WorldWideScience

Sample records for active solar planning

  1. Comprehensive Planning for Passive Solar Architectural Retrofit

    Science.gov (United States)

    1980-05-01

    technical information, and the natural environ- ment. Since the Air Force Energy plan stresses Passive Solar (Architecture) before using Active Solar...retrofitted by-1990, and the Air Force Energy Plan stresses Passive Solar Applications. Bdcause of this requirement, you must consider the following retrofit...OF THI SUN AT NOON ON O CUMIN 21 EXAWMKU[ AT 3M. AN I S - W Figure 12-4 12-3 Skylight- use a reflector ,with horizontal skylights to ,iincrease solar

  2. Establishment of a solar utilisation plan

    International Nuclear Information System (INIS)

    Gernhardt, D.; Mohr, M.; Unger, H.

    1992-01-01

    One of the main bases of the project ''Analysis of Possibilities of Solar Power Supply in Nordrhein-Westfalen and its Development until 2020'' is the achievement of a solar surface utilization plan. The duty of this plan is to indicate usefull areas for solar application in Nordrhein-Westfalen. This report shows the task of the solar surface utilization plan and explains attributes to describe surfaces for solar applications. (orig.) [de

  3. Solar heating action plan; Solvarme handlingsplan

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Jan Erik

    2011-10-15

    This solar action plan should be seen as a follow-up to the Danish Energy Agency's solar heating strategy from 2007, which showed great potential and opportunities for exploitation and use of solar heat in Denmark. In relation to the strategy from 2007, this action plan adjusted the distribution of solar heat from district heating plants and individual plants, but it is still the objective of this action plan to achieve the strategy's overall goal for 2030. With the implementation of the Action Plan in early 2012, it is estimated that in 2030 there will be about. 10 million m2 of solar collectors in operation, 8 million m2 for district heating and 2 million m2 for individual heating, equivalent to an installed capacity totaling 7 GW. The budget for actions in the Action Plan is about 80 million DKK annually over the next 5 years to initiate and ensure this development. (LN)

  4. Solar building construction. Town planning - construction planning. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schempp, D.; Krampen, M.; Moellring, F.

    1994-01-01

    The book discusses the problems of solar energy use under the following aspects: Town planing; Typology of green solar architecture; Typologie of solar architecture; Vegetation in green solar architecture; Planning and simulation; Building materials; Ventilation, illumination; Research projects. (HW) [de

  5. Treatment of Solar Generation in Electric Utility Resource Planning

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  6. Review and summary of Solar Thermal Conversion Program planning assistance

    Energy Technology Data Exchange (ETDEWEB)

    1975-06-01

    The Solar Thermal Conversion Program comprises a major part of the national solar energy program which must be continuously reviewed and modified where necessary. Modifications are typically required to reflect technical achievements and uncertainties which arise from within the program or from other technical programs, changes in budgets available for supporting the program as well as internal program funding priorities, changing goals such as through acceleration or stretch-out of the program schedule, significant organizational changes involving responsible governmental agencies, the introduction of new project management support contractors, and required budget or schedule changes occurring within individual projects that make up the Solar Thermal Conversion Program. The Aerospace Corporation has provided data to assist in planning, review, coordination, and documentation of the overall Solar Thermal Conversion Program. The Solar Thermal Conversion Program Plan is described in detail. Sections 2.0 through 5.0 cover the discussion and detail planning covering the objectives, justification, basic and alternative plans, budgets, and schedules for the Solar Thermal sub-unit portion of the Solar Electric Applications effort. Appendices B1, B2, and B3 include the March 21, March 28, and April 5, 1975, Program Plan submissions of the complete Solar Electric Applications effort. In Appendix B the Solar Thermal, Solar Photovoltaic, Wind Energy, and Ocean Thermal sub-unit texts have been condensed and formatted for integration in the overall ERDA budget package. (WHK)

  7. Solar irridiance variations and solar activity

    International Nuclear Information System (INIS)

    Willson, R.C.

    1982-01-01

    A mean value for the 1 AU total solar irradiance of 1368.2 W/m 2 and a downward trend of 0.05% per year were derived from measurements by the Active Cavity Radiometer Irradiance Monitor (ACRIM) experiment on the Solar Maximum Mission during 1980. Distinct temporary solar irradiance decreases associated with solar activity maxima were observed with a series of nine dips from April to October recurring at fairly regular intervals averaging 24 days. The decreases correlate inversely with sunspot area, 2800-MHz flux, and Zurich sunspot number. Dominant periods common to the irradiance and sunspot area power spectra link the irradiance decreases to sunspot flux deficit in solar active regions. Evidence of significant total irradiance modulation by facular flux excess is cited. A persistent radiative cycle of active regions consistent with the ACRIM irradiance results and the morphology of solar active regions was found. The pattern of regularly recurrent active region maxima between April and October suggests an asymmetry in solar activity generation during this period

  8. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  9. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  10. International solar-terrestrial physics program: a plan for the core spaceflight missions

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This brochure has been prepared to describe the scope of the science problems to be investigated and the mission plan for the core International Solar-Terrestrial Physics (ISTP) Program. This information is intended to stimulate discussions and plans for the comprehensive worldwide ISTP Program. The plan for the study of the solar - terrestrial system is included. The Sun, geospace, and Sun-Earth interaction is discussed as is solar dynamics and the origins of solar winds.

  11. Solar Energy Technologies Program: Multi-Year Technical Plan 2003-2007 and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This publication charts a 5-year planning cycle for the U.S. Department of Energy Solar Energy Technologies Program. The document includes anticipated technical plans for the next 5 years for photovoltaics, concentrating solar power, solar water and space heating, solar hybrid lighting, and other new concepts that can take advantage of the solar resource. Solar energy is described as a clean, abundant, renewable energy resource that can benefit the nation by diversifying our energy supply.

  12. Deciphering solar magnetic activity: on grand minima in solar activity

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Leamon, Robert J., E-mail: mscott@ucar.edu [Department of Physics, Montana State University, Bozeman, MT (United States)

    2015-07-08

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well- understood. There has been tremendous progress in the century since the discovery of solar magnetism—magnetism that ultimately drives the electromagnetic, particulate, and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a “grand minimum”? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(&ish) year solar activity cycle.

  13. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    Directory of Open Access Journals (Sweden)

    Scott William Mcintosh

    2015-07-01

    Full Text Available The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a grand minimum? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish year solar activity cycle.

  14. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    Science.gov (United States)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  15. Magnetohydrodynamic process in solar activity

    Directory of Open Access Journals (Sweden)

    Jingxiu Wang

    2014-01-01

    Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.

  16. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Akioka, Maki; Kubo, Yuki; Nagatsuma, Tsutomu; Ohtaka, Kazuhiro

    2009-01-01

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  17. The SOLAR-C Mission: Plan B Payload Concept

    Science.gov (United States)

    Shimizu, T.; Sakao, T.; Katsukawa, Y.; Group, J. S. W.

    2012-08-01

    The telescope concepts for the SOLAR-C Plan B mission as of the time of the Hinode-3 meeting were briefly presented for having comments from the international solar physics community. The telescope candidates are 1) near IR-visible-UV telescope with 1.5m aperture and enhanced spectro-polarimetric capability, 2) UV/EUV high throughput spectrometer, and 3) next generation X-ray telescope.

  18. Market development for active solar thermal systems (ASTS) in the institutional, commercial and industrial (ICI) sectors

    International Nuclear Information System (INIS)

    2000-01-01

    The market potential for active solar thermal systems in the institutional, commercial and industrial sectors of the Canadian economy was investigated, the objective being to identify markets and to prepare action plans as the foundation for developing these markets by Natural Resources Canada and the industry. In the process of researching the market, barriers to market development in these sectors of the economy were also identified as well as actions to overcome these barriers. Nine potential applications were modelled to determine their energy, economic and environmental performance. Of these four attractive applications have been selected for more detailed treatment. Separate action plans have been developed for Natural Resources Canada, the Canadian Solar Industries Association and the active solar thermal industry. The close cooperation of all three partners is considered essential for a successful marketing effort. A marketing plan which gives due consideration to the product, planning, packaging, price and promotion, is also considered to be a vital ingredient, as is a meticulous follow-up on 'leads' created by exposure to the target market. Solarwall'TM' for preheating of ventilation air to new school buildings and solar domestic hot water heating for camp grounds have been identified as the most attractive candidates for marketing at this time. Highlights of marketing plans for these two options are included for purposes of illustrating the essential ingredients of marketing plans. 1 fig

  19. Deciphering Solar Magnetic Activity: Spotting Solar Cycle 25

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Leamon, Robert J., E-mail: mscott@ucar.edu [Department of Astronomy, University of Maryland, College Park, MD (United States)

    2017-06-26

    We present observational signatures of solar cycle 25 onset. Those signatures are visibly following a migratory path from high to low latitudes. They had starting points that are asymmetrically offset in each hemisphere at times that are 21–22 years after the corresponding, same polarity, activity bands of solar cycle 23 started their migration. Those bands define the so-called “extended solar cycle.” The four magnetic bands currently present in the system are approaching a mutually cancelling configuration, and solar minimum conditions are imminent. Further, using a tuned analysis of the daily band latitude-time diagnostics, we are able to utilize the longitudinal wave number (m = 1) variation in the data to more clearly reveal the presence of the solar cycle 25 bands. This clarification illustrates that prevalently active longitudes (different in each hemisphere) exist at mid-latitudes presently, lasting many solar rotations, that can be used for detailed study over the next several years with instruments like the Spectrograph on IRIS, the Spectropolarimeter on Hinode, and, when they come online, similar instruments on the Daniel K. Inouye Solar Telescope (DKIST) as we watch those bands evolve following the cancellation of the solar cycle 24 activity bands at the equator late in 2019.

  20. National plan for the accelerated commercialization of solar energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    After a brief profile of the Mid-American region and characterization of the residential and commercial markets and the industry of the region, a short description is given of a regional planning meeting held for the purpose of preparing input for the Mid-American section of the National Program for the Accelerated Commercialization of Solar Energy (NPAC) Implementation plans. For each of thirty-eight programs, the objective, rationale, task statement/description, evaluation measures, and implementor are given. The programs are in these areas: public education/awareness; education/training; legislative/regulatory; performance/analysis; design/planning;demonstrations; state interface; technology; information dissemination; legal and regulatory; analysis and assessment; and regional coordination. Two policy statements are included - one on cratering a solar society and the other recommending the expansion of the commercialization to encompass and include the concepts of utilization and popularization in the plan for the advancement of solar energy. (LEW)

  1. Solar data inputs for integration and transmission planning studies

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Kirsten D.; Hummon, Marissa; Hodge, Bri-Mathias; Lew, Debra [National Renewable Energy Laboratory, Golden, CO (United States)

    2011-07-01

    Renewable energy integration studies are frequently conducted to evaluate the impacts wind and solar power have on grid operations and planning. In the United States, these studies have historically been focused on wind energy integration. However, with the rapid deployment of large-scale and distributed solar power across the United States, and Hawaii, the interest in solar power variability and its impacts on the grid is increasing. To complete detailed integration studies, modeled power production of existing and future solar power deployments is necessary. This paper discusses some of the methods used to generate photovoltaic (PV) and concentrating solar power (CSP) production profiles for studies undertaken in the United States, evaluates the results, and compares the profiles with measured solar power production characteristics. (orig.)

  2. Science Planning and Orbit Classification for Solar Probe Plus

    Science.gov (United States)

    Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.

    2016-12-01

    There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.

  3. Optimizing Re-planning Operation for Smart House Applying Solar Radiation Forecasting

    Directory of Open Access Journals (Sweden)

    Atsushi Yona

    2014-08-01

    Full Text Available This paper proposes the re-planning operation method using Tabu Search for direct current (DC smart house with photovoltaic (PV, solar collector (SC, battery and heat pump system. The proposed method is based on solar radiation forecasting using reported weather data, Fuzzy theory and Recurrent Neural Network. Additionally, the re-planning operation method is proposed with consideration of solar radiation forecast error, battery and inverter losses. In this paper, it is assumed that the installation location for DC smart house is Okinawa, which is located in Southwest Japan. The validity of proposed method is confirmed by comparing the simulation results.

  4. Science Planning for the Solar Probe Plus NASA Mission

    Science.gov (United States)

    Kusterer, M. B.; Fox, N. J.; Turner, F. S.; Vandegriff, J. D.

    2015-12-01

    With a planned launch in 2018, there are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus mission. The geometry of the celestial bodies and the spacecraft during some of the Solar Probe Plus mission orbits cause limited uplink and downlink opportunities. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. The aim is to write the instrument data to the spacecraft SSR for downlink before a set of data downlink opportunities large enough to get the data to the ground and before the start of another data collection cycle. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To add further complexity, two of the spacecraft payloads have the capability to write a large volumes of data to their internal payload SSR while sending a smaller "survey" portion of the data to the spacecraft SSR for downlink. The instrument scientists would then view the survey data on the ground, determine the most interesting data from their payload SSR, send commands to transfer that data from their payload SSR to the spacecraft SSR for downlink. The timing required for downlink and analysis of the survey data, identifying uplink opportunities for commanding data transfers, and downlink opportunities big enough for the selected data within the data collection period is critical. To solve these challenges, the Solar Probe Plus Science Working Group has designed a orbit-type optimized data file priority downlink scheme to downlink high priority survey data quickly. This file priority scheme would maximize the reaction time that the payload teams have to perform the survey and selected data method on orbits where the downlink and uplink availability will support using this method. An interactive display and analysis science planning tool is being designed for the SPT to use as an aid to planning. The

  5. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    Science.gov (United States)

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  6. Planning for a Distributed Disruption: Innovative Practices for Incorporating Distributed Solar into Utility Planning

    Energy Technology Data Exchange (ETDEWEB)

    Mill, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dong, Changgui [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sigrin, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zuboy, Jarrett [Independent Consultant

    2016-08-19

    The rapid growth of distributed solar photovoltaics (DPV) has critical implications for U.S. utility planning processes. This report informs utility planning through a comparative analysis of roughly 30 recent utility integrated resource plans or other generation planning studies, transmission planning studies, and distribution system plans. It reveals a spectrum of approaches to incorporating DPV across nine key planning areas, and it identifies areas where even the best current practices might be enhanced. 1) Forecasting DPV deployment: Because it explicitly captures several predictive factors, customer-adoption modeling is the most comprehensive forecasting approach. It could be combined with other forecasting methods to generate a range of potential futures. 2) Ensuring robustness of decisions to uncertain DPV quantities: using a capacity-expansion model to develop least-cost plans for various scenarios accounts for changes in net load and the generation portfolio; an innovative variation of this approach combines multiple per-scenario plans with trigger events, which indicate when conditions have changed sufficiently from the expected to trigger modifications in resource-acquisition strategy. 3) Characterizing DPV as a resource option: Today’s most comprehensive plans account for all of DPV’s monetary costs and benefits. An enhanced approach would address non-monetary and societal impacts as well. 4) Incorporating the non-dispatchability of DPV into planning: Rather than having a distinct innovative practice, innovation in this area is represented by evolving methods for capturing this important aspect of DPV. 5) Accounting for DPV’s location-specific factors: The innovative propensity-to-adopt method employs several factors to predict future DPV locations. Another emerging utility innovation is locating DPV strategically to enhance its benefits. 6) Estimating DPV’s impact on transmission and distribution investments: Innovative practices are being

  7. Planning for a Distributed Disruption: Innovative Practices for Incorporating Distributed Solar into Utility Planning

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew D.; Barbose, Galen L.; Seel, Joachim; Dong, Changgui; Mai, Trieu; Sigrin, Ben; Zuboy, Jarett

    2016-08-01

    The rapid growth of distributed solar photovoltaics (DPV) has critical implications for U.S. utility planning processes. This report informs utility planning through a comparative analysis of roughly 30 recent utility integrated resource plans or other generation planning studies, transmission planning studies, and distribution system plans. It reveals a spectrum of approaches to incorporating DPV across nine key planning areas, and it identifies areas where even the best current practices might be enhanced. (1) Forecasting DPV deployment: Because it explicitly captures several predictive factors, customer-adoption modeling is the most comprehensive forecasting approach. It could be combined with other forecasting methods to generate a range of potential futures. (2) Ensuring robustness of decisions to uncertain DPV quantities: using a capacity-expansion model to develop least-cost plans for various scenarios accounts for changes in net load and the generation portfolio; an innovative variation of this approach combines multiple per-scenario plans with trigger events, which indicate when conditions have changed sufficiently from the expected to trigger modifications in resource-acquisition strategy. (3) Characterizing DPV as a resource option: Today's most comprehensive plans account for all of DPV's monetary costs and benefits. An enhanced approach would address non-monetary and societal impacts as well. (4) Incorporating the non-dispatchability of DPV into planning: Rather than having a distinct innovative practice, innovation in this area is represented by evolving methods for capturing this important aspect of DPV. (5) Accounting for DPV's location-specific factors: The innovative propensity-to-adopt method employs several factors to predict future DPV locations. Another emerging utility innovation is locating DPV strategically to enhance its benefits. (6) Estimating DPV's impact on transmission and distribution investments: Innovative

  8. A Solar Station for Education and Research on Solar Activity at a National University in Peru

    Science.gov (United States)

    Ishitsuka, J. K.

    2006-11-01

    pepe@geo.igp.gob.pe Beginning in 1937, the Carnegie Institution of Washington made active regional observations with a spectro-helioscope at the Huancayo Observatory. In 1957, during the celebration of the International Geophysical Year Mutsumi Ishitsuka arrived at the Geophysical Institute of Peru and restarted solar observations from the Huancayo Observatory. Almost 69 years have passed and many contributions for the geophysical and solar sciences have been made. Now the Instituto Geofisico del Peru (IGP), in cooperation with the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA), and with the support of the National Astronomical Observatory of Japan, are planning to construct a solar station refurbishing a coelostat that worked for many years at the Huancayo Observatory. A 15 cm refractor telescope is already installed at the university, for the observation of sunspots. A solar Flare Monitor Telescope (FMT) from Hida Observatory of Kyoto University could be sent to Peru and installed at the solar station at UNICA. As the refurbished coelostat, FMT will become a good tool to improve education and research in sciences.

  9. Integrating rooftop solar into a multi-source energy planning optimization model

    International Nuclear Information System (INIS)

    Arnette, Andrew N.

    2013-01-01

    Highlights: • There is significant technical capacity for rooftop solar installations. • Rooftop solar generation is heavily dependent on key parameters. • Rooftop solar should be one of several options for increasing renewable energy. • Renewable energy planning should consider both cost and benefits. - Abstract: This research uses an optimization model to compare the role of rooftop solar generation versus large-scale solar and wind farm installations in renewable energy planning. The model consists of competing objectives, minimizing annual generation costs and minimizing annual greenhouse gas emissions. Rather than focus on the individual consumer’s investment decision, over 20 scenarios were developed which explored key input parameters such as the maximum penetration level of rooftop solar installations, pricing of equipment, tax credits, and net-metering policy to determine what role rooftop solar plays in renewable energy investment at an aggregate level. The research finds that at lower levels of penetration, such as those currently found in the United States, other renewable energy sources remain viable options, thus rooftop solar should be just one option considered when increasing development of renewable energy sources. The research also shows that a balanced approach taking into account both of the opposing objectives will lead to greater levels of rooftop solar generation than focusing solely on cost or emissions. Therefore, rooftop solar should be considered as part of an overall balanced approach to increasing renewable energy generation

  10. Report on the Mediterranean Solar Plan

    International Nuclear Information System (INIS)

    2009-01-01

    The first part of this report presents the Mediterranean Solar Plan (MSP) as an ambitious political initiative which aims at creating a better context for the Northern (Mediterranean) countries which are looking for a secure energy supply, and for the Southern and Eastern (Mediterranean) countries where demand is strongly increasing. It highlights the fact that the cost of this plan is indeed important but still limited regarding the regional scale. Its success therefore needs projects with sufficient profitability to attract investors and to be realised within an adapted law environment. The report also outlines that the plan needs a regional vision and a cooperative approach between North and South, that it will have a strong impact of electric interconnections all around the Mediterranean Sea, and that its governance needs to be clarified to maintain the political momentum created by its co-presidents

  11. Solar envelope zoning: application to the city planning process. Los Angeles case study

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Solar envelope zoning represents a promising approach to solar access protection. A solar envelope defines the volume within which a building will not shade adjacent lots or buildings. Other solar access protection techniques, such as privately negotiated easements, continue to be tested and implemented but none offer the degree of comprehensiveness evident in this approach. Here, the City of Los Angeles, through the Mayor's Energy Office, the City Planning Department, and the City Attorney's Office, examine the feasibility of translating the concept of solar envelopes into zoning techniques. They concluded that envelope zoning is a fair and consistent method of guaranteeing solar access, but problems of complexity and uncertainty may limit its usefulness. Envelope zoning may be inappropriate for the development of high density centers and for more restrictive community plans. Aids or tools to administer envelope zoning need to be developed. Finally, some combination of approaches, including publicly recorded easements, subdivision approval and envelope zoning, need to be adopted to encourage solar use in cities. (MHR)

  12. Texas Solar Collaboration DOE Rooftop Solar Challenge City of Houston Project Summary

    Energy Technology Data Exchange (ETDEWEB)

    Ronk, Jennifer [Houston Advanced Research Center, TX (United States)

    2013-02-14

    The City of Houston is committed to achieving a sustainable solar infrastructure. In 2008, Houston was named a United States Department of Energy (DOE) Solar America City. As a Solar America City, Houston teamed with the Houston Advanced Research Center (HARC), Sandia National Laboratory (Sandia), industry, and academia, to implement the Solar Houston Initiative and prepare the Solar Houston Plan. The Solar Houston initiative was focused on identifying and overcoming barriers associated with establishing a solar infrastructure that is incorporated into the City of Houston’s overall energy plan. A broad group of Houston area stakeholders, facilitated by HARC, came together to develop a comprehensive solar plan that went beyond technology to address barriers and establish demonstrations, public outreach, education programs and other activities. The plan included proposed scopes of work in four program areas: policies, solar integration, public outreach, and education. Through the support of the DOE SunShot Rooftop Solar Challenge (RSC) grant to the Texas Collaboration (San Antonio, Austin, and Hosuton), Houston has been able to implement several of the recommendations of the Solar Houston Plan. Specific recommendations that this project was able to support include; Working with the other Texas Solar America Cities (San Antonio and Austin), to harmonize permitting and inspection processes to simplify for installers and lower soft costs of installation; Participating in state level solar policy groups such as the Texas Renewable Energy Industries Association (TRIEA); Continued coordination with the local transmission and distribution utility (CenterPoint) and retail electric providers (REP); Identification of opportunities to improve permitting and interconnection; Providing training on PV systems to City inspectors; Educating the public by continuing outreach, training, and workshops, particularly using the the Green Building Resources Center; Evaluating methods of

  13. Long-term predictive assessments of solar and geomagnetic activities made on the basis of the close similarity between the solar inertial motions in the intervals 1840–1905 and 1980–2045

    Czech Academy of Sciences Publication Activity Database

    Charvátová, Ivanka

    2009-01-01

    Roč. 14, č. 1 (2009), s. 25-30 ISSN 1384-1076 R&D Projects: GA AV ČR(CZ) IAA300120608 Institutional research plan: CEZ:AV0Z30120515 Keywords : solar inertial motion * solar activity * geomagnetic activity * long-term predictive assessments Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.675, year: 2009

  14. Unit-specific contingency plan for the 183-H solar evaporation basins. Revision 1

    International Nuclear Information System (INIS)

    Zoric, J.P.

    1996-03-01

    This document is a supplement to the Hanford Facility Contingency Plan. It provides the unit-specific information needed to fully comply with the Washington Administrative Code, Chapter 173-303, ''Dangerous Waste Regulations,'' for contingency plans. General emergency and response information is contained in the Hanford Facility Contingency Plan and is not repeated in this supplement. The 183-H solar evaporation basins are four concrete internal surfaces which contained radiologically- and hazardous-contaminated waste. The 183-H basins are currently empty, inactive and designated as a Resource Conservation and Recovery Act interim-status treatment, storage, and disposal unit undergoing closure. There is no dangerous waste management actively occurring. There is very little likelihood of any incidents that would present hazards to public health or the environment occurring at the 183-H basins

  15. Unit-specific contingency plan for the 183-H Solar Evaporation Basins. Revision 2

    International Nuclear Information System (INIS)

    Zoric, J.P.

    1997-01-01

    This document is a supplement to the Hanford Facility Contingency Plan. It provides the unit-specific information needed to fully comply with the Washington Administrative Code, Chapter 173-303, ''Dangerous Waste Regulations,'' for contingency plans. General emergency and response information is contained in the Hanford Facility Contingency Plan and is not repeated in this supplement. The 183-H Solar Evaporation Basins are four concrete internal surfaces which contained radiologically- and hazardous-contaminated waste. The 183-H basins are currently empty, inactive and designated as a Resource Conservation and Recovery Act interim-status treatment, storage, and disposal unit undergoing closure. There is no dangerous waste management actively occurring. There is very little likelihood of any incidents that would present hazards to public health or the environment occurring at the 183-H basins

  16. A review of health, planning, insurance and property value issues related to active solar heating systems

    International Nuclear Information System (INIS)

    Sadler, R.; Spencer, L.; Digby, G.; Battye, L.

    1996-01-01

    The research reported here considers the potential health risks, local authority planning implications, insurance and property value aspects of solar water heating systems. The United Kingdom market for this technology is also discussed. Methodologies employed, including literature reviews, telephone and postal survey and re-analysis of a 1995 survey, are explained. No major problems are identified in any of the target areas although recommendations for water temperature management and coordinated local authority policies on renewable energy are given. (UK)

  17. Active solar distillation - A detailed review

    Energy Technology Data Exchange (ETDEWEB)

    Sampathkumar, K.; Pitchandi, P. [Department of Mechanical Engineering, Tamilnadu College of Engineering, Coimbatore 641659, Tamilnadu (India); Arjunan, T.V. [Department of Automobile Engineering, PSG College of Technology, Coimbatore 641004, Tamilnadu (India); Senthilkumar, P. [Department of Mechanical Engineering, KSR College of Engineering, Tiruchengode 637215, Tamilnadu (India)

    2010-08-15

    All over the world, access to potable water to the people are narrowing down day by day. Most of the human diseases are due to polluted or non-purified water resources. Even today, under developed countries and developing countries face a huge water scarcity because of unplanned mechanism and pollution created by manmade activities. Water purification without affecting the ecosystem is the need of the hour. In this context, many conventional and non-conventional techniques have been developed for purification of saline water. Among these, solar distillation proves to be both economical and eco-friendly technique particularly in rural areas. Many active distillation systems have been developed to overcome the problem of lower distillate output in passive solar stills. This article provides a detailed review of different studies on active solar distillation system over the years. Thermal modelling was done for various types of active single slope solar distillation system. This review would also throw light on the scope for further research and recommendations in active solar distillation system. (author)

  18. Physics of solar activity

    Science.gov (United States)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  19. Solar activity monitoring and forecasting capabilities at Big Bear Solar Observatory

    Directory of Open Access Journals (Sweden)

    P. T. Gallagher

    2002-07-01

    Full Text Available The availability of full-disk, high-resolution Ha images from Big Bear Solar Observatory (USA, Kanzelhöhe Solar Observatory (Austria, and Yunnan Astronomical Observatory (China allows for the continual monitoring of solar activity with unprecedented spatial and temporal resolution. Typically, this Global Ha Network (GHN provides almost uninterrupted Ha images with a cadence of 1 min and an image scale of 1'' per pixel.  Every hour, GHN images are transferred to the web-based BBSO Active Region Monitor (ARM; www.bbso.njit.edu/arm, which includes the most recent EUV, continuum, and magnetogram data from the Solar and Heliospheric Observatory, together with magnetograms from the Global Oscillation Network Group. ARM also includes a variety of active region properties from the National Oceanic and Atmospheric Administration’s Space Environment Center, such as up-to-date active region positions, GOES 5-min X-ray data, and flare identification. Stokes I, V, Q, and U images are available from the recently operational BBSO Digital Vector Magnetograph and the Vector Magnetograph at the Huairou Solar Observing Station of Beijing Observatory. Vector magnetograms provide complete information on the photospheric magnetic field, and allow for magnetic flux gradients, electric currents, and shear forces to be calculated: these measurements are extremely sensitive to conditions resulting in flaring activity. Furthermore, we have developed a Flare Prediction System which estimates the probability for each region to produce C-, M-, or X-class flares based on nearly eight years of NOAA data from cycle 22. This, in addition to BBSO’s daily solar activity reports, has proven a useful resource for activity forecasting.Key words. Solar physics, astronomy and astrophysics (flares and mass ejections; instruments and techniques; photosphere and chromosphere

  20. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  1. Solar collector manufacturing activity, 1990

    International Nuclear Information System (INIS)

    1992-01-01

    The Solar Collector Manufacturing Activity 1990 report prepared by the Energy Information Administration (EIA) presents summary and detailed data provided by domestic manufacturers on shipments of solar thermal collectors and photovoltaic cells and modules. Summary data on solar thermal collector shipments are presented for the period 1974 through 1990. Summary data on photovoltaic cell and module shipments are presented for the period 1982 through 1990. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1990

  2. The onset of the solar active cycle 22

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.

    1989-01-01

    There is a great deal of interest in being able to predict the main characteristics of a solar activity cycle (SAC). One would like to know, for instance, how large the amplitude (R sub m) of a cycle is likely to be, i.e., the annual mean of the sunspot numbers at the maximum of SAC. Also, how long a cycle is likely to last, i.e., its period. It would also be interesting to be able to predict the details, like how steep the ascending phase of a cycle is likely to be. Questions like these are of practical importance to NASA in planning the launch schedule for the low altitude, expensive spacecrafts like the Hubble Space Telescope, the Space Station, etc. Also, one has to choose a proper orbit, so that once launched the threat of an atmospheric drag on the spacecraft is properly taken into account. Cosmic ray data seem to indicate that solar activity cycle 22 will surpass SAC 21 in activity. The value of R sub m for SAC 22 may approach that of SAC 19. It would be interesting to see whether this prediction is borne out. Researchers are greatly encouraged to proceed with the development of a comprehensive prediction model which includes information provided by cosmic ray data

  3. The onset of the solar active cycle 22

    Science.gov (United States)

    Ahluwalia, H. S.

    1989-01-01

    There is a great deal of interest in being able to predict the main characteristics of a solar activity cycle (SAC). One would like to know, for instance, how large the amplitude (R sub m) of a cycle is likely to be, i.e., the annual mean of the sunspot numbers at the maximum of SAC. Also, how long a cycle is likely to last, i.e., its period. It would also be interesting to be able to predict the details, like how steep the ascending phase of a cycle is likely to be. Questions like these are of practical importance to NASA in planning the launch schedule for the low altitude, expensive spacecrafts like the Hubble Space Telescope, the Space Station, etc. Also, one has to choose a proper orbit, so that once launched the threat of an atmospheric drag on the spacecraft is properly taken into account. Cosmic ray data seem to indicate that solar activity cycle 22 will surpass SAC 21 in activity. The value of R sub m for SAC 22 may approach that of SAC 19. It would be interesting to see whether this prediction is borne out. Researchers are greatly encouraged to proceed with the development of a comprehensive prediction model which includes information provided by cosmic ray data.

  4. Interim status of closure/post-closure plan for 183-H solar evaporation basins

    International Nuclear Information System (INIS)

    1988-03-01

    This report describes a plan for decommissioning several solar evaporation basins on the Hanford reservation. The document describes procedures for sampling during decommissioning and a plan for certification of the resulting completed landfill. Additional plans deal with the training, security of the site, and post-closure monitoring

  5. Solar energy in building construction practice. Solar architecture and solar engineering - fundamentals and uses. Sonnenenergie in der Baupraxis. Solar-Architektur und Solar-Technik - Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Weik, H.; Hahn, G.; Marschall, F.; Meister, H.; Peters, W.; Ranft, F.

    1991-01-01

    This anthology presents a number of overall suggestions for modern, trend-setting building construction. Details are given about active in addition to passive solar energy utilization, i.e. combinations of solar architecture and solar engineering. In an intelligible way accessible to non-physicist readers, part one discusses the related physicotechnical and town-planning fundamentals. Parts two and three are dedicated to building construction practice. They discuss the various problems of solar energy utilization from the point of view of architects, and refer to economic aspects and thermal insulation. Numerous pictures, diagrams and tables complete the book. (BWI) With 59 figs.

  6. Construction of a century solar chromosphere data set for solar activity related research

    Science.gov (United States)

    Lin, Ganghua; Wang, Xiao Fan; Yang, Xiao; Liu, Suo; Zhang, Mei; Wang, Haimin; Liu, Chang; Xu, Yan; Tlatov, Andrey; Demidov, Mihail; Borovik, Aleksandr; Golovko, Aleksey

    2017-06-01

    This article introduces our ongoing project "Construction of a Century Solar Chromosphere Data Set for Solar Activity Related Research". Solar activities are the major sources of space weather that affects human lives. Some of the serious space weather consequences, for instance, include interruption of space communication and navigation, compromising the safety of astronauts and satellites, and damaging power grids. Therefore, the solar activity research has both scientific and social impacts. The major database is built up from digitized and standardized film data obtained by several observatories around the world and covers a time span of more than 100 years. After careful calibration, we will develop feature extraction and data mining tools and provide them together with the comprehensive database for the astronomical community. Our final goal is to address several physical issues: filament behavior in solar cycles, abnormal behavior of solar cycle 24, large-scale solar eruptions, and sympathetic remote brightenings. Significant signs of progress are expected in data mining algorithms and software development, which will benefit the scientific analysis and eventually advance our understanding of solar cycles.

  7. Construction of a century solar chromosphere data set for solar activity related research

    Directory of Open Access Journals (Sweden)

    Ganghua Lin

    2017-06-01

    Full Text Available This article introduces our ongoing project “Construction of a Century Solar Chromosphere Data Set for Solar Activity Related Research”. Solar activities are the major sources of space weather that affects human lives. Some of the serious space weather consequences, for instance, include interruption of space communication and navigation, compromising the safety of astronauts and satellites, and damaging power grids. Therefore, the solar activity research has both scientific and social impacts. The major database is built up from digitized and standardized film data obtained by several observatories around the world and covers a timespan more than 100 years. After careful calibration, we will develop feature extraction and data mining tools and provide them together with the comprehensive database for the astronomical community. Our final goal is to address several physical issues: filament behavior in solar cycles, abnormal behavior of solar cycle 24, large-scale solar eruptions, and sympathetic remote brightenings. Significant progresses are expected in data mining algorithms and software development, which will benefit the scientific analysis and eventually advance our understanding of solar cycles.

  8. Solar active region display system

    Science.gov (United States)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  9. Sustainable Buildings. Using Active Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, M. Keith [Univ. of Louisville, KY (United States); Barnett, Russell [Univ. of Louisville, KY (United States)

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  10. Ten cycles of solar and geomagnetic activity

    International Nuclear Information System (INIS)

    Legrand, J.P.

    1981-01-01

    Series of 110 years of sunspot numbers and indices of geomagnetic activity are used with 17 years of solar wind data in order to study through solar cycles both stream and shock event solar activity. According to their patterns on Bartels diagrams of geomagnetic indices, stable wind streams and transient solar activities are separated from each other. Two classes of stable streams are identified: equatorial streams occurring sporadically, for several months, during the main phase of sunspot cycles and both polar streams established, for several years, at each cycle, before sunspot minimum. Polar streams are the first activity of solar cycles. For study of the relationship between transient geomagnetic phenomena and sunspot activity, we raise the importance of the contribution, at high spot number, of severe storms and, at low spot number, of short lived and unstable streams. Solar wind data are used to check and complete the above results. As a conclusion, we suggest a unified scheme of solar activity evolution with a starting point every eleventh year, a total duration of 17 years and an overlapping of 6 years between the first and the last phase of both successive series of phenomena: first, from polar field reversal to sunspot minimum, a phase of polar wind activity of the beginning cycle is superimposed on the weak contribution of shock events of the ending cycle; secondly, an equatorial phase mostly of shock events is superimposed on a variable contribution of short lived and sporadic stable equatorial stream activities; and thirdly a phase of low latitude shock events is superimposed on the polar stream interval of the following cycle. (orig.)

  11. Latitudinal variation of the topside electron temperature at different levels of solar activity

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Bilitza, D.; Třísková, Ludmila

    2009-01-01

    Roč. 44, č. 6 (2009), s. 693-700 ISSN 0273-1177 R&D Projects: GA AV ČR IAA300420603 Grant - others: NASA (US) NNH06CD17C Institutional research plan: CEZ:AV0Z30420517 Keywords : Electron temperature * Solar activity variation * Latitudinal dependence Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.079, year: 2009

  12. Solar Radius at Subterahertz Frequencies and Its Relation to Solar Activity

    Science.gov (United States)

    Menezes, Fabian; Valio, Adriana

    2017-12-01

    The Sun emits radiation at several wavelengths of the electromagnetic spectrum. In the optical band, the solar radius is 695 700 km, and this defines the photosphere, which is the visible surface of the Sun. However, as the altitude increases, the electromagnetic radiation is produced at other frequencies, causing the solar radius to change as a function of wavelength. These measurements enable a better understanding of the solar atmosphere, and the radius dependence on the solar cycle is a good indicator of the changes that occur in the atmospheric structure. We measure the solar radius at the subterahertz frequencies of 0.212 and 0.405 THz, which is the altitude at which these emissions are primarily generated, and also analyze the radius variation over the 11-year solar activity cycle. For this, we used radio maps of the solar disk for the period between 1999 and 2017, reconstructed from daily scans made by the Solar Submillimeter-wave Telescope (SST), installed at El Leoncito Astronomical Complex (CASLEO) in the Argentinean Andes. Our measurements yield radii of 966.5'' ±2.8'' for 0.2 THz and 966.5'' ±2.7'' for 0.4 THz. This implies a height of 5.0 ±2.0 ×106 m above the photosphere. Furthermore, we also observed a strong anticorrelation between the radius variation and the solar activity at both frequencies.

  13. Measures for the Diffusion of Solar PV are Aligned in Technology Action Plans for Six Countries in Africa

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer; Pedersen, Mathilde Brix

    2014-01-01

    African countries from 2010 to 2013, dedicated government committees have prioritized climate change mitigation technologies and developed action plans for the diffusion of the selected technologies. The project results show that solar PV is high on the agenda in Africa. Six out of ten countries...... in the region prioritized solar PV, and action plans for the diffusion of solar home systems were put forward in Cote d’Ivoire, Kenya, Mali and Senegal, while the implementation of grid-connected systems was proposed in Rwanda, Mali and Senegal. The project reports and technology action plans prepared...... in these six countries are used as the basis for comparing how solar PV is perceived in these countries and how policy measures enabling environmental adjustments and investment programmes are being planned to promote diffusion of the technology in these different contexts....

  14. Lighting and cooling energy consumption in an open-plan office using solar film coating

    International Nuclear Information System (INIS)

    Li, Danny H.W.; Lam, Tony N.T.; Wong, S.L.; Tsang, Ernest K.W.

    2008-01-01

    In subtropical Hong Kong, solar heat gain via glazing contributes to a significant proportion of the building envelope cooling load. The principal fenestration design includes eliminating direct sunlight and reducing cooling requirements. Daylighting is an effective approach to allow a flexible building facade design strategy, and to enhance an energy-efficient and green building development. This paper studies the lighting and cooling energy performances for a fully air-conditioned open-plan office when solar control films together with daylight-linked lighting controls are being used. Measurements were undertaken at two stages including the electricity expenditures for the office using photoelectric dimming controls only (first stage) and together with the solar control film coatings on the windows (second stage). Electric lighting and cooling energy consumption, transmitted daylight illuminance and solar radiation were systematically recorded and analysed. The measured data were also used for conducting and validating the building energy simulations. The findings showed that the solar film coatings coupled with lighting dimming controls cut down 21.2% electric lighting and 6.9% cooling energy consumption for the open-plan office

  15. DASL-Data and Activities for Solar Learning

    Science.gov (United States)

    Jones, Harrison P.; Henney, Carl; Hill, Frank; Gearen, Michael; Pompca, Stephen; Stagg, Travis; Stefaniak, Linda; Walker, Connie

    2004-01-01

    DASL-Data and Activities for Solar Learning Data and Activities for Solar Learning (DASL) provides a classroom learning environment based on a twenty-five year record of solar magnetograms from the National Solar Observatory (NSO) at Kitt Peak, AZ. The data, together with image processing software for Macs or PCs, can be used to learn basic facts about the Sun and astronomy at the middle school level. At the high school level, students can study properties of the Sun's magnetic cycle with classroom exercises emphasizing data and error analysis and can participate in a new scientific study, Research in Active Solar Longitudes (RASL), in collaboration with classrooms throughout the country and scientists at NSO and NASA. We present a half-day course to train teachers in the scientific content of the project and its classroom use. We will provide a compact disc with the data and software and will demonstrate software installation and use, classroom exercises, and participation in RASL with computer projection.

  16. On the role of solar and geomagnetic activity in long-term trends in the atmosphere-ionosphere system

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan

    2005-01-01

    Roč. 67, č. 1-2 (2005), s. 83-92 ISSN 1364-6826 R&D Projects: GA AV ČR KSK3012103; GA AV ČR IAA3042102 Institutional research plan: CEZ:AV0Z30420517 Keywords : Long-term trends * Atmosphere * Ionosphere * Solar activity * Geomagnetic activity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.309, year: 2005

  17. Active solar information dissemination activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The principal objective of the project has been the development of an information dissemination strategy for the UK active solar heating industry. The project has also aimed to prepare the industry for the implementation of such a strategy and to produce initial information materials to support the early stages of the implementation process. (author)

  18. Radar meteor rates and solar activity

    International Nuclear Information System (INIS)

    Prikryl, P.

    1983-01-01

    The short-term variation of diurnal radar meteor rates with solar activity represented by solar microwave flux Fsub(10.7), and sunspots relative number Rsub(z), is investigated. Applying the superposed-epoch analysis to the observational material of radar meteor rates from Christchurch (1960-61 and 1963-65), a decrease in the recorded radar rates is found during days of enhanced solar activity. No effect of geomagnetic activity similar to the one reported for the Swedish and Canadian radar meteor data was found by the author in the Christchurch data. A possible explanation of the absence of the geomagnetic effect on radar meteor rates from New Zealand due to a lower echo ceiling height of the Christchurch radar is suggested. The variation of the atmospheric parameters as a possible cause of the observed variation in radar meteor rates is also discussed. (author)

  19. Solar activity simulation and forecast with a flux-transport dynamo

    Science.gov (United States)

    Macario-Rojas, Alejandro; Smith, Katharine L.; Roberts, Peter C. E.

    2018-06-01

    We present the assessment of a diffusion-dominated mean field axisymmetric dynamo model in reproducing historical solar activity and forecast for solar cycle 25. Previous studies point to the Sun's polar magnetic field as an important proxy for solar activity prediction. Extended research using this proxy has been impeded by reduced observational data record only available from 1976. However, there is a recognised need for a solar dynamo model with ample verification over various activity scenarios to improve theoretical standards. The present study aims to explore the use of helioseismology data and reconstructed solar polar magnetic field, to foster the development of robust solar activity forecasts. The research is based on observationally inferred differential rotation morphology, as well as observed and reconstructed polar field using artificial neural network methods via the hemispheric sunspot areas record. Results show consistent reproduction of historical solar activity trends with enhanced results by introducing a precursor rise time coefficient. A weak solar cycle 25, with slow rise time and maximum activity -14.4% (±19.5%) with respect to the current cycle 24 is predicted.

  20. Prediciting Solar Activity: Today, Tomorrow, Next Year

    Science.gov (United States)

    Pesnell, William Dean

    2008-01-01

    Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to space weather effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less fuel can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms. Predicting those events that will affect our assets in space includes a solar prediction and how the radiation will propagate through the solar system. I will talk our need for solar activity predictions and anticipate how those predictions could be made more accurate in the future.

  1. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Research Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Arif, Johan [Geology Research Division, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi [Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia)

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  2. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Science.gov (United States)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  3. Solar Energy Education. Home economics: student activities. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  4. Study of an active wall solar heating system

    International Nuclear Information System (INIS)

    Kassem, Talal

    2006-01-01

    An active wall solar heating system was built and tested. In the same time a compatible computer program has been according to set the recommended dimensions for the solar collectors where (F-Chart) method used to set the ratio of monthly solar sharing average for the examined heating system. Some parameters, such as collectors' areas, its tilt angle and near earth reflecting were experimentally investigated, affecting the executed active solar heating system performance. The study explain the ability of using this system which is simple, Low coast and high performance in heating residential and public buildings and heating water with ratio of yearly solar sharing achieves the needed saving of using this system.(Author)

  5. Solar wind fluctuations at large scale - A comparison between low and high solar activity conditions

    Science.gov (United States)

    Bavassano, B.; Bruno, R.

    1991-02-01

    The influence of the sun's activity cycle on the solar wind fluctuations at time scales from 1 hour to 3 days in the inner heliosphere (0.3 to 1 AU) is investigated. Hourly averages of plasma and magnetic field data by Helios spacecraft are used. Since fluctuations behave quite differently with changing scale, the analysis is performed separately for two different ranges in time scale. Between 1 and 6 hours Alfvenic fluctuations and pressure-balanced structures are extensively observed. At low solar activity and close to 0.3 AU Alfvenic fluctuations are more frequent than pressure-balanced structures. This predominance, however, weakens for rising solar activity and radial distance, to the point that a role-exchange, in terms of occurrence rate, is found at the maximum of the cycle close to 1 AU. On the other hand, in all cases Alfvenic fluctuations have a larger amplitude than pressure-balanced structures. The Alfvenic contribution to the solar wind energy spectrum comes out to be dominant at all solar activity conditions. These findings support the conclusion that the solar cycle evolution of the large-scale velocity pattern is the factor governing the observed variations.

  6. Strategic market approach for entering the Indian solar water pump market : plan the marketing strategy for solar off-grid applications

    OpenAIRE

    Almanasreh, Khalil

    2011-01-01

    This study examines the strategic market approach for investing in solar water pumps market (SWP) in India, and Punjab state as a business case. The main research question is: What is an appropriate strategic market approach to invest in solar water pump market in India? The study focuses on the marketing strategy and strategic planning to enter the Indian market. The thesis follows the qualitative study design where the data was collected by observing the market and interviewing main sta...

  7. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    Saeedi, F.; Sarhaddi, F.; Behzadmehr, A.

    2015-01-01

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  8. Solar-Type Activity in Main-Sequence Stars

    CERN Document Server

    Gershberg, Roald E

    2005-01-01

    Solar-type activity over the whole range of the electromagnetic spectrum is a phenomenon inherent in the majority of low- and moderate-mass main sequence stars. In this monograph observational results are summarized in a systematic and comprehensive fashion. The analysis of the various manifestations of such stellar activity leads to the identification of these phenomena with macroscopic non-linear processes in a magnetized plasma. Comparative study of flare stars and the Sun has become increasingly fruitful and is presently an active field of research involving stellar and solar physicists, experts in plasma physics and high-energy astrophysicists. This book will provide them with both an introduction and overview of observational results from the first optical photometry and spectroscopy, from the satellite telescopes International Ultraviolet Explorer to Hubble Space Telescope, XMM-Newton and Chandra, as well as with the present physical interpretation of solar-type activity in main sequence stars. Gershbe...

  9. Interstate Solar Coordination Council. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L.

    1981-02-15

    The ISCC program accomplishments and future plans are reported as follows: overall activities; development of a national standards and certification program for solar collectors; development of a national organization for operating the collector certification program; review of applicability and use of solar collector rating procedures; development of a program for evaluation/testing/certification of solar systems; development of ISCC as a formal and independent organization; development of sizing and installation manual; and coordination efforts with other solar groups. (MHR)

  10. Unit-Specific Contingency Plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    Edens, V.G.

    1998-04-01

    This document is a supplement to DOE/RL-93-75, 'Hanford Contingency Plan.' It provides the unit-specific information needed to fully comply with the Washington Administrative Code. General emergency and response information is contained in the Hanford Facility Contingency Plan and is not repeated in this supplement. The 183-H Solar Evaporation Basins were four concrete internal surfaces, which contained radiologically and hazardous contaminated waste. The 183-H Basin area is a final status treatment, storage, and disposal unit undergoing Resource Conservation and Recovery Act modified post- closure care

  11. Solar wind fluctuations at large scale: A comparison between low and high solar activity conditions

    International Nuclear Information System (INIS)

    Bavassano, B.; Bruno, R.

    1991-01-01

    The influence of the Sun's activity cycle on the solar wind fluctuations at time scales from 1 hour to 3 days in the inner heliosphere (0.3 to 1 AU) is investigated. Hourly averages of plasma and magnetic field data by Helios spacecraft are used. Since fluctuations behave quite differently with changing scale, the analysis is performed separately for two different ranges in time scale. Between 1 and 6 hours Alfvenic fluctuations and pressure-balanced structures are extensively observed. At low solar activity and close to 0.3 AU, Alfvenic fluctuations are more frequent than pressure-balanced structures. This predominance, however, weakens for rising solar activity and radial distance, to the point that a role exchange, in terms of occurrence rate, is found at the maximum of the cycle close to 1 AU. On the other hand, in all cases Alfvenic fluctuations have a larger amplitude than pressure-balanced structures. On the whole, the Alfvenic contribution to the solar wind energy spectrum comes out to be dominant at all solar activity conditions. At scales from 0.5 to 3 days the most important feature is the growth, as the solar wind expansion develops, of strong positive correlations between magnetic and thermal pressures. These structures are progressively built up by the interaction between different wind flows. This effect is more pronounced at low than at high activity. Our findings support the conclusion that the solar cycle evolution of the large-scale velocity pattern is the factor governing the observed variations

  12. Danish participation in the IEA solar cell activities

    International Nuclear Information System (INIS)

    1994-05-01

    In the 12-month period 01.05.93 - 30.04.94 the Danish activities in the IEA 'Solar Cell Agreement' consisted in: participation in the Executive Committee (ExCo) and participation in Task 1 'Exchange and Dissemination of Information on PV Power Systems'. ExCo has meetings every half-year and is a coordinating organ for the Agreement. Work on the Task 1 is organized in 4 subtasks: (1) mapping of solar cell activities in the OECD countries and preparation of an IEA handbook on solar cell technology; (2) publishing of a semiannual newsletter about the agreement; (3) an 'executive conference' on solar cell technology and its uses with participation of the decision-makers in respective power industries; (4) information dissemination whenever required. Demonstration projects, like a photovoltaic roof-integrated system connected to the grid. have been implemented. Three larger solar cell projects, subsidized by the EU means, comprehend 'real time monitoring' by a solar system, WHO project 'Solar Energy Applications for Primary Health Care Clinics for Remote Rural Areas' (SAPHIR) and a grid-connected photovoltaic system in a suburb residential settlement. (EG)

  13. Study of non-domestic applications for active solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Stammers, J.R.

    1997-11-01

    The UK Department of Trade and Industry (through ETSU) commissioned this study as part of its active solar programme. It was carried out from October 1996 to June 1997. The objective was to assess the potential for the use of active solar heating in non-domestic applications. The study was carried out by searching the literature, carrying out case studies and interviewing members of the solar industry and experts in other fields. There are currently about 45-50 active solar non-domestic schemes in operation in the UK, mostly for heating tap water in buildings of different types. The biggest potential for future non-domestic sales also lies in solar water heating for buildings. Most of the opportunities seem to be in the following building types: ablutions blocks in caravan and holiday camps, sheltered flats and hostels, nursing homes, office buildings, hotels and guest houses, and schools occupied during the summer. There are some other building types which might present niche markets for solar water heating. The market for active solar systems in space heating and cooling appears to be negligible. There is one other market for active solar heating in the non-domestic building sector. This is for warming water used to maintain stand-by generators at a temperature which allows them to kick in without delay in the event of a mains power failure. The main market is in buildings housing computers which control the provision of vital services, e.g. electricity, water and gas. (author)

  14. Magnetic activity effect on equatorial spread-F under high and low solar activity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, K S.V.; Somayajulu, V V; Krishna Murthy, B V

    1986-08-01

    The effect of magnetic activity on spread-F at two equatorial stations, Trivandrum and Huancayo, separated in longitude by about 150 deg, under high and low solar activity conditions has been investigated. Magnetic activity produces strong inhibition effect on spread-F at Huancayo compared to that at Trivandrum especially during high solar activity period. This results in a decrease of spread-F with solar activity at Huancayo in contrast to Trivandrum. These findings are explained in terms of F-region electrodynamics and Rayleigh-Taylor instability mechanism for spread-F.

  15. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  16. Sun in the Epoch ``LOWERED'' Solar Activity: the Comparative Analysis of the Current 24 Solar Cycle and Past Authentic Low Cycles

    Science.gov (United States)

    Vitaly, Ishkov

    A reliable series of the relative numbers of sunspots (14 solar cycles ‒ 165 years) it leads to the only scenario of solar activity cycles - to the alternation of epochs of “increased” (18 ‒ 22 cycles of solar activity) and “lowered” (12 ‒ 16 and 24 ‒ ...) solar activity with the periods of solar magnetic field reconstruction in solar zone of the sunspots formation (11, 12, 23) from one epoch to another. The regime of the produce of magnetic field significantly changes in these periods, providing to the subsequent 5 cycles the stable conditions of solar activity. Space solar research made it possible to sufficiently fully investigate characteristics and parameters of the solar cycles for the epoch of “increased” (20 ‒ 22 cycles) solar activity and period of the reconstruction (22 ‒ 23 cycles) to the epoch of “lowered” solar activity (24 ‒ ... cycles). In this scenario 24 solar cycle is the first solar cycle of the second epoch of “lowered” solar activity. Therefore his development and characteristics roughly must be described in the context of the low solar cycles development (12, 14, and 16). In the current solar cycle the sunspot-forming activity is lowered, the average areas of the sunspot groups correspond to values for epoch of “lowered “solar activity, average magnetic field in the umbra of sunspots was reduced approximately to 700 gauss, and for this time was observed only 4 very large sunspot groups (≥1500 mvh). Flare activity substantially was lowered: for the time of the current solar cycle development it was occurrence of M-class flares M - 368, class X - 32, from which only 2 solar flares of class X> 5. Solar proton events are observed predominantly small intensity; but only 5 from them were the intensity of ≥100 pfu (S2) and 4 - ≥1000 pfu (S3). The first five years of the 24 cycle evolution confirm this assumption and the possibility to give the qualitative forecast of his evolution and development of the

  17. Active Longitude and Solar Flare Occurrences

    Science.gov (United States)

    Gyenge, N.; Ludmány, A.; Baranyi, T.

    2016-02-01

    The aim of the present work is to specify the spatio-temporal characteristics of flare activity observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Geostationary Operational Environmental Satellite (GOES) in connection with the behavior of the longitudinal domain of enhanced sunspot activity known as active longitude (AL). By using our method developed for this purpose, we identified the AL in every Carrington Rotation provided by the Debrecen Photoheliographic Data. The spatial probability of flare occurrence has been estimated depending on the longitudinal distance from AL in the northern and southern hemispheres separately. We have found that more than 60% of the RHESSI and GOES flares is located within +/- 36^\\circ from the AL. Hence, the most flare-productive active regions tend to be located in or close to the active longitudinal belt. This observed feature may allow for the prediction of the geo-effective position of the domain of enhanced flaring probability. Furthermore, we studied the temporal properties of flare occurrence near the AL and several significant fluctuations were found. More precisely, the results of the method are the following fluctuations: 0.8, 1.3, and 1.8 years. These temporal and spatial properties of the solar flare occurrence within the active longitudinal belts could provide us with an enhanced solar flare forecasting opportunity.

  18. Predicting Solar Activity Using Machine-Learning Methods

    Science.gov (United States)

    Bobra, M.

    2017-12-01

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections. However, we do not, as of yet, fully understand the physical mechanism that triggers solar eruptions. A machine-learning algorithm, which is favorable in cases where the amount of data is large, is one way to [1] empirically determine the signatures of this mechanism in solar image data and [2] use them to predict solar activity. In this talk, we discuss the application of various machine learning algorithms - specifically, a Support Vector Machine, a sparse linear regression (Lasso), and Convolutional Neural Network - to image data from the photosphere, chromosphere, transition region, and corona taken by instruments aboard the Solar Dynamics Observatory in order to predict solar activity on a variety of time scales. Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We discuss our results (Bobra and Couvidat, 2015; Bobra and Ilonidis, 2016; Jonas et al., 2017) as well as other attempts to predict flares using machine-learning (e.g. Ahmed et al., 2013; Nishizuka et al. 2017) and compare these results with the more traditional techniques used by the NOAA Space Weather Prediction Center (Crown, 2012). We also discuss some of the challenges in using machine-learning algorithms for space science applications.

  19. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    Science.gov (United States)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  20. Solar Cell Polymer Based Active Ingredients PPV and PCBM

    Science.gov (United States)

    Hardeli, H.; Sanjaya, H.; Resikarnila, R.; Nitami H, R.

    2018-04-01

    A polymer solar cell is a solar cell based on a polymer bulk heterojunction structure using the method of thin film, which can convert solar energy into electrical energy. Absorption of light is carried by active material layer PPV: PCBM. This study aims to make solar cells tandem and know the value of converting solar energy into electrical energy and increase the value of efficiency generated through morphological control, ie annealing temperature and the ratio of active layer mixture. The active layer is positioned above the PEDOT:PSS layer on ITO glass substrate. The characterization results show the surface morphology of the PPV:PCBM active layer is quite evenly at annealing temperature of 165 ° C. The result of conversion of electrical energy with a UV light source in annealing samples with temperature 165 ° C is 0.03 mA and voltage of 4.085 V with an efficiency of 2.61% and mixed ratio variation was obtained in comparison of P3HT: PCBM is 1: 3

  1. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    Science.gov (United States)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  2. A study of the asymmetrical distribution of solar activity features on solar and plasma parameters (1967-2016)

    Science.gov (United States)

    El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.

    2018-04-01

    The impact of asymmetrical distribution of hemispheric sunspot areas (SSAs) on the interplanetary magnetic field, plasma, and solar parameters from 1967 to 2016 has been studied. The N-S asymmetry of solar-plasma activities based on SSAs has a northern dominance during solar cycles 20 and 24. However, it has a tendency to shift to the southern hemisphere in cycles 21, 22, and 23. The solar cycle 23 showed that the sorted southern SSAs days predominated over the northern days by ˜17%. Through the solar cycles 21-24, the SSAs of the southern hemisphere were more active. In contrast, the northern SSAs predominate over the southern one by 9% throughout solar cycle 20. On the other hand, the average differences of field magnitude for the sorted northern and southern groups during solar cycles 20-24 are statistically insignificant. Clearly, twenty years showed that the solar plasma ion density from the sorted northern group was denser than that of southern group and a highest northern dominant peak occurred in 1971. In contrast, seventeen out of fifty years showed the reverse. In addition, there are fifteen clear asymmetries of solar wind speed (SWS), with SWS (N) > SWS (S), and during the years 1972, 2002, and 2008, the SWS from the sorted northern group was faster than that of southern activity group by 6.16 ± 0.65 km/s, 5.70 ± 0.86 km/s, and 5.76 ± 1.35 km/s, respectively. For the solar cycles 20-24, the grand-averages of P from the sorted solar northern and southern have nearly the same parameter values. The solar plasma was hotter for the sorted northern activity group than the southern ones for 17 years out of 50. Most significant northern prevalent asymmetries were found in 1972 (5.76 ± 0.66 × 103 K) and 1996 (4.7 ± 0.8 × 103 K), while two significant equivalent dominant southern asymmetries (˜3.8 ± 0.3 × 103 K) occurred in 1978 and 1993. The grand averages of sunspot numbers have symmetric activity for the two sorted northern and southern hemispheres

  3. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Frazier, T.P.

    1994-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  4. Initiation of non-tropical thunderstorms by solar activity

    Energy Technology Data Exchange (ETDEWEB)

    Herman, J R [Radio Sciences Co., Melbourne, Fla. (USA); Goldberg, R A

    1978-02-01

    Correlative evidence accumulating since 1926 suggests that there must be some physical coupling mechanism between solar activity and thunderstorm occurrence in middle to high latitudes. Such a link may be provided by alteration of atmospheric electric parameters through the influence of cosmic ray decreases and/or high-energy solar protons associated with active solar events. Galactic cosmic ray decreases tend to enhance the electric field at low heights. The protons produce excess ionization near and above 20 km, greatly increasing the atmospheric conductivity and possibly lowering the height of the electrosphere. Consequent effects near the solar proton cut-off latitude also lead to an enhancement of the atmospheric electric field near the surface. If appropriate meteorological conditions (warm moist air with updrafts) exist or develop during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. The suggested mechanism appears plausible enough to warrant a co-ordinated experimental effort involving satellite balloon and ground-based measurements of the possible forcing functions (solar protons and cosmic rays) and the responding atmospheric electrical and ionic species' characteristics.

  5. Report of a Planning Conference for Solar Technology Information Transfer (Nashville, Tennessee, September 28-29, 1977).

    Science.gov (United States)

    Gleaves, Edwin S., Ed.

    A summary of the deliberations of the Planning Conference for Solar Technology Information Transfer--to discuss and outline a functioning solar energy technology network in the State of Tennessee--and a set of recommendations for future action are presented in this report. Topic areas include: (1) the Tennessee Regional Library Service; (2) the…

  6. Are cold winters in Europe associated with low solar activity?

    International Nuclear Information System (INIS)

    Lockwood, M; Harrison, R G; Woollings, T; Solanki, S K

    2010-01-01

    Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century. The Maunder minimum (about 1650-1700) was a prolonged episode of low solar activity which coincided with more severe winters in the United Kingdom and continental Europe. Motivated by recent relatively cold winters in the UK, we investigate the possible connection with solar activity. We identify regionally anomalous cold winters by detrending the Central England temperature (CET) record using reconstructions of the northern hemisphere mean temperature. We show that cold winter excursions from the hemispheric trend occur more commonly in the UK during low solar activity, consistent with the solar influence on the occurrence of persistent blocking events in the eastern Atlantic. We stress that this is a regional and seasonal effect relating to European winters and not a global effect. Average solar activity has declined rapidly since 1985 and cosmogenic isotopes suggest an 8% chance of a return to Maunder minimum conditions within the next 50 years (Lockwood 2010 Proc. R. Soc. A 466 303-29): the results presented here indicate that, despite hemispheric warming, the UK and Europe could experience more cold winters than during recent decades.

  7. Indian Solar Cities Programme: An Overview of Major Activities and Accomplishments; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.

    2012-05-01

    This paper details the Indian Solar City Programme, provides an overview of one city's Master Plan and implementation progress, describes NREL's support of the Indian Solar City Programme, and outlines synergies and differences between the Indian and American programs including unique challenges and opportunities India is facing.

  8. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  9. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion?

    Directory of Open Access Journals (Sweden)

    I. Charvátová

    Full Text Available A solar activity cycle of about 2400 years has until now been of uncertain origin. Recent results indicate it is caused by solar inertial motion. First we describe the 178.7-year basic cycle of solar motion. The longer cycle, over an 8000 year interval, is found to average 2402.2 years. This corresponds to the Jupiter/Heliocentre/Barycentre alignments (9.8855 × 243. Within each cycle an exceptional segment of 370 years has been found characterized by a looping pattern by a trefoil or quasitrefoil geometry. Solar activity, evidenced by 14C tree-ring proxies, shows the same pattern. Solar motion is computable in advance, so this provides a basis for future predictive assessments. The next 370-year segment will occur between AD 2240 and 2610.

    Key words: Solar physics (celestial mechanics

  10. Periodic Variation of the North-South Asymmetry of Solar Activity ...

    Indian Academy of Sciences (India)

    Abstract. We report here a study of various solar activity phenomena occurring in both north and south hemispheres of the Sun during solar cycles 8-23. In the study we have used sunspot data for the period 1832—. 1976, flare index data for the period 1936-1993, Hα flare data 1993-1998 and solar active prominences data ...

  11. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003

    International Nuclear Information System (INIS)

    Hadorn, J.-C.; Renaud, P.

    2003-01-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD+D projects

  12. Enerplan, Professional association of solar energy - activity report 2006

    International Nuclear Information System (INIS)

    2007-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2006 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  13. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Directory of Open Access Journals (Sweden)

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  14. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    Energy Technology Data Exchange (ETDEWEB)

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  15. Enerplan, Professional association of solar energy - activity report 2007. Network of solar energy professionals in France

    International Nuclear Information System (INIS)

    2008-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2007 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  16. Enerplan, Professional association of solar energy - activity report 2008. Acting for solar energy promotion and development

    International Nuclear Information System (INIS)

    2009-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2008 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  17. A methodology for sunlight urban planning: a computer-based solar and sky vault obstruction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fernando Oscar Ruttkay; Silva, Carlos Alejandro Nome [Federal Univ. of Santa Catarina (UFSC), Dept. of Architecture and Urbanism, Florianopolis, SC (Brazil); Turkienikz, Benamy [Federal Univ. of Rio Grande do Sul (UFRGS), Faculty of Architecture, Porto Alegre, RS (Brazil)

    2001-07-01

    The main purpose of the present study is to describe a planning methodology to improve the quality of the built environment based on the rational control of solar radiation and the view of the sky vault. The main criterion used to control the access and obstruction of solar radiation was the concept of desirability and undesirability of solar radiation. A case study for implementing the proposed methodology is developed. Although needing further developments to find its way into regulations and practical applications, the methodology has shown a strong potential to deal with an aspect that otherwise would be almost impossible. (Author)

  18. Solar Schematic

    Science.gov (United States)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  19. (Tele)Connectivity in climate variability at different spatial/temporal scales in relation to solar and geomagnetic activity

    Czech Academy of Sciences Publication Activity Database

    Paluš, Milan; Hartman, David; Vejmelka, Martin; Novotná, Dagmar

    2011-01-01

    Roč. 13, - (2011), s. 9579 ISSN 1607-7962. [European Geosciences Union General Assembly 2011. 03.04.2011-08.04.2011, Vienna] R&D Projects: GA AV ČR IAA300420805 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z30420517 Keywords : climate variability * phase coherence * synchronization * North Atlantic Oscillation * solar activity Subject RIV: BB - Applied Statistics, Operational Research

  20. Migration and Extension of Solar Active Longitudinal Zones

    Science.gov (United States)

    Gyenge, N.; Baranyi, T.; Ludmány, A.

    2014-02-01

    Solar active longitudes show a characteristic migration pattern in the Carrington coordinate system if they can be identified at all. By following this migration, the longitudinal activity distribution around the center of the band can be determined. The half-width of the distribution is found to be varying in Cycles 21 - 23, and in some time intervals it was as narrow as 20 - 30 degrees. It was more extended around a maximum but it was also narrow when the activity jumped to the opposite longitude. Flux emergence exhibited a quasi-periodic variation within the active zone with a period of about 1.3 years. The path of the active-longitude migration does not support the view that it might be associated with the 11-year solar cycle. These results were obtained for a limited time interval of a few solar cycles and, bearing in mind uncertainties of the migration-path definition, are only indicative. For the major fraction of the dataset no systematic active longitudes were found. Sporadic migration of active longitudes was identified only for Cycles 21 - 22 in the northern hemisphere and Cycle 23 in the southern hemisphere.

  1. Breathing of heliospheric structures triggered by the solar-cycle activity

    Directory of Open Access Journals (Sweden)

    K. Scherer

    Full Text Available Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind and up to 6–7 (downwind preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.

    Key words. Interplanetary

  2. Report of a Planning Conference for Solar Technology Information Transfer in Kentucky (Frankfort, September 11-12, 1978).

    Science.gov (United States)

    Capps, Randall, Ed.

    This summary of the deliberations of the Planning Conference for Solar Technology Information Transfer includes an outline of a functioning solar energy technology network for the State of Kentucky and a set of recommendations for future action. Four main types of information agents were identified: (1) the State Library System; (2) the State…

  3. Geophysical and solar activity indices

    Science.gov (United States)

    Bossy, L.; Lemaire, J.

    1984-04-01

    A large number of geophysicists try to correlate their observations with one or even a series of different geophysical or solar activity indices. Yet the right choice of the most appropriate index with which to correlate depends mainly on our understanding of the physical cause-effect relationship between the new set of observations and the index chosen. This best choice will therefore depend on our good understanding of the methods of measurement and derivation of the adopted index in such correlative studies. It relies also on our awareness of the range of applicability of the indices presently available as well as on our understanding of their limitations. It was to achieve these goals that a series of general lectures on geophysical and solar activity indices was organized by L. Bossy and J. Lemaire (Institut d'Aeronomie Spatiale de Belgique (IASB), Brussels), March 26-29, 1984 at Han-sur-Lesse, Belgium.

  4. Solar rotational cycle in lightning activity in Japan during the 18-19th centuries

    Science.gov (United States)

    Miyahara, Hiroko; Kataoka, Ryuho; Mikami, Takehiko; Zaiki, Masumi; Hirano, Junpei; Yoshimura, Minoru; Aono, Yasuyuki; Iwahashi, Kiyomi

    2018-04-01

    Thunderstorm and cloud activities sometimes show a 27-day period, and this has long been studied to uncover a possible important link to solar rotation. Because the 27-day variations in the solar forcing parameters such as solar ultraviolet and galactic cosmic rays become more prominent when the solar activity is high, it is expected that the signal of the 27-day period in meteorological phenomena may wax and wane according to the changes in the solar activity level. In this study, we examine in detail the intensity variations in the signal of the 27-day solar rotational period in thunder and lightning activity from the 18th to the 19th centuries based on 150-year-long records found in old diaries kept in Japan and discuss their relation with the solar activity levels. Such long records enable us to examine the signals of solar rotation at both high and low solar activity levels. We found that the signal of the solar rotational period in the thunder and lightning activity increases as the solar activity increases. In this study, we also discuss the possibility of the impact of the long-term climatological conditions on the signals of the 27-day period in thunder/lightning activities.

  5. Physics of the Solar Active Regions from Radio Observations

    Science.gov (United States)

    Gelfreikh, G. B.

    1999-12-01

    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot

  6. Solar activity and transformer failures in the Greek national electric grid

    Directory of Open Access Journals (Sweden)

    Zois Ioannis Panayiotis

    2013-11-01

    Full Text Available Aims: We study both the short term and long term effects of solar activity on the large transformers (150 kV and 400 kV of the Greek national electric grid. Methods: We use data analysis and various statistical methods and models. Results: Contrary to common belief in PPC Greece, we see that there are considerable both short term (immediate and long term effects of solar activity onto large transformers in a mid-latitude country like Greece. Our results can be summarised as follows: For the short term effects: During 1989–2010 there were 43 “stormy days” (namely days with for example Ap ≥ 100 and we had 19 failures occurring during a stormy day plus or minus 3 days and 51 failures occurring during a stormy day plus or minus 7 days. All these failures can be directly related to Geomagnetically Induced Currents (GICs. Explicit cases are briefly presented. For the long term effects, again for the same period 1989–2010, we have two main results: The annual number of transformer failures seems to follow the solar activity pattern. Yet the maximum number of transformer failures occurs about half a solar cycle after the maximum of solar activity. There is statistical correlation between solar activity expressed using various newly defined long term solar activity indices and the annual number of transformer failures. These new long term solar activity indices were defined using both local (from the geomagnetic station in Greece and global (planetary averages geomagnetic data. Applying both linear and non-linear statistical regression we compute the regression equations and the corresponding coefficients of determination.

  7. Active solar heating industry development study

    International Nuclear Information System (INIS)

    1995-01-01

    Despite the fact that solar water heating systems are technologically viable and commercially available, this Energy Technology Support Unit report shows that there is no established market in the United Kingdom. The Solar Trade Association (STA) has undertaken an Active Solar Heating Industry Development Study which is reported here. The data is derived from a questionnaire survey completed by companies, organizations and individuals operating within the industry. Information was also gathered from utility companies, and STAs elsewhere in Europe. Barriers which need to be overcome include lack of public awareness, especially in the construction industry, lack of capital investment and other financial disincentives, little or no government support, and lack of organization and quality monitoring and assurance within the industry itself. (UK)

  8. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    Science.gov (United States)

    Chintzoglou, Georgios

    2016-04-01

    Magnetic fields govern all aspects of solar activity from the 11-year solar cycle to the most energetic events in the solar system, such as solar flares and Coronal Mass Ejections (CMEs). As seen on the surface of the sun, this activity emanates from localized concentrations of magnetic fields emerging sporadically from the solar interior. These locations are called solar Active Regions (ARs). However, the fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by AIA and HMI instruments aboard the SDO spacecraft. First, this work investigates the formation of coronal magnetic flux ropes (MFRs), structures associated with major solar activity such as CMEs. In the past, several theories have been proposed to explain the cause of this major activity, which can be categorized in two contrasting groups (a) the MFR is formed in the eruption, and (b) the MFR pre-exists the eruption. This remains a topic of heated debate in modern solar physics. This dissertation provides a complete treatment of the role of MFRs from their genesis all the way to their eruption and even destruction. The study has uncovered the pre-existence of two weakly twisted MFRs, which formed during confined flaring 12 hours before their associated CMEs. Thus, it provides unambiguous evidence for MFRs truly existing before the CME eruptions, resolving the pre-existing MFR controversy. Second, this dissertation addresses the 3-D magnetic structure of complex emerging ARs. In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multi-polar surface magnetic distributions. In this thesis, we introduce a novel technique to infer the subphotospheric configuration of emerging

  9. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    Science.gov (United States)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    heliosphere confined to the ecliptic region is derived, accounting for solar activity and for solar distance through adequate shifts of the lognormal distributions. Finally, the inclusion of SSN predictions and the extrapolation down to PSPs perihelion region enables us to estimate the solar-wind environment for PSPs planned trajectory during its mission duration. Results: The CGAUSS empirical solar-wind model for PSP yields dependencies on solar activity and solar distance for the solar-wind parameters' frequency distributions. The estimated solar-wind median values for PSPs first perihelion in 2018 at a solar distance of 0.16 au are 87 nT, 340 km s-1, 214 cm-3, and 503 000 K. The estimates for PSPs first closest perihelion, occurring in 2024 at 0.046 au (9.86 R⊙), are 943 nT, 290 km s-1, 2951 cm-3, and 1 930 000 K. Since the modeled velocity and temperature values below approximately 20 R⊙appear overestimated in comparison with existing observations, this suggests that PSP will directly measure solar-wind acceleration and heating processes below 20 R⊙ as planned.

  10. General Electric Company proposed test and evaluation plan, commercial buildings. National Solar Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The general requirements and methods for instrumenting, testing, and evaluating solar HVAC systems forming a part of ERDA's ''Commercial Demonstration Program'' commensurate with ERDA 23A and the Proposed Management Plan 75SDS4270 are defined. Design requirements are specified for the performance of components and subsystems comprising the instrumentation and data gathering system, as well as the support functions required to perform the diagnostic measurements, collection and processing of data, and documentation of reports on solar HVAC system performance, including economic and societal evaluations.

  11. Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2010-12-01

    Full Text Available We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002 than low solar activity (2006-2008. It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF Bs (IMF Bz <0 component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.

  12. Dynamics of longitudinal-latitudinal asymmetry of solar activity at various solar cycle phases

    International Nuclear Information System (INIS)

    Baranov, D.G.; Vernova, E.S.; Grigoryan, M.S.; Tyasto, M.I.

    1995-01-01

    Solar activity longitudinal asymmetry in 1943-1984 was studied by means of the polar diagram technique. Longitudinal changes of the activity distribution for northern and southern hemispheres were considered separately. Heliolongitudinal asymmetry was compared with the first harmonic of the 27-days cosmic ray intensity variation and with phases of the Quasi-Biennial Oscillation. There is certain correspondence between the dominance of the asymmetry in one of the solar hemispheres and the phase of the Quasi-Biennial Oscillation. Correlation exists between the amplitude of the 27-days galactic cosmic ray variation and the phase of the Quasi-Biennial Oscillation. 8 refs.; 3 figs

  13. Solar activity effects in the ionospheric D region

    Directory of Open Access Journals (Sweden)

    A. D. Danilov

    1998-12-01

    Full Text Available Variations in the D-region electron concentration within the solar activity cycle are considered. It is demonstrated that conclusions of various authors, who have analyzed various sets of experimental data on [e], differ significantly. The most reliable seem to be the conclusions based on analysis of the [e] measurements carried out by the Faraday rotation method and on the theoretical concepts on the D-region photochemistry. Possible QBO effects in the relation of [e] to solar activity are considered and an assumption is made that such effects may be the reason for the aforementioned disagreement in conclusions on the [e] relation to solar indices.Key words. Atmospheric composition and structure · Ion chemistry of the atmosphere · Middle atmosphere

  14. Recent advances in solar photovoltaic technology

    International Nuclear Information System (INIS)

    Yoshihiro Hamakawa

    2000-01-01

    The current state of the art in recent progress of Japanese photovoltaic activities are overviewed. Firstly, a new strategy for the renewable energy promotion so called Fundamental Principle to promote New Energy Developments and Utilization, and its action planning for PV technology up to year of 2010 are introduced. The program structure and some tangible actions such as tax reduction for investment in the renewable energy plants, government financial support of 2/3 subsidy of PV system developments for public facilities namely as PV Field Test Experiments, and a 1/2 subsidy for the private solar house as PV House Monitor Plan are presented. Secondly, some new topics in the field of solar cell production technology in Japan and also statistics of the solar cell module productions for three kinds of silicon basis solar cells are summarized. Progress of the conversion efficiency in various types of solar cells are also surveyed. In the final part of paper possible new roles to contribute to the global environmental issues by the PV system developments are proposed. (Author)

  15. Report of a Planning Conference for Solar Technology Information Transfer in Georgia (Atlanta, Georgia, July 24-25, 1978).

    Science.gov (United States)

    Aldridge, Mark C., Ed.

    A summary of the deliberations of the Georgia planning conference of the Solar Technology Transfer Program is presented in this report. Topic areas include background information on the Georgia conference and a summary of the discussions and recommendations dealing with solar information transfer within state systems and the need for greater…

  16. Preliminary design package for solar collector and solar pump

    Science.gov (United States)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  17. Nonlinear techniques for forecasting solar activity directly from its time series

    Science.gov (United States)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  18. Active control of the Chinese Giant Solar Telescope

    Science.gov (United States)

    Dai, Yichun; Yang, Dehua; Jin, Zhenyu; Liu, Zhong; Qin, Wei

    2014-07-01

    The Chinese Giant Solar Telescope (CGST) is the next generation solar telescope of China with diameter of 8 meter. The unique feature of CGST is that its primary is a ring, which facilitates the polarization detection and thermal control. In its present design and development phase, two primary mirror patterns are considered. For one thing, the primary mirror is expected to construct with mosaic mirror with 24 trapezoidal (or petal) segments, for another thing, a monolithic mirror is also a candidate for its primary mirror. Both of them depend on active control technique to maintain the optical quality of the ring mirror. As a solar telescope, the working conditions of the CGST are quite different from those of the stellar telescopes. To avoid the image deterioration due to the mirror seeing and dome seeing, especially in the case of the concentration of flux in a solar telescope, large aperture solar projects prefer to adopt open telescopes and open domes. In this circumstance, higher wind loads act on the primary mirror directly, which will cause position errors and figure errors of the primary with matters worse than those of the current 10-meter stellar telescopes with dome protect. Therefore, it gives new challenges to the active control capability, telescope structure design, and wind shielding design. In this paper, the study progress of active control of CGST for its mosaic and monolithic mirror are presented, and the wind effects on such two primary mirrors are also investigated.

  19. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, John [Solar Electric Power Association (SEPA), Washington, DC (United States); Davidovich, Ted [Solar Electric Power Association (SEPA), Washington, DC (United States); Cory, Karlynn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aznar, Alexandra [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for addressing solar in the future. Solar growth and the emergence of new technologies will change the electric utility of tomorrow. Although not every utility, region, or market will change in the same way or magnitude, developing a path forward will be needed to reach the Electric System of the Future in the coming decades. In this report, a series of potential future states are identified that could result in drastically different energy mixes and profiles: 1) Business as Usual, 2) Low Carbon, Centralized Generation, 3) Rapid Distributed Energy Resource Growth, 4) Interactivity of Both the Grid and Demand, and 5) Grid or Load Defection. Complicating this process are a series of emerging disruptions; decisions or events that will cause the electric sector to change. Understanding and preparing for these items is critical for the transformation to any of the future states to be successful. Predicting which future state will predominate 15 years from now is not possible; however, utilities still will need to look ahead and try to anticipate how factors will impact their planning, operations, and business models. In order to dig into the potential transformations facing the utility industry, the authors conducted a series of utility interviews, held a working session at a major industry solar conference, and conducted a quantitative survey. To focus conversations, the authors leveraged the Rapid Distributed Energy Resource (DER) Growth future to draw out how utilities would have to adapt from current processes and procedures in order to manage and thrive in that new environment. Distributed solar was investigated specifically, and could serve as a proxy resource for all distributed generation (DG). It can also provide the foundation for all DERs.

  20. Hilbert-Huang transform analysis of long-term solar magnetic activity

    Science.gov (United States)

    Deng, Linhua

    2018-04-01

    Astronomical time series analysis is one of the hottest and most important problems, and becomes the suitable way to deal with the underlying dynamical behavior of the considered nonlinear systems. The quasi-periodic analysis of solar magnetic activity has been carried out by various authors during the past fifty years. In this work, the novel Hilbert-Huang transform approach is applied to investigate the yearly numbers of polar faculae in the time interval from 1705 to 1999. The detected periodicities can be allocated to three components: the first one is the short-term variations with periods smaller than 11 years, the second one is the mid- term variations with classical periods from 11 years to 50 years, and the last one is the long-term variations with periods larger than 50 years. The analysis results improve our knowledge on the quasi-periodic variations of solar magnetic activity and could be provided valuable constraints for solar dynamo theory. Furthermore, our analysis results could be useful for understanding the long-term variations of solar magnetic activity, providing crucial information to describe and forecast solar magnetic activity indicators.

  1. Does solar activity affect human happiness?

    Science.gov (United States)

    Kristoufek, Ladislav

    2018-03-01

    We investigate the direct influence of solar activity (represented by sunspot numbers) on human happiness (represented by the Twitter-based Happiness Index). We construct four models controlling for various statistical and dynamic effects of the analyzed series. The final model gives promising results. First, there is a statistically significant negative influence of solar activity on happiness which holds even after controlling for the other factors. Second, the final model, which is still rather simple, explains around 75% of variance of the Happiness Index. Third, our control variables contribute significantly as well: happiness is higher in no sunspots days, happiness is strongly persistent, there are strong intra-week cycles and happiness peaks during holidays. Our results strongly contribute to the topical literature and they provide evidence of unique utility of the online data.

  2. Solar Central Receiver Prototype Heliostat. Volume II. Phase II planning (preliminary)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A currently planned DOE program will develop and construct a 10 MW/sub e/ Pilot Plant to demonstrate the feasibility and operational characteristics of Solar Central Receiver Power Generation. The field of heliostats is a major element of the Solar Central Receiver Power Generation system. The primary objective of the program described is to establish and verify the manufacturability, performance, durability, and maintenance requirements of the commercial plant heliostat design. End products of the 16 month effort include: (1) design, fabrication, and test of heliostats; (2) preliminary designs of manufacturing, assembly, installation, and maintenance processes for quantity production; (3) detailed design of critical tooling or other special equipment for such processes; (4) refined cost estimates for heliostats and maintenance; and (5) an updated commercial plant heliostat preliminary design. The program management and control system is discussed. (WHK)

  3. 76 FR 80385 - Draft Environmental Impact Statement and Proposed Maricopa Sun Solar Complex Multi-Species...

    Science.gov (United States)

    2011-12-23

    .... Operation related activities could include solar panel maintenance, on-site parking, operation of solar...-FXES11120800000F2-123] Draft Environmental Impact Statement and Proposed Maricopa Sun Solar Complex Multi-Species... National Environmental Policy Act for the proposed Maricopa Sun Solar Complex Habitat Conservation Plan...

  4. The ancient Egyptian civilization: maximum and minimum in coincidence with solar activity

    Science.gov (United States)

    Shaltout, M.

    It is proved from the last 22 years observations of the total solar irradiance (TSI) from space by artificial satellites, that TSI shows negative correlation with the solar activity (sunspots, flares, and 10.7cm Radio emissions) from day to day, but shows positive correlations with the same activity from year to year (on the base of the annual average for each of them). Also, the solar constant, which estimated fromth ground stations for beam solar radiations observations during the 20 century indicate coincidence with the phases of the 11- year cycles. It is known from sunspot observations (250 years) , and from C14 analysis, that there are another long-term cycles for the solar activity larger than 11-year cycle. The variability of the total solar irradiance affecting on the climate, and the Nile flooding, where there is a periodicities in the Nile flooding similar to that of solar activity, from the analysis of about 1300 years of the Nile level observations atth Cairo. The secular variations of the Nile levels, regularly measured from the 7 toth 15 century A.D., clearly correlate with the solar variations, which suggests evidence for solar influence on the climatic changes in the East African tropics The civilization of the ancient Egyptian was highly correlated with the Nile flooding , where the river Nile was and still yet, the source of the life in the Valley and Delta inside high dry desert area. The study depends on long -time historical data for Carbon 14 (more than five thousands years), and chronical scanning for all the elements of the ancient Egyptian civilization starting from the firs t dynasty to the twenty six dynasty. The result shows coincidence between the ancient Egyptian civilization and solar activity. For example, the period of pyramids building, which is one of the Brilliant periods, is corresponding to maximum solar activity, where the periods of occupation of Egypt by Foreign Peoples corresponding to minimum solar activity. The decline

  5. Strong Solar Control of Infrared Aurora on Jupiter: Correlation Since the Last Solar Maximum

    Science.gov (United States)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.

    2009-01-01

    Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.

  6. Effects of Solar Activity and Space Environment in 2003 Oct.

    Directory of Open Access Journals (Sweden)

    Kyung-Seok Cho

    2004-12-01

    Full Text Available In this paper, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. Especially, we present several solar and geomagnetic disturbance data produced in Korea : sunspots, geo-magnetograms, aurora, Ionogram, and Total Electron Content (TEC map by GPS data. Finally, we introduce some examples of the satellite orbit and communication effects caused by these activities; e.g., the disturbances of the KOMPSAT-1 operational orbit and HF communication.

  7. Activity associated with the solar origin of coronal mass ejections

    Science.gov (United States)

    Webb, D. F.; Hundhausen, A. J.

    1987-01-01

    Solar coronal mass ejections (CMEs) observed in 1980 with the HAO Coronagraph/Polarimeter on the Solar Maximum Mission (SMM) satellite are compared with other forms of solar activity that might be physically related to the ejections. The solar phenomena checked and the method of association used were intentionally patterned after those of Munro et al.'s (1979) analysis of mass ejections observed with the Skylab coronagraph to facilitate comparison of the two epochs. Comparison of the results reveals that the types and degree of CME associations are similar near solar activity minimum and at maximum. For both epochs, most CMEs with associations had associated eruptive prominences, and the proportions of association of all types of activity were similar. A high percentage of association between SMM CMEs and X-ray long duration events is also found, in agreement with Skylab results. It is concluded that most CMEs are the result of the destabilization and eruption of a prominence and its overlying coronal structure, or of a magnetic structure capable of supporting a prominence.

  8. A Simple Technique for Sustaining Solar Energy Production in Active Convective Coastal Regions

    Directory of Open Access Journals (Sweden)

    Moses E. Emetere

    2016-01-01

    Full Text Available The climatic factors in the coastal areas are cogent in planning a stable and functional solar farm. 3D simulations relating the surface temperature, sunshine hour, and solar irradiance were adopted to see the effect of minute changes of other meteorological parameters on solar irradiance. This enabled the day-to-day solar radiation monitoring with the primary objective to examine the best technique for maximum power generation via solar option in coastal locations. The month of January had the highest turbulent features, showing the influence of weather and the poorest solar radiance due to low sunshine hour. Twenty-year weather parameters in the research area were simulated to express the systematic influence of weather of PV performance. A theoretical solar farm was illustrated to generate stable power supply with emphasis on the longevity of the PV module proposed by introducing an electronic concentrator pillar (CP. The pictorial and operational model of the solar farm was adequately explained.

  9. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    International Nuclear Information System (INIS)

    Gold, R.E.; Dodson-Prince, H.W.; Hedeman, E.R.; Roelof, E.C.

    1982-01-01

    We have studied solar and interplanetary data by identification of the heliographic longitudes of the coronal source regions of high speed solar wind streams and by mapping the velocities measured near earth back to the sun using the approximation of constant radial velocity. Interplay of active regions and solar wind were studied

  10. Urban Options Solar Greenhouse Demonstration Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cipparone, L.

    1980-10-15

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  11. Characteristics of seasonal variation and solar activity dependence of the geomagnetic solar quiet daily variation

    Science.gov (United States)

    Shinbori, A.; Koyama, Y.; Nose, M.; Hori, T.

    2017-12-01

    Characteristics of seasonal variation and solar activity dependence of the X- and Y-components of the geomagnetic solar quiet (Sq) daily variation at Memanbetsu in mid-latitudes and Guam near the equator have been investigated using long-term geomagnetic field data with 1-h time resolution from 1957 to 2016. In this analysis, we defined the quiet day when the maximum value of the Kp index is less than 3 for that day. In this analysis, we used the monthly average of the adjusted daily F10.7 corresponding to geomagnetically quiet days. For identification of the monthly mean Sq variation in the X and Y components (Sq-X and Sq-Y), we first determined the baseline of the X and Y components from the average value from 22 to 2 h (LT: local time) for each quiet day. Next, we calculated a deviation from the baseline of the X- and Y-components of the geomagnetic field for each quiet day, and computed the monthly mean value of the deviation for each local time. As a result, Sq-X and Sq-Y shows a clear seasonal variation and solar activity dependence. The amplitude of seasonal variation increases significantly during high solar activities, and is proportional to the solar F10.7 index. The pattern of the seasonal variation is quite different between Sq-X and Sq-Y. The result of the correlation analysis between the solar F10.7 index and Sq-X and Sq-Y shows almost the linear relationship, but the slope and intercept of the linear fitted line varies as function of local time and month. This implies that the sensitivity of Sq-X and Sq-Y to the solar activity is different for different local times and seasons. The local time dependence of the offset value of Sq-Y at Guam and its seasonal variation suggest a magnetic field produced by inter-hemispheric field-aligned currents (FACs). From the sign of the offset value of Sq-Y, it is infer that the inter-hemispheric FACs flow from the summer to winter hemispheres in the dawn and dusk sectors and from the winter to summer hemispheres in

  12. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  13. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  14. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    Science.gov (United States)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  15. Electrically active defects in solar grade multicrystalline silicon

    DEFF Research Database (Denmark)

    Dahl, Espen

    2013-01-01

    Shortage in high purity silicon feedstock, as a result of the formidable increased demand for solar cell devices during the last two decades, can be mitigated by the introduction of cheaper feedstock of solar grade (So-G) quality. Silicon produced through the metallurgical process route has shown...... the potential to be such a feedstock. However, this feedstock has only few years of active commercial history and the detailed understanding of the nature of structural defects in this material still has fundamental shortcomings. In this thesis the electrical activity of structural defects, commonly associated...

  16. Active solar heating and cooling information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  17. Marketing the solar suburb and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.

    1999-07-01

    New England Solar Homes is an emerging solar home company offering custom architectural services as well as a line of standard house plans to clients across the country. Their standard builder's sets can be used off the shelf or altered to fit varied climates and siting conditions. The Solar Farmhouse concept house was introduced at the Eco-Expo in 1995 as a demonstration of how an American country classic could be adapted and outfitted to be an advanced energy efficient passive and active solar home that would have immediate popular appeal. The inspiration for this design was based on the wisdom and surprisingly skillful design abilities of the American farmer, circa 1800s and onward. The Solonial became the first built demonstration home in Lexington, MA incorporating the energy performance standards of the Solar Farmhouse. Two other homes will start construction this spring--Solar Farmhouse II, and DC Solar I, in Pennsylvania and Maryland, respectively. The Beyond in the title refers to their interest in participating in the New Urbanism movement which is gaining momentum around the country in equal proportion to the loss of habitat from urban sprawl with its impact on quality of life indicators. Solar designers and developers could find some emerging opportunities with this highly unusual American attempt at regional planning.

  18. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  19. Height of the E layer as a function of solar activity

    International Nuclear Information System (INIS)

    Antonova, L.A.; Ivanov-Kholodnyj, G.S.; Zhivolup, T.G.

    1992-01-01

    Variations of h m E height of E layer maximum with solar activity are investigated using data of from rocket measurements. These data are contradictory ones and requires more exact definition. h m E decrease with growth of solar activity is predicted theoretically: small monotone decrease during solar cycle on the one hand, and/or jump-like decrease of h m E at a certain intermediate value of F 10.7 - on the other hand. New rather reliable results are obtained due to data from incoherent dissipation station. On the basis of these measurements it is obtained that at low and even at rather high solar activity there is a small monotone decrease of h m E, while at intermediate activity, when F 10.7 =140-180 there occurs more abrupt variation of h m E

  20. Lancashire and Yorkshire Renewable Energy Planning Study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The central aims of the Lancashire and Yorkshire Renewable Energy Planning Study (LYREPS) are to: identify renewable energy resources in the region and evaluate the opportunities for their deployment; promote a local-level development plan policy framework for the utilisation of renewable energy sources which is fully integrated with established land use and economic development strategies in the region. The availability of the following resources was investigated: landfill gas; municipal and industrial wastes; animal slurry; biomass; straw; active solar; passive solar design; photovoltaics; hydro; and wind. (author)

  1. Indexes and parameters of activity in solar-terrestrial physics

    International Nuclear Information System (INIS)

    Minasyants, G.S.; Minasyants, T.M.

    2005-01-01

    The daily variation of different indexes and parameters of the solar-terrestrial physics at the 23 cycle were considered to find the most important from them for the forecast of geomagnetic activity. The validity of application of the Wolf numbers in quality of the characteristic of solar activity at sunspots is confirmed. The best geo-effective parameter in the arrival of the interplanetary shock from coronal mass ejection to an orbit of the Earth. (author)

  2. On proton events of different solar activity cycles

    International Nuclear Information System (INIS)

    Sattarov, I.; Sherdanov, Ch.; Sattarov, B.

    1997-01-01

    In solar activity cycle N21 and N22 the latitude distribution of the proton large flares and sunspot groups is being studied. It was found that higher proton activity of cycle N22 is connected with its higher latitude sunspot activity (author)

  3. The Heliosphere through the Solar Activity Cycle

    CERN Document Server

    Balogh, André; Suess, Steven T

    2008-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun – the heliosphere – has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses’ results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors...

  4. FARIMA MODELING OF SOLAR FLARE ACTIVITY FROM EMPIRICAL TIME SERIES OF SOFT X-RAY SOLAR EMISSION

    International Nuclear Information System (INIS)

    Stanislavsky, A. A.; Burnecki, K.; Magdziarz, M.; Weron, A.; Weron, K.

    2009-01-01

    A time series of soft X-ray emission observed by the Geostationary Operational Environment Satellites from 1974 to 2007 is analyzed. We show that in the solar-maximum periods the energy distribution of soft X-ray solar flares for C, M, and X classes is well described by a fractional autoregressive integrated moving average model with Pareto noise. The model incorporates two effects detected in our empirical studies. One effect is a long-term dependence (long-term memory), and another corresponds to heavy-tailed distributions. The parameters of the model: self-similarity exponent H, tail index α, and memory parameter d are statistically stable enough during the periods 1977-1981, 1988-1992, 1999-2003. However, when the solar activity tends to minimum, the parameters vary. We discuss the possible causes of this evolution and suggest a statistically justified model for predicting the solar flare activity.

  5. The solar activity cycle physical causes and consequences

    CERN Document Server

    Hudson, Hugh; Petrovay, Kristóf; Steiger, Rudolf

    2015-01-01

    A collection of papers edited by four experts in the field, this book sets out to describe the way solar activity is manifested in observations of the solar interior, the photosphere, the chromosphere, the corona and the heliosphere. The 11-year solar activity cycle, more generally known as the sunspot cycle, is a fundamental property of the Sun.  This phenomenon is the generation and evolution of magnetic fields in the Sun’s convection zone, the photosphere.  It is only by the careful enumeration and description of the phenomena and their variations that one can clarify their interdependences.   The sunspot cycle has been tracked back about four centuries, and it has been recognized that to make this data set a really useful tool in understanding how the activity cycle works and how it can be predicted, a very careful and detailed effort is needed to generate sunspot numbers.  This book deals with this topic, together with several others that present related phenomena that all indicate the physical pr...

  6. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  7. Report for fiscal 1981 of committee on industrial solar system practical application technologies development; 1981 nendo sangyoyo solar system jitsuyoka gijutsu kaihatsu iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    NEDO (New Energy and Industrial Technology Development Organization) has been engaged in the development of technologies for the practical application of industrial solar systems since fiscal 1980, and has a committee established to ensure smooth progress of the endeavor. Outlined in this report are mainly the agendas of the fiscal 1981 committee and working group activities. Taken up at the 1st committee meeting convened on September 18, 1981, were the outline of the results of research conducted in fiscal 1980, plans for fiscal 1981 and their progress, plans for fiscal 1982, presentation at the International Solar Energy Society congress, and the course for system development efforts to follow. The 2nd meeting covered investigations of the actualities of dyeing plants, execution plans for fiscal 1982, and the prospects. The 3rd meeting involved a study of system flow. The cascading heat process working group at its 1st meeting discussed the achievements of fiscal 1980, plans for fiscal 1981 and their progress, plans for fiscal 1982, and presentation at the International Solar Energy Society congress. The 2nd meeting covered execution plans for fiscal 1982, the prospects, and system flow. The fixed heat process working group at its 1st meeting discussed the achievements of fiscal 1980, plans for fiscal 1981 and their progress, plans for fiscal 1982, and the International Solar Energy Society congress. The 2nd meeting took up execution plans for fiscal 1982, the prospects, and system flow. (NEDO)

  8. Resonance of about-weekly human heart rate rhythm with solar activity change.

    Science.gov (United States)

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  9. Web tools concerning performance analysis and planning support for solar energy plants starting from remotely sensed optical images

    International Nuclear Information System (INIS)

    Morelli, Marco; Masini, Andrea; Ruffini, Fabrizio; Potenza, Marco Alberto Carlo

    2015-01-01

    We present innovative web tools, developed also in the frame of the FP7 ENDORSE (ENergy DOwnstReam SErvices) project, for the performance analysis and the support in planning of solar energy plants (PV, CSP, CPV). These services are based on the combination between the detailed physical model of each part of the plants and the near real-time satellite remote sensing of incident solar irradiance. Starting from the solar Global Horizontal Irradiance (GHI) data provided by the Monitoring Atmospheric Composition and Climate (GMES-MACC) Core Service and based on the elaboration of Meteosat Second Generation (MSG) satellite optical imagery, the Global Tilted Irradiance (GTI) or the Beam Normal Irradiance (BNI) incident on plant's solar PV panels (or solar receivers for CSP or CPV) is calculated. Combining these parameters with the model of the solar power plant, using also air temperature values, we can assess in near-real-time the daily evolution of the alternate current (AC) power produced by the plant. We are therefore able to compare this satellite-based AC power yield with the actually measured one and, consequently, to readily detect any possible malfunctions and to evaluate the performances of the plant (so-called “Controller” service). Besides, the same method can be applied to satellite-based averaged environmental data (solar irradiance and air temperature) in order to provide a Return on Investment analysis in support to the planning of new solar energy plants (so-called “Planner” service). This method has been successfully applied to three test solar plants (in North, Centre and South Italy respectively) and it has been validated by comparing satellite-based and in-situ measured hourly AC power data for several months in 2013 and 2014. The results show a good accuracy: the overall Normalized Bias (NB) is − 0.41%, the overall Normalized Mean Absolute Error (NMAE) is 4.90%, the Normalized Root Mean Square Error (NRMSE) is 7.66% and the overall

  10. Web tools concerning performance analysis and planning support for solar energy plants starting from remotely sensed optical images

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Marco, E-mail: marco.morelli1@unimi.it [Department of Physics, University of Milano, Via Celoria 16, 20133 Milano (Italy); Masini, Andrea, E-mail: andrea.masini@flyby.it [Flyby S.r.l., Via Puini 97, 57128 Livorno (Italy); Ruffini, Fabrizio, E-mail: fabrizio.ruffini@i-em.eu [i-EM S.r.l., Via Lampredi 45, 57121 Livorno (Italy); Potenza, Marco Alberto Carlo, E-mail: marco.potenza@unimi.it [Department of Physics, University of Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-04-15

    We present innovative web tools, developed also in the frame of the FP7 ENDORSE (ENergy DOwnstReam SErvices) project, for the performance analysis and the support in planning of solar energy plants (PV, CSP, CPV). These services are based on the combination between the detailed physical model of each part of the plants and the near real-time satellite remote sensing of incident solar irradiance. Starting from the solar Global Horizontal Irradiance (GHI) data provided by the Monitoring Atmospheric Composition and Climate (GMES-MACC) Core Service and based on the elaboration of Meteosat Second Generation (MSG) satellite optical imagery, the Global Tilted Irradiance (GTI) or the Beam Normal Irradiance (BNI) incident on plant's solar PV panels (or solar receivers for CSP or CPV) is calculated. Combining these parameters with the model of the solar power plant, using also air temperature values, we can assess in near-real-time the daily evolution of the alternate current (AC) power produced by the plant. We are therefore able to compare this satellite-based AC power yield with the actually measured one and, consequently, to readily detect any possible malfunctions and to evaluate the performances of the plant (so-called “Controller” service). Besides, the same method can be applied to satellite-based averaged environmental data (solar irradiance and air temperature) in order to provide a Return on Investment analysis in support to the planning of new solar energy plants (so-called “Planner” service). This method has been successfully applied to three test solar plants (in North, Centre and South Italy respectively) and it has been validated by comparing satellite-based and in-situ measured hourly AC power data for several months in 2013 and 2014. The results show a good accuracy: the overall Normalized Bias (NB) is − 0.41%, the overall Normalized Mean Absolute Error (NMAE) is 4.90%, the Normalized Root Mean Square Error (NRMSE) is 7.66% and the overall

  11. Cosmic rays, solar activity and the climate

    International Nuclear Information System (INIS)

    Sloan, T; Wolfendale, A W

    2013-01-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century. (letter)

  12. Solar optics-based active panel for solar energy storage and disinfection of greywater.

    Science.gov (United States)

    Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P

    2016-09-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli . Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.

  13. Enerplan, activity report 2009. Acting for solar energy promotion and development

    International Nuclear Information System (INIS)

    2010-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2009 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  14. The potential of solar energy in the Netherlands

    International Nuclear Information System (INIS)

    Sinke, W.C.; De Geus, A.C.

    1993-01-01

    Solar energy in the Netherlands is not yet a well-known phenomenon. Still, the potential of solar energy to save or generate energy is large. Several forms of solar energy, as well as its possibilities and limitations, are introduced in this article. Attention is paid to active and passive thermal solar energy, and photovoltaic solar energy. Also the involvement of different parties in introducing solar energy is discussed. The next 10-20 years will be characterized by large-scale practical experiments and market introduction. The application of solar energy should be taken into account when planning urban areas. It is expected that ongoing developments in all fields of solar energy will result in a considerable improvement of the price/performance ratio and many new possibilities. 4 figs., 4 ills., 14 refs

  15. The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity

    Science.gov (United States)

    Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics

    2011-05-01

    The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.

  16. 7 CFR 1485.15 - Activity plan.

    Science.gov (United States)

    2010-01-01

    ... any changes in strategy from the strategic plan; (iii) A budget for each proposed activity... with respect to contributions and program evaluations. A participant may undertake promotional... accountable to CCC for all such promotional activities and related expenditures. (g) Activity plan changes. (1...

  17. Which characteristics of planning matter? Individual and dyadic physical activity plans and their effects on plan enactment.

    Science.gov (United States)

    Keller, Jan; Fleig, Lena; Hohl, Diana Hilda; Wiedemann, Amelie U; Burkert, Silke; Luszczynska, Aleksandra; Knoll, Nina

    2017-09-01

    Past research supports individual planning as an effective intervention strategy to increase physical activity in individuals. A similar strategy, dyadic planning, adds a planning partner who supports an individual's planning processes. Whether the two planning formats differ in terms of participants' entered plan content and whether and how different content characteristics are linked to plan enactment remains unknown. By investigating the content of generated plans, this study aimed at distinguishing plan characteristics of the two planning formats and examining their role as predictors of later plan enactment. Secondary analyses of a three-arm RCT with German couples (data collection between 2013 and 2015). Couples were assigned to an individual (IPC, n = 114) or dyadic planning condition (DPC, n = 111) and formulated up to 5 physical activity plans for a target person. Couples assigned to a control condition were not included as they did not generate plans. The following characteristics were distinguished and coded for each plan: number of planned opportunities, presence of a planned routine, planned cue- or activity-related specificity, activity-related intensity, and chronological plan rank. One week before (T0) and two weeks following (T2) the intervention (T1), increase vs. no increase of the planned activity was coded as a dichotomous plan enactment variable. Multilevel logistic regressions were fit. Plan enactment was higher in dyadic than in individual planners. Findings indicated that routines (e.g., after work) were positively related to plan enactment, whereas a high specificity of when-cues (e.g., Friday at 6.30 p.m.) showed a negative relationship. None of the examined plan characteristics could explain differences in enactment between IPC and DPC. Linking health behaviours to other behavioural routines seems beneficial for subsequent plan enactment. Dyadic planning was linked with higher enactment rates than individual planning. However, as

  18. Experimental evaluation of an active solar thermoelectric radiant wall system

    International Nuclear Information System (INIS)

    Liu, ZhongBing; Zhang, Ling; Gong, GuangCai; Han, TianHe

    2015-01-01

    Highlights: • A novel active solar thermoelectric radiant wall are proposed and tested. • The novel wall can control thermal flux of building envelope by using solar energy. • The novel wall can eliminate building envelop thermal loads and provide cooling capacity for space cooling. • Typical application issues including connection strategies, coupling with PV system etc. are discussed. - Abstract: Active solar thermoelectric radiant wall (ASTRW) system is a new solar wall technology which integrates thermoelectric radiant cooling and photovoltaic (PV) technologies. In ASTRW system, a PV system transfers solar energy directly into electrical energy to power thermoelectric cooling modes. Both the thermoelectric cooling modes and PV system are integrated into one enclosure surface as radiant panel for space cooling and heating. Hence, ASTRW system presents fundamental shift from minimizing building envelope energy losses by optimizing the insulation thickness to a new regime where active solar envelop is designed to eliminate thermal loads and increase the building’s solar gains while providing occupant comfort in all seasons. This article presents an experimental study of an ASTRW system with a dimension of 1580 × 810 mm. Experimental results showed that the inner surface temperature of the ASTRW is 3–8 °C lower than the indoor temperature of the test room, which indicated that the ASTRW system has the ability to control thermal flux of building envelope by using solar energy and reduce the air conditioning system requirements. Based on the optimal operating current of TE modules and the analysis based upon PV modeling theories, the number and type of the electrical connections for the TE modules in ASTRW system are discussed in order to get an excellent performance in the operation of the ASTRW system

  19. Solar activity: nowcasting and forecasting at the SIDC

    Directory of Open Access Journals (Sweden)

    D. Berghmans

    2005-11-01

    Full Text Available The Solar Influences Data analysis Center (SIDC is the World Data Center for the production and the distribution of the International Sunspot Index, coordinating a network of about 80 stations worldwide. From this core activity, the SIDC has grown in recent years to a European center for nowcasting and forecasting of solar activity on all timescales. This paper reviews the services (data, forecasts, alerts, software that the SIDC currently offers to the scientific community. The SIDC operates instruments both on the ground and in space. The USET telescope in Brussels produces daily white light and Hα images. Several members of the SIDC are co-investigators of the EIT instrument onboard SOHO and are involved in the development of the next generation of Europe's solar weather monitoring capabilities. While the SIDC is staffed only during day-time (7 days/week, the monitoring service is a 24 h activity thanks to the implementation of autonomous software for data handling and analysis and the sending of automated alerts. We will give an overview of recently developed techniques for visualization and automated analysis of solar images and detection of events significant for space weather (e.g. CMEs or EIT waves. As part of the involvement of the SIDC in the ESA Pilot Project for Space Weather Applications we have developed services dedicated to the users of the Global Positioning System (GPS. As a Regional Warning Center (RWC of the International Space Environment Service (ISES, the SIDC produces daily forecasts of flaring probability, geomagnetic activity and 10.7 cm radio flux. The accuracy of these forecasts will be investigated through an in-depth quality analysis.

  20. The state of solar energy resource assessment in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Alberto; Escobar, Rodrigo [Mechanical and Metallurgical Engineering Department, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago (Chile); Colle, Sergio [Laboratorios de Engenharia de Processos de Conversao e Tecnologia de Energia - LEPTEN, Mechanical Engineering Department, Universidade Federal de Santa Catarina, Florianopolis (Brazil); de Abreu, Samuel Luna [IFSC - Instituto Federal de Santa Catarina, Campus Sao Jose, Sao Jose - SC (Brazil)

    2010-11-15

    The Chilean government has determined that a renewable energy quota of up to 10% of the electrical energy generated must be met by 2024. This plan has already sparked interest in wind, geothermal, hydro and biomass power plants in order to introduce renewable energy systems to the country. Solar energy is being considered only for demonstration, small-scale CSP plants and for domestic water heating applications. This apparent lack of interest in solar energy is partly due to the absence of a valid solar energy database, adequate for energy system simulation and planning activities. One of the available solar radiation databases is 20-40 years old, with measurements taken by pyranographs and Campbell-Stokes devices. A second database from the Chilean Meteorological Service is composed by pyranometer readings, sparsely distributed along the country and available from 1988, with a number of these stations operating intermittently. The Chilean government through its National Energy Commission (CNE) has contracted the formulation of a simulation model and also the deployment of network of measurement stations in northern Chile. Recent efforts by the authors have resulted in a preliminary assessment by satellite image processing. Here, we compare the existing databases of solar radiation in Chile. Monthly mean solar energy maps are created from ground measurements and satellite estimations and compared. It is found that significant deviation exists between sources, and that all ground-station measurements display unknown uncertainty levels, thus highlighting the need for a proper, country-wide long-term resource assessment initiative. However, the solar energy levels throughout the country can be considered as high, and it is thought that they are adequate for energy planning activities - although not yet for proper power plant design and dimensioning. (author)

  1. Technical planning activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

  2. Technical planning activity: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements

  3. Summary report on the Solar Consumer Assurance Network (SOLCAN) Program Planning Task in the southern region

    Energy Technology Data Exchange (ETDEWEB)

    Browne, M. B. [comp.

    1981-03-15

    The goal of the SOLCAN Program Planning Task is to assist in the development, at the state and local levels, of consumer assurance approaches that will support the accelerated adoption and effective use of new products promoted by government incentives to consumers to meet our nation's energy needs. The task includes state-conducted evaluations and state SOLCAN meetings to identify consumer assurance mechanisms, assess their effectiveness, and identify and describe alternative means for strengthening consumer and industry assurance in each state. Results of the SOLCAN process are presented, including: a Solar Consumer Protection State Assessment Guide; State Solar Consumer Assurance Resources for Selected States; State Solar Consumer Protection Assessment Interviews for Florida; and state SOLCAN meeting summaries and participants. (LEW)

  4. The Effect of "Rogue" Active Regions on the Solar Cycle

    Science.gov (United States)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  5. Utility-Scale Photovoltaic Deployment Scenarios of the Western United States: Implications for Solar Energy Zones in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Krishnan, Venkat [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haase, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    In this study, we use the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) capacity expansion model to estimate utility-scale photovoltaic (UPV) deployment trends from present day through 2030. The analysis seeks to inform the U.S. Bureau of Land Management's (BLM's) planning activities related to UPV development on federal lands in Nevada as part of the Resource Management Plan (RMP) revision for the Las Vegas and Pahrump field offices. These planning activities include assessing the demand for new or expanded additional Solar Energy Zones (SEZ), per the process outlined in BLM's Western Solar Plan process.

  6. Influence of solar activity on the state of the wheat market in medieval England

    Science.gov (United States)

    Pustil'Nik, Lev A.; Din, Gregory Yom

    2004-09-01

    The database of professor Rogers (1887), which includes wheat prices in England in the Middle Ages, was used to search for a possible influence of solar activity on the wheat market. Our approach was based on the following: (1) Existence of the correlation between cosmic ray flux entering the terrestrial atmosphere and cloudiness of the atmosphere. (2) Cosmic ray intensity in the solar system changes with solar activity, (3) Wheat production depends on weather conditions as a nonlinear function with threshold transitions. (4) A wheat market with a limited supply (as it was in medieval England) has a highly nonlinear sensitivity to variations in wheat production with boundary states, where small changes in wheat supply could lead to bursts of prices or to prices falling. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations, and compare expected price fluctuations with price variations recorded in medieval England. We compared statistical properties of the intervals between wheat price bursts during the years 1249-1703 with statistical properties of the intervals between the minima of solar cycles during the years 1700-2000. We show that statistical properties of these two samples are similar, both for characteristics of the distributions and for histograms of the distributions. We analyze a direct link between wheat prices and solar activity in the 17th century, for which wheat prices and solar activity data (derived from 10Be isotope) are available. We show that for all 10 time moments of the solar activity minima the observed prices were higher than prices for the corresponding time moments of maximal solar activity (100% sign correlation, on a significance level < 0.2%). We consider these results a direct evidence of the causal connection between wheat prices bursts and solar activity.

  7. Solar Sail Propulsion Technology Readiness Level Database

    Science.gov (United States)

    Adams, Charles L.

    2004-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 solar sail system design and development hardware demonstration activities over the past 20 months. Able Engineering Company (AEC) of Goleta, CA is leading one team and L Garde, Inc. of Tustin, CA is leading the other team. Component, subsystem and system fabrication and testing has been completed successfully. The goal of these activities is to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by 2006. These activities will culminate in the deployment and testing of 20-meter solar sail system ground demonstration hardware in the 30 meter diameter thermal-vacuum chamber at NASA Glenn Plum Brook in 2005. This paper will describe the features of a computer database system that documents the results of the solar sail development activities to-date. Illustrations of the hardware components and systems, test results, analytical models, relevant space environment definition and current TRL assessment, as stored and manipulated within the database are presented. This database could serve as a central repository for all data related to the advancement of solar sail technology sponsored by the ISPT, providing an up-to-date assessment of the TRL of this technology. Current plans are to eventually make the database available to the Solar Sail community through the Space Transportation Information Network (STIN).

  8. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minhwan; Choe, G. S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Woods, T. N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Hong, Sunhak, E-mail: gchoe@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  9. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    International Nuclear Information System (INIS)

    Jang, Minhwan; Choe, G. S.; Woods, T. N.; Hong, Sunhak

    2016-01-01

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  10. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    Science.gov (United States)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  11. Relationships between the solar wind and the polar cap magnetic activity

    International Nuclear Information System (INIS)

    Berthelier, A.

    1981-01-01

    The influence of solar wind conditions on magnetic activity is described in order to delineate the differences in the response of the magnetic activity to the arrival on the magnetopause of different typical solar wind variations. By determining a new index of local magnetic activity free from seasonal and diurnal effects we put in evidence the dependence of the various effects upon the invariant latitude. Most important results are: (1) the main increase of the magnetic activity does not occur at the same invariant latitude for different interplanetary variations, e.g. peaks of Bz tend to increase magnetic activity mainly in the auroral zones while peaks of B correspond to a uniform increase in magnetic activity over the polar cap and auroral zone; (2) there is a two steps response of magnetic activity to the high speed plasma streams; (3) an increase of magnetic activity is observed for large and northward Bz, which probably indicates that the solar wind-magnetosphere coupling is efficient under these circumstances. The specific influences of the IMF polarity are also briefly reviewed. (orig.)

  12. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    Energy Technology Data Exchange (ETDEWEB)

    Myllys, M. [Helsinki Univ. (Finland). Dept. of Physics; Partamies, N. [Finnish Meteorological Institute, Helsinki (Finland); University Centre in Svalbard, Longyearbyen (Norway). Dept. of Arctic Geophysics; Juusola, L. [Finnish Meteorological Institute, Helsinki (Finland)

    2015-09-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  13. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    International Nuclear Information System (INIS)

    Myllys, M.

    2015-01-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  14. An Integrated Extravehicular Activity Research Plan

    Science.gov (United States)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human

  15. REGULARITY OF THE NORTH–SOUTH ASYMMETRY OF SOLAR ACTIVITY: REVISITED

    International Nuclear Information System (INIS)

    Zhang, J.; Feng, W.

    2015-01-01

    Extended time series of Solar Activity Indices (ESAI) extended the Greenwich series of sunspot area from the year 1874 back to 1821. The ESAI's yearly sunspot area in the northern and southern hemispheres from 1821 to 2013 is utilized to investigate characteristics of the north–south hemispherical asymmetry of sunspot activity. Periodical behavior of about 12 solar cycles is also confirmed from the ESAI data set to exist in dominant hemispheres, linear regression lines of yearly asymmetry values, and cumulative counts of yearly sunspot areas in the hemispheres for solar cycles. The period is also inferred to appear in both the cumulative difference in the yearly sunspot areas in the hemispheres over the entire time interval and in its statistical Student's t-test. The hemispherical bias of sunspot activity should be regarded as an impossible stochastic phenomenon over a long time period

  16. Solar activity influence on air temperature regimes in caves

    Science.gov (United States)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  17. Enerplan - union of solar energy professionals, activity report second half of 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities during the second half of 2012 (public relations, meetings and conferences, promotional activities, projects..)

  18. Enerplan - union of solar energy professionals, activity report first half of 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities during the first half of 2013 (public relations, meetings and conferences, promotional activities, projects..)

  19. Solar thermal in France

    International Nuclear Information System (INIS)

    Letz, T.

    2006-01-01

    This article gives details of Plan Soleil established in 2000 by the French Agency for Environment and Energy Management and its identification of solar hot water systems and combined domestic solar hot water and space heating as promising sectors for development. The setting up of a support scheme for investment by Plan Soleil is discussed along with subsidies and grants, manufacturers and importers, the guarantee of solar results, and the quality of plants, components, and installers. The costs of thermal solar equipment, and results of the French assessment programme are considered. The need for quality standards is stressed

  20. Solar building construction - new technologies; Solares Bauen - Neue Technologien fuer Gebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Luther, J.; Voss, K.; Wittwer, V. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Abt. ``Thermische und Optische Systeme``

    1998-02-01

    There is an increasing demand for integrated building concepts in order to reduce energy consumption. Building design, construction and heating, ventilation and air-conditioning (HVAC) technology are decisive in this respect. Thus, an essentially higher energy efficiency is achieved and solar energy becomes the main energy source. An `active building envelope` assumes the task of controlling the energy flows between inside and outside. This paper reports on new components, system concepts and planning tools for solar building. (orig.) [Deutsch] Fuer zukuenftige Bauten werden in hohem Masse Forderungen nach integrierten Konzepten zur Begrenzung des Energieverbrauchs gestellt. Gestalt, Konstruktion und Klimatechnik sind dabei massgebliche Einflussfaktoren. Hierdurch wird eine wesentlich hoehere Energieeffizienz erzielt und Solarenergie kann die uebrigen Energiequellen zurueckdraengen. Eine `aktive Gebaeudehuelle` uebernimmt die Aufgabe, den Energiefluss zwischen Innen und Aussen zu steuern. Der Beitrag berichtet ueber neue Komponenten, Systemkonzepte und Planungswerkzeuge fuer das Solare Bauen. (orig.)

  1. Motions of Supergranular Structures on the Solar Surface

    Czech Academy of Sciences Publication Activity Database

    Švanda, Michal; Klvaňa, Miroslav; Sobotka, Michal

    2005-01-01

    Roč. 29, č. 1 (2005), s. 39-48 ISSN 0351-2657. [Hvar astrophysical colloquium /7./: Solar activity cycle and global phenomena. Hvar, 20.09.2004-24.09.2004] R&D Projects: GA ČR GA205/04/2129; GA ČR GD205/03/H144; GA AV ČR KSK2043105 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar photosphere * velocity fields * tidal waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  2. The SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  3. Local adaptation of the National Physical Activity Plan: creation of the Active Living Plan for a Healthier San Antonio.

    Science.gov (United States)

    Esparza, Laura A; Velasquez, Katherine S; Zaharoff, Annette M

    2014-03-01

    Physical inactivity and related health consequences are serious public health threats. Effective strategies to facilitate and support active-living opportunities must be implemented at national, state, and local levels. San Antonio, Texas, health department officials launched the Active Living Council of San Antonio (ALCSA) to engage the community in developing a 3- to 5-year plan to promote active living. A steering committee set preliminary ALCSA aims and established a multisector membership structure modeled after the US National Physical Activity Plan (NPAP). ALCSA adopted governance standards, increased knowledge of physical activity and health, and engaged in an 18-month collaborative master plan writing process. ALCSA selected overarching strategies and evidence-based strategies for each societal sector and adapted strategies to the local context, including tactics, measures of success, and timelines. Community and expert engagement led to a localized plan reflecting national recommendations, the Active Living Plan for a Healthier San Antonio. Multisector collaborations among governmental agencies and community organizations, which were successfully developed in this case to produce the first-ever local adaptation of the NPAP, require clearly defined expectations. Lessons learned in ALCSA's organizational and plan development can serve as a model for future community-driven efforts to increase active living.

  4. Frontier of solar observation. Solar activity observed by 'HINODE' mission

    International Nuclear Information System (INIS)

    Watanabe, Tetsuya

    2008-01-01

    After launched in September 2006, solar observation satellite 'HINODE' has been a solar observatory on orbit with the scientific instruments well operated and its continuous observation was conducted steadily on almost all solar atmospheres from photosphere to corona. 'HINODE' was equipped with the solar optical telescope, extreme-ultraviolet imaging spectrometer and x-ray telescope and aimed at clarifying the mystery of solar physics related with coronal heating and magnetic reconnection. Present state of 'HINODE' was described from observations made in initial observation results, which have made several discoveries, such as Alfven waves in the corona, unexpected dynamics in the chromosphere and photosphere, continuous outflowing plasma as a possible source of solar wind, and fine structures of magnetic field in sunspots and solar surface. (T. Tanaka)

  5. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    Directory of Open Access Journals (Sweden)

    Engels Stefan

    2012-07-01

    Full Text Available Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of the processes that drive the global climate system. In this review paper, we present palaeoclimatological evidence for the past influence of solar variability on Earth’s climate, highlighting the effects of solar forcing on a range of timescales. On a decadal timescale, instrumental measurements as well as historical records show the effects of the 11-year Schwabe cycle on climate. The variation in total solar irradiance that is associated with a Schwabe cycle is only ~1 W m−2 between a solar minimum and a maximum, but winter and spring temperatures on the Northern Hemisphere show a response even to this small-scale variability. There is a large body of evidence from palaeoclimatic reconstructions that shows the influence of solar activity on a centennial to millennial timescale. We highlight a period of low solar activity starting at 2800 years before present when Europe experienced a shift to colder and wetter climate conditions. The spatial pattern of climate change that can be recognized in the palaeoclimatological data is in line with the suggested pattern of climate change as simulated by climate models. Millennial-scale climate oscillations can be recognized in sediment records from the Atlantic Ocean as well as in records of lake-level fluctuations in southeastern France. These oscillations coincide with variation in 14C production as recognized in the atmospheric 14C record (which is a proxy-record for solar activity, suggesting that Earth’s climate is sensitive to changes in solar activity on a millennial timescale as well.

  6. Solar activity and terrestrial climate: an analysis of some purported correlations

    DEFF Research Database (Denmark)

    Laut, Peter

    2003-01-01

    claimed to support solar hypotheses. My analyses show that the apparent strong correlations displayed on these graphs have been obtained by an incorrect handling of the physical data. Since the graphs are still widely referred to in the literature and their misleading character has not yet been generally......The last decade has seen a revival of various hypotheses claiming a strong correlation between solar activity and a number of terrestrial climate parameters: Links between cosmic rays and cloud cover, first total cloud cover and then only low clouds, and between solar cycle lengths and Northern...... the existence of important links between solar activity and terrestrial climate. Such links have over the years been demonstrated by many authors. The sole objective of the present analysis is to draw attention to the fact that some of the widely publicized, apparent correlations do not properly reflect...

  7. Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions

    Science.gov (United States)

    Monsue, Teresa; Pesnell, Dean; Hill, Frank

    2018-01-01

    Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.

  8. Annual review of solar energy. Period of review: 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-10-01

    A general review of national solar energy programs is provided. An executive summary and a brief history of the Federal solar energy program are presented. The issues and implications of the National Energy Plan that relate to solar energy development ae discussed. An overview is provided of the present Federal solar energy program, including the activities of several Federal agencies outside the Department of Energy. Some of the non-Federal solar energy programs ae reviewed, including international programs in which the U.S. has some role, programs of state and local governments, college and university programs, the work of private industry, and individual and small scale activities. A synposis of the major categories of solar technology is provided. Each chapter discusses a particular technology area and includes a basic technological description; a summary of the goals and activities of the Federal R and D program for the technology; significant events and development of the past year; and a brief overview of problems, uncertainties, and dissenting views. Three appendices include a synopsis of major energy events of 1977; a glossary of technical terms, abbreviations, and acronyms, and a table of conversion factors. (MHR)

  9. A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups

    Science.gov (United States)

    Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana

    2017-12-01

    The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.

  10. What contributes to action plan enactment? Examining characteristics of physical activity plans.

    Science.gov (United States)

    Fleig, Lena; Gardner, Benjamin; Keller, Jan; Lippke, Sonia; Pomp, Sarah; Wiedemann, Amelie U

    2017-11-01

    Individuals with chronic conditions can benefit from formulating action plans to engage in regular physical activity. However, the content and the successful translation of plans into action, so-called plan enactment, are rarely adequately evaluated. The aim of this study was to describe the content of user-specified plans and to examine whether participants were more likely to enact their plans if these plans were highly specific, viable, and instrumental. The study presents secondary analyses from a larger behavioural intervention in cardiac and orthopaedic rehabilitation. The content of 619 action plans from 229 participants was evaluated by two independent raters (i.e., qualitative analyses and ratings of specificity) and by participants themselves (i.e., instrumentality and viability). Plan enactment was also measured via self-reports. Multilevel analyses examined the relationship between these plan characteristics and subsequent plan enactment, and between plan enactment and aggregated physical activity. Participants preferred to plan leisure-time physical activities anchored around time-based cues. Specificity of occasion cues (i.e., when to act) and highly instrumental plans were positively associated with plan enactment. Interestingly, individuals who planned less specific behavioural responses (i.e., what to do) were more likely to enact their plans. Plan enactment was positively associated with aggregated behaviour. Interventions should not only emphasize the importance of planning, but also the benefits of formulating specific contextual cues. Planning of the behavioural response seems to require less precision. Allowing for some flexibility in executing the anticipated target behaviour seems to aid successful plan enactment. Statement of Contribution What is already known on this subject? Action planning interventions are efficacious in promoting health behaviour. Characteristics of plan content (i.e., specificity) matter for unconditional behaviour

  11. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    Science.gov (United States)

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  12. The Influence of Solar Activity on the Rainfall over India: Cycle-to ...

    Indian Academy of Sciences (India)

    The Influence of Solar Activity on the Rainfall over India: Cycle-to-Cycle Variations. K. M. Hiremath. Indian Institute of Astrophysics, Bangalore 560 034, India. e-mail: hiremath@iiap.res.in. Abstract. We use 130 years data for studying correlative effects due to solar cycle and activity phenomena on the occurrence of rainfall ...

  13. Activity associated with coronal mass ejections at solar minimum - SMM observations from 1984-1986

    Science.gov (United States)

    St. Cyr, O. C.; Webb, D. F.

    1991-01-01

    Seventy-three coronal mass ejections (CMEs) observed by the coronagraph aboard SMM between 1984 and 1986 were examined in order to determine the distribution of various forms of solar activity that were spatially and temporally associated with mass ejections during solar minimum phase. For each coronal mass ejection a speed was measured, and the departure time of the transient from the lower corona estimated. Other forms of solar activity that appeared within 45 deg longitude and 30 deg latitude of the mass ejection and within +/-90 min of its extrapolated departure time were explored. The statistical results of the analysis of these 73 CMEs are presented, and it is found that slightly less than half of them were infrequently associated with other forms of solar activity. It is suggested that the distribution of the various forms of activity related to CMEs does not change at different phases of the solar cycle. For those CMEs with associations, it is found that eruptive prominences and soft X-rays were the most likely forms of activity to accompany the appearance of mass ejections.

  14. Solar Radio Observation using Callisto Spectrometer at Sumedang West Java Indonesia: Current Status and Future Development Plan in Indonesia

    Science.gov (United States)

    Manik, T.; Sitompul, P.; Batubara, M.; Harjana, T.; Yatini, C. Y.; Monstein, C.

    2016-04-01

    Sumedang Observatory (6.91°S, 107,84°E) was established in 1975 and is one of the solar observation facilities of the Space Science Center of Indonesian National Institute of Aeronautics and Space (LAPAN), located around 40 km, east part of Bandung City, West Java, Indonesia. Several instrumentations for solar and space observation such as optical telescopes, radio solar spectrograph, flux gate magnetometer, etc. are operated there, together with an ionosphere sounding system (ionosonde) that was set up later. In July 2014, a standard Callisto (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) spectrometer was installed at Sumedang Observatory for solar radio activity monitoring. Callisto has been developed in the framework of IHY2007 and ISWI, supported by UN and NASA. Callisto spectrometer has observation capability in the frequency range of 45-870 MHz. The Callisto spectrometer receives signal by using a set of 21 elements log-periodic antenna, model CLP5130-1N, pointed to the Sun and equipped with a low noise pre-amplifier. With respect to the Radio Frequency Interferences (RFI) measurements, the Callisto spectrometer is operated individually in frequency ranges of 45-80 MHz and 180-450 MHz. Observation status and data flow are monitored in on-line from center office located in Bandung. The data was transferred to central database at FHNW (Fachhochschule Nordwestschweiz) server every 15 minutes to appear on e-Callisto network subsequently. A real time data transfer and data processing based on Python software also has been developed successfully to be used as an input for Space Weather Information and Forecasting Services (SWIFtS) provided by LAPAN. On 5th November 2014, Callisto spectrometer at Sumedang observed the first clear solar radio event, a solar radio burst type II corresponding to a coronal mass ejection (CME), indicated by a strong X-ray event of M7.9 that was informed on by Space Weather

  15. Optical and thermal design of 1.5-m aperture solar UV visible and IR observing telescope for Solar-C mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Horiuchi, T.; Matsumoto, Y.; Takeyama, N.

    2017-11-01

    The next Japanese solar mission, SOLAR-C, which has been envisaged after successful science operation of Hinode (SOLAR-B) mission, is perusing two plans: plan-A and plan-B, and under extensive study from science objectives as well as engineering point of view. The plan-A aims at performing out-of-ecliptic observations for investigating, with helioseismic approach, internal structure and dynamo mechanisms of the Sun. It also explores polar regions where fast solar wind is believed to originate. A baseline orbit for plan-A is a circular orbit of 1 AU distance from the Sun with its inclination at around or greater than 40 degrees. The plan-B aims to study small-scale plasma processes and structures in the solar atmosphere which attract researchers' growing interest, followed by many Hinode discoveries [1], for understanding fully dynamism and magnetic nature of the atmosphere. With plan-B, high-angular-resolution investigation of the entire solar atmosphere (from the photosphere to the corona, including their interface layers, i.e., chromosphere and transition region) is to be performed with enhanced spectroscopic and spectro-polarimetric capability as compared with Hinode, together with enhanced sensitivity towards ultra-violet wavelengths. The orbit of plan-B is either a solar synchronous polar orbit of altitude around 600 km or a geosynchronous orbit to ensure continuous solar observations. After the decision of any one of the two plans, the SOLAR-C will be proposed for launch in mid-2010s. In this paper, we will present a basic design of one of major planned instrumental payload for the plan-B: the Solar Ultra-violet Visible and near IR observing Telescope (hereafter referred to as SUVIT). The basic concept in designing the SUVIT is to utilize as much as possible a heritage of successful telescope of the Solar Optical Telescope (SOT) aboard Hinode [2]. Major differences of SUVIT from SOT are the three times larger aperture of 1.5 m, which enables to collect one

  16. SPADER - Science Planning Analysis and Data Estimation Resource for the NASA Parker Solar Probe Mission

    Science.gov (United States)

    Rodgers, D. J.; Fox, N. J.; Kusterer, M. B.; Turner, F. S.; Woleslagle, A. B.

    2017-12-01

    Scheduled to launch in July 2018, the Parker Solar Probe (PSP) will orbit the Sun for seven years, making a total of twenty-four extended encounters inside a solar radial distance of 0.25 AU. During most orbits, there are extended periods of time where PSP-Sun-Earth geometry dramatically reduces PSP-Earth communications via the Deep Space Network (DSN); there is the possibility that multiple orbits will have little to no high-rate downlink available. Science and housekeeping data taken during an encounter may reside on the spacecraft solid state recorder (SSR) for multiple orbits, potentially running the risk of overflowing the SSR in the absence of mitigation. The Science Planning Analysis and Data Estimation Resource (SPADER) has been developed to provide the science and operations teams the ability to plan operations accounting for multiple orbits in order to mitigate the effects caused by the lack of high-rate downlink. Capabilities and visualizations of SPADER are presented; further complications associated with file downlink priority and high-speed data transfers between instrument SSRs and the spacecraft SSR are discussed, as well as the long-term consequences of variations in DSN downlink parameters on the science data downlink.

  17. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  18. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  19. Rotation of the Earth, solar activity and cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Barlyaeva, T.; Bard, E. [Aix-Marseille Univ., CNRS, IRD, Aix-en-Provence (France). CEREGE, College de France; Abarca-del-Rio, R. [Universidad de Concepcion (UDEC) (Chile). Dept. de Geofisica (DGEO)

    2014-10-01

    We analyse phase lags between the 11-year variations of three records: the semi-annual oscillation of the length of day (LOD), the solar activity (SA) and the cosmic ray intensity (CRI). The analysis was done for solar cycles 20-23. Observed relationships between LOD, CRI and SA are discussed separately for even and odd solar cycles. Phase lags were calculated using different methods (comparison of maximal points of cycles, maximal correlation coefficient, line of synchronization of cross-recurrence plots). We have found different phase lags between SA and CRI for even and odd solar cycles, confirming previous studies. The evolution of phase lags between SA and LOD as well as between CRI and LOD shows a positive trend with additional variations of phase lag values. For solar cycle 20, phase lags between SA and CRI, between SA and LOD, and between CRI and LOD were found to be negative. Overall, our study suggests that, if anything, the length of day could be influenced by solar irradiance rather than by cosmic rays.

  20. Rotation of the Earth, solar activity and cosmic ray intensity

    International Nuclear Information System (INIS)

    Barlyaeva, T.; Bard, E.

    2014-01-01

    We analyse phase lags between the 11-year variations of three records: the semi-annual oscillation of the length of day (LOD), the solar activity (SA) and the cosmic ray intensity (CRI). The analysis was done for solar cycles 20-23. Observed relationships between LOD, CRI and SA are discussed separately for even and odd solar cycles. Phase lags were calculated using different methods (comparison of maximal points of cycles, maximal correlation coefficient, line of synchronization of cross-recurrence plots). We have found different phase lags between SA and CRI for even and odd solar cycles, confirming previous studies. The evolution of phase lags between SA and LOD as well as between CRI and LOD shows a positive trend with additional variations of phase lag values. For solar cycle 20, phase lags between SA and CRI, between SA and LOD, and between CRI and LOD were found to be negative. Overall, our study suggests that, if anything, the length of day could be influenced by solar irradiance rather than by cosmic rays.

  1. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    Science.gov (United States)

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evolutionary charts of solar activity (calcium plages) as functions of heliographic longitude and time

    International Nuclear Information System (INIS)

    Hedeman, E.R.; Dodson, H.W.; Roelof, E.C.

    1981-08-01

    The richness and diversity of data relating to solar activity present a challenge from the point of view of organization and evaluation. For phenomena such as plages and centers of activity that tend to last for more than one solar rotation, a sequence of evolutionary charts based on heliographic longitude for successive solar rotations are discussed. Such a diagrammatic representation of calcium plages as a function of longitude and time, coupled with considerations of heliographic latitude, permits relatively easy and confident recognition of successively returning centers of activity

  3. Geometry of solar corona expansion and solar wind parameters

    International Nuclear Information System (INIS)

    Krajnev, M.B.

    1980-01-01

    The character of the parameter chanqe of solar wind plasma in the region of the Earth orbit is studied. The main regularities in the parametep behaviour of solar wind (plasma velocity and density) are qualitatively explained in the framework of a model according to which solar corona expansion stronqly differs from radial expansion, that is: the solar wind current lines are focused towards helioequator during the period of low solar activity with gradual transfer to radial expansion during the years of high solar activity. It is shown that the geometry of the solar wind current tubes and its change with the solar activity cycle can not serve an explanation of the observed change of the solar wind parameters

  4. Responses of Solar Irradiance and the Ionosphere to an Intense Activity Region

    Science.gov (United States)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing

    2018-03-01

    Solar rotation (SR) variation dominates solar extremely ultraviolet (EUV) changes on the timescale of days. The F10.7 index is usually used as an indicator for solar EUV. The SR variation of F10.7 significantly enhanced during the 2008th-2009th Carrington rotations (CRs) owing to an intense active region; F10.7 increased about 180 units during that SR period. That was the most prominent SR variation of F10.7 during solar cycle 23. In this paper, global electron content (GEC) is used to investigate ionospheric response to that strong variation of solar irradiance indicated by F10.7. The variation of GEC with F10.7 was anomalous (GEC-F10.7 slope significantly decreased) during the 2008th-2009th CRs; however, GEC versus EUV variation during that period was consistent with that during adjacent time intervals when using Solar Heliospheric Observatory/Solar EUV Monitor 26-34 nm EUV measurements. The reason is that F10.7 response to that intense active region was much stronger than EUV response; thus, the EUV-F10.7 slope decreased. We confirmed decreased EUV-F10.7 slope during the 2008th-2009th CRs for different wavelengths within 27-120 nm using Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Solar EUV Experiment high spectral resolution EUV measurements. And on the basis of Solar Heliospheric Observatory/Solar EUV Monitor EUV measurements during solar cycle 23, we further presented that EUV-F10.7 slope statistically tends to decrease when the SR variation of F10.7 significantly enhances. Moreover, we found that ionospheric time lag effect to EUV is exaggerated when using F10.7, owing to the time lag effect of EUV to F10.7.

  5. Solar collector wall with active curtain system; Lasikatteinen massiivienen aurinkokeraeaejaeseinae

    Energy Technology Data Exchange (ETDEWEB)

    Ojanen, T.; Heimonen, I. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1998-12-01

    Integration of solar collector into the building envelope structure brings many advantages. The disadvantage of a passive solar collector wall is that its thermal performance can not be controlled, which may cause temporary overheating and low thermal efficiency of the collector. The thermal performance of the collector wall can be improved by using controllable, active collector systems. In this paper a solar collector wall with a controllable curtain between the transparent and absorption layers is investigated. The curtain is made of several low-emissivity foil layers, which ensures low radiation heat transfer through the curtain. The curtain decreases the heat losses out from the collector wall and it improves the U-value of the wall. The curtain is used when the solar radiation intensity to the wall is not high enough or when the wall needs protection against overheating during warm weather conditions. The materials and building components used in the collector wall, except those of the curtain, are ordinary in buildings. The transparent layer can be made by using normal glazing technology and the thermal storage layer can be made out of brick or similar material. The solar energy gains through the glazing can be utilised better than in passive systems, because the curtain provides the wall with high thermal resistance outside the solar radiation periods. The thermal performance of the collector wall was studied experimentally using a Hot-Box apparatus equipped with a solar lamp. Numerical simulations were carried out to study the yearly performance of the collector wall under real climate conditions. The objectives were to determine the thermal performance of the collector wall and to study how to optimise the use of solar radiation in this system. When the curtain with high thermal resistance is used actively, the temperature level of the thermal storage layer in the wall is relatively high also during dark periods and the heat losses out from the storage

  6. Complex active regions as the main source of extreme and large solar proton events

    Science.gov (United States)

    Ishkov, V. N.

    2013-12-01

    A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of "physical" boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.

  7. PLAN-IT - Scheduling assistant for solar system exploration

    International Nuclear Information System (INIS)

    Dias, W. C.; Henricks, J. A.; Wong, J. C.; California Institute of Technology, Pasadena)

    1987-01-01

    A frame-based expert scheduling system shell, PLAN-IT, is developed for spacecraft scheduling in the Request Integration Phase, using the Comet Rendezvous Asteroid Flyby (CRAF) mission as a development base. Basic, structured, and expert scheduling techniques are reviewed. Data elements such as activity representation and resource conflict representation are discussed. Resource constraints include minimum and maximum separation times between activities, percentage of time pointed at specific targets, and separation time between targeted intervals of a given activity. The different scheduling technique categories and the rationale for their selection are also considered. 13 references

  8. Solar and terrestrial physics. [effects of solar activities on earth environment

    Science.gov (United States)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  9. Hands-on Activities for Exploring the Solar System in K-14 Formal and Informal Education Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.

    2004-12-01

    Introduction: Activities developed by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. Educators may choose activities that fit a particular concept or theme within their curriculum from activities that highlight missions and research pertaining to exploring the solar system. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. The web sites for the activities contain current information so students experience recent mission information such as data from Mars rovers or the status of Stardust sample return. The Johnson Space Center Astromaterials Research and Exploration Science education team has compiled a variety of NASA solar system activities to produce an annotated thematic syllabus useful to classroom educators and informal educators as they teach space science. An important aspect of the syllabus is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting, educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. In both the informal and the primary education levels the activities are appropriately designed to excite interest, arouse curiosity and easily take the participants from pre-awareness to the awareness stage. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered may easily be adapted for the upper

  10. Grid-connected solar electricity going mainstream

    International Nuclear Information System (INIS)

    MacLellan, I.

    2004-01-01

    In 20 days, the sun provides the equivalent amount of energy found in all known fossil fuel reserves. This paper provides an outline of solar energy industry activities from the perspective of Arise Technologies, a Canadian-based solar energy company. An overview of the company's vision and marketing strategy was presented, including annual sales. Details of the company's commercial projects were reviewed, with specific reference to the first Canadian grid-connected solar electric subdivision. An introduction to photovoltaic electricity (PV) as an environmentally positive energy source was presented. Statistics included information on the current solar market worldwide as well as government and industry investment. Portable solar energy applications were provided, as well as grid-tied products in relation to private dwelling and commercial, industrial and institutional buildings. Details of an Arise solar home were presented. An outline of the Technology Early Action Measures (TEAM) was presented, with reference to the federal government's Climate Change Action Plan. The benefits of solar economics were given. PV factory production was overviewed, with a presentation of the experience curve and the number of grid-connected solar electric homes globally. Top global PV manufacturers were listed as well as a chart of world energy transitions underlining the emergence of renewable energy programs and systems. A summary of solar energy in Japan was provided, along with details of mid and long term solar energy planning, as well as other projects around the world. Canadian investment in PV was compared with other countries and details of past government spending on other energy sources were also presented. It was concluded that Canada was far behind other G-8 countries with reference to grid-connected PV, but that off-grid PV was a real business in Canada. It was also concluded that Japan would represent the first real mainstream grid-connected market, followed by Europe

  11. Grid-connected solar electricity going mainstream

    Energy Technology Data Exchange (ETDEWEB)

    MacLellan, I. [Arise Technologies Corp., Kitchener, ON (Canada)

    2004-06-01

    In 20 days, the sun provides the equivalent amount of energy found in all known fossil fuel reserves. This paper provides an outline of solar energy industry activities from the perspective of Arise Technologies, a Canadian-based solar energy company. An overview of the company's vision and marketing strategy was presented, including annual sales. Details of the company's commercial projects were reviewed, with specific reference to the first Canadian grid-connected solar electric subdivision. An introduction to photovoltaic electricity (PV) as an environmentally positive energy source was presented. Statistics included information on the current solar market worldwide as well as government and industry investment. Portable solar energy applications were provided, as well as grid-tied products in relation to private dwelling and commercial, industrial and institutional buildings. Details of an Arise solar home were presented. An outline of the Technology Early Action Measures (TEAM) was presented, with reference to the federal government's Climate Change Action Plan. The benefits of solar economics were given. PV factory production was overviewed, with a presentation of the experience curve and the number of grid-connected solar electric homes globally. Top global PV manufacturers were listed as well as a chart of world energy transitions underlining the emergence of renewable energy programs and systems. A summary of solar energy in Japan was provided, along with details of mid and long term solar energy planning, as well as other projects around the world. Canadian investment in PV was compared with other countries and details of past government spending on other energy sources were also presented. It was concluded that Canada was far behind other G-8 countries with reference to grid-connected PV, but that off-grid PV was a real business in Canada. It was also concluded that Japan would represent the first real mainstream grid-connected market

  12. Software Engineering Improvement Activities/Plan

    Science.gov (United States)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  13. Solar Energy Education. Humanities: activities and teacher's guide. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Activities are outlined to introduce students to information on solar energy while performing ordinary classroom work. In this teaching manual solar energy is integrated with the humanities. The activities include such things as stories, newspapers, writing assignments, and art and musical presentations all filled with energy related terms. An energy glossary is provided. (BCS)

  14. Multi-parametric Effect of Solar Activity on Cosmic Rays V. K. Mishra ...

    Indian Academy of Sciences (India)

    Key words. Sun—solar parameters—cosmic ray modulation—running ... Neutron monitors are most sensitive to cosmic rays in the energy range. 0.5–20 GeV ... been considered as a primary indicator to define the level of solar activity, which.

  15. Solar activity and its evolution across the corona: recent advances

    Directory of Open Access Journals (Sweden)

    Rodriguez Luciano

    2013-04-01

    Full Text Available Solar magnetism is responsible for the several active phenomena that occur in the solar atmosphere. The consequences of these phenomena on the solar-terrestrial environment and on Space Weather are nowadays clearly recognized, even if not yet fully understood. In order to shed light on the mechanisms that are at the basis of the Space Weather, it is necessary to investigate the sequence of phenomena starting in the solar atmosphere and developing across the outer layers of the Sun and along the path from the Sun to the Earth. This goal can be reached by a combined multi-disciplinary, multi-instrument, multi-wavelength study of these phenomena, starting with the very first manifestation of solar active region formation and evolution, followed by explosive phenomena (i.e., flares, erupting prominences, coronal mass ejections, and ending with the interaction of plasma magnetized clouds expelled from the Sun with the interplanetary magnetic field and medium. This wide field of research constitutes one of the main aims of COST Action ES0803: Developing Space Weather products and services in Europe. In particular, one of the tasks of this COST Action was to investigate the Progress in Scientific Understanding of Space Weather. In this paper we review the state of the art of our comprehension of some phenomena that, in the scenario outlined above, might have a role on Space Weather, focusing on the researches, thematic reviews, and main results obtained during the COST Action ES0803.

  16. 23 CFR 450.208 - Coordination of planning process activities.

    Science.gov (United States)

    2010-04-01

    ... process. (h) The statewide transportation planning process should be consistent with the Strategic Highway... 23 Highways 1 2010-04-01 2010-04-01 false Coordination of planning process activities. 450.208... Coordination of planning process activities. (a) In carrying out the statewide transportation planning process...

  17. Life cycle cost analysis of single slope hybrid (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, G.N.

    2009-01-01

    This paper presents the life cycle cost analysis of the single slope passive and hybrid photovoltaic (PV/T) active solar stills, based on the annual performance at 0.05 m water depth. Effects of various parameters, namely interest rate, life of the system and the maintenance cost have been taken into account. The comparative cost of distilled water produced from passive solar still (Rs. 0.70/kg) is found to be less than hybrid (PV/T) active solar still (Rs. 1.93/kg) for 30 years life time of the systems. The payback periods of the passive and hybrid (PV/T) active solar still are estimated to be in the range of 1.1-6.2 years and 3.3-23.9 years, respectively, based on selling price of distilled water in the range of Rs. 10/kg to Rs. 2/kg. The energy payback time (EPBT) has been estimated as 2.9 and 4.7 years, respectively. (author)

  18. The solarPACES strategy for the solar thermal breakthrough

    International Nuclear Information System (INIS)

    Burch, G.D.; Grasse, W.

    1997-01-01

    IEA(International Energy Agency)/SolarPACES(Solar Power and Chemical Energy systems)represents a world wide coalition for information sharing and collaboration on applications of concentrated solar energy. The current SolarPACES community has built up solar thermal system know-how over 15 years, is operating the three main solar test centres in the world. Its main activities are in the following four fields: solar thermal electric power systems, solar chemistry, solar technology and advanced applications and non-technical activities. The article presents the talk on the strategy of solarPACES given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. (A.A.D.)

  19. Great red spot dependence on solar activity

    International Nuclear Information System (INIS)

    Schatten, K.H.

    1979-01-01

    A new inquiry has been made into the question of whether Jupiter's Great Red Spot shows a solar activity dependence. From 1892 to 1947 a clear correlation was present. A dearth of sightings in the seventeenth century, along with the Maunder Minimum, further supports the relation. An anticorrelation, however, from l948 to l967 removed support for such an effect. The old observations have reexamined and recent observations have also been studied. The author reexamines this difficult question and suggests a possible physical mechanism for a Sun-Jovian weather relation. Prinn and Lewis' conversion reaction of Phosphine gas to triclinic red phosphorous crystals is a reaction dependent upon solar radiation. It may explain the dependence found, as well as the striking appearance of the Great Red Spot in the UV

  20. Different parameter and technique affecting the rate of evaporation on active solar still -a review

    Science.gov (United States)

    A, Muthu Manokar; D, Prince Winston; A. E, Kabeel; Sathyamurthy, Ravishankar; T, Arunkumar

    2018-03-01

    Water is one of the essential sources for the endurance of human on the earth. As earth having only a small amount of water resources for consumption purpose people in rural and urban areas are getting affected by consuming dirty water that leads to water-borne diseases. Even though ground water is available in small quantity, it has to be treated properly before its use for internal consumption. Brackish water contains dissolve and undissolved contents, and hence it is not suitable for the household purpose. Nowadays, distillation process is done by using passive and active solar stills. The major problem in using passive solar still is meeting higher demand for fresh water. The fresh water production from passive solar still is critically low to meet the demand. To improve the productivity of conventional solar still, input feed water is preheated by integrating the solar still to different collector panels. In this review article, the different parameters that affect the rate of evaporation in an active solar still and the different methods incorporated has been presented. In addition to active distillation system, forced convection technique can be incorporated to increase the yield of fresh water by decreasing the temperature of cover. Furthermore, it is identified that the yield of fresh water from the active desalination system can be improved by sensible and latent heat energy storage. This review will motivate the researchers to decide appropriate active solar still technology for promoting development.

  1. Variations of daytime and nighttime electron temperature and heat flux in the upper ionosphere, topside ionosphere and lower plasmasphere for low and high solar activity

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Třísková, Ludmila; Bilitza, D.; Podolská, Kateřina

    2009-01-01

    Roč. 71, 17-18 (2009), s. 2055-2063 ISSN 1364-6826 R&D Projects: GA AV ČR IAA300420603 Grant - others: NASA (US) NNH06CD17C Institutional research plan: CEZ:AV0Z30420517 Keywords : Electron temperature * Solar activity variation * Latitudinal and field aligned profiles * Heat flux Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.643, year: 2009

  2. A solar observing station for education and research in Peru

    Science.gov (United States)

    Kaname, José Iba, Ishitsuka; Ishitsuka, Mutsumi; Trigoso Avilés, Hugo; Takashi, Sakurai; Yohei, Nishino; Miyazaki, Hideaki; Shibata, Kazunari; Ueno, Satoru; Yumoto, Kiyohumi; Maeda, George

    2007-12-01

    Since 1937 Carnegie Institution of Washington made observations of active regions of the Sun with a Hale type spectro-helioscope in Huancayo observatory of the Instituto Geofísico del Perú (IGP). IGP has contributed significantly to geophysical and solar sciences in the last 69 years. Now IGP and the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA) are planning to refurbish the coelostat at the observatory with the support of National Astronomical Observatory of Japan. It is also planned to install a solar Flare Monitor Telescope (FMT) at UNICA, from Hida observatory of Kyoto University. Along with the coelostat, the FMT will be useful to improve scientific research and education.

  3. Passive solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Wiberg, K

    1981-11-10

    The present work treats the possibilities for heating according to the passive solar heating method. Problems of 'spatial organization in an energy-saving society' are distinguished from among other social problems. The final delimination of the actual problems under investigation consists of the use of passive solar heating and especially the 'consequences of such solar heating exploitation upon the form and structures' of planning and construction. In the concluding chapter an applied example shows how this method can be used in designing an urban area and what are its limitations. The results indicate the possibilities and difficulties in attempting to transfer this ideal and general method into models and directives for form and structure from which examples of the actual possibilities in practical planning can be given.

  4. Advance on solar instrumentation in China

    Science.gov (United States)

    Yan, Yihua

    2015-08-01

    The solar observing facilities in China are introduced with the emphasis on the development in recent years and future plans for both ground and space-based solar instrumentations. The recent solar instruments are as follows: A new generation Chinese Spectral Radioreliograph (CSRH) has been constructed at Mingantu Observing Station in Zhengxiangbaiqi, inner Mongolia of China since 2013 and is in test observations now. CSRH has two arrays with 40 × 4.5 m and 60 × 2 m parabolic antennas covering 0.4-2 GHz and 2-15 GHz frequency range. CSRH is renamed as MUSER (Mingantu Ultrawide Spectral Radiheliograph) after its accomplishment. A new 1 m vacuum solar telescope (NVST) has been installed in 2010 at Fuxian lake, 60 km away from Kunming, Yunana. At present it is the best seeing place in China. A new telescope called ONSET (Optical and NIR Solar Eruption Tracer) has been established at the same site as NVST in 2011. ONSET has been put into operation since 2013. For future ground-based plans, Chinese Giant Solar Telescope (CGST) with spatial resolution equivalent to 8m and effective area of 5m full-aperture telescope has been proposed and was formally listed into the National Plans of Major Science & Technology Infrastructures in China. The pre-study and site survey for CGST have been pursued. A 1-meter mid-infrared telescope for precise measurement of the solar magnetic field has been funded by NSFC in 2014 as a national major scientific instrument development project. This project will develop the first mid-infrared solar magnetic observation instrument in the world aiming at increasing the precision of the transverse magnetic field measurement by one order of magnitude. For future ground-based plans, we promote the Deep-space Solar Observatory (DSO) with 1-m aperture telescope to be formally funded. The ASO-S (an Advanced Space-based Solar Observatory) has been supported in background phase by Space Science Program as a small mission. Other related space solar

  5. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  6. Twist of Magnetic Fields in Solar Active Regions Hongqi Zhang ...

    Indian Academy of Sciences (India)

    tribpo

    in active regions also shows the butterfly pattern through the solar cycle. And, less than 30% of the active regions do not follow the general trend (Zhang & Bao 1998). The longitudinal distribution of current helicity parameter h|| of active regions in both the hemispheres in the last decade was presented by Zhang & Bao ...

  7. The Complexity of Solar and Geomagnetic Indices

    Science.gov (United States)

    Pesnell, W. Dean

    2017-08-01

    How far in advance can the sunspot number be predicted with any degree of confidence? Solar cycle predictions are needed to plan long-term space missions. Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Statistical and timeseries analyses of the sunspot number are often used to predict solar activity. These methods have not been completely successful as the solar dynamo changes over time and one cycle's sunspots are not a faithful predictor of the next cycle's activity. In some ways, using these techniques is similar to asking whether the stock market can be predicted. It has been shown that the Dow Jones Industrial Average (DJIA) can be more accurately predicted during periods when it obeys certain statistical properties than at other times. The Hurst exponent is one such way to partition the data. Another measure of the complexity of a timeseries is the fractal dimension. We can use these measures of complexity to compare the sunspot number with other solar and geomagnetic indices. Our concentration is on how trends are removed by the various techniques, either internally or externally. Comparisons of the statistical properties of the various solar indices may guide us in understanding how the dynamo manifests in the various indices and the Sun.

  8. Dynamics of ozone layer under Serbia and solar activity: Previous statement

    Directory of Open Access Journals (Sweden)

    Ducić Vladan

    2008-01-01

    Full Text Available The aim of this paper is to identify ozone layer dynamics under Serbian area, as well as possible relations of change in stratospheric ozone concentration with some parameters of solar activity. During the period 1979-2005, the statistical decrease of ozone concentration was noticed under Serbian territory cumulatively for 24.5 DU (7.2%, apropos 9.4 DU (2.8% by decade. These changes are consistent with the changes in surrounding countries. From absolute minimum 1993, flexible trend of ozone layer pentad values validate hypotheses of its recovery. Correspondence of ozone thickness extreme period with Wolf's number and with the greatest volcanic eruptions shows that interannual variations of stratospheric ozone concentration are still in the function of natural factors above all, as are solar and volcanic activities. Investigation of larger number solar activity parameters shows statistically important antiphase synchronous between the number of polar faculae on the Sun and stratospheric ozone dynamics under Serbia. Respecting that relation between these two features until now isn't depicted, some possible causal mechanisms are proposed.

  9. Influence of solar activity and environment on 10Be in recent natural archives

    International Nuclear Information System (INIS)

    Berggren, Ann-Marie

    2009-01-01

    Understanding the link between the Sun and climate is vital in the current incidence of global climate change, and 10 Be in natural archives constitutes an excellent tracer for this purpose. As cosmic rays enter the atmosphere, cosmogenic isotopes like 10 Be and 14 C are formed. Variations in solar activity modulate the amount of incoming cosmic rays, and thereby cosmogenic isotope production. Atmospherically produced 10 Be enters natural archives such as sediments and glaciers by wet and dry deposition within about a year of production. 10 Be from natural archives therefore provides information on past solar activity, and because these archives also contain climate information, solar activity and climate can be linked. One remaining question is to what degree 10 Be in natural archives reflects production, and to what extent the local and regional environment overprints the production signal. To explore this, 10 Be was measured at annual resolution over the last 600 years in a Greenland ice core. Measurement potentials for these samples benefited from the development of a new laboratory method of co-precipitating 10 Be with niobium. To diversify geographic location and archive media type, a pioneer study of measuring 10 Be with annual resolution in varved lake sediments from Finland was conducted, with samples from the entire 20th century. Pathways of 10 Be into lake sediments are more complex than into glacial ice, inferring that contemporary atmospheric conditions may not be recorded. Here, it is shown for the first time that tracing the 11-year solar cycle through lake sediment 10 Be variations is possible. Results also show that on an annual basis, 10 Be deposition in ice and sediment archives is affected by local environmental conditions. On a slightly longer timescale, however, diverse 10 Be records exhibit similar trends and a negative correlation with solar activity. Cyclic variability of 10 Be deposition persisted throughout past grand solar minima, when

  10. Solar Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  11. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    Science.gov (United States)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  12. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  13. Rate of production of cosmogenic isotopes in the past and solar activity

    International Nuclear Information System (INIS)

    Kocharov, G.E.; Dergachev, V.A.; Gordeichik, N.I.; Ioffe, A.F.

    1975-01-01

    The available experimental data on abundances of 14 C, 10 Be and 26 Al in materials with known ages are analyzed with the aim of determining of solar activity in the past. Based on the authors results on the abundances of 14 C in the tree rings it is shown that concentration of radiocarbon in atmosphere is changed with the period of approximately 60 years, amplitude approcimately 1% and phase shift relatively to solar activity of approximately 10 years. (orig./WBU) [de

  14. Cosmogenic radionuclide 7Be in atmospheric fallouts, weather factors and solar activity

    International Nuclear Information System (INIS)

    Kungurov, F.R.

    2011-11-01

    Key words: 7 Be activity, atmospheric fallouts, solar activity, gamma spectroscopy. Subjects of research: cosmogenic radionuclide 7 Be in atmospheric fallouts and surrounding objects of environment, its migrational distribution connected to solar activity and weather meteorologic parameters of the region studied. Purpose of work: Defining correlation between atmospheric humidity and solar activity with concentration and distribution of cosmogenic radionuclide 7 Be. Methods of research: gamma-spectrometry method of activity measurements. The results obtained and their novelty: Cycle of research works on definition of concentration and migrational distribution of CRN 7 Be in Samarkand region during 2002-2005 was carried out for the first time. Volumetric activity of 7 Be in squat air layer of Samarkand was determined. Average density of 7 Be fallouts for the four years of studies was determined. Qualitative correlation bet ween 7 Be fallouts density variations and solar activity, expressed through Wolf number has been found. Qualitative correlation between 7 Be fallouts density variations and amount of precipitations has been found. Regularity in 7 Be concentration decrease towards north latitudes has been detected. Practical value: Developed scintillation method of 7 Be activity detection in atmospheric fallouts was used in works performed in the framework of republican grants 2F-No 1.2.3, CNT RUz PFNI 2F-No 2.1.39 and ITD-7-024. Methodology was used for the estimation of the velocity of erosion processes in the soils of different regions of Uzbekistan. Methodology is used in the works on 7 Be radioactivity measurements. Degree of embed and economic effectivity: Gained results replenish database on 7 Be isotope distribution on Earth regions and its role in formation of some processes, connected with meteorology, agronomy and radioecology of Samarkand region. Field of application: meteorology, agronomy and radioecology. (author)

  15. On a relation of geomagnetic activity, solar wind velocity and irregularity of daily rotation of the Earth

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Kiselev, V.M.

    1980-01-01

    A possibility of the presence of statistic relation between the changes of the Earth rotation regime and the mean velocity of solar wind is discussed. The ratio between the solar wind velocity observed and planetary index of geomagnetic activity am is used to determine the annual average values of solar wind velocity beyond the twentieth cycle of solar activity. The restored changes of solar wind velocity are compared with solar conditioned variations of the Earth day duration and it is shown that the correspondence takes place only at frequencies lower the frequency of 11-year cycle [ru

  16. 75 FR 66078 - Draft Environmental Impact Statement/Staff Assessment for the Solar Reserve LLC Rice Solar Energy...

    Science.gov (United States)

    2010-10-27

    ... Assessment for the Solar Reserve LLC Rice Solar Energy Project, Riverside County, CA (DOE/ EIS-0439) and...) Plan Amendment, as a joint environmental analysis document for the proposed Rice Solar Energy Project... two new on-site wells. Rice Solar Energy, LLC (RSE) has applied to Western to interconnect the...

  17. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.

    2001-01-01

    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... reversal, depicting a new form of 22-year periodicity. The annual variation results from a small north-south asymmetry in SW speed distribution where the minimum speed region is shifted toward the northern magnetic hemisphere. Here we study the very long-term evolution of the annual variation using early...... registrations of geomagnetic activity. We find a significant annual variation during the high-activity solar cycles in mid-19th century and since 1930's. Most interestingly, the SW speed asymmetry in mid-19th century was opposite to the present asymmetry, i.e., the minimum speed region was then shifted toward...

  18. Variations of Solar Non-axisymmetric Activity

    Science.gov (United States)

    Gyenge, N.; Baranyi, T.; Ludmány, A.

    The temporal behaviour of solar active longitudes has been examined by using two sunspot catalogues, the Greenwich Photoheliographic Results (GPR) and the Debrecen Photoheliographic Data (DPD). The time-longitude diagrams of the activity distribution reveal the preferred longitudinal zones and their migration with respect to the Carrington frame. The migration paths outline a set of patterns in which the activity zone has alternating prograde/retrograde angular velocities with respect to the Carrington rotation rate. The time profiles of these variations can be described by a set of successive parabolae. Two similar migration paths have been selected from these datasets, one northern path during cycles 21 - 22 and one southern path during cycles 13 - 14, for closer examination and comparison of their dynamical behaviours. The rates of sunspot emergence exhibited in both migration paths similar periodicities, close to 1.3 years. This behaviour may imply that the active longitude is connected to the bottom of convection zone.

  19. Models of the quiet and active solar atmosphere from Harvard OSO data.

    Science.gov (United States)

    Noyes, R. W.

    1971-01-01

    Review of some Harvard Observatory programs aimed at defining the physical conditions in quiet and active solar regions on the basis of data obtained from the OSO-IV and OSO-VI spacecraft. The spectral range covered is from 300 A to 1400 A. This spectral range consists of emission lines and continua from abundant elements such as hydrogen, helium, carbon, nitrogen, oxygen, silicon, magnesium, aluminum, neon, iron, and calcium in various ionization states ranging from neutral to 15 times ionized. The structure is discussed of the quiet solar atmosphere as deduced from center-to-limb behavior of spectral lines and continua formed in the chromosphere and corona. In reviewing investigations of solar active regions, it is shown that the structure of these regions varies in a complicated manner from point to point. The local structure is influenced by factors such as the magnetic field configuration within the active region and the age or evolutionary state of the region.

  20. Solar Eclipse Computer API: Planning Ahead for August 2017

    Science.gov (United States)

    Bartlett, Jennifer L.; Chizek Frouard, Malynda; Lesniak, Michael V.; Bell, Steve

    2016-01-01

    With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an application programming interface (API). This flexible interface returns local circumstances for any solar eclipse in JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or applications. For a given year, it can also return a list of solar eclipses that can be used to build a more specific request for local circumstances. Over the course of a particular eclipse as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse Computer reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The computer also reports the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site. On-line documentation for using the API-enabled Solar Eclipse Computer, including sample calls, is available (http://aa.usno.navy.mil/data/docs/api.php). The same Web page also describes how to reach the Complete Sun and Moon Data for One Day, Phases of the Moon, Day and Night Across the Earth, and Apparent Disk of a Solar System Object services using API calls.For those who prefer using a traditional data input form, local circumstances can still be requested that way at http://aa.usno.navy.mil/data/docs/SolarEclipses.php. In addition, the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO). Looking further ahead, a

  1. 76 FR 78021 - Notice of Availability of the Record of Decision for the Rice Solar Energy, LLC, Rice Solar...

    Science.gov (United States)

    2011-12-15

    ... LVRWB10B3780] Notice of Availability of the Record of Decision for the Rice Solar Energy, LLC, Rice Solar... Solar Energy, LLC, a subsidiary of SolarReserve, LLC plans to construct a 150 megawatt (MW) solar... allows solar energy to be captured throughout the day and retained in a molten salt heat transfer fluid...

  2. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  3. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  5. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  6. DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Kitiashvili, Irina N., E-mail: irina.n.kitiashvili@nasa.gov [NASA Ames Research Center, Moffett Field, Mountain View, CA 94035 (United States)

    2016-11-01

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relatively new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.

  7. The Mediterranean solar plan: the momentum and challenges of a project of cooperation in politics, industry and energy

    International Nuclear Information System (INIS)

    Lorec, Ph.; Schramm, Ch.

    2009-01-01

    Launched by the French President on 13 July 2008, the Union for the Mediterranean (UfM) seeks to inaugurate an era of cooperation between lands to the north, south and east of the Mediterranean by carrying out concrete projects in response to the challenges that this region must address. The UfM applies, we might say, the 'Monnet method' to the Mediterranean Basin. In this region as in post-war Europe, energy is a major issue that, if left unsettled, might generate major risks but that, if addressed for the sake of a new political and economic partnership, could represent a major opportunity. The Mediterranean Solar Plan has this precise objective. It seeks to activate the de facto solidarity between lands around the Mediterranean and to bring them to cooperate on energy, industrial, economic and social projects. (authors)

  8. ON THE NON-KOLMOGOROV NATURE OF FLARE-PRODUCTIVE SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mandage, Revati S. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, TX 77005-1827 (United States); McAteer, R. T. James, E-mail: mcateer@nmsu.edu [Department of Astronomy, New Mexico State University, MSC 4500, Las Cruces, NM 88001 (United States)

    2016-12-20

    A magnetic power spectral analysis is performed on 53 solar active regions, observed from 2011 August to 2012 July. Magnetic field data obtained from the Helioseismic and Magnetic Imager, inverted as Active Region Patches, are used to study the evolution of the magnetic power index as each region rotates across the solar disk. Active regions are classified based on the numbers and sizes of solar flares they produce in order to study the relationship between flare productivity and the magnetic power index. The choice of window size and inertial range plays a key role in determining the correct magnetic power index. The overall distribution of magnetic power indices has a range of 1.0–2.5. Flare-quiet regions peak at a value of 1.6. However, flare-productive regions peak at a value of 2.2. Overall, the histogram of the distribution of power indices of flare-productive active regions is well separated from flare-quiet active regions. Only 12% of flare-quiet regions exhibit an index greater than 2, whereas 90% of flare-productive regions exhibit an index greater than 2. Flare-quiet regions exhibit a high temporal variance (i.e., the index fluctuates between high and low values), whereas flare-productive regions maintain an index greater than 2 for several days. This shows the importance of including the temporal evolution of active regions in flare prediction studies, and highlights the potential of a 2–3 day prediction window for space weather applications.

  9. Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.

  10. Morphology of equatorial plasma bubbles during low and high solar activity years over Indian sector

    Science.gov (United States)

    Kumar, Sanjay

    2017-05-01

    In the present study, slant total electron content (STEC) data computed from ground based GPS measurements over Hyderabad (Geog. Lat. 17.41° N, geog. long. 78.55° E, mag. lat. 08.81° N) and two close stations at Bangalore (Geog. Lat. 13.02°/13.03° N, geog. long. 77.57°/77.51° E, mag. lat. 04.53°/04.55° N) in Indian region during 2007-2012, have been used to study the occurrences and characteristics of equatorial plasma bubbles (EPBs). The analysis found maximum EPB occurrences during the equinoctial months and minimum during the December solstice throughout 2007-2012 except during the solar minimum years in 2007-2009. During 2007-2009, the maximum EPB occurrences were observed in June solstice which could not be predicted by the model proposed by Tsunoda (J. Geophys. Res., 90:447-456, 1985). The equinox maximum in EPB occurrences for high solar activity years could be caused by the vertical F-layer drift due to pre-reversal electric field (PRE), and expected to be maximum when day-night terminator aligns with the magnetic meridian i.e. during the equinox months whereas maximum occurrences during the solstice months of solar minimum could be caused by the seed perturbation in plasma density induced by gravity waves from tropospheric origins. Generally EPB occurrences are found to be more prominent during nighttime hours (2000-2400 hours) than the daytime hours. Peak in EPB occurrences is in early night for high solar activity years whereas same is late night for low solar activity. The day and nighttime EPB occurrences have been analyzed and found to vary in accordance with solar activity with an annual correlation coefficient (R) of ˜0.99 with F_{10.7} cm solar Flux. Additionally, solar activity influence on EPB occurrences is seasonal dependent with a maximum influence during the equinox season (R=0.88) and a minimum during winter season (R =0.73). The solar activity influences on EPB occurrences are found in agreement with the previous works reported in

  11. Global Distribution and Variations of NO Infrared Radiative Flux and Its Responses to Solar Activity and Geomagnetic Activity in the Thermosphere

    Science.gov (United States)

    Tang, Chaoli; Wei, Yuanyuan; Liu, Dong; Luo, Tao; Dai, Congming; Wei, Heli

    2017-12-01

    The global distribution and variations of NO infrared radiative flux (NO-IRF) are presented during 2002-2016 in the thermosphere covering 100-280 km altitude based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) data set. For investigating the spatial variations of the mutual relationship between NO-IRF and solar activity, the altitude ranges from 100 km to 280 km are divided into 90 altitude bins, and the latitude regions of 83°S-83°N are divided into 16 latitude bins. By processing about 1.8E9 NO-IRF observation values from about 5E6 vertical nighttime profiles recorded in SABER data set, we obtained more than 4.1E8 samples of NO-IRF. The annual-mean values of NO-IRF are then calculated by all available NO-IRF samples within each latitude and altitude bin. Local latitudinal maxima in NO-IRF are found between 120 and 145 km altitude, and the maximum NO-IRF located at polar regions are 3 times more than that of the minimum at equatorial region. The influences of solar and geomagnetic activity on the spatial variations of NO-IRF are investigated. Both the NO-IRF and its response to solar and geomagnetic activity show nearly symmetric distribution between the two hemispheres. It is demonstrated that the observed changes in NO-IRF at altitudes between 100 and 225 km correlate well with the changes in solar activity. The NO-IRF at solar maximum is about 4 times than that at solar minimum, and the current maximum of NO-IRF in 2014 is less than 70% of the prior maximum in 2001. For the first time, the response ranges of the NO-IRF to solar and geomagnetic activity at different altitudes and latitudes are reported.

  12. Major activities of the association ''Arbeitsgemeinschaft Solar NRW''. Decentralized energy systems development, trial and qualification

    International Nuclear Information System (INIS)

    Meliss, M.

    1996-01-01

    In North-Rhine Westphalia, the Ministry for Science and Research and the Ministry for Economic Affairs, Medium-Sized Companies and Technology (MWF) in 1991 decided to jointly establish a research and technology association called AG Solar NRW, intended to function as a central body for promotion and coordination of existing but dispersed projects and activities in North-Rhine Westphalia for research into and development of solar technology and energy systems, and for promotion of demonstration projects and training programmes supporting enhanced use of solar energy. The total budget made available for activities of the AG Solar in phase 1 (1991 - 1995) was approx. DM 60 million. The article in hand summarizes the main activities and results achieved in this first phase which was committed to decentralized energy systems, performance testing and qualification. (orig.) [de

  13. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei [Ocean University of China, 14-1' -601, 2117 Jinshui Road, Qingdao 266100 (China); Li, Yanfang, E-mail: quweizhe@ouc.edu.cn [Yantai Institute of Coastal Zone Research Chinese Academy of Sciences (China)

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance

  14. Solar Energy Education. Social studies: activities and teacher's guide. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Solar energy information is made available to students through classroom instruction by way of the Solar Energy Education teaching manuals. In this manual solar energy, as well as other energy sources like wind power, is introduced by performing school activities in the area of social studies. A glossary of energy related terms is included. (BCS)

  15. Ensuring the Process of Realisation of Financial Planning of Banking Activity

    Directory of Open Access Journals (Sweden)

    Kirkach Svitlana M.

    2014-03-01

    Full Text Available The article studies theoretical aspects of the process of realisation of financial planning of the bank’s activity and identifies and justifies its six main stages: 1 goal formation stage; 2 preparation stage; 3 assessment; 4 financial plan approval; 5 financial plan execution, and 6 stage of the financial plan monitoring, control and adjustment. The above sequence of stages of the process of realisation of financial planning of the bank’s activity allows a trustworthy assessment of the bank’s activity environment, formation of specific goals and tasks of the bank’s activity, and also to determine the ways of their achievement, and so on. The result of the process of realisation of financial planning of the bank’s activity is the bank’s financial plan, which is proposed to divide into four sub-sections: plan of the bank’s assets and liabilities; plan of the bank’s receipts and expenditures; plan of the bank’s cash flows; and plan of forecast values of basic financial indicators of the bank’s activity.

  16. The Effect of Person Centered Planning Activities on the IEP/Transition Planning Process.

    Science.gov (United States)

    Miner, Craig A.; Bates, Paul E.

    1997-01-01

    A study of 22 students with mental retardation and their families evaluated the impact of person-centered planning activities on several variables related to a student's individual education program/transition planning meeting. Person-centered planning had a significant effect on parent participation in meetings, but not on discussion of…

  17. Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24

    Science.gov (United States)

    Martucci, M.; Munini, R.; Boezio, M.; Di Felice, V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Marcelli, N.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.; Raath, J. L.

    2018-02-01

    Precise measurements of the time-dependent intensity of the low-energy (solar activity periods, i.e., from minimum to maximum, are needed to achieve comprehensive understanding of such physical phenomena. The minimum phase between solar cycles 23 and 24 was peculiarly long, extending up to the beginning of 2010 and followed by the maximum phase, reached during early 2014. In this Letter, we present proton differential spectra measured from 2010 January to 2014 February by the PAMELA experiment. For the first time the GCR proton intensity was studied over a wide energy range (0.08–50 GeV) by a single apparatus from a minimum to a maximum period of solar activity. The large statistics allowed the time variation to be investigated on a nearly monthly basis. Data were compared and interpreted in the context of a state-of-the-art three-dimensional model describing the GCRs propagation through the heliosphere.

  18. Closure Plan for Active Low Level Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    2000-11-16

    This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during

  19. Space Weather Action Plan Solar Radio Burst Phase 1 Benchmarks and the Steps to Phase 2

    Science.gov (United States)

    Biesecker, D. A.; White, S. M.; Gopalswamy, N.; Black, C.; Love, J. J.; Pierson, J.

    2017-12-01

    Solar radio bursts, when at the right frequency and when strong enough, can interfere with radar, communication, and tracking signals. In severe cases, radio bursts can inhibit the successful use of radio communications and disrupt a wide range of systems that are reliant on Position, Navigation, and Timing services on timescales ranging from minutes to hours across wide areas on the dayside of Earth. The White House's Space Weather Action Plan asked for solar radio burst intensity benchmarks for an event occurrence frequency of 1 in 100 years and also a theoretical maximum intensity benchmark. The benchmark team has developed preliminary (phase 1) benchmarks for the VHF (30-300 MHz), UHF (300-3000 MHz), GPS (1176-1602 MHz), F10.7 (2800 MHz), and Microwave (4000-20000) bands. The preliminary benchmarks were derived based on previously published work. Limitations in the published work will be addressed in phase 2 of the benchmark process. In addition, deriving theoretical maxima requires additional work, where it is even possible to, in order to meet the Action Plan objectives. In this presentation, we will present the phase 1 benchmarks, the basis used to derive them, and the limitations of that work. We will also discuss the work that needs to be done to complete the phase 2 benchmarks.

  20. How calibration and reference spectra affect the accuracy of absolute soft X-ray solar irradiance measured by the SDO/EVE/ESP during high solar activity

    Science.gov (United States)

    Didkovsky, Leonid; Wieman, Seth; Woods, Thomas

    2016-10-01

    The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.

  1. Energy Storage and Release through the Solar Activity Cycle Models Meet Radio Observations

    CERN Document Server

    Nindos, Alexander

    2012-01-01

    For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.

  2. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  3. Solar Activity, Ultraviolet Radiation and Consequences in Birds in Mexico City, 2001- 2002

    Science.gov (United States)

    Valdes, M.; Velasco, V.

    2008-12-01

    Anomalous behavior in commercial and pet birds in Mexico City was reported during 2002 by veterinarians at the Universidad Nacional Autonoma de Mexico. This was attributed to variations in the surrounding luminosity. The solar components, direct, diffuse, global, ultraviolet band A and B, as well as some meteorological parameters, temperature, relative humidity, and precipitation, were then analyzed at the Solar Radiation Laboratory. Although the total annual radiance of the previously mentioned radiation components did not show important changes, ultraviolet Band-B solar radiation did vary significantly. During 2001 the total annual irradiance , 61.05 Hjcm² to 58.32 Hjcm², was 1.6 standard deviations lower than one year later, in 2002 and increased above the mean total annual irradiance, to 65.75 Hjcm², 2.04 standard deviations, giving a total of 3.73 standard deviations for 2001-2002. Since these differences did not show up clearly in the other solar radiation components, daily extra-atmosphere irradiance was analyzed and used to calculate the total annual extra-atmosphere irradiance, which showed a descent for 2001. Our conclusions imply that Ultraviolet Band-B solar radiation is representative of solar activity and has an important impact on commercial activity related with birds.

  4. Abundance variations in solar active regions

    Science.gov (United States)

    Strong, K. T.; Lemen, J. R.; Linford, G. A.

    1991-01-01

    The diversity in the published values of coronal abundances is unsettling, especially as the range of results seems to be beyond the quoted uncertainties. Measurements of the relative abundance of iron and neon derived from soft X-ray spectra of active regions are presented. From a data base of over 200 spectra taken by the Solar Maximum Mission Flat Crystal Spectrometer, it is found that the relative abundance can vary by as much as a factor of about 7 and can change on timescales of less than 1 h.

  5. Ionospheric Peak Electron Density and Performance Evaluation of IRI-CCIR Near Magnetic Equator in Africa During Two Extreme Solar Activities

    Science.gov (United States)

    Adebesin, B. O.; Rabiu, A. B.; Obrou, O. K.; Adeniyi, J. O.

    2018-03-01

    The F2 layer peak electron density (NmF2) was investigated over Korhogo (Geomagnetic: 1.26°S, 67.38°E), a station near the magnetic equator in the African sector. Data for 1996 and 2000 were, respectively, categorized into low solar quiet and disturbed and high solar quiet and disturbed. NmF2 prenoon peak was higher than the postnoon peak during high solar activity irrespective of magnetic activity condition, while the postnoon peak was higher for low solar activity. Higher NmF2 peak amplitude characterizes disturbed magnetic activity than quiet magnetic condition for any solar activity. The maximum peaks appeared in equinox. June solstice noontime bite out lagged other seasons by 1-2 h. For any condition of solar and magnetic activities, the daytime NmF2 percentage variability (%VR) measured by the relative standard deviation maximizes/minimizes in June solstice/equinox. Daytime variability increases with increasing magnetic activity. The highest peak in the morning time NmF2 variability occurs in equinox, while the highest evening/nighttime variability appeared in June solstice for all solar/magnetic conditions. The nighttime annual variability amplitude is higher during disturbed than quiet condition regardless of solar activity period. At daytime, variability is similar for all conditions of solar activities. NmF2 at Korhogo is well represented on the International Reference Ionosphere-International Radio Consultative Committee (IRI-CCIR) option. The model/observation relationship performed best between local midnight and postmidnight period (00-08 LT). The noontime trough characteristics is not prominent in the IRI pattern during high solar activity but evident during low solar conditions when compared with Korhogo observations. The Nash-Sutcliffe coefficients revealed better model performance during disturbed activities.

  6. Market opportunities for solar drying

    International Nuclear Information System (INIS)

    Voskens, R.G.J.H.; Out, P.G.; Schulte, B.

    2000-01-01

    One of the most promising applications for solar heating is the drying of agricultural products. The drying of agricultural products requires large quantities of low temperature air, in many cases, on a year-round basis. Low cost air-based collectors can provide heated air at solar collection efficiencies of 30 to 70%. In 1998/1999 a study was commissioned to better understand the technical and economic potential for solar drying of agricultural products in the world. The practical potential for solar drying was then determined for 59 crops and 22 regions. The world market for solar drying can be divided into three market segments: 1) mechanical drying T 50 deg. C; 3) sun drying. The most promising market for solar drying is generally market segment 1. For this segment the potential amount of energy displaced by solar is in between 216 770 PJ (World-wide). For Western Europe this potential is estimated between 23 88 PJ and for Eastern Europe between 7 and 13 PJ. A different market introduction strategy is required for each market segment. A total of 13 combinations of crops and regions are selected that appear to have the highest practical potential for solar drying. In the Netherlands a programme of activities was carried out by Ecofys and other organisations, to identify and develop the market potential for solar (assisted) drying of agricultural products. A promotional campaign for the use of renewable energy in the (promising) flower bulb sector is planned on a short-term basis to speed up market developments. It can be concluded that there is a large market for solar drying in the World as well as in Europe. (au)

  7. Birthdates of patients affected by mental illness and solar activity: A study from Italy

    Science.gov (United States)

    Ventriglio, Antonio; Borelli, Albacenzina; Bellomo, Antonello; Lepore, Alberto

    2011-04-01

    PurposeThis epidemiologic study tested an hypothesized association between the year of birth of persons with major mental illnesses and solar activity over the past century. MethodsWe collected data on diagnoses and birthdates of psychiatric patients born between 1926 and 1975 (N = 1954) in south Italy for comparison to yearly solar activity as registered by the International Observatories. ResultsWe found a strong inverse correlation between high solar activity (HSA) and incidence of schizophrenia and bipolar disorder in a 20-year period whereas the incidence of non-affective/non-psychotic disorders was moderately associated with HSA in the same period. ConclusionsInterpretation of the observed correlations between HSA during years of birth and the incidence of mental illnesses remains unclear, but the findings encourage further study.

  8. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    Science.gov (United States)

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  9. Solar spectral irradiance variability of some chromospheric emission lines through the solar activity cycles 21-23

    Directory of Open Access Journals (Sweden)

    Göker Ü.D.

    2017-01-01

    Full Text Available A study of variations of solar spectral irradiance (SSI in the wave-length ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV spectral lines and international sunspot number (ISSN from interactive data centers such as SME (NSSDC, UARS (GDAAC, SORCE (LISIRD and SIDC, respectively. We reduced these data by using the MATLsoftware package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs, contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  10. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    International Nuclear Information System (INIS)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V.

    2014-01-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  11. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    Science.gov (United States)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  12. MAGNETIC PROPERTIES OF SOLAR ACTIVE REGIONS THAT GOVERN LARGE SOLAR FLARES AND ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Toriumi, Shin [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Schrijver, Carolus J. [Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Harra, Louise K. [UCL-Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Hudson, Hugh [SUPA School of Physics and Astronomy, University of Glasgow (United Kingdom); Nagashima, Kaori, E-mail: shin.toriumi@nao.ac.jp [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-01-01

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory . More than 80% of the 29 ARs are found to exhibit δ -sunspots, and at least three ARs violate Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ -sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 10{sup 23} Mx, might be able to produce “superflares” with energies of the order of 10{sup 34} erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.

  13. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  14. Imaging x-ray spectrometer to study solar activity in conjunction with the SCADM program

    International Nuclear Information System (INIS)

    Blake, R.L.

    1979-01-01

    An experiment is proposed to study solar active region dynamics and evolution. It will greatly extend the range of capabilities provided by the Solar Maximum Mission. The larger volume and weight capacity of a shuttle launch make possible an experiment with enough sensitivity to study the fastest known solar phenomena with high spatial and spectral resolution. It will be possible to use high spectral resolving power to image events on a small scale in short time intervals, and it will be possible to use this tremendous diagnostic power from the instant of event onset. Similar sensitivity will be available for the study of active region morphology and evolution

  15. Flat-plate solar array progress and plans

    Science.gov (United States)

    Callaghan, W. T.; Henry, P. K.

    1984-01-01

    The Flat-Plate Solar Array Project (FSA), sponsored by the U.S. Department of Energy (DOE) and managed by the Jet Propulsion Laboratory (JPL), has achieved progress in a broad range of technical activities since that reported at the Fourth European Communities Conference. A particularly important analysis has been completed recently which confirms the adoption into practice by the U.S. Photovoltaic (PV Industry, of all the low-cost module technology elements proposed at the 16th Project Integration Meeting for a $2.80/Wp (1980 U.S. Dollars) design approach in the fall of 1980. This work presents along with a projection, using the same techniques, for what is believed to be a very credible ribbon-based module design for less that $0.55/Wp (1980 U.S. Dollars). Other areas to be reported upon include low-cost Si feedstock refinement; ribbon growth; process sequence development for cells; environmental isolation; engineering science investigations; and module testing progress.

  16. Genesis Contingency Planning and Mishap Recovery: The Sample Curation View

    Science.gov (United States)

    Stansbery, E. K.; Allton, J. H.; Allen, C. C.; McNamara, K. M.; Calaway, M.; Rodriques, M. C.

    2007-01-01

    Planning for sample preservation and curation was part of mission design from the beginning. One of the scientific objectives for Genesis included collecting samples of three regimes of the solar wind in addition to collecting bulk solar wind during the mission. Collectors were fabricated in different thicknesses for each regime of the solar wind and attached to separate frames exposed to the solar wind during specific periods of solar activity associated with each regime. The original plan to determine the solar regime sampled for specific collectors was to identify to which frame the collector was attached. However, the collectors were dislodged during the hard landing making identification by frame attachment impossible. Because regimes were also identified by thickness of the collector, the regime sampled is identified by measuring fragment thickness. A variety of collector materials and thin films applied to substrates were selected and qualified for flight. This diversity provided elemental measurement in more than one material, mitigating effects of diffusion rates and/or radiation damage. It also mitigated against different material and substrate strengths resulting in differing effects of the hard landing. For example, silicon crystal substrates broke into smaller fragments than sapphire-based substrates and diamond surfaces were more resilient to flying debris damage than gold. The primary responsibility of the curation team for recovery was process documentation. Contingency planning for the recovery phase expanded this responsibility to include not only equipment to document, but also gather, contain and identify samples from the landing area and the recovered spacecraft. The team developed contingency plans for various scenarios as part of mission planning that included topographic maps to aid in site recovery and identification of different modes of transport and purge capability depending on damage. A clean tent, set-up at Utah Test & Training Range

  17. Jupiter's Mid-Infrared Aurora: Solar Connection and Minor Constituents

    Science.gov (United States)

    Kostiuk, Theodore; Livengood, T.A.; Fast, K.E.; Hewagama, T.; Schmilling, F.; Sonnabend, G.; Delgado, J.

    2009-01-01

    High spectral resolution in the 12 pin region of the polar regions of Jupiter reveal unique information on auroral phenomena and upper stratospheric composition. Polar aurorae in Jupiter's atmosphere radiate; throughout the electromagnetic spectrum from X-ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based. spectroscopic measurements of Jupiter's northern mid-IR aurora acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane, emission brightness and solar 10.7-cm radar flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high scalar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. The spectra measured contain features that cannot be attributed to ethane and are most likely spectra of minor constituents whose molecular bands overlap the v9 band of ethane. Possible candidates are allene, propane, and other higher order hydrocarbons. These features appear to be enhanced in the active polar regions. Laboratory measurements at comparable spectral resolution of spectra of candidate molecules will be used to identify the constituents. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the NASA/ESA Europa Jupiter System Mission.

  18. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  19. PLANNING INTELLIGENCE ACTIVITIES IN A DYNAMIC SECURITY ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Anca Pavel

    2016-10-01

    Full Text Available The hypothesis introduced by this article is that, in order to perform intelligence missions and to obtain valuable intelligence for the consumers it is necessary to implement processes and tools to support planning activities. Today's challenges consist rather in the ability of intelligence organizations to identify and initiate new connections, processes and communication flows with other partners operating in the security environment than to plan in their own name secret operations. From this point of view, planning activities should focus on new procedures, at a much more extensive level in order to align institutional efforts beyond the boundaries of their own organization and the national community of information. Also, in order to coordinate intelligence activities, strategic planning must be anchored into a complex analysis of the potential impact of existing and possible future global phenomena that shape the security environment and thus identify better ways of improving results.

  20. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  1. VizieR Online Data Catalog: Solar activity reconstructed for 3 millennia (Usoskin+, 2014)

    Science.gov (United States)

    Usoskin, I. G.; Hulot, G.; Gallet, Y.; Roth, R.; Licht, A.; Joos, F.; Kovaltsov, G. A.; Thebault, E.; Khokhlov, A.

    2014-02-01

    Indices of solar activity reconstructed from 14C using the m used in the paper. Two indices are provided - the sunspot number and the cosmic ray modulation potential, both with the 95% confidence intervals. The data sets are provided with decadal resolution, thus the individual solar cycles are not resolved. (2 data files).

  2. Proceedings of the General Committee for solar thermal energy 2015

    International Nuclear Information System (INIS)

    Gibert, Francois; Loyen, Richard; Khebchache, Bouzid; Cholin, Xavier; Leicher, David; Mozas, Kevin; Leclercq, Martine; Laugier, Patrick; Dias, Pedro; Kuczer, Eric; Benabdelkarim, Mohamed; Brottier, Laetitia; Soussana, Max; Cheze, David; Mugnier, Daniel; Laplagne, Valerie; Mykieta, Frederic; Ducloux, Antoine; Egret, Dominique; Noisette, Nadege; Peneau, Yvan; Seguis, Anne-Sophie; Gerard, Roland

    2017-10-01

    After an introducing contribution which discussed the difficult evolution of the solar thermal energy sector in 2015, contributions addressed development plans for SOCOL (a plan for collective solar thermal and solar heat) which aims at reviving the market and at opening new markets. A next set of contributions discussed how solar thermal energy can be at the service of energy transition. Following sessions addressed issues like innovation at the service of solar thermal energy, energetic display of solar systems and application of the Ecodesign and Labelling directives, and the reduction of carbon footprint and the energy dependence of territories

  3. MASC: Magnetic Activity of the Solar Corona

    Science.gov (United States)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  4. Streamline, Organizational, Legislative and Administrative Response to Permitting, PV Market Share, and Solar Energy Costs (Broward Go SOLAR)

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, Jeffery D. [Broward County, Fort Lauderdale, FL (United States)

    2013-08-28

    Broward County and its partners (the Go SOLAR Team), operating under a Department of Energy Rooftop Solar Challenge Agreement, designed, developed and implemented an online permitting system for rooftop solar PV systems. This is a single web based system with a single permit fee that will issue a permit, with a set of design plans preapproved by partner building officials, within one hour. The system is currently available at gosolar.broward.org for use within any of the partner Authorities Having [permitting] Jurisdiction (AHJ). Additionally, the Go SOLAR Team researched, developed and to the extent feasible, implemented three best management practices to make a fertile environment for the new online permit system. These included Net Metering and Interconnection Standards, Solar-Friendly Financing, and Planning and Zoning Ordinances. Finally, the team implemented a substantial outreach effort to advocate for the development of solar in Broward County, with an emphasis on Solar Rights, concluding with a Go SOLAR Fest day and a half conference with over 1,200 attendees and 50 exhibitors. The Go SOLAR project was completed on time, under DOE’s budgeted amount, and all project objectives were met or exceeded.

  5. Solar island electricity supply at Flanitzhuette. Solare Inselstromversorgung Flanitzhuette

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, U. (Bayernwerk AG, Muenchen (Germany))

    1993-01-01

    The aim of this research project is the planning, erection and operation of a permanent electricity supply independent of the grid based on photo-electrics for an isolated hamlet in the Bavarian Forest. Criteria for the development and optimisation of solar electricity supply concepts are to be obtained from practical experience. The investigation and exploitation of energ saving potential and an harmonious integration of the solar plant in the landscape are also important aspects. (orig.)

  6. The role of activity complexes in the distribution of solar magnetic fields.

    Science.gov (United States)

    García de La Rosa, J. I.; Reyes, R. C.

    Using published data on the large-scale distribution of solar activity, the authors conclude that the longlived coronal holes are formed and maintained by the unbalanced magnetic flux which developes at both extremes of the complexes of activity.

  7. Measurement of solar neutrinos flux in Russian-American gallium experiment SAGE for half 22-years cycle of solar activity

    International Nuclear Information System (INIS)

    Abdurashitov, D.N.; Veretenkin, E.P.; Vermul, V.M.

    2002-01-01

    The results of measuring the solar neutrino capture on the metallic gallium in the Russian-American experiment SAGE for the period slightly exceeding the half of the 22-year cycle of solar activity, are presented. The results of new measurements since April 1998 are quoted and the analysis of all the measurements, performed by years, months and two-year periods, beginning since 1990 are also presented. Simple analysis of the SAGE results together with the results of other solar neutrino experiments leads to estimating the value of the flux of the pp-neutrinos, reaching the Earth without change in their around, equal to (4.6 ± 1.2) x 10 10 neutrino/(cm 2 s). The value of the flux of the pp-neutrinos, originating in the Sun thermonuclear reactions, is equal to (7.6 ± 2.0) x 10 10 neutrino/(cm 2 s), which agrees well with the standard solar model (5.95 ± 0.6) x 10 10 neutrino/(cm 2 s) [ru

  8. Long-term solar activity and terrestrial connections. Part I: theory

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    1998-05-01

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm

  9. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    International Nuclear Information System (INIS)

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-01-01

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index α reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hz<ν<0.5 Hz, where the spectral density is approximately constant. The radial variation of the spectral density is analyzed and compared with Ulysses 1991 data, a period of high solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  10. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  11. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    Science.gov (United States)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  12. Search for outlying data points in multivariate solar activity data sets

    International Nuclear Information System (INIS)

    Bartkowiak, A.; Jakimiec, M.

    1989-01-01

    The aim of this paper is the investigation of outlying data points in the solar activity data sets. Two statistical methods for identifying of multivariate outliers are presented: the chi2-plot method based on the analysis of Mahalanobis distances and the method based on principal component analysis, i.e. on scatterdiagrams constructed from the first two or last two eigenvectors. We demonstrate the usefullness of these methods applying them to same data of solar activity. The methods allow to reveal quite precisely the data vectors containing some errors and also some untypical vectors, i.e. vectors with unusually large values or with values revealing untypical relations as compared with the common relations between the appropriate variables. 12 refs., 7 figs., 8 tabs. (author)

  13. Dependence of regular background noise of VLF radiation and thunder-storm activity on solar wind proton density

    International Nuclear Information System (INIS)

    Sobolev, A.V.; Kozlov, V.I.

    1997-01-01

    Correlation of the intensity of slowly changing regular background noise within 9.7 kHz frequency in Yakutsk (L = 3) and of the solar wind density protons was determined. This result explains the reverse dependence of the intensity of the regular background noise on the solar activity, 27-day frequency, increase before and following geomagnetic storms, absence of relation with K p index of geomagnetic activity. Conclusion is made that growth of density of the solar wind protons results in increase of the regular background noise and thunderstorm activity

  14. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-01-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible

  15. Cosmic Ray Daily Variation And SOLAR Activity On Anomalous Days

    International Nuclear Information System (INIS)

    Mishra, Rajesh Kumar; Mishra, Rekha Agarwal

    2008-01-01

    A study is carried out on the long-term changes in the diurnal anisotropy of cosmic rays using the ground based Deep River neutron monitor data during significantly low amplitude anisotropic wave train events in cosmic ray intensity for the period 1981-94. It has been observed that the phase of the diurnal anisotropy for majority of the low amplitude anisotropic wave train events significantly shifts towards earlier hours as compared to the co-rotational direction. The long-term behaviour of the amplitude of the diurnal anisotropy can be explained in terms of the occurrence of low amplitude anisotropic wave train events. The occurrence of these events is dominant during solar activity minimum years. The amplitude of the diurnal anisotropy is well correlated with the solar cycle but the direction of the anisotropy is not correlated with the solar cycle and shows a systematic shift to earlier hours. (authors)

  16. Multi-day activity scheduling reactions to planned activities and future events in a dynamic model of activity-travel behavior

    NARCIS (Netherlands)

    Nijland, L.; Arentze, T.A.; Timmermans, H.J.P.

    2014-01-01

    Modeling multi-day planning has received scarce attention in activity-based transport demand modeling so far. However, new dynamic activity-based approaches are being developed at the current moment. The frequency and inflexibility of planned activities and events in activity schedules of

  17. Multi-Day Activity Scheduling Reactions to Planned Activities and Future Events in a Dynamic Model of Activity-Travel Behavior

    NARCIS (Netherlands)

    Nijland, L.; Arentze, T.; Timmermans, H.

    2014-01-01

    Modeling multi-day planning has received scarce attention in activity-based transport demand modeling so far. However, new dynamic activity-based approaches are being developed at the current moment. The frequency and inflexibility of planned activities and events in activity schedules of

  18. Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth’s magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1 The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2 When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3 The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4 The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5 The distribution of the AE index and the Dst index shares statistical features closely with BV and BV2 compared with other heliospheric parameters. In this sense, BV and BV2 are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.

  19. Developing solar energy in France

    International Nuclear Information System (INIS)

    Alary-Grall, L.

    2003-01-01

    3 years ago the 'Soleil' program was launched and today 660.000 m 2 of solar cells have been installed which has made France to rank 4 behind Germany, Greece and Austria in terms of the use of solar energy. The 'Soleil' program, that will end in 2006, aims at developing solar energy in France and is composed of 4 axis: 1) the contribution to the funding of solar equipment through enticing financial helps, 2) the implementation of a quality plan for the installers of solar equipment, 3) the setting of a quality label for innovative and efficient solar equipment and 4) the promoting of solar energy to the professionals of the construction sector. (A.C.)

  20. Payload crew activity planning integration. Task 2: Inflight operations and training for payloads

    Science.gov (United States)

    Hitz, F. R.

    1976-01-01

    The primary objectives of the Payload Crew Activity Planning Integration task were to: (1) Determine feasible, cost-effective payload crew activity planning integration methods. (2) Develop an implementation plan and guidelines for payload crew activity plan (CAP) integration between the JSC Orbiter planners and the Payload Centers. Subtask objectives and study activities were defined as: (1) Determine Crew Activity Planning Interfaces. (2) Determine Crew Activity Plan Type and Content. (3) Evaluate Automated Scheduling Tools. (4) Develop a draft Implementation Plan for Crew Activity Planning Integration. The basic guidelines were to develop a plan applicable to the Shuttle operations timeframe, utilize existing center resources and expertise as much as possible, and minimize unnecessary data exchange not directly productive in the development of the end-product timelines.

  1. Solar Energy Educational Material, Activities and Science Projects

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Educational Materials Solar with glasses " ;The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy can be converted directly or indirectly into other forms of energy, such as

  2. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    Science.gov (United States)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  3. Solar Proton Events in Six Solar Cycles

    Science.gov (United States)

    Vitaly, Ishkov

    Based on materials the catalogs of solar proton events (SPE) in 1955 ‒ 2010 and list SPE for the current 24 solar cycle (SC) are examined confirmed SPE with E> 10 MeV proton flux in excess of 1 proton cm-2 s ster-1 (pfu) from Švestka and Simon’s (1955 - 1969) and 5 volumes Logachev’s (1970 - 2006) Catalogs of SPE. Historically thus it was formed, that the measurements of the proton fluxes began in the epoch “increased” solar activity (SC 18 ‒ 22), and includes transition period of the solar magnetic fields reconstruction from epoch “increased” to the epoch “lowered” solar activity (22 ‒ 23 SC). In current 24 SC ‒ first SC of the incipient epoch of “lowered” SA ‒ SPE realize under the new conditions, to that of previously not observed. As showed a study of five solar cycles with the reliable measurements of E> 10 MeV proton flux in excess of 1 pfu (1964 - 2013): ‒ a quantity of SPEs remained approximately identical in SC 20, 21, somewhat decreased in the initial solar cycle of the solar magnetic fields reconstruction period (22), but it returned to the same quantity in, the base for the period of reconstruction, SC 23. ‒ Into the first 5 years of the each solar cycle development the rate of the proton generation events noticeably increased in 22 cycles of solar activity and returned to the average in cycles 23 and 24. ‒ Extreme solar flare events are achieved, as a rule, in the solar magnetic fields reconstruction period (August - September 1859; June 1991; October ‒ November 2003.), it is confirmed also for SPE: the extreme fluxes of solar protons (S4) except one (August 1972) were occurred in period of perestroika (SC 22 and 23). This can speak, that inside the epochs SA, when the generation of magnetic field in the convective zone works in the steady-state regime, extreme SPE are improbable. ‒ The largest in the fluxes of protons (S3, S4) occur in the complexes of the active regions flare events, where magnetic field more

  4. SolarChill - a solar PV refrigerator without battery

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, P.H.; Poulsen, S.; Katic, I. [Danish Technological Inst., Taastrup (Denmark)

    2004-07-01

    A solar powered refrigerator (SolarChill) has been developed in an international project involving Greenpeace International, GTZ, UNICEF, UNEP, WHO, industrial partners and Danish Technological Institute. The refrigerator is able to operate directly on solar PV panels, without battery or additional electronics, and is therefore suitable for locations where little maintenance and reliable operation is mandatory. The main objective of the SolarChill Project is to help deliver vaccines and refrigeration to the rural poor. To achieve this objective, the SolarChill Project developed - and plans to make freely available a versatile refrigeration technology that is environmentally sound, technologically reliable, and affordable. SolarChill does not use any fluorocarbons in its cooling system or in the insulation. For domestic and small business applications, another type of solar refrigerator is under development. This is an upright type, suitable for cool storage of food and beverages in areas where grid power is non-existent or unstable. The market potential for this type is thus present in industrialised countries as well as in countries under development. The unique feature of SolarChill is that energy is stored in ice instead of in batteries. An ice compartment keeps the cabinet at desired temperatures during the night. The paper describes the product development, possible SolarChill applications and experience with the two types of solar refrigerators, as well as results from the laboratory and field test. (orig.)

  5. Solar building construction. Special edition of the journal 'Sonnenenergie'; Solares Bauen. Sonderheft der Sonnenenergie

    Energy Technology Data Exchange (ETDEWEB)

    Rust, A. (comp.)

    2003-10-01

    This special issue of October 2003 reviews solar architecture, planning, applications, technology, market and knowledge. Subjects: Falkenweg housing development; Q-Cells solar factory; Modehaus Zara building; Haus Westermayr McCready building; Federal Environmental Office building, Dessau; 'Haus im Himmel' building; NRW state representatives building in Berlin; Zero-emission building 'Sunny Woods', Zurich; Hellerau workshop buildings, Dresden; HOCHTIEF PRISMA Haus building, Frankfurt; Solar government buildings, Berlin; SOLARBAU programme; Energy supply concepts based on photovoltaic power supply; Solar cooling; Photovoltaic lamellas; Solar building construction; Solar contracting; Solar building modernisation; Integrated PV systems in Europe; Living in passive buildings; Funding programmes for renewable energy sources and building construction. (orig./AKF)

  6. Active sites environmental monitoring Program - Program Plan: Revision 2

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results

  7. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia

    Directory of Open Access Journals (Sweden)

    N. Pertsev

    2008-05-01

    Full Text Available Ground-based spectrographical observations of infrared emissions of the mesopause region have been made at Zvenigorod Observatory (56 N, 37 E, located near Moscow, Russia, for 670 nights of 2000–2006. The characteristics of the hydroxyl and molecular oxygen (865 nm airglow, heights of which correspond to 87 and 94 km, are analyzed for finding their response to solar activity. The measured data exhibit a response to the F10.7 solar radio flux change, which is 30%–40%/100 sfu in intensities of the emissions and about 4.5 K/100 sfu in hydroxyl temperature. Seasonal variations of the airglow response to solar activity are observed. In winter it is more significant than in summer. Mechanisms that may provide an explanation of the solar influence on intensities of the emissions and temperature are considered. Radiative processes not involving atmospheric dynamics appear insufficient to explain the observed effect.

  8. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia

    Directory of Open Access Journals (Sweden)

    N. Pertsev

    2008-05-01

    Full Text Available Ground-based spectrographical observations of infrared emissions of the mesopause region have been made at Zvenigorod Observatory (56 N, 37 E, located near Moscow, Russia, for 670 nights of 2000–2006. The characteristics of the hydroxyl and molecular oxygen (865 nm airglow, heights of which correspond to 87 and 94 km, are analyzed for finding their response to solar activity. The measured data exhibit a response to the F10.7 solar radio flux change, which is 30%–40%/100 sfu in intensities of the emissions and about 4.5 K/100 sfu in hydroxyl temperature. Seasonal variations of the airglow response to solar activity are observed. In winter it is more significant than in summer. Mechanisms that may provide an explanation of the solar influence on intensities of the emissions and temperature are considered. Radiative processes not involving atmospheric dynamics appear insufficient to explain the observed effect.

  9. Status of the Instrument Control Unit for EPD on-board Solar Orbiter

    Science.gov (United States)

    Sánchez Prieto, Sebastián; Da Silva, Antonio; Rodriguez Polo, Oscar; Parra Espada, Pablo; Gutierrez Molina, Oscar; Fernandez Salgado, Javier

    Solar Orbiter is the next heliospheric mission sponsored by ESA. The launch is planned for 2017 and it will be as close as 0.28 AU from the Sun. One of the instruments for Solar Orbiter is the Energetic Particle Detector (EPD) responsible for measuring energies from 2 keV to 200 MeV/n. EPD consists of four detectors, Electron Proton Telescope (EPT), High Energy Telescope (HET), SupraThermal Electrons, Ions, & Neutrals (STEIN), and Suprathermal Ion Spectrograph (SIS), plus the Instrument Control Unit called ICU. The Space Research Group of the University of Alcalá in Spain is the responsible for developing the ICU. In this work we present the development status of the ICU after the Critical Design Review. We also address the planned activities for the next year including the development of the Engineering and Qualification Model (EQM) and Flight Model (PM). Special focus is paid to the software and verification & validation activities.

  10. Model of strategic planning in active systems | Nasim | Journal of ...

    African Journals Online (AJOL)

    Annotation The work is dedicated to the mathematical formulation of the needing for strategic planning in active systems. At the same time, the possibility of the TAC (theory of active systems) for an assessment of conditions of effective strategic planning and development of an active system are shown. Keywords Active ...

  11. The relationship between solar activity and the H and K line cores in integrated sunlight

    International Nuclear Information System (INIS)

    Jebsen, D.E.; Mitchell, W.E. Jr.

    1978-01-01

    In this paper the authors present and analyze new data on the cores of the H and K lines of ionized calcium in the spectrum of integrated sunlight. The intensities of the components Hsub(2γ), H 3 , Hsub(2r), Ksub(2γ), K 3 , and Ksub(2r) in the line cores were measured in terms of the continuum intensity at 4000 A during a solar rotation in September 1969. Other data on these components, obtained at or close to the time of solar minimum (September 1964) and solar maximum (September 1968), were also included. The intensities of these features are compared with two indices of solar activity: the Ca II plage index and the 2800 MHZ signal. The average correlation coefficients between the intensities of the measured features and those indices were 0.69 and 0.64, respectively. The results are consistent with those of Bumba and Ruzickova-Topolova (1967) for a solar rotation period in 1965. The method and results should provide a detailed quantitative basis for the study of the activity cycles and rotation periods of solar-type stars. (Auth.)

  12. Relative phase asynchrony and long-range correlation of long-term solar magnetic activity

    Science.gov (United States)

    Deng, Linhua

    2017-07-01

    Statistical signal processing is one of the most important tasks in a large amount of areas of scientific studies, such as astrophysics, geophysics, and space physics. Phase recurrence analysis and long-range persistence are the two dynamical structures of the underlying processes for the given natural phenomenon. Linear and nonlinear time series analysis approaches (cross-correlation analysis, cross-recurrence plot, wavelet coherent transform, and Hurst analysis) are combined to investigate the relative phase interconnection and long-range correlation between solar activity and geomagnetic activity for the time interval from 1932 January to 2017 January. The following prominent results are found: (1) geomagnetic activity lags behind sunspot numbers with a phase shift of 21 months, and they have a high level of asynchronous behavior; (2) their relative phase interconnections are in phase for the periodic scales during 8-16 years, but have a mixing behavior for the periodic belts below 8 years; (3) both sunspot numbers and geomagnetic activity can not be regarded as a stochastic phenomenon because their dynamical behaviors display a long-term correlation and a fractal nature. We believe that the presented conclusions could provide further information on understanding the dynamical coupling of solar dynamo process with geomagnetic activity variation, and the crucial role of solar and geomagnetic activity in the long-term climate change.

  13. Solar Sailing

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  14. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  15. Our Solar Connection: A themed Set of Activities for Grades 5-12

    Science.gov (United States)

    van der Veen, W. E.; Gary, D. E.; Gallagher, A. C.; Vinski, J. M.

    2005-12-01

    The project is a partnership between the Center for Solar-Terrestrial Research at New Jersey Institute of Technology (NJIT), and the New Jersey Astronomy Center for Education (NJACE) at Raritan Valley Community College. It was supported by a NASA Education/Public Outreach grant from the Office of Space Science. The project involved the development of a set of seven activities connected by the theme of solar magnetism and designed to meet the New Jersey Science Process Standards and the Science Core Curriculum Content Standards in Physics and Astronomy. The products include a 70-page teacher guide and an integrated CD-ROM with video clips, internet links, image sets used in the activities, and worksheets. The activities were presented at a series of teacher workshops. The teachers performed the activities themselves, learned additional background information on the Sun, solar magnetism, and the Sun-Earth connection, and were trained to use several items of equipment, which were made available in two "resource centers," one at NJIT and one at NJACE. In all, 81 teachers have been exposed to some or all of the activities. After the training, the teachers took the activities back to their classrooms, and 15 equipment to use with their students. Some teachers had access to, or had their schools purchase, Sunspotters and spectrometers rather than borrow the equipment. The success of the teacher training was assessed by questionnaires at the end of the workshops, by evaluation forms that the teachers filled out on returning the borrowed equipment.

  16. From Emergence to Eruption: The Physics and Diagnostics of Solar Active Regions

    Science.gov (United States)

    Cheung, Mark

    2017-08-01

    The solar photosphere is continuously seeded by the emergence of magnetic fields from the solar interior. In turn, photospheric evolution shapes the magnetic terrain in the overlying corona. Magnetic fields in the corona store the energy needed to power coronal mass ejections (CMEs) and solar flares. In this talk, we recount a physics-based narrative of solar eruptive events from cradle to grave, from emergence to eruption, from evaporation to condensation. We review the physical processes which are understood to transport magnetic flux from the interior to the surface, inject free energy and twist into the corona, disentangle the coronal field to permit explosive energy release, and subsequently convert the released energy into observable signatures. Along the way, we review observational diagnostics used to constrain theories of active region evolution and eruption. Finally, we discuss the opportunities and challenges enabled by the large existing repository of solar observations. We argue that the synthesis of physics and diagnostics embodied in (1) data-driven modeling and (2) machine learning efforts will be an accelerating agent for scientific discovery.

  17. FINE MAGNETIC FEATURES AND CHIRALITY IN SOLAR ACTIVE REGION NOAA 10930

    International Nuclear Information System (INIS)

    Zhang Hongqi

    2010-01-01

    In this paper, we present fine magnetic features near the magnetic inversion line in the solar active region NOAA 10930. The high-resolution vector magnetograms obtained by Hinode allow detailed analyses around magnetic fibrils in the active region. The analyses are based on the fact that the electric current density can be divided into two components: the shear component caused by the magnetic inhomogeneity and the twist component caused by the magnetic field twist. The relationships between magnetic field, electric current density, and its two components are examined. It is found that the individual magnetic fibrils are dominated by the current density component caused by the magnetic inhomogeneity, while the large-scale magnetic region is generally dominated by the electric current component associated with the magnetic twist. The microstructure of the magnetic field in the solar atmosphere is far from the force-free field. The current mainly flows around the magnetic flux fibrils in the active regions.

  18. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    International Nuclear Information System (INIS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. Any discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data

  19. July 1974 solar events: a possible lower limit for microwave activity

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P; Iacomo, P Jr; Koppe, E H; Marques dos Santos, P; Schaal, R E [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica; Blakey, J R [Surrey Univ., Guildford (UK). Dept. of Physics

    1975-11-01

    The active region McMath 10433 was the source of several flares and radio outbursts during the early part of July 1974. This region was tracked continuously, for several periods during the month at 22.2 GHz using a telescope with a 4 minutes of arc beam. Comparison with the results obtained simultaneously with a normal 7 GHz solar instrument indicate that there is important burst activity occurring at levels below the detection limit of normal solar patrol instruments. The time-development morphology of these bursts is similar to those normally observed and has enabled the simple events to be re-interpreted. A completely new type of event-the fast absorption-has also been recognized. The correlation of the microwave events with SPA events observed on VLF propagation is also discussed.

  20. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  1. Effect of solar and magnetic activity on VHF scintillations near the equatorial anomaly crest

    Directory of Open Access Journals (Sweden)

    R. P. Singh

    2004-09-01

    Full Text Available The VHF amplitude scintillation recorded during the period January 1991 to December 1993 in the declining phase of a solar cycle and April 1998 to December 1999 in the ascending phase of the next solar cycle at Varanasi (geogr. lat.=25.3°, long.=83.0°, dip=37°N have been analyzed to study the behavior of ionospheric irregularities during active solar periods and magnetic storms. It is shown that irregularities occur at arbitrary times and may last for <30min. A rise in solar activity increases scintillations during winter (November-February and near equinoxes (March-April; September-October, whereas it depresses the scintillations during the summer (May-July. In general, the role of magnetic activity is to suppress scintillations in the pre-midnight period and to increase it in the post-midnight period during equinox and winter seasons, whilst during summer months the effect is reversed. The pre-midnight scintillation is sometimes observed when the main phase of Dst corresponds to the pre-midnight period. The annual variation shows suppression of scintillations on disturbed days, both during pre-midnight and post-midnight period, which becomes more effective during years of high solar activity. It is observed that for magnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time. If the magnetic storm occurred during daytime, then the probability of occurrence of scintillations during the night hours is decreased. The penetration of magnetospheric electric fields to the magnetic equator affects the evolution of low-latitude irregularities. A delayed disturbance dynamo electric field also affects the development of irregularities.

  2. Multi-day activity scheduling reactions to planned activities and future events in a dynamic model of activity-travel behavior

    Science.gov (United States)

    Nijland, Linda; Arentze, Theo; Timmermans, Harry

    2014-01-01

    Modeling multi-day planning has received scarce attention in activity-based transport demand modeling so far. However, new dynamic activity-based approaches are being developed at the current moment. The frequency and inflexibility of planned activities and events in activity schedules of individuals indicate the importance of incorporating those pre-planned activities in the new generation of dynamic travel demand models. Elaborating and combining previous work on event-driven activity generation, the aim of this paper is to develop and illustrate an extension of a need-based model of activity generation that takes into account possible influences of pre-planned activities and events. This paper describes the theory and shows the results of simulations of the extension. The simulation was conducted for six different activities, and the parameter values used were consistent with an earlier estimation study. The results show that the model works well and that the influences of the parameters are consistent, logical, and have clear interpretations. These findings offer further evidence of face and construct validity to the suggested modeling approach.

  3. Long-term solar activity and terrestrial connections. Part I: theory

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.

    Key words. Solar activity · Kolmogorov algorithm

  4. Survey of state approaches to solar energy incentives

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S. B.

    1979-07-01

    A comprehensive survey is presented of state statutes designed to encourage the application of solar technology. A large majority of the states have enacted financial incentives designed to stimulate solar energy use. Commonly, these incentives include preferential property tax treatment of solar systems, and income tax benefits to solar users. There are a wide variety of other tax breaks as well, including excise and franchise tax incentives. Some states have recently developed loan or grant programs for solar installations. Other states have addressed aspects of real property and land-use planning law, which have served as barriers to either the installation of solar technology or access to sunlight. In addition to removing such obstacles as restrictive convenants and zoning limitations, the legislation of several states provides affirmative recognition of the potential of real property law to serve as a spur to solar development, through solar easements, planning and zoning, and public nuisance. A small number of states have legislated in the field of utility regulation, addressing important questions of (1) nondiscriminatory rates for utility backup to solar systems and public utility commissions, and (2) utility involvement in solar energy applicatons.

  5. Study of solar activity by measuring cosmic rays with a water Cherenkov detector

    International Nuclear Information System (INIS)

    Bahena Bias, Angelica; Villasenor, Luis

    2011-01-01

    We report on an indirect study of solar activity by using the Forbush effect which consists on the anti-correlation between the intensity of solar activity and the intensity of secondary cosmic radiation detected at ground level at the Earth. We have used a cylindrical water Cherenkov detector to measure the rate of arrival of secondary cosmic rays in Morelia Mich., Mexico, at 1950 m.a.s.l. We describe the analysis required to unfold the effect of atmospheric pressure and the search for Forbush decreases in our data, the latter correspond to more than one year of continuous data collection.

  6. Proton Flares in Solar Activity Complexes: Possible Origins and Consequences

    Science.gov (United States)

    Isaeva, E. S.; Tomozov, V. M.; Yazev, S. A.

    2018-03-01

    Solar flares observed during the 24th solar-activity cycle and accompanied by fluxes of particles detected at the Earth's orbit with intensities exceeding 10 particles cm-2 s-1 and energies of more than 10 MeV per particle mainly occurred in activity complexes (82% of cases), with 80% of these occurring no more than 20 heliographic degrees from the nearest coronal holes. The correlation between the X-ray classes of flares and the proton fluxes detected at the Earth's orbit is weak. The work presented here supports the hypothesis that the leakage of particles into the heliosphere is due to the existence of long-lived magnetic channels, which facilitate the transport of flare-accelerated particles into the boundary regions of open magnetic structures of coronal holes. The possible contribution of exchange reconnection in the formation of such channels and the role of exchange reconnection in the generation of flares are discussed.

  7. The indium solar neutrino project

    International Nuclear Information System (INIS)

    Booth, N.E.; Salmon, G.L.; Hukin, D.A.

    1984-01-01

    The only way to resolve the solar neutrino puzzle is to perform a new experiment. It is shown that 115 In has unique possibilities as a target for solar neutrino detection. Progress in developing a detector based on 115 In is reviewed and future plans are outlined. (author)

  8. Solar Probe Plus

    Science.gov (United States)

    Szabo, Adam

    2011-01-01

    The NASA Solar Probe Plus mission is planned to be launched in 2018 to study the upper solar corona with both.in-situ and remote sensing instrumentation. The mission will utilize 6 Venus gravity assist maneuver to gradually lower its perihelion to 9.5 Rs below the expected Alfven pOint to study the sub-alfvenic solar wind that is still at least partially co-rotates with the Sun. The detailed science objectives of this mission will be discussed. SPP will have a strong synergy with The ESA/NASA Solar orbiter mission to be launched a year ahead. Both missions will focus on the inner heliosphere and will have complimentary instrumentations. Strategies to exploit this synergy will be also presented.

  9. Information And Data-Sharing Plan of IPY China Activity

    Science.gov (United States)

    Zhang, X.; Cheng, W.

    2007-12-01

    Polar Data-Sharing is an effective resolution to global system and polar science problems and to interdisciplinary and sustainable study, as well as an important means to deal with IPY scientific heritages and realize IPY goals. Corresponding to IPY Data-Sharing policies, Information and Data-Sharing Plan was listed in five sub-plans of IPY Chinese Programme launched in March, 2007,they are Scientific research program of the Prydz Bay, Amery Ice Shelf and Dome A transects(short title:'PANDA'), the Arctic Scientific Research Expedition Plan, International Cooperation Plan, Information and Data-Sharing Plan, Education and Outreach. China, since the foundation of Antarctic Zhongshan Station in 1989, has carried out systematic scientific expeditions and researches in Larsemann Hills, Prydz Bay and the neighbouring sea areas, organized 14 Prydz Bay oceanographic investigations, 3 Amery Ice Shelf expeditions, 4 Grove Mountains expeditions and 5 inland ice cap scientific expeditions. 2 comprehensive oceanographic investigations in the Arctic Ocean were conducted in 1999 and 2003, acquired a large amount of data and samples in PANDA section and fan areas of Pacific Ocean in the Arctic Ocean. A mechanism of basic data submitting ,sharing and archiving has been gradually set up since 2000. Presently, Polar Science Database and Polar Sample Resource Sharing Platform of China with the aim of sharing polar data and samples has been initially established and began to provide sharing service to domestic and oversea users. According to IPY Chinese Activity, 2 scientific expeditions in the Arctic Ocean, 3 in the South Ocean, 2 at Amery Ice Shelf, 1 on Grove Mountains and 2 inland ice cap expeditions on Dome A will be carried out during IPY period. According to the experiences accumulated in the past and the jobs in the future, the Information and Data- Sharing Plan, during 2007-2010, will save, archive, and provide exchange and sharing services upon the data obtained by scientific

  10. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M; Cuesta-Santianes, M J; Cabrera Jimenez, J A

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  11. Actividad Solar Desde EL Espacio

    Science.gov (United States)

    Rovira, M. G.

    1990-11-01

    RESUMEN. Se describen los principales descubrimientos realizados por los arti+iciales con instrumentos dedicados a la observaci6n del Sol, durante los dos ultimos ciclos de su acti vi dad. La observaci6n el espacio ha permitido cubrir todas las zonas del espectro no observables desde tierra1 desde el ultravioleta hasta la radiaci6n gamma. Se hace referencia, en particular, a los resultados producidos por los dos grandes observatorios: el Skylab y el SMM. Este ultimo incluy6 un conjunto de instrumentos especialmente coordinados para observar en detalle las fulguraciones solares. Es un resumen para astr6nomos no especializados en la fisica solar, en el que se muestra que la gran riqueza del material observacional acumulado ha resuelto problemas preexistentes y, al mismo tiempo, ha abierto numerosos interrogantes a los que se buscar respuesta con la instrumentaci6n en desarrollo. Finalmente, se mencionan las caracteristicas de los proyectados para la pr6xima decada. : The main discoveries performed by artificial satellites instrumented for the observation of the Sun, during the last two cycles of its activity, are described. The space observations allowed of almost all the spectral regions which are not observable from the ground, from the ultraviolet to the gamma radiation. In particular, we ref er' to the two large solar space observatories: the Skylab and the SMM. The last one included a set 0+ coordinated instruments to observe in detail the solar flares. This is a summary for astronomers not dedicated to solar physics, where we show that the of observational material have solv# d many of the preexistent problems but, at the ame time, it opened many new questions to which the improved instrumentation will try to answer. , the characteristics of the satellites planned the next decade are mentioned. Key : SUN-ACTIVITY - SUN-CORONA - SUN-X-RAYS

  12. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23: a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2011-05-01

    Full Text Available Minima in geomagnetic activity (MGA at Earth at the ends of SC23 and SC22 have been identified. The two MGAs (called MGA23 and MGA22, respectively were present in 2009 and 1997, delayed from the sunspot number minima in 2008 and 1996 by ~1/2–1 years. Part of the solar and interplanetary causes of the MGAs were exceptionally low solar (and thus low interplanetary magnetic fields. Another important factor in MGA23 was the disappearance of equatorial and low latitude coronal holes and the appearance of midlatitude coronal holes. The location of the holes relative to the ecliptic plane led to low solar wind speeds and low IMF (Bz variances (σBz2 and normalized variances (σBz2/B02 at Earth, with concomitant reduced solar wind-magnetospheric energy coupling. One result was the lowest ap indices in the history of ap recording. The results presented here are used to comment on the possible solar and interplanetary causes of the low geomagnetic activity that occurred during the Maunder Minimum.

  13. Particle acceleration in solar active regions being in the state of self-organized criticality.

    Science.gov (United States)

    Vlahos, Loukas

    We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.

  14. Module greenhouse with high efficiency of transformation of solar energy, utilizing active and passive glass optical rasters

    Czech Academy of Sciences Publication Activity Database

    Korečko, J.; Jirka, V.; Sourek, B.; Červený, Jan

    2010-01-01

    Roč. 84, č. 10 (2010), s. 1794-1808 ISSN 0038-092X Institutional research plan: CEZ:AV0Z60870520 Keywords : rasters made of glass * greenhouse * solar architecture * fresnel lens * mathematical simulation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.135, year: 2010

  15. The Solar Wind from Pseudostreamers and their Environs: Opportunities for Observations with Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Panasenco, O.; Velli, M.; Panasenco, A.; Lionello, R.

    2017-12-01

    The solar dynamo and photospheric convection lead to three main types of structures extending from the solar surface into the corona - active regions, solar filaments (prominences when observed at the limb) and coronal holes. These structures exist over a wide range of scales, and are interlinked with each other in evolution and dynamics. Active regions can form clusters of magnetic activity and the strongest overlie sunspots. In the decay of active regions, the boundaries separating opposite magnetic polarities (neutral lines) develop specific structures called filament channels above which filaments form. In the presence of flux imbalance decaying active regions can also give birth to lower latitude coronal holes. The accumulation of magnetic flux at coronal hole boundaries also creates conditions for filament formation: polar crown filaments are permanently present at the boundaries of the polar coronal holes. Mid-latitude and equatorial coronal holes - the result of active region evolution - can create pseudostreamers if other coronal holes of the same polarity are present. While helmet streamers form between open fields of opposite polarities, the pseudostreamer, characterized by a smaller coronal imprint, typically shows a more prominent straight ray or stalk extending from the corona. The pseudostreamer base at photospheric heights is multipolar; often one observes tripolar magnetic configurations with two neutral lines - where filaments can form - separating the coronal holes. Here we discuss the specific role of filament channels on pseudostreamer topology and on solar wind properties. 1D numerical analysis of pseudostreamers shows that the properties of the solar wind from around PSs depend on the presence/absence of filament channels, number of channels and chirality at thepseudostreamer base low in the corona. We review and model possible coronal magnetic configurations and solar wind plasma properties at different distances from the solar surface that

  16. Validation of the Earth atmosphere models using the EUV solar occultation data from the CORONAS and PROBA 2 instruments

    Science.gov (United States)

    Slemzin, Vladimir; Kuzin, Sergey; Berghmans, David; Pertsov, Andrey; Dominique, Marie; Ulyanov, Artyom; Gaikovich, Konstantin

    Absorption in the atmosphere below 500 km results in attenuation of the solar EUV flux, variation of its spectra and distortion of solar images acquired by solar EUV instruments operating on LEO satellites even on solar synchronous orbits. Occultation measurements are important for planning of solar observations from these satellites, and can be used for monitoring the upper atmosphere as well as for studying its response to the solar activity. We present the results of the occultation measurements of the solar EUV radiation obtained by the CORONAS-F/SPIRIT telescope at high solar activity (2002), by the CORONAS-Photon/TESIS telescope at low activity (2009), and by the SWAP telescope and LYRA radiometer onboard the PROBA 2 satellite at moderate activity (2010). The measured attenuation profiles and the retrieved linear extinction coefficients at the heights 200-500 km are compared with simulations by the NRLMSIS-00 and DTM2013 atmospheric models. It was shown that the results of simulations by the DTM2013 model are well agreed with the data of measurements at all stages of solar activity and in presence of the geomagnetic storm, whereas the results of the NRLMSISE-00 model significantly diverge from the measurements, in particular, at high and low activity. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project No.284461, www.eheroes.eu).

  17. The technical analysis of the stock exchange and physics: Japanese candlesticks for solar activity

    Science.gov (United States)

    Dineva, C.; Atanasov, V.

    2013-09-01

    In this article, we use the Japanese candlesticks, a method popular in the technical analysis of the Stock/Forex markets and apply it to a variable in physics-the solar activity. This method is invented and used exclusively for economic analysis and its application to a physical problem produced unexpected results. We found that the Japanese candlesticks are convenient tool in the analysis of the variables in the physics of the Sun. Based on our observations, we differentiated a new cycle in the solar activity.

  18. Planning of activities in the Laguna Verde Central planning at 12 weeks

    International Nuclear Information System (INIS)

    Chimalpopoca, C.

    2007-01-01

    The universe of works that are carried out in a nuclear facility to maintain effective the structures, systems and components require of a continuous analysis, in the order of the maintenance frequencies that can be of the preventive, predictive or corrective type. Each component is associated to reserve parts, readiness of systems, in fulfillment to the operation technical specifications, to the environment of the one work; each component requires of a planning level, where it is distinguished with clarity when they are executed, in the operation stage, stop or recharge. This work has as end to show like the activities are planned during the operation, using planning methods to twelve weeks, where the reach of the task is conceptualized, operative requirements, of reserve parts, of the work environment analysis, of those radiological conditions, of the authorizations for their execution, the same execution and the evaluation post work like a technique to maintain in continuous improvement the tasks of the maintenance of the Units of the Power station. A motor valve to be worked in its internals requires access to the work point, it requires bill of the system, electric disconnection, maneuvers to disassemble actuators and retirement of thermal isolation if it applies, reserve parts of the caps joints, control mechanisms, personal, tools, radiological control. The success of the continuous operation of a power station is in the planning quality, the attention of each one of the details to assure that the components, structures and components stay effective to make their function when they are demanded. The planning task requires of experience and knowledge of each some of the components, the task of planning of activities and its execution is multidisciplinary This work has that purpose, to show the planning tools in the Laguna Verde Nuclear Power station, under the concept of twelve weeks. (Author)

  19. Solar energy in Germany: a national commitment

    International Nuclear Information System (INIS)

    Persem, Melanie

    2012-01-01

    This document presents some key information and figures about the development of solar energy in Germany: national energy plan and share of solar energy in the German energy mix, the photovoltaic industry: a dynamic industry which creates jobs, 2006-2012 evolution of photovoltaic power plant costs, solar thermal resource potentialities and effective exploitation

  20. A Test of the Active-Day Fraction Method of Sunspot Group Number Calibration: Dependence on the Level of Solar Activity

    Science.gov (United States)

    Willamo, T.; Usoskin, I. G.; Kovaltsov, G. A.

    2018-04-01

    The method of active-day fraction (ADF) was proposed recently to calibrate different solar observers to standard observational conditions. The result of the calibration may depend on the overall level of solar activity during the observational period. This dependency is studied quantitatively using data of the Royal Greenwich Observatory by formally calibrating synthetic pseudo-observers to the full reference dataset. It is shown that the sunspot group number is precisely estimated by the ADF method for periods of moderate activity, may be slightly underestimated by 0.5 - 1.5 groups ({≤} 10%) for strong and very strong activity, and is strongly overestimated by up to 2.5 groups ({≤} 30%) for weak-to-moderate activity. The ADF method becomes inapplicable for the periods of grand minima of activity. In general, the ADF method tends to overestimate the overall level of activity and to reduce the long-term trends.

  1. Solar photovoltaic projects in the mainstream power market

    CERN Document Server

    Wolfe, Philip

    2012-01-01

    Develop large-scale solar photovoltaic projects with this book, to feed power into a grid. Contains case studies of the Waldpolenz Energy Park, Germany, Lopburi Solar Plant in Thailand and what will be the world's largest PV plant, the Topaz Solar Farm in California. Also included are interviews from leading figures in the PV industry.Contents cover:planning and structuring projectssiting, planning and connection issuesbuilding and operating projectstechnology basicseconomies of PVhistory and business of PVfinancing and regulationtechnical aspects of system design.Supported by figures and photographs, this is for anyone wanting to master the commercial, professional, financial, engineering or political aspects of developing mega-watt solar PV projects in a mainstream power market.

  2. Solar Design Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  3. System technology improves the chances of solar cooling

    International Nuclear Information System (INIS)

    Schmid, W.

    2008-01-01

    This article takes a look at the increasing range of products on offer in the solar cooling area. Such an increase applies in particular to products in the low and medium power ranges under 30 kilowatts. Several hindrances to the expansion of the solar air-conditioning (SAC) market are named, both in the technological as well as in the operational area. The author states that a considerable amount of optimisation work is still to be done. Market offerings using absorption and adsorption techniques are examined, as are silica gel-based systems. Companies in the German-speaking parts of Europe active in the area are listed and their work is reviewed. The opinions of various experts that were presented at a congress on the subject are noted. Planning tools made available by the International Energy Agency's Task 38 'Solar air-conditioning and refrigeration' are mentioned.

  4. The influence of active region information on the prediction of solar flares: an empirical model using data mining

    Directory of Open Access Journals (Sweden)

    M. Núñez

    2005-11-01

    Full Text Available Predicting the occurrence of solar flares is a challenge of great importance for many space weather scientists and users. We introduce a data mining approach, called Behavior Pattern Learning (BPL, for automatically discovering correlations between solar flares and active region data, in order to predict the former. The goal of BPL is to predict the interval of time to the next solar flare and provide a confidence value for the associated prediction. The discovered correlations are described in terms of easy-to-read rules. The results indicate that active region dynamics is essential for predicting solar flares.

  5. Understanding Solar Cycle Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-07-10

    The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to a generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.

  6. Roles of Solar Power from Space for Europe - Space Exploration and Combinations with Terrestrial Solar Plant Concepts

    Science.gov (United States)

    Summerer, L.; Pipoli, T.; Galvez, A.; Ongaro, F.; Vasile, M.

    The paper presents the prospective roles of SPS concepts for Europe, shows the outcome of recent studies undertaken by ESA's Advanced Concepts Team (ACT) together with European industry and research centres and gives insight into planned activities. The main focus is on the assessment of the principal validity and economic viability of solar power from space concepts in the light of advances in alternative sustainable, clean and potentially abundant solar-based terrestrial concepts. The paper takes into account expected changes in the European energy system (e.g. gradual introduction of hydrogen as energy vector). Special emphasis is given to the possibilities of integrating space and terrestrial solar plants. The relative geographic proximity of areas in North Africa with high average solar irradiation to the European energy consumer market puts Europe in a special position regarding the integration of space and terrestrial solar power concepts. The paper presents a method to optimise such an integration, taking into account different possible orbital constellations, terrestrial locations, plant number and sizes as well as consumer profiles and extends the scope from the European-only to a multi continental approach including the fast growing Chinese electricity market. The work intends to contribute to the discussion on long-term options for the European commitment to worldwide CO2 emission reduction. Cleaner electricity generation and environmentally neutral transport fuels (e.g. solar generated hydrogen) might be two major tools in reaching this goal.

  7. Ensuring the Process of Realisation of Financial Planning of Banking Activity

    OpenAIRE

    Kirkach Svitlana M.

    2014-01-01

    The article studies theoretical aspects of the process of realisation of financial planning of the bank's activity and identifies and justifies its six main stages: 1) goal formation stage; 2) preparation stage; 3) assessment; 4) financial plan approval; 5) financial plan execution, and 6) stage of the financial plan monitoring, control and adjustment. The above sequence of stages of the process of realisation of financial planning of the bank's activity allows a trustworthy assessment of the...

  8. Forecasting the peak of the present solar activity cycle 24

    Science.gov (United States)

    Hamid, R. H.; Marzouk, B. A.

    2018-06-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aamin. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between maximum of solar cycles (RM) and spotless event around the preceding minimum gives R24t = 88.4 with rise time Tr = 4.6 years. For the even cycles R24E = 77.9 with rise time Tr = 4.5 y's. Based on the average aamin. index for cycles (12-23), we estimate the expected amplitude for cycle 24 to be Raamin = 99.4 and 98.1 with time rise of Traamin = 4.04 & 4.3 years for both the total and even cycles in consecutive. The application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 126 with rise time Tr107 = 3.7 years, which are over estimation. Our result indicating to somewhat weaker of cycle 24 as compared to cycles 21-23.

  9. Learning plan applicability through active mental entities

    International Nuclear Information System (INIS)

    Baroni, Pietro; Fogli, Daniela; Guida, Giovanni

    1999-01-01

    This paper aims at laying down the foundations of a new approach to learning in autonomous mobile robots. It is based on the assumption that robots can be provided with built-in action plans and with mechanisms to modify and improve such plans. This requires that robots are equipped with some form of high-level reasoning capabilities. Therefore, the proposed learning technique is embedded in a novel distributed control architecture featuring an explicit model of robot's cognitive activity. In particular, cognitive activity is obtained by the interaction of active mental entities, such as intentions, persuasions and expectations. Learning capabilities are implemented starting from the interaction of such mental entities. The proposal is illustrated through an example concerning a robot in charge of reaching a target in an unknown environment cluttered with obstacles

  10. Ancient cellular structures and modern humans: change of survival strategies before prolonged low solar activity period

    Science.gov (United States)

    Ragulskaya, Mariya; Rudenchik, Evgeniy; Gromozova, Elena; Voychuk, Sergei; Kachur, Tatiana

    The study of biotropic effects of modern space weather carries the information about the rhythms and features of adaptation of early biological systems to the outer space influence. The influence of cosmic rays, ultraviolet waves and geomagnetic field on early life has its signs in modern biosphere processes. These phenomena could be experimentally studied on present-day biological objects. Particularly inorganic polyphosphates, so-called "fossil molecules", attracts special attention as the most ancient molecules which arose in inanimate nature and have been accompanying biological objects at all stages of evolution. Polyphosphates-containing graves of yeast's cells of Saccharomyces cerevisiae strain Y-517, , from the Ukrainian Collection of Microorganisms was studied by daily measurements during 2000-2013 years. The IZMIRAN daily data base of physiological parameters dynamics during 2000-2013 years were analyzed simultaneously (25 people). The analysis showed significant simultaneous changes of the statistical parameters of the studied biological systems in 2004 -2006. The similarity of simultaneous changes of adaptation strategies of human organism and the cell structures of Saccharomyces cerevisiae during the 23-24 cycles of solar activity are discussed. This phenomenon could be due to a replacement of bio-effective parameters of space weather during the change from 23rd to 24th solar activity cycle and nonstandard geophysical peculiarities of the 24th solar activity cycle. It could be suggested that the observed similarity arose as the optimization of evolution selection of the living systems in expectation of probable prolonged period of low solar activity (4-6 cycles of solar activity).

  11. Solar Ready Vets Curriculum Design

    Energy Technology Data Exchange (ETDEWEB)

    Dalstrom, Tenley

    2017-08-31

    The 5-week SRV program includes four sets of program learning goals aligned around (1) the NABCEP Entry Level body of knowledge; (2) gaining hands-on experience with solar system site analysis, design, installation, commissioning, operation, maintenance and financial considerations; (3) Safety issues unique to solar + OSHA 30; (4) Transition planning and individual support of entry into the solar industry. These goals, and the learning objectives associate with each, are pursued in parallel during the course.

  12. Frequency agile solar radiotelescope

    Science.gov (United States)

    Bastian, Tim S.

    2003-02-01

    The Frequency Agile Solar Radiotelescope (FASR) is a solar-dedicated, ground based, interferometric array optimized to perform broadband imaging spectroscopy from ~ 0.1-30+ GHz. It will do so with the angular, spectral, and temporal resolution required to exploit radio emission from the Sun as a diagnostic of the wide variety of astrophysical processes that occur there. FASR represents a major advance over existing radioheliographs, and is expected to remain the world's premier solar radio instrument for two decades or more after completion. FASR will be a versatile and powerful instrument, providing unique data to a broad users community. Solar, solar-terrestrial, and space physicists will exploit FASR to attack a broad science program, including problems of fundamental interest: coronal magnetography, solar flares and particle acceleration, drivers of space weather, and the thermal structure and dynamics of the solar atmosphere. A design study and implementation planning are underway. Recent progress is reviewed here.

  13. Solar activity, tidal friction and the earth rotation over the last 2000 years

    International Nuclear Information System (INIS)

    Kiselev, V.M.

    1981-01-01

    The tidal retardations of the Earth rotation and orbital motion of the Moon on Dynamical Time are discussed. The secular deceleration of the lunar motion deduced from an analysis of the anciept and medieval eclipses is lapger thap that obtained from recent (telescopic) observations. This discrepancy is shown to vanish if the Earth acceleration due to secular change of solar activity is taken into consideration. Therefore, one may suggest that the mean tidal friction has remained essentially constant over the last two millennia. Nontidal variations of the Earth rotation velocity in the historical past as well as at present time are shown to be caused by solar activity changes [ru

  14. Multi-wavelength imaging of solar plasma. High-beta disruption model of solar flares

    International Nuclear Information System (INIS)

    Shibasaki, Kiyoto

    2007-01-01

    Solar atmosphere is filled with plasma and magnetic field. Activities in the atmosphere are due to plasma instabilities in the magnetic field. To understand the physical mechanisms of activities / instabilities, it is necessary to know the physical conditions of magnetized plasma, such as temperature, density, magnetic field, and their spatial structures and temporal developments. Multi-wavelength imaging is essential for this purpose. Imaging observations of the Sun at microwave, X-ray, EUV and optical ranges are routinely going on. Due to free exchange of original data among solar physics and related field communities, we can easily combine images covering wide range of spectrum. Even under such circumstances, we still do not understand the cause of activities in the solar atmosphere well. The current standard model of solar activities is based on magnetic reconnection: release of stored magnetic energy by reconnection is the cause of solar activities on the Sun such as solar flares. However, recent X-ray, EUV and microwave observations with high spatial and temporal resolution show that dense plasma is involved in activities from the beginning. Based on these observations, I propose a high-beta model of solar activities, which is very similar to high-beta disruptions in magnetically confined fusion experiments. (author)

  15. Report on solar neutrino experiments

    International Nuclear Information System (INIS)

    Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

    1984-01-01

    A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research

  16. Solar activity impact on the Earth’s upper atmosphere

    Czech Academy of Sciences Publication Activity Database

    Kutiev, I.; Tsagouri, I.; Perrone, L.; Pancheva, D.; Mukhtarov, P.; Mikhailov, A.; Laštovička, Jan; Jakowski, N.; Burešová, Dalia; Blanch, E.; Andonov, B.; Altadill, D.; Magdaleno, S.; Parisi, M.; Torta, J. M.

    2013-01-01

    Roč. 3, February (2013), A06/1-A06/21 ISSN 2115-7251 Grant - others:COST(XE) ES0803 Institutional support: RVO:68378289 Keywords : ionosphere * solar activity * storm * total electron content * data analysis Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.519, year: 2013 http://www.swsc-journal.org/index.php?option=com_article&access=doi&doi=10.1051/swsc/2013028&Itemid=129

  17. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    DEFF Research Database (Denmark)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow

    2015-01-01

    advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun......Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D...... structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant...

  18. Space Solar Power Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe; Baroud, Michel; Behar, Alberto; Berrier, Keith; Berthe, Phillipe; Bertrand, Reinhold; Bibyk, Irene; Bisson, Joel; Bloch, Lawrence; Bobadilla, Gabriel; Bourque, Denis; Bush, Lawrence; Carandang, Romeo; Chiku, Takemi; Crosby, Norma; De Seixas, Manuel; De Vries, Joha; Doll, Susan; Dufour, Francois; Eckart, Peter; Fahey, Michael; Fenot, Frederic; Foeckersperger, Stefan; Fontaine, Jean-Emmanuel; Fowler, Robert; Frey, Harald; Fujio, Hironobu; Gasa, Jaume Munich; Gleave, Janet; Godoe, Jostein; Green, Iain; Haeberli, Roman; Hanada, Toshiya; Harris, Peter; Hucteau, Mario; Jacobs, Didier Fernand; Johnson, Richard; Kanno, Yoshitsugu; Koenig, Eva Maria; Kojima, Kazuo; Kondepudi, Phani; Kottbauer, Christian; Kulper, Doede; Kulagin, Konstantin; Kumara, Pekka; Kurz, Rainer; Laaksonen, Jyrki; Lang, Andrew Neill; Lathan, Corinna; Le Fur, Thierry; Lewis, David; Louis, Alain; Mori, Takeshi; Morlanes, Juan; Murbach, Marcus; Nagatomo, Hideo; O' brien, Ivan; Paines, Justin; Palaszewski, Bryan; Palmnaes, Ulf; Paraschivolu, Marius; Pathare, Asmin; Perov, Egor; Persson, Jan; Pessoa-Lopes, Isabel; Pinto, Michel; Porro, Irene; Reichert, Michael; Ritt-Fischer, Monika; Roberts, Margaret; Robertson II, Lawrence; Rogers, Keith; Sasaki, Tetsuo; Scire, Francesca; Shibatou, Katsuya; Shirai, Tatsuya; Shiraishi, Atsushi; Soucaille, Jean-Francois; Spivack, Nova; St. Pierre, Dany; Suleman, Afzal; Sullivan, Thomas; Theelen, Bas Johan; Thonstad, Hallvard; Tsuji, Masatoshi; Uchiumi, Masaharu; Vidqvist, Jouni; Warrell, David; Watanabe, Takafumi; Willis, Richard; Wolf, Frank; Yamakawa, Hiroshi; Zhao, Hong

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  19. Microgrid-Ready Solar PV - Planning for Resiliency

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Samuel S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-17

    This fact sheet provides background information on microgrids with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  20. En Route Descent Advisor Multi-Sector Planning Using Active and Provisional Controller Plans

    Science.gov (United States)

    Vivona, Robert; Green, Steven

    2003-01-01

    As decision support tools are developed to support controllers in complex air traffic control environments, new approaches to maintaining situation awareness and managing traffic planning must be developed to handle the ever-increasing amounts of alerting and advisory data. Within high-density metering and other environments where flight path changes are the rule, not the exception, and where interactions between these changes are required, current trial planning approaches are limited by potential increases in workload. The Enroute Descent Advisor (EDA) is a set of decision support tool capabilities for managing high-density en route traffic subject to metering restrictions. The EDA system s novel approach builds aircraft plans from combinations of user intent data and builds controller plans from combinations of aircraft plans to effectively maintain situation awareness during traffic planning. By maintaining both active (current) and provisional (proposed) controller plans, EDA supports controllers in coordinated traffic planning both within and between sectors. Ultimately, EDA s multi-sector planning approach will facilitate a transition from current sector-oriented operations to a new trajectory-oriented paradigm, enabling new levels of efficiency and collaboration in air traffic control.

  1. Temporal associations of life with solar and geophysical activity

    Directory of Open Access Journals (Sweden)

    T. K. Breus

    Full Text Available In biology, circadian rhythms with a period of one cycle in 20–28 h are known to be ubiquitous and partly endogenous. Rhythms with a frequency lower than one cycle per day are called 'infradian rhythms'. Among them are components with one cycle in about 3.5, 7, 14 and 28 days, the multiseptans, which, like the circadians, must be regarded as a general characteristic of life: they characterize unicells as well as much more differentiated organisms. We hypothesize that heliogeophysical factors other than the solar visible light, held responsible for the evolution of circadian periodicity, underlie the infradian rhythms of biosystems. The periodicities in the solar wind and variations in the interplanetary magnetic field (IMF which are associated with the solar rotation are very similar in length to the biological periodicities. We investigate the temporal relations of variations in solar activity and in biological systems to test associations between events in the IMF, in geomagnetic disturbance, in myocardial infarction and in physiology. By cross-spectral analysis, we also find relations at certain frequencies between changes in human physiology on the one hand, and (1 the vertical component of the induction vector of the IMF, Bz, and (2 a global index of geomagnetic disturbance, Kp, on the other hand. We wish to stimulate interest in these periodicities of both biological systems and geophysical endpoints among physicists and biologists alike, so that problems relevant to clinicians and other biologists, including evolutionists, are eventually solved by their cooperation with the geophysical community.

  2. Low-cost solar array progress and plans

    Science.gov (United States)

    Callaghan, W. T.

    It is pointed out that significant redirection has occurred in the U.S. Department of Energy (DOE) Photovoltaics Program, and thus in the Flat-Plate Solar Array Project (FSA), since the 3rd European Communities Conference. The Silicon Materials Task has now the objective to sponsor theoretical and experimental research on silicon material refinement technology suitable for photovoltaic flat-plate solar arrays. With respect to the hydrochlorination reaction, a process proof of concept was completed through definition of reaction kinetics, catalyst, and reaction characteristics. In connection with the dichlorosilane chemical vapor desposition process, a preliminary design was completed of an experimental process system development unit with a capacity of 100 to 200 MT/yr of Si.Attention is also given to the silicon-sheet formation research area, environmental isolation research, the cell and module formation task, the engineering sciences area, and the module performance and failure analysis area.

  3. A low energy solar town

    International Nuclear Information System (INIS)

    Svendsen, Svend; Balocco, Carla

    1998-01-01

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m 2 /year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs

  4. A low energy solar town

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, Svend; Balocco, Carla

    1998-12-31

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m{sup 2}/year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs.

  5. The planning illusion: Does active planning of a learning route support learning as well as learners think it does?

    NARCIS (Netherlands)

    Bonestroo, W.J.; de Jong, Anthonius J.M.

    2012-01-01

    Is actively planning one’s learning route through a learning domain beneficial for learning? Moreover, can learners accurately judge the extent to which planning has been beneficial for them? This study examined the effects of active planning on learning. Participants received a tool in which they

  6. Evidence from northwest European bogs shows ‘Little Ice Age’ climatic changes driven by variations in solar activity

    NARCIS (Netherlands)

    Mauquoy, D; van Geel, B; Blaauw, Maarten; van der Plicht, J

    2002-01-01

    Fluctuations in Holocene atmospheric radiocarbon concentrations have been shown to be due to variations in solar activity. Analyses of both Be-10 and C-14 nuclides confirm that production-rate changes during the Holocene were largely modulated by solar activity. Analyses of peat samples from two

  7. Early solar physics

    CERN Document Server

    Meadows, A J

    1970-01-01

    Early Solar Physics reviews developments in solar physics, particularly the advent of solar spectroscopy and the discovery of relationships between the various layers of the solar atmosphere and between the different forms of solar activity. Topics covered include solar observations during 1843; chemical analysis of the solar atmosphere; the spectrum of a solar prominence; and the solar eclipse of December 12, 1871. Spectroscopic observations of the sun are also presented. This book is comprised of 30 chapters and begins with an overview of ideas about the sun in the mid-nineteenth century, fo

  8. Development of an active solar crop dryer: design analysis and ...

    African Journals Online (AJOL)

    The design analysis and performance evaluation of an active solar crop dryer was undertaken by drying marched cassava. The drying rate, system drying, collector and pick-up efficiencies were 1.6kg/day (14%/day), 9%, 46% and 29% respectively. Comparatively, the drying rate for sun drying was 0.9kg/day. The collector ...

  9. Homeroom Activities in a College of Technology Based on the Master Plan

    Science.gov (United States)

    Fuchida, Kunihiiko; Murata, Hideaki; Yuji, Junichiro

    Homeroom (HR) activities have an important role in engineering education at technical colleges. Yatsushiro National College of Technology has made a master plan for them and has been putting the plan into practical use since 2002. This plan is comprehensive and has two main categories, social education and career guidance, both being composed of three sub-categories (e.g., self-understanding and making future plans) . Based on the master plan, each HR teacher makes his own plan for HR activities for his classroom at the beginning of the academic year. We have reached a consensus to share our practice and to improve HR activities for years to come. We also recognize that to carry out HR activities based on a master plan that reflects the school's educational goals is essential in order to train students who are well-prepared, both as engineers and as humans.

  10. NREL Screens Universities for Solar and Battery Storage Potential

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-12

    In support of the U.S. Department of Energy's SunShot initiative, NREL provided solar photovoltaic (PV) screenings in 2016 and 2017 for universities seeking to go solar. Fifteen universities were selected for screenings based on campus solar and sustainability goals, plans for future solar projects and solar deployment capacity (megawatts), regional diversity, energy costs, and availability of campus energy data for the analysis.

  11. Activity of processes on the visible surface of planets of Solar system

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    According to modern concepts bodies of the solar system formed from a single cloud of gas and dust. Calculations show that in the protoplanetary nebula where the temperature is lowered to 1600 K - appeared the first type of metal (aluminum and titanium) and metal oxides in the form of dust particles. With further decreasing temperature of the nebula to 1400 K - appeared also dust of iron and iron-nikel alloy; at 1300 K - appear solid silicates; magnesium minerals formed at T 1200 K. These components are material for the formation of basaltic rocks. At temperatures T 300 K begins to form water molecules. At 100-200 K in a remote part of the nebula - ammonia, methane and their ice are formed. In the outer part of Solar system this ices are now preserved in comet nuclei and in the icy satellites of giant planets. During T 400 million years after the formation of the Sun, at first - from dust component of the protoplanetary cloud was formed many intermediate bodies with the size of hundreds kilometers. Their gravitational interaction was reinforced in process of their grow. The bodies, which were growing fastest, they became the embryos of the future planets. All bodies of the solar system in different degrees show manifestations of different types of activity processes on the surface or at the level of the visible clouds. This activity depends on the distance of a particular body from the Sun, surface chemical composition, physical conditions at the surface and so on. The farther away from the Sun is the object, the temperature of its visible surface is lower, and by that more interesting is the set of processes, of chemical and physical transformations that there is possible to register. The surface of each planets of Solar system is very active in a variety of set temperature and chemical composition

  12. Survey of active solar thermal collectors, industry and markets in Canada : final report

    International Nuclear Information System (INIS)

    2005-08-01

    A survey of the solar thermal industry in Canada was presented. The aim of the survey was to determine the size of the Canadian solar thermal industry and market. Data were used to derive thermal energy output as well as avoided greenhouse gas (GHG) emissions from solar thermal systems. The questionnaire was distributed to 268 representatives. Results revealed annual sales of 24.2, 26.4 and 37.5 MW TH in 2002, 2003, and 2004 respectively, which represented over 50 per cent growth in the operating base during the 3 year survey period. Sales of all collector types grew substantially during the 3 year period, and survey respondents anticipated 20 per cent growth in both 2005 and 2006. Approximately 10 per cent of all sales were exported during 2002-2004. Unglazed liquid collectors constituted the majority of collector types sold in Canada, almost all of which were sold into the residential sector for swimming pool heating. The majority of air collectors were sold into the industrial/commercial and institutional (I/CI) sectors for use in space heating. Sales of liquid glazed and evacuated tube collectors were split between the residential and I/CI sectors. Residential sales were primarily for domestic water heating. In 2004, 23 per cent of sales in the residential sector were for combination domestic hot water and space heating applications, an indication of strong growth. Results of the survey indicated that the solar thermal market in Quebec differed from other regions, with more than double the annual per capita revenue of any other region as a result of greater market penetration of unglazed air collectors. Calculations of the GHG emissions avoided due to active solar thermal systems were made based on historical estimates of solar thermal installations. A model was developed to calculate an operating base by collector type from 1979 to the present. The model showed that many of the systems installed during the 1980s were decommissioned during the 1990s, and that

  13. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182

    Science.gov (United States)

    Peterova, N. G.; Topchilo, N. A.

    2017-12-01

    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  14. Solar air conditioning. Dresden colloquium; Solare Klimatisierung. Dresdner Kolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Subjects: R + D activities in solar air conditioning; dessicative and evaporative cooling (DEC) - systems and components; Chances of solar air conditioning in Europe; Practical experience with solar-assisted air conditioning; Performance of a solar system at Lissabon; DEC system in the Alsenblock building, Berlin; Does solar air conditioning require specially designed buildings; Performance of solar heated adsorption refrigerators; Low-capacity absacity absorption systems for solar air conditioning. [German] Die Kolloquiumsschrift beinhaltet Unterlagen ueber die abgehandelten Themen. Sie lauten: F and E-Aktivitaeten im Bereich Solare Klimatisierung; SGK(DEC-Technik) - ausgefuehrte Anlagen und deren Komponenten; Chancen der solaren Klimatisierung in Europa; Erfahrungen mit der solarunterstuetzten Klimatisierung; Energieverbrauch und Regelung von SGK-Anlagen; Betriebserfahrungen einer Solaranlage in Lissabon; Realisierung der SGK im Alsenblock Berlin; Erfordert die solare Klimatisierung besondere Gebaeude?; Betriebserfahrungen mit solar beheizten Adsorptionskaeltemaschinen; Absorptionsanlagen kleiner Leistung fuer solare Klimatisierung. (orig.)

  15. Vision 21: The NASA strategic plan

    Science.gov (United States)

    1992-01-01

    The NASA Strategic Plan, Vision 21, is a living roadmap to the future to guide the men and women of the NASA team as they ensure U.S. leadership in space exploration and aeronautics research. This multiyear plan consists of a set of programs and activities that will retain our leadership in space science and the exploration of the solar system; help rebuild our nation's technology base and strengthen our leadership in aviation and other key industries; encourage commercial applications of space technology; use the unique perspective of space to better understand our home planet; provide the U.S. and its partners with a permanent space based research facility; expand on the legacy of Apollo and initiate precursor activities to establish a lunar base; and allow us a journey into tomorrow, journey to another planet (Mars), and beyond.

  16. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    International Nuclear Information System (INIS)

    Rosikhin, Ahmad; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-01-01

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO 2 in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO 2 layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices

  17. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  18. Fe/O ratio behavior as an indicator of solar plasma state at different solar activity manifestations and in periods of their absence

    Science.gov (United States)

    Minasyants, Gennady; Minasyants, Tamara; Tomozov, Vladimir

    2018-03-01

    We report the results of the investigation into plasma physical characteristics at various solar activity manifestations and in periods of their absence. These results have been obtained from quantitative estimates of the relative abundance of Fe/O ions in different energy ranges. Maximum values of the Fe/O ratio is shown to correspond to particle fluxes from impulsive flares for ions with energies decreases smoothly with ion energy and is noticeably inferior to values of fluxes in impulsive events. We have established that the properties of flares of solar cosmic rays indicate their belonging to a separate subclass in the total population of gradual events. Relying on variations in the abundance of Fe/O ions, we propose an explanation of the solar plasma behavior during the development of flares of both classes. Magnetic clouds (a separate type of coronal mass ejections (CME)), which have regions of turbulent compression and are sources of strong geomagnetic storms, exhibit a relative composition of Fe ions comparable to the abundance of Fe in ion fluxes from gradual flares. We have found out that the Fe/O value can be used to detect penetration of energetic flare plasma into the CME body at the initial phase of their joint development and to estimate its relative contribution. During solar minimum with the complete absence of sunspots, the Fe/O ratio during periods of "quiet" solar wind show absolutely low values of Fe/O=0.004-0.010 in the energy range from 2-5 to 30 MeV/n. This is associated with the manifestation of the cosmic ray anomalous component, which causes an increase in the intensity of ion fluxes with a high first ionization potential, including oxygen (O), and elements with a low first ionization potential (Fe) demonstrate the weakening of the fluxes. As for particles with higher energies (Ek>30 MeV/n), the Fe/O increase is due to the decisive influence of galactic cosmic rays on the composition of impurity elements in the solar wind under solar

  19. Electric-current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Sun, Xudong [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Török, Tibor; Titov, Viacheslav S. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, James E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-09-01

    The physical conditions that determine whether or not solar active regions (ARs) produce strong flares and coronal mass ejections (CMEs) are not yet well understood. Here, we investigate the association between electric-current neutralization, magnetic shear along polarity inversion lines (PILs), and eruptive activity in four ARs: two emerging and two well-developed ones. We find that the CME-producing ARs are characterized by a strongly non-neutralized total current, while the total current in the ARs that did not produce CMEs is almost perfectly neutralized. The difference in the PIL shear between these two groups is much less pronounced, which suggests that the degree of current neutralization may serve as a better proxy for assessing the ability of ARs to produce CMEs.

  20. Study of the capability for rapid warnings of solar flare radiation hazards to aircraft. Part I. Forecasts and warnings of solar flare radiation hazards. Part II. An FAA polar flight solar cosmic radiation forecast/warning communication system study. Technical memo

    International Nuclear Information System (INIS)

    Sauer, H.H.; Stonehocker, G.H.

    1977-04-01

    The first part of the report provides background information on the occurrence of solar activity and the consequent sporadic production of electromagnetic and particle emissions from the sun. A summary is given of the current procedures for the forecasting of solar activity together with procedures used to verify these forecasts as currently available. A summary of current forecasting of radiation hazards as provided in support of the Concorde SST program is also given. The second part of the report describes a forecast message distribution system developed in conjunction with solar cosmic radiation forecasts and warnings of the Space Environment Laboratory of NOAA for the Federal Aviation Administration's (FAA) Office of Aviation Medicine. The study analyzes the currently available and future aeronautical telecommunication system facilities to determine an optimum system to distribute forecasts to the preflight planning centers in the international flight service stations for polar-flying subsonic and supersonic transport (SST) type aircraft. Also recommended for the system are timely and reliable distribution of warnings to individual in-flight aircraft in polar areas by the responsible air traffic control authority

  1. The investigation of solar activity signals by analyzing of tree ring chronological scales

    Science.gov (United States)

    Nickiforov, M. G.

    2017-07-01

    The present study examines the ability of detecting short-cycles and global minima of solar activity by analyzing dendrochronologies. Starting with the study of Douglass, which was devoted to the question of climatic cycles and the growth of trees, it is believed that the analysis of dendrochronologies allows to detect the cycle of Wolf-Schwabe. According to his results, the cycle was absent during Maunder's minimum and appeared after its completion. Having checked Douglass's conclusions by using 10 dendrochronologies of yellow pines from Arizona, which cover the time period from 1600 to 1900, we have come to the opposite results. The verification shows that: a) none of the considered dendroscale allows to detect an 11-year cycle; 2) the behaviour of a short peroid-signal does not undergo significant changes before, during or after Maunder's minimum. A similar attempt to detect global minima of solar activity by using five dendrochronologies from different areas has not led to positive results. On the one hand, the signal of global extremum is not always recorded in dendrochronology, on the other hand, the deep depression of annual rings allows to suppose the existence of a global minimum of solar activity, which is actually absent.

  2. A new perspective on solar active regions

    Science.gov (United States)

    Strong, K. T.; Bruner, M. E.

    1996-01-01

    A flood of new observations of the solar corona have been made with high spatial resolution, good temporal coverage and resolution, and large linear dynamic range by the Soft X-ray Telescope (SXT) on Yohkoh. These data are changing our fundamental understanding of how solar magnetic fields emerge, interact, and dissipate. This paper reviews some of the results from Yohkoh in the context of earlier results from the Solar Maximum Mission (SMM) and in comjunction with ground-based optical and radio observations.

  3. Solar energy activities in the Arab countries

    International Nuclear Information System (INIS)

    Sayigh, A.A.M.

    1991-01-01

    The Arab countries, 22 in total, are divided into three groups. Group one consists of all countries of the Middle East. The second group is the Arabian Peninsula, and the third group consists of all Arab countries in Africa. The paper outlines the solar density and sunshine hours, as well as wind data in the region and compares them with some industrialized countries. Brief surveys of various solar energy projects are tabulated: that is solar, wind and biomass. Several specific major projects in various parts of the Arab World will be discussed. More specifically, the cooling of the solar energy research building in Baghdad (120 tons of solar absorption chillers, 80 tons of heat pumps), the heating of King Abdu-Asis Airborne and Physical Training School near Tabuk, Saudi Arabia, the 350 kW PV. field of the solar energy village near Riyadh and the 100 kW solar thermal plant in Kuwait are discussed. It is worth noting that the present photovoltaic capacity in the Arab world is more than 3.0 MW and the yearly installation potential per year is 2.0 MW. There are at least five photovoltaic production facilities in the Arab countries. Two of them in Saudi Arabia with capacity of 400 kW, one in Iraq with a capacity of 200 kW, one in Tunisia with a capacity of 100 kW and on in Algeria with capacity of 100 kW. The Arab countries can absorb 5MW per year and more countries like Egypt, Sudan, Morocco, Jordan and Libya are thinking of having their own production capabilities. Five desalination plants are also mentioned, plus the Yanbu plant of 240m/day, which is one of the largest in the world. The potential of wind energy utilisation is considered. Obstacles hindering the process of solar energy in the region are also outlined. (author). 11 refs, 1 fig., 4 tabs

  4. Solar Power and Solar Fuels Synthesis Report. Technology, market and research activities 2006-2011

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt; Nilsson, Ronny; Rehnlund, Bjoern [Grontmij, Stockholm (Sweden); Kasemo, Bengt [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2012-11-01

    The objectives of the synthesis is to survey the situation and give an accumulated and concentrated knowledge about status, needs and opportunities for Swedish research and Swedish industry within the area of solar power and solar fuels, to be used for prioritisation of further efforts. The synthesis shall identify strengths and weaknesses in areas fundamental for development of solar power and solar fuels, focused on the development in Sweden, but in an international context. The synthesis shall also cover proposals for future Swedish research efforts and organisation of future Swedish research programs.

  5. Solar process heat for industry, seawater desalination and solar chemistry; Solare Prozesswaerme fuer Industrie, Meerwasserentsalzung und Solarchemie

    Energy Technology Data Exchange (ETDEWEB)

    Hennecke, K. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany); Lokurlu, A. [Solitem GmbH, Aachen (Germany); Rommel, M. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Spaete, F. [Fachhochschule Aachen, Juelich (Germany). Solar-Institut Juelich

    2006-02-15

    The examples discussed in this paper show that solar process heat can make an important contribution to climate protection and resource conservation. Marketable technologies providing temperatures up to approx. 200 C will be available in the short to medium term future. Continue low prices for fossil fuels and high consulting and planning costs impede the further spread of these technologies. Politicians must be called upon to facilitate the development of the market through suitable promotion programmes. There is still a long-term requirement for research, especially regarding high-temperature applications and solar chemistry.

  6. Solar energy demonstration zones in the Dalmatian region

    Energy Technology Data Exchange (ETDEWEB)

    Hrastnik, B. [Energy Institute, Zagreb (Croatia); Frankovic, B. [University of Rijeka (Croatia). Faculty of Engineering

    2001-11-01

    The energy consumption in the Dalmatian region was estimated for residential and public sector, tourism, commercial sector and industry. The national energy program for the use of solar energy, SUNEN, assessed solar energy potential in Croatia. Energy from fossil fuels and electricity consumption in the region, which is mostly used in households for preparing hot water and space heating, could be economically substituted by renewable energy. The situation is most promising for the islands of the Adriatic, where solar thermal collectors, PV modules and wind generators could substitute conventional energy sources in satisfying the present thermal and electric demand. The Dalmatian Islands, characterised by a small density of energy consumption, are proposed as unique candidates in Europe for renewable zones, which could demonstrate the full potential of the renewable energy option. As a practical demonstration, the island of Lastovo and the planned tourist village and yacht marina in the Bay of Jurjeva Luka are proposed as a first solar demonstration project on the islands. Technical, economic, legal and institutional barriers, as well as shortages of financing the project identification process produced hereto an adverse environment for solar applications in Croatia. This paper is an initiative for eliminating the barriers and intensify the solar energy use in Croatia providing the clean environment and activation of indigenous energy resources in the region. (author)

  7. A brief report on the statistical study of net electric current in solar active regions with longitudinal fields of opposite polarity

    International Nuclear Information System (INIS)

    Gao Yu

    2013-01-01

    Dynamic processes occurring in solar active regions are dominated by the solar magnetic field. As of now, observations using a solar magnetograph have supplied us with the vector components of a solar photospheric magnetic field. The two transverse components of a photospheric magnetic field allow us to compute the amount of electric current. We found that the electric current in areas with positive (negative) polarity due to the longitudinal magnetic field have both positive and negative signs in an active region, however, the net current is found to be an order-of-magnitude less than the mean absolute magnitude and has a preferred sign. In particular, we have statistically found that there is a systematic net electric current from areas with negative (positive) polarity to areas with positive (negative) polarity in solar active regions in the northern (southern) hemisphere, but during the solar minimum this tendency is reversed over time at some latitudes. The result indicates that there is weak net electric current in areas of solar active regions with opposite polarity, thus providing further details about the hemispheric helicity rule found in a series of previous studies.

  8. Particle Acceleration in a Statistically Modeled Solar Active-Region Corona

    Science.gov (United States)

    Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.

    2013-09-01

    Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  9. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  10. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  11. Solar activity and life. A review

    International Nuclear Information System (INIS)

    Messerotti, M.; Chela-Flores, J.

    2007-09-01

    Recent claims advocate a downward revision of the solar oxygen abundance. This is a reflection of what may be called a 'solar crisis' whereby we mean that previous consensus in our understanding of our nearest star was unfounded. The implications for solar physics, and chemistry, are obvious and much research in the near future will give us a much clearer understanding of the Sun. We wish to review and update recent work concerning the frontier between Space Weather (SpW) and Astrobiology. We argue that the present robust programs of various space agencies reinforce our hope for a better understanding of the bases of Astrobiology. Eventually with a more realistic model of the Sun, more reliable discussions of all the factors influencing the origin of life on Earth will be possible. (author)

  12. Solar energy potential atlas for planning energy system off-grid electrification in the Republic of Djibouti

    International Nuclear Information System (INIS)

    Pillot, Benjamin; Muselli, Marc; Poggi, Philippe; Haurant, Pierrick; Hared, Idriss

    2013-01-01

    Highlights: ► First disaggregated solar atlas of Djibouti from satellite data. ► Supply energy to remote populations by using solar systems requires planning. ► Assessment of the O and SI SAF SSI satellite-based radiation model accuracy. ► Implementation of a DEM-based disaggregation methodology. ► Establishment of a solar radiation atlas for Djibouti energy management. - Abstract: Nowadays, energy supply of rural populations is one of the most important challenges in African developing countries, and more particularly in Sub-Saharan Africa. With only one third of the population connected to the grid and the high economical and environmental cost of classical energy resources, the use of renewable energies within the rural energy supply pattern is a reliable alternative solution to improve human development of remote populations. Djibouti is a little poor country of Sub-Saharan Africa which perfectly symbolizes this way of life. Electrification rate is only about 30% and the important scattering of rural peoples throughout the country makes grid extension and fuel transportation unsuitable economic solutions to carry energy. The geographically diffused solar resource can therefore be an interesting mean to produce energy where it is consumed. The aim of this study was the creation of the first Djibouti’s global horizontal irradiation atlas, including assessment and improvement. To realize this atlas, a satellite-derived irradiance model was used (EUMETSAT O and SI SAF). To validate this model over Djibouti, we installed two temporary weather stations during the year 2010 in Djibouti-city and Dikhil and we compared hourly, daily and monthly irradiation estimates against ground-based measurements. Results showed a good agreement between measures and estimates, with a maximum Relative Root Mean Squared Error (RRMSE) over the hourly solar atlas of 12.43% and 15.44%, for Dikhil and Djibouti-city respectively. In order to improve geographic information and

  13. Voc enhancement of a solar cell with doped Li+-PbS as the active layer

    Science.gov (United States)

    Chávez Portillo, M.; Alvarado Pulido, J.; Gallardo Hernández, S.; Soto Cruz, B. S.; Alcántara Iniesta, S.; Gutiérrez Pérez, R.; Portillo Moreno, O.

    2018-06-01

    In this report, we investigate the fabrication of solar cells obtained by chemical bath technique, based on CdS as window layer and PbS and PbS-Li+-doped as the active layer. We report open-circuit-voltage Voc values of ∼392 meV for PbS and ∼630 meV for PbSLi+-doped, a remarkable enhanced in the open circuit voltage is shown for solar cells with doped active layer. Li+ ion passivate the dangling bonds in PbS-metal layer interface in consequence reducing the recombination centers.

  14. Past, present and future of passive homes in solar village 3, Athens

    Science.gov (United States)

    Kalogridis, Achilles

    Solar village 3 in Pefki, Athens, was part of an ambitious program for the promotion of solar technology, applied to a large scale social housing scheme, designed in mid 80's and firstly inhabited in the early 1990's. Among the aims of the project was the demonstration of the latest of technology in active solar systems and passive techniques, incorporated in a new settlement's layout and houses' building envelop, in order to create an energy saving, comfortable environment. More than fifteen years later, the housing complex remains the largest residential development of bioclimatic "solar" architecture in Athens, with the active and passive solar systems providing space and water heating for about 1750 inhabitants. The study focuses in the passive solar systems that have been applied to a number of the buildings of the settlement. The systems provide space heating with no need of any active mechanism, however with demand of the participation of the end users for their proper operation. The essay reviews various previous studies, monitoring reports and criticisms that have appeared throughout the past years, and identifies how the houses perform today, through a recent survey, sample monitoring and thermal comfort simulation. The report records things that have changed, features which worked well or others that did not and comments on the residents' behaviour. Interesting findings come into question, regarding the passive solar systems, their integration into the building's design, their current condition and their contribution to energy savings and thermal comfort conditions. Finally, current plans concerning the future of the settlement are highlighted, and considerations about the houses sustainability are suggested.

  15. Solar thermal collectors at design and technology activity days

    OpenAIRE

    Petrina, Darinka

    2016-01-01

    Thesis encompases usage of renewable resources of energy, especially solar energy, which is essential for our future. On one hand, certain ways of exploiting solar energy (with solar cells) have been well established and is included in the Design and technology curriculum, on the other hand however, solar thermal collectors have not been recognized enough in spite of their distribution, applicability and environmentally friendly technology. Consequently thesis emphasizes the usage of solar en...

  16. Flexible Solar Cells

    Science.gov (United States)

    1994-01-01

    Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

  17. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  18. Lower thermosphere (80-100 km) dynamics response to solar and geomagnetic activity: Overview

    International Nuclear Information System (INIS)

    Kazimirovsky, E.S.

    1989-01-01

    The variations of solar and geomagnetic activity may affect the thermosphere circulation via plasma heating and electric fields, especially at high latitudes. The possibility exists that the energy involved in auroral and magnetic storms can produce significant changes of mesosphere and lower thermosphere wind systems. A study of global radar measurements of winds at 80 to 100 km region revealed the short term effects (correlation between wind field and geomagnetic storms) and long term variations over a solar cycle. It seems likely that the correlation results from a modification of planetary waves and tides propagated from below, thus altering the dynamical regime of the thermosphere. Sometimes the long term behavior points rather to a climatic variation with the internal atmospheric cause than to a direct solar control

  19. Seismic sensitivity to sub-surface solar activity from 18 yr of GOLF/SoHO observations

    Science.gov (United States)

    Salabert, D.; García, R. A.; Turck-Chièze, S.

    2015-06-01

    Solar activity has significantly changed over the last two Schwabe cycles. After a long and deep minimum at the end of Cycle 23, the weaker activity of Cycle 24 contrasts with the previous cycles. In this work, the response of the solar acoustic oscillations to solar activity is used in order to provide insights into the structural and magnetic changes in the sub-surface layers of the Sun during this on-going unusual period of low activity. We analyze 18 yr of continuous observations of the solar acoustic oscillations collected by the Sun-as-a-star GOLF instrument on board the SoHO spacecraft. From the fitted mode frequencies, the temporal variability of the frequency shifts of the radial, dipolar, and quadrupolar modes are studied for different frequency ranges that are sensitive to different layers in the solar sub-surface interior. The low-frequency modes show nearly unchanged frequency shifts between Cycles 23 and 24, with a time evolving signature of the quasi-biennial oscillation, which is particularly visible for the quadrupole component revealing the presence of a complex magnetic structure. The modes at higher frequencies show frequency shifts that are 30% smaller during Cycle 24, which is in agreement with the decrease observed in the surface activity between Cycles 23 and 24. The analysis of 18 yr of GOLF oscillations indicates that the structural and magnetic changes responsible for the frequency shifts remained comparable between Cycle 23 and Cycle 24 in the deeper sub-surface layers below 1400 km as revealed by the low-frequency modes. The frequency shifts of the higher-frequency modes, sensitive to shallower regions, show that Cycle 24 is magnetically weaker in the upper layers of Sun. Appendices are available in electronic form at http://www.aanda.orgThe following 68 GOLF frequency tables are available and Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  20. Multi-wavelength Observations of Solar Active Region NOAA 7154

    Science.gov (United States)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  1. [Fluctuations in biophysical measurements as a result of variations in solar activity].

    Science.gov (United States)

    Peterson, T F

    1995-01-01

    A theory is proposed to explain variations in the net electrical charge of biological substances at the Earth's surface. These are shown to occur in association with changes in the solar wind and geomagnetic field. It is suggested that a liquid dielectric's net volume charge will imitate pH effects, influence chemical reaction rates, and alter ion transfer mechanisms in biophysical systems. An experiment is described which measures dielectric volume charge, or non-neutrality, to allow correlation of this property with daily, 28-day, and 11-year fluctuation patterns in geophysical and satellite data associated with solar activity and the interplanetary magnetic field.

  2. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  3. Structuring front-end innovation activities throughout strategic product planning

    Directory of Open Access Journals (Sweden)

    Thaisa Rodrigues

    Full Text Available Abstract Strategic product planning (SPP for new product development (NPD in the front-end of innovation (FEI is a great challenge for managers and practitioners. This article analyzes the structuring process of FEI activities during SPP. A research was carried out with 78 industries from both food and furniture in Brazil. Our study revealed that FEI activities are structured in an intricate network with a high level of complexity and interdependence. The large amount of activities and the complexity in structuring them denote that companies are concerned to reduce uncertainties and risks intensifying the planning phase.

  4. Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases

    International Nuclear Information System (INIS)

    Kianifar, Ali; Zeinali Heris, Saeed; Mahian, Omid

    2012-01-01

    An exergy analysis has been conducted to show the effect of a small fan on the exergy efficiency in a pyramid-shaped solar still. The tests were carried out in Mashhad (36° 36′ N), for two solar still systems. One of them was equipped with a small fan (active system), to enhance the evaporation rate while the other one was tested in passive condition (no fan). To examine the effects of radiation and water depth on exergy efficiency, experiments in two seasons and two different depths of water in the solar still basin were performed. The results show that during summer, active unit has higher exergy efficiency than passive one while in winter there is no considerable difference between the exergy efficiency of the units. Results also reveal that the exergy efficiency is higher when the water depth in the basin is lower. Finally, the economic analysis shows a considerable reduction in production cost of the water (8–9%) when the active system is used. -- Highlights: ► Using a small fan in the solar still; reduces the productive cost of fresh water up to 9%. ► Effects of the fan and basin depth on the exergy efficiency during summer and winter were examined. ► Utilizing an active system will increase the daily productivity of fresh water by 20%.

  5. United States Department of Energy solar receiver technology development

    Science.gov (United States)

    Klimas, P. C.; Diver, R. B.; Chavez, J. M.

    The United States Department of Energy (DOE), through Sandia National Laboratories, has been conducting a Solar Thermal Receiver Technology Development Program, which maintains a balance between analytical modeling, bench and small scale testing, and experimentation conducted at scales representative of commercially-sized equipment. Central receiver activities emphasize molten salt-based systems on large scales and volumetric devices in the modeling and small scale testing. These receivers are expected to be utilized in solar power plants rated between 100 and 200 MW. Distributed receiver research focuses on liquid metal refluxing devices. These are intended to mate parabolic dish concentrators with Stirling cycle engines in the 5 to 25 kW(sub e) power range. The effort in the area of volumetric receivers is less intensive and highly cooperative in nature. A ceramic foam absorber of Sandia design was successfully tested on the 200 kW(sub t) test bed at Plataforma Solar during 1989. Material integrity during the approximately 90-test series was excellent. Significant progress has been made with parabolic dish concentrator-mounted receivers using liquid metals (sodium or a potassium/sodium mixture) as heat transport media. Sandia has successfully solar-tested a pool boiling reflux receiver sized to power a 25 kW Stirling engine. Boiling stability and transient operation were both excellent. This document describes these activities in detail and will outline plans for future development.

  6. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    International Nuclear Information System (INIS)

    Telloni, Daniele; Antonucci, Ester; Carbone, Vincenzo; Lepreti, Fabio

    2016-01-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  7. Task Action Plans for generic activities: Category A

    International Nuclear Information System (INIS)

    1978-10-01

    The document contains listings of generic technical activities as identified and placed in priority categories by the Office of Nuclear Reactor Regulation (NRR). In addition, it contains definitions of Priority Categories A, B, C, and D and copies of forty approved Task Action Plans for Category A activites. Problem Descriptions for the Category B, C and D tasks are contained in NUREG--0471. This material was developed within the context of NRR's Program for the Resolution of Generic Issues Related to Nuclear Power Plants. As part of this program, the assignment of identified issues to priority categories and the approval of Task Action Plans were made by NRR's Technical Activities Steering Committee, chaired by the Deputy Director, NRR. The original document was published in November 1977. In December 1977 it was updated to add the Task Action Plan for Task No. A-17, Systems Interactions in Nuclear Power Plants. This update adds Task Action Plans for Tasks A-13, A-18, A-21, A-22, A-32, A-37, A-38 and A-40. Task A-41 has been included in Task A-40. In addition, as part of this update, the following changes were made to each Task Action Plan (with the exception of the Task Action Plan for Task A-9): (1) a title page was added that includes information such as Lead NRR Organization, Lead Supervisor, Task Manager, Applicability, and Projected Completion Date; (2) detailed schedule information was deleted; and (3) a new Section 3 entitled Basis for Continued Plant Operation and Licensing Pending Completion of Task was added. These changes represent general reformatting and the addition or deletion of certain general types of information. Some substantive revisions were made to several of the plans, however, a general revision of all of the plans was not undertaken at this time

  8. Solar heating systems

    International Nuclear Information System (INIS)

    1993-01-01

    This report is based on a previous, related, one which was quantitative in character and relied on 500 telephone interviews with house-owners. The aim of this, following, report was to carry out a more deep-going, qualitative analysis focussed on persons who already own a solar heating system (purchased during 1992) or were/are considering having one installed. Aspects studied were the attitudes, behaviour and plans of these two groups with regard to solar heating systems. Some of the key questions asked concerned general attitudes to energy supply, advantages and disadvantages of using solar heating systems, related decision-making factors, installation problems, positive and negative expectations, evaluation of the information situation, suggestions related to information systems regarding themes etc., dissemination of information, sources of advice and information, economical considerations, satisfaction with the currently-owned system which would lead to the installation of another one in connection with the purchase of a new house. The results of this investigation directed at Danish house-owners are presented and discussed, and proposals for following activities within the marketing situation are given. It is concluded that the basic attitude in both groups strongly supports environmental protection, renewable energy sources and is influenced by considerations of prestige and independence. Constraint factors are confusion about environmental factors, insecurity in relation to the effect of established supplementary energy supply and suspicion with regard to the integrity of information received. (AB)

  9. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  10. The AIA Solar Learning Center: Taking Inquiry-based EPO Online

    Science.gov (United States)

    Wills-Davey, Meredith; Attrill, G. D. R.; Engell, A.

    2009-05-01

    The observations of the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory (SDO-AIA) are expected to be groundbreaking within the field of heliophysics. To properly promote and explain the data produced by AIA, it is important that an innovative EPO effort be put forth. This has led to the development of "The AIA Solar Learning Center” (SLC), an inquiry-based educational website geared towards teaching about AIA and the Sun in general. The goal of the SLC is to provide K-12 students, teachers, parents, and homeschoolers with information and education about the Sun, primarily through hands-on activity modules that explain different aspects of our nearest star and the methods of observing it. While each module ultimately aims to impart information about the Sun or some related physical process, the activities also range across a host of different disciplines, including geology, chemistry, history, music, and art. In order to make the content applicable and accessible, activities are tailored to multiple difficulty levels, catering to different age groups. There is also a strong push towards facilitating teachers; activities are designed to fulfill specific teaching standards, and a host of additional teaching material is provided, including lesson plans and powerpoint presentations. Ultimately, the SLC aims to make science and the Sun inviting and accessible. The "Meet the Scientists” page will provide pictures and personal bios of participating scientists. Students will have the opportunity to interactively ask solar-related questions. There is even a host of lighter fare, such as a solar music playlist and links to relevant Facebook pages.

  11. NASA Lunar Mining and Construction Activities and Plans

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Sacksteder, Kurt R.

    2009-01-01

    The Space Exploration Policy enacted by the US Congress in 2005 calls for the US National Aeronautics and Space Administration (NASA) to implement a sustained and affordable human and robotic program to explore the solar system and beyond; Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations; Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration; and Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests. In 2006, NASA released the Lunar Architecture Study, which proposed establishing a lunar Outpost on the Moon with international participation to extend human presence beyond Earth's orbit, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere. The establishment of sustained human presence on the Moon for science and exploration combines the design, integration, and operation challenges experienced from both the short Apollo lunar missions and the build-up and sustained crew operations of the International Space Station (ISS). Apollo experience reminds developers and mission planners that hardware must operate under extremely harsh environmental and abrasive conditions and every kilogram of mass and payload must be critical to achieve the mission s objectives due to the difficulty and cost of reaching the lunar surface. Experience from the ISS reminds developers and mission planners that integration of all hardware must be designed and planned from the start of the program, operations and evolution of capabilities on a continuous basis are important, and long-term life-cycle costs and logistical needs are equally or more important than minimizing early development and test costs. Overarching all of this is

  12. Survey of active solar thermal collectors, industry and markets in Canada : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-01

    A survey of the solar thermal industry in Canada was presented. The aim of the survey was to determine the size of the Canadian solar thermal industry and market. Data were used to derive thermal energy output as well as avoided greenhouse gas (GHG) emissions from solar thermal systems. The questionnaire was distributed to 268 representatives. Results revealed annual sales of 24.2, 26.4 and 37.5 MW{sub TH} in 2002, 2003, and 2004 respectively, which represented over 50 per cent growth in the operating base during the 3 year survey period. Sales of all collector types grew substantially during the 3 year period, and survey respondents anticipated 20 per cent growth in both 2005 and 2006. Approximately 10 per cent of all sales were exported during 2002-2004. Unglazed liquid collectors constituted the majority of collector types sold in Canada, almost all of which were sold into the residential sector for swimming pool heating. The majority of air collectors were sold into the industrial/commercial and institutional (I/CI) sectors for use in space heating. Sales of liquid glazed and evacuated tube collectors were split between the residential and I/CI sectors. Residential sales were primarily for domestic water heating. In 2004, 23 per cent of sales in the residential sector were for combination domestic hot water and space heating applications, an indication of strong growth. Results of the survey indicated that the solar thermal market in Quebec differed from other regions, with more than double the annual per capita revenue of any other region as a result of greater market penetration of unglazed air collectors. Calculations of the GHG emissions avoided due to active solar thermal systems were made based on historical estimates of solar thermal installations. A model was developed to calculate an operating base by collector type from 1979 to the present. The model showed that many of the systems installed during the 1980s were decommissioned during the 1990s, and

  13. Planning and Optimization Methods for Active Distribution Systems

    DEFF Research Database (Denmark)

    Abbey, Chad; Baitch, Alex; Bak-Jensen, Birgitte

    distribution planning. Active distribution networks (ADNs) have systems in place to control a combination of distributed energy resources (DERs), defined as generators, loads and storage. With these systems in place, the AND becomes an Active Distribution System (ADS). Distribution system operators (DSOs) have...

  14. Solar Neutrinos

    Directory of Open Access Journals (Sweden)

    V. Antonelli

    2013-01-01

    relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.

  15. SORCE and Future Satellite Observations of Solar Irradiance

    Science.gov (United States)

    Cahalan, Robert F.; Rottman, G.; Woods, T.; Lawrence, G.; Kopp, G.; Harder, J.; McClintock, W.

    2003-01-01

    With solar activity just passing the maximum of cycle 23, SORCE is beginning a 5 year mission to measure total solar irradiance (TSI) with unprecedented accuracy using phase-sensitive detection, and to measure spectral solar irradiance (SSI) with unprecedented spectral coverage, from 1 to 2000 nm. The new Total Irradiance Monitor (TIM) has 4 active cavity radiometers, any one of which can be used as a fixed-temperature reference against any other that is exposed to the Sun via a shutter that cycles at a rate designed to minimize noise at the shutter frequency. The new Spectral Irradiance Monitor (SIM) is a dual Fery prism spectrometer that can employ either prism as a monochromatic source on the other prism, thus monitoring its transmission during the mission lifetime. Either prism can measure SSI from 200 to 2000 nm, employing the same phase-sensitive electrical substitution strategy as TIM. SORCE also carries dual SOLSTICE instruments to cover the spectral range 100-320 nm, similar to the instruments onboard UARS, and also an XUV Photometer System (XPS) similar to that on TIMED. SSI has now been added to TSI as a requirement of EOS and NPOESS, because different spectral components drive different components of the climate system - UV into upper atmosphere and stratospheric ozone, IR into tropospheric water vapor and clouds, and Visible into the oceans and biosphere. Succeeding satellite missions being planned for 2006 and 2011 will continue to monitor these critical solar variables.

  16. Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-10-01

    Full Text Available Passive and active solar heating systems have drawn much attention and are widely used in residence buildings in the Qinghai-Tibetan plateau due to its high radiation intensity. In fact, there is still lack of quantitative evaluation of the passive and active heating effect, especially for residential building in the Qinghai-Tibetan plateau areas. In this study, three kinds of heating strategies, including reference condition, passive solar heating condition and active solar heating condition, were tested in one demonstration residential building. The hourly air temperatures of each room under different conditions were obtained and analyzed. The results show the indoor air temperature in the living room and bedrooms (core zones was much higher than that of other rooms under both passive and active solar heating conditions. In addition, the heating effect with different strategies for core zones of the building was evaluated by the ratio of indoor and outdoor degree hour, which indicates that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment. The passive solar heating could undertake 49.8% degree hours for heating under an evaluation criterion of 14 °C and the active solar heating could undertake 75% degree hours for heating under evaluation criterion of 18 °C, which indicated that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment in this area. These findings could provide reference for the design and application of solar heating in similar climate areas.

  17. Solar Energy Evolution and Diffusion Studies: 2014-2016 | Solar Research |

    Science.gov (United States)

    theory, the theory of planned behavior, and diffusion of innovations theory. The project found support new PV market data from multiple regions of the United States to test and refine customer behavior for each theory, suggesting that consumers are seeing solar electricity in multiple ways: as an

  18. The turbulent cascade and proton heating in the solar wind during solar minimum

    International Nuclear Information System (INIS)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A.

    2013-01-01

    Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

  19. Polar coronal holes and solar cycles

    International Nuclear Information System (INIS)

    Simon, P.A.

    1979-01-01

    The relationship between the geomagnetic activity of the three years preceding a sunspot minimum and the peak of the next sunspot maximum confirms the polar origin of the solar wind during one part of the solar cycle. Pointing out that the polar holes have a very small size or disappear at the time of the polar field reversal, a low latitude origin of the solar-wind at sunspot maximum is suggested and the cycle variation of solar wind and geomagnetic activity is described. In addition a close relationship is noted between the maximum level of the geomagnetic activity reached a few years before a solar minimum and its level at the next sunspot maximum. Studying separately the effects of both the low latitude holes and the solar activity, the possibility of predicting both the level of geomagnetic activity and the sunspot number at the next sunspot maximum is pointed out. As a conclusion the different categories of phenomena contributing to a solar cycle are specified. (Auth.)

  20. Nrf2 Activation Protects against Solar-Simulated Ultraviolet Radiation in Mice and Humans.

    Science.gov (United States)

    Knatko, Elena V; Ibbotson, Sally H; Zhang, Ying; Higgins, Maureen; Fahey, Jed W; Talalay, Paul; Dawe, Robert S; Ferguson, James; Huang, Jeffrey T-J; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L; Honda, Tadashi; Proby, Charlotte M; Dinkova-Kostova, Albena T

    2015-06-01

    The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. ©2015 American Association for Cancer Research.

  1. Morphology of geomagnetic storms, recorded at Hurbanovo, and its relation to solar activity

    International Nuclear Information System (INIS)

    Ochabova, P.; Psenakova, M.

    1977-01-01

    The morphological structure of geomagnetic storms was investigated using the data on 414 storms, recorded in the years 1949 to 1968 at the Geomagnetic Observatory of Hurbanovo (phi=47.9 deg N, lambda=18.2 deg E). These data also formed a suitable basis for investigating the effect of the solar activity on the characteristic features of storms. The storm-time variation of the geomagnetic field was considered after the Sq-variation had been eliminated. The sets of storms, i.e. 263 storms recorded at a time of high sunspot activity and 151 storms recorded at a time of low activity, were divided into 7 groups, depending on the duration of their initial phase. In 92% of the investigated storms the increase in the horizontal component lasted from 0 to 15 hrs. The effect of the solar activity was markedly reflected in the occurrence of very severe storms, as well as in the maximum decrease in the H-component in the main phase. This can also be seen in the rate at which the storms recover. (author)

  2. Study of the development of solar energy in Rhone-Alpes. Presentation of the photovoltaic sector, Presentation of the solar thermal sector, Sunshine mapping, Assessment of installations by the end 2009, Development potential for solar thermal energy, Development potential for solar photovoltaic energy

    International Nuclear Information System (INIS)

    2010-12-01

    A first part proposes a wide presentation of the photovoltaic sector with an overview of largest plants, a market analysis (on the 2001-2009 period in the World, Europe and France, per technology, in terms of industrial tissue and R and D activity in France, evolution per region and per technology), a presentation of the different technologies (from the first to the third generation, in terms of costs, and of perspective for the different sectors), an environmental assessment of the different sectors (CO 2 emissions and avoided emissions), a presentation of the main actors of the photovoltaic sector (silicon producers, cell producers, thin layer producers, developers), a presentation of tracking technologies (trackers gains), and a perspective for the photovoltaic sector in Europe and in the World. In a same way, a second part presents the solar thermal sector: market analysis, active and passive technologies, solar concentration technology, environmental assessment, future perspective in Europe and in the World. A sunshine mapping is then proposed for the Rhone-Alpes region. The next part discusses various stakes: regulation for roof-based installations and for ground-based photovoltaic plants with respect to various issues (land planning, environment, biodiversity, agriculture, landscape, cultural heritage, natural risks). The next part proposes an assessment of solar thermal and photovoltaic installations at the end of 2009

  3. Impact of CH3NH3PbI3-PCBM bulk heterojunction active layer on the photovoltaic performance of perovskite solar cells

    Science.gov (United States)

    Chaudhary, Dhirendra K.; Kumar, Pankaj; Kumar, Lokendra

    2017-10-01

    We report here the impact of CH3NH3PbI3-PCBM bulk heterojunction (BHJ) active layer on the photovoltaic performance of perovskite solar cells. The solar cells were prepared in normal architecture on FTO coated glass substrates with compact TiO2 (c-TiO2) layer on FTO as electron transport layer (ETL) and poly(3-hexylthiophene) (P3HT) as hole transport layer (HTL). For comparison, a few solar cells were also prepared in planar heterojunction structure using CH3NH3PbI3 only as the active layer. The bulk heterojunction CH3NH3PbI3-PCBM active layer exhibited very large crystalline grains of 2-3 μm compared to ∼150 nm only in CH3NH3PbI3 active layer. Larger grains in bulk-heterojunction solar cells resulted in enhanced power conversion efficiency (PCE) through enhancement in all the photovoltaic parameters compared to planar heterojunction solar cells. The bulk-heterojunction solar cells exhibited ∼9.25% PCE with short circuit current density (Jsc) of ∼18.649 mA/cm2, open circuit voltage (Voc) of 0.894 V and Fill Factor (FF) of 0.554. There was ∼36.9% enhancement in the PCE of bulk-heterojunction solar cells compared to that of planar heterojunction solar cells. The larger grains are formed as a result of incorporation on PCBM in the active layer.

  4. Resource Constrained Planning of Multiple Projects with Separable Activities

    Science.gov (United States)

    Fujii, Susumu; Morita, Hiroshi; Kanawa, Takuya

    In this study we consider a resource constrained planning problem of multiple projects with separable activities. This problem provides a plan to process the activities considering a resource availability with time window. We propose a solution algorithm based on the branch and bound method to obtain the optimal solution minimizing the completion time of all projects. We develop three methods for improvement of computational efficiency, that is, to obtain initial solution with minimum slack time rule, to estimate lower bound considering both time and resource constraints and to introduce an equivalence relation for bounding operation. The effectiveness of the proposed methods is demonstrated by numerical examples. Especially as the number of planning projects increases, the average computational time and the number of searched nodes are reduced.

  5. Solar powered dugout aeration

    International Nuclear Information System (INIS)

    Murrell, S.

    2001-10-01

    Pasture dugouts are a significant source of water for livestock on the Canadian Prairies and as such, must maintain the best water quality possible. Aeration improves the water quality and is part of a good management plan to reduce overall water treatment costs. Although dugouts can be aerated naturally through wind and wave action and photosynthesis, this generally aerates only the top portion of the dugout. Artificial aeration by air injection into the lowest point of the dugout ensures that the water is oxygenated throughout the entire dugout. Solar aeration can be used in remote areas where grid power is not practical. With solar powered aeration systems, solar panels are used to generate the electrical power needed to run the compressor while storing excess energy in batteries. A solar aeration system includes solar panels, deep cycle batteries to store excess power, a control board with a regulator, a compressor, a weighed feeder hose, and an air diffuser. This publication presented the design of a solar aeration system and its cost. 1 tab., 3 figs

  6. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2015-12-01

    Full Text Available Solar energy, as a clean and renewable resource is becoming increasingly important in the global context of climate change and energy crisis. Utilization of solar energy in urban areas is of great importance in urban energy planning, environmental conservation, and sustainable development. However, available spaces for solar panel installation in cities are quite limited except for building roofs. Furthermore, complex urban 3D morphology greatly affects sunlit patterns on building roofs, especially in downtown areas, which makes the determination of roof solar energy potential a challenging task. The object of this study is to estimate the solar radiation on building roofs in an urban area in Shanghai, China, and select suitable spaces for installing solar panels that can effectively utilize solar energy. A Graphic Processing Unit (GPU-based solar radiation model named SHORTWAVE-C simulating direct and non-direct solar radiation intensity was developed by adding the capability of considering cloud influence into the previous SHORTWAVE model. Airborne Light Detection and Ranging (LiDAR data was used as the input of the SHORTWAVE-C model and to investigate the morphological characteristics of the study area. The results show that the SHORTWAVE-C model can accurately estimate the solar radiation intensity in a complex urban environment under cloudy conditions, and the GPU acceleration method can reduce the computation time by up to 46%. Two sites with different building densities and rooftop structures were selected to illustrate the influence of urban morphology on the solar radiation and solar illumination duration. Based on the findings, an object-based method was implemented to identify suitable places for rooftop solar panel installation that can fully utilize the solar energy potential. Our study provides useful strategic guidelines for the selection and assessment of roof solar energy potential for urban energy planning.

  7. Comparison of photospheric electric current and ultraviolet and x-ray emission in a solar active region

    International Nuclear Information System (INIS)

    Haisch, B.M.; Bruner, M.E.; Hagyard, M.J.; Bonnet, R.M.; NASA, Marshall Space Flight Center, Huntsville, AL; ESA, Paris, France)

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft x-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region. 29 references

  8. Solar activity and heliosphere-wide cosmic ray modulation in mid-1982

    International Nuclear Information System (INIS)

    Cliver, E.W.; Mihalov, J.D.; Sheeley, N.R. Jr.; Howard, R.A.; Koomen, M.J.; Schwenn, R.

    1987-01-01

    A major episode of flare activity in June and July 1982 was accompaniedby a pair of heliosphere-wide cosmic ray modulation events. In each case, a large Forbush decrease (FD) at earth was followed in turn by apparently related decreases at Pioneer 11 (P11) and Pioneer 10 (P10). The Pioneer spacecraft were separated by --155 0 in ecliptic longitude. We reviewed white light coronagraph and near-sun (≤1 AU) satellite data to identify plausible solar origins of these modulation events. The first widespread intensity decrease (FD 1) can be attributed to the combined effects of a backside flare on June 3 from solar active region 18382/18383, located 23 0 in ecliptic longitude from Pioneer 10, and a visible disk flare from 18405 on June 6, when this region was 9 0 from Pioneer 11. The second widespread modulation event during this period (FD 2) may be linked to flares from active region 18474 on July 12 and 22. The July 12 flare was located 34 0 in azimuth from Pioneer 11, and the July 22 flare was 24 0 from Pioneer 10. Since even fast shocks would take --1 month to propagate to Pioneer 11 (12 AU) and --2 months to reach Pioneer 10 (28 AU) in mid-1982, these ''one-to-one'' associations must be regarded with caution. The processes of entrainment and coalescence can cause a given traveling interplanetary disturbance to lose its identify enroute to the outer heliosphere. The fact that we were able to identify plausible solar flare candidates for each of the four Forbushlike decreases observed at the Pioneer satellites (two each at P10 and P11), however, removes the need to invoke a chock from a single flare as the sole cause of either FD 1 (at both P10 and P11) or FD 2

  9. High-throughput roll-to-roll X-ray characterization of polymer solar cell active layers

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.; Jørgensen, Mikkel; Menzel, Andreas

    2012-01-01

    Synchrotron-based X-rays were used to probe active materials for polymer solar cells on flexible polyester foil. The active material was coated onto a flexible 130 micron thick polyester foil using roll-to-roll differentially pumped slot-die coating and presented variation in composition, thickness...

  10. Modern representation of databases on the example of the Catalog of Solar Proton Events in the 23rd Cycle of Solar Activity

    Science.gov (United States)

    Ishkov, V. N.; Zabarinskaya, L. P.; Sergeeva, N. A.

    2017-11-01

    The development of studies of solar sources and their effects on the state of the near-Earth space required systematization of the corresponding information in the form of databases and catalogs for the entire time of observation of any geoeffective phenomenon that includes, if possible at the time of creation, all of the characteristics of the phenomena themselves and the sources of these phenomena on the Sun. A uniform presentation of information in the form of a series of similar catalogs that cover long time intervals is of particular importance. The large amount of information collected in such catalogs makes it necessary to use modern methods of its organization and presentation that allow a transition between individual parts of the catalog and a quick search for necessary events and their characteristics, which is implemented in the presented Catalog of Solar Proton Events in the 23rd Cycle of Solar Activity of the sequence of catalogs (six separate issues) that cover the period from 1970 to 2009 (20th-23rd solar cycles).

  11. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  12. NmF2 Morphology during four-classes of solar and magnetic activity conditions at an African station around the EIA trough and comparison with IRI-2016 Map

    Science.gov (United States)

    Adebesin, B.; Rabiu, B.; Obrou, O. K.

    2017-12-01

    Better understanding of the electrodynamics between parameters used in describing the ionospheric layer and their solar and geomagnetic influences goes a long way in furthering the expansion of space weather knowledge. Telecommunication and scientific radar launch activities can however be interrupted either on a larger/smaller scales by geomagnetic activities which is susceptible to changes in solar activity and effects. Consequently, the ionospheric NmF2 electrodynamics was investigated for a station near the magnetic dip in the African sector (Korhogo, Geomagnetic: -1.26°N, 67.38°E). Data covering years 1996 and 2000 were investigated for four categories of magnetic and solar activities viz (i) F10.7 7 nT (low solar disturbed, LSD); (iii) F10.7 > 150 sfu, ap ≤ 7 nT (high solar quiet, HSQ); and (iv) F10.7 > 150 sfu, ap > 7 nT (high solar disturbed, HSD). NmF2 revealed a pre-noon peak higher than the post-noon peak during high solar activity irrespective of magnetic activity condition and overturned during low solar activity. Higher NmF2 peak amplitude however characterise disturbed magnetic activity than quiet magnetic condition for any solar activity. The maximum pre-/post-noon peaks appeared in equinox season. June solstice noon-time bite out lagged other seasons by 1-2 h. Daytime variability increases with increasing magnetic activity. Equinox/June solstice recorded the highest pre-sunrise/post-sunset peak variability magnitudes with the lowest emerging in June solstice/equinox for all solar and magnetic conditions. The nighttime annual variability amplitude is higher during disturbed than quiet condition regardless of solar activity period; while the range is similar for daytime observations. The noon-time trough characteristics is not significant in the IRI NmF2 pattern during high solar activity but evident during low solar conditions. IRI-2016 map performed best during disturbed activity conditions especially for F10.7 7 nT condition.

  13. Solar activity - biosphere is the first great interdisciplinary problem in the history of the science

    International Nuclear Information System (INIS)

    Vladimirskij, B.M.

    1995-01-01

    The paper presents a historical review of the evolution of research in space effects on earth processes and phenomena. A discovery of 11-year cycling in the historical process related to the cycle of solar activity which discovery triggered the development of heliobiology, is noted. In the 1970 attention was paid to a potential ecological significance of variations of geomagnetic field, atmospheric intra sound, atmospheric radioactive radon concentration, though the basic active ecological parameter was considered to be electromagnetic disturbances in the range of low and super low frequencies. A relationship was recently established between the parameters of macroscopic fluctuations with variations of solar activity. A similarity of the spectrum of biological organism periods and the spectrum of space periods is also ascertained. 37 refs

  14. Results of Spectral Corona Observations in Solar Activity Cycles 17-24

    Science.gov (United States)

    Aliev, A. Kh.; Guseva, S. A.; Tlatov, A. G.

    2017-12-01

    The results of the work of the global observation network are considered, and a comparative analysis of the data of various coronal observatories is performed. The coronal activity index has been reconstructed for the period 1939-2016 based on the data of various observatories in Kislovodsk system. For this purpose, the corona daily intensity maps from the Sacramento Peak and Lomnický Štít observatories according to the Solar-Geophysical Data journal have been digitized; they supplement the data of other observatories. The homogeneity and continuity of the corona observations at the Kislovodsk station, including activity cycle 24, is confirmed. Unfortunately, the only observatory at present that continues observation of the spectral corona in Fe XIV 5303 Å and Fe XIV 6374 Å lines is the Kislovodsk astronomical station Mountain Astronomical Station (MAS) of the Central Astronomical Observatory, Russian Academy of Sciences (Pulkovo). The data on the combined corona in 5303 Å line are analyzed. It is shown that there is a high correlation of the intensity index of green corona with solar radiation measurements in the vacuum UV region. Data on the beginning of the new 25th activity cycle in the corona at high latitudes are presented.

  15. Material Technologies Developments for Solar Hydrogen

    International Nuclear Information System (INIS)

    Agrafiotis, C.; Pagkoura, C.; Lorentzou, S.; Hoguet, J.C.; Konstandopoulos, A.G.

    2006-01-01

    The present work presents recent activities of our Laboratory in the field of solar-aided hydrogen production materials and reactor technologies that can be fully integrated into solar thermal power plants. Emphasis is given on structured monolithic solar reactors where ceramic supports optimized to absorb solar radiation and develop sufficiently high temperatures, are coated with active materials to perform a variety of 'solar-aided' reactions such as water splitting or natural gas reforming. Particular examples discussed include properties'' assessment of monolithic ceramic honeycombs used as volumetric solar thermal reactors/receivers, synthesis of active water-splitting redox materials for the production of hydrogen and their tailored deposition upon porous supports and design, operation simulation and performance optimization of structured monolithic solar hydrogen production reactors. (authors)

  16. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    Science.gov (United States)

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  17. Evidence for the impact of stellar activity on the detectability of solar-like oscillations observed by Kepler

    NARCIS (Netherlands)

    Chaplin, W.J.; Bedding, T.R.; Bonanno, A.; Broomhall, A.M.; Garcia, R.A.; Hekker, S.; Huber, D.; Verner, G.A.; Basu, S.; Elsworth, Y.; Houdek, G.; Mathur, S.; Mosser, B.; New, R.; Stevens, I.R.; Appourchaux, T.; Karoff, C.; Metcalfe, T.S.; Molenda-Zakowicz, J.; Monteiro, M.J.P.F.G.; Thompson, M.J.; Christensen-Dalsgaard, J.; Gilliland, R.L.; Kawaler, S.D.; Kjeldsen, H.; Ballot, J.; Benomar, O.; Corsaro, E.; Campante, T.L.; Gaulme, P.; Hale, S.J.; Handberg, R.; Jarvis, E.; Regulo, C.; Roxburgh, I.W.; Salabert, D.; Stello, D.; Mullally, F.; Li, J.; Wohler, W.

    2011-01-01

    We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with detected oscillations falls significantly with

  18. Solar Powering Your Community: A Guide for Local Governments (Book)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    DOE designed this guide—Solar Powering Your Community: A Guide for Local Governments—to assist local government officials and stakeholders in designing and implementing strategic local solar plans. The 2011 edition contains the most recent lessons and successes from the 25 Solar America Cities and other communities promoting solar energy. Because DOE recognizes that there is no one path to solar market development, this guide introduces a range of policy and program options that can help a community build a local solar infrastructure.

  19. Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    2000-01-01

    The plan for maintaining the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (PA) is described. The plan includes expected work on PA reviews and revisions, waste reports, monitoring, other operational activities, etc

  20. The Relation Between Magnetic Fields and X-ray Emission for Solar Microflares and Active Regions

    Science.gov (United States)

    Kirichenko, A. S.; Bogachev, S. A.

    2017-09-01

    We present the result of a comparison between magnetic field parameters and the intensity of X-ray emission for solar microflares with Geosynchronous Operational Environmental Satellites (GOES) classes from A0.02 to B5.1. For our study, we used the monochromatic MgXII Imaging Spectroheliometer (MISH), the Full-disk EUV Telescope (FET), and the Solar PHotometer in X-rays (SphinX) instruments onboard the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon CORONAS- Photon spacecraft because of their high sensitivity in soft X-rays. The peak flare flux (PFF) for solar microflares was found to depend on the strength of the magnetic field and on the total unsigned magnetic flux as a power-law function. In the spectral range 2.8 - 36.6 Å, which shows very little increase related to microflares, the power-law index of the relation between the X-ray flux and magnetic flux for active regions is 1.48 ±0.86, which is close to the value obtained previously by Pevtsov et al. ( Astrophys. J. 598, 1387, 2003) for different types of solar and stellar objects. In the spectral range 1 - 8 Å, the power-law indices for PFF(B) and PFF(Φ) for microflares are 3.87 ±2.16 and 3 ±1.6, respectively. We also make suggestions on the heating mechanisms in active regions and microflares under the assumption of loops with constant pressure and heating using the Rosner-Tucker-Vaiana scaling laws.

  1. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  2. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 ?m)

  3. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J., E-mail: mscott@hao.ucar.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  4. Atmospheric turbidity and transmittance of solar radiation in Riyadh, Saudi Arabia

    Science.gov (United States)

    El-Shobokshy, Mohammad S.; Al-Saedi, Yaseen G.

    During the last two decades, the urban areas in the city of Riyadh—the capital of Saudi Arabia—were increasing at an exceptionally high rate through a series of development plans. The major plans had been completed by the end of 1982. Some other big utility projects were started and completed during 1987. As a consequence, the air quality has deteriorated markedly and air pollution episodes recorded during these activities showed that particulates were present in the atmosphere at high concentrations. Later in January 1991 the Gulf war started and the firing of the oil fields in Kuwait soon followed. It was estimated that soot particulates were emitted at a rate of 600 ton d -1 along with high rates of other gases. This event has led to significant air quality and visibility problems. Direct normal solar radiation has been measured during the summer months of July and August which were characterized by very dry and cloudless weather for the period between 1982 and 1992. A year-to-year trend of the transmittance of direct normal solar irradiance was then determined. The atmospheric fine aerosol (oil field fires in Kuwait were passing over Riyadh are presented. The reduction in solar irradiation reflects the intensity of dark smoke at a distance of 500 km from Kuwait.

  5. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  6. Geometry of the solar wind transition region during the 11-year solar cycle

    International Nuclear Information System (INIS)

    Lotova, N.A.; Blums, D.F.

    1986-01-01

    Geometry of the solar wind transition region and its dynamics during the 11-year solar cycle is investigated. It is shown that the space geometry of the transition region suffers considerable changes. In the years of minimum of solar activity (1975-1977) the transition region has a form close to elliptical, shifts nearer to the Sun, while its width decreases. During the years of maximum of Solar activity (1979-1981) the form of the transition region becomes close to spherically symmetric, is located further from the Sun and its width is increased

  7. South Africa. Fertile ground for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Oirere, Shem

    2012-07-01

    The national solar water heating plan, launched by South Africa's state power utility Eskom, seems to be making good progress with the power generator saying at least 215,000 solar water heater (SWH) systems had been installed by February this year. (orig.)

  8. Solar campaign 'Solar - na klar.' (solar - of course). Final report; Solarkampagne 'Solar - na klar.'. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gege, M.; Kleinsteuber, A.; Krabbe, P.; Kroeger, P.; Maschke, K.; Niedert, S.; Schindelmann, F.; Thunert, A.; Weinberg, H.

    2002-03-18

    The German market for technically matured solar-thermal systems for generating hot water is growing by 20 per cent per year, with some deviations due to incentive policies. This growth can be and is planned to be increased systematically, with following goals: A practical contribution to the Federal Government's efforts to achieve the goals regarding the protection of climate; creating future-oriented jobs; supporting ecologically sustainable ways of life and models of consumption by convincing the consumers and other target groups of the fact that it makes sense already today to start utilizing solar energy and to invest also on private basis. These targets are expected to be set up with the help of a three-year mass campaign (1999 until 2001), i.e. the campaign called ''Solar - na klar.'' (solar - of course). [German] Der deutsche Markt fuer die technisch ausgereiften solarthermischen Anlagen zur Warmwassererzeugung waechst mit ca. 20% p.a., mit foerderpolitisch bedingten Schwankungen. Dieses Wachstum kann und soll systematisch gesteigert werden, mit folgenden Zielsetzungen: Praktischer Beitrag zur Erreichung der Klimaschutzziele der Bundesregierung; Schaffung zukunftsorientierter Arbeitsplaetze; Befoerderung oekologisch nachhaltiger Lebensstile und Konsummuster durch die Ueberzeugung der Verbraucher und weiterer Zielgruppen, dass es heute bereits sinnvoll ist, in die Nutzung der Solarenergie konkret einzusteigen und auch privat zu investieren. Diese Ziele sollen mithilfe einer auf drei Jahre angelegten Breitenkampagne (1999 bis 2001), d.h. der Kampagne 'Solar - na klar.' erfolgen. (orig.)

  9. The solar energy markets. Upheavals of the sector and new opportunities for enterprises

    International Nuclear Information System (INIS)

    2011-01-01

    This study proposes an analytical overview of the solar energy markets. It analyses the present environment (2010-2011): energetic context (French energy policy, planning, emissions, production), overview of the building sector (energy challenges, evolution of the building stock, focus on housing heating equipment), and regulatory context. The second part proposes an analysis of market evolutions between 2005 and 2010 and by 2015 for the photovoltaic sector and for the thermal solar sector. It reports an analysis of market reconfiguration among actors. It analyses the market structure in terms of existing actors by presenting data (key figures, production capacity, location, activities, highlights, strategy, and so on) for the main operators present on the French market of solar energies (manufacturers, installers, operators). Sheets are proposed with economic and financial data for 86 operators

  10. Towards understanding the nature of any relationship between Solar Activity and Cosmic Rays with thunderstorm activity and lightning discharge

    Science.gov (United States)

    O'Regan, J.; Muller, J.-P.; Matthews, S.

    2012-04-01

    The runaway breakdown hypothesis of lightning discharge has predicted relationships between cosmic rays' interactions with the atmosphere and thunderstorm production and lightning activity. Precipitating energetic particles lead to the injection of MeV-energy electrons into electrified thunderclouds [1,2], resulting in runaway breakdown occurring, and assisting in the process of charge separation [2]. Previous lightning studies show that correlations to solar activity are weak but significant, with better correlations to solar activity and cosmic rays when carried out over smaller geographical areas [3,4,5,6] and over longer timescales [6]. In this work, correlations are explored between variations of SEPs and lightning activity levels at various spatio-temporal scales. Temporal scales span from short-term (days) scales surrounding large Earth-directed coronal mass ejection (CME) events to long-term (years) scales. Similarly, spatial scales span from 1-degree x 1-degree latitudinal-longitudinal grid scales to an entirely global study, for varying timescales. Additionally, investigation of correlation sign and statistical significance by 1-degree latitudinal bands is also employed, allowing a comparative study of lightning activity relative to regions of greatest - and contrasting regions of relative absence of - energetic particle precipitation. These regions are determined from electron and proton flux maps, derived from measurements from the Medium Energy Proton and Electron Detector (MEPED) onboard the Polar Orbiting Environmental Satellite (POES) system. Lightning data is obtained from the World Wide Lightning Location Network (WWLLN) for the period 2005 to 2011. The correlations of lightning strike rates are carried out with respect to Relative Sunspot Number (R), 10.7cm Solar radio flux (F10.7), Galactic Cosmic Ray (GCR) neutron monitor flux, the Ap geomagnetic activity index, and Disturbance Storm Time (DST) index. Correlations show dramatic variations in

  11. Plan before You Play: An Activity for Teaching the Managerial Process

    Science.gov (United States)

    Althouse, Norm R.; Hedges, Peggy L.

    2015-01-01

    This article describes a 60-minute classroom activity using LEGO® bricks that demonstrates and reinforces the importance of the managerial process. The activity, Plan Before You Play (PBP), is targeted to introductory business classes, and differs from others in that it requires little investment or up-front planning, is easily scalable, and, with…

  12. Status report on preliminary design activities for solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information presented provides status and progress on the development of solar heating and cooling systems. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities as part of the contract requirements.

  13. Practice It: Create a Weekly Activity Plan

    Science.gov (United States)

    At the beginning of the week, create an activity plan to help you reach your goals. Start by identifying your goals for the week. Based on your goals, write down when you are going to exercise and what you are going to do.

  14. The Moroccan solar plan. A comparative analysis of CSP and PV utilization until 2020

    International Nuclear Information System (INIS)

    Richts, Christoph

    2012-01-01

    The present master thesis conducts technical and economic simulations of large-scale Photovoltaic (PV) and Concentrated Solar Power (CSP) plants for the Moroccan Solar Plan. It provides a database of performance indicators such as energy yields, capacity factors, typical efficiencies and losses of technical components, LCOE, and difference costs (DC: LCOE minus avoided costs of the conventional power system) for fixed tilted, 1-axis horizontal, 1-axis vertical and 2-axis tracking PV and CSP with no, 6, 12 and 18 full load hours of thermal storage. HelioClim irradiation data of 2005 for the sites in Ouarzazate, Ain Ben Mathar, Boujdour, Laayoune and Tarfaya is used ranging between 1,927 - 2,428 kWh/m 2 /y (DNI) and 1,968 - 2,154 kWh/m 2 /y (GHI). In the base scenario minimum LCOE are 9.6 - 5.4 EURct/kWh for PV (2012 - 2020) varying between 0.90 - 1.55 EURct/kWh among sites and technologies. CSP reaches 12.8 - 9.2 EURct/kWh and a bandwidth of 2.3 - 1.6 EURct/kWh. Average DC are lowest for horizontal 1-axis tracking (0.4 and -7.7 EURct/kWh for plants built in 2012 and 2020 respectively) and CSP with 6 hours of storage (1.3 and -3.5 EURct/kWh). PV is cheaper for all sites and technologies due to higher learning curves and less initial investment, but cannot contribute to coverage of the daily evening peak in Morocco. Four different MSP-scenarios with 2000 MW of solar energy require total investments of 3.7 - 7.5 billion EUR and yield 7.9% - 12.8% of the electricity demand in 2020 (given a growth 7%/y) depending on the ratio of PV and CSP utilization. The average LCOE are 8.3 - 11.7 EURct/kWh and the total discounted DC (10%/y) are -254 - 391 million EUR. Thus, solar energy is partly less expensive than a business-as-usual scenario. An extensive sensitivity analysis for WACC and price escalation of conventional energy shows that for only PV and only CSP scenarios in 55 and 22 out of 72 cases the DC are negative - although no environmental costs for conventional

  15. Fabrication of Hybrid Polymer Solar Cells By Inverted Structure Based on P3HT:PCBM Active Layer

    Directory of Open Access Journals (Sweden)

    Shobih Shobih

    2017-08-01

    Full Text Available Hybrid polymer solar cell has privilege than its conventional structure, where it usually has structure of (ITO/PEDOT:PSS/Active Layer/Al. In humid environment the PEDOT:PSS will absorb water and hence can easily etch the ITO. Therefore it is necessary to use an alternative method to avoid this drawback and obtain more stable polymer solar cells, namely by using hybrid polymer solar cells structure with an inverted device architecture from the conventional, by reversing the nature of charge collection. In this paper we report the results of the fabrication of inverted bulk heterojunction polymer solar cells based on P3HT:PCBM as active layer, utilizing ZnO interlayer as buffer layer between the ITO and active layer with a stacked structure of ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag. The ZnO interlayer is formed through short route, i.e. by dissolving ZnO nanoparticles powder in chloroform-methanol solvent blend rather than by sol-gel process. Based on the measurement results on electrical characteristics of inverted polymer solar cells under 500 W/m2 illumination and AM 1.5 direct filter at room temperature, cell with annealing process of active layer at 110 °C for 10 minutes results in higher cell performance than without annealing, with an open-circuit voltage of 0.21 volt, a short-circuit current density of 1.33 mA/cm2 , a fill factor of 43.1%, and a power conversion efficiency of 0.22%. The low cell’s performance is caused by very rough surface of ZnO interlayer.

  16. 25 CFR 1000.65 - What kinds of activities do planning and negotiation grants support?

    Science.gov (United States)

    2010-04-01

    ... INDIAN SELF-DETERMINATION AND EDUCATION ACT Other Financial Assistance for Planning and Negotiation... 25 Indians 2 2010-04-01 2010-04-01 false What kinds of activities do planning and negotiation... planning and negotiation grants support? The planning and negotiation grants support activities such as...

  17. Solar boilers 1995. Five years solar boiler campaign

    International Nuclear Information System (INIS)

    Houtsma, R.; Van de Water, A.; Van Zee, E.

    1995-01-01

    An overview is given of the activities and the results of Marketing Communication Strategy for Solar Water Heaters in the Netherlands, carried out within the framework of the 1990-1994 National Research Program Thermal Solar Energy (NOZ-th) of the Netherlands Agency for Energy and the Environment (NOVEM). Subsequently attention is paid to the sales, the manufacturers and their products, public information activities and reactions from the consumers, the marketing activities of energy distribution companies, the role of installers, local governments and the building construction industry, and market developments. 24 figs., 21 ills., 5 tabs., 18 refs., 2 appendices

  18. Design of Solar Harvested Semi Active RFID Transponder with Supercapacitor Storage

    Directory of Open Access Journals (Sweden)

    Gary Valentine

    2015-01-01

    Full Text Available This paper presents the analysis, design and manufacture of a low cost, low maintenance and long-range prototype of RFID transponder with continuous operability. A prototype of semi-active RFID transponder is produced with a range that can be extended via a DC input to allow all of the readers signal power to be reflected via backscatter modulation. The transponder is powered via solar harvested power which is selected over other energy harvesting technologies as it provides a greater energy density and lower cost. Solar has one major drawback in terms of providing a steady DC voltage in it needed a constant supply of sunlight. A method of power storage is proposed, and the use of a supercapacitor over a rechargeable battery is used as it has a longer lifespan due to higher recharge rates. The prototype underwent a series of experiments in various working environments and proves an effective solution in providing long lasting operability. The paper concludes the use of solar harvesting with supercapacitor storage has potential for further uses in external remote sensors used in the Internet of Things.

  19. Diurnal, seasonal, and interannual differences in the links of probabilities of derivation of different types Es with solar activity

    Science.gov (United States)

    Petrukhin, Venedict F.; Poddubnaya, I. V.; Ponomarev, Evgenij A.; Sutyrin, Nicolaj A.

    2004-12-01

    The analysis of the ionospheric data on Irkutsk obtained from 1960 to 1996 was made. Was shown, that the link of probabilities of observation of the sporadic derivations in E-region of ionosphere with solar activity (SA) essentially depends on time of day, season and correlation between solar and geophysical parameters. For different types of sporadic derivations this link has different character and with a different image varies with current of time. It is necessary to mark, that the link of night sporadic derivations (Es such as "f") with solar activity in the summer very high and practically does not vary in time (r=-0.897-/+0.04). The temporary course of coefficients of correlation between solar activity and probability of observation of sporadic stratums (r) of a different type varies depending on the season. Further, for stratums of a type "cl" and "l" the change r happens within increase of SA. At the same time, there is an abnormal behavior of height so f sporadic stratums such as "cl". There is an impression that in a considered time frame there is competition of two factors. One of them - solar activity, which in the norm supports the negative correlation link with frequency of observation and second - a factor of an unknown nature, which has caused evocative anomaly of altitude, becomes dominant above natural negative link.

  20. Semi-annual Sq-variation in solar activity cycle

    Science.gov (United States)

    Pogrebnoy, V.; Malosiev, T.

    The peculiarities of semi-annual variation in solar activity cycle have been studied. The data from observatories having long observational series and located in different latitude zones were used. The following observatories were selected: Huancayo (magnetic equator), from 1922 to 1959; Apia (low latitudes), from 1912 to 1961; Moscow (middle latitudes), from 1947 to 1965. Based on the hourly values of H-components, the average monthly diurnal amplitudes (a difference between midday and midnight values), according to five international quiet days, were computed. Obtained results were compared with R (relative sunspot numbers) in the ranges of 0-30R, 40-100R, and 140-190R. It was shown, that the amplitude of semi-annual variation increases with R, from minimum to maximum values, on average by 45%. At equatorial Huancayo observatory, the semi-annual Sq(H)-variation appears especially clearly: its maximums take place at periods of equinoxes (March-April, September-October), and minimums -- at periods of solstices (June-July, December-January). At low (Apia observatory) and middle (Moscow observatory) latitudes, the character of semi-annual variation is somewhat different: it appears during the periods of equinoxes, but considerably less than at equator. Besides, with the growth of R, semi-annual variation appears against a background of annual variation, in the form of second peaks (maximum in June). At observatories located in low and middle latitudes, second peaks become more appreciable with an increase of R (March-April and September-October). During the periods of low solar activity, they are insignificant. This work has been carried out with the support from International Scientific and Technology Center (Project #KR-214).

  1. Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation.

    Science.gov (United States)

    Ljubas, Davor; Smoljanić, Goran; Juretić, Hrvoje

    2015-09-15

    In this study we used TiO2 nanoparticles as semiconductor photocatalysts for the degradation of Methyl Orange (MO) and Congo Red (CR) dyes in an aqueous solution. Since TiO2 particles become photocatalytically active by UV radiation, two sources of UV-A radiation were used - natural solar radiation which contains 3-5% UV-A and artificial, solar-like radiation, created by using a lamp. The optimal doses of TiO2 of 500 mg/L for the CR and 1500 mg/L for the MO degradation were determined in experiments with the lamp and were also used in degradation experiments with natural solar light. The efficiency of each process was determined by measuring the absorbance at two visible wavelengths, 466 nm for MO and 498 nm for CR, and the total organic carbon (TOC), i.e. decolorization and mineralization, respectively. In both cases, considerable potential for the degradation of CR and MO was observed - total decolorization of the solution was achieved within 30-60 min, while the TOC removal was in the range 60-90%. CR and MO solutions irradiated without TiO2 nanoparticles showed no observable changes in either decolorization or mineralization. Three different commercially available TiO2 nanoparticles were used: pure-phase anatase, pure-phase rutile, and mixed-phase preparation named Degussa P25. In terms of degradation kinetics, P25 TiO2 exhibited a photocatalytic activity superior to that of pure-phase anatase or rutile. The electric energy consumption per gram of removed TOC was determined. For nearly the same degradation effect, the consumption in the natural solar radiation experiment was more than 60 times lower than in the artificial solar-like radiation experiment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Solar Probe Cup: Laboratory Performance

    Science.gov (United States)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Larson, D. E.; Wright, K. H., Jr.; Gallagher, D. L.; Whittlesey, P. L.

    2017-12-01

    The Solar Probe Cup (SPC) is a Faraday Cup instrument that will fly on the Paker Solar Probe (PSP) spacecraft, orbiting the Sun at as close as 9.86 solar radii. The SPC instrument is designed to measure the thermal solar wind plasma (protons, alphas, and electrons) that will be encountered throughout its close encounter with the Sun. Due to the solar wind flow being primarily radial, the SPC instrument is pointed directly at the Sun, resulting in an extreme thermal environment that must be tolerated throughout the primary data collection phase. Laboratory testing has been performed over the past 6 months to demonstrate the instrument's performance relative to its requirements, and to characterize the measurements over the expected thermal range. This presentation will demonstrate the performance of the instrument as measured in the lab, describe the operational configurations planned for flight, and discuss the data products that will be created.

  3. Frequency dependence of p-mode frequency shifts induced by magnetic activity in Kepler solar-like stars

    Science.gov (United States)

    Salabert, D.; Régulo, C.; Pérez Hernández, F.; García, R. A.

    2018-04-01

    The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence on radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 μHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main sequence solar-like stars, the F-star HD 49933, and the young 1 Gyr-old solar analog KIC 10644253, although with different amplitudes of the shifts of about 2 μHz and 0.5 μHz, respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l = 0 and l = 1 modes individually. Given the quality of the data, the results could indicate that a physical source of perturbation different from that in the Sun is dominating in this sample of solar-like stars.

  4. MAXIMUM CORONAL MASS EJECTION SPEED AS AN INDICATOR OF SOLAR AND GEOMAGNETIC ACTIVITIES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Gopalswamy, N.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions.

  5. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003; Programme 'Solaire actif - Chaleur et Stockage de chaleur'. Activites et projets en 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hadorn, J.-C. [Base Consultants, Geneva (Switzerland); Renaud, P. [Planair SA, La Sagne (Switzerland)

    2003-07-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD

  6. Equatorial Ionospheric Anomaly (EIA) and comparison with IRI model during descending phase of solar activity (2005-2009)

    Science.gov (United States)

    Kumar, Sanjay; Singh, A. K.; Lee, Jiyun

    2014-03-01

    The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005-2009 only except during the deep solar minimum year 2007-2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during

  7. Aboriginal consultation report, Amherstburg solar farm

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    First Solar is constructing many solar farms in North America, Europe and Asia, including a planned solar farm in California expected to generate 550 MW of electricity and a completed 80 MW, 1150 acre solar farm in Sarnia, Ontario representing the largest photovoltaic (PV) solar facility in the world. First Solar is now working on the project of constructing a solar farm that will use thin film photovoltaic modules and convert the solar energy into electrical energy for distribution to the local electricity distribution system. This solar farm, identified as a Class 3 solar facility according to the Regulation, is expected to generate 10 MW of electricity. Class 3 solar facilities are renewable energy facilities presenting a name plate power capacity exceeding 10kW and they take place at any location other than a roof or the wall of a building. During the project development process, First Solar will keep on liaising and communicating with the two identified First Nations, the Windsor Essex Metis Council, MNO and the Crown authorities. The purpose of the process will keep on giving a particular attention to identifying any concerns raising from the project, and if some are identified, it will also focus on methods of reducing or preventing related impacts.

  8. Solar and Stellar Active Regions:Cosmic laboratories for the study of Complexity

    OpenAIRE

    Vlahos, Loukas

    2008-01-01

    Solar active regions are driven dissipative dynamical systems. The turbulent convection zone forces new magnetic flux tubes to rise above the photosphere and shuffles the magnetic fields which are already above the photosphere. The driven 3D active region responds to the driver with the formation of Thin Current Sheets in all scales and releases impulsively energy, when special thresholds are met, on the form of nano-, micro-, flares and large scale coronal mass ejections. It has been documen...

  9. Solar system exploration

    International Nuclear Information System (INIS)

    Briggs, G.A.; Quaide, W.L.

    1986-01-01

    Two fundamental goals lie at the heart of U.S. solar system exploration efforts: first, to characterize the evolution of the solar system; second, to understand the processes which produced life. Progress in planetary science is traced from Newton's definition of the principles of gravitation through a variety of NASA planetary probes in orbit, on other planets and traveling beyond the solar system. It is noted that most of the planetary data collected by space probes are always eventually applied to improving the understanding of the earth, moon, Venus and Mars, the planets of greatest interest to humans. Significant data gathered by the Mariner, Viking, Apollo, Pioneer, and Voyager spacecraft are summarized, along with the required mission support capabilities and mission profiles. Proposed and planned future missions to Jupiter, Saturn, Titan, the asteroids and for a comet rendzvous are described

  10. The World Solar Summit Process. The solar electricity highway for peace and environment

    International Nuclear Information System (INIS)

    Berkovski, B.

    1996-01-01

    Due to the growth of the world, energy demand will continue to increase. The question of providing additional energy is discussed by the World Solar Summit Process (WSSP). The actions, plans, recommendations and possible prospects of WSSP are discussed. (R.P.)

  11. A comparison of photospheric electric current and ultraviolet and X-ray emission in a solar active region

    Science.gov (United States)

    Haisch, B. M.; Bruner, M. E.; Hagyard, M. J.; Bonnet, R. M.

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft X-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region.

  12. IPS observations of transient interplanetary phenomena associated with solar filament activity in late august

    International Nuclear Information System (INIS)

    Watanabe, Takashi; Marubashi, Katsuhide.

    1985-01-01

    Large-scale structures of the solar wind plasma during the severe geomagnetic storm of August 27-29, 1978 are studied on the basis of IPS and spacecraft observations. Three-dimensional configuration of an interplanetary disturbance which caused the SSC of August 27, 1978 was an oblate sphere having an axial ratio of 1.7. Approximate excess mass and kinetic energy contained within the high-speed portion of the disturbance (--500 km s -1 ) were 10 16 g and 3 x 10 31 erg, respectively. An interplanetary disturbance was also observed on August 28, 1978 during the main phase of the geomagnetic storm. It is suggested that the solar-filament activity which took place near the solar disk center in August 23-25, 1978 caused these interplanetary disturbances. (author)

  13. Solar Power Sources

    DEFF Research Database (Denmark)

    Kim, Katherine A.; Mentesidi, Konstantina; Yang, Yongheng

    2017-01-01

    a significant change. Beyond this energy transition, the still declining cost of the solar technology has become an important driving force for more solar-powered systems. However, high penetration of solar-powered systems also brings technical challenges to the entire energy systems. In order to fully address......Solar power is highly abundant, relatively reliable, and not limited to a geographic region, making it one of the most important renewable energy sources. Catering for a clean and green energy system, solar energy will be an active player in the future mixed power grid that is also undergoing...... those issues, the technological properties of solar power should be investigated. Thus, the basics of solar power technology will be introduced and discussed in this chapter....

  14. Solar Powering Your Community: A Guide for Local Governments; Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    DOE designed this guide "Solar Powering Your Community: A Guide for Local Governments" to assist local government officials and stakeholders in designing and implementing strategic local solar plans. The 2011 edition contains the most recent lessons and successes from the 25 Solar America Cities and other communities promoting solar energy. Because DOE recognizes that there is no one path to solar market development, this guide introduces a range of policy and program options that can help a community build a local solar infrastructure.

  15. Community Solar Value Project

    Energy Technology Data Exchange (ETDEWEB)

    Powers, John T [Extensible Energy; Cliburn, Jill [Cliburn and Associates

    2017-11-30

    The Community Solar Value Project (CSVP) is designed to assist electric utilities in designing better community solar programs. Better programs seek new sources of value to promote “win-win” solutions between utilities and their customers. The CSVP focused on five “challenge areas” in identifying new sources of value: - Strategic solar design for community solar projects (including technology choices, siting, orientation, and related issues) - Market research and targeted marketing approaches (for program design and for customer recruitment) - Procurement and financing (for establishing best practices that can bring economies of scale and economies of expertise) - Integration of “companion measures” (such as storage and demand-response options that can benefit customer and utility net load shapes) - Pricing in program design (including best practices for integration of identified value in program prices or credits) The CSVP directly engaged the Sacramento Municipal Utility District (SMUD), the Public Service Company of New Mexico (PNM), and more than a dozen other utilities to develop improved community solar program designs. The outcomes include a plan at SMUD for over 100 MW or more of community and shared solar and support for new or expanded programs at 15 other utilities so far. Resulting best-practice solutions have not only informed program applications, but also have generated discussion among experts and industry associations about the new opportunities and challenges CSVP has brought forth. In these ways, the CSVP has impacted community solar programs and DER plans, competitive innovations and policies nationwide. The CSVP team has been led by Extensible Energy under John Powers, President and CEO. Jill Cliburn, of Santa Fe, NM-based Cliburn and Associates, has served as Principal Investigator. The team also benefitted from expertise from Navigant, Olivine Inc. and Millennium Energy, LLC, in addition to the collaborative and cost

  16. Energy planning in India

    International Nuclear Information System (INIS)

    Venu, S.

    1982-01-01

    A review is presented of India's planning for energy requirements in coal, oil, gas and nuclear power and in the fields of solar energy and the extension of forest areas to provide firewood. Coal and natural gas supplies will be increased to reduce oil demand. There will be an accelerated programme of development of bio-gas, an exploration of solar energy potential and extensive afforestation to provide additional energy sources. (author)

  17. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    Science.gov (United States)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  18. Implementation Strategy for a Global Solar and Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    In July 2009, Major Economies Forum leaders met to prepare for the COP 15 Copenhagen Conference that took place later that year. At this occasion the Major Economies Forum Global Partnership f or low carbon and climate-friendly technology was founded and Technology Action Plans (TAPs) for ten key low-carbon technologies were drafted. At that juncture Denmark, Germany and Spain took on the responsibility for drafting TAPs for Solar and Wind Energy Technologies. The TAPs were then consolidated and presented at COP 15 that would later take place in December in Copenhagen. Since then, countries that led the development of the Action Plans have started their implementation. During a first Clean Energy Ministerial (CEM) in July 2010 in Washington on the invitation of Steven Chu, US Secretary of Energy, several initiatives were launched. Denmark, Germany and Spain took the lead in the implementation of the TAPs for Solar and Wind Technologies and initiated the Multilateral Working Group on Solar and Wind Energy Technologies (MWGSW). Several countries joined the working group in Washington and afterwards. In two international workshops in Bonn (June 2010) and Madrid (November 2010) and in meetings during the first CEM in Washington (July 2010) and the second CEM in Abu Dhabi (April 2011) the Multilateral Working Group made substantial progress in the two initial fields of action: (1) the Development of a Global Solar and Wind Atlas; and (2) the Development of a Long-term Strategy on Joint Capacity Building. Discussion papers on the respective topics were elaborated involving the Working Group's member countries as well as various international institutions. This led to concrete proposals for several pilot activities in both fields of action. After further specifying key elements of the suggested projects in two expert workshops in spring 2011, the Multilateral Working Group convened for a third international workshop in Copenhagen, Denmark, to discuss the project

  19. The Origin and Dynamics of Solar Magnetism

    CERN Document Server

    Thompson, M. J; Culhane, J. L; Nordlund, Å; Solanki, S. K; Zahn, J.-P

    2009-01-01

    The articles collected in this volume present all aspects of solar magnetism: from its origin in the solar dynamo to its evolution and dynamics that create the variability of solar phenomena, its well-known 11-year activity cycle that leads to the ever-changing pattern of sunspots and active regions on the Sun. Several contributions deal with the solar dynamo, the driver of many solar phenomena. Other contributions treat the transport and emergence of the magnetic flux through the outer layers of the Sun. The coupling of magnetic fields from the surface to the solar corona and beyond is also described, together with current studies on the predictability of solar activity. This book is aimed at researchers and graduate students working in solar physics and space science. It provides a full review of our current understanding of solar magnetism by the foremost experts in the field.

  20. Minimal-effort planning of active alignment processes for beam-shaping optics

    Science.gov (United States)

    Haag, Sebastian; Schranner, Matthias; Müller, Tobias; Zontar, Daniel; Schlette, Christian; Losch, Daniel; Brecher, Christian; Roßmann, Jürgen

    2015-03-01

    In science and industry, the alignment of beam-shaping optics is usually a manual procedure. Many industrial applications utilizing beam-shaping optical systems require more scalable production solutions and therefore effort has been invested in research regarding the automation of optics assembly. In previous works, the authors and other researchers have proven the feasibility of automated alignment of beam-shaping optics such as collimation lenses or homogenization optics. Nevertheless, the planning efforts as well as additional knowledge from the fields of automation and control required for such alignment processes are immense. This paper presents a novel approach of planning active alignment processes of beam-shaping optics with the focus of minimizing the planning efforts for active alignment. The approach utilizes optical simulation and the genetic programming paradigm from computer science for automatically extracting features from a simulated data basis with a high correlation coefficient regarding the individual degrees of freedom of alignment. The strategy is capable of finding active alignment strategies that can be executed by an automated assembly system. The paper presents a tool making the algorithm available to end-users and it discusses the results of planning the active alignment of the well-known assembly of a fast-axis collimator. The paper concludes with an outlook on the transferability to other use cases such as application specific intensity distributions which will benefit from reduced planning efforts.

  1. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  2. Mechanical and experimental study on freeze proof solar powered adsorption cooling tube using active carbon/methanol working pair

    International Nuclear Information System (INIS)

    Zhao Huizhong; Zhang Min; Liu Zhenyan; Liu Yanling; Ma Xiaodong

    2008-01-01

    The freeze proof solar cooling tube, which can produce cooling capacity with the refrigerant temperature below 0 deg. C using solar light as energy and active carbon-methanol as working pair, was firstly designed and made in this research. This paper focused on mechanical and experimental study on a freeze proof solar powered adsorption cooling tube. The following experimental results could be concluded: at the solar radiation value between 15.3 and 17.1 MJ m -2 , the highest adsorbent bed temperature is below 110 deg. C. The freeze proof solar cooling tube's cooling capacity was about 87-99 kJ, and the coefficient of performance (COP) was more than 0.11 when the evaporation temperature was about -4 deg. C

  3. The dynamic relation between activities in the Northern and Southern solar hemispheres

    Science.gov (United States)

    Volobuev, D. M.; Makarenko, N. G.

    2016-12-01

    The north-south (N/S) asymmetry of solar activity is the most pronounced phenomenon during 11-year cycle minimums. The goal of this work is to try to interpret the asymmetry as a result of the generalized synchronization of two dynamic systems. It is assumed that these systems are localized in two solar hemispheres. The evolution of these systems is considered in the topological embeddings of a sunspot area time series obtained with the use of the Takens algorithm. We determine the coupling measure and estimate it on the time series of daily sunspot areas. The measurement made it possible to interpret the asymmetry as an exchangeable dynamic equation, in which the roles of the driver-slave components change in time for two hemispheres.

  4. EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts

    Science.gov (United States)

    Li, C. Y.; Chen, Y.; Wang, B.; Ruan, G. P.; Feng, S. W.; Du, G. H.; Kong, X. L.

    2017-06-01

    Type-I bursts ( i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7 - 0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. ( Solar Phys. 193, 227, 2000).

  5. Renewable Energy Zone (REZ) Transmission Planning Process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-08

    A REZ is a geographical area that enables the development of profitable, cost-effective, grid-connected renewable energy (RE). The REZ Transmission Planning Process is a proactive approach to plan, approve, and build transmission infrastructure connecting REZs to the power system which helps to increase the share of solar, wind and other RE resources in the power system while maintaining reliability and economics, and focuses on large-scale wind and solar resources that can be developed in sufficient quantities to warrant transmission system expansion and upgrades.

  6. Intertechnology Corporation proposed test and evaluation plan, commercial buildings. National Solar Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-09-01

    This report has three major parts. The first of these derives the requirements for the Test and Evaluation plan from the System Level Plan which is summarized in Section II. The second part contains the proposed plan to fill these requirements and includes hardware and software recommendations as well as procedures and management considerations. Primary emphasis has been given to the remote site because this is the area in which the commercial part of the demonstration is most unique. Finally, some pre-demonstration activities are described. The pilot program is intended to resolve a number of issues which arose in the course of the T and E plan. These relate to choice of scan frequencies, compression algorithms, etc. It is also intended to confirm performance and cost effectiveness of the site data collection package. The base line measurements of attitudes, etc. provide a reference mark against which one can measure the non-technical effectiveness of the demonstration program. (WDM)

  7. Distribution of activity at the solar active longitudes between 1979 - 2011 in the northern hemisphere

    Science.gov (United States)

    Gyenge, N.; Baranyi, T.; Ludmány, A.

    The solar active longitudes were studied in the northern hemisphere in cycles 22 and 23 by using data of DPD sunspot catalogue. The active longitudes are not fixed in the Carrington system, they have a well recognizable migration path between the descending phase of cycle 21 (from about 1984) and ascending phase of cycle 23 (until about 1996), out of this interval the migration path is ambiguous. The longitudinal distribution on both sides of the path has been computed and averaged for the length of the path. The so-called flip-flop phenomenon, when the activity temporarily gets to the opposite longitude, can also be recognized. The widths of the active domains are fairly narrow in the increasing and decaying phases of cycle 22, their half widths are about 20°-30° for both the main and secondary active belts but it is more flat and stretched around the maximum with a half width of about 60°.

  8. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  9. Make Your Own Solar Panel.

    Science.gov (United States)

    Suzuki, David

    1992-01-01

    Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)

  10. Solar and interplanetary particles at 2 to 4 MEV during solar cycles 21, solar cycle variations of event sizes, and compositions

    International Nuclear Information System (INIS)

    Armstrong, T.P.; Shields, J.C.; Briggs, P.R.; Eckes, S.

    1985-01-01

    In this paper 2 to 4 MeV/nucleon protons, alpha particles, and medium (CNO) nuclei in the near-Earth interplanetary medium during the years 1974 to 1981 are studied. This period contains both the solar activity minimum in 1976 and the very active onset phase of Solar Cycle 21. Characteristic compositional differences between the solar minimum and solar maximum ion populations have been investigated. Previous studies of interplanetary composition at these energies have concentrated on well-defined samples of the heliospheric medium. During flare particle events, the ambient plasma is dominated by ions accelerated in specific regions of the solar atmosphere; observation of the proton/alpha and alpha/medium ratios for flare events shows that there is marked compositional variability both during an event and from event to event suggesting the complicated nature of flare particle production and transport

  11. Prospects of solar energy in the coastal areas of Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Emetere, Moses E., E-mail: moses.emetere@covenantuniversity.edu.ng; Akinyemi, Marvel L., E-mail: samuel.sanni@covenantuniversity.edu.ng [Department of Physics, Covenant University Canaan land, P.M.B 1023, Ota (Nigeria)

    2016-02-01

    The climatic factors in the coastal areas are cogent in planning a stable and functional solar farm. The experiment performed in this study entails a day-to-day solar radiation pattern in coastal areas. The results show that the solar radiation pattern in coastal region portends danger to the performance of solar photovoltaic (PV) module and its lifecycle. The efficiency of the PV module was tested in the harmattan where dust is a major hindrance. The results were related to meteorological parameters which influences the solar radiation over an area. The solar radiation pattern in coastal areas was traced to the solar sectional shading theory which was summarized and explained.

  12. Planning of solar heated plant for low-energy houses and passive houses. An introduction; Planlegging av solvarmeanlegg for lavenergiboliger og passivhus. En introduksjon

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, Inger

    2008-07-01

    This guide gives an introduction to the most important principles in planning and projecting of solar heated plant in low-energy houses and passive houses. It is written mainly for architects and consultants involved in housing projects with ambitions to achieve low-energy or passive house standard, but will also be of value for builders and others interested in the topic. (AG). 35 refs., 27 figs

  13. Solar cycles and climate variations

    International Nuclear Information System (INIS)

    Chistyakov, V.F.

    1990-01-01

    Climate oscillations with 100-, 200- and 300-year periods are positively correlated with solar activity oscillations: the higher is solar activity the warmer is climate. According to geological data (varved clays) it is determined, that length of cycles has decreased from 23.4 up to 11 years during latter 2.5 billion years. 12-year cycles occurred during the great glaciation periods, while 10-year cycles occurred during interglaciation periods. It is suggested, that these oscillations are related with variations of the solar activity and luminescence

  14. Characterization plan for the immobilized low-activity waste borehole

    International Nuclear Information System (INIS)

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy's (DOE's) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment

  15. Activity Based Startup Plan for Prototype Vertical Denitration Calciner

    International Nuclear Information System (INIS)

    SUTTER, C.S.

    1999-01-01

    Testing activation on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The restart of testing activities will require a review through an activity based startup process based upon Integrated Safety Management (ISM) principles to verify readiness. The Activity Based Startup Plan for the Prototype vertical Denitration Calciner has been developed for this process

  16. Solar cycle distribution of strong solar proton events and the related solar-terrestrial phenomena

    Science.gov (United States)

    Le, Guiming; Yang, Xingxing; Ding, Liuguang; Liu, Yonghua; Lu, Yangping; Chen, Minhao

    2014-08-01

    We investigated the solar cycle distribution of strong solar proton events (SPEs, peak flux ≥1000 pfu) and the solar-terrestrial phenomena associated with the strong SPEs during solar cycles 21-23. The results show that 37 strong SPEs were registered over this period of time, where 20 strong SPEs were originated from the super active regions (SARs) and 28 strong SPEs were accompanied by the X-class flares. Most strong SPEs were not associated with the ground level enhancement (GLE) event. Most strong SPEs occurred in the descending phases of the solar cycles. The weaker the solar cycle, the higher the proportion of strong SPES occurred in the descending phase of the cycle. The number of the strong SPEs that occurred within a solar cycle is poorly associated with the solar cycle size. The intensity of the SPEs is highly dependent of the location of their source regions, with the super SPEs (≥20000 pfu) distributed around solar disk center. A super SPE was always accompanied by a fast shock driven by the associated coronal mass ejection and a great geomagnetic storm. The source location of strongest GLE event is distributed in the well-connected region. The SPEs associated with super GLE events (peak increase rate ≥100%) which have their peak flux much lower than 10000 pfu were not accompanied by an intense geomagnetic storm.

  17. SOLAR SOURCES OF 3He-RICH SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Nitta, Nariaki V.; Mason, Glenn M.; Wang, Linghua; Cohen, Christina M. S.; Wiedenbeck, Mark E.

    2015-01-01

    Using high-cadence EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 3 He-rich solar energetic particle events at ≲1 MeV nucleon −1 that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of 3 He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, 3 He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the 3 He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous studies, the magnetic connection between the source region and the observer is not always reproduced adequately by the simple potential field source surface model combined with the Parker spiral. Instead, we find a broad longitudinal distribution of the source regions extending well beyond the west limb, with the longitude deviating significantly from that expected from the observed solar wind speed

  18. The James Webb Space Telescope's Plan for Operations and Instrument Capabilities for Observations in the Solar System

    Science.gov (United States)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina

    2016-01-01

    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  19. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  20. School Travel Planning: Mobilizing School and Community Resources to Encourage Active School Transportation

    Science.gov (United States)

    Buliung, Ron; Faulkner, Guy; Beesley, Theresa; Kennedy, Jacky

    2011-01-01

    Background: Active school transport (AST), school travel using an active mode like walking, may be important to children's overall physical activity. A "school travel plan" (STP) documents a school's transport characteristics and provides an action plan to address school and neighborhood barriers to AST. Methods: We conducted a pilot STP…