basic problems has been obtained. Experience in generating numerical solutions to time-dependent transport equations has indicated that the multiple collision formulation is the most versatile numerical technique for model problems. The formulation coupled with a moment reconstruction of each collided flux component has led to benchmark-quality (four- to five-digit accuracy) numerical evaluation of the neutron flux in plane infinite geometry for any degree of scattering anisotropy and for both pulsed isotropic and beam sources. As will be shown in this presentation, this solution can serve as a Green's function, thus extending the previous results to more complicated source situations. Here we will be concerned with a time-varying source at the center of an infinite medium. If accurate, such solutions have both pedagogical and practical uses as benchmarks against which other more approximate solutions designed for a wider class of problems can be compared
Modelling transport of water and solutes in future wetlands in Forsmark
Energy Technology Data Exchange (ETDEWEB)
Vikstroem, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Vaexjoe (Sweden)
2006-03-15
been analyzed. Results from the transport modelling show that a solute in the bedrock is transported quickly towards the peat surface in discharge areas for Bolundsfjaerden. After around 10 years, a stationary condition is reached. For the recharge area that develops in large parts of the mire, the solute is transported through horizontal dispersion, which results in much lower concentrations. The solute concentration is at the lowest where the overland water pressure is at the highest close to the south western inlet. Puttan has a vertical flow pattern that differs from Bolundsfjaerden. The pressure from water on the peat surface is considerably lower and for a major part of the year Puttan is a discharge area with an upwards flow direction. The spatial distribution of solutes is more even over the surface than for Bolundsfjaerden, but higher concentrations are found around today's shoreline. A solute reaching the wetland through surface runoff is transported relatively slow through the mire at Bolundsfjaerden. Due to the recharge conditions, the solute is spread to the underlying soil layers. The vertical solute transport follows the discharge and recharge areas, where high concentrations, up to the source strength, are reached in major parts of the formation, while lower concentrations are reached in the discharge areas and underneath clay sediment.
Modelling transport of water and solutes in future wetlands in Forsmark
International Nuclear Information System (INIS)
Vikstroem, Maria; Gustafsson, Lars-Goeran
2006-03-01
analyzed. Results from the transport modelling show that a solute in the bedrock is transported quickly towards the peat surface in discharge areas for Bolundsfjaerden. After around 10 years, a stationary condition is reached. For the recharge area that develops in large parts of the mire, the solute is transported through horizontal dispersion, which results in much lower concentrations. The solute concentration is at the lowest where the overland water pressure is at the highest close to the south western inlet. Puttan has a vertical flow pattern that differs from Bolundsfjaerden. The pressure from water on the peat surface is considerably lower and for a major part of the year Puttan is a discharge area with an upwards flow direction. The spatial distribution of solutes is more even over the surface than for Bolundsfjaerden, but higher concentrations are found around today's shoreline. A solute reaching the wetland through surface runoff is transported relatively slow through the mire at Bolundsfjaerden. Due to the recharge conditions, the solute is spread to the underlying soil layers. The vertical solute transport follows the discharge and recharge areas, where high concentrations, up to the source strength, are reached in major parts of the formation, while lower concentrations are reached in the discharge areas and underneath clay sediment
Bredeston, Luis M; González Flecha, F Luis
2016-07-01
Membrane transport P-type ATPases display two characteristic enzymatic activities: a principal ATPase activity provides the driving force for ion transport across biological membranes, whereas a promiscuous secondary activity catalyzes the hydrolysis of phosphate monoesters. This last activity is usually denoted as the phosphatase activity of P-ATPases. In the present study, we characterize the phosphatase activity of the Cu(+)-transport ATPase from Archaeglobus fulgidus (Af-CopA) and compare it with the principal ATPase activity. Our results show that the phosphatase turnover number was 20 times higher than that corresponding to the ATPase activity, but it is compensated by a high value of Km, producing a less efficient catalysis for pNPP. This secondary activity is enhanced by Mg(2+) (essential activator) and phospholipids (non-essential activator), and inhibited by salts and Cu(+). Transition state analysis of the catalyzed and noncatalyzed hydrolysis of pNPP indicates that Af-CopA enhances the reaction rates by a factor of 10(5) (ΔΔG(‡)=38 kJ/mol) mainly by reducing the enthalpy of activation (ΔΔH(‡)=30 kJ/mol), whereas the entropy of activation is less negative on the enzyme than in solution. For the ATPase activity, the decrease in the enthalpic component of the barrier is higher (ΔΔH(‡)=39 kJ/mol) and the entropic component is small on both the enzyme and in solution. These results suggest that different mechanisms are involved in the transference of the phosphoryl group of p-nitrophenyl phosphate and ATP. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydro-dynamic Solute Transport under Two-Phase Flow Conditions.
Karadimitriou, Nikolaos K; Joekar-Niasar, Vahid; Brizuela, Omar Godinez
2017-07-26
There are abundant examples of natural, engineering and industrial applications, in which "solute transport" and "mixing" in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models.
International Nuclear Information System (INIS)
Goncalves, Glenio Aguiar
2003-01-01
In this work, we are reported analytical solutions for the transport equation for neutral particles in cylindrical and cartesian geometry. For the cylindrical geometry, it is applied the Hankel transform of order zero in the S N approximation of the one-dimensional cylindrical transport equation, assuming azimuthal symmetry and isotropic scattering. This procedure is coined HTSN method. The anisotropic problem is handled using the decomposition method, generating a recursive approach, which the HTSN solution is used as initial condition. For cartesian geometry, the one and two dimensional transport equation is derived in the angular variable as many time as the degree of the anisotropic scattering. This procedure leads to set of integro-differential plus one differential equation that can be really solved by the variable separation method. Following this procedure, it was possible to come out with the Case solution for the one-dimensional problem. Numerical simulations are reported for the cylindrical transport problem both isotropic and anisotropic case of quadratic degree. (author)
Joekar-Niasar, V.
2013-01-25
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
Joekar-Niasar, V.; Schotting, R.; Leijnse, A.
2013-01-01
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
Determination of the activity of a molecular solute in saturated solution
International Nuclear Information System (INIS)
Nordstroem, Fredrik L.; Rasmuson, Ake C.
2008-01-01
Prediction of the solubility of a solid molecular compound in a solvent, as well as, estimation of the solution activity coefficient from experimental solubility data both require estimation of the activity of the solute in the saturated solution. The activity of the solute in the saturated solution is often defined using the pure melt at the same temperature as the thermodynamic reference. In chemical engineering literature also the activity of the solid is usually defined on the same reference state. However, far below the melting temperature, the properties of this reference state cannot be determined experimentally, and different simplifications and approximations are normally adopted. In the present work, a novel method is presented to determine the activity of the solute in the saturated solution (=ideal solubility) and the heat capacity difference between the pure supercooled melt and solid. The approach is based on rigorous thermodynamics, using standard experimental thermodynamic data at the melting temperature of the pure compound and solubility measurements in different solvents at various temperatures. The method is illustrated using data for ortho-, meta-, and para-hydroxybenzoic acid, salicylamide and paracetamol. The results show that complete neglect of the heat capacity terms may lead to estimations of the activity that are incorrect by a factor of 12. Other commonly used simplifications may lead to estimations that are only one-third of the correct value
Determination of the activity of a molecular solute in saturated solution
Energy Technology Data Exchange (ETDEWEB)
Nordstroem, Fredrik L. [Department of Chemical Engineering and Technology, Royal Institute of Technology, 100 44 Stockholm (Sweden); Rasmuson, Ake C. [Department of Chemical Engineering and Technology, Royal Institute of Technology, 100 44 Stockholm (Sweden)], E-mail: rasmuson@ket.kth.se
2008-12-15
Prediction of the solubility of a solid molecular compound in a solvent, as well as, estimation of the solution activity coefficient from experimental solubility data both require estimation of the activity of the solute in the saturated solution. The activity of the solute in the saturated solution is often defined using the pure melt at the same temperature as the thermodynamic reference. In chemical engineering literature also the activity of the solid is usually defined on the same reference state. However, far below the melting temperature, the properties of this reference state cannot be determined experimentally, and different simplifications and approximations are normally adopted. In the present work, a novel method is presented to determine the activity of the solute in the saturated solution (=ideal solubility) and the heat capacity difference between the pure supercooled melt and solid. The approach is based on rigorous thermodynamics, using standard experimental thermodynamic data at the melting temperature of the pure compound and solubility measurements in different solvents at various temperatures. The method is illustrated using data for ortho-, meta-, and para-hydroxybenzoic acid, salicylamide and paracetamol. The results show that complete neglect of the heat capacity terms may lead to estimations of the activity that are incorrect by a factor of 12. Other commonly used simplifications may lead to estimations that are only one-third of the correct value.
The Governor's Challenge: "Building a Stronger Virginia Today": Transportation Visions and Solutions
Baker, Susan
2008-01-01
Using STM(Science, Technology, Engineering, Math) education, this emerging workforce will have the chance to creatively solve one of Virginia's biggest challenges: TRANSPORTATION. - Students will be asked to develop alternative transportation systems for the state. This competition will enable teams to work with business mentors to design creative solutions for regional gridlocks and develop other transportation systems to more easily and expediently reach all parts of the Commonwealth.
Jin, Byung-Ju; Smith, Alex J; Verkman, Alan S
2016-12-01
A "glymphatic system," which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier-Stokes and convection-diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. © 2016 Jin et al.
Protein Kinases C-Mediated Regulations of Drug Transporter Activity, Localization and Expression
Directory of Open Access Journals (Sweden)
Abdullah Mayati
2017-04-01
Full Text Available Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug–drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs in transporter regulations are summarized and discussed. Both solute carrier (SLC and ATP-binding cassette (ABC drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.
TLC scheme for numerical solution of the transport equation on equilateral triangular meshes
International Nuclear Information System (INIS)
Walters, W.F.
1983-01-01
A new triangular linear characteristic TLC scheme for numerically solving the transport equation on equilateral triangular meshes has been developed. This scheme uses the analytic solution of the transport equation in the triangle as its basis. The data on edges of the triangle are assumed linear as is the source representation. A characteristic approach or nodal approach is used to obtain the analytic solution. Test problems indicate that the new TLC is superior to the widely used DITRI scheme for accuracy
VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.
Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R
2018-01-29
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.
Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS
Simunek, Jiri; Bradford, Scott A.
2017-04-01
Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air
International Nuclear Information System (INIS)
Colombant, Denis; Manheimer, Wallace
2010-01-01
Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.
International Nuclear Information System (INIS)
Shan, C.; Javandel, I.
1996-05-01
Analytical solutions are developed for modeling solute transport in a vertical section of a homogeneous aquifer. Part 1 of the series presents a simplified analytical solution for cases in which a constant-concentration source is located at the top (or the bottom) of the aquifer. The following transport mechanisms have been considered: advection (in the horizontal direction), transverse dispersion (in the vertical direction), adsorption, and biodegradation. In the simplified solution, however, longitudinal dispersion is assumed to be relatively insignificant with respect to advection, and has been neglected. Example calculations are given to show the movement of the contamination front, the development of concentration profiles, the mass transfer rate, and an application to determine the vertical dispersivity. The analytical solution developed in this study can be a useful tool in designing an appropriate monitoring system and an effective groundwater remediation method
Identification of key target markets for intermodal freight transport solutions in South Africa
Directory of Open Access Journals (Sweden)
Joubert van Eeden
2010-11-01
Full Text Available The Accelerated and Shared Growth Initiative for South Africa (AsgiSA identified South Africa's freight logistics challenges as among the key binding constraints on the country's growth aspirations. The research presented here points to the structural imbalance between road and rail freight transport as one of the key contributors to this state of affairs. Most long-distance corridor transport has been captured by road. However, long-distance transport is a market segment that is very suitable for intermodal transportation : rail is utilised for the high-density, long-distance component and road for the feeder and distribution services at the corridor end points. A market segmentation approach is developed to identify the corridors and industries that are natural candidates for such solutions, thereby paving the way for role-players and stakeholders to initiate a dialogue on the development of appropriate solutions.
Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.
2012-01-01
The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.
Directory of Open Access Journals (Sweden)
Roman Cherniha
2016-06-01
Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.
International Nuclear Information System (INIS)
Baik, Min Hoon
1994-02-01
In this study, adsorption and transport models were developed to analyze the effect of chelating agents on the adsorption and subsurface transport of radioactive solutes. The effect of chelating agents on the adsorption of radioactive solutes was analyzed by developing an adsorption model based upon the extended concept of distribution coefficient reflecting the presence of chelating agents. Also, a batch adsorption experiment was conducted in order to validate the developed adsorption model and to investigate the effect of chelating agent on the adsorption of radioactive metal solutes. In this experiment, a Cobalt(II)/EDTA/Bentonite system was considered as a representative chelation/adsorption system. It was found from the results that the presence of chelating agents significantly reduced the adsorbing capacity of geologic media such as clay minerals and soils. Thus it was concluded that the presence of chelating agents even in a small amount could contribute to the mobilization of radioactive solutes from radioactive waste burial sites by reducing the adsorbing capacity of geologic media. The effect of chelating agents on the transport of radioactive solutes in subsurface porous media was analyzed by formulating an advective-dispersive transport model which incorporated chelate formation, adsorption, decay, and degradations and by introducing the concept of a tenad. Particularly the governing equation for the tenad of radioactive solutes, M, was presented as a linear partial differential form by introducing the extended distribution coefficient, K D . The calculated results from the model showed that the transport rate of the chelated radionuclides was much greater than that of the free ionic radionuclides. This much faster transport of the chelated radionuclides was found to be due to the lower retardation factor of the chelated radionuclides than the free ionic radionuclides. The effect of parameters on the transport of radioactive solutes was also analyzed
Transport on prescription: How can GPs contribute to the promotion of active transport?
Pistoll, Chance; Furler, John
2017-10-01
Active transport (ie walking, cycling, using public transport) can play a part in reducing non-communicable diseases (NCDs). Very little is known about how general practitioners (GPs) can contribute to promoting active transport. We explored GPs' ideas around active transport, and potential barriers and facilitators to its promotion in the clinical setting. Using a maximal variation sample, we conducted 10 semi-structured interviews with GPs in Victoria, Australia. The socioecological model informed data collection and analysis. The idea of active transport resonated with GPs. Limited awareness around active transport and safety concerns regarding commuter cycling were barriers to clinical promotion. GPs believed patients' health, cultural norms, socioeconomic position and access to supportive environments could facilitate participation. Future efforts should prioritise awareness of active transport among GPs. The perspectives of GPs would be valuable to policymakers, particularly in designing programs to mitigate inequalities around active transport access and use.
A lattice Boltzmann model for solute transport in open channel flow
Wang, Hongda; Cater, John; Liu, Haifei; Ding, Xiangyi; Huang, Wei
2018-01-01
A lattice Boltzmann model of advection-dispersion problems in one-dimensional (1D) open channel flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint-Venant equations (LABSVE). The advection-dispersion model is coupled with the LABSVE using the lattice Boltzmann method. Our research recovers the advection-dispersion equations through the Chapman-Enskog expansion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the lattice Boltzmann numerical method is adopted to solve the advection-dispersion problem by meso-scopic particle distribution; (2) and the model describes the relation between discharge, cross section area and solute concentration, which increases the applicability of the water quality model in practical engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a dam break flow. The model is then applied to a 50-year flood point source pollution accident on the Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.
Representing solute transport through the multi-barrier disposal system by simplified concepts
International Nuclear Information System (INIS)
Poteri, A.; Nordman, H.; Pulkkanen, V-M.; Kekaelaeinen, P.; Hautojaervi, A.
2012-02-01
The repository system chosen in Finland for spent nuclear fuel is composed of multiple successive transport barriers. If a waste canister is leaking, this multi-barrier system retards and limits the release rates of radionuclides into the biosphere. Analysis of radionuclide migration in the previous performance assessments has largely been based on numerical modelling of the repository system. The simplified analytical approach introduced here provides a tool to analyse the performance of the whole system using simplified representations of the individual transport barriers. This approach is based on the main characteristics of the individual barriers and on the generic nature of the coupling between successive barriers. In the case of underground repository the mass transfer between successive transport barriers is strongly restricted by the interfaces between barriers leading to well-mixed conditions in these barriers. The approach here simplifies the barrier system so that it can be described with a very simple compartment model, where each barrier is represented by a single, or in the case of buffer, by not more than two compartments. This system of compartments could be solved in analogy with a radioactive decay chain. The model of well mixed compartments lends itself to a very descriptive way to represent and analyse the barrier system because the relative efficiency of the different barriers in hindering transport of solutes can be parameterised by the solutes half-times in the corresponding compartments. In a real repository system there will also be a delay between the start of the inflow and the start of the outflow from the barrier. This delay can be important for the release rates of the short lived and sorbing radionuclides, and it was also included in the simplified representation of the barrier system. In a geological multi-barrier system, spreading of the outflowing release pulse is often governed by the typical behaviour of one transport barrier
Representing solute transport through the multi-barrier disposal system by simplified concepts
Energy Technology Data Exchange (ETDEWEB)
Poteri, A.; Nordman, H.; Pulkkanen, V-M. [VTT Technical Research Centre of Finland, Espoo (Finland); Kekaelaeinen, P. [Jyvaeskylae Univ. (Finland). Dept. pf Physics; Hautojaervi, A.
2012-02-15
The repository system chosen in Finland for spent nuclear fuel is composed of multiple successive transport barriers. If a waste canister is leaking, this multi-barrier system retards and limits the release rates of radionuclides into the biosphere. Analysis of radionuclide migration in the previous performance assessments has largely been based on numerical modelling of the repository system. The simplified analytical approach introduced here provides a tool to analyse the performance of the whole system using simplified representations of the individual transport barriers. This approach is based on the main characteristics of the individual barriers and on the generic nature of the coupling between successive barriers. In the case of underground repository the mass transfer between successive transport barriers is strongly restricted by the interfaces between barriers leading to well-mixed conditions in these barriers. The approach here simplifies the barrier system so that it can be described with a very simple compartment model, where each barrier is represented by a single, or in the case of buffer, by not more than two compartments. This system of compartments could be solved in analogy with a radioactive decay chain. The model of well mixed compartments lends itself to a very descriptive way to represent and analyse the barrier system because the relative efficiency of the different barriers in hindering transport of solutes can be parameterised by the solutes half-times in the corresponding compartments. In a real repository system there will also be a delay between the start of the inflow and the start of the outflow from the barrier. This delay can be important for the release rates of the short lived and sorbing radionuclides, and it was also included in the simplified representation of the barrier system. In a geological multi-barrier system, spreading of the outflowing release pulse is often governed by the typical behaviour of one transport barrier
Energy Technology Data Exchange (ETDEWEB)
Ganapol, B.D., E-mail: ganapol@cowboy.ame.arizona.edu [Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ (United States); Mostacci, D.; Previti, A. [Montecuccolino Laboratory, University of Bologna, Via dei Colli, 16, I-40136 Bologna (Italy)
2016-07-01
We present highly accurate solutions to the neutral particle transport equation in a half-space. While our initial motivation was in response to a recently published solution based on Chandrasekhar's H-function, the presentation to follow has taken on a more comprehensive tone. The solution by H-functions certainly did achieved high accuracy but was limited to isotropic scattering and emission from spatially uniform and linear sources. Moreover, the overly complicated nature of the H-function approach strongly suggests that its extension to anisotropic scattering and general sources is not at all practical. For this reason, an all encompassing theory for the determination of highly precise benchmarks, including anisotropic scattering for a variety of spatial source distributions, is presented for particle transport in a half-space. We illustrate the approach via a collection of cases including tables of 7-place flux benchmarks to guide transport methods developers. The solution presented can be applied to a considerable number of one and two half-space transport problems with variable sources and represents a state-of-the-art benchmark solution.
Tsuchiya, Yo; Kawamata, Koichi
2017-11-01
Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.
Chain segmentation for the Monte Carlo solution of particle transport problems
International Nuclear Information System (INIS)
Ragheb, M.M.H.
1984-01-01
A Monte Carlo approach is proposed where the random walk chains generated in particle transport simulations are segmented. Forward and adjoint-mode estimators are then used in conjunction with the firstevent source density on the segmented chains to obtain multiple estimates of the individual terms of the Neumann series solution at each collision point. The solution is then constructed by summation of the series. The approach is compared to the exact analytical and to the Monte Carlo nonabsorption weighting method results for two representative slowing down and deep penetration problems. Application of the proposed approach leads to unbiased estimates for limited numbers of particle simulations and is useful in suppressing an effective bias problem observed in some cases of deep penetration particle transport problems
Transport of reactive and nonreactive solutes
International Nuclear Information System (INIS)
Garabedian, S.P.; Leblanc, D.R.
1990-01-01
A natural-gradient tracer test was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. A nonreactive tracer, bromide, and two reactive tracers, lithium and molybdate, were injected as a pulse in July 1985 and monitored in three dimensions for 3 years as they moved 280 meters downgradient through an array of multilevel samplers. The tracer transport was quantified using spatial moments. The calculated total mass of bromide for each sampling date varied from 86 to 105 percent of the injected mass, and the center of mass moved at a nearly constant horizontal velocity of 0.42 meters per day. The bromide cloud also moved downward about 4 meters, probably because of density-induced sinking and accretion of areal recharge from precipitation. After 200 meters of transport, the bromide cloud was more than 80 meters long but only 14 meters wide and 6 meters thick. The change in longitudinal dispersivity had reached a constant value (0.96 meters). The transverse horizontal and transverse vertical dispersivities were much smaller (1.8 centimeters and 1.5 millimeters, respectively) than the longitudinal value. The lithium and molybdate clouds followed the same path as the bromide cloud, but a significant amount of their mass was adsorbed onto the aquifer sediments, and their rates of movement were retarded about 50 percent relative to the bromide movement. (Author) (5 figs., 23 refs.)
Modeling of water and solute transport under variably saturated conditions: state of the art
International Nuclear Information System (INIS)
Lappala, E.G.
1980-01-01
This paper reviews the equations used in deterministic models of mass and energy transport in variably saturated porous media. Analytic, quasi-analytic, and numerical solution methods to the nonlinear forms of transport equations are discussed with respect to their advantages and limitations. The factors that influence the selection of a modeling method are discussed in this paper; they include the following: (1) the degree of coupling required among the equations describing the transport of liquids, gases, solutes, and energy; (2) the inclusion of an advection term in the equations; (3) the existence of sharp fronts; (4) the degree of nonlinearity and hysteresis in the transport coefficients and boundary conditions; (5) the existence of complex boundaries; and (6) the availability and reliability of data required by the models
International Nuclear Information System (INIS)
Fukutsuka, Tomokazu; Koyamada, Kohei; Maruyama, Shohei; Miyazaki, Kohei; Abe, Takeshi
2016-01-01
Highlights: • Ion transport in organic electrolyte solution in macro- and meso-pores was focused. • Anodic nanoporous alumina membrane was used as a porous material. • The specific ion conductivities drastically decreased in macro- and meso-pores. - Abstract: For the development of high energy density lithium-ion batteries with the high rate performance, the enhancement of the ion transport in the electrolyte solutions impregnated in the porous electrodes is a key. To study the ion transport in porous electrodes, anodic nanoporous alumina (APA) self-standing membranes with macro- or meso-pores were used as model porous materials. These membranes had nearly spherical pore channels of discrete 20–68 nm in diameters. By using the geometric shape of the pores, we attempted to evaluate the specific ion conductivities of the organic electrolyte solution dissolving lithium salt simply. AC impedance spectroscopy measurement of a four-electrode cell with membranes showed one depressed semi-circle in the Nyquist plots and this semi-circle can be assigned as the ion transport resistance in the pores. The specific ion conductivities evaluated from the ion transport resistances and the geometric parameters showed very small values, even in the macro-pores, as compared with that of the bulk electrolyte solution.
Activity coefficients of solutes in binary solvents
International Nuclear Information System (INIS)
Gokcen, N.A.
1982-01-01
The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities
On the Solution of the Neutron Transport Equation
Energy Technology Data Exchange (ETDEWEB)
Depken, S
1962-12-15
The neutron transport equation has occupied the attention of many authors since Placzek, Wick and others made their first attempts to solve it, Even in the simple case of energy independent cross-sections, and disregarding the motion of the scattering nucleons, it is difficult to find a solution in an analytical form which is easily surveyable and fitted for numerical calculations. In Part I of this paper some new viewpoints will be introduced which enable the solution to be presented in its simplest possible form. Part II is devoted to an investigation of some functions introduced in Part I. In Part III the results are applied to the case of large energy lethargy, and the validity of derived formulas is discussed.
CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 User’s Guide
Energy Technology Data Exchange (ETDEWEB)
Freedman, Vicky L.; Chen, Yousu; Gilca, Alex; Cole, Charles R.; Gupta, Sumant K.
2006-07-20
The CFEST (Coupled Flow, Energy, and Solute Transport) simulator described in this User’s Guide is a three-dimensional finite-element model used to evaluate groundwater flow and solute mass transport. Confined and unconfined aquifer systems, as well as constant and variable density fluid flows can be represented with CFEST. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentra¬tion of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Although several thermal parameters described in this User’s Guide are required inputs, thermal transport has not yet been fully implemented in the simulator. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. The CFEST simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards. Execution of the CFEST simulator is controlled through three required text input files. These input file use a structured format of associated groups of input data. Example input data lines are presented for each file type, as well as a description of the structured FORTRAN data format. Detailed descriptions of all input requirements, output options, and program structure and execution are provided in this User’s Guide. Required inputs for auxillary CFEST utilities that aide in post-processing data are also described. Global variables are defined for those with access to the source code. Although CFEST is a proprietary code (CFEST, Inc., Irvine, CA), the Pacific Northwest National Laboratory retains permission to maintain its own source, and to distribute executables to Hanford subcontractors.
Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L
2007-01-01
We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)transporters. The total efflux rate constant, k(eff), was the sum of a passive component (k(p)=0.0018 h(-1)), a convective component (k(csf)=0.2 h(-1)), and a variable, concentration-dependent component (k(x)=0 to 0.45 h(-1)). Compounds with cell membrane transporters had longer clearance half times as did an oligonucleotide, which interacted with cell surface receptors. Manipulation of physiologic state (n=35) did not affect efflux, but sucrose efflux half time was longer with pentobarbital anesthesia (24 h) than with no anesthesia or ketamine-xylazine anesthesia (2 to 3 h). These results show that solute clearance from normal brain ECS may involve multiple physiologic pathways, may be affected by anesthesia, and suggests that convection-mediated efflux may be manipulated to increase or decrease drug clearance from brain.
Win-Win transportation solutions price reforms with multiple benefits
International Nuclear Information System (INIS)
Litman, T.
2001-01-01
Reform strategies in the transportation market, such as the Win-Win Transportation Solutions, can provide several economic, social and environmental benefits. The strategies are cost effective, technically feasible reforms based on market principles which help create a more equitable and efficient transportation system that supports sustainable economic development. The benefits they provide include reduced traffic congestion, road and parking facility savings, consumer savings, equity, safety and environmental protection. They also increase economic productivity. If fully implemented, they could reduce motor vehicle impacts by 15 to 30 per cent and could help achieve the Kyoto emission reduction targets. Examples of Win-Win strategies at the federal level include: (1) removal of subsidies to oil production and internalized costs, and (2) tax exempt employer provided transfer benefits. Examples of Win-Win strategies at the state/provincial level include: (1) distance-based vehicle insurance and registration fees, (2) least-coast transportation planning and funding, (3) revenue-neutral tax shifting, (4) road pricing, (5) reform motor carrier regulations for competition and efficiency, (6) local and regional transportation demand management programs, (7) more efficient land use, (8) more flexible zoning requirements, (9) parking cash out, (10) transportation management associations, (11) location-efficient housing and mortgages, (12) school and campus trip management, (13) car sharing, (14) non-motorized transport improvements, and (15) traffic calming. It was noted that any market reform that leads to more efficient use of existing transportation systems can provide better economic development benefits. 9 refs., 1 tab., 1 fig
Regional flow and solute transport modeling for site suitability. Part I
International Nuclear Information System (INIS)
Rowe, J.; Miller, I.
1979-12-01
The nature of regional flow systems in large sedimentary basins will largely determine the effectiveness of regional flow as a barrier to radionuclide escape from deep geologic repositories. The purpose of the work reported herein and the proposed future work is to develop a methodology for evaluating regional flow barriers by using numerical models. The Williston Basin was chosen as an archetype case for the regional modeling study. However, due to the simplified nature of the study, the results are not meant to represent the behavior of a repository actually placed within the Williston Basin. The major components of this Phase I study are: (1) assembly and reduction of available data; (2) formulation of a simplified geohydrologic model; (3) computer simulation of fluid flow; and (4) computer simulation of solute transport. As of this report, the first two items are essentially completed. Computer simulation of fluid flow will require some revision and further study, which will be done in the second phase of this study. Computer simulation of solute transport has been considered only on a very preliminary basis. Important conclusions of this Phase I study are as follows. Assembly and reduction of data require an extensive work effort. Generally, the parameters describing fluid flow are poorly known on a regional basis and those describing solute transport are unknown
Regional flow and solute transport modeling for site suitability. Part I
Energy Technology Data Exchange (ETDEWEB)
Rowe, J.; Miller, I.
1979-12-01
The nature of regional flow systems in large sedimentary basins will largely determine the effectiveness of regional flow as a barrier to radionuclide escape from deep geologic repositories. The purpose of the work reported herein and the proposed future work is to develop a methodology for evaluating regional flow barriers by using numerical models. The Williston Basin was chosen as an archetype case for the regional modeling study. However, due to the simplified nature of the study, the results are not meant to represent the behavior of a repository actually placed within the Williston Basin. The major components of this Phase I study are: (1) assembly and reduction of available data; (2) formulation of a simplified geohydrologic model; (3) computer simulation of fluid flow; and (4) computer simulation of solute transport. As of this report, the first two items are essentially completed. Computer simulation of fluid flow will require some revision and further study, which will be done in the second phase of this study. Computer simulation of solute transport has been considered only on a very preliminary basis. Important conclusions of this Phase I study are as follows. Assembly and reduction of data require an extensive work effort. Generally, the parameters describing fluid flow are poorly known on a regional basis and those describing solute transport are unknown.
Active transport among Czech school-aged children
Directory of Open Access Journals (Sweden)
Jan Pavelka
2012-09-01
Full Text Available BACKGROUND: Active transport is a very important factor for increasing the level of physical activity in children, which is significant for both their health and positive physical behaviour in adult age. OBJECTIVE: The aim of the study was to establish the proportion of Czech children aged 11 to 15 who select active transport to and from school and, at the same time, describe socio-economic and socio-demographic factors influencing active transport to and from school among children. METHODS: To establish the socio-demographic factors affecting active transport, data of a national representative sample of 11 to 15 year-old elementary school children in the Czech Republic (n = 4,425. Research data collection was performed within an international research study called Health Behaviour in School Aged Children in June 2010. Statistical processing of the results was made using a logistic regression analysis in the statistical programme IBM SPSS v 20. RESULTS: Active transport to and from school is opted for in the Czech Republic by approximately 2/3 of children aged 11 to 15. Differences between genders are not statistically significant; most children opting for active transport are aged 11 (69%. An important factor increasing the probability of active transport as much as 16 times is whether a child's place of residence is in the same municipality as the school. Other factors influencing this choice include BMI, time spent using a computer or a privateroom in a family. A significant factor determining active transport by children is safety; safe road crossing, opportunity to leave a bicycle safely at school, no fear of being assaulted on the way or provision of school lockers where children can leave their items. CONCLUSIONS: Active transport plays an important role in increasing the overall level of physical activity in children. Promotion of active transport should focus on children who spend more time using a computer; attention should also be
Health Impacts of Active Transportation in Europe
DEFF Research Database (Denmark)
Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J
2016-01-01
Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16-64) in six European cities. We conducted a health...... reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists...... and urban planners will help to introduce the health perspective in transport policies and promote active transportation....
Characterization of a novel organic solute transporter homologue from Clonorchis sinensis.
Directory of Open Access Journals (Sweden)
Yanyan Lu
2018-04-01
Full Text Available Clonorchis sinensis is a liver fluke that can dwell in the bile ducts of mammals. Bile acid transporters function to maintain the homeostasis of bile acids in C. sinensis, as they induce physiological changes or have harmful effects on C. sinensis survival. The organic solute transporter (OST transports mainly bile acid and belongs to the SLC51 subfamily of solute carrier transporters. OST plays a critical role in the recirculation of bile acids in higher animals. In this study, we cloned full-length cDNA of the 480-amino acid OST from C. sinensis (CsOST. Genomic analysis revealed 11 exons and nine introns. The CsOST protein had a 'Solute_trans_a' domain with 67% homology to Schistosoma japonicum OST. For further analysis, the CsOST protein sequence was split into the ordered domain (CsOST-N at the N-terminus and disordered domain (CsOST-C at the C-terminus. The tertiary structure of each domain was built using a threading-based method and determined by manual comparison. In a phylogenetic tree, the CsOST-N domain belonged to the OSTα and CsOST-C to the OSTβ clade. These two domains were more highly conserved with the OST α- and β-subunits at the structure level than at sequence level. These findings suggested that CsOST comprised the OST α- and β-subunits. CsOST was localized in the oral and ventral suckers and in the mesenchymal tissues abundant around the intestine, vitelline glands, uterus, and testes. This study provides fundamental data for the further understanding of homologues in other flukes.
Characterization of a novel organic solute transporter homologue from Clonorchis sinensis
Dai, Fuhong; Lee, Ji-Yun; Pak, Jhang Ho; Sohn, Woon-Mok
2018-01-01
Clonorchis sinensis is a liver fluke that can dwell in the bile ducts of mammals. Bile acid transporters function to maintain the homeostasis of bile acids in C. sinensis, as they induce physiological changes or have harmful effects on C. sinensis survival. The organic solute transporter (OST) transports mainly bile acid and belongs to the SLC51 subfamily of solute carrier transporters. OST plays a critical role in the recirculation of bile acids in higher animals. In this study, we cloned full-length cDNA of the 480-amino acid OST from C. sinensis (CsOST). Genomic analysis revealed 11 exons and nine introns. The CsOST protein had a ‘Solute_trans_a’ domain with 67% homology to Schistosoma japonicum OST. For further analysis, the CsOST protein sequence was split into the ordered domain (CsOST-N) at the N-terminus and disordered domain (CsOST-C) at the C-terminus. The tertiary structure of each domain was built using a threading-based method and determined by manual comparison. In a phylogenetic tree, the CsOST-N domain belonged to the OSTα and CsOST-C to the OSTβ clade. These two domains were more highly conserved with the OST α- and β-subunits at the structure level than at sequence level. These findings suggested that CsOST comprised the OST α- and β-subunits. CsOST was localized in the oral and ventral suckers and in the mesenchymal tissues abundant around the intestine, vitelline glands, uterus, and testes. This study provides fundamental data for the further understanding of homologues in other flukes. PMID:29702646
Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'
Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.
2017-12-01
The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008
Chaix, Basile; Kestens, Yan; Duncan, Scott; Merrien, Claire; Thierry, Benoît; Pannier, Bruno; Brondeel, Ruben; Lewin, Antoine; Karusisi, Noëlla; Perchoux, Camille; Thomas, Frédérique; Méline, Julie
2014-09-27
Accurate information is lacking on the extent of transportation as a source of physical activity, on the physical activity gains from public transportation use, and on the extent to which population shifts in the use of transportation modes could increase the percentage of people reaching official physical activity recommendations. In 2012-2013, 234 participants of the RECORD GPS Study (French Paris region, median age = 58) wore a portable GPS receiver and an accelerometer for 7 consecutive days and completed a 7-day GPS-based mobility survey (participation rate = 57.1%). Information on transportation modes and accelerometry data aggregated at the trip level [number of steps taken, energy expended, moderate to vigorous physical activity (MVPA), and sedentary time] were available for 7,644 trips. Associations between transportation modes and accelerometer-derived physical activity were estimated at the trip level with multilevel linear models. Participants spent a median of 1 h 58 min per day in transportation (8.2% of total time). Thirty-eight per-cent of steps taken, 31% of energy expended, and 33% of MVPA over 7 days were attributable to transportation. Walking and biking trips but also public transportation trips with all four transit modes examined were associated with greater steps, MVPA, and energy expenditure when compared to trips by personal motorized vehicle. Two simulated scenarios, implying a shift of approximately 14% and 33% of all motorized trips to public transportation or walking, were associated with a predicted 6 point and 13 point increase in the percentage of participants achieving the current physical activity recommendation. Collecting data with GPS receivers, accelerometers, and a GPS-based electronic mobility survey of activities and transportation modes allowed us to investigate relationships between transportation modes and physical activity at the trip level. Our findings suggest that an increase in active transportation
Solution of the transport equation with account for inelastic collisions
International Nuclear Information System (INIS)
Kalashnikov, N.P.; Remizovich, V.S.; Ryazanov, M.I.
1980-01-01
The theory of charged particle scattering in a matter with account for inelastic collisions is considered. In ''directly-forward'' approximation the transport equation at the absence of elastic collisions is obtained. The solution of the transport equation is made without and with account for fluctuation of energy losses. Formulas for path-energy relation are given. Energy spectrum and distribution of fast charged particles with respect to paths are studied. The problem of quantum mechanical approach to the theory of multiple scattering of fast charged particles in a matter is discussed briefly
New solution for transport and industrial noise protection through reflective noise barriers
Directory of Open Access Journals (Sweden)
Kralov Ivan
2017-01-01
Full Text Available A new solution for protection of transportation and industrial noise through reflective noise barriers is proposed and investigated in this study. The new solution combines the advantages of the known barriers and has its own advantages in addition. The preliminary results show a very good level of noise reduction for this type of barriers.
Jin, Byung-Ju; Smith, Alex J.
2016-01-01
A “glymphatic system,” which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier–Stokes and convection–diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. PMID:27836940
Tait, Peter W
2011-07-01
Increasing heat may impede peoples' ability to be active outdoors thus limiting active transport options. Co-benefits from mitigation of and adaptation to global warming should not be assumed but need to be actively designed into strategies.
Prolonged river water pollution due to variable-density flow and solute transport in the riverbed
Jin, Guangqiu; Tang, Hongwu; Li, Ling; Barry, D. A.
2015-04-01
A laboratory experiment and numerical modeling were used to examine effects of density gradients on hyporheic flow and solute transport under the condition of a solute pulse input to a river with regular bed forms. Relatively low-density gradients due to an initial salt pulse concentration of 1.55 kg m-3 applied in the experiment were found to modulate significantly the pore-water flow and solute transport in the riverbed. Such density gradients increased downward flow and solute transport in the riverbed by factors up to 1.6. This resulted in a 12.2% increase in the total salt transfer from the water column to the riverbed over the salt pulse period. As the solute pulse passed, the effect of the density gradients reversed, slowing down the release of the solute back to the river water by a factor of 3.7. Numerical modeling indicated that these density effects intensified as salt concentrations in the water column increased. Simulations further showed that the density gradients might even lead to unstable flow and result in solute fingers in the bed of large bed forms. The slow release of solute from the bed back to the river led to a long tail of solute concentration in the river water. These findings have implications for assessment of impact of pollution events on river systems, in particular, long-term effects on both the river water and riverbed due to the hyporheic exchange.
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
Energy Technology Data Exchange (ETDEWEB)
Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-07-01
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
Solute carrier transporters: potential targets for digestive system neoplasms.
Xie, Jing; Zhu, Xiao Yan; Liu, Lu Ming; Meng, Zhi Qiang
2018-01-01
Digestive system neoplasms are the leading causes of cancer-related death all over the world. Solute carrier (SLC) superfamily is composed of a series of transporters that are ubiquitously expressed in organs and tissues of digestive systems and mediate specific uptake of small molecule substrates in facilitative manner. Given the important role of SLC proteins in maintaining normal functions of digestive system, dysregulation of these protein in digestive system neoplasms may deliver biological and clinical significance that deserves systemic studies. In this review, we critically summarized the recent advances in understanding the role of SLC proteins in digestive system neoplasms. We highlighted that several SLC subfamilies, including metal ion transporters, transporters of glucose and other sugars, transporters of urea, neurotransmitters and biogenic amines, ammonium and choline, inorganic cation/anion transporters, transporters of nucleotide, amino acid and oligopeptide organic anion transporters, transporters of vitamins and cofactors and mitochondrial carrier, may play important roles in mediating the initiation, progression, metastasis, and chemoresistance of digestive system neoplasms. Proteins in these SLC subfamilies may also have diagnostic and prognostic values to particular cancer types. Differential expression of SLC proteins in tumors of digestive system was analyzed by extracting data from human cancer database, which revealed that the roles of SLC proteins may either be dependent on the substrates they transport or be tissue specific. In addition, small molecule modulators that pharmacologically regulate the functions of SLC proteins were discussed for their possible application in the treatment of digestive system neoplasms. This review highlighted the potential of SLC family proteins as drug target for the treatment of digestive system neoplasms.
Directory of Open Access Journals (Sweden)
J. K. Koestel
2012-06-01
Full Text Available Preferential flow is a widespread phenomenon that is known to strongly affect solute transport in soil, but our understanding and knowledge is still poor of the site factors and soil properties that promote it. To investigate these relationships, we assembled a database from the peer-reviewed literature containing information on 733 breakthrough curve experiments under steady-state flow conditions. Most of the collected experiments (585 of the 733 datasets had been conducted on undisturbed soil columns, although some experiments on repacked soil, clean sands, and glass beads were also included. In addition to the apparent dispersivity, we focused our attention on three indicators of preferential solute transport: namely the 5%-arrival time, the holdback factor, and the ratio of piston-flow and average transport velocities. Our results suggest that, in contrast to the 5%-arrival time and the holdback factor, the piston-flow to transport velocity ratio is not related to preferential macropore transport but rather to the exclusion or retardation of the applied tracer. Confirming that the apparent longitudinal dispersivity is positively correlated with the travel distance of the tracer, our results also illustrate that this relationship is refined if the normalized 5%-tracer arrival time is also taken into account. In particular, we found that the degree of preferential solute transport increases with apparent dispersivity and decreases with travel distance. A similar but weaker relationship was observed between apparent dispersivity, 5%-tracer arrival time, and lateral observation scale, such that the degree of preferential transport increases with lateral observation scale. However, we also found that the travel distance and the lateral observation scale in the investigated dataset are correlated, which makes it difficult to distinguish their influence on these transport characteristics. We also found that the strength of preferential transport
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel
2013-04-01
Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical
Mohammadi, Mohammad Hossein; Vanclooster, Marnik
2012-05-01
Solute transport in partially saturated soils is largely affected by fluid velocity distribution and pore size distribution within the solute transport domain. Hence, it is possible to describe the solute transport process in terms of the pore size distribution of the soil, and indirectly in terms of the soil hydraulic properties. In this paper, we present a conceptual approach that allows predicting the parameters of the Convective Lognormal Transfer model from knowledge of soil moisture and the Soil Moisture Characteristic (SMC), parameterized by means of the closed-form model of Kosugi (1996). It is assumed that in partially saturated conditions, the air filled pore volume act as an inert solid phase, allowing the use of the Arya et al. (1999) pragmatic approach to estimate solute travel time statistics from the saturation degree and SMC parameters. The approach is evaluated using a set of partially saturated transport experiments as presented by Mohammadi and Vanclooster (2011). Experimental results showed that the mean solute travel time, μ(t), increases proportionally with the depth (travel distance) and decreases with flow rate. The variance of solute travel time σ²(t) first decreases with flow rate up to 0.4-0.6 Ks and subsequently increases. For all tested BTCs predicted solute transport with μ(t) estimated from the conceptual model performed much better as compared to predictions with μ(t) and σ²(t) estimated from calibration of solute transport at shallow soil depths. The use of μ(t) estimated from the conceptual model therefore increases the robustness of the CLT model in predicting solute transport in heterogeneous soils at larger depths. In view of the fact that reasonable indirect estimates of the SMC can be made from basic soil properties using pedotransfer functions, the presented approach may be useful for predicting solute transport at field or watershed scales. Copyright © 2012 Elsevier B.V. All rights reserved.
Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini
2015-01-01
The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.
SOLUTIONS AND MEANS OF ALTERNATIVE TRANSPORT IN THE CONCEPT OF SUSTAINABLE DEVELOPMENT
Directory of Open Access Journals (Sweden)
CATALIN POPESCU
2017-12-01
Full Text Available The paper aims to achieve an overview of innovative initiatives on alternative transport in recent years in the context of increasing emissions of greenhouse gases. In this context are presented the main problems caused by motorized traffic in the urban agglomerations. Also, there are mentioned measures that could be implemented in busy urban areas. On this occasion are mentioned both new technical solutions and new means of alternative transport type. Additional, specific projects and programs are highlighted using bicycle transportation. There are mentioned initiatives regarding urban transportation completed in European projects such as: CIVITAS, EFFECTS etc. The examples and figures are mainly focused on Romania.
Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie
2016-12-01
The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan
2016-04-01
Quantification of flow and solute transport in the shallow subsurface adjacent to the atmosphere is decisive to prevent groundwater pollution and conserve groundwater quality, to develop successful remediation strategies and to understand nutrient cycling. In nature, due to erratic precipitation-evaporation patterns, soil moisture content and related hydraulic conductivity in the vadose zone are not only variable in space but also in time. Flow directions and flow paths locally change between precipitation and evaporation periods. This makes the identification and description of solute transport processes in the vadose zone a complex problem. Recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a) focused on the investigation of upward transport of solutes during evaporation in heterogeneous soil columns, where heterogeneity was introduced by a sharp vertical material interface between two types of sand. Lateral solute transport through the interface in both (lateral) directions was observed at different depths of the investigated soil columns. Following recent approaches, we conduct two-dimensional numerical simulations in a similar setup which is composed of two sands with a sharp vertical material interface. The investigation is broadened from the sole evaporation to combined precipitation-evaporation cycles in order to quantify transport processes resulting from the combined effects of heterogeneous soil structure and dynamic flow conditions. Simulations are performed with a coupled finite volume and random walk particle tracking algorithm (Ippisch et al., 2006; Bechtold et al., 2011b). By comparing scenarios with cyclic boundary conditions and stationary counterparts with the same net flow rate, we found that duration and intensity of precipitation and evaporation periods potentially have an influence on lateral redistribution of solutes and thus leaching rates. Whether or not dynamic boundary conditions lead to significant deviations in the transport
Semianalytical Solutions for Transport in Aquifer and Fractured Clay Matrix System
A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of analytical solutions is derived based on specific initial and boundary conditions as well as ...
Exact solutions of Fisher and Burgers equations with finite transport memory
International Nuclear Information System (INIS)
Kar, Sandip; Banik, Suman Kumar; Ray, Deb Shankar
2003-01-01
The Fisher and Burgers equations with finite memory transport, describing reaction-diffusion and convection-diffusion processes, respectively have recently attracted a lot of attention in the context of chemical kinetics, mathematical biology and turbulence. We show here that they admit exact solutions. While the speed of the travelling wavefront is dependent on the relaxation time in the Fisher equation, memory effects significantly smoothen out the shock wave nature of the Burgers solution, without any influence on the corresponding wave speed. We numerically analyse the ansatz for the exact solution and show that for the reaction-diffusion system the strength of the reaction term must be moderate enough not to exceed a critical limit to allow a travelling wave solution to exist for appreciable finite memory effect
Exact solutions of Fisher and Burgers equations with finite transport memory
Kar, S; Ray, D S
2003-01-01
The Fisher and Burgers equations with finite memory transport, describing reaction-diffusion and convection-diffusion processes, respectively have recently attracted a lot of attention in the context of chemical kinetics, mathematical biology and turbulence. We show here that they admit exact solutions. While the speed of the travelling wavefront is dependent on the relaxation time in the Fisher equation, memory effects significantly smoothen out the shock wave nature of the Burgers solution, without any influence on the corresponding wave speed. We numerically analyse the ansatz for the exact solution and show that for the reaction-diffusion system the strength of the reaction term must be moderate enough not to exceed a critical limit to allow a travelling wave solution to exist for appreciable finite memory effect.
International Nuclear Information System (INIS)
Wang, Yaqi
2012-01-01
The Method of Manufactured Solutions (MMS) is an accepted technique to verify that a numerical discretization for the radiation transport equation has been implemented correctly. This technique offers a few advantages over other methods such as benchmark problems or analytical solutions. The solution can be manufactured such that properties for the angular flux are either stressed or preserved. For radiation transport, these properties can include desired smoothness, positiveness and arbitrary order of anisotropy in angle. Another advantage is that the angular flux solution can be manufactured for multidimensional problems where analytical solutions are difficult to obtain in general.
Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L
2009-08-01
Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.
Finite element simulation of moisture movement and solute transport in a large caisson
International Nuclear Information System (INIS)
Huyakorn, P.S.; Jones, B.G.; Parker, J.C.; Wadsworth, T.D.; White, H.O. Jr.
1987-01-01
The results of the solute transport experiments performed on compacted, crushed Bandelier Tuff in caisson B of the experimental cluster described by DePoorter (1981) are simulated. Both one- and three-dimensional simulations of solute transport have been performed using two selected finite element codes. Results of bromide and iodide tracer experiments conducted during near-steady flow conditions have been analyzed for pulse additions made on December 6, 1984, and followed over a period of up to 60 days. In addition, a pulse addition of nonconservative strontium tracer on September 28, 1984, during questionably steady flow conditions has been analyzed over a period of 240 days. One-dimensional finite element flow and transport simulations were carried out assuming the porous medium to be homogeneous and the injection source uniformly distributed. To evaluate effects of the nonuniform source distribution and also to investigate effects of inhomogeneous porous medium properties, three dimensional finite element analyses of transport were carried out. Implications of the three-dimensional effects for the design and analysis of future tracer studies are discussed
Solute transport in a well under slow-purge and no-purge conditions
Plummer, M. A.; Britt, S. L.; Martin-Hayden, J. M.
2010-12-01
Non-purge sampling techniques, such as diffusion bags and in-situ sealed samplers, offer reliable and cost-effective groundwater monitoring methods that are a step closer to the goal of real-time monitoring without pumping or sample collection. Non-purge methods are, however, not yet completely accepted because questions remain about how solute concentrations in an unpurged well relate to concentrations in the adjacent formation. To answer questions about how undisturbed well water samples compare to formation concentrations, and to provide the information necessary to interpret results from non-purge monitoring systems, we have conducted a variety of physical experiments and numerical simulations of flow and transport in and through monitoring wells under low-flow and ambient flow conditions. Previous studies of flow and transport in wells used a Darcy’s law - based continuity equation for flow, which is often justified under the strong, forced-convection flow caused by pumping or large vertical hydraulic potential gradients. In our study, we focus on systems with weakly forced convection, where density-driven free convection may be of similar strength. We therefore solved Darcy’s law for porous media domains and the Navier Stokes equations for flow in the well, and coupled solution of the flow equations to that of solute transport. To illustrate expected in-well transport behavior under low-flow conditions, we present results of three particular studies: (1) time-dependent effluent concentrations from a well purged at low-flow pumping rates, (2) solute-driven density effects in a well under ambient horizontal flow and (3) temperature-driven mixing in a shallow well subject to seasonal temperature variations. Results of the first study illustrate that assumptions about the nature of in-well flow have a significant impact on effluent concentration curves even during pumping, with Poiseuille-type flow producing more rapid removal of concentration differences
Energy Technology Data Exchange (ETDEWEB)
Weihermueller, L
2005-07-01
To date, the understanding of processes, factors, and interactions that influence the amount of extracted water and the solute composition sampled with suction cups is limited. But this information is required for process description of solute transport in natural soils. Improved system understanding can lead to a low cost and easy to install water sampling system which can help to predict solute transport in natural soils for the benefit of environmental protection. The main objectives of this work were to perform numerical simulations with different boundary conditions and to implement the findings in the interpretation of the lysimeter and field experiments. In a first part of this thesis, theoretical considerations on the processes affecting the spatial influence of a suction cup in soil and changes in solute transport initiated by the suction cups are presented, including testing and validation of available model and experimental approaches. In the second part, a detailed experimental study was conducted to obtain data for the comparison of the different soil water sampling systems. Finally, the numerical experiments of the suction cup influence were used for the interpretation of the experimental data. The main goals are summarized as follows: - Characterization of the suction cup activity domain (SCAD), suction cup extraction domain (SCED) and suction cup sampling area (SCSA) of active suction cups (definitions are given in Chapter 6). - Determination of the boundary conditions and soil properties [e.g. infiltration, applied suction, duration of water extraction, soil hydraulic properties and soil heterogeneity] affecting the activity domain, extraction domain and sampling area of a suction cup. - Identification of processes that change the travel time and travel time variance of solutes extracted by suction cups. - Validation of the numerically derived data with analytical and experimental data from literature. - Comparison of the experimental data obtained
Fibrin structural and diffusional analysis suggests that fibers are permeable to solute transport.
Leonidakis, Kimon Alexandros; Bhattacharya, Pinaki; Patterson, Jennifer; Vos, Bart E; Koenderink, Gijsje H; Vermant, Jan; Lambrechts, Dennis; Roeffaers, Maarten; Van Oosterwyck, Hans
2017-01-01
Fibrin hydrogels are promising carrier materials in tissue engineering. They are biocompatible and easy to prepare, they can bind growth factors and they can be prepared from a patient's own blood. While fibrin structure and mechanics have been extensively studied, not much is known about the relation between structure and diffusivity of solutes within the network. This is particularly relevant for solutes with a size similar to that of growth factors. A novel methodological approach has been used in this study to retrieve quantitative structural characteristics of fibrin hydrogels, by combining two complementary techniques, namely confocal fluorescence microscopy with a fiber extraction algorithm and turbidity measurements. Bulk rheological measurements were conducted to determine the impact of fibrin hydrogel structure on mechanical properties. From these measurements it can be concluded that variations in the fibrin hydrogel structure have a large impact on the rheological response of the hydrogels (up to two orders of magnitude difference in storage modulus) but only a moderate influence on the diffusivity of dextran solutes (up to 25% difference). By analyzing the diffusivity measurements by means of the Ogston diffusion model we further provide evidence that individual fibrin fibers can be semi-permeable to solute transport, depending on the average distance between individual protofibrils. This can be important for reducing mass transport limitations, for modulating fibrinolysis and for growth factor binding, which are all relevant for tissue engineering. Fibrin is a natural biopolymer that has drawn much interest as a biomimetic carrier in tissue engineering applications. We hereby use a novel combined approach for the structural characterization of fibrin networks based on optical microscopy and light scattering methods that can also be applied to other fibrillar hydrogels, like collagen. Furthermore, our findings on the relation between solute transport
International Nuclear Information System (INIS)
Wang Yu; Gao Bin; Morales, Verónica L.; Tian Yuan; Wu Lei; Gao Jie; Bai Wei; Yang Liuyan
2012-01-01
Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data.
Bencala, Kenneth E.; Kennedy, Vance C.; Zellweger, Gary W.; Jackman, Alan P.; Avanzino, Ronald J.
1984-01-01
An experimental injection was performed to study the transport of stream water solutes under conditions of significant interaction with streambed sediments in a mountain pool-and-riffle stream. Experiments were conducted in Little Lost Man Creek, Humboldt County, California, in a period of low flow duringwhich only a part of the bank-full channel held active surface flow. The injection of chloride and several trace cations lasted 20 days. In this report we discuss the results of the first 24 hours of the injection and survey the results of the first 10 days. Solute-streambed interactions of two types were observed. First, the physical transport of the conservative tracer, chloride, was affected by intergravel flow and stagnant watt, zones created by the bed relief. Second, the transport of the cations (strontium, potassium, and lithium) was appreciably modified by sorption onto streambed sediment. In the stream the readily observable consequence of the solute-streambed interactions was an attenuation of the dissolved concentration of each of the tracers. The attenuation in the stream channel occurred concurrently with the storage of tracers in the streambed via both physical and chemical processes. All tracers were subsequently present in shallow wells dug several meters from the wetted part of the channel. Sediment samples collected approximately 3 weeks after the start of the injection contained increased concentrations of the injected cations.
Directory of Open Access Journals (Sweden)
Moreira Paulo H. S.
2016-03-01
Full Text Available In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical non-equilibrium dual-porosity type formulation for solute transport. A Bayesian parameter estimation approach was used in which the unknown parameters were estimated with the Markov Chain Monte Carlo (MCMC method through implementation of the Metropolis-Hastings algorithm. Sensitivity coefficients were examined in order to determine the most meaningful measurements for identifying the unknown hydraulic and transport parameters. Results obtained using the measured pressure head and solute concentration data collected during the unsaturated soil column experiment revealed the robustness of the proposed approach.
Smith, Sean G; Griffith, Boyce E; Zaharoff, David A
2018-04-05
Ailments of the bladder are often treated via intravesical delivery-direct application of therapeutic into the bladder through a catheter. This technique is employed hundreds of thousands of times every year, but protocol development has largely been limited to empirical determination. Furthermore, the numerical analyses of intravesical delivery performed to date have been restricted to static geometries and have not accounted for bladder deformation. This study uses a finite element analysis approach with biphasic solute transport to investigate several parameters pertinent to intravesical delivery including solute concentration, solute transport properties and instillation volume. The volume of instillation was found to have a substantial impact on the exposure of solute to the deeper muscle layers of the bladder, which are typically more difficult to reach. Indeed, increasing the instillation volume from 50-100 ml raised the muscle solute exposure as a percentage of overall bladder exposure from 60-70% with higher levels achieved for larger instillation volumes. Similar increases were not seen for changes in solute concentration or solute transport properties. These results indicate the role that instillation volume may play in targeting particular layers of the bladder during an intravesical delivery.
Applications of stochastic models to solute transport in fractured rocks
International Nuclear Information System (INIS)
Gelhar, L.W.
1987-01-01
A stochastic theory for flow and solute transport in a single variable aperture fracture bounded by sorbing porous matrix into which solutes may diffuse, is developed using a perturbation approximation and spectral solution techniques which assume local statistical homogeneity. The theory predicts that the effective aperture of the fracture for mean solute displacement will be larger than the aperture required to calculate the large-scale flow resistance of the fracture. This ratio of apertures is a function of the variance of the logarithm of the apertures. The theory also predicts the macrodispersion coefficient for large-scale transport in the fracture. The resulting macrodispersivity is proportional to the variance of the logaperture and to its correlation scale. When variable surface sorption is included, it is found that the macrodispersivity is increased significantly, in some cases more than an order of magnitude. It is also shown that the effective retardation coefficient for the sorptively heterogeneous fracture is found by simply taking the arithmetic mean of the local surface sorption coefficient. Matrix diffusion is also shown to increase the fracture macrodispesivity at very large times. A reexamination of the results of four different field tracer tests in crystalline rock in Sweden and Canada shows aperture ratios and dispersivities that are consistent with the stochastic theory. The variance of the natural logarithm of the aperture is found to be in the range of 3 to 6 and the correlation scales for logaperture ranges from .2 to 1.2 meters. Detailed recommendations for additional field investigations at scales ranging from a few meters up to a kilometer are presented. (orig.)
Presentation of some methods for the solution of the monoenergetic neutrons transport equation
International Nuclear Information System (INIS)
Valle G, E. del.
1978-01-01
The neutrons transport theory problems whose solution has been reached were collected in order to show that the transport equation is so complicated that different techniques were developed so as to give approximative numerical solutions to problems concerning the practical application. Such a technique, which had not been investigated in the literature dealing with these problems, is described here. The results which were obtained through this technique in undimensional problems of criticity are satisfactory and speaking in a conceptual way this method is extremely simple because it times. There is no limitation to deal with problems related neutrons sources with an arbitrary distribution and in principle the application of this technique can be extended to unhomogeneous environments. (author)
Cremer, Clemens; Neuweiler, Insa
2016-04-01
Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and
Simulation of ground-water flow and solute transport in the Glen Canyon aquifer, East-Central Utah
Freethey, Geoffrey W.; Stolp, Bernard J.
2010-01-01
The extraction of methane from coal beds in the Ferron coal trend in central Utah started in the mid-1980s. Beginning in 1994, water from the extraction process was pressure injected into the Glen Canyon aquifer. The lateral extent of the aquifer that could be affected by injection is about 7,600 square miles. To address regional-scale effects of injection over a decadal time frame, a conceptual model of ground-water movement and transport of dissolved solids was formulated. A numerical model that incorporates aquifer concepts was then constructed and used to simulate injection.The Glen Canyon aquifer within the study area is conceptualized in two parts—an active area of ground-water flow and solute transport that exists between recharge areas in the San Rafael Swell and Desert, Waterpocket Fold, and Henry Mountains and discharge locations along the Muddy, Dirty Devil, San Rafael, and Green Rivers. An area of little or negligible ground-water flow exists north of Price, Utah, and beneath the Wasatch Plateau. Pressurized injection of coal-bed methane production water occurs in this area where dissolved-solids concentrations can be more than 100,000 milligrams per liter. Injection has the potential to increase hydrologic interaction with the active flow area, where dissolved-solids concentrations are generally less than 3,000 milligrams per liter.Pressurized injection of coal-bed methane production water in 1994 initiated a net addition of flow and mass of solutes into the Glen Canyon aquifer. To better understand the regional scale hydrologic interaction between the two areas of the Glen Canyon aquifer, pressurized injection was numerically simulated. Data constraints precluded development of a fully calibrated simulation; instead, an uncalibrated model was constructed that is a plausible representation of the conceptual flow and solute-transport processes. The amount of injected water over the 36-year simulation period is about 25,000 acre-feet. As a result
An Overview of Problems and Solutions for Urban Freight Transport in Brazilian Cities
Directory of Open Access Journals (Sweden)
Leise K. Oliveira
2018-04-01
Full Text Available Urban freight transport is a challenge for Brazilian cities due to the lack of adequate planning for freight flow movement. Public managers also show negligence and a lack of awareness when dealing with urban logistics. Decision-support data on urban freight transport are still scarce, despite being of fundamental value to economic development. With this in mind, this paper presents problems and solutions regarding urban freight transport in Brazilian cities. Data were obtained through a survey conducted in nine cities and analysed by means of descriptive statistics and the successive intervals method. Additionally, a cluster analysis was performed to identify patterns regarding the typical characteristics of each city in order to compare and generalise the perception of retailers regarding problems and solutions at the national level. The results indicate divergent opinions among retailers from different cities, even from cities with similar socioeconomic profiles and urban dynamics. The municipalities which demonstrated the most similarities were (i Betim and Niteroi, in the Southeast of Brazil; (ii Palmas and Quixada, in the North and Northeast, respectively; and (iii Palmas and Caruaru, also in the North and Northeast. The results reinforce the importance of studying the local context and involving stakeholders in the process of planning urban logistics solutions.
How ISCO Can Interfere in Soil Pore Distribution and Solute Transport
Favero, M.; Freitas, J. G.; Furquim, S. A. C.; Thomson, N. R.; Cooper, M.
2016-12-01
Recently in situ chemical oxidation (ISCO) has been a remedy of choice for sites contaminated with organic compounds. However, the impact of the chemical oxidant on soil properties and, therefore, on solute transport and remediation efficiency still lacks understanding. This research effort sought to evaluate the changes in soil physical properties and solute transport behavior in a typical tropical soil (Oxisol) resulting from exposure to persulfate. The Oxisol used had a microaggregate structure, resulting in a relatively high hydraulic conductivity despite the high clay content (67%). One-dimensional laboratory experiments were performed using a saturated undisturbed column. The injection of an ideal tracer (bromide), a reactive tracer (phenol) and persulfate (12 ± 1 gL-1 for 30 d) were performed consecutively. The tracer tests were repeated following persulfate injection. Transport parameters (longitudinal dispersivity: αL and retardation factor: R) and the effective porosity (ne) were obtained by fitting the breakthrough curves with an analytical solution for one-dimensional transport. Micromorphological analyses of porosity were conducted on impregnated soil blocks from control and oxidized systems. The bromide and phenol tracer test data yielded αL of 2.431 ± 0.002 cm, ne of 41.99 ± 1.52 %, R of 1.10, and a first-order decay rate coefficient of 6.5x10-5 min-1 prior to persulfate exposure. The effluent persulfate concentration stabilized at C/Co of 0.8 after 4 d of injection and the breakthrough was delayed relative to bromide. Concurrent with the breakthrough of persulfate, the pH decreased and a progressive release of Al (III) over the first 4 d with subsequent stabilization were observed. Following persulfate exposures the hydraulic conductivity increased about one-order of magnitude. Micromorphological analysis showed that persulfate produced alterations in poroids types, with an increase of complex packing voids. It was verified that persulfate
Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.
2012-10-01
In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.
Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.
Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D
2018-05-01
Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.
International Nuclear Information System (INIS)
Tran Ngoc, T.D.
2008-07-01
This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)
Supply chain and innovation activity in transport related enterprises in Eastern Poland
Directory of Open Access Journals (Sweden)
Giuseppe Ioppolo
2016-12-01
Full Text Available Background: One of the development strategies uses R&D activity as the main source of innovation, which is often carried out in cooperation with other units, but in particular in the supply chain, and therefore applies to cooperation between enterprises and their customers and suppliers. The aim of the study was to identify the variable determinants of the impact of the character of relationships among enterprises and their suppliers and customers on their innovative performance, within regional industrial systems and to define the constraints for a model regional structure of innovation network tailored to the needs of Poland and its regions. Methods: 167 enterprises belonging to the transport sector and operating in the area of Eastern Poland took part. In order to determine the impact of relationships with suppliers and customers on innovation activity, models based on probability analysis - probit models - were used. Results: It can be clearly stated that the cooperation of industrial enterprises in the transport sector with customers and suppliers activates innovation activity and its specified attributes. However, the probability varies depending on the test variable adopted. Conclusions: The cooperation with suppliers and customers is the cognitive aspect in the development of innovation activity in industrial enterprises representing the transport-related sector. Such cooperation has a stimulating effect on expenditures on innovation activity and on the implementation of innovative solutions in the field of technological innovation (products and processes.
Solute transport in fractured rock - applications to radionuclide waste repositories
International Nuclear Information System (INIS)
Neretnieks, I.
1990-12-01
Flow and solute transport in fractured rocks has been intensively studied in the last decade. The increased interest is mainly due to the plans in many countries to site repositories for high level nuclear waste in deep geologic formations. All investigated crystalline rocks have been found to be fractured and most of the water flows in the fractures and fracture zones. The water transports dissolved species and radionuclides. It is thus of interest to be able to understand and to do predictive modelling of the flowrate of water, the flowpaths and the residence times of the water and of the nuclides. The dissolved species including the nuclides will interact with the surrounding rock in different ways and will in many cases be strongly retarded relative to the water velocity. Ionic species may be ion exchanged or sorbed in the mineral surfaces. Charges and neutral species may diffuse into the stagnant waters in the rock matrix and thus be withdrawn from the mobile water. These effects will be strongly dependent on how much rock surface is in contact with the flowing water. It has been found in a set of field experiments and by other observations that not all fractures conduct water. Furthermore it is found that conductive fractures only conduct the water in a small part of the fracture in what is called channels or preferential flowpaths. This report summarizes the present concepts of water flow and solute transport in fractured rocks. The data needs for predictive modelling are discussed and both field and laboratory measurement which have been used to obtain data are described. Several large scale field experiments which have been specially designed to study flow and tracer transport in crystalline rocks are described. In many of the field experients new techniques have been developed and used. (81 refs.) (author)
Schuff, M M; Gore, J P; Nauman, E A
2013-05-01
In order to better understand the mechanisms governing transport of drugs, nanoparticle-based treatments, and therapeutic biomolecules, and the role of the various physiological parameters, a number of mathematical models have previously been proposed. The limitations of the existing transport models indicate the need for a comprehensive model that includes transport in the vessel lumen, the vessel wall, and the interstitial space and considers the effects of the solute concentration on fluid flow. In this study, a general model to describe the transient distribution of fluid and multiple solutes at the microvascular level was developed using mixture theory. The model captures the experimentally observed dependence of the hydraulic permeability coefficient of the capillary wall on the concentration of solutes present in the capillary wall and the surrounding tissue. Additionally, the model demonstrates that transport phenomena across the capillary wall and in the interstitium are related to the solute concentration as well as the hydrostatic pressure. The model is used in a companion paper to examine fluid and solute transport for the simplified case of an axisymmetric geometry with no solid deformation or interconversion of mass.
International Nuclear Information System (INIS)
Hendry, M. Jim; Novakowski, Kent; Smith, Laura; Koehler, Geoff; Wassenaar, L.I.
2012-01-01
Document available in abstract form only. The hydrogeologic evolution of sedimentary basins is generally determined from hydraulic and chemical data collected from aquifers. Hydraulic and chemical data from aquitards, which constitute a much greater volume of basins than aquifers and provide important controls on water and solute transport in the basins, are generally not collected nor studied. In this study we characterized the paleo-groundwater flow and solute transport controls through a vertical section of Cretaceous sediments in the Williston Basin, Canada located near Esterhazy, Saskatchewan. It consists of 384 m of thick argillaceous sediment (aquitard) overlying 93 m of heterogeneous calcareous silt, shale and sandstone (Mannville Fm.; aquifer). Paleo-hydrologic conditions were determined by interpreting high-resolution depth profiles of natural tracers of water isotopes (δ 18 O and (δ 2 H) and Cl- measured on (1) continuous core samples through the aquitard, upper aquifer, and thin Quaternary sediments, (2) water samples collected from monitoring wells installed in the aquifer and the Quaternary sediments, and (3) water samples collected from mine shaft inflows to 900 m below ground. 1D numerical transport modeling reproduced the measured profiles and yielded valuable information on the large-scale and long-term transport behavior in both the Cretaceous aquitard and the Basin. In the modeling, the shapes of the tracer profiles was explained by diffusion with paleo-events identified from the modeling including the introduction of fresher water into the aquifer possibly from the onset of glaciation (activation of the lower boundary) about 1 Ma ago and the impact of the most recent deglaciation about 10 ka ago (activation of the upper boundary). These findings show that the hydrogeologic conditions in deep, extensive basins, such as the Williston Basin, cannot be assumed to be static over geologic time. (authors)
Solution of stochastic media transport problems using a numerical quadrature-based method
International Nuclear Information System (INIS)
Pautz, S. D.; Franke, B. C.; Prinja, A. K.; Olson, A. J.
2013-01-01
We present a new conceptual framework for analyzing transport problems in random media. We decompose such problems into stratified subproblems according to the number of material pseudo-interfaces within realizations. For a given subproblem we assign pseudo-interface locations in each realization according to product quadrature rules, which allows us to deterministically generate a fixed number of realizations. Quadrature integration of the solutions of these realizations thus approximately solves each subproblem; the weighted superposition of solutions of the subproblems approximately solves the general stochastic media transport problem. We revisit some benchmark problems to determine the accuracy and efficiency of this approach in comparison to randomly generated realizations. We find that this method is very accurate and fast when the number of pseudo-interfaces in a problem is generally low, but that these advantages quickly degrade as the number of pseudo-interfaces increases. (authors)
FASTREACT – An efficient numerical framework for the solution of reactive transport problems
International Nuclear Information System (INIS)
Trinchero, Paolo; Molinero, Jorge; Román-Ross, Gabriela; Berglund, Sten; Selroos, Jan-Olof
2014-01-01
Highlights: • We present a tool for the efficient solution of reactive transport problems. • The tool is used to simulate radionuclide transport in a two-dimensional medium. • The results are successfully compared with those obtained using an Eulerian approach. • A large-scale application example is also solved. • The results show that the proposed tool can efficiently solve large-scale models. - Abstract: In the framework of safety assessment studies for geological disposal, large scale reactive transport models are powerful inter-disciplinary tools aiming at supporting regulatory decision making as well as providing input to repository engineering activities. Important aspects of these kinds of models are their often very large temporal and spatial modelling scales and the need to integrate different non-linear processes (e.g., mineral dissolution and precipitation, adsorption and desorption, microbial reactions and redox transformations). It turns out that these types of models may be computationally highly demanding. In this work, we present a Lagrangian-based framework, denoted as FASTREACT, that aims at solving multi-component-reactive transport problems with a computationally efficient approach allowing complex modelling problems to be solved in large spatial and temporal scales. The tool has been applied to simulate radionuclide migration in a synthetic heterogeneous transmissivity field and the results have been successfully compared with those obtained using a standard Eulerian approach. Finally, the same geochemical model has been coupled to an ensemble of realistic three-dimensional transport pathways to simulate the migration of a set of radionuclides from a hypothetical repository for spent nuclear fuel to the surface. The results of this modelling exercise, which includes key processes such as the exchange of mass between the conductive fractures and the matrix, show that FASTREACT can efficiently solve large-scale reactive transport models
Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out
Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen
2014-05-01
The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.
Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River
Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto
2017-06-01
Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.
International Nuclear Information System (INIS)
Gureghian, A.B.
1979-01-01
A mathematical model of ground water transport through an aquifer is presented. The solute of interest is a metal tracer or radioactive material which may undergo decay through a sorbing unconfined aquifer. The subject is developed under the following headings: flow equation, solute equation, boundary conditions, finite element formulation, element formulation, solution scheme (flow equation, solute equation), results and discussions, water movement in a ditch drained aquifer under transient state, water and solute movement in a homogeneous and unsaturated soil, transport of 226 Ra in nonhomogeneous aquifer, tailings pond lined, and tailings pond unlined. It is concluded that this mathematical model may have a wide variety of applications. The uranium milling industry may find it useful to evaluate the hydrogeological suitability of their disposal sites. It may prove suited for the design of clay disposal ponds destined to hold hazardous liquids. It may also provide a means of estimating the long-term impact of radionuclides or other pollutants on the quality of ground water. 31 references, 9 figures, 3 tables
Benson, James D; Benson, Charles T; Critser, John K
2014-08-01
Optimization of cryopreservation protocols for cells and tissues requires accurate models of heat and mass transport. Model selection often depends on the configuration of the tissue. Here, a mathematical and conceptual model of water and solute transport for whole hamster pancreatic islets has been developed and experimentally validated incorporating fundamental biophysical data from previous studies on individual hamster islet cells while retaining whole-islet structural information. It describes coupled transport of water and solutes through the islet by three methods: intracellularly, intercellularly, and in combination. In particular we use domain decomposition techniques to couple a transmembrane flux model with an interstitial mass transfer model. The only significant undetermined variable is the cellular surface area which is in contact with the intercellularly transported solutes, Ais. The model was validated and Ais determined using a 3×3 factorial experimental design blocked for experimental day. Whole islet physical experiments were compared with model predictions at three temperatures, three perfusing solutions, and three islet size groups. A mean of 4.4 islets were compared at each of the 27 experimental conditions and found to correlate with a coefficient of determination of 0.87±0.06 (mean ± SD). Only the treatment variable of perfusing solution was found to be significant (p<0.05). We have devised a model that retains much of the intrinsic geometric configuration of the system, and thus fewer laboratory experiments are needed to determine model parameters and thus to develop new optimized cryopreservation protocols. Additionally, extensions to ovarian follicles and other concentric tissue structures may be made. Copyright © 2014 Elsevier Inc. All rights reserved.
R. Haggerty
2013-01-01
In this technical note, a steady-state analytical solution of concentrations of a parent solute reacting to a daughter solute, both of which are undergoing transport and multirate mass transfer, is presented. Although the governing equations are complicated, the resulting solution can be expressed in simple terms. A function of the ratio of concentrations, In (daughter...
International Nuclear Information System (INIS)
Valdes Parra, J.J.
1986-01-01
One of the main problems in reactor physics is to determine the neutron distribution in reactor core, since knowing that, it is possible to calculate the rapidity of occurrence of different nuclear reaction inside the reactor core. Within different theories existing in nuclear reactor physics, is neutron transport the one in which equation who govern the exact behavior of neutronic distribution are developed even inside the proper neutron transport theory, there exist different methods of solution which are approximations to exact solution; still more, with the purpose to reach a more precise solution, the majority of methods have been approached to the obtention of solutions in numerical form with the aim of take the advantages of modern computers, and for this reason a great deal of effort is dedicated to numerical solution of the equations of neutron transport. In agreement with the above mentioned, in this work has been developed a computer program which uses a relatively new techniques known as 'acceleration of synthetic diffusion' which has been applied to solve the neutron transport equation with 'classical schemes of spatial integration' obtaining results with a smaller quantity of interactions, if they compare to done without using such equation (Author)
Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.
2018-02-16
In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.
Engineering solutions of traffic safety problems of road transport
Directory of Open Access Journals (Sweden)
M. Bogdevičius
2004-02-01
Full Text Available The authors of this paper focus on the simulation of the motor vehicle movement (taking into consideration motor vehicle dynamics, motor vehicle hydraulic brake system influence on motor vehicle movement, interaction between its wheels with road pavements, road guardrail characteristics, interaction between motor vehicle and road guardrail on a certain road section and propose their specific solution of this problem. The presented results, illustrating the motor vehicle movement trajectories (motor vehicle braking and interaction between motor vehicle and road guardrail at various initial conditions and at various certain pavement surface of the road section under investigation and work of a motor vehicle hydraulic brake system. Taking into consideration the presented general mathematical model and computer aided test results it is possible to investigate various road transport traffic situations as well as to investigate various transport traffic safety problems.
Non-cooperative and cooperative solutions of government subsidy on public transportation
Directory of Open Access Journals (Sweden)
Husniah Hennie
2018-01-01
Full Text Available The paper deals with two models of government subsidy given to a public transport operator: (i the subsidy for buying bus from an appointed public transport manufacturer, and (ii the subsidy for reimbursing reduced ticket price for passengers. The models are developed to determine the maximum profit for both the public transport operator and the manufacturer. Since we consider two parties – the public transport operator and the manufacturer of the bus, then we use game theoretical approach by considering non-cooperative and cooperative solutions. Furthermore, since the bus is repairable we consider virtual age to model the preventive maintenance and we consider minimal repair to model the corrective maintenance. We analyse both type of subsidy models and give some numerical examples which show the effects of different subsidies to the profit of operator and manufacturer. The result of the numerical examples indicates that reducing ticket price would give a higher profit both to the operator and the manufacturer.
Severi, Emmanuele; Hosie, Arthur H F; Hawkhead, Judith A; Thomas, Gavin H
2010-03-01
The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.
Ranathunge, Kosala; Kim, Yangmin X; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria; Schreiber, Lukas
2017-03-01
Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways). © The
Most analytical solutions available for the equations governing the advective-dispersive transport of multiple solutes undergoing sequential first-order decay reactions have been developed for infinite or semi-infinite spatial domains and steady-state boundary conditions. In this work we present an ...
Solute carrier transporters: potential targets for digestive system neoplasms
Xie, Jing; Zhu, Xiao Yan; Liu, Lu Ming; Meng, Zhi Qiang
2018-01-01
Jing Xie,1,2 Xiao Yan Zhu,1,2 Lu Ming Liu,1,2 Zhi Qiang Meng1,2 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People’s Republic of China Abstract: Digestive system neoplasms are the leading causes of cancer-related death all over the world. Solute carrier (SLC) superfamily is composed of a series of transporters that are ubiquitously expressed in organs and tissues o...
International Nuclear Information System (INIS)
Lim, S.C.; Lee, K.J.
1993-01-01
The Galerkin finite element method is used to solve the problem of one-dimensional, vertical flow of water and mass transport of conservative-nonconservative solutes in unsaturated porous media. Numerical approximations based on different forms of the governing equation, although they are equivalent in continuous forms, can result in remarkably different solutions in an unsaturated flow problem. Solutions given by a simple Galerkin method based on the h-based Richards equation yield a large mass balance error and an underestimation of the infiltration depth. With the employment of the ROMV (restoration of main variable) concept in the discretization step, the mass conservative numerical solution algorithm for water flow has been derived. The resulting computational schemes for water flow and mass transport are applied to sandy soil. The ROMV method shows good mass conservation in water flow analysis, whereas it seems to have a minor effect on mass transport. However, it may relax the time-step size restriction and so ensure an improved calculation output. (author)
A cell transportation solution that preserves live circulating tumor cells in patient blood samples
International Nuclear Information System (INIS)
Stefansson, Steingrimur; Adams, Daniel L.; Ershler, William B.; Le, Huyen; Ho, David H.
2016-01-01
Circulating tumor cells (CTCs) are typically collected into CellSave fixative tubes, which kills the cells, but preserves their morphology. Currently, the clinical utility of CTCs is mostly limited to their enumeration. More detailed investigation of CTC biology can be performed on live cells, but obtaining live CTCs is technically challenging, requiring blood collection into biocompatible solutions and rapid isolation which limits transportation options. To overcome the instability of CTCs, we formulated a sugar based cell transportation solution (SBTS) that stabilizes cell viability at ambient temperature. In this study we examined the long term viability of human cancer cell lines, primary cells and CTCs in human blood samples in the SBTS for transportation purposes. Four cell lines, 5 primary human cells and purified human PBMCs were tested to determine the viability of cells stored in the transportation solution at ambient temperature for up to 7 days. We then demonstrated viability of MCF-7 cells spiked into normal blood with SBTS and stored for up to 7 days. A pilot study was then run on blood samples from 3 patients with metastatic malignancies stored with or without SBTS for 6 days. CTCs were then purified by Ficoll separation/microfilter isolation and identified using CTC markers. Cell viability was assessed using trypan blue or CellTracker™ live cell stain. Our results suggest that primary/immortalized cell lines stored in SBTS remain ~90 % viable for > 72 h. Further, MCF-7 cells spiked into whole blood remain viable when stored with SBTS for up to 7 days. Finally, live CTCs were isolated from cancer patient blood samples kept in SBTS at ambient temperature for 6 days. No CTCs were isolated from blood samples stored without SBTS. In this proof of principle pilot study we show that viability of cell lines is preserved for days using SBTS. Further, this solution can be used to store patient derived blood samples for eventual isolation of viable CTCs
A cell transportation solution that preserves live circulating tumor cells in patient blood samples.
Stefansson, Steingrimur; Adams, Daniel L; Ershler, William B; Le, Huyen; Ho, David H
2016-05-06
Circulating tumor cells (CTCs) are typically collected into CellSave fixative tubes, which kills the cells, but preserves their morphology. Currently, the clinical utility of CTCs is mostly limited to their enumeration. More detailed investigation of CTC biology can be performed on live cells, but obtaining live CTCs is technically challenging, requiring blood collection into biocompatible solutions and rapid isolation which limits transportation options. To overcome the instability of CTCs, we formulated a sugar based cell transportation solution (SBTS) that stabilizes cell viability at ambient temperature. In this study we examined the long term viability of human cancer cell lines, primary cells and CTCs in human blood samples in the SBTS for transportation purposes. Four cell lines, 5 primary human cells and purified human PBMCs were tested to determine the viability of cells stored in the transportation solution at ambient temperature for up to 7 days. We then demonstrated viability of MCF-7 cells spiked into normal blood with SBTS and stored for up to 7 days. A pilot study was then run on blood samples from 3 patients with metastatic malignancies stored with or without SBTS for 6 days. CTCs were then purified by Ficoll separation/microfilter isolation and identified using CTC markers. Cell viability was assessed using trypan blue or CellTracker™ live cell stain. Our results suggest that primary/immortalized cell lines stored in SBTS remain ~90% viable for > 72 h. Further, MCF-7 cells spiked into whole blood remain viable when stored with SBTS for up to 7 days. Finally, live CTCs were isolated from cancer patient blood samples kept in SBTS at ambient temperature for 6 days. No CTCs were isolated from blood samples stored without SBTS. In this proof of principle pilot study we show that viability of cell lines is preserved for days using SBTS. Further, this solution can be used to store patient derived blood samples for eventual isolation of viable CTCs after
International Nuclear Information System (INIS)
Goncalves, Glenio A.; Bodmann, Bardo; Bogado, Sergio; Vilhena, Marco T.
2008-01-01
Analytical solutions for neutron transport in cylindrical geometry is available for isotropic problems, but to the best of our knowledge for anisotropic problems are not available, yet. In this work, an analytical solution for the neutron transport equation in an infinite cylinder assuming anisotropic scattering is reported. Here we specialize the solution, without loss of generality, for the linearly anisotropic problem using the combined decomposition and HTS N methods. The key feature of this method consists in the application of the decomposition method to the anisotropic problem by virtue of the fact that the inverse of the operator associated to isotropic problem is well know and determined by the HTS N approach. So far, following the idea of the decomposition method, we apply this operator to the integral term, assuming that the angular flux appearing in the integrand is considered to be equal to the HTS N solution interpolated by polynomial considering only even powers. This leads to the first approximation for an anisotropic solution. Proceeding further, we replace this solution for the angular flux in the integral and apply again the inverse operator for the isotropic problem in the integral term and obtain a new approximation for the angular flux. This iterative procedure yields a closed form solution for the angular flux. This methodology can be generalized, in a straightforward manner, for transport problems with any degree of anisotropy. For the sake of illustration, we report numerical simulations for linearly anisotropic transport problems. (author)
International Nuclear Information System (INIS)
Mishra, S.; Chakraborty, S.; DebRoy, T.
2005-01-01
A transport phenomena-based mathematical model is developed to understand liquation cracking in weldments during fusion welding. Equations of conservation of mass, momentum, heat, and solute transport are numerically solved considering nonequilibrium solidification and filler metal addition to determine the solid and liquid phase fractions in the solidifying region and the solute distribution in the weld pool. An effective partition coefficient that considers the local interface velocity and the undercooling is used to simulate solidification during welding. The calculations show that convection plays a dominant role in the solute transport inside the weld pool. The predicted weld-metal solute content agreed well with the independent experimental observations. The liquation cracking susceptibility in Al-Cu alloy weldments could be reliably predicted by the model based on the computed solidifying weld-metal composition and solid fraction considering nonequilibrium solidification
Transport of biologically active material in laser cutting.
Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P
1988-01-01
The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.
Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun
2018-03-01
Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.
Directory of Open Access Journals (Sweden)
Luyuan Chen
2018-04-01
Full Text Available With the challenge of transportation environment, a large amount of attention is paid to sustainable mobility worldwide, thus bringing the problem of the evaluation of sustainable transport solutions. In this paper, a modified method based on analytical hierarchy process (AHP and Dempster–Shafer evidence theory (D-S theory is proposed for evaluating the impact of transport measures on city sustainability. AHP is adapted to determine the weight of sustainability criteria while D-S theory is used for data fusion of the sustainability assessment. A Transport Sustainability Index (TSI is presented as a primary measure to determine whether transport solutions have a positive impact on city sustainability. A case study of car-sharing is illustrated to show the efficiency of our proposed method. Our modified method has two desirable properties. One is that the BPA is generated with a new modification framework of evaluation levels, which can flexibly manage uncertain information. The other is that the modified method has excellent performance in sensitivity analysis.
External intermittency prediction using AMR solutions of RANS turbulence and transported PDF models
Olivieri, D. A.; Fairweather, M.; Falle, S. A. E. G.
2011-12-01
External intermittency in turbulent round jets is predicted using a Reynolds-averaged Navier-Stokes modelling approach coupled to solutions of the transported probability density function (pdf) equation for scalar variables. Solutions to the descriptive equations are obtained using a finite-volume method, combined with an adaptive mesh refinement algorithm, applied in both physical and compositional space. This method contrasts with conventional approaches to solving the transported pdf equation which generally employ Monte Carlo techniques. Intermittency-modified eddy viscosity and second-moment turbulence closures are used to accommodate the effects of intermittency on the flow field, with the influence of intermittency also included, through modifications to the mixing model, in the transported pdf equation. Predictions of the overall model are compared with experimental data on the velocity and scalar fields in a round jet, as well as against measurements of intermittency profiles and scalar pdfs in a number of flows, with good agreement obtained. For the cases considered, predictions based on the second-moment turbulence closure are clearly superior, although both turbulence models give realistic predictions of the bimodal scalar pdfs observed experimentally.
Modeling study of solute transport in the unsaturated zone. Information and data sets. Volume 1
International Nuclear Information System (INIS)
Polzer, W.L.; Fuentes, H.R.; Springer, E.P.; Nyhan, J.W.
1986-05-01
The Environmental Science Group (HSE-12) is conducting a study to compare various approaches of modeling water and solute transport in porous media. Various groups representing different approaches will model a common set of transport data so that the state of the art in modeling and field experimentation can be discussed in a positive framework with an assessment of current capabilities and future needs in this area of research. This paper provides information and sets of data that will be useful to the modelers in meeting the objectives of the modeling study. The information and data sets include: (1) a description of the experimental design and methods used in obtaining solute transport data, (2) supporting data that may be useful in modeling the data set of interest, and (3) the data set to be modeled
International Nuclear Information System (INIS)
Rockhold, M.L.
1993-02-01
A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a ''blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration
Application of finite element method in the solution of transport equation
International Nuclear Information System (INIS)
Maiorino, J.R.; Vieira, W.J.
1985-01-01
It is presented the application of finite element method in the solution of second order transport equation (self-adjoint) for the even parity flux. The angular component is treated by expansion in Legendre polinomials uncoupled of the spatial component, which is approached by an expansion in base functions, interpolated in each spatial element. (M.C.K.) [pt
The use of non-dimensional representation of the solute transport equations
International Nuclear Information System (INIS)
Laurens, J.-M.
1988-07-01
This report presents the results obtained in a pilot investigation into the use of non-dimensional representations of the solute transport equations, so as to improve the efficiency of the PRA codes used by the DoE and its contractors. A reduced set of parameters was obtained for a single layer transport model. As expected, the response was shown to be highly sensitive on the new parameters. A faster convergence of the system was observed when the sampling technique used was changed to take into account the properties of the new parameters, such that uniform coverage of the reduced parameter hyperspace was achieved. (author)
Graham, Brian T; Moore, Axel C; Burris, David L; Price, Christopher
2018-04-11
The interstitial fluid within articular cartilage shields the matrix from mechanical stresses, reduces friction and wear, enables biochemical processes, and transports solutes into and out of the avascular extracellular matrix. The balanced competition between fluid exudation and recovery under load is thus critical to the mechanical and biological functions of the tissue. We recently discovered that sliding alone can induce rapid solute transport into buried cartilage contact areas via a phenomenon termed tribological rehydration. In this study, we use in situ confocal microscopy measurements to track the spatiotemporal propagation of a small neutral solute into the buried contact area to clarify the fluid mechanics underlying the tribological rehydration phenomenon. Sliding experiments were interrupted by periodic static loading to enable scanning of the entire contact area. Spatiotemporal patterns of solute transport combined with tribological data suggested pressure driven flow through the extracellular matrix from the contact periphery rather than into the surface via a fluid film. Interestingly, these testing interruptions also revealed dynamic, repeatable and history-independent fluid loss and recovery processes consistent with those observed in vivo. Unlike the migrating contact area, which preserves hydration by moving faster than interstitial fluid can flow, our results demonstrate that the stationary contact area can maintain and actively recover hydration through a dynamic competition between load-induced exudation and sliding-induced recovery. The results demonstrate that sliding contributes to the recovery of fluid and solutes by cartilage within the contact area while clarifying the means by which it occurs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cadmium uptake from solution by plants and its transport from roots to shoots
Energy Technology Data Exchange (ETDEWEB)
Jarvis, S.C.; Jones, L.H.P.; Hopper, M.J.
1976-02-01
The uptake of cadmium by the roots of plants, and its transport to shoots was examined using solution culture. Uptake by the roots of perennial ryegrass over a period of 4 hours from an aqueous solution containing 0.25 ppm cadmium as CdCl/sub 2/ was (i) enhanced by killing the roots and (ii) depressed when Ca/sup 2 +/, Mn/sup 2 +/ or Zn/sup 2 +/ were added to the solution. The distribution of cadmium between the roots and shoots of 23 species was examined at 4 days after a single, 3-day exposure to a nutrient solution containing 0.01 ppm added Cd. In all except 3 species, i.e. kale, lettuce and watercress, more than 50% of that taken up was retained in the shoot, and in fibrous roots of fodder beet, parsnip, carrot and radish it was greater than in the swollen storage roots. When perennial ryegrass was similarly exposed to solutions containing 0.01, 0.05, and 0.25 ppm added cadmium, uptake, as measured at 3 days after adding cadmium, increased with increasing rates of addition, but the proportion retained in the roots was constant (approximately 88%). There was no further transport from roots to shoots during the next 21 days, with the result that the concentration in the shoots decreased progressively with increasing growth. It is concluded that although the roots of several species can take up large quantities of cadmium from solution there are mechanisms which may restrict the movement of cadmium through plants, and thus to animals. 21 references, 7 tables.
Relationship between application scale and maximum time latency in intelligent transport solutions
Knoop, V.; Lint, J. van; Vries, J.; Kester, L.J.H.M.; Passchier, I.
2013-01-01
Congestion is a major problem in large, urbanized areas. Intelligent transport solutions aim to reduce this problem. In general, traffic is monitored with the use of sensors, the resulting data are processed, a traffic state is estimated, and a control measure is computed and implemented. The
Energy Technology Data Exchange (ETDEWEB)
Park, Chung Kyun; Lee, Jaek Wang; Baik, Min Hoon; Jeong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2012-02-15
Migration tests were performed with conservative tracers in a fractured zone that had a single fracture of about 2.5 m distance at the KURT. To interpret the migration of the tracers in the fractured rock, a solute transport model was developed. A two dimensional variable aperture channel model was adopted to describe the fractured path and hydrology, and a particle tracking method was used for solute transport. The simulation tried not only to develop a migration model of solutes for open flow environments but also to produce ideas for a better understanding of solute behaviours in indefinable fracture zones by comparing them to experimental results. The results of our simulations and experiments are described as elution and breakthrough curves, and are quantified by momentum analysis. The main retardation mechanism of nonsorbing tracers, including matrixdiffusion, was investigated.
Adam S. Ward; Michael N. Gooseff; Michael Fitzgerald; Thomas J. Voltz; Kamini Singha
2014-01-01
The transport of solutes along hyporheic flowpaths is recognized as central to numerous biogeochemical cycles, yet our understanding of how this transport changes with baseflow recession, particularly in a spatially distributed manner, is limited. We conducted four steady-state solute tracer injections and collected electrical resistivity data to characterize hyporheic...
Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.
Pendleton, Phillip; Wu, Sophie Hua
2003-10-15
This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.
Chen, Kewei; Zhan, Hongbin
2018-06-01
The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin
2004-01-28
Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.
International Nuclear Information System (INIS)
Chen, C.S.; Yates, S.R.
1989-01-01
In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. It has been reported that by treating the radioactive decay constant as the appropriate first-order rate constant, these solutions can also be used to study injection problems of a similar nature subject to first-order chemical or biological reactions. The fracture is idealized by a pair of parallel, smooth plates separated by an aperture of constant thickness. Groundwater was assumed to be immobile in the underlying and overlying porous formations due to their low permeabilities. However, the injected radionuclides were able to move from the fracture into the porous matrix by molecular diffusion (the matrix diffusion) due to possible concentration gradients across the interface between the fracture and the porous matrix. Calculation of the transient solutions is not straightforward, and the paper documents a contained Fortran program, which computes the Stehfest inversion, the Airy functions, and gives the concentration distributions in the fracture as well as in the porous matrix for both transient and steady-state cases
Modelling of activity transport in PHWR
International Nuclear Information System (INIS)
Veena, S.N.; Rangarajan, S.; Narasimhan, S.V.; Horvath, G.L.
2000-01-01
The modelling of mass and activity transport in PHWR is of importance in predicting the build up of radiation field in and around the Primary Heat Transport system which will consequently help in planning the Dilute Chemical Decontamination and man rem budgeting. Modeling also helps in understanding the different parameters controlling the transport behaviour. Some of the important parameters include coolant chemistry like pH, physical parameters like temperature, the nature of the corrosion film and hence the effect of passivation techniques. VVER code for activity transport uses six nodes for the primary system and is essentially devised for stainless steel system. In the present work though based on this model, major modifications have been incorporated to suit the PHWR conditions. In the code, the PHT system of PHWR is suitably divided into 14 nodes, 5 in-core and 9 out of core nodes based on material and heat transfer properties. This paper describes the mechanisms involved in the various processes like generation of corrosion products, their release as well as their transport into the primary coolant, the activation of inactive corrosion product nuclides and the build up of radiation field due to 60 Co around the PHT system. (author)
A numerical solution of the coupled proton-H atom transport equations for the proton aurora
International Nuclear Information System (INIS)
Basu, B.; Jasperse, J.R.; Grossbard, N.J.
1990-01-01
A numerical code has been developed to solve the coupled proton-H atom linear transport equations for the proton aurora. The transport equations have been simplified by using plane-parallel geometry and the forward-scattering approximations only. Otherwise, the equations and their numerical solutions are exact. Results are presented for the particle fluxes and the energy deposition rates, and they are compared with the previous analytical results that were obtained by using additional simplifying approximations. It is found that although the analytical solutions for the particle fluxes differ somewhat from the numerical solutions, the energy deposition rates calculated by the two methods agree to within a few percent. The accurate particle fluxes given by the numerical code are useful for accurate calculation of the characteristic quantities of the proton aurora, such as the ionization rates and the emission rates
Pouran, Behdad; Arbabi, Vahid; Weinans, Harrie; Zadpoor, Amir A
2016-11-01
Transport of solutes helps to regulate normal physiology and proper function of cartilage in diarthrodial joints. Multiple studies have shown the effects of characteristic parameters such as concentration of proteoglycans and collagens and the orientation of collagen fibrils on the diffusion process. However, not much quantitative information and accurate models are available to help understand how the characteristics of the fluid surrounding articular cartilage influence the diffusion process. In this study, we used a combination of micro-computed tomography experiments and biphasic-solute finite element models to study the effects of three parameters of the overlying bath on the diffusion of neutral solutes across cartilage zones. Those parameters include bath size, degree of stirring of the bath, and the size and concentration of the stagnant layer that forms at the interface of cartilage and bath. Parametric studies determined the minimum of the finite bath size for which the diffusion behavior reduces to that of an infinite bath. Stirring of the bath proved to remarkably influence neutral solute transport across cartilage zones. The well-stirred condition was achieved only when the ratio of the diffusivity of bath to that of cartilage was greater than ≈1000. While the thickness of the stagnant layer at the cartilage-bath interface did not significantly influence the diffusion behavior, increase in its concentration substantially elevated solute concentration in cartilage. Sufficient stirring attenuated the effects of the stagnant layer. Our findings could be used for efficient design of experimental protocols aimed at understanding the transport of molecules across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dou, Z.
2017-12-01
In this study, the influence of multi-scale roughness on transport behavior of the passive solute through the self-affine fracture was investigated. The single self-affine fracture was constructed by the successive random additions (SRA) and the fracture roughness was decomposed into two different scales (i.e. large-scale primary roughness and small-scale secondary roughness) by the Wavelet analysis technique. The fluid flow in fractures, which was characterized by the Forchheimer's law, showed the non-linear flow behaviors such as eddies and tortuous streamlines. The results indicated that the small-scale secondary roughness was primarily responsible for the non-linear flow behaviors. The direct simulations of asymptotic passive solute transport represented the Non-Fickian transport characteristics (i.e. early arrivals and long tails) in breakthrough curves (BTCs) and residence time distributions (RTDs) with and without consideration of the secondary roughness. Analysis of multiscale BTCs and RTDs showed that the small-scale secondary roughness played a significant role in enhancing the Non-Fickian transport characteristics. We found that removing small-scale secondary roughness led to the lengthening arrival and shortening tail. The peak concentration in BTCs decreased as the secondary roughness was removed, implying that the secondary could also enhance the solute dilution. The estimated BTCs by the Fickian advection-dispersion equation (ADE) yielded errors which decreased with the small-scale secondary roughness being removed. The mobile-immobile model (MIM) was alternatively implemented to characterize the Non-Fickian transport. We found that the MIM was more capable of estimating Non-Fickian BTCs. The small-scale secondary roughness resulted in the decreasing mobile domain fraction and the increasing mass exchange rate between immobile and mobile domains. The estimated parameters from the MIM could provide insight into the inherent mechanism of roughness
Bases for DOT exemption uranyl nitrate solution shipments
International Nuclear Information System (INIS)
Moyer, R.A.
1982-07-01
Uranyl nitrate solutions from a Savannah River Plant reprocessing facility have been transported in cargo tank trailers for more than 20 years without incident during transit. The solution is shipped to Oak Ridge for further processing and returned to SRP in a solid metal form for recycle. This solution, called uranyl nitrate hexahydrate (UNH) solution in Department of Transportation (DOT) regulations, is currently diluted about 2-fold to comply with DOT concentration limits (10% of low specific activity levels) specified for bulk low specific activity (LSA) liquid shipments. Dilution of the process solution increases the number of shipments, the cost of transportation, the cost of shipper preparations, the cost of further reprocessing in the receiving facility to first evaporate the added water, and the total risk to the population along the route of travel. However, the radiological risk remains about the same. Therefore, obtaining an exemption from DOT regulations to permit shipment of undiluted UNH solution, which is normally about two times the present limit, is prudent and more economical. The radiological and nonradiological risks from shipping a unit load of undiluted solution are summarized for the probable route. Data and calculations are presented on a per load or per shipment basis throughout this memorandum to keep it unclassified
Verification of T2VOC using an analytical solution for VOC transport in vadose zone
Energy Technology Data Exchange (ETDEWEB)
Shan, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)
1995-03-01
T2VOC represents an adaption of the STMVOC to the TOUGH2 environment. In may contaminated sites, transport of volatile organic chemicals (VOC) is a serious problem which can be simulated by T2VOC. To demonstrate the accuracy and robustness of the code, we chose a practical problem of VOC transport as the test case, conducted T2VOC simulations, and compared the results of T2VOC with those of an analytical solution. The agreements between T2VOC and the analytical solutions are excellent. In addition, the numerical results of T2VOC are less sensitive to grid size and time step to a certain extent.
Analysis of solute transport in plants using positron emission tomography
International Nuclear Information System (INIS)
Partelova, D.
2016-01-01
In the first part of the work, geometrically and radiochemically characterized standards (phantoms) imitating the plant tissues and allowing the exact quantification of visualised radioindicator in plant tissues were designed and prepared within the study of visual and analytical characteristics of used positron emission tomograph (microPET system) commercially developed for animal objects at visualization of thin objects. Individual experiments carried out by exposure of excised leaves of tobacco (Nicotiana tabacum L.) or radish (Raphanus sativus L.) in solutions of 2-deoxy-2-fluoro-D-glucose labelled with positron emitter 18 F (2-[ 18 F]FDG) containing 10-, 100-, or 1000-times higher concentrations of D-glucose (c glu ) in comparison with the original 2-[ 18 F]FDG solution showed that the significant changes in visualisation of 2-[ 18 F]FDG distribution as well as in chemical portion of 2-[ 18 F]FDG within the leaf blade were observed as result of increased c glu . In the experiments with the whole plants of tobacco or radish exposed in 2-[ 18 F]FDG solution through the root system, only minimal translocation of 18 F radioactivity into the above-ground parts of plants, also in the case of increased c glu , was observed, which suggest the role of root system as a selective barrier of 2-[ 18 F]FDG transport from roots to the above-ground parts. On the basis of mentioned knowledge and analytical approaches (application of prepared phantoms), the dynamic study of 2-[ 18 F]FDG uptake and transport within the excised leaf of tobacco or whole radish plant was carried out. The description of these processes was realized through the 3D PET images and through the quantification of 2-[ 18 F]FDG distribution within the chosen regions of interest from the point of view of accumulated 18 F radioactivity (in Bq) or amount of D-glucose (in μg) as well. Application of methods of multivariate analysis allows to found the similarities between studied objects mainly from the point
Lin, Fubiao; Meleshko, Sergey V.; Flood, Adrian E.
2018-06-01
The population balance equation (PBE) has received an unprecedented amount of attention in recent years from both academics and industrial practitioners because of its long history, widespread use in engineering, and applicability to a wide variety of particulate and discrete-phase processes. However it is typically impossible to obtain analytical solutions, although in almost every case a numerical solution of the PBEs can be obtained. In this article, the symmetries of PBEs with homogeneous coagulation kernels involving aggregation, breakage and growth processes and particle transport in one dimension are found by direct solving the determining equations. Using the optimal system of one and two-dimensional subalgebras, all invariant solutions and reduced equations are obtained. In particular, an explicit analytical physical solution is also presented.
All-solution processed composite hole transport layer for quantum dot light emitting diode
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiaoli [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Synergetic Innovation Center of Chemical Science and Engineering, Tianjin (China); Dai, Haitao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Zhao, Junliang; Wang, Shuguo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Sun, Xiaowei [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Tangchang Road 1088, Shenzhen, Guangdong 518055 (China)
2016-03-31
In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD:TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Förster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. - Highlights: • Quantum dot light emitting diodes (QLEDs) were fabricated by all solution method. • The performance of QLEDs was optimized by varying the composite hole transport layer. • The blend HTL could promote hole injection by optimizing HOMO levels. • The energy transfer mechanism was analyzed by studying Förster resonant energy transfer process.
An active matter analysis of intracellular Active Transport
Wang, Bo; Chen, Kejia; Bae, Sung Chul; Granick, Steve
2012-02-01
Tens of thousands of fluorescence-based trajectories at nm resolution have been analyzed, regarding active transport along microtubules in living cells. The following picture emerges. Directed motion to pre-determined locations is certainly an attractive idea, but cannot be pre-programmed as to do so would sacrifice adaptability. The polarity of microtubules is inadequate to identify these directions in cells, and no other mechanism is currently known. We conclude that molecular motors carry cargo through disordered intracellular microtubule networks in a statistical way, with loud cellular ``noise'' both in directionality and speed. Programmed random walks describe how local 1D active transport traverses crowded cellular space efficiently, rapidly, minimizing the energy waste that would result from redundant activity. The mechanism of statistical regulation is not yet understood, however.
Transport and dosimetric solutions for the ELIMED laser-driven beam line
Energy Technology Data Exchange (ETDEWEB)
Cirrone, G.A.P. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Romano, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Scuderi, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Amato, A. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Candiano, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Cuttone, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Giove, D. [INFN Sezione di Milano, Via Celoria 16, Milano (Italy); Korn, G.; Krasa, J. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Leanza, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Maggiore, M. [INFN-LNL, Viale dell' Universitá 2 - 35020 Legnaro (PD) (Italy); Marchese, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Margarone, D. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Milluzzo, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Petringa, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Sabini, M.G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Azienda Ospedaliera Cannizzaro, Via Messina 829 - 95100 Catania (Italy); Schillaci, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); and others
2015-10-01
Within 2017, the ELIMED (ELI-Beamlines MEDical applications) transport beam-line and dosimetric systems for laser-generated beams will be installed at the ELI-Beamlines facility in Prague (CZ), inside the ELIMAIA (ELI Multidisciplinary Applications of laser–Ion Acceleration) interaction room. The beam-line will be composed of two sections: one in vacuum, devoted to the collecting, focusing and energy selection of the primary beam and the second in air, where the ELIMED beam-line dosimetric devices will be located. This paper briefly describes the transport solutions that will be adopted together with the main dosimetric approaches. In particular, the description of an innovative Faraday Cup detector with its preliminary experimental tests will be reported.
Health Impacts of Active Transportation in Europe.
Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J; Braun-Fahrländer, Charlotte; Bruha, Jan; Bruhova-Foltynova, Hana; Desqueyroux, Hélène; Praznoczy, Corinne; Ragettli, Martina S; Tainio, Marko; Nieuwenhuijsen, Mark J
2016-01-01
Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16-64) in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen) produced the highest benefits among the different scenarios analysed in Warsaw 113 (76-163) annual deaths avoided, Prague 61 (29-104), Barcelona 37 (24-56), Paris 37 (18-64) and Basel 5 (3-9). An increase in walking trips to 50% of all trips (as in Paris) resulted in 19 (3-42) deaths avoided annually in Warsaw, 11(3-21) in Prague, 6 (4-9) in Basel, 3 (2-6) in Copenhagen and 3 (2-4) in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation.
A complete NUHOMS {sup registered} solution for storage and transport of high burnup spent fuel
Energy Technology Data Exchange (ETDEWEB)
Bondre, J. [Transnuclear, Inc. (AREVA Group), Fremont, CA (United States)
2004-07-01
The discharge burnups of spent fuel from nuclear power plants keep increasing with plants discharging or planning to discharge fuel with burnups in excess of 60,000 MWD/MTU. Due to limited capacity of spent fuel pools, transfer of older cooler spent fuel from fuel pool to dry storage, and very limited options for transport of spent fuel, there is a critical need for dry storage of high burnup, higher heat load spent fuel so that plants could maintain their full core offload reserve capability. A typical NUHOMS {sup registered} solution for dry spent fuel storage is shown in the Figure 1. Transnuclear, Inc. offers two advanced NUHOMS {sup registered} solutions for the storage and transportation of high burnup fuel. One includes the NUHOMS {sup registered} 24PTH system for plants with 90.7 Metric Ton (MT) crane capacity; the other offers the higher capacity NUHOMS {sup registered} 32PTH system for higher crane capacity. These systems include NUHOMS {sup registered} - 24PTH and -32PTH Transportable Canisters stored in a concrete storage overpack (HSM-H). These canisters are designed to meet all the requirements of both storage and transport regulations. They are designed to be transported off-site either directly from the spent fuel pool or from the storage overpack in a suitable transport cask.
Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong
2018-03-24
Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.
Transport of neutral solute across articular cartilage: the role of zonal diffusivities.
Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A
2015-07-01
Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.
TRANSPORT OF SOLUTES IN THE FIELD AS AFFECTED BY IRRIGATION
Directory of Open Access Journals (Sweden)
Alessandro Comegna
2007-09-01
Full Text Available This study documents and compares the transport of a conservative solute in near saturated soil profiles under flood and sprinkler irrigation. The experiments were carried out on a clay Vertic-Usthortens soil located near Potenza (Italy. Two 2x2 m2 plots were clipped of their native grass vegetation. After spraying on the surface a Cl- pulse as KCl salt; water was applied in five increments over two months as flood irrigation on the first plot and as sprinkler irrigation on the second one. Chloride resident concentration Cr, was sampled by soil coring at four different days after chemical application. Cr(z,t profiles were analyzed by spatial moment method. The recovered mass of Cl- and location of center of mass were comparable for the two types of irrigation. The spread around the center of mass, however, was higher for the flood-irrigated plot. In the flood-irrigated plot, more mass leached below the depth of 90 cm. The velocity of the center of mass was consistently 10-20% larger than the piston displacement velocity. To evaluate the nature of transport, the Cr(z,t distributions were modelled using quasi-steady solution of convection-dispersion equation(CDE. At the scale of our experiments the profiles of Cl- resident concentration are well-simulated.
Energy Technology Data Exchange (ETDEWEB)
Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))
2007-12-15
We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was
The solution of the multigroup neutron transport equation using spherical harmonics
International Nuclear Information System (INIS)
Fletcher, K.
1981-01-01
A solution of the multi-group neutron transport equation in up to three space dimensions is presented. The flux is expanded in a series of unnormalised spherical harmonics. Using the various recurrence formulae a linked set of first order differential equations is obtained for the moments psisup(g)sub(lm)(r), γsup(g)sub(lm)(r). Terms with odd l are eliminated resulting in a second order system which is solved by two methods. The first is a finite difference formulation using an iterative procedure, secondly, in XYZ and XY geometry a finite element solution is given. Results for a test problem using both methods are exhibited and compared. (orig./RW) [de
Logistic innovations in transport
Directory of Open Access Journals (Sweden)
Mirosław Antonowicz
2014-03-01
Full Text Available Introduction: The article discusses the issue of logistic innovations in transport. The essentials of logistic innovations in transport together with some examples of specific innovations are presented. The role of the client's needs in transport innovations is indicated. The most vital postulates affecting the innovativeness of shipping companies and derived from the author's experience as well as scholarly publications, are time, safety, reliability as well as comprehensiveness of service offer. Following the analysis of the issue, and on the grounds of Kaizen's and Lean's method, the concept of continuous innovations is suggested as very useful for the development of transport. The potential of clusters as the source of logistic innovations in transport is emphasised. Methods: The discussion of the issue was preceded by the author's analysis of written sources on innovativeness, the evaluation of ratings of innovativeness as well as the analysis of rewarded innovative solutions in transport subsequent to the businesses participation in the programme of innovative solutions in transport. The role of innovation practical business operations is argued following the analysis of some strategic documents such as: 2011 White Paper and the Strategy for the Development of Transport by 2020 adopted by the Polish government in 2013. Aim: The aim of the article is to present the role and significance of the issue of logistic innovations in transport and to cite instances of practical solutions implemented by shipping companies, the solutions which resulted in measurable effects. Following the author's observation of the instances of innovative solutions as well as his analysis of the ratings of innovativeness, the article aims to present the conclusions as for the specific kinds of activities which are indispensable to foster innovativeness in transport. Conclusions: The conclusions derived from the author's analyses and observations show that logistic
Effects of a Danish multicomponent physical activity intervention on active school transport
DEFF Research Database (Denmark)
Breum, Lars; Toftager, Mette; Ersbøll, Annette K.
2014-01-01
activity, active transport and after-school fitness program. Transport mode to school was assessed through a 5-day transportation diary. Results The proportion of active transport was high at baseline (86.0%) and was maintained at the two-year follow-up (87.0%). There was no difference in active travel...... between the intervention and the comparison schools after the intervention, but more students perceived parental encouragement and had a positive attitude towards bicycling at the intervention schools. This difference was however only borderline significant. Conclusion The prevalence of AST was high...... at both baseline and follow-up, but no difference between the intervention and comparison schools was detected. Future intervention research should ensure a high degree of involvement of students, teachers and parents, focus merely on AST and take advantage of already planned physical environment changes...
International Nuclear Information System (INIS)
Shelkovich, V M
2008-01-01
This is a survey of some results and problems connected with the theory of generalized solutions of quasi-linear conservation law systems which can admit delta-shaped singularities. They are the so-called δ-shock wave type solutions and the recently introduced δ (n) -shock wave type solutions, n=1,2,..., which cannot be included in the classical Lax-Glimm theory. The case of δ- and δ'-shock waves is analyzed in detail. A specific analytical technique is developed to deal with such solutions. In order to define them, some special integral identities are introduced which extend the concept of weak solution, and the Rankine-Hugoniot conditions are derived. Solutions of Cauchy problems are constructed for some typical systems of conservation laws. Also investigated are multidimensional systems of conservation laws (in particular, zero-pressure gas dynamics systems) which admit δ-shock wave type solutions. A geometric aspect of such solutions is considered: they are connected with transport and concentration processes, and the balance laws of transport of 'volume' and 'area' to δ- and δ'-shock fronts are derived for them. For a 'zero-pressure gas dynamics' system these laws are the mass and momentum transport laws. An algebraic aspect of these solutions is also considered: flux-functions are constructed for them which, being non-linear, are nevertheless uniquely defined Schwartz distributions. Thus, a singular solution of the Cauchy problem generates algebraic relations between its components (distributions).
DRAGON solutions to the 3D transport benchmark over a range in parameter space
International Nuclear Information System (INIS)
Martin, Nicolas; Hebert, Alain; Marleau, Guy
2010-01-01
DRAGON solutions to the 'NEA suite of benchmarks for 3D transport methods and codes over a range in parameter space' are discussed in this paper. A description of the benchmark is first provided, followed by a detailed review of the different computational models used in the lattice code DRAGON. Two numerical methods were selected for generating the required quantities for the 729 configurations of this benchmark. First, S N calculations were performed using fully symmetric angular quadratures and high-order diamond differencing for spatial discretization. To compare S N results with those of another deterministic method, the method of characteristics (MoC) was also considered for this benchmark. Comparisons between reference solutions, S N and MoC results illustrate the advantages and drawbacks of each methods for this 3-D transport problem.
Directory of Open Access Journals (Sweden)
Xingwei Wang
2014-01-01
Full Text Available Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.
Direct interaction between linear electron transfer chains and solute transport systems in bacteria
Elferink, Marieke G.L.; Hellingwerf, Klaas J.; Belkum, Marco J. van; Poolman, Bert; Konings, Wil N.
1984-01-01
In studies on alanine and lactose transport in Rhodopseudomonas sphaeroides we have demonstrated that the rate of solute uptake in this phototrophic bacterium is regulated by the rate of light-induced cyclic electron transfer. In the present paper the interaction between linear electron transfer
DEFF Research Database (Denmark)
Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per
2016-01-01
-derived parameters by using a best subsets regression analysis. The regression coefficients improved using CTmatrix, limiting macroporosity, and genus density, while the best model for t0.05 used CTmatrix only. The scanning resolution and the time for soil structure development after mechanical activities could......The characterization of soil pore space geometry is important for explaining fluxes of air, water, and solutes through soil and understanding soil hydrogeochemical functions. X-ray computed tomography (CT) can be applied for this characterization, and in this study CT-derived parameters were used...... to explain water, air, and solute transport through soil. Forty-five soil columns (20 by 20 cm) were collected from an agricultural field in Estrup, Denmark, and subsequently scanned using a medical CT scanner. Nonreactive tracer leaching experiments were performed in the laboratory along with measurements...
Health Impacts of Active Transportation in Europe.
Directory of Open Access Journals (Sweden)
David Rojas-Rueda
Full Text Available Policies that stimulate active transportation (walking and bicycling have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16-64 in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter <2.5 μm, as well as traffic fatalities in the cities of Barcelona, Basel, Copenhagen, Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen produced the highest benefits among the different scenarios analysed in Warsaw 113 (76-163 annual deaths avoided, Prague 61 (29-104, Barcelona 37 (24-56, Paris 37 (18-64 and Basel 5 (3-9. An increase in walking trips to 50% of all trips (as in Paris resulted in 19 (3-42 deaths avoided annually in Warsaw, 11(3-21 in Prague, 6 (4-9 in Basel, 3 (2-6 in Copenhagen and 3 (2-4 in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year. Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation.
Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.
2004-01-01
The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a
Final Technical Report Transport Task Force Activities
International Nuclear Information System (INIS)
P.W. Terry
2006-01-01
The Transport Task Force has functioned as the primary scientific organization in the area of magnetic-fusion confinement and transport since its inception in 1988. It has defined and set research directions, coordinated broad research efforts, advocated new funding initiatives, and created a highly successful and widely admired interactive culture between experiment, theory and modeling. The Transport Task Force carries out its activities under the direction of its chair and the Executive Committee. The Executive Committee is comprised of the leaders and deputy leaders of the scientific working groups. The working groups are structured and organized according to research needs and priorities and have been organized around the areas of Core Transport, H Mode and Pedestal, Fast Particle Transport, Transient Transport Phenomena, and Modeling and Simulation. A steering committee provides advise on TTF activities. Further information on the working groups and the structure and management of the TTF can be found at http://psfcwww2.psfc.mit.edu/ttf/index.html. The TTF holds an annual workshop. A summary of the workshops held during the period of this report is given in Appendix I. During the period of this report the Transport Task Force was involved in several significant activities. Foremost of these was a sweeping review of the status of transport science, the key research tasks for progress during the next 5-10 years, and a proposal for a funding initiative to ensure application of adequate resources to these problems. The conclusions of this study were incorporated into a white paper, which is copied below in Appendix II. Other significant activities have included the introduction of an extended, ongoing discussion on verification and validation as a requisite for defining and codifying the path toward predictive capability, the orchestration of a gradual shift of focus from ion thermal confinement to electron thermal confinement, and a joining of efforts on edge
Reactive solute transport in streams: A surface complexation approach for trace metal sorption
Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.
1999-01-01
A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.
Modeling study of solute transport in the unsaturated zone: Workshop proceedings
International Nuclear Information System (INIS)
Springer, E.P.; Fuentes, H.R.
1987-04-01
Issues addressed were the adequacy of the data for the various models, effectiveness of the models to represent the data, particular information provided by the models, the role of caisson experiments in providing fundamental knowledge of porous-media water flow and solute transport, and the importance of geochemistry to the transport of nonconservative tracers. These proceedings include the presentations made by each of the modelers; the summary document written by the panel; and a transcript of the discussions, both the discussions that followed individual presentations and the general discussion held on the second day. This publication completes the series on the workshop. Volume I in the series (NUREG/CR-4615, Vol. I) contains background information and the data sets provided each modeler
Resorcinol adsorption from aqueous solution over activated carbon
International Nuclear Information System (INIS)
Blanco, Diego A; Giraldo, Liliana; Moreno, Juan C
2007-01-01
In this paper, the adsorption behavior of Resorcinol a monohydroxylated phenol, poorly acid to 298 K, over activated carbon is analyzed by studying the solution's pH influence and the surface reduction in the adsorption process. To do this, an activated carbon of lignocellulose origin and a reduced activated carbon was used. The interaction solid solution is characterized by the analyses of adsorption in the isotherms to 298 K and pH values of 7. 00, 9.00 and 11.00 for a period of 48 hours. The capacity adsorption of activated carbons increases when the solution's pH decreases and the retained amount increases in the reduced coal to the pH of maximum adsorption.
International Nuclear Information System (INIS)
Gylling, B.
1997-01-01
The Channel Network model and its computer implementation, the code CHAN3D, for simulations of fluid flow and transport of solutes have been developed. The tool may be used for performance and safety assessments of deep lying repositories in fractured rocks for nuclear and other hazardous wastes, e.g. chemical wastes. It may also be used to simulate and interpret field experiments of flow and transport in large or small scale. Fluid flow and solute transport in fractured media are of interest in the performance assessment of a repository for hazardous waste, located at depth in crystalline rock, with potential release of solutes. Fluid flow in fractured rock is found to be very unevenly distributed due to the heterogeneity of the medium. The water will seek the easiest path, channels, under a prevailing pressure gradient. Solutes in the flowing water may be transported through preferential paths and migrate from the water in the fractures into the stagnant water in the rock matrix. There, sorbing solutes may be sorbed on the micro surfaces within the matrix. The diffusion into the matrix and the sorption process may significantly retard the transport of species and increase the time available for radionuclide decay. Channelling and matrix diffusion contribute to the dispersion of solutes in the water. Important for performance assessment is that channeling may cause a portion of the solutes to arrive much faster than the rest of the solutes. Simulations of field experiments at the Aespoe Hard Rock Laboratory using the Channel Network model have been performed. The application of the model to the site and the simulation results of the pumping and tracer tests are presented. The results show that the model is capable of describing the hydraulic gradient and of predicting flow rates and tracer transport obtained in the experiments. The data requirements for the Channel Network model have been investigated to determine which data are the most important for predictions
Compilation of field-scale caisson data on solute transport in the unsaturated zone
International Nuclear Information System (INIS)
Polzer, W.L.; Essington, E.H.; Fuentes, H.R.; Nyhan, J.W.
1986-11-01
Los Alamos National Laboratory has conducted technical support studies to assess siting requirements mandated by Nuclear Regulatory Commission in 10 CFR Part 61. Field-scale transport studies were conducted under unsaturated moisture conditions and under steady and unsteady flow conditions in large caissons located and operated in a natural (field) environment. Moisture content, temperature, flow rate, base-line chemical, tracer influent, and tracer breakthrough data collected during tracer migration studies in the caisson are compiled in tables and graphs. Data suggest that the imposition of a period of drainage (influent solution flow was stopped) may cause an increase in tracer concentration in the soil solution at various sampling points in the caisson. Evaporation during drainage and diffusion of the tracers from immobile to mobile water are two phenomena that could explain the increase. Data also suggest that heterogeneity of sorption sites may increase the variability in transport of sorbing tracers compared with nonsorbing tracers
Mechanisms to explain the reverse perivascular transport of solutes out of the brain.
Schley, D; Carare-Nnadi, R; Please, C P; Perry, V H; Weller, R O
2006-02-21
Experimental studies and observations in the human brain indicate that interstitial fluid and solutes, such as amyloid-beta (Abeta), are eliminated from grey matter of the brain along pericapillary and periarterial pathways. It is unclear, however, what constitutes the motive force for such transport within blood vessel walls, which is in the opposite direction to blood flow. In this paper the potential for global pressure differences to achieve such transport are considered. A mathematical model is constructed in order to test the hypothesis that perivascular drainage of interstitial fluid and solutes out of brain tissue is driven by pulsations of the blood vessel walls. Here it is assumed that drainage occurs through a thin layer between astrocytes and endothelial cells or between smooth muscle cells. The model suggests that, during each pulse cycle, there are periods when fluid and solutes are driven along perivascular spaces in the reverse direction to the flow of blood. It is shown that successful drainage may depend upon some attachment of solutes to the lining of the perivascular space, in order to produce a valve-like effect, although an alternative without this requirement is also postulated. Reduction in pulse amplitude, as in ageing cerebral vessels, would prolong the attachment time, encourage precipitation of Abeta peptides in vessel walls, and impair elimination of Abeta from the brain. These factors may play a role in the pathogenesis of cerebral amyloid angiopathy and in the accumulation of Abeta in the brain in Alzheimer's disease.
Sierra, M; Holguín, J A
1979-01-01
In the sarcoplasmic reticulum of the myocardium, celular organell which function is to regulate the cytoplasmic concentration of calcium in contraction and relaxation, we have studied the effect of hypertonic solutions of sucrose between 1 and 6.96 times the normal tonicity in order to observe the behavior of the internal linked or free calcium of this structure, as well as to prove the hypothesis that hypertonic solutions encourage the calcium exit of the sarcoplasmatic reticulum with the resulting signs of contractures. The following results were obtained: 1. The ATP hydrolisis and calcium transport rate are 14% and 90% respectively of the maximum speeds of 10(-5) M in calcium, while for concentrations of 10(-7) M or ess of the said cation, the transport rates and the ATPase do not reach 5% of the maximum values. 2. Between 1 and 2.54 times of the normal tonicity the calcium uptake remains between 400 and 500 nmoles of calcium/mg protein/min, the transported amount of calcium varies between 14 and 16 nmoles/mg protein and the rate of the ATP hydrolysis increases a 37% to 0.4 M in sucrose. 3. Between 0.4 and 1.2 M in sucrose of 2.54 to 6.96 times the isotonicity, the calcium transport rate velocity as well as the ATP hydrolisis are strongly inhibited. The vesicles volume minimizes and the amount of linked calcium remains within the control values, proving that the capacity of linking this cathion is independent from sarcoplasmic reticulum volume. These results show that the sarcoplasmic reticulum is involved in the contractures induced by hypertonic solutions in intact cells, since the osmolarity increase produces changes of volume which results in a decrease of the calcium transportation velocity or in an increase of the exit of said cathion.
de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.
2017-07-01
Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more
2010-01-01
Based on the results from this research, MoDOT can confidently state that the diverging diamond was the right transportation solution for the Interstate 44 and Route 13 intersection. The overall results show: Most Springfield area residents were ...
Collaboration between physical activity researchers and transport planners
DEFF Research Database (Denmark)
Crist, Katie; Bolling, Khalisa; Schipperijn, Jasper
2018-01-01
Collaboration between physical activity (PA) researchers and transport planners is a recommended strategy to combat the physical inactivity epidemic. Data collected by PA researchers could be used to identify, implement and evaluate active transport (AT) projects. However, despite aligned interests......, researchers and transport planners rarely collaborate. This study utilized qualitative methods to 1) gain an in-depth understanding of the data utilized in AT planning, 2) explore the utility of Global Positioning Systems (GPS) and accelerometer data in supporting the planning process, 3) identify...... expertise in health or transport planning. A thematic analysis was conducted following structural coding by two researchers. The analysis revealed that geographic and physical activity data that are current, local, objective and specific to individual AT trips would improve upon currently available data...
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan
2014-05-01
To acquire knowledge of solute transport through the unsaturated zone in the shallow subsurface is decisive to assess groundwater quality, nutrient cycling or to plan remediation strategies. The shallow subsurface is characterized by structural heterogeneity and strongly influenced by atmospheric conditions. This leads to changing flow directions, strong temporal changes in saturation and heterogeneous water fluxes during infiltration and evaporation events. Recent studies (e.g. Lehmann and Or, 2009; Bechtold et al.,2011) demonstrated the importance of lateral flow and solute transport during evaporation conditions (upward flux). The heterogeneous structure in these studies was constructed using two types of sand with strong material contrasts and arranged in parallel with a vertical orientation. Lateral transport and redistribution of solute from coarse to fine media was observed deeper in the soil column and from fine to coarse close to the soil surface. However, if boundary conditions are reversed due to precipitation, the flow field is not necessarily reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport under those conditions. In this contribution we analyze transport of a solute in the shallow subsurface to assess effects resulting from the temporal change of heterogeneous soil structures due to dynamic flow conditions. Two-dimensional numerical simulations of unsaturated flow and transport are conducted using a coupled finite volume and random walk particle tracking algorithm to quantify solute transport and leaching rates. Following previous studies (Lehmann and Or, 2009; Bechtold et al., 2011), the chosen domain is composed of two materials, coarse and fine sand, arranged in parallel with a vertical orientation. Hence, one sharp interface of strong material heterogeneity is induced. During evaporation both sands are
International Nuclear Information System (INIS)
Mikata, Y.
2014-01-01
Highlights: • An exact solution for the one-speed neutron transport equation is obtained. • This solution as well as its derivation are believed to be new. • Neutron flux for a purely absorbing material with a point neutron source off the origin is obtained. • Spherically as well as cylindrically piecewise constant cross sections are studied. • Neutron flux expressions for a point neutron source off the origin are believed to be new. - Abstract: An exact analytical solution of the time-independent monoenergetic neutron transport equation is obtained in this paper. The solution is applied to systems with a point source. Systematic analysis of the solution of the time-independent neutron transport equation, and its applications represent the primary goal of this paper. To the best of the author’s knowledge, certain key results on the scalar neutron flux as well as their derivations are new. As an application of these results, a scalar neutron flux for a purely absorbing medium with a spherically piecewise constant cross section and an isotropic point neutron source off the origin as well as that for a cylindrically piecewise constant cross section with a point neutron source off the origin are obtained. Both of these results are believed to be new
Modelling activity transport behavior in PWR plant
International Nuclear Information System (INIS)
Henshaw, Jim; McGurk, John; Dickinson, Shirley; Burrows, Robert; Hinds, Kelvin; Hussey, Dennis; Deshon, Jeff; Barrios Figueras, Joan Pau; Maldonado Sanchez, Santiago; Fernandez Lillo, Enrique; Garbett, Keith
2012-09-01
The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)
Ritschel, Thomas; Totsche, Kai Uwe
2016-03-01
Transport studies that employ column experiments in closed-flow mode complement classical approaches by providing new characteristic features observed in the solute breakthrough and equilibrium between liquid and solid phase. Specific to the closed-flow mode is the recirculation of the effluent to the inflow via a mixing vessel. Depending on the ratio of volumes of mixing vessel and water-filled pore space, a damped oscillating solute concentration emerges in the effluent and mixing vessel. The oscillation characteristics, e.g., frequency, amplitude, and damping, allow for the investigation of solute transport in a similar fashion as known for classical open-flow column experiments. However, the closed loop conserves substances released during transport within the system. In this way, solute and porous medium can equilibrate with respect to physicochemical conditions. With this paper, the features emerging in the breakthrough curves of saturated column experiments run in closed-flow mode and methods of evaluation are illustrated under experimental boundary conditions forcing the appearance of oscillations. We demonstrate that the effective pore water volume and the pumping rate can be determined from a conservative tracer breakthrough curve uniquely. In this way, external preconditioning of the material, e.g., drying, can be avoided. A reactive breakthrough experiment revealed a significant increase in the pore water pH value as a consequence of the closed loop. These results highlight the specific impact of the closed mass balance. Furthermore, the basis for the modeling of closed-flow experiments is given by the derivation of constitutive equations and numerical implementation, validated with the presented experiments.
Effects of Pisha sandstone content on solute transport in a sandy soil.
Zhen, Qing; Zheng, Jiyong; He, Honghua; Han, Fengpeng; Zhang, Xingchang
2016-02-01
In sandy soil, water, nutrients and even pollutants are easily leaching to deeper layers. The objective of this study was to assess the effects of Pisha sandstone on soil solute transport in a sandy soil. The miscible displacement technique was used to obtain breakthrough curves (BTCs) of Br(-) as an inert non-adsorbed tracer and Na(+) as an adsorbed tracer. The incorporation of Pisha sandstone into sandy soil was able to prevent the early breakthrough of both tracers by decreasing the saturated hydraulic conductivity compared to the controlled sandy soil column, and the impeding effects increased with Pisha sandstone content. The BTCs of Br(-) were accurately described by both the convection-dispersion equation (CDE) and the two-region model (T-R), and the T-R model fitted the experimental data slightly better than the CDE. The two-site nonequilibrium model (T-S) accurately fit the Na(+) transport data. Pisha sandstone impeded the breakthrough of Na(+) not only by decreasing the saturated hydraulic conductivity but also by increasing the adsorption capacity of the soil. The measured CEC values of Pisha sandstone were up to 11 times larger than those of the sandy soil. The retardation factors (R) determined by the T-S model increased with increasing Pisha sandstone content, and the partition coefficient (K(d)) showed a similar trend to R. According to the results of this study, Pisha sandstone can successfully impede solute transport in a sandy soil column. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen
2007-12-01
We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was
Soil properties and preferential solute transport at the field scale
DEFF Research Database (Denmark)
Koestel, J K; Minh, Luong Nhat; Nørgaard, Trine
An important fraction of water flow and solute transport through soil takes place through preferential flow paths. Although this had been already observed in the nineteenth century, it had been forgotten by the scientific community until it was rediscovered during the 1970s. The awareness...... of the relevance of preferential flow was broadly re-established in the community by the early 1990s. However, since then, the notion remains widespread among soil scientists that the occurrence and strength of preferential flow cannot be predicted from measurable proxy variables such as soil properties or land...
A computational model for simulating solute transport and oxygen consumption along the nephrons
Vallon, Volker; Edwards, Aurélie
2016-01-01
The goal of this study was to investigate water and solute transport, with a focus on sodium transport (TNa) and metabolism along individual nephron segments under differing physiological and pathophysiological conditions. To accomplish this goal, we developed a computational model of solute transport and oxygen consumption (QO2) along different nephron populations of a rat kidney. The model represents detailed epithelial and paracellular transport processes along both the superficial and juxtamedullary nephrons, with the loop of Henle of each model nephron extending to differing depths of the inner medulla. We used the model to assess how changes in TNa may alter QO2 in different nephron segments and how shifting the TNa sites alters overall kidney QO2. Under baseline conditions, the model predicted a whole kidney TNa/QO2, which denotes the number of moles of Na+ reabsorbed per moles of O2 consumed, of ∼15, with TNa efficiency predicted to be significantly greater in cortical nephron segments than in medullary segments. The TNa/QO2 ratio was generally similar among the superficial and juxtamedullary nephron segments, except for the proximal tubule, where TNa/QO2 was ∼20% higher in superficial nephrons, due to the larger luminal flow along the juxtamedullary proximal tubules and the resulting higher, flow-induced transcellular transport. Moreover, the model predicted that an increase in single-nephron glomerular filtration rate does not significantly affect TNa/QO2 in the proximal tubules but generally increases TNa/QO2 along downstream segments. The latter result can be attributed to the generally higher luminal [Na+], which raises paracellular TNa. Consequently, vulnerable medullary segments, such as the S3 segment and medullary thick ascending limb, may be relatively protected from flow-induced increases in QO2 under pathophysiological conditions. PMID:27707705
Urban Transportation: Issue and Solution
Directory of Open Access Journals (Sweden)
Haryati Shafii
2011-10-01
Full Text Available Generally, quality of life of urban population is heavily dependent on social facilities provided within the environment. One of the most important facilities is transportations. Study on transportation mode in an urban area is especially very important because for almost every individual living in a large and densely populated area, mobility is one of the most crucial issues in everyday life. Enhance mobility, faster journey to work and less pollution from petrol-propelled vehicles can increase the quality of life, which in turn lead to a sustainable urban living. The study present transportation mode usage issues faced by community related to quality of life in an urban area. This study identifies several issues of transportation mode in urban areas and its impact on the quality of life. The study areas are Putrajaya, Kuala Lumpur and Bandar Kajang, Selangor. The methodology used in this research is secondary and primary data. The questionnaires for the survey were distributed from May 2008 to Jun 2008. These researches were conducted on 144 respondents for to evaluate their perception of transportation mode correlated to the quality of life. The collected data were then analyzed using “Statistical Packages for the Social Science” (SPSS. The respondents comprise of 61 males and 84 females from the age group of 18 to 57 years. This study identifies the percentage of public transportation mode usage in urban area, such as buses (16.7%, train (ERL, monorail and commuter-6.4%; which is very low compared to owning personal car (45.8% and motorcycle (25.4%.The result shows owning personal car is the highest (45.8% in three study areas and monorail and taxi are the lowest (1.4%. The Chi Square Test shows that among the mode transportation with traffic jam is quite difference in Kuala Lumpur, Putrajaya and Kajang. Analysis of the Chi Square Test shows the result is 0.000 (two sides to respondent answering “yes” and analysis of Spearman
Energy Technology Data Exchange (ETDEWEB)
Guan, C. [Institute of Hydrology and Water Resources Engineering, Zhejiang University, Hangzhou 310058 (China); Xie, H.J., E-mail: xiehaijian@zju.edu.cn [Institute of Hydrology and Water Resources Engineering, Zhejiang University, Hangzhou 310058 (China); MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wang, Y.Z.; Chen, Y.M.; Jiang, Y.S.; Tang, X.W. [MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058 (China)
2014-01-01
An analytical model for solute advection and dispersion in a two-layered liner consisting of a geosynthetic clay liner (GCL) and a soil liner (SL) considering the effect of biodegradation was proposed. The analytical solution was derived by Laplace transformation and was validated over a range of parameters using the finite-layer method based software Pollute v7.0. Results show that if the half-life of the solute in GCL is larger than 1 year, the degradation in GCL can be neglected for solute transport in GCL/SL. When the half-life of GCL is less than 1 year, neglecting the effect of degradation in GCL on solute migration will result in a large difference of relative base concentration of GCL/SL (e.g., 32% for the case with half-life of 0.01 year). The 100-year solute base concentration can be reduced by a factor of 2.2 when the hydraulic conductivity of the SL was reduced by an order of magnitude. The 100-year base concentration was reduced by a factor of 155 when the half life of the contaminant in the SL was reduced by an order of magnitude. The effect of degradation is more important in approving the groundwater protection level than the hydraulic conductivity. The analytical solution can be used for experimental data fitting, verification of complicated numerical models and preliminary design of landfill liner systems. - Highlights: •Degradation of contaminants was considered in modeling solute transport in GCL/SL. •Analytical solutions were derived for assessment of GCL/SL with degradation. •Degradation in GCL can be ignored as half-life is larger than 1 year. •Base concentration is more sensitive to half-life of SL than to permeability of SL.
International Nuclear Information System (INIS)
Guan, C.; Xie, H.J.; Wang, Y.Z.; Chen, Y.M.; Jiang, Y.S.; Tang, X.W.
2014-01-01
An analytical model for solute advection and dispersion in a two-layered liner consisting of a geosynthetic clay liner (GCL) and a soil liner (SL) considering the effect of biodegradation was proposed. The analytical solution was derived by Laplace transformation and was validated over a range of parameters using the finite-layer method based software Pollute v7.0. Results show that if the half-life of the solute in GCL is larger than 1 year, the degradation in GCL can be neglected for solute transport in GCL/SL. When the half-life of GCL is less than 1 year, neglecting the effect of degradation in GCL on solute migration will result in a large difference of relative base concentration of GCL/SL (e.g., 32% for the case with half-life of 0.01 year). The 100-year solute base concentration can be reduced by a factor of 2.2 when the hydraulic conductivity of the SL was reduced by an order of magnitude. The 100-year base concentration was reduced by a factor of 155 when the half life of the contaminant in the SL was reduced by an order of magnitude. The effect of degradation is more important in approving the groundwater protection level than the hydraulic conductivity. The analytical solution can be used for experimental data fitting, verification of complicated numerical models and preliminary design of landfill liner systems. - Highlights: •Degradation of contaminants was considered in modeling solute transport in GCL/SL. •Analytical solutions were derived for assessment of GCL/SL with degradation. •Degradation in GCL can be ignored as half-life is larger than 1 year. •Base concentration is more sensitive to half-life of SL than to permeability of SL
Energy Technology Data Exchange (ETDEWEB)
Gerlach, Robin [Montana State University
2014-10-31
Background. The use of biological and chemical processes that degrade or immobilize contaminants in subsurface environments is a cornerstone of remediation technology. The enhancement of biological and chemical processes in situ, involves the transport, displacement, distribution and mixing of one or more reactive agents. Biological and chemical reactions all require diffusive transport of solutes to reaction sites at the molecular scale and accordingly, the success of processes at the meter-scale and larger is dictated by the success of phenomena that occur at the micron-scale. However, current understanding of scaling effects on the mixing and delivery of nutrients in biogeochemically dynamic porous media systems is limited, despite the limitations this imposes on the efficiency and effectiveness of the remediation challenges at hand. Objectives. We therefore proposed to experimentally characterize and computationally describe the growth, evolution, and distribution of microbial activity and mineral formation as well as changes in transport processes in porous media that receive two or more reactive amendments. The model system chosen for this project was based on a method for immobilizing 90Sr, which involves stimulating microbial urea hydrolysis with ensuing mineral precipitation (CaCO3), and co-precipitation of Sr. Studies at different laboratory scales were used to visualize and quantitatively describe the spatial relationships between amendment transport and consumption that stimulate the production of biomass and mineral phases that subsequently modify the permeability and heterogeneity of porous media. Biomass growth, activity, and mass deposition in mixing zones was investigated using two-dimensional micro-model flow cells as well as flow cells that could be analyzed using synchrotron-based x-ray tomography. Larger-scale flow-cell experiments were conducted where the spatial distribution of media properties, flow, segregation of biological activity and
Energy Technology Data Exchange (ETDEWEB)
Geiger, S.; Cortis, A.; Birkholzer, J.T.
2010-04-01
Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.
Ohlsson, Gabriel; Tabaei, Seyed R; Beech, Jason; Kvassman, Jan; Johanson, Urban; Kjellbom, Per; Tegenfeldt, Jonas O; Höök, Fredrik
2012-11-21
Screening assays designed to probe ligand and drug-candidate regulation of membrane proteins responsible for ion-translocation across the cell membrane are wide spread, while efficient means to screen membrane-protein facilitated transport of uncharged solutes are sparse. We report on a microfluidic-based system to monitor transport of uncharged solutes across the membrane of multiple (>100) individually resolved surface-immobilized liposomes. This was accomplished by rapidly switching (solution above dye-containing liposomes immobilized on the floor of a microfluidic channel. With liposomes encapsulating the pH-sensitive dye carboxyfluorescein (CF), internal changes in pH induced by transport of a weak acid (acetic acid) could be measured at time scales down to 25 ms. The applicability of the set up to study biological transport reactions was demonstrated by examining the osmotic water permeability of human aquaporin (AQP5) reconstituted in proteoliposomes. In this case, the rate of osmotic-induced volume changes of individual proteoliposomes was time resolved by imaging the self quenching of encapsulated calcein in response to an osmotic gradient. Single-liposome analysis of both pure and AQP5-containing liposomes revealed a relatively large heterogeneity in osmotic permeability. Still, in the case of AQP5-containing liposomes, the single liposome data suggest that the membrane-protein incorporation efficiency depends on liposome size, with higher incorporation efficiency for larger liposomes. The benefit of low sample consumption and automated liquid handling is discussed in terms of pharmaceutical screening applications.
Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng
2015-03-01
Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advocacy for active transport: advocate and city council perspectives
Directory of Open Access Journals (Sweden)
Rosenby Marieah
2010-01-01
Full Text Available Abstract Background Effective advocacy is an important part of efforts to increase population participation in physical activity. Research about effective health advocacy is scarce, however, the health sector can learn from the experiences and knowledge of community advocates and those who are on the receiving end of this advocacy. The aim of this study is to explore advocacy for active transport from the perspectives of community advocates and representatives from City councils. Methods Cycling and walking advocates were identified from the local contact list of Cycling Advocates Network and Living Streets Aotearoa. Semi-structured telephone interviews were conducted with cycle and walking advocates from throughout New Zealand. Advocates also nominated a suitable council officer at their local City council to be interviewed. Interviews were recorded and transcribed and categories of responses for each of the questions created. Results Several processes were used by advocates to engage with council staff, including formal council submissions, meetings, stakeholder forums and partnership in running community events promoting active transport. Several other agencies were identified as being influential for active transport, some as potential coalition partners and others as potential adversaries. Barriers to improving conditions for active transport included a lack of funding, a lack of will-power among either council staff or councillors, limited council staff capacity (time or training and a culture of providing infrastructure for motor vehicles instead of people. Several suggestions were made about how the health sector could contribute to advocacy efforts, including encouraging political commitment, engaging the media, communicating the potential health benefits of active transport to the general public and being role models in terms of personal travel mode choice and having workplaces that support participation in active transport
Analytic solutions for colloid transport with time- or depth-dependent retention in porous media
Elucidating and quantifying the transport of industrial nanoparticles (e.g. silver, carbon nanotubes, and graphene oxide) and other colloid-size particles such as viruses and bacteria is important to safeguard and manage the quality of the subsurface environment. Analytic solutions were derived for...
MaSTiS, microorganism and solute transport in streams, model documentation and user manual
In-stream fate and transport of solutes and microorganisms need to be understood to evaluate suitability of waters for agricultural, recreational, and household uses and eventually minimize surface water contamination. Concerns over safety of this water resulted in development of predictive models f...
Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.
Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L
2014-04-01
The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Nourtier-Mazauric, E.
2003-03-15
This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)
Directory of Open Access Journals (Sweden)
Joreintje Dingena Mackenbach
2016-03-01
Full Text Available Physical activity has numerous physical and mental health benefits, and active commuting (walking or cycling to work can help meet physical activity recommendations. This study investigated socioeconomic differences in active commuting, and assessed the impact of urban land-use and public transport policies on active commuting in the Wellington region in New Zealand. We combined data from the New Zealand Household Travel Survey and GIS data on land-use and public transport facilities with the Wellington Integrated Land-Use, Transportation and Environment (WILUTE model, and forecasted changes in active commuter trips associated with changes in the built environment. Results indicated high income individuals were more likely to commute actively than individuals on low income. Several land-use and transportation factors were associated with active commuting and results from the modelling showed a potential increase in active commuting following an increase in bus frequency and parking fees. In conclusion, regional level policies stimulating environmental factors that directly or indirectly affect active commuting may be a promising strategy to increase population level physical activity. Access to, and frequency of, public transport in the neighbourhood can act as a facilitator for a more active lifestyle among its residents without negatively affecting disadvantaged groups.
Zhang, Kejiang; Achari, Gopal; Li, Hua
2009-11-03
Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.
Leung, Juliana Y.; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It
Bounds and maximum principles for the solution of the linear transport equation
International Nuclear Information System (INIS)
Larsen, E.W.
1981-01-01
Pointwise bounds are derived for the solution of time-independent linear transport problems with surface sources in convex spatial domains. Under specified conditions, upper bounds are derived which, as a function of position, decrease with distance from the boundary. Also, sufficient conditions are obtained for the existence of maximum and minimum principles, and a counterexample is given which shows that such principles do not always exist
Eutectic fusion used for the survey of transport of mass in metallic solutions
International Nuclear Information System (INIS)
Savane, Y.S.; Katty, S.; Balde, M.L.; Cisse, S.; Rogov, V.I.
1997-09-01
The phenomenon of eutectic fusion could be used for the survey of transport of mass in metallic solutions, which allows to determine the part of the ionic conductibility in the solutions. The survey done in the system In 2 Bi Bi-In at a temperature of 72 deg. C with a current of 4A allowed to find a ionic current of 2,6.10 -3 which constitutes about 0,07% of the total current. So the part of ionic conductibility in the eutectic fusion of the system In 2 Bi Bi-In is of 0,07%. (author)
International Nuclear Information System (INIS)
Merton, S. R.; Smedley-Stevenson, R. P.; Pain, C. C.; Buchan, A. G.; Eaton, M. D.
2009-01-01
This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (S N ) and spherical harmonics (P N ) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems. (authors)
Maritime Activities: Requirements for Improving Space Based Solutions
Cragnolini, A.; Miguel-Lago, M.
2005-03-01
Maritime initiatives cannot be pursued only within their own perimeter. Sector endeavours and the policies which rule over them have wide range implications and several links with other sectors of activity. A well- balanced relationship of sea exploitation, maritime transportation, environmental protection and security ruled by national or international laws, will be a main issue for the future of all kind of maritime activities. Scientific research and technology development, along with enlightened and appropriate institutional regulations are relevant to ensure maritime sustainability.The use of satellite technology for monitoring international agreements should have a close co- ordination and be based on institutional consensus. Frequently, rules and new regulations set by policy makers are not demanding enough due to lack of knowledge about the possibilities offered by available technologies.Law enforcement actions could bring space technology new opportunities to offer solutions for monitoring and verification. Operators should aim at offering space data in a more operational and user-friendly way, providing them with useful and timely information.This paper will analyse the contribution of satellite technology to deal with the specificity of maritime sector, stressing the conditions for both an adequate technology improvement and an effective policy implementation.After analysing the links between maritime activities, space technologies and the institutional environment, the paper identifies some boundary conditions of the future developments. Conclusions are basically a check list for improving the present situation, while a road map is suggested as a matter of a way to proceed.
International Nuclear Information System (INIS)
Polivanskij, V.P.
1989-01-01
The method to solve two-dimensional equations of neutron transport using 4P 0 -approximation is presented. Previously such approach was efficiently used for the solution of one-dimensional problems. New an attempt is made to apply the approach to solution of two-dimensional problems. Algorithm of the solution is given, as well as results of test neutron-physical calculations. A considerable as compared with diffusion approximation is shown. 11 refs
Zhang, Hua; Harter, Thomas; Sivakumar, Bellie
2006-06-01
Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range
Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women.
Perchoux, Camille; Enaux, Christophe; Oppert, Jean-Michel; Menai, Mehdi; Charreire, Hélène; Salze, Paul; Weber, Christiane; Hercberg, Serge; Feuillet, Thierry; Hess, Franck; Roda, Célina; Simon, Chantal; Nazare, Julie-Anne
2017-01-01
The objectives were (1) to define physical activity (PA) and sedentary behaviors (SB) patterns in daily life contexts (work, leisure, and transportation) in French working women from NutriNet-Santé web-cohort and (2) to identify pattern(s) of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i) active occupation, high sedentary leisure, (ii) sedentary occupation, low leisure, (iii) sedentary transportation, (iv) sedentary occupation and leisure, (v) active transportation, and (vi) active leisure. Multinomial logistic regressions were performed to identify correlates of the "active transportation" cluster. The perceived environmental characteristics positively associated with "active transportation" included "high availability of destinations around home," "presence of bicycle paths," and "low traffic." A "positive image of walking/cycling," the "individual feeling of being physically active," and a "high use of active transport modes by relatives/friends" were positively related to "active transportation," identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors' complexity and to design interventions to promote active transportation in specific subgroups.
Activity-Dependent Regulation of Surface Glucose Transporter-3
Ferreira, Jainne M.; Burnett, Arthur L.; Rameau, Gerald A.
2011-01-01
Glucose transporter 3 (GLUT3) is the main facilitative glucose transporter in neurons. Glucose provides neurons with a critical energy source for neuronal activity. However, the mechanism by which neuronal activity controls glucose influx via GLUT3 is unknown. We investigated the influence of synaptic stimulation on GLUT3 surface expression and glucose import in primary cultured cortical and hippocampal neurons. Synaptic activity increased surface expression of GLUT3 leading to an elevation o...
EOS9nT: A TOUGH2 module for the simulation of flow and solute/colloid transport
International Nuclear Information System (INIS)
Moridis, G.J.; Wu, Y.S.; Pruess, K.
1998-04-01
EOS9nT is a new TOUGH2 module for the simulation of flow and transport of an arbitrary number n of tracers (solutes and/or colloids) in the subsurface. The module first solves the flow-related equations, which are comprised of (a) the Richards equation and, depending on conditions, may also include (b) the flow equation of a dense brine or aqueous suspension and/or (c) the heat equation. A second set of transport equations, corresponding to the n tracers, are then solved sequentially. The low concentrations of the n tracers are considered to have no effect on the liquid phase, thus making possible the decoupling of their equations. The first set of equations in EOS9nT provides the flow regime and account for fluid density variations due to thermal and/or solute concentration effects. The n tracer transport equations account for sorption, radioactive decay, advection, hydrodynamic dispersion, molecular diffusion, as well as filtration (for colloids only). EOS9nT can handle gridblocks or irregular geometry in three-dimensional domains. Preliminary results from four 1-D verification problems show an excellent agreement between the numerical predictions and the known analytical solutions
On the spectral analysis of iterative solutions of the discretized one-group transport equation
International Nuclear Information System (INIS)
Sanchez, Richard
2004-01-01
We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution
2011-02-10
... Activities; Proposed Collection; Comment Request; Transportation Conformity Determinations for Federally... federally supported transportation activities are consistent with (``conform to'') the purpose of the state air quality implementation plan (SIP). Transportation activities include transportation plans...
Three-dimensional transport theory: An analytical solution of an internal beam searchlight problem-I
International Nuclear Information System (INIS)
Williams, M.M.R.
2009-01-01
We describe a number of methods for obtaining analytical solutions and numerical results for three-dimensional one-speed neutron transport problems in a half-space containing a variety of source shapes which emit neutrons mono-directionally. For example, we consider an off-centre point source, a ring source and a disk source, or any combination of these, and calculate the surface scalar flux as a function of the radial and angular co-ordinates. Fourier transforms in the transverse directions are used and a Laplace transform in the axial direction. This enables the Wiener-Hopf method to be employed, followed by an inverse Fourier-Hankel transform. Some additional transformations are introduced which enable the inverse Hankel transforms involving Bessel functions to be evaluated numerically more efficiently. A hybrid diffusion theory method is also described which is shown to be a useful guide to the general behaviour of the solutions of the transport equation.
Directory of Open Access Journals (Sweden)
M. M. Potsane
2014-01-01
Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.
International Nuclear Information System (INIS)
Luz, L.C.Q.P. da.
1984-01-01
The purpose of this work was the development of an instrumental method for the optimization of the indirect neutron activation analysis of boron in aqueous solutions. The optimization took into account the analytical parameters under laboratory conditions: activation carried out with a 241 Am/Be neutron source and detection of the activity induced in vanadium with two NaI(Tl) gamma spectrometers. A calibration curve was thus obtained for a concentration range of 0 to 5000 ppm B. Later on, experimental models were built in order to study the feasibility of automation. The analysis of boron was finally performed, under the previously established conditions, with an automated system comprising the operations of transport, irradiation and counting. An improvement in the quality of the analysis was observed, with boron concentrations as low as 5 ppm being determined with a precision level better than 0.4%. The experimental model features all basic design elements for an automated device for the analysis of boron in agueous solutions wherever this is required, as in the operation of nuclear reactors. (Author) [pt
Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.
2014-01-01
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.
International Nuclear Information System (INIS)
Goncalves, G.A.; Bogado Leite, S.Q.; Vilhena, M.T. de
2009-01-01
An analytical solution has been obtained for the one-speed stationary neutron transport problem, in an infinitely long cylinder with anisotropic scattering by the decomposition method. Series expansions of the angular flux distribution are proposed in terms of suitably constructed functions, recursively obtainable from the isotropic solution, to take into account anisotropy. As for the isotropic problem, an accurate closed-form solution was chosen for the problem with internal source and constant incident radiation, obtained from an integral transformation technique and the F N method
Li, Ruipeng
2012-09-04
A new way to investigate and control the growth of solution-cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM-D) and in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid-liquid interface at the expense of homogeneous nucleation. A new way to investigate and control the growth of drop-cast thin films is presented. The solution-processing of small-molecule thin films of TIPS-pentacene is investigated using time-resolved techniques to reveal the mechanisms of nucleation and growth leading to solid film formation. By tuning the drying speed of the solution, the balance between surface and bulk growth modes is altered, thereby controlling the lamellar formation and tuning the carrier mobility in organic field-effect transistors Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of Physical Activity and Active Transport Among School ...
International Development Research Centre (IDRC) Digital Library (Canada)
This study will assess physical activity and active transportation levels among ... the Neighbourhood Environment Walkability Scale instrument (NEWS) for use in ... prix de la diplomatie scientifique de la part du gouvernement de l'Afrique du Sud. ... Dans le dernier numéro du bulletin de BRAS, lisez un message d'adieu de ...
Kukushkin, A. B.; Sdvizhenskii, P. A.
2017-12-01
The results of accuracy analysis of automodel solutions for Lévy flight-based transport on a uniform background are presented. These approximate solutions have been obtained for Green’s function of the following equations: the non-stationary Biberman-Holstein equation for three-dimensional (3D) radiative transfer in plasma and gases, for various (Doppler, Lorentz, Voigt and Holtsmark) spectral line shapes, and the 1D transport equation with a simple longtailed step-length probability distribution function with various power-law exponents. The results suggest the possibility of substantial extension of the developed method of automodel solution to other fields far beyond physics.
Transport of the moving barrier driven by chiral active particles
Liao, Jing-jing; Huang, Xiao-qun; Ai, Bao-quan
2018-03-01
Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can power and steer the directed transport of the barrier in the longitudinal direction. The transport of the barrier is determined by the chirality of active particles. The moving barrier and active particles move in the opposite directions. The average velocity of the barrier is much larger than that of active particles. There exist optimal parameters (the chirality, the self-propulsion speed, the packing fraction, and the channel width) at which the average velocity of the barrier takes its maximal value. In particular, tailoring the geometry of the barrier and the active concentration provides novel strategies to control the transport properties of micro-objects or cargoes in an active medium.
Chaudhury, Sanhita; Bhattacharyya, Arunasis; Goswami, Asok
2014-11-04
The work describes a novel and cleaner approach of electrodriven selective transport of Cs from simulated nuclear waste solutions through cellulose tri acetate (CTA)/poly vinyl chloride (PVC) based polymer inclusion membrane. The electrodriven cation transport together with the use of highly Cs+ selective hexachlorinated derivative of cobalt bis dicarbollide, allows to achieve selective separation of Cs+ from high concentration of Na+ and other fission products in nuclear waste solutions. The transport selectivity has been studied using radiotracer technique as well as atomic emission spectroscopic technique. Transport studies using CTA based membrane have been carried out from neutral solution as well as 0.4 M HNO3, while that with PVC based membrane has been carried out from 3 M HNO3. High decontamination factor for Cs+ over Na+ has been obtained in all the cases. Experiment with simulated high level waste solution shows selective transport of Cs+ from most of other fission products also. Significantly fast Cs+ transport rate along with high selectivity is an interesting feature observed in this membrane. The current efficiency for Cs+ transport has been found to be ∼100%. The promising results show the possibility of using this kind of electrodriven membrane transport methods for nuclear waste treatment.
What Moves Them? Active Transport among Inhabitants of Dutch Deprived Districts
Directory of Open Access Journals (Sweden)
Carla Saris
2013-01-01
Full Text Available Background. Active modes of transport like walking and cycling have been shown to be valuable contributions to daily physical activity. The current study investigates associations between personal and neighbourhood environmental characteristics and active transport among inhabitants of Dutch deprived districts. Method. Questionnaires about health, neighbourhoods, and physical activity behaviour were completed by 742 adults. Data was analysed by means of multivariate linear regression analyses. Results. Being younger, female, and migrant and having a normal weight were associated with more walking for active transport. Being younger, male, and native Dutch and having a normal weight were associated with more cycling for active transport. Neighbourhood characteristics were generally not correlated with active transport. Stratified analyses, based on significant person-environment interactions, showed that migrants and women walked more when cars did not exceed maximum speed in nearby streets and that younger people walked more when speed of traffic in nearby streets was perceived as low. Among migrants, more cycling was associated with the perceived attractiveness of the neighbourhood surroundings. Discussion and Conclusion. Results indicated that among inhabitants of Dutch deprived districts, personal characteristics were associated with active transport, whereas neighbourhood environmental characteristics were generally not associated with active transport. Nevertheless, interaction effects showed differences among subgroups that should be considered in intervention development.
International Nuclear Information System (INIS)
Patra, A.; Saha Ray, S.
2014-01-01
Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet Collocation Method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: This paper emphasizes on finding the solution for a stationary transport equation using the technique of Haar wavelet Collocation Method (HWCM). Haar wavelet Collocation Method is efficient and powerful in solving wide class of linear and nonlinear differential equations. Recently Haar wavelet transform has gained the reputation of being a very effective tool for many practical applications. This paper intends to provide the great utility of Haar wavelets to nuclear science problem. In the present paper, two-dimensional Haar wavelets are applied for solution of the stationary Neutron Transport Equation in homogeneous isotropic medium. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency of the method, one test problem is discussed. It can be observed from the computational simulation that the numerical approximate solution is much closer to the exact solution
Finite-bias electronic transport of molecules in a water solution
Rungger, Ivan
2010-06-04
The effects of water wetting conditions on the transport properties of molecular nanojunctions are investigated theoretically by using a combination of empirical-potential molecular-dynamics and first-principles electronic-transport calculations. These are at the level of the nonequilibrium Green’s-function method implemented for self-interaction corrected density-functional theory. We find that water effectively produces electrostatic gating to the molecular junction with a gating potential determined by the time-averaged water dipole field. Such a field is large for the polar benzene-dithiol molecule, resulting in a transmission spectrum shifted by about 0.6 eV with respect to that of the dry junction. The situation is drastically different for carbon nanotubes (CNTs). In fact, because of their hydrophobic nature the gating is almost negligible so that the average transmission spectrum of wet Au/CNT/Au junctions is essentially the same as that in dry conditions. This suggests that CNTs can be used as molecular interconnects also in water-wet situations, for instance, as tips for scanning tunnel microscopy in solution or in biological sensors.
Finite-bias electronic transport of molecules in a water solution
Rungger, Ivan; Chen, X.; Sanvito, Stefano; Schwingenschlö gl, Udo
2010-01-01
The effects of water wetting conditions on the transport properties of molecular nanojunctions are investigated theoretically by using a combination of empirical-potential molecular-dynamics and first-principles electronic-transport calculations. These are at the level of the nonequilibrium Green’s-function method implemented for self-interaction corrected density-functional theory. We find that water effectively produces electrostatic gating to the molecular junction with a gating potential determined by the time-averaged water dipole field. Such a field is large for the polar benzene-dithiol molecule, resulting in a transmission spectrum shifted by about 0.6 eV with respect to that of the dry junction. The situation is drastically different for carbon nanotubes (CNTs). In fact, because of their hydrophobic nature the gating is almost negligible so that the average transmission spectrum of wet Au/CNT/Au junctions is essentially the same as that in dry conditions. This suggests that CNTs can be used as molecular interconnects also in water-wet situations, for instance, as tips for scanning tunnel microscopy in solution or in biological sensors.
Energy Technology Data Exchange (ETDEWEB)
Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics
1997-02-01
The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.
Solution-grown organic single-crystalline p-n junctions with ambipolar charge transport.
Fan, Congcheng; Zoombelt, Arjan P; Jiang, Hao; Fu, Weifei; Wu, Jiake; Yuan, Wentao; Wang, Yong; Li, Hanying; Chen, Hongzheng; Bao, Zhenan
2013-10-25
Organic single-crystalline p-n junctions are grown from mixed solutions. First, C60 crystals (n-type) form and, subsequently, C8-BTBT crystals (p-type) nucleate heterogeneously on the C60 crystals. Both crystals continue to grow simultaneously into single-crystalline p-n junctions that exhibit ambipolar charge transport characteristics. This work provides a platform to study organic single-crystalline p-n junctions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)
2016-12-01
Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.
Activity transport in nuclear reactors
International Nuclear Information System (INIS)
Narasimhan, S.V.
2000-01-01
The chemistry of the primary coolant is such that the general material loss is immeasurably low. However, the generation of radioactive corrosion products in the coolant, their transportation and distribution to different out of core surfaces occur irrevocably through the life cycle of the reactor. This phenomena leading to the build up of radiation field, which is unique to the nuclear reactor systems, is the only major problem of any significance. Minimization of this phenomenon can be done by many ways. The processes involved in the mechanism of activity transport are quite complex and are not at all thoroughly understood. The codes that have been developed so far use many empirical coefficients for some of the rate processes, which are either partially justified by simulated experimental studies or supported theoretically. In a multi-metal system like that of the reactor, the corrosion rates or release rates need not be similar especially in reactors like PHWRs. The mechanisms involved in the formation of protective oxide coating are quite complex to model in a simplified manner. The paper brings out some these features involved in the activity transport modeling and analyses the need for extensive field related experimental work to substantiate the model. (author)
Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation
International Nuclear Information System (INIS)
Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco
2002-01-01
In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S N equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS N method, which consists in the application of the Laplace transform to the set of nodal S N equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S N up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S N equations for N up to 16 and we begin the convergence of the S N nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)
Organic Solute Transporter α-β Protects Ileal Enterocytes From Bile Acid–Induced InjurySummary
Directory of Open Access Journals (Sweden)
Courtney B. Ferrebee
Full Text Available Background & Aims: Ileal bile acid absorption is mediated by uptake via the apical sodium-dependent bile acid transporter (ASBT, and export via the basolateral heteromeric organic solute transporter α-β (OSTα-OSTβ. In this study, we investigated the cytotoxic effects of enterocyte bile acid stasis in Ostα-/- mice, including the temporal relationship between intestinal injury and initiation of the enterohepatic circulation of bile acids. Methods: Ileal tissue morphometry, histology, markers of cell proliferation, gene, and protein expression were analyzed in male and female wild-type and Ostα-/- mice at postnatal days 5, 10, 15, 20, and 30. Ostα-/-Asbt-/- mice were generated and analyzed. Bile acid activation of intestinal Nrf2-activated pathways was investigated in Drosophila. Results: As early as day 5, Ostα-/- mice showed significantly increased ileal weight per length, decreased villus height, and increased epithelial cell proliferation. This correlated with premature expression of the Asbt and induction of bile acid–activated farnesoid X receptor target genes in neonatal Ostα-/- mice. Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase-1 and Nrf2–anti-oxidant responsive genes were increased significantly in neonatal Ostα-/- mice at these postnatal time points. Bile acids also activated Nrf2 in Drosophila enterocytes and enterocyte-specific knockdown of Nrf2 increased sensitivity of flies to bile acid–induced toxicity. Inactivation of the Asbt prevented the changes in ileal morphology and induction of anti-oxidant response genes in Ostα-/- mice. Conclusions: Early in postnatal development, loss of Ostα leads to bile acid accumulation, oxidative stress, and a restitution response in ileum. In addition to its essential role in maintaining bile acid homeostasis, Ostα-Ostβ functions to protect the ileal epithelium against bile acid–induced injury. NCBI Gene Expression Omnibus: GSE99579. Keywords: Ileum
Water, solute and heat transport in the soil: the Australian connection
Knight, John
2016-04-01
The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.
Cremer, Clemens; Neuweiler, Insa
2017-04-01
Knowledge of subsurface solute transport processes is vital to investigate e.g. groundwater contamination, nutrient uptake by plant roots and to implement remediation strategies. Beside field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. Atmospheric forcings, such as erratically varying infiltration and evaporation cycles, subject the shallow subsurface to local and temporal variations in water content and associated hydraulic conductivity of the prevailing porous media. Those variations in material properties can cause flow paths to differ between upward and downward flow periods. Thereby, the unsaturated subsurface presents a highly complicated, dynamic system. Following an extensive systematical numerical investigation of flow and transport through bimodal, unsaturated porous media under dynamic boundary conditions (Cremer et al., 2016), we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell where we introduce structural heterogeneity in the form sharp material interfaces between different porous media. In all experiments, a constant pressure head is implemented at the lower boundary, while cyclic infiltration-evaporation phases are applied at the soil surface. As a reference case a stationary infiltration with a rate corresponding to the cycle-averaged infiltration rate is applied. By initial application of dye tracers, solute transport within the domain is visualized such that transport paths and redistribution processes can be observed in a qualitative manner. Solute leaching is quantified at the bottom outlet, where breakthrough curves are obtained via spectroscopy. Liquid and vapor flow in and out of the domain is obtained from multiple balances. Thereby, the interplay of material structural heterogeneity and alternating flow (transport) directions and flow (transport) paths is investigated. Results show lateral
Benchmarking the invariant embedding method against analytical solutions in model transport problems
International Nuclear Information System (INIS)
Malin, Wahlberg; Imre, Pazsit
2005-01-01
The purpose of this paper is to demonstrate the use of the invariant embedding method in a series of model transport problems, for which it is also possible to obtain an analytical solution. Due to the non-linear character of the embedding equations, their solution can only be obtained numerically. However, this can be done via a robust and effective iteration scheme. In return, the domain of applicability is far wider than the model problems investigated in this paper. The use of the invariant embedding method is demonstrated in three different areas. The first is the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production. Both constant and energy dependent cross sections with a power law dependence were used in the calculations. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel and unexpected application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and a half-space are interrelated through embedding-like integral equations, by the solution of which the reflected flux from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases the invariant embedding method proved to be robust, fast and monotonically converging to the exact solutions. (authors)
Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media
Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.
2017-12-01
Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.
International Nuclear Information System (INIS)
Vinogradov, V.V.
1981-01-01
The purpose of the investigation is the development of the method for calculation of distribution function of particles in the medium irradiated by electron beams. The process of particle transport was considered for infinite isotropic medium under the condition that all the particles, are concentrated in the source at first. The obtained solution can be used for investigation of particle transport through the substance with account of geometry of electron beam, particle distribution by the beam cross section, energy and angular spectra. The suggested approach can be applied for the solution of transport problems in which geometry of irradiated surface, presence of the field in the absorber should be taken into account that is significant when using electron accelerators in applied purposes [ru
International Nuclear Information System (INIS)
Tang, Yi.
1991-01-01
A computational procedure was developed in this study to provide flexibility needed in the application of three-dimensional groundwater flow and dissolved multicomponent solute transport simulations. In the first part of this study, analytical solutions were proposed for the dissolved single-component solute transport problem. These closed form solutions were developed for homogeneous but stratified porous media. This analytical model took into account two-dimensional diffusion-advection in the main aquifer layer and one-dimensional diffusion-advection in the adjacent aquitards, as well as first order radioactive decay and linear adsorption isotherm in both aquifer and aquitards. The associated analytical solutions for solute concentration distributions in the aquifer and aquitards were obtained using Laplace Transformation and Method of Separation of Variables techniques. Next, in order to analyze the problem numerically, a quasi-three-dimensional finite element algorithm was developed based on the multilayer aquifer concept. In this phase, advection, dispersion, adsorption and first order multi-species chemical reaction terms were included to the analysis. Employing this model, without restriction on groundwater flow pattern in the multilayer aquifer system, one may analyze the complex behavior of the groundwater flow and solute movement pattern in the system. These numerical models may be utilized as calibration tools in site characterization studies, or as predictive models during the initial stages of a typical site investigation study. Through application to several test and field problems, the usefulness, accuracy and efficiency of the proposed models were demonstrated. Comparison of results with analytical solution, experimental data and other numerical methods were also discussed
Effects of coal gangue content on water movement and solute transport in a China loess plateau soil
Energy Technology Data Exchange (ETDEWEB)
Beibei, Zhou; Quanjiu, Wang [Institute of Water Resources and Hydro-electric Engineering, Xi' an University of Technology, Xi' an (China); State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A and F University, Yangling, Shaanxi (China); Ming' an, Shao; Mingxia, Wen [State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A and F University, Yangling, Shaanxi (China); College of Resources and Environment, Northwest A and F University, Yangling, Shaanxi (China); Horton, Robert [Department of Agronomy, Iowa State University, Ames, Iowa (United States)
2010-11-15
The mining industry has grown strongly in China in recent decades, resulting in large amounts of coal gangues, which cause water and soil pollution, soil erosion, and various other environmental problems. They are often used in reclamation projects in attempts to restore land damaged by mining, hence they are frequently present (in widely varying proportions) in the topsoil in areas around mines. Their presence can strongly affect key soil variables, including its bulk density, structure, water retention, water movement, and solute transport rates. In the study presented here, the effects of gangue contents on infiltration, saturated hydraulic conductivity, and solute transport parameters of a Chinese Loess plateau soil were examined. The results show that infiltration rates and saturated hydraulic conductivity decreased with increasing gangue content. The Peck-Watson equation modeled these relationships well, but Bouwer-Rice equations provided poorer matches with the acquired data. Cumulative infiltration over time was described well by both the Philip equation and Kostiakov equation. Both the simplified convection-dispersion equation and a two-region model described the solute transport processes well. In addition, the dispersion increased, while both the Peclet number and mobile water fraction decreased, with increases in gangue contents. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Finite medium Green's function solutions to nuclide transport in porous media
International Nuclear Information System (INIS)
Oston, S.G.
1979-01-01
Current analytical techniques for predicting the transport of nuclides in porous materials center on the Green's function approach - i.e., determining the response characteristics of a geologic pathway to an impulse function input. To data, the analyses all have set the boundary conditions needed to solve the 1-D transport equation as though each pathway were infinite in length. The purpose of this work is to critically examine the effect that this infinite pathway assumption has on Green's function models of nuclide transport in porous media. The work described herein has directly attacked the more difficult problem of obtaining suitable Green's functions for finite pathways whose dimensions, in fact, may not be much greater than the diffusion length. Two different finite media Green's functions describing the nuclide mass flux have been determined, depending on whether the pathway is terminated by a high or a low flow resistance at the outlet end. Pulse shapes and peak amplitudes have been computed for each Green's function over a wide range of geohydrologic parameters. These results have been compared to both infinite and semi-infinite medium solutions. It was found that predicted pulse shapes are quite sensitive to selection of a Green's function model for short pathways only. For long pathways all models tend toward a symmetric Gaussian flux-time history at the outlet. Thus, the results of our previous waste transport studies using the infinite pathway assumption are still generally valid because they always included at least one long pathway. It was also found that finite medium models offer some unique computational advantages for evaluating nuclide transport in a series of connecting pathways
Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.
Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing
2016-08-22
Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.
Energy Technology Data Exchange (ETDEWEB)
Buczynski, J.A.
1997-10-01
Recent advancements in technology have made virtual transportation a potential solution to the urban transportation crisis. Virtual transportation (also called telecommuting or teleworking) was defined as `a philosophy of allowing an employee to perform required tasks full-time or part-time from his or her choice of location by using information technology`. Virtual transportation would help ease peak travel demands during rush hours. The exhaust gases from automobiles with internal combustion engines emit pollutants such as carbon monoxide, carbon dioxide, volatile organic compounds and nitrous oxides into the atmosphere, thus virtual transportation could contribute significantly to the improvement of air quality. Telecommuting also offers other advantages, for example, geographic constraints of time and space are removed and employees are able to locate anywhere with telecommunications networks. It was suggested that road pricing could be used to generate revenue to build networks of telecommunication centres. Road pricing could be an incentive for commuters to substitute physical travel with virtual travel. 23 refs., 2 tabs.
Conde, Artur; Silva, Paulo; Agasse, Alice; Conde, Carlos; Gerós, Hernâni
2011-10-01
The intracellular accumulation of organic compatible solutes functioning as osmoprotectants, such as polyols, is an important response mechanism of several plants to drought and salinity. In Olea europaea a mannitol transport system (OeMaT1) was previously characterized as a key player in plant response to salinity. In the present study, heterotrophic sink models, such as olive cell suspensions and fruit tissues, and source leaves were used for analytical, biochemical and molecular studies. The kinetic parameters of mannitol dehydrogenase (MTD) determined in cells growing in mannitol, at 25°C and pH 9.0, were as follows: K(m), 54.5 mM mannitol; and V(max), 0.47 μmol h⁻¹ mg⁻¹ protein. The corresponding cDNA was cloned and named OeMTD1. OeMTD1 expression was correlated with MTD activity, OeMaT1 expression and carrier-mediated mannitol transport in mannitol- and sucrose-grown cells. Furthermore, sucrose-grown cells displayed only residual OeMTD activity, even though high levels of OeMTD1 transcription were observed. There is evidence that OeMTD is regulated at both transcriptional and post-transcriptional levels. MTD activity and OeMTD1 expression were repressed after Na+, K+ and polyethylene glycol (PEG) treatments, in both mannitol- and sucrose-grown cells. In contrast, salt and drought significantly increased mannitol transport activity and OeMaT1 expression. Taken together, these studies support that olive trees cope with salinity and drought by coordinating mannitol transport with intracellular metabolism.
Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women
Directory of Open Access Journals (Sweden)
Camille Perchoux
2017-01-01
Full Text Available The objectives were (1 to define physical activity (PA and sedentary behaviors (SB patterns in daily life contexts (work, leisure, and transportation in French working women from NutriNet-Santé web-cohort and (2 to identify pattern(s of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i active occupation, high sedentary leisure, (ii sedentary occupation, low leisure, (iii sedentary transportation, (iv sedentary occupation and leisure, (v active transportation, and (vi active leisure. Multinomial logistic regressions were performed to identify correlates of the “active transportation” cluster. The perceived environmental characteristics positively associated with “active transportation” included “high availability of destinations around home,” “presence of bicycle paths,” and “low traffic.” A “positive image of walking/cycling,” the “individual feeling of being physically active,” and a “high use of active transport modes by relatives/friends” were positively related to “active transportation,” identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors’ complexity and to design interventions to promote active transportation in specific subgroups.
International Nuclear Information System (INIS)
Hoven, Stephen J. van der; Kip Solomon, D.; Moline, Gerilynn R.
2005-01-01
Natural tracers (major ions, δ 18 O, and O 2 ) were monitored to evaluate groundwater flow and transport to a depth of 20 m below the surface in fractured sedimentary (primarily shale and limestone) rocks. Large temporal variations in these tracers were noted in the soil zone and the saprolite, and are driven primarily by individual storm events. During nonstorm periods, an upward flow brings water with high TDS, constant δ 18 O, and low dissolved O 2 to the water table. During storm events, low TDS, variable δ 18 O, and high dissolved O 2 water recharges through the unsaturated zone. These oscillating signals are rapidly transmitted along fracture pathways in the saprolite, with changes occurring on spatial scales of several meters and on a time scale of hours. The variations decreased markedly below the boundary between the saprolite and less weathered bedrock. Variations in the bedrock units occurred on time scales of days and spatial scales of at least 20 m. The oscillations of chemical conditions in the shallow groundwater are hypothesized to have significant implications for solute transport. Solutes and colloids that adsorb onto aquifer solids can be released into solution by decreases in ionic strength and pH. The decreases in ionic strength also cause thermodynamic undersaturation of the groundwater with respect to some mineral species and may result in mineral dissolution. Redox conditions are also changing and may result in mineral dissolution/precipitation. The net result of these chemical variations is episodic transport of a wide range of dissolved solutes or suspended particles, a phenomenon rarely considered in contaminant transport studies
Identifying clusters of active transportation using spatial scan statistics.
Huang, Lan; Stinchcomb, David G; Pickle, Linda W; Dill, Jennifer; Berrigan, David
2009-08-01
There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007-2008. Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units.
The association between access to public transportation and self-reported active commuting.
Djurhuus, Sune; Hansen, Henning S; Aadahl, Mette; Glümer, Charlotte
2014-12-05
Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting.
The Association between Access to Public Transportation and Self-Reported Active Commuting
Directory of Open Access Journals (Sweden)
Sune Djurhuus
2014-12-01
Full Text Available Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928. Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting.
Entropic Ratchet transport of interacting active Brownian particles
Energy Technology Data Exchange (ETDEWEB)
Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)
2014-11-21
Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.
Entropic Ratchet transport of interacting active Brownian particles
International Nuclear Information System (INIS)
Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong
2014-01-01
Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction
49 CFR 37.61 - Public transportation programs and activities in existing facilities.
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a designated...
Controlling the transport of an ion: classical and quantum mechanical solutions
International Nuclear Information System (INIS)
Fürst, H A; Poschinger, U G; Schmidt-Kaler, F; Singer, K; Goerz, M H; Koch, C P; Murphy, M; Montangero, S; Calarco, T
2014-01-01
The accurate transport of an ion over macroscopic distances represents a challenging control problem due to the different length and time scales that enter and the experimental limitations on the controls that need to be accounted for. Here, we investigate the performance of different control techniques for ion transport in state-of-the-art segmented miniaturized ion traps. We employ numerical optimization of classical trajectories and quantum wavepacket propagation as well as analytical solutions derived from invariant based inverse engineering and geometric optimal control. The applicability of each of the control methods depends on the length and time scales of the transport. Our comprehensive set of tools allows us make a number of observations. We find that accurate shuttling can be performed with operation times below the trap oscillation period. The maximum speed is limited by the maximum acceleration that can be exerted on the ion. When using controls obtained from classical dynamics for wavepacket propagation, wavepacket squeezing is the only quantum effect that comes into play for a large range of trapping parameters. We show that this can be corrected by a compensating force derived from invariant based inverse engineering, without a significant increase in the operation time. (paper)
Advances in the solution of three-dimensional nodal neutron transport equation
International Nuclear Information System (INIS)
Pazos, Ruben Panta; Hauser, Eliete Biasotto; Vilhena, Marco Tullio de
2003-01-01
In this paper we study the three-dimensional nodal discrete-ordinates approximations of neutron transport equation in a convex domain with piecewise smooth boundaries. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtaining the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. We give numerical results obtained with an algebraic computer system (for N up to 8) and with a code for higher values of N. We compare our results for the geometry of a box with a source in a vertex and a leakage zone in the opposite with others techniques used in this problem. (author)
Entropic transport of active particles driven by a transverse ac force
Energy Technology Data Exchange (ETDEWEB)
Wu, Jian-chun, E-mail: wjchun2010@163.com; Chen, Qun; Ai, Bao-quan, E-mail: aibq@scnu.edu.cn
2015-12-18
Transport of active particles is numerically investigated in a two-dimensional period channel. In the presence of a transverse ac force, the directed transport of active particles demonstrates striking behaviors. By adjusting the amplitude and the frequency of the transverse ac force, the average velocity will be influenced significantly and the direction of the transport can be reversed several times. Remarkably, it is also found that the direction of the transport varies with different self-propelled speeds. Therefore, particles with different self-propelled speeds will move to the different directions, which is able to separate particles of different self-propelled speeds. - Highlights: • A transverse ac force strongly influence the transport of active particles. • The direction of the transport can be reversed several times. • Active particles with different self-propelled speeds can be separated.
Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.
HAZWRAP, The Hazardous Waste Remedial Actions Program.
This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…
Brody, Z. H.
The paper describes transportation problems encountered and solutions employed in delivering systems of comprehensive services to handicapped children in Anderson County, Tennessee, a predominantly rural area with considerable mountain area. Detailed are methods of transportation utilized in the four different program areas of the county special…
A practical extension of hydrodynamic theory of porous transport for hydrophilic solutes.
Bassingthwaighte, James B
2006-03-01
The equations for transport of hydrophilic solutes through aqueous pores provide a fundamental basis for examining capillary-tissue exchange and water and solute flux through transmembrane channels, but the theory remains incomplete for ratios, alpha, of sphere diameters to pore diameters greater than 0.4. Values for permeabilities, P, and reflection coefficients, sigma, from Lewellen, working with Lightfoot et al., at alpha = 0.5 and 0.95, were combined with earlier values for alpha solute. The new expression for the diffusive hindrance is F'(alpha) = (1 - alpha2)(3/2) phi/[1 + 0.2 x alpha2 x (1 - alpha2)16], and for the drag factor is G'(alpha) = (1 - 2alpha(2)/3 - 0.20217 alpha5)/(1 - 0.75851 alpha5) - 0.0431[1 - (1 - alpha10)]. All of these converge monotonically to the correct limits at alpha = 1. These are the first expressions providing hydrodynamically based estimates of sigma(alpha) and P(alpha) over 0 < alpha < 1 They should be accurate to within 1-2%.
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr
Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.
2010-01-01
The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and
Coupled Fluid, Energy, and Solute Transport (CFEST) model: Formulation and user's manual
International Nuclear Information System (INIS)
Gupta, S.K.; Cole, C.R.; Kincaid, C.T.; Monti, A.M.
1987-10-01
The CFEST (Coupled Fluid, Energy, and Solute Transport) code has been developed to analyze coupled hydrologic, thermal, and solute transport processes. It treats single-pahse Darcy ground-water flow in a horizontal or vertical plane, or in fully three-dimensional space under nonisothermal conditions. The code has the capability to model discontinuous and continuous layering, time-dependent and constant sources/sinks, and transient as well as steady-stae ground-water flow. The code offers a wide choice of boundary conditions such as precsribed heads, nodal injection or withdrawal, constant or spatially varying infiltration rates, and welemental source/sink. Initial conditions for the flow analysis can be prescribed pressure or hydraulic head. The heterogeneity in aquifer permeability and porosity can be described by geologic unit or explicity for given elements. Three-dimensional elelments are generated from user-defined well logs at each surface node. To facilitate interaction between disciplines, support programs are provided to plot the finite element grid, well logs, contour maps of input and output parameters, and vertical cross sections. Ground-water travel paths and times and volumetric rates from a specified point can be determined from support programs. This report includes governing partial differential equations, finite element formulation, a use's manual, verification test examples, sample problems, and source listings. 36 refs., 121 figs., 36 tabs
A systematic review of interventions for promoting active transportation to school.
Chillón, Palma; Evenson, Kelly R; Vaughn, Amber; Ward, Dianne S
2011-02-14
Active transportation to school is an important contributor to the total physical activity of children and adolescents. However, active school travel has declined over time, and interventions are needed to reverse this trend. The purpose of this paper is to review intervention studies related to active school transportation to guide future intervention research. A systematic review was conducted to identify intervention studies of active transportation to school published in the scientific literature through January 2010. Five electronic databases and a manual search were conducted. Detailed information was extracted, including a quantitative assessment comparing the effect sizes, and a qualitative assessment using an established evaluation tool. We identified 14 interventions that focused on active transportation to school. These interventions mainly focused on primary school children in the United States, Australia, and the United Kingdom. Almost all the interventions used quasi-experimental designs (10/14), and most of the interventions reported a small effect size on active transportation (6/14). More research with higher quality study designs and measures should be conducted to further evaluate interventions and to determine the most successful strategies for increasing active transportation to school. © 2011 Chillón P et al; licensee BioMed Central Ltd.
International Nuclear Information System (INIS)
Chen, C.T.; Li, S.H.
1997-01-01
Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A constant flux is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport along the fractures; (b) mechanical dispersion and molecular diffusion along the fractures; (c) molecular diffusion from a fracture to the porous matrix; (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis; (e) adsorption onto the fracture wall; (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of various important parameters, including: (a) fracture spacing; (b) fracture dispersion coefficient; (c) matrix diffusion coefficient; (d) fracture width; (e) groundwater velocity; (f) matrix retardation factor; and (g) matrix porosity
Engineering charge transport by heterostructuring solution-processed semiconductors
Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.
2017-06-01
Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yuehua; Zhang, Mengke [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Zhang, Xinwen, E-mail: iamxwzhang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Lei, Zhenfeng; Zhang, Xiaolin; Hao, Lin; Fan, Quli [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Lai, Wenyong, E-mail: iamwylai@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Huang, Wei [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)
2017-06-15
Efficient multilayered green phosphorescent polymer light-emitting devices (PhPLEDs) were successfully fabricated using a solution-processed n-doped small molecular electron transporting layer (ETL) composed of 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBi) and CsF. We found that the electroluminescence properties of the devices with n-doped ETLs are significantly improved. The maximum luminance efficiency of the device with 7.5 wt% CsF doped TPBi ETL reached 26.9 cd/A, which is 1.5 times as large as that of the undoped device. The impedance spectra of the devices and electron transport properties of the CsF doped ETLs demonstrate that doping dramatically decreases the impedance and enhances the electrical conductivity. Similarly, enhanced performance of PhPLED is also observed by use of CsF-doped 4,7-diphenyl-1,10 -phenanthroline (BPhen) ETL. These results demonstrate that CsF can be used as an effective n-dopant in solution-processed devices.
International Nuclear Information System (INIS)
Chen, Yuehua; Zhang, Mengke; Zhang, Xinwen; Lei, Zhenfeng; Zhang, Xiaolin; Hao, Lin; Fan, Quli; Lai, Wenyong; Huang, Wei
2017-01-01
Efficient multilayered green phosphorescent polymer light-emitting devices (PhPLEDs) were successfully fabricated using a solution-processed n-doped small molecular electron transporting layer (ETL) composed of 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBi) and CsF. We found that the electroluminescence properties of the devices with n-doped ETLs are significantly improved. The maximum luminance efficiency of the device with 7.5 wt% CsF doped TPBi ETL reached 26.9 cd/A, which is 1.5 times as large as that of the undoped device. The impedance spectra of the devices and electron transport properties of the CsF doped ETLs demonstrate that doping dramatically decreases the impedance and enhances the electrical conductivity. Similarly, enhanced performance of PhPLED is also observed by use of CsF-doped 4,7-diphenyl-1,10 -phenanthroline (BPhen) ETL. These results demonstrate that CsF can be used as an effective n-dopant in solution-processed devices.
Hu, Hanlin
2015-06-17
The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic photovoltaics.
Hu, Hanlin; Zhao, Kui; Fernandes, Nikhil J.; Boufflet, Pierre; Bannock, James Henry; Yu, Liyang; de Mello, John C; Stingelin, Natalie; Heeney, Martin; Giannelis, Emmanuel P.; Amassian, Aram
2015-01-01
The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic photovoltaics.
Adsorption of phenol by activated carbon: Influence of activation methods and solution pH
International Nuclear Information System (INIS)
Beker, Ulker; Ganbold, Batchimeg; Dertli, Halil; Guelbayir, Dilek Duranoglu
2010-01-01
Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L -1 initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.
Gottschlich, Carsten; Schuhmacher, Dominic
2014-01-01
Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.
The transport forecast - an important stage of transport management
Dragu, Vasile; Dinu, Oana; Oprea, Cristina; Alina Roman, Eugenia
2017-10-01
The transport system is a powerful system with varying loads in operation coming from changes in freight and passenger traffic in different time periods. The variations are due to the specific conditions of organization and development of socio-economic activities. The causes of varying loads can be included in three groups: economic, technical and organizational. The assessing of transport demand variability leads to proper forecast and development of the transport system, knowing that the market price is determined on equilibrium between supply and demand. The reduction of transport demand variability through different technical solutions, organizational, administrative, legislative leads to an increase in the efficiency and effectiveness of transport. The paper presents a new way of assessing the future needs of transport through dynamic series. Both researchers and practitioners in transport planning can benefit from the research results. This paper aims to analyze in an original approach how a good transport forecast can lead to a better management in transport, with significant effects on transport demand full meeting in quality terms. The case study shows how dynamic series of statistics can be used to identify the size of future demand addressed to the transport system.
Presentation and exhibition activities for promoting theexportof transport services
Directory of Open Access Journals (Sweden)
Darya Vladimirovna Nesterova
2012-03-01
Full Text Available Development of presentation and exhibition activities is considered as an important factor in providing new competitive advantages at the strategic markets for exporting of transportation services. A specific role for exhibition activities as a factor to overcome market failures arose from imperfect information and incomplete markets is displayed. Exhibitions are considered as a true reflection of most market parameters, as a means to get correct information concerning market capacity and its borders, as an instrument to access to new markets. At the firm level presentation and branding activities should be considered as a modern technology (especially it concerns Russian companies which provide to hold up already existed markets and to conquer new ones. Presentation and branding activities are an effective technology to promote company trade-mark, competitive advantages for market demand increasing. Comparative analysis of the main exhibitions on transport and logistics issues is fulfilled on the data basecollected by authors. Data observes geographical distribution of transport exhibition and exhibition facilities development at several regions for the last years. The analyses allow to revealing a geographical structure of the exhibitions and its distribution by type of transport. The most promising and economically favorable exhibition areas for the promotion of Russian transport services are shown.
The Association between Access to Public Transportation and Self-Reported Active Commuting
DEFF Research Database (Denmark)
Djurhuus, Sune; Hansen, Henning S; Aadahl, Mette
2014-01-01
Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate...... more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation...... and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS...
Fiori, A.; Zarlenga, A.; Jankovic, I.; Dagan, G.
2017-12-01
Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the normal univariate PDF f(Y) and autocorrelation ρY, of variance σY2 and horizontal integral scale I. Solute transport is quantified by the Breakthrough Curve (BTC) M at planes at distance x from the injection plane. The study builds on the extensive 3D numerical simulations of flow and transport of Jankovic et al. (2017) for different conductivity structures. The present study further explores the predictive capabilities of the Advection Dispersion Equation (ADE), with macrodispersivity αL given by the First Order Approximation (FOA), by checking in a quantitative manner its applicability. After a discussion on the suitable boundary conditions for ADE, we find that the ADE-FOA solution is a sufficiently accurate predictor for applications, the many other sources of uncertainty prevailing in practice notwithstanding. We checked by least squares and by comparison of travel time of quantiles of M that indeed the analytical Inverse Gaussian M with αL =σY2 I , is able to fit well the bulk of the simulated BTCs. It tends to underestimate the late arrival time of the thin and persistent tail. The tail is better reproduced by the semi-analytical MIMSCA model, which also allows for a physical explanation of the success of the Inverse Gaussian solution. Examination of the pertinent longitudinal mass distribution shows that it is different from the commonly used Gaussian one in the analysis of field experiments, and it captures the main features of the plume measurements of the MADE experiment. The results strengthen the confidence in the applicability of the ADE and the FOA to predicting longitudinal spreading in solute transport through heterogeneous aquifers of stationary random structure.
Intrinsic Hand Muscle Activation for Grasp and Horizontal Transport
Winges, Sara A.; Kundu, Bornali; Soechting, John F.; Flanders, Martha
2007-01-01
During object manipulation, the hand and arm muscles produce internal forces on the object (grasping forces) and forces that result in external translation or rotation of the object in space (transport forces). The present study tested whether the intrinsic hand muscles are actively involved in transport as well as grasping. Intrinsic hand muscle activity increased with increasing demands for grasp stability, but also showed the timing and directional tuning patterns appropriate for actively ...
Endocrine control of active sodium transport across frog skin
International Nuclear Information System (INIS)
Maetz, J.
1959-01-01
I. Action of the neurohypophyseal peptides on sodium transport. 1) On Rana Esculenta, oxytocin alone is active on the sodium transport (not vaso pressin). 2) The post hypophysis of R.e. contains an hormonal factor even more specific on Na transport (12 times more active than oxytocin). 3) This new factor must be closely related to oxytocin. II. Action of the adrenal corticoids. 1) The skin of frogs adapted to a salt-rich external medium, shows a considerable diminution in sodium uptake. 2) This decreased sodium uptake is brought back to normal by the injections of aldosterone. 3) This suggests that salt loading of amphibians (as well as mammals) inhibits the mineralocorticoid activity of the adrenals. (author) [fr
Active transportation in adult survivors of childhood cancer and neighborhood controls.
Slater, Megan E; Kelly, Aaron S; Sadak, Karim T; Ross, Julie A
2016-02-01
Childhood cancer survivors (CCS) are at high risk of treatment-related late effects, including cardiovascular disease and diabetes, which can be exacerbated by inadequate physical activity (PA). Previous PA interventions targeting CCS have focused on the domain of leisure-time/recreational PA. Active transportation, another domain of PA, has not been described in CCS. Therefore, this study aimed to identify active transportation behaviors, barriers, and correlates in adult CCS. We recruited 158 adult CCS and 153 controls matched on age, sex, and neighborhood for a survey regarding active transportation behaviors and perceptions. Linear and logistic regression models accounting for correlation among matched participants were used. Adult CCS engaged in similar levels of active transportation as controls (2.72 vs. 2.32 h/week, P = 0.40) despite perceiving greater health-related barriers (1.88 vs. 1.65 (measured on four-point Likert scale), P = 0.01). Marital/relationship status (odds ratio (OR) = 0.30, 95 % confidence interval (CI) = 0.11-0.81), planning/psychosocial barriers (OR = 0.15, 95 % CI = 0.04-0.53), and perceived neighborhood walkability (OR = 2.55, 95 % CI = 1.14-5.66) were correlates of active transportation among adult CCS, while objective neighborhood walkability (OR = 1.03, 95 % CI = 1.01-1.05) was a correlate among controls. Results suggest adult CCS and controls utilize active transportation at approximately equal levels. Factors other than health, including perceived neighborhood walkability, are related to active transportation behaviors to a greater degree in adult CCS. Interventions might consider promoting active transportation as a way to incorporate more PA into the daily lives of adult CCS. Such interventions will not be likely successful, however, without existing or improved neighborhood walkability/bikeability.
Active Transportation in Adult Survivors of Childhood Cancer and Neighborhood Controls
Slater, Megan E.; Kelly, Aaron S.; Sadak, Karim T.; Ross, Julie A.
2015-01-01
Purpose Childhood cancer survivors (CCS) are at high risk of treatment-related late effects, including cardiovascular disease and diabetes, which can be exacerbated by inadequate physical activity (PA). Previous PA interventions targeting CCS have focused on the domain of leisure-time/recreational PA. Active transportation, another domain of PA, has not been described in CCS. Therefore, this study aimed to identify active transportation behaviors, barriers, and correlates in adult CCS. Methods We recruited 158 adult CCS and 153 controls matched on age, sex, and neighborhood for a survey regarding active transportation behaviors and perceptions. Linear and logistic regression models accounting for correlation among matched participants were used. Results Adult CCS engaged in similar levels of active transportation as controls (2.72 vs. 2.32 hours/week, P=0.40) despite perceiving greater health-related barriers (1.88 vs. 1.65 (measured on four-point Likert scale), P=0.01). Marital/relationship status (odds ratio (OR)=0.30, 95% confidence interval (CI)=0.11–0.81), planning/psychosocial barriers (OR=0.15, 95% CI=0.04–0.53), and perceived neighborhood walkability (OR=2.55, 95% CI=1.14–5.66) were correlates of active transportation among adult CCS, while objective neighborhood walkability (OR=1.03, 95% CI=1.01–1.05) was a correlate among controls. Conclusions Results suggest adult CCS and controls utilize active transportation at approximately equal levels. Factors other than health, including perceived neighborhood walkability, appear to influence active transportation behaviors to a greater degree in adult CCS. Implications for Cancer Survivors Interventions might consider promoting active transportation as a way to incorporate more PA into the daily lives of adult CCS. Such interventions will not be widely successful, however, without existing or improved neighborhood walkability/bikeability. PMID:25809159
Reactive transport in a partially molten system with binary solid solution
Jordan, J.; Hesse, M. A.
2017-12-01
Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the
Variability and seasonality of active transportation in USA: evidence from the 2001 NHTS
2011-01-01
Background Active transportation including walking and bicycling is an important source of physical activity. Promoting active transportation is a challenge for the fields of public health and transportation. Descriptive data on the predictors of active transportation, including seasonal patterns in active transportation in the US as a whole, is needed to inform interventions and policies. Methods This study analyzed monthly variation in active transportation for the US using National Household Travel Survey 2001 data. For each age group of children, adolescents, adults and elderly, logistic regression models were used to identify predictors of the odds of active transportation including gender, race/ethnicity, household income level, geographical region, urbanization level, and month. Results The probability of engaging in active transportation was generally higher for children and adolescents than for adults and the elderly. Active transportation was greater in the lower income groups (except in the elderly), was lower in the South than in other regions of the US, and was greater in areas with higher urbanization. The percentage of people using active transportation exhibited clear seasonal patterns: high during summer months and low during winter months. Children and adolescents were more sensitive to seasonality than other age groups. Women, non-Caucasians, persons with lower household income, who resided in the Midwest or Northeast, and who lived in more urbanized areas had greater seasonal variation. Conclusions These descriptive results suggest that interventions and policies that target the promotion of active transportation need to consider socio-demographic factors and seasonality. PMID:21917136
Energy Technology Data Exchange (ETDEWEB)
Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.
1996-07-01
Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.
Activation of ion transport systems during cell volume regulation
International Nuclear Information System (INIS)
Eveloff, J.L.; Warnock, D.G.
1987-01-01
This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na + -H + and Cl - -HCO 3 - exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K + and Cl - conductances, a K-Cl cotransport system, or parallel K + -H + and Cl - -HCO 3 - exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca 2+ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na + -H + and Cl - -HCO 3 - exchange systems
Fluid and solute transport in a network of channels
International Nuclear Information System (INIS)
Moreno, L.; Neretnieks, I.
1991-09-01
A three-dimensional channel network model is presented. The fluid flow and solute transport are assumed to take place through a network of connected channels. The channels are generated assuming that the conductances are lognormally distributed. The flow is calculated resolving the pressure distribution and the sole transport is calculated by using a particle tracking technique. The model includes diffusion into the rock matrix and sorption within the matrix in addition to advection along the channel network. Different approaches are used to describe the channel volume and its relation to the conductivity. To quantify the diffusion into the rock matrix the size of the flow wetted surface (contact surface between the channel and the rock) is needed in addition to the diffusion properties and the sorption capacity of the rock. Two different geometries were simulated: regional parallel flow and convergent flow toward a tunnel. In the generation of the channel network, it is found that its connectivity is reduced when the standard deviation in conductances is increased. For large standard deviations, the water conducting channels are found to be few. Standard deviations for the distribution of the effluent channel flowrates were calculated. Comparisons were made with experimental data from drifts and tunnels as well as boreholes as a means to validate the model. (au) (31 refs.)
Energy Technology Data Exchange (ETDEWEB)
Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhu, Dangqiang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Zhang, Qian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Gu, Chuantao [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Dong, Hongzhou [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Yang, Renqiang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Dong, Lifeng, E-mail: DongLifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Hamline University, St. Paul, MN 55104 (United States)
2016-04-30
A simple low-temperature solution-processed zinc oxide (ZnO) and aluminum-doped ZnO (AZO) were synthesized and investigated as an electron transport layer (ETL) for inverted polymer solar cells. A solar cell with a blend of poly(4,8-bis-alkyloxy-benzo[1,2-b:4,5-b′] dithiophene-alt-alkylcarbonyl-thieno [3,4-b] thiophene) and (6,6)-phenyl-C71-butyric acid methyl ester as an active layer and AZO as ETL demonstrates a high power conversion efficiency (PCE) of 7.36% under the illumination of AM 1.5G, 100 mW/cm{sup 2}. Compared to the cells with ZnO ETL (PCE of 6.85%), the PCE is improved by 7.45% with the introduction of an AZO layer. The improved PCE is ascribed to the enhanced short circuit current density, which results from the electron transport property of the AZO layer. Moreover, AZO is a more stable interfacial layer than ZnO. The PCE of the solar cells with AZO as ETL retain 85% of their original value after storage for 120 days, superior to the 39% of cells with ZnO ETL. The results above indicate that a simple low-temperature solution-processed AZO film is an efficient and economical ETL for high-performance inverted polymer solar cells. Due to its environmental friendliness, good electrical properties, and simple preparation approach, AZO has the potential to be applied in high-performance, large-scale industrialization of solar cells and other electronic devices. - Highlights: • ZnO and AZO were synthesized by a simple low-temperature solution-processed method. • AZO films show high transmittance and conductivity. • The photovoltaic performance can be improved with AZO as ETL. • AZO-based devices demonstrate excellent stability, with 85% retained after 120 days.
Thermalhydraulics and activity transport
International Nuclear Information System (INIS)
McDonald, B.H.; Wren, D.J.
1990-01-01
The potential consequences of a reactor accident, in terms of its impact on public safety, rest on the source term of radioactive fission products. The source term, as, as defined by an international group of experts, is the quantity of radioactive material which might be released in a nuclear accident: its physical and chemical form and the other quantities needed to completely specify its dispersion in the environment (e.g., energy in the plume, height of release, duration of release etc.). Although there are a large number of physical and chemical factors that will contribute to the determination of the source term for a given accident scenario, those factors having a direct impact on the rate of transport are of obvious importance. The thermalhydraulic conditions controlling the rate of mass transport, among other things, are probably the most important factors influencing the source term. This paper is an overview of the areas in which thermalhydraulics most strongly influences activity transport during a severe accident in a water-cooled reactor. It also includes some discussion of the areas where coupling between the physics used in separate computer models of the two phenomena must be considered in any mechanistic best-estimate calculations of the source term
Time course of ongoing activity during neuritis and following axonal transport disruption.
Satkeviciute, Ieva; Goodwin, George; Bove, Geoffrey M; Dilley, Andrew
2018-05-01
Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or noninflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Because it is proposed that AMS underlies mechanically induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms. NEW & NOTEWORTHY Many patients with radiating pain lack signs of nerve injury on clinical examination but may have neuritis, which disrupts axonal transport. We have shown that axonal transport disruption does not induce ongoing activity in primary sensory neurons but does cause transient axonal mechanical sensitivity. The present data complete a profile of key axonal sensitivities following axonal transport disruption. Collectively, this profile supports that an active peripheral process is necessary for maintained axonal sensitivities.
Regulation of transport processes across the tonoplast
Neuhaus, H. Ekkehard; Trentmann, Oliver
2014-01-01
In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559
Global existence of weak solutions to dissipative transport equations with nonlocal velocity
Bae, Hantaek; Granero-Belinchón, Rafael; Lazar, Omar
2018-04-01
We consider 1D dissipative transport equations with nonlocal velocity field: where is a nonlocal operator given by a Fourier multiplier. We especially consider two types of nonlocal operators: (1) , the Hilbert transform, (2) . In this paper, we show several global existence of weak solutions depending on the range of γ, δ and α. When , we take initial data having finite energy, while we take initial data in weighted function spaces (in the real variables or in the Fourier variables), which have infinite energy, when .
Transport of fluid and solutes in the body II. Model validation and implications.
Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L
1999-09-01
A mathematical model of short-term whole body fluid, protein, and ion distribution and transport developed earlier [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1215-H1227, 1999] is validated using experimental data available in the literature. The model was tested against data measured for the following three types of experimental infusions: 1) hyperosmolar saline solutions with an osmolarity in the range of 2,000-2,400 mosmol/l, 2) saline solutions with an osmolarity of approximately 270 mosmol/l and composition comparable with Ringer solution, and 3) an isosmotic NaCl solution with an osmolarity of approximately 300 mosmol/l. Good agreement between the model predictions and the experimental data was obtained with respect to the trends and magnitudes of fluid shifts between the intra- and extracellular compartments, extracellular ion and protein contents, and hematocrit values. The model is also able to yield information about inaccessible or difficult-to-measure system variables such as intracellular ion contents, cellular volumes, and fluid fluxes across the vascular capillary membrane, data that can be used to help interpret the behavior of the system.
Directory of Open Access Journals (Sweden)
F. Anderson S. Lima
2016-02-01
Full Text Available Solution processable semiconductor oxides have opened a new paradigm for the enhancement of the lifetime of thin film solar cells. Their fabrication by low-cost and environmentally friendly solution-processable methods makes them ideal barrier (hole and electron transport layers. In this work, we fabricate flexible ITO-free organic solar cells (OPV by printing methods applying an aqueous solution-processed V2O5 as the hole transport layer (HTL and compared them to devices applying PEDOT:PSS. The transparent conducting electrode was PET/Ag/PEDOT/ZnO, and the OPV configuration was PET/Ag/PEDOT/ZnO/P3HT:PC60BM/HTL/Ag. Outdoor stability analyses carried out for more than 900 h revealed higher stability for devices fabricated with the aqueous solution-processed V2O5.
Moreira, Paulo H S; Van Genuchten, Martinus Th; Orlande, Helcio R B; Cotta, Renato M.
2016-01-01
In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical
International Nuclear Information System (INIS)
Sudicky, E.A.; Frind, E.O.
1984-01-01
An analytical solution is presented for the problem of radionuclide chain decay during transport through a discrete fracture situated in a porous rock matrix. The solution takes into account advection along the fracture, molecular diffusion from the fracture to the porous matrix, adsorption on the fracture face, adsorption in the rock matrix, and radioactive decay. The solution for the daughter product is in the form of a double integral which is evaluated by Gauss-Legendre quadrature. Results show that the daughter product tends to advance ahead of the parent nuclide even when the half-life of the parent is larger. This is attributed to the effect of chain decay in the matrix, which tends to reduce the diffusive loss of the daughter along the fracture. The examples also demonstrate that neglecting the parent nuclide and modeling its daughter as a single species can result in significant overestimation of arrival times at some point along the fracture. Although the analytical solution is restricted to a two-member chain for practical reasons, it represents a more realistic description of nuclide transport along a fracture than available single-species models. The solution may be of use for application to other contaminants undergoing different types of first-order transformation reactions
Zerr, Robert Joseph
2011-12-01
The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of
THE TIME FACTOR IN MARITIME TRANSPORT AND PORT LOGISTICS ACTIVITIES
Directory of Open Access Journals (Sweden)
Florin NICOLAE
2016-06-01
Full Text Available Execution of the carriage contract requires compliance to all the conditions in it, by all those involved in the transport. Main obligations incumbent upon the vessel, and obviously, to other transporters, who must provide transportation according to deadlines and safety. Contract compliance is certifying transport participants about their seriousness and an appropriate market quotation. Therefore, present work pragmatically sets schematics reference time associated implementation of the carriage contract. Also, are demonstrated relationships established between maritime transport “players” and sequence of activities related to the operation of the vessel in port. The authors propose a set of concepts and terms whose utility is established to solve practical problems in this area of activity.
Slingerland, Menno; Borghouts, Lars B; Hesselink, Matthijs K C
2012-05-01
Detailed knowledge about physical activity energy expenditure (PAEE) can guide the development of school interventions aimed at reducing overweight in adolescents. However, relevant components of PAEE have never been objectively quantified in this population. This study investigated the contribution of active transport to and from school, physical education (PE), and leisure time activities to total PAEE during a regular school week in adolescents. Seventy-three adolescents (mean age: 15.7 years) wore an individually calibrated combined heart rate-acceleration monitor and kept an activity diary during a regular school week. Branched equation modeling was used to calculate PAEE of the specific activity categories, and their relative contribution to total PAEE was determined. Active transport and PE contributed 30.0% and 17.4%, respectively, to school-related PAEE. Active transport to and from school contributed 15% to total PAEE. Youth with a high physical activity level (PAL) spent 4 hours less in sedentary behavior than subjects with a medium or low PAL (F = 77.415 (2.70), p activities (F = 10.583 (2.70), p Active transport and PE contribute significantly to PAEE during school hours in adolescents. To achieve an increase in total PAEE in the least active group of adolescents, promising strategies might be to reduce inactive behavior, increase participation in leisure time sports, and possibly to replace inactive for active jobs. © 2012, American School Health Association.
Bloem, E.; French, H. K.
2013-12-01
Monitoring contaminant transport at contaminated sites requires optimization of the configuration of a limited number of samplings points combined with heterogeneous flow and preferential flowpaths. Especially monitoring processes in the unsaturated zone is a major challenge due to the limited volume monitored by for example suction cups and their risk to clog in a highly active degradation zone. To make progress on soil contamination assessment and site characterization there is a strong need to integrate field-sale extensively instrumented tools, with non-invasive (geophysical) methods which provide spatially integrated measurements also in the unsaturated zone. Examples of sites that might require monitoring activities in the unsaturated zone are airports with winter frost where large quantities of de-icing chemicals are used each winter; salt and contaminant infiltration along roads; constructed infiltration systems for treatment of sewerage or landfill seepage. Electrical resistivity methods have proved to be useful as an indirect measurement of subsurface properties and processes at the field-scale. The non-uniqueness of the interpretation techniques can be reduced by constraining the inversion through the addition of independent geophysical measurements along the same profile. Or interpretation and understanding of geophysical images can be improved by the combination with classical measurements of soil physical properties, soil suction, contaminant concentration and temperatures. In our experiment, at the research field station at Gardermoen, Oslo airport, we applied a degradable de-icing chemical and an inactive tracer to the snow cover prior to snowmelt. To study the solute transport processes in the unsaturated zone time-lapse cross borehole electrical resistivity tomography (ERT) measurements were conducted at the same time as soil water samples were extracted at multiple depths with suction cups. Measurements of soil temperature, and soil tension were
Davit, Y.; Wood, B. D.; Debenest, G.; Quintard, M.
2012-01-01
In this work, we study the transient behavior of homogenized models for solute transport in two-region porous media. We focus on the following three models: (1) a time non-local, two-equation model (2eq-nlt). This model does not rely on time
Sustainable Transportation Systems Research Group: Ongoing and Past Activities
Gkritza, Konstantina "Nadia"; Hurtado, Davis Chacon; Gkartzonikas, Christos; Ke, Yue; Losada, Lisa L
2017-01-01
This presentation describes the ongoing and past activities of the Sustainable Transportation Systems Research (STSR) group at Purdue University (https://engineering.purdue.edu/STSRG). The STSR group aims to achieve green, safe, efficient, and equitable transportation systems by studying and modeling transportation externalities, using state of the art statistical, econometric, and economic analysis tools.
Vanwolleghem, Griet; Van Dyck, Delfien; De Meester, Femke; De Bourdeaudhuij, Ilse; Cardon, Greet; Gheysen, Freja
2016-01-01
The aim was to investigate which individual, psychosocial and physical neighborhood environmental factors associate with children's switch to or maintenance of active/passive transport to school and to leisure time destinations during the transition from primary to secondary school. Children (n = 313) filled out a questionnaire in the last year of primary school and 2 years later to assess socio-demographic characteristics and self-reported transport. One of their parents completed a questionnaire to assess parental perceptions of psychosocial and physical neighborhood environmental factors. The increase of the home-school distance was significantly associated with children's switch to or maintenance of passive transport to school compared to a switch to (OR = 0.81; p = 0.03) and maintenance (OR = 0.87; p = 0.03) of active transport to school. Low SES was associated with children's switch to active transport to school compared to maintenance of active transport (OR = 3.67; p = 0.07). For transport to leisure time destinations, other factors such as parental perceived neighborhood safety from traffic and crime (OR = 2.78; p = 0.004), a positive social norm (OR = 1.49; p = 0.08), positive attitudes (OR = 1.39; p = 0.08) (i.e. more benefits, less barriers) towards their children's physical activity and poor walking/cycling facilities in the neighborhood (OR = 0.70; p = 0.06) were associated with children's maintenance of active transport to leisure time destinations compared to a switch to or maintenance of passive transport. This longitudinal study can give directions for interventions promoting children's active transport during the transition to secondary school. It is necessary to promote different possibilities at primary school for children to use active transport when going to secondary school. Walking/cycling a part of the home-school trip can be a possible solution for children who will be living at non-feasible distances from secondary school. Providing safe
Activity-Based Costing Application in an Urban Mass Transport Company
Directory of Open Access Journals (Sweden)
Popesko Boris
2011-12-01
Full Text Available The purpose of this paper is to provide a basic overview of the application of Activity-Based Costing in an urban mass transport company which operates land public transport via buses and trolleys within the city. The case study was conducted using the Activity-Based Methodology in order to calculate the true cost of individual operations and to measure the profitability of particular transport lines. The case study analysis showed the possible effects of the application of the Activity-Based Costing for an urban mass transport company as well as the limitations of using the ABC methodology in the service industry. With regards to the application of the ABC methodology, the primary limitation of the accuracy of the conclusions is the quality of the non-financial information which had to be gathered throughout the implementation process. A basic limitation of the accurate data acquisition is the nature of the fare system of the transport company which does not allow the identification of the route that is taken by an individual passenger. The study illustrates the technique of ABC in urban mass transport and provides a real company example of information outputs of the ABC system. The users indicated that, the ABC model is very useful for profitability reporting and profit management. Also, the paper shows specific application of the Activity-Based Methodology in conditions of urban mass transport companies with regional specifics.
Coupling of solute transport and cell expansion in pea stems
Schmalstig, J. G.; Cosgrove, D. J.
1990-01-01
As cells expand and are displaced through the elongation zone of the epicotyl of etiolated pea (Pisum sativum L. var Alaska) seedlings, there is little net dilution of the cell sap, implying a coordination between cell expansion and solute uptake from the phloem. Using [14C] sucrose as a phloem tracer (applied to the hypogeous cotyledons), the pattern of label accumulation along the stem closely matched the growth rate pattern: high accumulation in the growing zone, little accumulation in nongrowing regions. Several results suggest that a major portion of phloem contents enters elongating cells through the symplast. We propose that the coordination between phloem transport and cell expansion is accomplished via regulatory pathways affecting both plasmodesmata conductivity and cell expansion.
Active transportation and bullying in Canadian schoolchildren: a cross-sectional study.
Cozma, Ioana; Kukaswadia, Atif; Janssen, Ian; Craig, Wendy; Pickett, William
2015-02-07
Bullying is a recognized social problem within child populations. Engagement in childhood bullying often occurs in settings that are away from adult supervision, such as en route to and from school. Bullying episodes may also have a negative impact on school childrens' decisions to engage in active transportation. Using a cross-sectional design, we analyzed reports from the 2009/10 cycle of the Canadian Health Behaviour in School-Aged Children (HBSC) study. Records from this general health survey were obtained for 3,997 urban students in grades 6-10 who lived in close proximity of their school and were hence ineligible for school bussing. Students who indicated walking or bicycling to school were classified as engaged in active transportation. Victims and perpetrators of bullying were defined using standard measures and a frequency cut-off of at least 2-3 times per month. Analyses focused on relations between bullying and active transportation, as well as barriers to active transportation as perceived by young people. 27% of young people indicated being victimized, and 12% indicated that they engaged in bullying. Girls were more likely to be victimized than boys, and younger students were more likely to be victimized than older students. Engagement in active transportation was reported by 63% of respondents, of these, 68% indicated that worrying about bullying on the way to school was an impediment to such transportation methods. Victimization by bullying (adjusted OR = 1.26, 95% CI: 1.00 - 1.59) was reported more frequently by children who used active transportation. Health promotion efforts to promote engagement in active transportation of students to school have obvious value. The potential for modest increases in exposure to bullying should be considered in the planning of such initiatives.
Liu, Longcheng; Neretnieks, Ivars; Shahkarami, Pirouz; Meng, Shuo; Moreno, Luis
2018-02-01
A simple and robust solution is developed for the problem of solute transport along a single fracture in a porous rock. The solution is referred to as the solution to the single-flow-path model and takes the form of a convolution of two functions. The first function is the probability density function of residence-time distribution of a conservative solute in the fracture-only system as if the rock matrix is impermeable. The second function is the response of the fracture-matrix system to the input source when Fickian-type dispersion is completely neglected; thus, the effects of Fickian-type dispersion and matrix diffusion have been decoupled. It is also found that the solution can be understood in a way in line with the concept of velocity dispersion in fractured rocks. The solution is therefore extended into more general cases to also account for velocity variation between the channels. This leads to a development of the multi-channel model followed by detailed statistical descriptions of channel properties and sensitivity analysis of the model upon changes in the model key parameters. The simulation results obtained by the multi-channel model in this study fairly well agree with what is often observed in field experiments—i.e. the unchanged Peclet number with distance, which cannot be predicted by the classical advection-dispersion equation. In light of the findings from the aforementioned analysis, it is suggested that forced-gradient experiments can result in considerably different estimates of dispersivity compared to what can be found in natural-gradient systems for typical channel widths.
Schein, Jessica R; Hunt, Kevin A; Minton, Janet A; Schultes, Neil P; Mourad, George S
2013-09-01
The single cell alga Chlamydomonas reinhardtii is capable of importing purines as nitrogen sources. An analysis of the annotated C. reinhardtii genome reveals at least three distinct gene families encoding for known nucleobase transporters. In this study the solute transport and binding properties for the lone C. reinhardtii nucleobase cation symporter 1 (CrNCS1) are determined through heterologous expression in Saccharomyces cerevisiae. CrNCS1 acts as a transporter of adenine, guanine, uracil and allantoin, sharing similar - but not identical - solute recognition specificity with the evolutionary distant NCS1 from Arabidopsis thaliana. The results suggest that the solute specificity for plant NCS1 occurred early in plant evolution and are distinct from solute transport specificities of single cell fungal NCS1 proteins. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Blanford, W. J.; Neil, L.
2017-12-01
To better evaluate the potential for toxic organic chemicals to migrate upward through the rock strata from hydraulic fracturing zones and into groundwater resources, a series of miscible displacement solute transport studies of cores of Berea Sandstone have been conducted using hydrostatic core holder. These tests involved passing aqueous solutions with natural background level of salts using a high pressure LC pump through 2 in wide by 3 in long unfractured cores held within the holder. Relative solute transport of 100 to 500ml pulses of target solutes including a series of chlorinated solvents and methylated benzenes was measured through in-line UV and fluorescence detectors and manual sampling and analysis with GCMS. The results found these sandstones to result in smooth ideal shaped breakthrough curves. Analysis with 1D transport models (CXTFIT) of the results found strong correlation with chemical parameters (diffusion coefficients, aqueous solubility, and octanol-water partitioning coefficients) showing that these parameter and QSPR relationships can be used to make accurate predictions for such a system. In addition to the results of the studies, lessons learned from this novel use of a coreholder for evaluation of porosity, water-saturated permeability, and solute transport of these sandstones (K = 1.5cm/day) and far less permeable sandstones samples (K = 0.15 cm/yr) from a hydraulic fracturing site in central Pennsylvania will be presented.
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
Preliminary model of fluid and solute distribution and transport during hemorrhage.
Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L
2003-01-01
The distribution and transport of fluid, ions, and other solutes (plasma proteins and glucose) are described in a mathematical model of unresuscitated hemorrhage. The model is based on balances of each material in both the circulation and its red blood cells, as well as in a whole-body tissue compartment along with its cells. Exchange between these four compartments occurs by a number of different mechanisms. The hemorrhage model has as its basis a validated model, due to Gyenge et al., of fluid and solute exchange in the whole body of a standard human. Hypothetical but physiologically based features such as glucose and small ion releases along with cell membrane changes are incorporated into the hemorrhage model to describe the system behavior, particularly during larger hemorrhages. Moderate (10%-30% blood volume loss) and large (> 30% blood loss) hemorrhage dynamics are simulated and compared with available data. The model predictions compare well with the available information for both types of hemorrhages and provide a reasonable description of the progression of a large hemorrhage from the compensatory phase through vascular collapse.
International Nuclear Information System (INIS)
Barros, R. C.; Filho, H. A.; Platt, G. M.; Oliveira, F. B. S.; Militao, D. S.
2009-01-01
Coarse-mesh numerical methods are very efficient in the sense that they generate accurate results in short computational time, as the number of floating point operations generally decrease, as a result of the reduced number of mesh points. On the other hand, they generate numerical solutions that do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. In this paper we describe two analytical reconstruction schemes for the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates (S N ) transport model in slab geometry. The first scheme we describe is based on the analytical reconstruction of the coarse-mesh solution within each discretization cell of the spatial grid set up on the slab. The second scheme is based on the angular reconstruction of the discrete ordinates solution between two contiguous ordinates of the angular quadrature set used in the S N model. Numerical results are given so we can illustrate the accuracy of the two reconstruction schemes, as described in this paper. (authors)
Solution and study of nodal neutron transport equation applying the LTSN-DiagExp method
International Nuclear Information System (INIS)
Hauser, Eliete Biasotto; Pazos, Ruben Panta; Vilhena, Marco Tullio de; Barros, Ricardo Carvalho de
2003-01-01
In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtained the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)
Imholz, A. L.; Koomen, G. C.; Struijk, D. G.; Arisz, L.; Krediet, R. T.
1993-01-01
Osmotic-induced fluid and solute transport was studied in ten stable CAPD patients, who were examined twice within one week, using dialysate with 1.36% glucose on the first and 3.86% glucose on the second day. Peritoneal fluid kinetics were determined using intraperitoneally administered dextran 70
Zhukovsky, K.; Oskolkov, D.
2018-03-01
A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer-Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.
Shimakata, Takaaki; Kamoshida, Shingo; Kawamura, Jumpei; Ogane, Naoki; Kameda, Yoichi; Yanagita, Emmy; Itoh, Tomoo; Takeda, Risa; Naka, Ayano; Sakamaki, Kuniko; Hayashi, Yurie; Kuwao, Sadahito
2016-11-01
Alpha-fetoprotein (AFP)-producing gastric cancer (GC) is an aggressive tumour with high rates of liver metastasis and poor prognosis, and for which a validated chemotherapy regimen has not been established. Drug uptake by solute carrier (SLC) transporters is proposed as one of the mechanisms involved in sensitivity to chemotherapy. In this study, we aimed to develop important insights into effective chemotherapeutic regimens for AFP-producing GC. We evaluated immunohistochemically the expression levels of a panel of SLC transporters in 20 AFP-producing GCs and 130 conventional GCs. SLC transporters examined were human equilibrative nucleoside transporter 1 (hENT1), organic anion transporter 2 (OAT2), organic cation transporter (OCT) 2, OCT6 and organic anion-transporting polypeptide 1B3 (OATP1B3). The rates of high expression levels of hENT1 (hENT1 high ) and OAT2 (OAT2 high ) were statistically higher in AFP-producing GC, compared with conventional GC. When analysing hENT1 and OAT2 in combination, hENT1 high /OAT2 high was the most particular expression profile for AFP-producing GC, with a greater significance than hENT1 or OAT2 alone. However, no significant differences in OCT2, OCT6 or OATP1B3 levels were detected between AFP-producing and conventional GCs. However, immunoreactivity for hENT1, OAT2 and OCT6 tended to be increased in GC tissues compared with non-neoplastic epithelia. Because hENT1 and OAT2 are crucial for the uptake of gemcitabine and 5-fluorouracil, respectively, our results suggest that patients with AFP-producing GC could potentially benefit from gemcitabine/fluoropyrimidine combination chemotherapy. Increased expression of hENT1, OAT2 and OCT6 may also be associated with the progression of GC. © 2016 John Wiley & Sons Ltd.
Seliske, Laura; Pickett, William; Janssen, Ian
2012-06-01
Urban sprawl is a potential environmental influence on youth overweight/obesity. However, little is known about the association between urban sprawl and behaviours that influence obesity such as active transportation and physical activity. The study population consisted of 7,017 respondents aged 12 to 19 to the 2007/2008 Canadian Community Health Survey, living in Canada's 33 census metropolitan areas (CMAs). Factor analysis was used to obtain an urban sprawl score for each CMA, incorporating dwelling density, percentage of single or detached dwelling units, and percentage of the population living in the urban core. Multi-level logistic regression examined whether urban sprawl was associated with frequent active transportation (30 or more minutes a day), moderate-to-vigorous physical activity (MVPA) (60 or more minutes a day), and overweight/obesity. Urban sprawl was associated with active transportation among 12- to 15-year-olds, with the relative odds of engaging in at least 30 minutes of active transportation per day increasing by 24% (95% CI: 10-39%) for each standard deviation (SD) increase in the urban sprawl score. For the entire sample aged 12 to 19, higher urban sprawl was associated with MVPA (odds ratio per SD increase = 1.10, 95% CI: 1.01-1.20), but not with overweight/obesity (odds ratio per SD increase = 1.06, 95% CI: 0.94-1.18). Urban sprawl was associated with active transportation and MVPA in Canadian youth, although in the opposite direction to what has been reported in the literature for adults.
Cui, Yi-an; Liu, Lanbo; Zhu, Xiaoxiong
2017-08-01
Monitoring the extent and evolution of contaminant plumes in local and regional groundwater systems from existing landfills is critical in contamination control and remediation. The self-potential survey is an efficient and economical nondestructive geophysical technique that can be used to investigate underground contaminant plumes. Based on the unscented transform, we have built a Kalman filtering cycle to conduct time-lapse data assimilation for monitoring the transport of solute based on the solute transport experiment using a bench-scale physical model. The data assimilation was formed by modeling the evolution based on the random walk model and observation correcting based on the self-potential forward. Thus, monitoring self-potential data can be inverted by the data assimilation technique. As a result, we can reconstruct the dynamic process of the contaminant plume instead of using traditional frame-to-frame static inversion, which may cause inversion artifacts. The data assimilation inversion algorithm was evaluated through noise-added synthetic time-lapse self-potential data. The result of the numerical experiment shows validity, accuracy and tolerance to the noise of the dynamic inversion. To validate the proposed algorithm, we conducted a scaled-down sandbox self-potential observation experiment to generate time-lapse data that closely mimics the real-world contaminant monitoring setup. The results of physical experiments support the idea that the data assimilation method is a potentially useful approach for characterizing the transport of contamination plumes using the unscented Kalman filter (UKF) data assimilation technique applied to field time-lapse self-potential data.
Directory of Open Access Journals (Sweden)
SÁVIO LEANDRO BERTOLI
2016-07-01
Full Text Available In the engineering courses the field of Transport Phenomena is of significant importance and it is in several disciplines relating to Fluid Mechanics, Heat and Mass Transfer. In these disciplines, problems involving these phenomena are mathematically formulated and analytical solutions are obtained whenever possible. The aim of this paper is to emphasize the possibility of extending aspects of the teaching-learning in this area by a method based on time scales and limit solutions. Thus, aspects relative to the phenomenology naturally arise during the definition of the scales and / or by determining the limit solutions. Aspects concerning the phenomenology of the limit problems are easily incorporated into the proposed development, which contributes significantly to the understanding of physics inherent in the mathematical modeling of each limiting case studied. Finally the study aims to disseminate the use of the limit solutions and of the time scales in the general fields of engineering.
Theory of contributon transport
International Nuclear Information System (INIS)
Painter, J.W.; Gerstl, S.A.W.; Pomraning, G.C.
1980-10-01
A general discussion of the physics of contributon transport is presented. To facilitate this discussion, a Boltzmann-like transport equation for contributons is obtained, and special contributon cross sections are defined. However, the main goal of this study is to identify contributon transport equations and investigate possible deterministic solution techniques. Four approaches to the deterministic solution of the contributon transport problem are investigated. These approaches are an attempt to exploit certain attractive properties of the contributon flux, psi = phi phi + , where phi and phi + are the solutions to the forward and adjoint Boltzmann transport equations
Regulation of transport processes across the tonoplast membrane
Directory of Open Access Journals (Sweden)
Oliver eTrentmann
2014-09-01
Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.
Flow and solute transport in backfilled tunnel and collapsed backfill - possible extension of Comp32
International Nuclear Information System (INIS)
Neretnieks, Ivars
2006-09-01
In the Swedish deep geological final repository for spent fuel the tunnels will be filled with a backfill with low permeability. However, some flow may take place in the backfill. Nuclides released from a leaking canister could diffuse up to the flowing water in the backfill and be transported downstream in the tunnel. At an intersection of the tunnel with a fracture zone the contaminated water might flow out into the zone.This report addresses the transport mechanisms and rate of transport from a leaking canister up through the buffer and backfill in the deposition hole, further into the backfill in the tunnel and the transport along the tunnel. Spreading by diffusion in the buffer and backfill as well as retardation of sorbing nuclides is accounted for.The transport mechanisms and rates of transport are described and some simple models with analytical solutions are used to quantify the processes. These simple solutions are used to gain insights into when different transport mechanisms are important. The simple solutions are used to simulate a base case example where a non-sorbing nuclide (iodide) and a sorbing nuclide (radium) move in the backfill by diffusion and by advective flow. The simple sample calculations show that it would take thousands of years for iodide to move 20 m along the tunnel and that a release pulse would spread out considerably over time. The sorbing nuclide 226 Ra with a half life of 1,600 years would be strongly retarded by sorption and would decay to insignificance during its migration along the tunnel. The consequences of a collapse of backfill leaving a channel above the backfill is also studied by a simple analytical model that accounts for water flowing in the collapsed part of the backfill at the ceiling of the tunnel. A nuclide that diffuses up to the flowing channel will flow with the ('rapidly' flowing) water but will be retarded by diffusion down into the backfill again. This down diffusion retards the nuclide migration
Flow and solute transport in backfilled tunnel and collapsed backfill - possible extension of Comp32
Energy Technology Data Exchange (ETDEWEB)
Neretnieks, Ivars [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology
2006-09-15
In the Swedish deep geological final repository for spent fuel the tunnels will be filled with a backfill with low permeability. However, some flow may take place in the backfill. Nuclides released from a leaking canister could diffuse up to the flowing water in the backfill and be transported downstream in the tunnel. At an intersection of the tunnel with a fracture zone the contaminated water might flow out into the zone.This report addresses the transport mechanisms and rate of transport from a leaking canister up through the buffer and backfill in the deposition hole, further into the backfill in the tunnel and the transport along the tunnel. Spreading by diffusion in the buffer and backfill as well as retardation of sorbing nuclides is accounted for.The transport mechanisms and rates of transport are described and some simple models with analytical solutions are used to quantify the processes. These simple solutions are used to gain insights into when different transport mechanisms are important. The simple solutions are used to simulate a base case example where a non-sorbing nuclide (iodide) and a sorbing nuclide (radium) move in the backfill by diffusion and by advective flow. The simple sample calculations show that it would take thousands of years for iodide to move 20 m along the tunnel and that a release pulse would spread out considerably over time. The sorbing nuclide {sup 226}Ra with a half life of 1,600 years would be strongly retarded by sorption and would decay to insignificance during its migration along the tunnel. The consequences of a collapse of backfill leaving a channel above the backfill is also studied by a simple analytical model that accounts for water flowing in the collapsed part of the backfill at the ceiling of the tunnel. A nuclide that diffuses up to the flowing channel will flow with the ('rapidly' flowing) water but will be retarded by diffusion down into the backfill again. This down diffusion retards the nuclide