WorldWideScience

Sample records for active site conformation

  1. Active site conformational dynamics in human uridine phosphorylase 1.

    Directory of Open Access Journals (Sweden)

    Tarmo P Roosild

    Full Text Available Uridine phosphorylase (UPP is a central enzyme in the pyrimidine salvage pathway, catalyzing the reversible phosphorolysis of uridine to uracil and ribose-1-phosphate. Human UPP activity has been a focus of cancer research due to its role in activating fluoropyrimidine nucleoside chemotherapeutic agents such as 5-fluorouracil (5-FU and capecitabine. Additionally, specific molecular inhibitors of this enzyme have been found to raise endogenous uridine concentrations, which can produce a cytoprotective effect on normal tissues exposed to these drugs. Here we report the structure of hUPP1 bound to 5-FU at 2.3 A resolution. Analysis of this structure reveals new insights as to the conformational motions the enzyme undergoes in the course of substrate binding and catalysis. The dimeric enzyme is capable of a large hinge motion between its two domains, facilitating ligand exchange and explaining observed cooperativity between the two active sites in binding phosphate-bearing substrates. Further, a loop toward the back end of the uracil binding pocket is shown to flexibly adjust to the varying chemistry of different compounds through an "induced-fit" association mechanism that was not observed in earlier hUPP1 structures. The details surrounding these dynamic aspects of hUPP1 structure and function provide unexplored avenues to develop novel inhibitors of this protein with improved specificity and increased affinity. Given the recent emergence of new roles for uridine as a neuron protective compound in ischemia and degenerative diseases, such as Alzheimer's and Parkinson's, inhibitors of hUPP1 with greater efficacy, which are able to boost cellular uridine levels without adverse side-effects, may have a wide range of therapeutic applications.

  2. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    Science.gov (United States)

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  3. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL from Geobacillus kaustophilus HTA426 (GkaP exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  4. Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction.

    Science.gov (United States)

    Zeymer, Cathleen; Werbeck, Nicolas D; Zimmermann, Sabine; Reinstein, Jochen; Hansen, D Flemming

    2016-09-12

    States along the phosphoryl transfer reaction catalyzed by the nucleoside monophosphate kinase UmpK were captured and changes in the conformational heterogeneity of conserved active site arginine side-chains were quantified by NMR spin-relaxation methods. In addition to apo and ligand-bound UmpK, a transition state analog (TSA) complex was utilized to evaluate the extent to which active site conformational entropy contributes to the transition state free energy. The catalytically essential arginine side-chain guanidino groups were found to be remarkably rigid in the TSA complex, indicating that the enzyme has evolved to restrict the conformational freedom along its reaction path over the energy landscape, which in turn allows the phosphoryl transfer to occur selectively by avoiding side reactions. PMID:27534930

  5. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site

    Directory of Open Access Journals (Sweden)

    Soares Alexei S

    2007-11-01

    Full Text Available Abstract Background Ricin is a potent toxin and known bioterrorism threat with no available antidote. The ricin A-chain (RTA acts enzymatically to cleave a specific adenine base from ribosomal RNA, thereby blocking translation. To understand better the relationship between ligand binding and RTA active site conformational change, we used a fragment-based approach to find a minimal set of bonding interactions able to induce rearrangements in critical side-chain positions. Results We found that the smallest ligand stabilizing an open conformer of the RTA active site pocket was an amide group, bound weakly by only a few hydrogen bonds to the protein. Complexes with small amide-containing molecules also revealed a switch in geometry from a parallel towards a splayed arrangement of an arginine-tryptophan cation-pi interaction that was associated with an increase and red-shift in tryptophan fluorescence upon ligand binding. Using the observed fluorescence signal, we determined the thermodynamic changes of adenine binding to the RTA active site, as well as the site-specific binding of urea. Urea binding had a favorable enthalpy change and unfavorable entropy change, with a ΔH of -13 ± 2 kJ/mol and a ΔS of -0.04 ± 0.01 kJ/(K*mol. The side-chain position of residue Tyr80 in a complex with adenine was found not to involve as large an overlap of rings with the purine as previously considered, suggesting a smaller role for aromatic stacking at the RTA active site. Conclusion We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the

  6. Asymmetry of the Active Site Loop Conformation between Subunits of Glutamate-1-semialdehyde Aminomutase in Solution

    Directory of Open Access Journals (Sweden)

    Barbara Campanini

    2013-01-01

    Full Text Available Glutamate-1-semialdehyde aminomutase (GSAM is a dimeric, pyridoxal 5′-phosphate (PLP- dependent enzyme catalysing in plants and some bacteria the isomerization of L-glutamate-1-semialdehyde to 5-aminolevulinate, a common precursor of chlorophyll, haem, coenzyme B12, and other tetrapyrrolic compounds. During the catalytic cycle, the coenzyme undergoes conversion from pyridoxamine 5′-phosphate (PMP to PLP. The entrance of the catalytic site is protected by a loop that is believed to switch from an open to a closed conformation during catalysis. Crystallographic studies indicated that the structure of the mobile loop is related to the form of the cofactor bound to the active site, allowing for asymmetry within the dimer. Since no information on structural and functional asymmetry of the enzyme in solution is available in the literature, we investigated the active site accessibility by determining the cofactor fluorescence quenching of PMP- and PLP-GSAM forms. PLP-GSAM is partially quenched by potassium iodide, suggesting that at least one catalytic site is accessible to the anionic quencher and therefore confirming the asymmetry observed in the crystal structure. Iodide induces release of the cofactor from PMP-GSAM, apparently from only one catalytic site, therefore suggesting an asymmetry also in this form of the enzyme in solution, in contrast with the crystallographic data.

  7. Conformational changes of active site of copper zinc superoxide dismutase can be detected sensitively by electron-transfer reaction

    Institute of Scientific and Technical Information of China (English)

    舒占永

    1996-01-01

    The electron-transfer (ET) reaction between Fe(CN)64- and copper zinc superoxide dismutase (CuZn-SOD) occurs at the active site of the enzyme. The ET parameters which are sensitive to the denaturation have been used to determine the conformational changes of the active site induced by guanidine hydrochloride and thermal denaturation. The decreases of ET rates for all the denatured enzyme samples reflect the collapse of the active cavity of enzyme in the unfolding processes. The interesting changes of ET amplitude for the enzyme denatured at different pH values suggest that electrostatic interaction plays an important role in the conformational changes of active site. From the results of the kinetic analyses, it is concluded that the conformational changes of the active site are parallel with the inactivation.

  8. Rate of hydrolysis in ATP synthase is fine-tuned by  -subunit motif controlling active site conformation

    KAUST Repository

    Beke-Somfai, T.

    2013-01-23

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.

  9. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    Science.gov (United States)

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst. PMID:27402448

  10. Conformation analysis of a surface loop that controls active site access in the GH11 xylanase A from Bacillus subtilis.

    Science.gov (United States)

    Vieira, Davi Serradella; Ward, Richard John

    2012-04-01

    Xylanases (EC 3.2.1.8 endo-1,4-glycosyl hydrolase) catalyze the hydrolysis of xylan, an abundant hemicellulose of plant cell walls. Access to the catalytic site of GH11 xylanases is regulated by movement of a short β-hairpin, the so-called thumb region, which can adopt open or closed conformations. A crystallographic study has shown that the D11F/R122D mutant of the GH11 xylanase A from Bacillus subtilis (BsXA) displays a stable "open" conformation, and here we report a molecular dynamics simulation study comparing this mutant with the native enzyme over a range of temperatures. The mutant open conformation was stable at 300 and 328 K, however it showed a transition to the closed state at 338 K. Analysis of dihedral angles identified thumb region residues Y113 and T123 as key hinge points which determine the open-closed transition at 338 K. Although the D11F/R122D mutations result in a reduction in local inter-intramolecular hydrogen bonding, the global energies of the open and closed conformations in the native enzyme are equivalent, suggesting that the two conformations are equally accessible. These results indicate that the thumb region shows a broader degree of energetically permissible conformations which regulate the access to the active site region. The R122D mutation contributes to the stability of the open conformation, but is not essential for thumb dynamics, i.e., the wild type enzyme can also adapt to the open conformation.

  11. Spectroscopic studies on the active site of hydroperoxide lyase : the influence of detergents on its conformation

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Noordermeer, M.A.; Veldink, G.A.

    2001-01-01

    Expression of high quantities of alfalfa hydroperoxide lyase in Escherichia coli made it possible to study its active site and structure in more detail. Circular dichroism (CD) spectra showed that hydroperoxide lyase consists for about 75% of alpha-helices. Electron paramagnetic resonance (EPR) spec

  12. Two-step mechanism involving active-site conformational changes regulates human telomerase DNA binding.

    Science.gov (United States)

    Tomlinson, Christopher G; Moye, Aaron L; Holien, Jessica K; Parker, Michael W; Cohen, Scott B; Bryan, Tracy M

    2015-01-15

    The ribonucleoprotein enzyme telomerase maintains telomeres and is essential for cellular immortality in most cancers. Insight into the telomerase mechanism can be gained from syndromes such as dyskeratosis congenita, in which mutation of telomerase components manifests in telomere dysfunction. We carried out detailed kinetic and thermodynamic analyses of wild-type telomerase and two disease-associated mutations in the reverse transcriptase domain. Differences in dissociation rates between primers with different 3' ends were independent of DNA affinities, revealing that initial binding of telomerase to telomeric DNA occurs through a previously undescribed two-step mechanism involving enzyme conformational changes. Both mutations affected DNA binding, but through different mechanisms: P704S specifically affected protein conformational changes during DNA binding, whereas R865H showed defects in binding to the 3' region of the DNA. To gain further insight at the structural level, we generated the first homology model of the human telomerase reverse transcriptase domain; the positions of P704S and R865H corroborate their observed mechanistic defects, providing validation for the structural model. Our data reveal the importance of protein interactions with the 3' end of telomeric DNA and the role of protein conformational change in telomerase DNA binding, and highlight naturally occurring disease mutations as a rich source of mechanistic insight. PMID:25365545

  13. A remote palm domain residue of RB69 DNA polymerase is critical for enzyme activity and influences the conformation of the active site.

    Directory of Open Access Journals (Sweden)

    Agata Jacewicz

    Full Text Available Non-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A, that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the Pol(D714A mutant demonstrate that D714A does not affect the overall structure of the protein. The structures reveal a conformational change of several amino acid side chains, which cascade out from the site of the substitution towards the catalytic center, substantially perturbing the geometry of the active site. Consistent with these structural observations, the mutant has a significantly reduced k pol for correct incorporation. We propose that the observed structural changes underlie the severe polymerization defect and thus D714 is a remote, non-catalytic residue that is nevertheless critical for maintaining an optimal active site conformation. This represents a striking example of an action-at-a-distance interaction.

  14. A conformational switch in the active site of BT_2972, a methyltransferase from an antibiotic resistant pathogen B. thetaiotaomicron.

    Directory of Open Access Journals (Sweden)

    Veerendra Kumar

    Full Text Available Methylation is one of the most common biochemical reactions involved in cellular and metabolic functions and is catalysed by the action of methyltransferases. Bacteroides thetaiotaomicron is an antibiotic-resistant bacterium that confers resistance through methylation, and as yet, there is no report on the structure of methyltransferases from this bacterium. Here, we report the crystal structure of an AdoMet-dependent methyltransferase, BT_2972 and its complex with AdoMet and AdoHcy for B. thetaiotaomicron VPI-5482 strain along with isothermal titration calorimetric assessment of the binding affinities. Comparison of the apo and complexed BT_2972 structures reveals a significant conformational change between open and closed forms of the active site that presumably regulates the association with cofactors and may aid interaction with substrate. Together, our analysis suggests that BT_2972 is a small molecule methyltransferase and might catalyze two O-methylation reaction steps involved in the ubiquinone biosynthesis pathway.

  15. A conformational switch in the active site of BT_2972, a methyltransferase from an antibiotic resistant pathogen B. thetaiotaomicron.

    Science.gov (United States)

    Kumar, Veerendra; Sivaraman, J

    2011-01-01

    Methylation is one of the most common biochemical reactions involved in cellular and metabolic functions and is catalysed by the action of methyltransferases. Bacteroides thetaiotaomicron is an antibiotic-resistant bacterium that confers resistance through methylation, and as yet, there is no report on the structure of methyltransferases from this bacterium. Here, we report the crystal structure of an AdoMet-dependent methyltransferase, BT_2972 and its complex with AdoMet and AdoHcy for B. thetaiotaomicron VPI-5482 strain along with isothermal titration calorimetric assessment of the binding affinities. Comparison of the apo and complexed BT_2972 structures reveals a significant conformational change between open and closed forms of the active site that presumably regulates the association with cofactors and may aid interaction with substrate. Together, our analysis suggests that BT_2972 is a small molecule methyltransferase and might catalyze two O-methylation reaction steps involved in the ubiquinone biosynthesis pathway. PMID:22140448

  16. Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration

    Energy Technology Data Exchange (ETDEWEB)

    He, Huawei; Yang, Taehong; Terman, Jonathan R.; Zhang, Xuewu; (UTSMC)

    2010-01-20

    Plexin cell surface receptors bind to semaphorin ligands and transduce signals for regulating neuronal axon guidance. The intracellular region of plexins is essential for signaling and contains a R-Ras/M-Ras GTPase activating protein (GAP) domain that is divided into two segments by a Rho GTPase-binding domain (RBD). The regulation mechanisms for plexin remain elusive, although it is known that activation requires both binding of semaphorin to the extracellular region and a Rho-family GTPase (Rac1 or Rnd1) to the RBD. Here we report the crystal structure of the plexin A3 intracellular region. The structure shows that the N- and C-terminal portions of the GAP homologous regions together form a GAP domain with an overall fold similar to other Ras GAPs. However, the plexin GAP domain adopts a closed conformation and cannot accommodate R-Ras/M-Ras in its substrate-binding site, providing a structural basis for the autoinhibited state of plexins. A comparison with the plexin B1 RBD/Rnd1 complex structure suggests that Rnd1 binding alone does not induce a conformational change in plexin, explaining the requirement of both semaphorin and a Rho GTPase for activation. The structure also identifies an N-terminal segment that is important for regulation. Both the N-terminal segment and the RBD make extensive interactions with the GAP domain, suggesting the presence of an allosteric network connecting these three domains that integrates semaphorin and Rho GTPase signals to activate the GAP. The importance of these interactions in plexin signaling is shown by both cell-based and in vivo axon guidance assays.

  17. New Insights into Active Site Conformation Dynamics of E. coli PNP Revealed by Combined H/D Exchange Approach and Molecular Dynamics Simulations

    Science.gov (United States)

    Kazazić, Saša; Bertoša, Branimir; Luić, Marija; Mikleušević, Goran; Tarnowski, Krzysztof; Dadlez, Michal; Narczyk, Marta; Bzowska, Agnieszka

    2016-01-01

    The biologically active form of purine nucleoside phosphorylase (PNP) from Escherichia coli (EC 2.4.2.1) is a homohexamer unit, assembled as a trimer of dimers. Upon binding of phosphate, neighboring monomers adopt different active site conformations, described as open and closed. To get insight into the functions of the two distinctive active site conformations, virtually inactive Arg24Ala mutant is complexed with phosphate; all active sites are found to be in the open conformation. To understand how the sites of neighboring monomers communicate with each other, we have combined H/D exchange (H/DX) experiments with molecular dynamics (MD) simulations. Both methods point to the mobility of the enzyme, associated with a few flexible regions situated at the surface and within the dimer interface. Although H/DX provides an average extent of deuterium uptake for all six hexamer active sites, it was able to indicate the dynamic mechanism of cross-talk between monomers, allostery. Using this technique, it was found that phosphate binding to the wild type (WT) causes arrest of the molecular motion in backbone fragments that are flexible in a ligand-free state. This was not the case for the Arg24Ala mutant. Upon nucleoside substrate/inhibitor binding, some release of the phosphate-induced arrest is observed for the WT, whereas the opposite effects occur for the Arg24Ala mutant. MD simulations confirmed that phosphate is bound tightly in the closed active sites of the WT; conversely, in the open conformation of the active site of the WT phosphate is bound loosely moving towards the exit of the active site. In Arg24Ala mutant binary complex Pi is bound loosely, too.

  18. Coordination and conformational isomers in mononuclear iron complexes with pertinence to the [FeFe] hydrogenase active site.

    Science.gov (United States)

    Orthaber, Andreas; Karnahl, Michael; Tschierlei, Stefanie; Streich, Daniel; Stein, Matthias; Ott, Sascha

    2014-03-21

    A series of six mononuclear iron complexes of the type [Fe(X-bdt)(P(R)2N(Ph)2)(CO)] (P(R)2N(Ph)2 = 1,5-diaza-3,7-diphosphaoctane, bdt = benzenedithiolate with X = H, Cl2 or Me and R = Ph, Bn, Cyc or tert-Bu) was prepared. This new class of penta-coordinate iron complexes contains a free coordination site and a pendant base as essential structural features of the [FeFe]-hydrogenase active site. The bidentate nature of the P(R)2N(Ph)2 ligands was found to be crucial for the preferential formation of coordinatively unsaturated penta-coordinate complexes, which is supported by first principle calculations. IR-spectroscopic data suggest the presence of coordination isomers around the metal center, as well as multiple possible conformers of the P(R)2N(Ph)2 ligand. This finding is further corroborated by X-ray crystallographic and computational studies. (31)P{(1)H}-NMR- and IR-spectroscopic as well as electrochemical measurements show that the electronic properties of the complexes are strongly, and independently, influenced by the P-substituents at the P(R)2N(Ph)2 ligand as well as by modifications of the bdt bridge. These results illustrate the advantages of this modular platform, which allows independent and selective tuning through site specific modifications. Potential catalytic intermediates, namely singly reduced and protonated complexes, have been further investigated by spectroscopic methods and exhibit remarkable stability. Finally, their general capacity for electro-catalytic reduction of protons to molecular hydrogen was verified.

  19. The Role of Active Site Flexible Loops in Catalysis and of Zinc in Conformational Stability of Bacillus cereus 569/H/9 β-Lactamase.

    Science.gov (United States)

    Montagner, Caroline; Nigen, Michaël; Jacquin, Olivier; Willet, Nicolas; Dumoulin, Mireille; Karsisiotis, Andreas Ioannis; Roberts, Gordon C K; Damblon, Christian; Redfield, Christina; Matagne, André

    2016-07-29

    Metallo-β-lactamases catalyze the hydrolysis of most β-lactam antibiotics and hence represent a major clinical concern. The development of inhibitors for these enzymes is complicated by the diversity and flexibility of their substrate-binding sites, motivating research into their structure and function. In this study, we examined the conformational properties of the Bacillus cereus β-lactamase II in the presence of chemical denaturants using a variety of biochemical and biophysical techniques. The apoenzyme was found to unfold cooperatively, with a Gibbs free energy of stabilization (ΔG(0)) of 32 ± 2 kJ·mol(-1) For holoBcII, a first non-cooperative transition leads to multiple interconverting native-like states, in which both zinc atoms remain bound in an apparently unaltered active site, and the protein displays a well organized compact hydrophobic core with structural changes confined to the enzyme surface, but with no catalytic activity. Two-dimensional NMR data revealed that the loss of activity occurs concomitantly with perturbations in two loops that border the enzyme active site. A second cooperative transition, corresponding to global unfolding, is observed at higher denaturant concentrations, with ΔG(0) value of 65 ± 1.4 kJ·mol(-1) These combined data highlight the importance of the two zinc ions in maintaining structure as well as a relatively well defined conformation for both active site loops to maintain enzymatic activity. PMID:27235401

  20. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan (Purdue)

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  1. Crystal Structure of Mouse Thymidylate Synthase in Tertiary Complex with dUMP and Raltitrexed Reveals N-Terminus Architecture and Two Different Active Site Conformations

    Directory of Open Access Journals (Sweden)

    Anna Dowierciał

    2014-01-01

    Full Text Available The crystal structure of mouse thymidylate synthase (mTS in complex with substrate dUMP and antifolate inhibitor Raltitrexed is reported. The structure reveals, for the first time in the group of mammalian TS structures, a well-ordered segment of 13 N-terminal amino acids, whose ordered conformation is stabilized due to specific crystal packing. The structure consists of two homodimers, differing in conformation, one being more closed (dimer AB and thus supporting tighter binding of ligands, and the other being more open (dimer CD and thus allowing weaker binding of ligands. This difference indicates an asymmetrical effect of the binding of Raltitrexed to two independent mTS molecules. Conformational changes leading to a ligand-induced closing of the active site cleft are observed by comparing the crystal structures of mTS in three different states along the catalytic pathway: ligand-free, dUMP-bound, and dUMP- and Raltitrexed-bound. Possible interaction routes between hydrophobic residues of the mTS protein N-terminal segment and the active site are also discussed.

  2. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    Energy Technology Data Exchange (ETDEWEB)

    Wubben, T.; Mesecar, A.D. (Purdue); (UIC)

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  3. Active site conformational dynamics are coupled to catalysis in the mRNA decapping enzyme Dcp2

    OpenAIRE

    Aglietti, Robin A.; Floor, Stephen N.; McClendon, Chris L.; Matthew P Jacobson; Gross, John D.

    2013-01-01

    Removal of the 5′ cap structure by Dcp2 is a major step in several 5′–3′ mRNA decay pathways. The activity of Dcp2 is enhanced by Dcp1 and bound coactivators, yet the details of how these interactions are linked to chemistry are poorly understood. Here we report three crystal structures of the catalytic Nudix hydrolase domain of Dcp2 that demonstrate binding of a catalytically essential metal ion, and enzyme kinetics are used to identify several key active site residues involved in acid/base ...

  4. A selective, slow binding inhibitor of factor VIIa binds to a nonstandard active site conformation and attenuates thrombus formation in vivo.

    Science.gov (United States)

    Olivero, Alan G; Eigenbrot, Charles; Goldsmith, Richard; Robarge, Kirk; Artis, Dean R; Flygare, John; Rawson, Thomas; Sutherlin, Daniel P; Kadkhodayan, Saloumeh; Beresini, Maureen; Elliott, Linda O; DeGuzman, Geralyn G; Banner, David W; Ultsch, Mark; Marzec, Ulla; Hanson, Stephen R; Refino, Canio; Bunting, Stuart; Kirchhofer, Daniel

    2005-03-11

    The serine protease factor VIIa (FVIIa) in complex with its cellular cofactor tissue factor (TF) initiates the blood coagulation reactions. TF.FVIIa is also implicated in thrombosis-related disorders and constitutes an appealing therapeutic target for treatment of cardiovascular diseases. To this end, we generated the FVIIa active site inhibitor G17905, which displayed great potency toward TF.FVIIa (Ki = 0.35 +/- 0.11 nM). G17905 did not appreciably inhibit 12 of the 14 examined trypsin-like serine proteases, consistent with its TF.FVIIa-specific activity in clotting assays. The crystal structure of the FVIIa.G17905 complex provides insight into the molecular basis of the high selectivity. It shows that, compared with other serine proteases, FVIIa is uniquely equipped to accommodate conformational disturbances in the Gln217-Gly219 region caused by the ortho-hydroxy group of the inhibitor's aminobenzamidine moiety located in the S1 recognition pocket. Moreover, the structure revealed a novel, nonstandard conformation of FVIIa active site in the region of the oxyanion hole, a "flipped" Lys192-Gly193 peptide bond. Macromolecular substrate activation assays demonstrated that G17905 is a noncompetitive, slow-binding inhibitor. Nevertheless, G17905 effectively inhibited thrombus formation in a baboon arterio-venous shunt model, reducing platelet and fibrin deposition by approximately 70% at 0.4 mg/kg + 0.1 mg/kg/min infusion. Therefore, the in vitro potency of G17905, characterized by slow binding kinetics, correlated with efficacious antithrombotic activity in vivo. PMID:15632123

  5. SLITHER: a web server for generating contiguous conformations of substrate molecules entering into deep active sites of proteins or migrating through channels in membrane transporters.

    Science.gov (United States)

    Lee, Po-Hsien; Kuo, Kuei-Ling; Chu, Pei-Ying; Liu, Eric M; Lin, Jung-Hsin

    2009-07-01

    Many proteins use a long channel to guide the substrate or ligand molecules into the well-defined active sites for catalytic reactions or for switching molecular states. In addition, substrates of membrane transporters can migrate to another side of cellular compartment by means of certain selective mechanisms. SLITHER (http://bioinfo.mc.ntu.edu.tw/slither/or http://slither.rcas.sinica.edu.tw/) is a web server that can generate contiguous conformations of a molecule along a curved tunnel inside a protein, and the binding free energy profile along the predicted channel pathway. SLITHER adopts an iterative docking scheme, which combines with a puddle-skimming procedure, i.e. repeatedly elevating the potential energies of the identified global minima, thereby determines the contiguous binding modes of substrates inside the protein. In contrast to some programs that are widely used to determine the geometric dimensions in the ion channels, SLITHER can be applied to predict whether a substrate molecule can crawl through an inner channel or a half-channel of proteins across surmountable energy barriers. Besides, SLITHER also provides the list of the pore-facing residues, which can be directly compared with many genetic diseases. Finally, the adjacent binding poses determined by SLITHER can also be used for fragment-based drug design.

  6. A conformable active matrix LED display

    OpenAIRE

    Tripathi, Ashutosh; Smits, Edsger; van der Steen, Jan-Laurens; Cauwe, Maarten; Verplancke, Rik; Myny, Kris; Maas, Joris; Kusters, Roel; Sabik, Sami; Murata, Mitsuhiro; Tomita, Yoshihiro; Ohmae, Hideki; van den Brand, Jeroen; Gelinck, Gerwin

    2015-01-01

    Conformable and stretchable displays can be integrated on complex surfaces. Such a display can assume the shape of a conformed surface by simultaneous multi-dimensional stretching and bending. Such technology provides new opportunities in the field of display applications, for example wearable displays integrated or embedded in a textile or onto complex surfaces in automotive interiors. In this work we present a conformable active matrix display using LEDs mounted on an amorphous Indium-Galli...

  7. Conformational flexibility related to enzyme activity: evidence for a dynamic active-site gatekeeper function of Tyr(215) in Aerococcus viridans lactate oxidase.

    Science.gov (United States)

    Stoisser, Thomas; Brunsteiner, Michael; Wilson, David K; Nidetzky, Bernd

    2016-01-01

    L-Lactate oxidase (LOX) belongs to a large family of flavoenzymes that catalyze oxidation of α-hydroxy acids. How in these enzymes the protein structure controls reactivity presents an important but elusive problem. LOX contains a prominent tyrosine in the substrate binding pocket (Tyr(215) in Aerococcus viridans LOX) that is partially responsible for securing a flexible loop which sequesters the active site. To characterize the role of Tyr(215), effects of substitutions of the tyrosine (Y215F, Y215H) were analyzed kinetically, crystallographically and by molecular dynamics simulations. Enzyme variants showed slowed flavin reduction and oxidation by up to 33-fold. Pyruvate release was also decelerated and in Y215F, it was the slowest step overall. A 2.6-Å crystal structure of Y215F in complex with pyruvate shows the hydrogen bond between the phenolic hydroxyl and the keto oxygen in pyruvate is replaced with a potentially stronger hydrophobic interaction between the phenylalanine and the methyl group of pyruvate. Residues 200 through 215 or 216 appear to be disordered in two of the eight monomers in the asymmetric unit suggesting that they function as a lid controlling substrate entry and product exit from the active site. Substitutions of Tyr(215) can thus lead to a kinetic bottleneck in product release. PMID:27302031

  8. Conformational flexibility related to enzyme activity: evidence for a dynamic active-site gatekeeper function of Tyr215 in Aerococcus viridans lactate oxidase

    Science.gov (United States)

    Stoisser, Thomas; Brunsteiner, Michael; Wilson, David K.; Nidetzky, Bernd

    2016-01-01

    L-Lactate oxidase (LOX) belongs to a large family of flavoenzymes that catalyze oxidation of α-hydroxy acids. How in these enzymes the protein structure controls reactivity presents an important but elusive problem. LOX contains a prominent tyrosine in the substrate binding pocket (Tyr215 in Aerococcus viridans LOX) that is partially responsible for securing a flexible loop which sequesters the active site. To characterize the role of Tyr215, effects of substitutions of the tyrosine (Y215F, Y215H) were analyzed kinetically, crystallographically and by molecular dynamics simulations. Enzyme variants showed slowed flavin reduction and oxidation by up to 33-fold. Pyruvate release was also decelerated and in Y215F, it was the slowest step overall. A 2.6-Å crystal structure of Y215F in complex with pyruvate shows the hydrogen bond between the phenolic hydroxyl and the keto oxygen in pyruvate is replaced with a potentially stronger hydrophobic interaction between the phenylalanine and the methyl group of pyruvate. Residues 200 through 215 or 216 appear to be disordered in two of the eight monomers in the asymmetric unit suggesting that they function as a lid controlling substrate entry and product exit from the active site. Substitutions of Tyr215 can thus lead to a kinetic bottleneck in product release. PMID:27302031

  9. A method of active conformation search based on active and inactive analogues, and its application to allylamine antimycotics

    Institute of Scientific and Technical Information of China (English)

    张万年; 季海涛; 周有骏; 朱杰; 朱驹; 吕加国

    1999-01-01

    A new program ACSBAIA (Active Conformation Search Based on Active and Inactive Analogues) for determination of the active conformations was developed based on the rationales that specific functional groups of active analogues could reach and interact with the active site of target receptor by means of the change of conformations, but that of inactive analogues could not interact with the active site owing to conformational restriction. The program consisted of 4 sub-programs: conformation sampling system, active conformation constraint system, inactive conformation exclusion system, and activity prediction system. Pharmacophoric conformation of allylamine antimycotics was studied by this method. Activities of 2 analogues were predicted and tested. The results suggested that the method was scientific and practical. The application of this method was not restricted by the three-dimensional structural knowledge of target receptor. In the absence of structural information about the receptor, the method was

  10. STRUCTURE OF THE COMPLEX BETWEEN TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE AND N-HYDROXY-4-PHOSPHONO-BUTANAMIDE - BINDING AT THE ACTIVE-SITE DESPITE AN OPEN FLEXIBLE LOOP CONFORMATION

    NARCIS (Netherlands)

    VERLINDE, CLMJ; WITMANS, CJ; PIJNING, T; KALK, KH; HOL, WGJ; CALLENS, M; OPPERDOES, FR

    1992-01-01

    The structure of triosephosphate isomerase from Trypanosoma brucei complexed with the competitive inhibitor N-hydroxy-4-phosphono-butanamide was determined by X-ray crystallography to a resolution of 2.84 angstrom. Full occupancy binding of the inhibitor is observed only at one of the active sites o

  11. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    Science.gov (United States)

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  12. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    Science.gov (United States)

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  13. Conformational constraining of inactive and active States of a seven transmembrane receptor by metal ion site engineering in the extracellular end of transmembrane segment V

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; David, Ralf; Oerlecke, Ilka;

    2006-01-01

    The extracellular part of transmembrane segment V (TM-V) is expected to be involved in the activation process of 7TM receptors, but its role is far from clear. Here, we study the highly constitutively active CXC-chemokine receptor encoded by human herpesvirus 8 (ORF74-HHV8), in which a metal ion...... site was introduced at the extracellular end of TM-V by substitution of two arginines at positions V:01 and V:05 with histidines [R208H; R212H]. The metal ion site conferred high-potency inverse agonist properties (EC(50), 1.7 microM) to Zn(II) in addition to agonist and allosteric enhancing properties....... The activating properties of Zn(II) were not due to a metal ion site between the ligand and the receptor because CXCL1/GROalpha analogs in which the putative metal-ion binding residues had been substituted-[H19A] and [H34A]-acted like wild-type CXCL1/GROalpha. Based on the complex action of Zn...

  14. The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding.

    Science.gov (United States)

    Moore, S A; Kingston, R L; Loomes, K M; Hernell, O; Bläckberg, L; Baker, H M; Baker, E N

    2001-09-21

    Human bile salt-stimulated lipase (BSSL), which is secreted from the pancreas into the digestive tract and from the lactating mammary gland into human milk, is important for the effective absorption of dietary lipids. The dependence of BSSL on bile acids for activity with water-insoluble substrates differentiates it from other lipases. We have determined the crystal structure of a truncated variant of human BSSL (residues 1-5.8) and refined it at 2.60 A resolution, to an R-factor of 0.238 and R(free) of 0.275. This variant lacks the C-terminal alpha-helix and tandem C-terminal repeat region of native BSSL, but retains full catalytic activity. A short loop (residues 115-126) capable of occluding the active-site (the active site loop) is highly mobile and exists in two conformations, the most predominant of which leaves the active-site open for interactions with substrate. The bile salt analogue 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid (CHAPS) was present in the crystallisation medium, but was not observed bound to the enzyme. However, the structure reveals a sulfonate group from the buffer piperizine ethane sulfonic acid (PIPES), making interactions with Arg63 and His115. His115 is part of the active-site loop, indicating that the loop could participate in the binding of a sulphate group from either the glycosaminoglycan heparin (known to bind BSSL) or a bile acid such as deoxycholate. Opening of the 115-126 active-site loop may be cooperatively linked to a sulphate anion binding at this site. The helix bundle domain of BSSL (residues 319-398) exhibits weak electron density and high temperature factors, indicating considerable structural mobility. This domain contains an unusual Asp:Glu pair buried in a hydrophobic pocket between helices alpha(H) and alpha(K) that may be functionally important. We have also solved the structure of full-length glycosylated human BSSL at 4.1 A resolution, using the refined coordinates of the truncated molecule as

  15. Combined Use of Residual Dipolar Couplings and Solution X-ray Scattering To Rapidly Probe Rigid-Body Conformational Transitions in a Non-phosphorylatable Active-Site Mutant of the 128 kDa Enzyme I Dimer

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Yuki; Schwieters, Charles D.; Grishaev, Alexander; Ghirlando, Rodolfo; Clore, G. Marius (NIH)

    2012-10-23

    The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the relative orientations and positions of the domains and subdomains can be rapidly and reliably determined by conjoined rigid-body/torsion angle/Cartesian simulated annealing calculations driven by orientational restraints from residual dipolar couplings and shape and translation information afforded by small- and wide-angle X-ray scattering. Although histidine and glutamine are isosteric, the conformational space available to a Gln side chain is larger than that for the imidazole ring of His. An additional hydrogen bond between the side chain of Gln189 located on the EIN{sup {alpha}/{beta}} subdomain and an aspartate (Asp129) on the EIN{sup {alpha}} subdomain results in a small ({approx}9{sup o}) reorientation of the EIN{sup {alpha}} and EIN{sup {alpha}/{beta}} subdomains that is in turn propagated to a larger reorientation ({approx}26{sup o}) of the EIN domain relative to the EIC dimerization domain, illustrating the positional sensitivity of the EIN domain and its constituent subdomains to small structural perturbations.

  16. Effect of Urea on Activity and Conformation of a Glycoprotein

    Institute of Scientific and Technical Information of China (English)

    WEI Xiang; WANG Xiaoyun; ZHOU Bo; ZHOU Haimeng

    2006-01-01

    The changes of the activity and conformation of Aspergillus niger phytase in urea were detected by farultraviolet circular dichroism (CD) spectra, fluorescence spectra, and enzyme activity assays. The results show that no enzyme activity can be detected after phytase is incubated for 10 h in 3.0 mol/L urea, even though at this urea concentration, less than 20% of the tertiary and secondary structures in the native enzyme changed. The inactivation reaction kinetics is found to be a monophasic first-order reaction, but the unfolding is a biphasic process consisting of two first-order reactions. The inactivation rates of the free enzyme and the substrate-enzyme complex are much faster than the conformational changes during urea denaturation. All of the results indicate that, as a glycoprotein, phytase's activity is strongly dependent on its conformational integrity. The phytase active sites seem to be located in a limited region in the molecule and display more conformational fragility and flexibility to denaturants than enzyme molecular structure as a whole.

  17. Transglutaminase 2 undergoes a large conformational change upon activation.

    Directory of Open Access Journals (Sweden)

    Daniel M Pinkas

    2007-12-01

    Full Text Available Human transglutaminase 2 (TG2, a member of a large family of enzymes that catalyze protein crosslinking, plays an important role in the extracellular matrix biology of many tissues and is implicated in the gluten-induced pathogenesis of celiac sprue. Although vertebrate transglutaminases have been studied extensively, thus far all structurally characterized members of this family have been crystallized in conformations with inaccessible active sites. We have trapped human TG2 in complex with an inhibitor that mimics inflammatory gluten peptide substrates and have solved, at 2-A resolution, its x-ray crystal structure. The inhibitor stabilizes TG2 in an extended conformation that is dramatically different from earlier transglutaminase structures. The active site is exposed, revealing that catalysis takes place in a tunnel, bridged by two tryptophan residues that separate acyl-donor from acyl-acceptor and stabilize the tetrahedral reaction intermediates. Site-directed mutagenesis was used to investigate the acyl-acceptor side of the tunnel, yielding mutants with a marked increase in preference for hydrolysis over transamidation. By providing the ability to visualize this activated conformer, our results create a foundation for understanding the catalytic as well as the non-catalytic roles of TG2 in biology, and for dissecting the process by which the autoantibody response to TG2 is induced in celiac sprue patients.

  18. The insulin receptor activation process involves localized conformational changes.

    Science.gov (United States)

    Baron, V; Kaliman, P; Gautier, N; Van Obberghen, E

    1992-11-15

    The molecular process by which insulin binding to the receptor alpha-subunit induces activation of the receptor beta-subunit with ensuing substrate phosphorylation remains unclear. In this study, we aimed at approaching this molecular mechanism of signal transduction and at delineating the cytoplasmic domains implied in this process. To do this, we used antipeptide antibodies to the following sequences of the receptor beta-subunit: (i) positions 962-972 in the juxtamembrane domain, (ii) positions 1247-1261 at the end of the kinase domain, and (iii) positions 1294-1317 and (iv) positions 1309-1326, both in the receptor C terminus. We have previously shown that insulin binding to its receptor induces a conformational change in the beta-subunit C terminus. Here, we demonstrate that receptor autophosphorylation induces an additional conformational change. This process appears to be distinct from the one produced by ligand binding and can be detected in at least three different beta-subunit regions: the juxtamembrane domain, the kinase domain, and the C terminus. Hence, the cytoplasmic part of the receptor beta-subunit appears to undergo an extended conformational change upon autophosphorylation. By contrast, the insulin-induced change does not affect the juxtamembrane domain 962-972 nor the kinase domain 1247-1261 and may be limited to the receptor C terminus. Further, we show that the hormone-dependent conformational change is maintained in a kinase-deficient receptor due to a mutation at lysine 1018. Therefore, during receptor activation, the ligand-induced change could precede ATP binding and receptor autophosphorylation. We propose that insulin binding leads to a transient receptor form that may allow ATP binding and, subsequently, autophosphorylation. The second conformational change could unmask substrate-binding sites and stabilize the receptor in an active conformation. PMID:1331080

  19. Ligand Binding Reduces Conformational Flexibility in the Active Site of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from Pseudomonas aeruginosa

    OpenAIRE

    Koveal, Dorothy; Clarkson, Michael W.; Wood, Thomas K.; Page, Rebecca; Peti, Wolfgang

    2013-01-01

    TpbA is a periplasmic dual specificity phosphatase (DUSP) that controls biofilm formation in the pathogenic bacterium, Pseudomonas aeruginosa. While DUSPs are known to regulate important cellular functions in both prokaryotes and eukaryotes, very few structures of bacterial DUSPs are available. Here, we present the solution structure of TpbA in the ligand-free open conformation, along with an analysis of the structural and dynamic changes that accompany ligand/phosphate binding. While TpbA ad...

  20. Conformational toggling controls target site choice for the heteromeric transposase element Tn7.

    Science.gov (United States)

    Shi, Qiaojuan; Straus, Marco R; Caron, Jeremy J; Wang, Huasheng; Chung, Yu Seon; Guarné, Alba; Peters, Joseph E

    2015-12-15

    The bacterial transposon Tn7 facilitates horizontal transfer by directing transposition into actively replicating DNA with the element-encoded protein TnsE. Structural analysis of the C-terminal domain of wild-type TnsE identified a novel protein fold including a central V-shaped loop that toggles between two distinct conformations. The structure of a robust TnsE gain-of-activity variant has this loop locked in a single conformation, suggesting that conformational flexibility regulates TnsE activity. Structure-based analysis of a series of TnsE mutants relates transposition activity to DNA binding stability. Wild-type TnsE appears to naturally form an unstable complex with a target DNA, whereas mutant combinations required for large changes in transposition frequency and targeting stabilized this interaction. Collectively, our work unveils a unique structural proofreading mechanism where toggling between two conformations regulates target commitment by limiting the stability of target DNA engagement until an appropriate insertion site is identified. PMID:26384427

  1. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Pratul K [ORNL

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted that mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.

  2. Identification of potential small molecule allosteric modulator sites on IL-1R1 ectodomain using accelerated conformational sampling method.

    Directory of Open Access Journals (Sweden)

    Chao-Yie Yang

    Full Text Available The interleukin-1 receptor (IL-1R is the founding member of the interleukin 1 receptor family which activates innate immune response by its binding to cytokines. Reports showed dysregulation of cytokine production leads to aberrant immune cells activation which contributes to auto-inflammatory disorders and diseases. Current therapeutic strategies focus on utilizing antibodies or chimeric cytokine biologics. The large protein-protein interaction interface between cytokine receptor and cytokine poses a challenge in identifying binding sites for small molecule inhibitor development. Based on the significant conformational change of IL-1R type 1 (IL-1R1 ectodomain upon binding to different ligands observed in crystal structures, we hypothesized that transient small molecule binding sites may exist when IL-1R1 undergoes conformational transition and thus suitable for inhibitor development. Here, we employed accelerated molecular dynamics (MD simulation to efficiently sample conformational space of IL-1R1 ectodomain. Representative IL-1R1 ectodomain conformations determined from the hierarchy cluster analysis were analyzed by the SiteMap program which leads to identify small molecule binding sites at the protein-protein interaction interface and allosteric modulator locations. The cosolvent mapping analysis using phenol as the probe molecule further confirms the allosteric modulator site as a binding hotspot. Eight highest ranked fragment molecules identified from in silico screening at the modulator site were evaluated by MD simulations. Four of them restricted the IL-1R1 dynamical motion to inactive conformational space. The strategy from this study, subject to in vitro experimental validation, can be useful to identify small molecule compounds targeting the allosteric modulator sites of IL-1R and prevent IL-1R from binding to cytokine by trapping IL-1R in inactive conformations.

  3. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Hugo de Almeida

    Full Text Available Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4, and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO, which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation, a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  4. The Conformal Camera in Modeling Active Binocular Vision

    Directory of Open Access Journals (Sweden)

    Jacek Turski

    2016-08-01

    Full Text Available Primate vision is an active process that constructs a stable internal representation of the 3D world based on 2D sensory inputs that are inherently unstable due to incessant eye movements. We present here a mathematical framework for processing visual information for a biologically-mediated active vision stereo system with asymmetric conformal cameras. This model utilizes the geometric analysis on the Riemann sphere developed in the group-theoretic framework of the conformal camera, thus far only applicable in modeling monocular vision. The asymmetric conformal camera model constructed here includes the fovea’s asymmetric displacement on the retina and the eye’s natural crystalline lens tilt and decentration, as observed in ophthalmological diagnostics. We extend the group-theoretic framework underlying the conformal camera to the stereo system with asymmetric conformal cameras. Our numerical simulation shows that the theoretical horopter curves in this stereo system are conics that well approximate the empirical longitudinal horopters of the primate vision system.

  5. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects.

    Science.gov (United States)

    Yang, Gloria; Hong, Nansook; Baier, Florian; Jackson, Colin J; Tokuriki, Nobuhiko

    2016-08-16

    How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-β-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by ∼3 Å through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution. PMID:27444875

  6. Crystallographic B factor of critical residues at enzyme active site

    Institute of Scientific and Technical Information of China (English)

    张海龙; 宋时英; 林政炯

    1999-01-01

    Thirty-seven sets of crystallographic enzyme data were selected from Protein Data Bank (PDB, 1995). The average temperature factors (B) of the critical residues at the active site and the whole molecule of those enzymes were calculated respectively. The statistical results showed that the critical residues at the active site of most of the enzymes had lower B factors than did the whole molecules, indicating that in the crystalline state the critical residues at the active site of the natural enzymes possess more stable conformation than do the whole molecules. The flexibility of the active site during the unfolding by denaturing was also discussed.

  7. Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop

    DEFF Research Database (Denmark)

    Mokrosinski, Jacek; Frimurer, Thomas M; Sivertsen, Bjoern;

    2012-01-01

    . Moreover, the constitutive activity of the receptor was inhibited by Zn(2+) binding in an engineered metal-ion site stabilizing an a-helical conformation of this loop segment. It is concluded that the high constitutive activity of the ghrelin receptor is dependent upon flexibility in the C-terminal segment...

  8. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    International Nuclear Information System (INIS)

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms

  9. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Watson, Christopher J.; Turkenburg, Johan P. [The University of York, Heslington, York YO10 5DD (United Kingdom); Jiráček, Jiří [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Brzozowski, Andrzej M., E-mail: marek.brzozowski@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  10. Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity.

    Science.gov (United States)

    Wynn, R Max; Kato, Masato; Chuang, Jacinta L; Tso, Shih-Chia; Li, Jun; Chuang, David T

    2008-09-12

    Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-A crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp(394)-Trp(395)) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core. PMID:18658136

  11. 77 FR 55507 - Approval of Transfer of Early Site Permit (ESP) and Conforming Amendment, Virginia Electric and...

    Science.gov (United States)

    2012-09-10

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139; August... COMMISSION Approval of Transfer of Early Site Permit (ESP) and Conforming Amendment, Virginia Electric and... thereto. Before issuance of the proposed conforming permit amendment, the Commission will have...

  12. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex.

    Science.gov (United States)

    Záková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J; Turkenburg, Johan P; Jiráček, Jiří; Brzozowski, Andrzej M

    2014-10-01

    The structural characterization of the insulin-insulin receptor (IR) interaction still lacks the conformation of the crucial B21-B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms. PMID:25286859

  13. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies

    DEFF Research Database (Denmark)

    Bøtkjær, Kenneth Alrø; Fogh, Sarah; Bekes, Erin C;

    2011-01-01

    PA-specific antibody by shielding the access of plasminogen to the active site. Furthermore, using immunofluorescence, the conformation-specific antibodies mAb-112 and mAb-12E6B10 enabled us to selectively stain pro-uPA or active uPA on the surface of cultured cells. Moreover, in various independent model systems......Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types......, with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found...

  14. Search for DNA conformational features for functional sites. Investigation of the TATA box

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarenko, M.P.; Ponomarenko, J.V.; Kel, A.E.; Kolchanov, N.A. [Institute of Cytology and Genetics, Novosibirsk (Russian Federation)

    1996-12-31

    A method for searching for DNA conformational features significant for functional sites is developed. The method uses helical angles averaged for known X-ray structures. Nucleotide sequences are assigned mean angles in a given region. Choice of the significant angles is based on their capabilities to discriminate functional sites from random sequences. The yeast, invertebrate, and vertebrate TATA boxes are analyzed using this method. Regions neighboring the TATA boxes are found to have smaller helical twist and roll angles. The results agree with the experimental data on Dickerson-Drew dodecamers. There is a significant decrease in the length of a small roll angle region with increasing complexity of taxon organization. 28 refs., 3 figs., 3 tabs.

  15. FXR agonist activity of conformationally constrained analogs of GW 4064

    Energy Technology Data Exchange (ETDEWEB)

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y.; Caldwell, Richard D.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Navas, III, Frank; Parks, Derek J.; Spearing, Paul K.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce; (GSKNC)

    2010-09-27

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  16. Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation.

    Science.gov (United States)

    Zhao, Baoyu; Gandhi, Sonu; Yuan, Cai; Luo, Zhipu; Li, Rui; Gårdsvoll, Henrik; de Lorenzi, Valentina; Sidenius, Nicolai; Huang, Mingdong; Ploug, Michael

    2015-03-27

    The urokinase-type plasminogen activator receptor (uPAR) is a multidomain glycolipid-anchored membrane protein, which facilitates extracellular matrix remodeling by focalizing plasminogen activation to cell surfaces via its high-affinity interaction with uPA. The modular assembly of its three LU (Ly6/uPAR-like) domains is inherently flexible and binding of uPA drives uPAR into its closed conformation, which presents the higher-affinity state for vitronectin thus providing an allosteric regulatory mechanism. Using a new class of epitope-mapped anti-uPAR monoclonal antibodies (mAbs), we now demonstrate that the reciprocal stabilization is indeed also possible. By surface plasmon resonance studies, we show that these mAbs and vitronectin have overlapping binding sites on uPAR and that they share Arg91 as hotspot residue in their binding interfaces. The crystal structure solved for one of these uPAR·mAb complexes at 3.0Å clearly shows that this mAb preselects the closed uPAR conformation with an empty but correctly assembled large hydrophobic binding cavity for uPA. Accordingly, these mAbs inhibit the uPAR-dependent lamellipodia formation and migration on vitronectin-coated matrices irrespective of the conformational status of uPAR and its occupancy with uPA. This is the first study to the best of our knowledge, showing that the dynamic assembly of the three LU domains in uPARwt can be driven toward the closed form by an external ligand, which is not engaging the hydrophobic uPA binding cavity. As this binding interface is also exploited by the somatomedin B domain of vitronectin, therefore, this relationship should be taken into consideration when exploring uPAR-dependent cell adhesion and migration in vitronectin-rich environments. PMID:25659907

  17. Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions?.

    Science.gov (United States)

    Wilcox, Kevin R; Blair, John M; Smith, Melinda D; Knapp, Alan K

    2016-03-01

    Central to understanding global C cycle dynamics is the functional relationship between precipitation and net primary production (NPP). At large spatial (regional) scales, the responsiveness of aboveground NPP (ANPP) to interannual variation in annual precipitation (AP; ANPPsens) is inversely related to site-level ANPP, coinciding with turnover of plant communities along precipitation gradients. Within ecosystems experiencing chronic alterations in water availability, plant community change will also occur with unknown consequences for ANPPsens. To examine the role plant community shifts may play in determining alterations in site-level ANPPPsens, we experimentally increased precipitation by approximately 35% for two decades in a native Central U.S. grassland. Consistent with regional models, ANPPsens decreased initially as water availability and ANPP increased. However, ANPPsens shifted back to ambient levels when mesic species increased in abundance in the plant community. Similarly, in grassland sites with distinct mesic and xeric plant communities and corresponding 50% differences in ANPP, ANPPsens did not differ over almost three decades. We conclude that responses in ANPPsens to chronic alterations in water availability within an ecosystem may not conform to regional AP-ANPP patterns, despite expected changes in ANPP and plant communities. The result is unanticipated functional resistance to climate change at the site scale. PMID:27197383

  18. Conformational activation of visual rhodopsin in native disc membranes

    NARCIS (Netherlands)

    Malmerberg, E.; Bovee-Geurts, P.H.M.; Katona, G.; Deupi, X.; Arnlund, D.; Wickstrand, C.; Johansson, L.C.; Westenhoff, S.; Nazarenko, E.; GF, X.S.; Menzel, A.; Grip, W.J. de; Neutze, R.

    2015-01-01

    Rhodopsin is the G protein-coupled receptor (GPCR) that serves as a dim-light receptor for vision in vertebrates. We probed light-induced conformational changes in rhodopsin in its native membrane environment at room temperature using time-resolved wide-angle x-ray scattering. We observed a rapid co

  19. Site-Specific Characterization of Cytochrome P450cam Conformations by Infrared Spectroscopy.

    Science.gov (United States)

    Basom, Edward J; Maj, Michał; Cho, Minhaeng; Thielges, Megan C

    2016-06-21

    Conformational changes are central to protein function but challenging to characterize with both high spatial and temporal precision. The inherently fast time scale and small chromophores of infrared (IR) spectroscopy are well-suited for characterization of potentially rapidly fluctuating environments, and when frequency-resolved probes are incorporated to overcome spectral congestion, enable characterization of specific sites in proteins. We selectively incorporated p-cyanophenylalanine (CNF) as a vibrational probe at five distinct locations in the enzyme cytochrome P450cam and used IR spectroscopy to characterize the environments in substrate and/or ligand complexes reflecting those in the catalytic cycle. Molecular dynamics (MD) simulations were performed to provide a structural basis for spectral interpretation. Together the experimental and simulation data suggest that the CN frequencies are sensitive to both long-range influences, resulting from the particular location of a residue within the enzyme, as well as short-range influences from hydrogen bonding and packing interactions. The IR spectra demonstrate that the environments and effects of substrate and/or ligand binding are different at each position probed and also provide evidence that a single site can experience multiple environments. This study illustrates how IR spectroscopy, when combined with the spectral decongestion and spatial selectivity afforded by CNF incorporation, provides detailed information about protein structural changes that underlie function.

  20. Cofactor bypass variants reveal a conformational control mechanism governing cell wall polymerase activity.

    Science.gov (United States)

    Markovski, Monica; Bohrhunter, Jessica L; Lupoli, Tania J; Uehara, Tsuyoshi; Walker, Suzanne; Kahne, Daniel E; Bernhardt, Thomas G

    2016-04-26

    To fortify their cytoplasmic membrane and protect it from osmotic rupture, most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by the penicillin-binding proteins (PBPs). As their name implies, these proteins are the targets of penicillin and related antibiotics. We and others have shown that the PG synthases PBP1b and PBP1a of Escherichia coli require the outer membrane lipoproteins LpoA and LpoB, respectively, for their in vivo function. Although it has been demonstrated that LpoB activates the PG polymerization activity of PBP1b in vitro, the mechanism of activation and its physiological relevance have remained unclear. We therefore selected for variants of PBP1b (PBP1b*) that bypass the LpoB requirement for in vivo function, reasoning that they would shed light on LpoB function and its activation mechanism. Several of these PBP1b variants were isolated and displayed elevated polymerization activity in vitro, indicating that the activation of glycan polymer growth is indeed one of the relevant functions of LpoB in vivo. Moreover, the location of amino acid substitutions causing the bypass phenotype on the PBP1b structure support a model in which polymerization activation proceeds via the induction of a conformational change in PBP1b initiated by LpoB binding to its UB2H domain, followed by its transmission to the glycosyl transferase active site. Finally, phenotypic analysis of strains carrying a PBP1b* variant revealed that the PBP1b-LpoB complex is most likely not providing an important physical link between the inner and outer membranes at the division site, as has been previously proposed. PMID:27071112

  1. Conformal Array Pattern Synthesis and Activated Elements Selection Strategy Based on PSOGSA Algorithm

    Directory of Open Access Journals (Sweden)

    Bin Sun

    2015-01-01

    Full Text Available The pattern synthesis and activated element selection for conformal array is investigated based on hybrid particle swarm optimization-gravitational search algorithm (PSOGSA in this paper. With the introduction of PSOGSA algorithm which is a novel hybrid optimization technique, the element excitations are optimized to obtain the desired pattern for conformal array in the case of considering uncoupled and coupled element pattern. Numerical simulation and full-wave electromagnetic calculation verify the advantage and efficiency of our method. Then, a novel strategy of activated element selection based on PSOGSA algorithm is proposed for saving the energy consumption in conformal array.

  2. Immobilization of the distal hinge in the labile serpin plasminogen activator inhibitor 1: identification of a transition state with distinct conformational and functional properties.

    Science.gov (United States)

    De Taeye, Bart; Compernolle, Griet; Dewilde, Maarten; Biesemans, Wouter; Declerck, Paul J

    2003-06-27

    The serpin plasminogen activator inhibitor-1 (PAI-1) plays an important role in the regulation of the fibrinolytic activity in blood. In plasma, PAI-1 circulates mainly in the active conformation. However, PAI-1 spontaneously converts to a latent conformation. This conversion comprises drastic conformational changes in both the distal and the proximal hinge region of the reactive center loop. To study the functional and conformational rearrangements associated solely with the mobility of the proximal hinge, disulfide bonds were introduced to immobilize the distal hinge region. These mutants exhibited specific activities comparable with that of PAI-1-wt. However, the engineered disulfide bond had a major effect on the conformational and associated functional transitions. Strikingly, in contrast to PAI-1-wt, inactivation of these mutants yielded a virtually complete conversion to a substrate-like conformation. Comparison of the digestion pattern (with trypsin and elastase) of the mutants and PAI-1-wt revealed that the inactivated mutants have a conformation differing from that of latent and active PAI-1-wt. Unique trypsin-susceptible cleavage sites arose upon inactivation of these mutants. The localization of these exposed residues provides evidence that a displacement of alphahF has occurred, indicating that the proximal hinge is partly inserted between s3A and s5A. In conclusion, immobilization of the distal hinge region in PAI-1 allowed the identification of an "intermediate" conformation characterized by a partial insertion of the proximal hinge region. We hypothesize that locking PAI-1 in this transition state between active and latent conformations is associated with a displacement of alphahF, subsequently resulting in substrate behavior.

  3. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    Science.gov (United States)

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  4. Insights into mechanism of glucokinase activation: observation of multiple distinct protein conformations.

    Science.gov (United States)

    Liu, Shenping; Ammirati, Mark J; Song, Xi; Knafels, John D; Zhang, Jeff; Greasley, Samantha E; Pfefferkorn, Jeffrey A; Qiu, Xiayang

    2012-04-20

    Human glucokinase (GK) is a principal regulating sensor of plasma glucose levels. Mutations that inactivate GK are linked to diabetes, and mutations that activate it are associated with hypoglycemia. Unique kinetic properties equip GK for its regulatory role: although it has weak basal affinity for glucose, positive cooperativity in its binding of glucose causes a rapid increase in catalytic activity when plasma glucose concentrations rise above euglycemic levels. In clinical trials, small molecule GK activators (GKAs) have been efficacious in lowering plasma glucose and enhancing glucose-stimulated insulin secretion, but they carry a risk of overly activating GK and causing hypoglycemia. The theoretical models proposed to date attribute the positive cooperativity of GK to the existence of distinct protein conformations that interconvert slowly and exhibit different affinities for glucose. Here we report the respective crystal structures of the catalytic complex of GK and of a GK-glucose complex in a wide open conformation. To assess conformations of GK in solution, we also carried out small angle x-ray scattering experiments. The results showed that glucose dose-dependently converts GK from an apo conformation to an active open conformation. Compared with wild type GK, activating mutants required notably lower concentrations of glucose to be converted to the active open conformation. GKAs decreased the level of glucose required for GK activation, and different compounds demonstrated distinct activation profiles. These results lead us to propose a modified mnemonic model to explain cooperativity in GK. Our findings may offer new approaches for designing GKAs with reduced hypoglycemic risk.

  5. Conformational change in full-length mouse prion: A site-directed spin-labeling study

    International Nuclear Information System (INIS)

    The structure of the mouse prion (moPrP) was studied using site-directed spin-labeling electron spin resonance (SDSL-ESR). Since a previous NMR study by Hornemanna et al., [Hornemanna, Korthb, Oeschb, Rieka, Widera, Wuethricha, Glockshubera, Recombinant full-length murine prion protein, mPrP (23-231): purification and spectroscopic characterization, FEBS Lett. 413 (1997) 277-281] has indicated that N96, D143, and T189 in moPrP are localized in a Cu2+ binding region, Helix1 and Helix2, respectively, three recombinant moPrP mutations (N96C, D143C, and T189C) were expressed in an Escherichia coli system, and then refolded by dialysis under low pH and purified by reverse-phase HPLC. By using the preparation, we succeeded in preserving a target cystein residue without alteration of the α-helix structure of moPrP and were able to apply SDSL-ESR with a methane thiosulfonate spin label to the full-length prion protein. The rotational correlation times (τ) of 1.1, 3.3, and 4.8 ns were evaluated from the X-band ESR spectra at pH 7.4 and 20 deg C for N96R1, D143R1, and T189R1, respectively. τ reflects the fact that the Cu2+ binding region is more flexible than Helix1 or Helix2. ESR spectra recorded at various temperatures revealed two phases together with a transition point at around 20 deg C in D143R1 and T189R1, but not in N96R1. With the variation of pH from 4.0 to 7.8, ESR spectra of T189R1 at 20 deg C showed a gradual increase of τ from 2.9 to 4.8 ns. On the other hand, the pH-dependent conformational changes in N96R1 and D143R1 were negligible. These results indicated that T189 located in Helix2 possessed a structure sensitive to physiological pH changes; simultaneously, N96 in the Cu2+ binding region and D143 in Helix1 were conserved

  6. Activity and Conformation of Yeast Alcohol Dehydrogenase (YADH) Entrapped in Reverse Micelles.

    Science.gov (United States)

    Das; Mozumdar; Maitra

    2000-10-15

    Yeast alcohol dehydrogenase (YADH) solubilized in reverse micelles of aerosol OT (i.e., AOT or sodium bis (2-ethyl hexyl) sulfosuccinate) in isooctane has been shown to be catalytically more active than that in aqueous buffer under optimum conditions of pH, temperature, and water content in reverse micelles. Studies of the secondary structure conformational changes of the enzyme in reverse micelles have been made from circular dichroism spectroscopy. It has been seen that the conformation of YADH in reverse micelles is extremely sensitive to pH, temperature, and water content. A comparison has been made between the catalytic activity of the enzyme and the alpha-helix content in the conformation and it has been observed that the enzyme is most active at the maximum alpha-helix content. While the beta-sheet content in the conformation of the entrapped enzyme was found to be dependent on the enzyme-micelle interface interaction, the alpha-helix and random coil conformations are governed by the degree of entrapment and the extent of rigidity provided by the micelle core to the enzyme structure. Copyright 2000 Academic Press.

  7. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.

    Science.gov (United States)

    Ye, Libin; Van Eps, Ned; Zimmer, Marco; Ernst, Oliver P; Prosser, R Scott

    2016-05-12

    Conformational selection and induced fit are two prevailing mechanisms to explain the molecular basis for ligand-based activation of receptors. G-protein-coupled receptors are the largest class of cell surface receptors and are important drug targets. A molecular understanding of their activation mechanism is critical for drug discovery and design. However, direct evidence that addresses how agonist binding leads to the formation of an active receptor state is scarce. Here we use (19)F nuclear magnetic resonance to quantify the conformational landscape occupied by the adenosine A2A receptor (A2AR), a prototypical class A G-protein-coupled receptor. We find an ensemble of four states in equilibrium: (1) two inactive states in millisecond exchange, consistent with a formed (state S1) and a broken (state S2) salt bridge (known as 'ionic lock') between transmembrane helices 3 and 6; and (2) two active states, S3 and S3', as identified by binding of a G-protein-derived peptide. In contrast to a recent study of the β2-adrenergic receptor, the present approach allowed identification of a second active state for A2AR. Addition of inverse agonist (ZM241385) increases the population of the inactive states, while full agonists (UK432097 or NECA) stabilize the active state, S3', in a manner consistent with conformational selection. In contrast, partial agonist (LUF5834) and an allosteric modulator (HMA) exclusively increase the population of the S3 state. Thus, partial agonism is achieved here by conformational selection of a distinct active state which we predict will have compromised coupling to the G protein. Direct observation of the conformational equilibria of ligand-dependent G-protein-coupled receptor and deduction of the underlying mechanisms of receptor activation will have wide-reaching implications for our understanding of the function of G-protein-coupled receptor in health and disease. PMID:27144352

  8. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity.

    Directory of Open Access Journals (Sweden)

    Laura M J Ylinen

    Full Text Available TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5alpha but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations.

  9. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    OpenAIRE

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and ...

  10. SCR activity of conformed CuOx/ZrO2-SO4 catalysts

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Yates, Malcolm; Due-Hansen, Johannes;

    2010-01-01

    CuOX/ZrO2-SO4 catalysts have been synthesised as conformed materials with the use of sepiolite as agglomerant and the performance in the NH3-SCR reaction with relation to biomass fired boiler units have been studied. The optimal Cu-loading of the catalysts is 3 wt.% CuO, both in terms of activity...

  11. Density functional theory studies of MTSL nitroxide side chain conformations attached to an activation loop

    CERN Document Server

    Concilio, Maria Grazia; Bayliss, Richard; Burgess, Selena G

    2016-01-01

    A quantum-mechanical (QM) method rooted on density functional theory (DFT) has been employed to determine conformations of the methane-thiosulfonate spin label (MTSL) attached to a fragment extracted from the activation loop of Aurora-A kinase. The features of the calculated energy surface revealed low energy barriers between isoenergetic minima and the system could be described in a population of 76 rotamers that can be also considered for other systems since it was found that the X3, X4 and X5 do not depend on the previous two dihedral angles. Conformational states obtained were seen to comparable to those obtained in the {\\alpha}-helix systems studied previously, indicating that the protein backbone does not affect the torsional profiles significantly and suggesting the possibility to use determined conformations for other protein systems for further modelling studies.

  12. Efficient oxygen electrocatalysis on special active sites

    DEFF Research Database (Denmark)

    Halck, Niels Bendtsen

    is used to explain the increase in activity observed for the OER catalyst ruthenium dioxide when it is mixed with nickel or cobalt. Manganese and cobalt oxides when in the vicinity of gold also display an increase in OER activity which can be explained by locally created special active sites. Density...

  13. Promoter proximal polyadenylation sites reduce transcription activity

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site...

  14. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  15. Characterization of Reuse Activities at Contaminated Sites

    OpenAIRE

    Angela Vitulli; Charlotte Dougherty; Kimberly Bosworth

    2004-01-01

    Given the increased focus on reuse activity within EPA and state site cleanup programs, policy makers would benefit from looking across programs to better understand the extent and nature of reuse; examine site characteristics that influence reuse; leverage lessons learned; and coordinate reuse activities, data collection, and information management. This research paper begins to examine these issues. It reports the results of a preliminary review and analysis of available EPA and state progr...

  16. Fingerprinting differential active site constraints of ATPases

    OpenAIRE

    Hacker, Stephan M.; Hardt, Norman; Buntru, Alexander; Pagliarini, Dana; Möckel, Martin; Mayer, Thomas U; Scheffner, Martin; Hauck, Christof R.; Marx, Andreas

    2013-01-01

    The free energy provided by adenosine triphosphate (ATP) hydrolysis is central to many cellular processes and, therefore, the number of enzymes utilizing ATP as a substrate is almost innumerable. Modified analogues of ATP are a valuable means to understand the biological function of ATPases. Although these enzymes have evolved towards binding to ATP, large differences in active site architectures were found. In order to systematically access the specific active site constraints of different A...

  17. Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Klein-Seetharaman Judith

    2008-02-01

    Full Text Available Abstract Metabotropic glutamate receptors (mGluRs are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects – enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%, the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%, the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86% and 8/9 (89% for ArgusLab and 10/14 (71% and 7/9 (78% for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by

  18. Sequential conformation change and activation of chicken liver dihydrofolate reductase in low concentration of guanidine hydrochloride

    Institute of Scientific and Technical Information of China (English)

    范映辛; 朱笠; 周筠梅; 邹承鲁

    1997-01-01

    The conformation changes of dihydrofolate reductase (DHFR) from chicken liver in guanidine hy-drochloride were monitored by protein intrinsic fluorescence, hydrophobic fluorescence probe TNS and limited proteol-ysis by proteinase K. The kinetics of the enzyme denaturation were also studied and compared with its activity changes. It was indicated by the enhanced fluorescence of 2-p-toluidinylnaphthalene (TNS) that a subtle conforma-tional change of the enzyme in dilute GuHCl parallels GuHCl-induced activation. At GuHCl concentration higher than 0.75 mol/L, the conformational change can be detected by increased susceptibility of the enzyme to proteinase K, but no significant gross conformational change of the enzyme molecule is observed by intrinsic fluorescence up to a GuHCl concentration of 1.2 mol/L. The results suggest that the denaturation of DHFR by GuHCl does not follow strictly the two-state model. The enzyme seems to open up sequentially with increasing concentrations of denaturants, mainly at th

  19. Non-enzymatic Glycation of Almond Cystatin Leads to Conformational Changes and Altered Activity.

    Science.gov (United States)

    Siddiqui, Azad A; Sohail, Aamir; Bhat, Sheraz A; Rehman, Md T; Bano, Bilqees

    2015-01-01

    The non-enzymatic reaction between proteins and reducing sugars, known as glycation, leads to the formation of inter and intramolecular cross-links of proteins. Stable end products called as advanced Maillard products or advanced glycation end products (AGEs) have received tremendous attention since last decades. It was suggested that the formation of AGEs not only modify the conformation of proteins but also induces altered biological activity. In this study, cystatin purified from almond was incubated with three different sugars namely D-ribose, fructose and lactose to monitor the glycation process. Structural changes induced in cystatin on glycation were studied using UV-visible spectroscopy, fluorescence spectroscopy, CD and FTIR techniques. Glycated cystatin was found to migrate slower on electrophoresis as compared to control cystatin. Biological activity data of glycated cystatin showed that D-ribose was most effective in inducing conformational changes with maximum altered activity.

  20. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    Science.gov (United States)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  1. Site-specific conformational determination in thermal unfolding studies of helical peptides using vibrational circular dichroism with isotopic substitution

    Science.gov (United States)

    Silva, R. A. G. D.; Kubelka, Jan; Bour, Petr; Decatur, Sean M.; Keiderling, Timothy A.

    2000-01-01

    Understanding the detailed mechanism of protein folding requires dynamic, site-specific stereochemical information. The short time response of vibrational spectroscopies allows evaluation of the distribution of populations in rapid equilibrium as the peptide unfolds. Spectral shifts associated with isotopic labels along with local stereochemical sensitivity of vibrational circular dichroism (VCD) allow determination of the segment sequence of unfolding. For a series of alanine-rich peptides that form α-helices in aqueous solution, we used isotopic labeling and VCD to demonstrate that the α-helix noncooperatively unwinds from the ends with increasing temperature. For these blocked peptides, the C-terminal is frayed at 5°C. Ab initio level theoretical simulations of the IR and VCD band shapes are used to analyze the spectra and to confirm the conformation of the labeled components. The VCD signals associated with the labeled residues are amplified by coupling to the nonlabeled parts of the molecule. Thus small labeled segments are detectable and stereochemically defined in moderately large peptides in this report of site-specific peptide VCD conformational analysis. PMID:10880566

  2. Design, synthesis, and biological activities of conformationally restricted analogs of primaquine with a 1,10-phenanthroline framework

    OpenAIRE

    Sall, C.; Yapi, A. D.; Desbois, N.; Chevalley, Séverine; Chezal, J.M.; Tan, K.; Teulade, J. C.; Valentin, A; Y. Blache

    2008-01-01

    A series of primaquine analogs was prepared, according to a conformationally restricted conformation of primaquine. In vitro antiplasmodial activities were evaluated and showed that all compounds were active on different strains of Plasmodium falciparum. In particular compounds 5 and 15 possessing a methoxy group were more active than was primaquine. Furthermore, analog 5 displayed good in vitro gametocytocidal activity. In addition selectivity indexes were calculated in respect with cytotoxi...

  3. A neglected modulator of insulin-degrading enzyme activity and conformation: The pH.

    Science.gov (United States)

    Grasso, Giuseppe; Satriano, Cristina; Milardi, Danilo

    2015-01-01

    Insulin-degrading enzyme (IDE), a ubiquitously expressed zinc metalloprotease, has multiple activities in addition to insulin degradation and its malfunction is believed to connect type 2 diabetes with Alzheimer's disease. IDE has been found in many different cellular compartments, where it may experience significant physio-pathological pH variations. However, the exact role of pH variations on the interplay between enzyme conformations, stability, oligomerization state and catalysis is not understood. Here, we use ESI mass spectrometry, atomic force microscopy, surface plasmon resonance and circular dichroism to investigate the structure-activity relationship of IDE at different pH values. We show that acidic pH affects the ability of the enzyme to bind the substrate and decrease the stability of the protein by inducing an α-helical bundle conformation with a concomitant dissociation of multi-subunit IDE assemblies into monomeric units and loss of activity. These effects suggest a major role played by electrostatic forces in regulating multi-subunit enzyme assembly and function. Our results clearly indicate a pH dependent coupling among enzyme conformation, assembly and stability and suggest that cellular acidosis can have a large effect on IDE oligomerization state, inducing an enzyme inactivation and an altered insulin degradation that could have an impact on insulin signaling.

  4. Simultaneous measurement of DNA motor protein conformation and activity with combined optical trap and single-molecule fluorescence

    Science.gov (United States)

    Chemla, Yann

    2013-03-01

    We present single-molecule measurements of Superfamily 1 UvrD helicase DNA unwinding that reveal directly how helicase stoichiometry and conformation regulate motor activity. Using a new instrument that combines high resolution optical tweezers with single-molecule fluorescence microscopy, we record DNA unwinding activity with base pair-scale resolution (via optical tweezers) simultaneously with helicase stoichiometry and conformation (via fluorescence). Quantifying the fluorescence signal from labeled UvrD, we observe that pairs of UvrD molecules are required for long distance unwinding but that individual molecules exhibit limited, non-processive unwinding activity. UvrD is also known to exhibit two different conformations, `closed' and `open', based on the orientation of its 2B regulatory domain. The function of these conformations has remained elusive. Measuring the fluorescence of FRET labeled proteins, we detect directly the conformation of the 2B domain of individual UvrD molecules during unwinding activity. We observe that UvrD is in the `closed' conformation during DNA unwinding but surprisingly switches to the `open' conformation upon reversal of helicase direction, i.e. when UvrD switches strands and translocates on the opposing strand with the DNA junction rezipping behind it. We hypothesize that the 2B domain acts as a conformational switch that controls DNA unwinding vs. re-annealing. Work supported by NSF (PHY-082261, Center for the Physics of Living Cells) and NIH (R21 RR025341A)

  5. Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins.

    Directory of Open Access Journals (Sweden)

    Carolina Gomez-Diaz

    Full Text Available Pheromones form an essential chemical language of intraspecific communication in many animals. How olfactory systems recognize pheromonal signals with both sensitivity and specificity is not well understood. An important in vivo paradigm for this process is the detection mechanism of the sex pheromone (Z-11-octadecenyl acetate (cis-vaccenyl acetate [cVA] in Drosophila melanogaster. cVA-evoked neuronal activation requires a secreted odorant binding protein, LUSH, the CD36-related transmembrane protein SNMP, and the odorant receptor OR67d. Crystallographic analysis has revealed that cVA-bound LUSH is conformationally distinct from apo (unliganded LUSH. Recombinantly expressed mutant versions of LUSH predicted to enhance or diminish these structural changes produce corresponding alterations in spontaneous and/or cVA-evoked activity when infused into olfactory sensilla, leading to a model in which the ligand for pheromone receptors is not free cVA, but LUSH that is "conformationally activated" upon cVA binding. Here we present evidence that contradicts this model. First, we demonstrate that the same LUSH mutants expressed transgenically affect neither basal nor pheromone-evoked activity. Second, we compare the structures of apo LUSH, cVA/LUSH, and complexes of LUSH with non-pheromonal ligands and find no conformational property of cVA/LUSH that can explain its proposed unique activated state. Finally, we show that high concentrations of cVA can induce neuronal activity in the absence of LUSH, but not SNMP or OR67d. Our findings are not consistent with the model that the cVA/LUSH complex acts as the pheromone ligand, and suggest that pheromone molecules alone directly activate neuronal receptors.

  6. A vitellogenin polyserine cleavage site: highly disordered conformation protected from proteolysis by phosphorylation.

    Science.gov (United States)

    Havukainen, Heli; Underhaug, Jarl; Wolschin, Florian; Amdam, Gro; Halskau, Øyvind

    2012-06-01

    Vitellogenin (Vg) is an egg-yolk precursor protein in most oviparous species. In honeybee (Apis mellifera), the protein (AmVg) also affects social behavior and life-span plasticity. Despite its manifold functions, the AmVg molecule remains poorly understood. The subject of our structure-oriented AmVg study is its polyserine tract - a little-investigated repetitive protein segment mostly found in insects. We previously reported that AmVg is tissue specifically cleaved in the vicinity of this tract. Here, we show that, despite its potential for an open, disordered structure, AmVg is unexpectedly resistant to trypsin/chymotrypsin digestion at the tract. Our findings suggest that multiple phosphorylation plays a role in this resilience. Sequence variation is highly pronounced at the polyserine region in insect Vgs. We demonstrate that sequence differences in this region can lead to structural variation, as NMR and circular dichroism (CD) evidence assign different conformational propensities to polyserine peptides from the honeybee and the jewel wasp Nasonia vitripennis; the former is extended and disordered and the latter more compact and helical. CD analysis of the polyserine region of bumblebee Bombus ignitus and wasp Pimpla nipponica supports a random coil structure in these species. The spectroscopic results strengthen our model of the AmVg polyserine tract as a flexible domain linker shielded by phosphorylation. PMID:22573762

  7. Synthesis and biological activity of conformationally restricted gypsy moth pheromone mimics.

    Science.gov (United States)

    Chen, Hao; Gong, Yongmei; Gries, Regine M; Plettner, Erika

    2010-04-15

    The design and synthesis of a series of conformationally constrained mimics of gypsy moth sex pheromone, (+)-disparlure (7R,8S)-2-methyl-7,8-epoxyoctadecane, are described. The core structure of the mimics is derived from 5-(2'-hydroxyethyl)cyclopent-2-en-1-ol. Substituent optimization of the analogs was accomplished through the synthesis of mini-libraries and pure individual compounds, followed by electrophysiological experiments with male gypsy moth antennae. The electroantennogram results show that the analogs elicited weak to no antennal responses themselves. There was a clear structure-activity pattern for odorant activity, with ethyl substituents being best. Further, when puffed simultaneously with the pheromone, some of the compounds gave a significant enhancement of the antennal depolarization, indicating an additive or synergistic effect. A pure pheromone stimulus following a mixed compound/pheromone stimulus was generally not affected, with two exceptions: one compound enhanced and another inhibited a subsequent stimulus. The compounds also prolonged the stimulation of the antenna, which manifested itself in widened electroantennogram peaks. We tested the hypothesis that this prolonged stimulation may be due to the stabilization of a particular conformer of the pheromone-binding protein (PBP). Compounds that caused PBP2 to adopt a similar conformation than in the presence of pheromone also caused peak widening. This was not the case with PBP1.

  8. Search for Active-State Conformation of Drug Target GPCR Using Real-Coded Genetic Algorithm

    Science.gov (United States)

    Ishino, Yoko; Harada, Takanori; Aida, Misako

    G-Protein coupled receptors (GPCRs) comprise a large superfamily of proteins and are a target for nearly 50% of drugs in clinical use today. GPCRs have a unique structural motif, seven transmembrane helices, and it is known that agonists and antagonists dock with a GPCR in its ``active'' and ``inactive'' condition, respectively. Knowing conformations of both states is eagerly anticipated for elucidation of drug action mechanism. Since GPCRs are difficult to crystallize, the 3D structures of these receptors have not yet been determined by X-ray crystallography, except the inactive-state conformation of two proteins. The conformation of them enabled the inactive form of other GPCRs to be modeled by computer-aided homology modeling. However, to date, the active form of GPCRs has not been solved. This paper describes a novel method to predict the 3D structure of an active-state GPCR aiming at molecular docking-based virtual screening using real-coded genetic algorithm (real-coded GA), receptor-ligand docking simulations, and molecular dynamics (MD) simulations. The basic idea of the method is that the MD is first used to calculate an average 3D coordinates of all atoms of a GPCR protein against heat fluctuation on the pico- or nano- second time scale, and then real-coded GA involving receptor-ligand docking simulations functions to determine the rotation angle of each helix as a movement on wider time scale. The method was validated using human leukotriene B4 receptor BLT1 as a sample GPCR. Our study demonstrated that the established evolutionary search for the active state of the leukotriene receptor provided the appropriate 3D structure of the receptor to dock with its agonists.

  9. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    Science.gov (United States)

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth.

  10. Site-specific intercalation at the triplex-duplex junction induces a conformational change which is detectable by hypersensitivity to diethylpyrocarbonate.

    OpenAIRE

    Collier, D A; Mergny, J L; Thuong, N T; Helene, C

    1991-01-01

    Using site-specific intercalation directed by intermolecular triplex formation, the conformation of an intercalation site in DNA was examined by footprinting with the purine-specific (A much greater than G) reagent diethylpyrocarbonate. Site specific intercalation was achieved by covalently linking an intercalator to the 5' end of a homopyrimidine oligodeoxynucleotide, which bound to a homopurinehomopyrimidine stretch in a recombinant plasmid via intermolecular triplex formation. This directs...

  11. Conformational entropic maps of functional coupling domains in GPCR activation: A case study with beta2 adrenergic receptor

    Science.gov (United States)

    Liu, Fan; Abrol, Ravinder; Goddard, William, III; Dougherty, Dennis

    2014-03-01

    Entropic effect in GPCR activation is poorly understood. Based on the recent solved structures, researchers in the GPCR structural biology field have proposed several ``local activating switches'' that consisted of a few number of conserved residues, but have long ignored the collective dynamical effect (conformational entropy) of a domain comprised of an ensemble of residues. A new paradigm has been proposed recently that a GPCR can be viewed as a composition of several functional coupling domains, each of which undergoes order-to-disorder or disorder-to-order transitions upon activation. Here we identified and studied these functional coupling domains by comparing the local entropy changes of each residue between the inactive and active states of the β2 adrenergic receptor from computational simulation. We found that agonist and G-protein binding increases the heterogeneity of the entropy distribution in the receptor. This new activation paradigm and computational entropy analysis scheme provides novel ways to design functionally modified mutant and identify new allosteric sites for GPCRs. The authors thank NIH and Sanofi for funding this project.

  12. Non-conformable, partial and conformable transposition

    DEFF Research Database (Denmark)

    König, Thomas; Mäder, Lars Kai

    2013-01-01

    Although member states are obliged to transpose directives into domestic law in a conformable manner and receive considerable time for their transposition activities, we identify three levels of transposition outcomes for EU directives: conformable, partially conformable and non-conformable...... and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...

  13. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it [Department of Oncology, University of Torino, Torino (Italy); Ciammella, Patrizia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Piva, Cristina; Ragona, Riccardo [Department of Oncology, University of Torino, Torino (Italy); Botto, Barbara [Hematology, Città della Salute e della Scienza, Torino (Italy); Gavarotti, Paolo [Hematology, University of Torino and Città della Salute e della Scienza, Torino (Italy); Merli, Francesco [Hematology Unit, ASMN Hospital IRCCS, Reggio Emilia (Italy); Vitolo, Umberto [Hematology, Città della Salute e della Scienza, Torino (Italy); Iotti, Cinzia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Ricardi, Umberto [Department of Oncology, University of Torino, Torino (Italy)

    2014-06-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  14. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    International Nuclear Information System (INIS)

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  15. Epitope mapping of conformational V2-specific anti-HIV human monoclonal antibodies reveals an immunodominant site in V2.

    Directory of Open Access Journals (Sweden)

    Luzia M Mayr

    Full Text Available In the case-control study of the RV144 vaccine trial, the levels of antibodies to the V1V2 region of the gp120 envelope glycoprotein were found to correlate inversely with risk of HIV infection. This recent demonstration of the potential role of V1V2 as a vaccine target has catapulted this region into the focus of HIV-1 research. We previously described seven human monoclonal antibodies (mAbs derived from HIV-infected individuals that are directed against conformational epitopes in the V1V2 domain. In this study, using lysates of SF162 pseudoviruses carrying V1V2 mutations, we mapped the epitopes of these seven mAbs. All tested mAbs demonstrated a similar binding pattern in which three mutations (F176A, Y177T, and D180L abrogated binding of at least six of the seven mAbs to ≤15% of SF162 wildtype binding. Binding of six or all of the mAbs was reduced to ≤50% of wildtype by single substitutions at seven positions (168, 180, 181, 183, 184, 191, and 193, while one change, V181I, increased the binding of all mAbs. When mapped onto a model of V2, our results suggest that the epitope of the conformational V2 mAbs is located mostly in the disordered region of the available crystal structure of V1V2, overlapping and surrounding the α4β7 binding site on V2.

  16. Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    glycine-free or a glycine-bound subunit. Agonist-free subunits were created by incorporating T204A and R65K mutations, which disrupted glycine binding to both (+) and (-) subunit interfaces. In heteromeric receptors comprising wild-type and R65K,T204A,R271C triple-mutant subunits, the fluorescence...... response exhibited a drastically reduced glycine sensitivity relative to the current response. Two conclusions can be drawn from this. First, because the labeled glycine-free subunits were activated by glycine binding to neighboring wild-type subunits, our results provide evidence for a cooperative...... activation mechanism. However, because the fluorescent label on glycine-free subunits does not reflect movements at the channel gate, we conclude that glycine binding also produces a local non-concerted conformational change that is not essential for receptor activation....

  17. BET is active on Sellafield site

    International Nuclear Information System (INIS)

    Several companies, all part of BET Plant Services are carrying out work at the British Nuclear Fuels (BNFL) site at Sellafield, Cumbria, on one of the largest construction projects in Europe. The main development scheme is the THORP (Thermal Oxide Reprocessing Plant) buildings. One of the BET companies has the contract to paint the inside of the fuel storage ponds. It will also coat the surfaces of the MASWEP (Medium Active Solid Waste Encapsulation Plant) complex. Other work includes insulation and fire prevention installation. Scaffolding at the EARP (Enhanced Actinide Removal Plant) site is being provided on a common user basis so all the contractors can use the scaffolding and share the cost. Temporary office and living accommodation blocks have been provide by another BET company. (author)

  18. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.

    Science.gov (United States)

    Truongvan, Ngoc; Jang, Sei-Heon; Lee, ChangWoo

    2016-06-28

    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes. PMID:27259687

  19. A sandwich ELISA for the conformation-specific quantification of the activated form of human Bax.

    Science.gov (United States)

    Teijido, Oscar; Ganesan, Yogesh Tengarai; Llanos, Raul; Peton, Ashley; Urtecho, Jean-Baptiste; Soprani, Adauri; Villamayor, Aimee; Antonsson, Bruno; Manon, Stéphen; Dejean, Laurent

    2016-03-15

    Bcl-2 family proteins are critical regulators of mitochondrial outer membrane permeabilization (MOMP), which represents the point of no return of apoptotic cell death. The exposure of the Bax N-terminus at the mitochondria reflects Bax activation; and this activated configuration of the Bax protein is associated with MOMP. N-terminal exposure can be detected using specific monoclonal and/or polyclonal antibodies, and the onset of activated Bax has extensively been used as an early marker of apoptosis. The protocols of immunoprecipitation and/or immunocytochemistry commonly used to detect activated Bax are long and tedious, and allow semiquantification of the antigen at best. The sandwich ELISA protocol we developed has a 5 ng/mL detection limit and is highly specific for the activated conformation of Bax. This ELISA allows a rapid quantification of activated human Bax in whole cells and isolated mitochondria protein extracts. These properties grant this assay the potential to further clarify the prognostic and diagnostic value of activated Bax in disorders associated with deregulated apoptotic pathways such as degenerative diseases or cancer. PMID:26748144

  20. Representation of target-bound drugs by computed conformers: implications for conformational libraries

    Directory of Open Access Journals (Sweden)

    Goede Andrean

    2006-06-01

    Full Text Available Abstract Background The increasing number of known protein structures provides valuable information about pharmaceutical targets. Drug binding sites are identifiable and suitable lead compounds can be proposed. The flexibility of ligands is a critical point for the selection of potential drugs. Since computed 3D structures of millions of compounds are available, the knowledge of their binding conformations would be a great benefit for the development of efficient screening methods. Results Integration of two public databases allowed superposition of conformers for 193 approved drugs with 5507 crystallised target-bound counterparts. The generation of 9600 drug conformers using an atomic force field was carried out to obtain an optimal coverage of the conformational space. Bioactive conformations are best described by a conformational ensemble: half of all drugs exhibit multiple active states, distributed over the entire range of the reachable energy and conformational space. A number of up to 100 conformers per drug enabled us to reproduce the bound states within a similarity threshold of 1.0 Å in 70% of all cases. This fraction rises to about 90% for smaller or average sized drugs. Conclusion Single drugs adopt multiple bioactive conformations if they interact with different target proteins. Due to the structural diversity of binding sites they adopt conformations that are distributed over a broad conformational space and wide energy range. Since the majority of drugs is well represented by a predefined low number of conformers (up to 100 this procedure is a valuable method to compare compounds by three-dimensional features or for fast similarity searches starting with pharmacophores. The underlying 9600 generated drug conformers are downloadable from the Super Drug Web site 1. All superpositions are visualised at the same source. Additional conformers (110,000 of 2400 classified WHO-drugs are also available.

  1. Retinobenzoic acids. 4. Conformation of aromatic amides with retinoidal activity. Importance of trans-amide structure for the activity.

    Science.gov (United States)

    Kagechika, H; Himi, T; Kawachi, E; Shudo, K

    1989-10-01

    N-Methylation of two retinoidal amide compounds, 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benz oic acid (3, Am80) and 4-[[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2- naphthalenyl)carbonyl]amino]benzoic acid (5, Am580), resulted in the disappearance of their potent differentiation-inducing activity on human promyelocytic leukemia cell line HL-60. Studies with 1H NMR and UV spectroscopy indicated that large conformational differences exist between the active secondary amides and the inactive N-methyl amides. From a comparison of the spectroscopic results of these amides with those of stilbene derivatives, the conformations of the active amides are expected to resemble that of (E)-stilbene, whereas the inactive amides resemble the Z isomer: 3 (Am80) and 5 (Am580) have a trans-amide bond and their whole structures are elongated, while the N-methylated compounds [4 (Am90) and 6 (Am590)] have a cis-amide bond, resulting in the folding of the two benzene rings. These structures in the crystals were related to those in solution by 13C NMR spectroscopic comparison between the two phases (solid and solution).

  2. Conformation-activity studies on the interaction of berberine with acetylcholinesterase:Physical chemistry approach

    Institute of Scientific and Technical Information of China (English)

    Jin Xiang; Changping Yu; Fang Yang; Ling Yang; Hong Ding

    2009-01-01

    Berberine has been reported as an acetylcholinesterase (AChE) inhibitor.With significantly low cytotoxicity,berberine will be developed for the clinical treatment of Alzheimer disease (AD) with higher efficacy and fewer side effects.This work investigated the structure change events of AChE that occur during the interaction with berberine by isothermal titration calorimetry (ITC),fluorescence titration,and circular dichroism (CD).The results show that the binding of berberine to AChE is mainly driven by a favorable entropy increase with a less weak affinity.Berberine causes a loss in enzymatic activity at a concentration much below the concentration which gradually exposed the tryptophan residues to a more hydrophilic environment and unfolded the protein,which indicates that the inhibition of AChE with berberine includes the main contributions of interaction and minor conformation change of the protein induced by the alkaloid.

  3. Conformational study reveals amino acid residues essential for hemagglutinating and anti-proliferative activities of Clematis montana lectin.

    Science.gov (United States)

    Lu, Bangmin; Zhang, Bin; Qi, Wei; Zhu, Yanan; Zhao, Yan; Zhou, Nan; Sun, Rong; Bao, Jinku; Wu, Chuanfang

    2014-11-01

    Clematis montana lectin (CML), a novel mannose-binding lectin purified from C. montana Buch.-Ham stem (Ranunculaceae), has been proved to have hemagglutinating activity in rabbit erythrocytes and apoptosis-inducing activity in tumor cells. However, the biochemical properties of CML have not revealed and its structural information still needs to be elucidated. In this study, it was found that CML possessed quite good thermostability and alkaline resistance, and its hemagglutinating activity was bivalent metal cation dependent. In addition, hemagglutination test and fluorescence spectroscopy proved that GuHCl, urea, and sodium dodecyl sulfate could change the conformation of CML and further caused the loss of hemagglutination activity. Moreover, the changes of fluorescence spectrum indicated that the tryptophan (Trp) microenvironment conversion might be related to the conformation and bioactivities of CML. In addition, it was also found that Trp residues, arginine (Arg) residues, and sulfhydryl were important for the hemagglutinating activity of CML, but only Trp was proved to be crucial for the CML conformation. Furthermore, the Trp, Arg, and sulfhydryl-modified CML exhibited 97.17%, 76.99%, and 49.64% loss of its anti-proliferative activity, respectively, which was consistent with the alterations of its hemagglutinating activity. Given these findings, Trp residues on the surface of CML are essential for the active center to form substrate-accessible conformation and suitable environment for carbohydrate binding. PMID:25239139

  4. Interconversion of Active and Inactive Conformations of Urokinase-Type Plasminogen Activator

    DEFF Research Database (Denmark)

    Liu, Zhuo; Kromann-Hansen, Tobias; Lund, Ida K;

    2012-01-01

    The catalytic activity of serine proteases depends on a salt-bridge between the amino group of residue 16 and the side chain of Asp194. The salt-bridge stabilizes the oxyanion hole and the S1 specificity pocket of the protease. Some serine proteases exist in only partially active forms, in which...... the amino group of residue 16 is exposed to the solvent. Such a partially active state is assumed by a truncated form of the murine urokinase-type plasminogen activator (muPA), consisting of residues 16-243. Here we investigated the allosteric interconversion between partially active states and the...

  5. The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme

    Institute of Scientific and Technical Information of China (English)

    Qi Jian-Xun; Jiang Fan

    2011-01-01

    The crystallographic temperature factors (B factor) of individual atoms contain important information about the thermal motion of the atoms in a macromolecule. Previously the theory of flexibility of active site has been established based on the observation that the enzyme activity is sensitive to low concentration denaturing agents. It has been found that the loss of enzyme activity occurs well before the disruption of the three-dimensional structural scaffold of the enzyme. To test the theory of conformational flexibility of enzyme active site, crystal structures were perturbed by soaking in low concentration guanidine hydrochloride solutions. It was found that many lysozyme crystals tested could still diffract until the concentration of guanidine hydrochloride reached 3 M. It was also found that the B factors averaged over individually collected data sets were more accurate. Thus it suggested that accurate measurement of crystal temperature factors could be achieved for medium-high or even medium resolution crystals by averaging over multiple data sets. Furthermore, we found that the correctly predicted active sites included not only the more flexible residues, but also some more rigid residues. Both the flexible and the rigid residues in the active site played an important role in forming the active site residue network, covering the majority of the substrate binding residues. Therefore, this experimental prediction method may be useful for characterizing the binding site and the function of a protein, such as drug targeting.

  6. Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation

    DEFF Research Database (Denmark)

    Elling, Christian E; Frimurer, Thomas M; Gerlach, Lars-Ole;

    2006-01-01

    for monoamine binding in TM-III, was used as the starting point to engineer activating metal ion sites between the extracellular segments of the beta2-adrenergic receptor. Cu(II) and Zn(II) alone and in complex with aromatic chelators acted as potent (EC50 decreased to 0.5 microm) and efficacious agonists...... in sites constructed between positions III:08 (Asp or His), VI:16 (preferentially Cys), and/or VII:06 (preferentially Cys). In molecular models built over the backbone conformation of the inactive rhodopsin structure, the heavy atoms that coordinate the metal ion were located too far away from each other...... to form high affinity metal ion sites in both the bidentate and potential tridentate settings. This indicates that the residues involved in the main ligand-binding pocket will have to move closer to each other during receptor activation. On the basis of the distance constraints from these activating metal...

  7. SU-C-BRE-01: 3D Conformal Micro Irradiation Results of Four Treatment Sites for Preclinical Small Animal and Clinical Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Price, S; Yaddanapudi, S [Washington University School of Medicine, Saint Louis, MO (United States); Rangaraj, D; Izaguirre, E [Scott and White Hospital, Temple, TX (United States)

    2014-06-15

    Purpose: Small animal irradiation can provide preclinical insights necessary for clinical advancement. In order to provide clinically relevant data, these small animal irradiations must be designed such that the treatment methods and results are comparable to clinical protocols, regardless of variations in treatment size and modality. Methods: Small animal treatments for four treatment sites (brain, liver, lung and spine) were investigated, accounting for change in treatment energy and target size. Up to five orthovoltage (300kVp) beams were used in the preclinical treatments, using circular, square, and conformal tungsten apertures, based on the treatment site. Treatments were delivered using the image guided micro irradiator (microIGRT). The plans were delivered to a mouse sized phantom and dose measurements in axial and coronal planes were performed using radiochromic film. The results of the clinical and preclinical protocols were characterized in terms of conformality number, CTV coverage, dose nonuniformity ratio, and organ at risk sparing. Results: Preclinical small animal treatment conformality was within 1–16% of clinical results for all treatment sites. The volume of the CTV receiving 100% of the prescription dose was typically within 10% of clinical values. The dose non-uniformity was consistently higher for preclinical treatments compared to clinical treatments, indicating hot spots in the target. The ratios of the mean dose in the target to the mean dose in an organ at risk were comparable if not better for preclinical versus clinical treatments. Finally, QUANTEC dose constraints were applied and the recommended morbidity limits were satisfied in each small animal treatment site. Conclusion: We have shown that for four treatment sites, preclinical 3D conformal small animal treatments can be clinically comparable if clinical protocols are followed. Using clinical protocols as the standard, preclinical irradiation methods can be altered and iteratively

  8. Conformational flexibility of aspartame.

    Science.gov (United States)

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. PMID:27038223

  9. Active conformation of the erythropoietin receptor: random and cysteine-scanning mutagenesis of the extracellular juxtamembrane and transmembrane domains.

    Science.gov (United States)

    Lu, Xiaohui; Gross, Alec W; Lodish, Harvey F

    2006-03-17

    In the absence of erythropoietin (Epo) cell surface Epo receptors (EpoR) are dimeric; dimerization is mediated mainly by the transmembrane domain. Binding of Epo changes the orientation of the two receptor subunits. This conformational change is transmitted through the juxtamembrane and transmembrane domains, leading to activation of JAK2 kinase and induction of proliferation and survival signals. To define the active EpoR conformation(s) we screened libraries of EpoRs with random mutations in the transmembrane domain and identified several point mutations that activate the EpoR in the absence of ligand, including changes of either of the first two transmembrane domain residues (Leu(226) and Ile(227)) to cysteine. Following this discovery, we performed cysteine-scanning mutagenesis in the EpoR juxtamembrane and transmembrane domains. Many mutants formed disulfide-linked receptor dimers, but only EpoR dimers linked by cysteines at positions 223, 226, or 227 activated EpoR signal transduction pathways and supported proliferation of Ba/F3 cells in the absence of cytokines. These data suggest that activation of dimeric EpoR by Epo binding is achieved by reorienting the EpoR transmembrane and the connected cytosolic domains and that certain disulfide-bonded dimers represent the activated dimeric conformation of the EpoR, constitutively activating downstream signaling. Based on our data and the previously determined structure of Epo bound to a dimer of the EpoR extracellular domain, we present a model of the active and inactive conformations of the Epo receptor.

  10. Jatrophidin I, a cyclic peptide from Brazilian Jatropha curcas L.: isolation, characterization, conformational studies and biological activity.

    Science.gov (United States)

    Altei, Wanessa F; Picchi, Douglas G; Abissi, Barbara M; Giesel, Guilherme M; Flausino, Otavio; Reboud-Ravaux, Michèle; Verli, Hugo; Crusca, Edson; Silveira, Edilberto R; Cilli, Eduardo M; Bolzani, Vanderlan S

    2014-11-01

    A cyclic peptide, jatrophidin I, was isolated from the latex of Jatropha curcas L. Its structure was elucidated by extensive 2D NMR spectroscopic analysis, with additional conformational studies performed using Molecular Dynamics/Simulated Annealing (MD/SA). Jatrophidin I had moderate protease inhibition activity when compared with pepstatin A; however, the peptide was inactive in antimalarial, cytotoxic and antioxidant assays.

  11. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.

    Directory of Open Access Journals (Sweden)

    Haibo Yu

    2007-02-01

    Full Text Available Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP, the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide

  12. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    Science.gov (United States)

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  13. The relationship between MRP1 activities and its NBD conformational changes

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    MIANS,a sulfhydryl-reactive fluorescence,was used to label the cysteines of MRP1(multidrug resistance protein),and the results indicated that an increase in fluorescence intensity and a large emission blue shift took place after two Cys residues of MRP1 reacted with MIANS,which demonstrated that labeled Cys residues in MRP1 reside in a relatively hydrophobic environment.The experimental results obtained from fluorescence resonance energy transfer further uncover that two Cys residues of MRP1 modified by MIANS located in the vicinity of its NBDs,of which one lies close to NBD1,and the other near NBD2.ATP,ADP and anticancer drugs can all reduce the rate of reaction of MRP1 with MIANS.The collisional quenchers,acrylamide,I-,and Cs+ were used to assess local environments of MIANS bound to MRP1 and the results showed that the region around the MIANS-labeled cysteine is positively charged.Both MIANS and NEM,which are sulfhydryl-reactive reagents,inhibited MRP1 ATPase activity,whereas anticancer drugs activated it.These results demonstrated that all nucleotides and drugs could induce changes in conformation of the NBDs in MRP1.Nucleotides can bind directly to NBDs,but drugs may react first with TMDs,which in turn alters the accessibility of the two Cys residues bound by MIANS and affects MRP1 ATPase activity,which is coupled with the transport of its substrates.Taken together,the above experimental results provide direct evidence for further study on the coupling of translocation of the transported species to hydrolysis of ATP in MRP1.

  14. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type.

    Science.gov (United States)

    Tateyama, Michihiro; Kubo, Yoshihiro

    2016-10-01

    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  15. A conformational analysis of mouse Nalp3 domain structures by molecular dynamics simulations, and binding site analysis.

    Science.gov (United States)

    Sahoo, Bikash R; Maharana, Jitendra; Bhoi, Gopal K; Lenka, Santosh K; Patra, Mahesh C; Dikhit, Manas R; Dubey, Praveen K; Pradhan, Sukanta K; Behera, Bijay K

    2014-05-01

    Scrutinizing various nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) genes in higher eukaryotes is very important for understanding the intriguing mechanism of the host defense against pathogens. The nucleotide-binding domain (NACHT), leucine-rich repeat (LRR), and pyrin domains (PYD)-containing protein 3 (Nalp3), is an intracellular innate immune receptor and is associated with several immune system related disorders. Despite Nalp3's protective role during a pathogenic invasion, the molecular features and structural organization of this crucial protein is poorly understood. Using comparative modeling and molecular dynamics simulations, we have studied the structural architecture of Nalp3 domains, and characterized the dynamic and energetic parameters of adenosine triphosphate (ATP) binding in NACHT, and pathogen-derived ligands muramyl dipeptide (MDP) and imidazoquinoline with LRR domains. The results suggested that walker A, B and extended walker B motifs were the key ATP binding regions in NACHT that mediate self-oligomerization. The analysis of the binding sites of MDP and imidazoquinoline revealed LRR 7-9 to be the most energetically favored site for imidazoquinoline interaction. However, the binding free energy calculations using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method indicated that MDP is incompatible for activating the Nalp3 molecule in its monomeric form, and suggest its complex interaction with NOD2 or other NLRs accounts for MDP recognition. The high binding affinity of ATP with NACHT was correlated to the experimental data for human NLRs. Our binding site prediction for imidazoquinoline in LRR warrants further investigation via in vivo models. This is the first study that provides ligand recognition in mouse Nalp3 and its spatial structural arrangements. PMID:24595807

  16. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment.

    Science.gov (United States)

    Fyfe, Cameron D; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W; Cogdell, Richard J; Wall, Daniel M; Burchmore, Richard J S; Byron, Olwyn; Walker, Daniel

    2015-07-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  17. Activation of the aryl hydrocarbon receptor by carbaryl: Computational evidence of the ability of carbaryl to assume a planar conformation.

    Science.gov (United States)

    Casado, Susana; Alonso, Mercedes; Herradón, Bernardo; Tarazona, José V; Navas, José

    2006-12-01

    It has been accepted that aryl hydrocarbon receptor (AhR) ligands are compounds with two or more aromatic rings in a coplanar conformation. Although general agreement exists that carbaryl is able to activate the AhR, it has been proposed that such activation could occur through alternative pathways without ligand binding. This idea was supported by studies showing a planar conformation of carbaryl as unlikely. The objective of the present work was to clarify the process of AhR activation by carbaryl. In rat H4IIE cells permanently transfected with a luciferase gene under the indirect control of AhR, incubation with carbaryl led to an increase of luminescence. Ligand binding to the AhR was studied by means of a cell-free in vitro system in which the activation of AhR can occur only by ligand binding. In this system, exposure to carbaryl also led to activation of AhR. These results were similar to those obtained with the AhR model ligand beta-naphthoflavone, although this compound exhibited higher potency than carbaryl in both assays. By means of computational modeling (molecular mechanics and quantum chemical calculations), the structural characteristics and electrostatic properties of carbaryl were described in detail, and it was observed that the substituent at C-1 and the naphthyl ring were not coplanar. Assuming that carbaryl would interact with the AhR through a hydrogen bond, this interaction was studied computationally using hydrogen fluoride as a model H-bond donor. Under this situation, the stabilization energy of the carbaryl molecule would permit it to adopt a planar conformation. These results are in accordance with the mechanism traditionally accepted for AhR activation: Binding of ligands in a planar conformation.

  18. Water molecule network and active site flexibility of apo protein tyrosine phosphatase 1B

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Peters, Günther H.J.; Møller, K.B.;

    2004-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including...... the conformation and flexibility of active-site residues as well as the water-molecule network, is a key issue in understanding ligand binding and enzyme kinetics and in structure-based drug design. A 1.95 Angstrom apo PTP1B structure has been obtained, showing four highly coordinated water molecules...

  19. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

    Science.gov (United States)

    Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua

    2015-03-01

    Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed. PMID:25613522

  20. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method.

    Science.gov (United States)

    St-Pierre, Jean-François; Mousseau, Normand

    2012-07-01

    We present an adaptation of the ART-nouveau energy surface sampling method to the problem of loop structure prediction. This method, previously used to study protein folding pathways and peptide aggregation, is well suited to the problem of sampling the conformation space of large loops by targeting probable folding pathways instead of sampling exhaustively that space. The number of sampled conformations needed by ART nouveau to find the global energy minimum for a loop was found to scale linearly with the sequence length of the loop for loops between 8 and about 20 amino acids. Considering the linear scaling dependence of the computation cost on the loop sequence length for sampling new conformations, we estimate the total computational cost of sampling larger loops to scale quadratically compared to the exponential scaling of exhaustive search methods.

  1. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Roszak, Aleksander W. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel, E-mail: daniel.walker@glasgow.ac.uk [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom)

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  2. Design and synthesis of conformationally restricted inhibitors of active thrombin activatable fibrinolysis inhibitor (TAFIa).

    Science.gov (United States)

    Brink, Mikael; Dahlén, Anders; Olsson, Thomas; Polla, Magnus; Svensson, Tor

    2014-04-01

    A series of 4,5,6,7-tetrahydro-1H-benzimidazole-5-carboxylic acid and 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid derivatives designed as inhibitors of TAFIa has been prepared via a common hydrogenation-alkylation sequence starting from the appropriate benzimidazole and imidazopyridine system. We present a successful design strategy using a conformational restriction approach resulting in potent and selective inhibitors of TAFIa. The X-ray structure of compound 5 in complex with a H333Y/H335Q double mutant TAFI indicate that the conformational restriction is responsible for the observed potency increase. PMID:24588961

  3. The origins of enhanced activity in factor VIIa analogs and the interplay between key allosteric sites revealed by hydrogen exchange mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper D; Andersen, Mette D; Olsen, Ole H;

    2008-01-01

    to investigate the conformational effects of site-directed mutagenesis at key positions in FVIIa and the origins of enhanced intrinsic activity of FVIIa analogs. The differences in hydrogen exchange of two highly active variants, FVIIa(DVQ) and FVIIa(VEAY), imply that enhanced catalytic efficiency was attained...

  4. Savannah River Site prioritization of transition activities

    International Nuclear Information System (INIS)

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D ampersand D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities

  5. Savannah River Site prioritization of transition activities

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  6. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    International Nuclear Information System (INIS)

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites

  7. A comparative structure-function analysis of active-site inhibitors of Vibrio cholerae cholix toxin.

    Science.gov (United States)

    Lugo, Miguel R; Merrill, A Rod

    2015-09-01

    Cholix toxin from Vibrio cholerae is a novel mono-ADP-ribosyltransferase (mART) toxin that shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin. Herein, we have used the high-resolution X-ray structure of full-length cholix toxin in the apo form, NAD(+) bound, and 10 structures of the cholix catalytic domain (C-domain) complexed with several strong inhibitors of toxin enzyme activity (NAP, PJ34, and the P-series) to study the binding mode of the ligands. A pharmacophore model based on the active pose of NAD(+) was compared with the active conformation of the inhibitors, which revealed a cationic feature in the side chain of the inhibitors that may determine the active pose. Moreover, a conformational search was conducted for the missing coordinates of one of the main active-site loops (R-loop). The resulting structural models were used to evaluate the interaction energies and for 3D-QSAR modeling. Implications for a rational drug design approach for mART toxins were derived.

  8. Conformal house

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2010-01-01

    fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...

  9. A mutational mimic analysis of histone H3 post-translational modifications: specific sites influence the conformational state of H3/H4, causing either positive or negative supercoiling of DNA.

    Science.gov (United States)

    White, Rachel H; Keberlein, Melissa; Jackson, Vaughn

    2012-10-16

    Histone H3 has specific sites of post-translational modifications that serve as epigenetic signals to cellular machinery to direct various processes. Mutational mimics of these modifications (glutamine for acetylation, methionine and leucine for methylation, and glutamic acid for phosphorylation) were constructed at the relevant sites of the major histone variant, H3.2, and their effects on the conformational equilibrium of the H3/H4 tetramer at physiological ionic strength were determined when bound to or free of DNA. The deposition vehicle used for this analysis was NAP1, nucleosome assembly protein 1. Acetylation mimics in the N-terminus preferentially stabilized the left-handed conformer (DNA negatively supercoiled), and mutations within the globular region preferred the right-handed conformer (DNA positively supercoiled). The methylation mimics in the N-terminus tended to maintain characteristics similar to those of wild-type H3/H4; i.e., the conformational equilibrium maintains similar levels of both left- and right-handed conformers. Phosphorylation mimics facilitated a mixed effect, i.e., when at serines, the left-handed conformer, and at threonines, a mixture of both conformers. When double mutations were present, the conformational equilibrium was shifted dramatically, either leftward or rightward depending on the specific sites. In contrast, these mutations tended not to affect the direction and extent of supercoiling for variants H3.1 and H3.3. Variant H3.3 promoted only the left-handed conformer, and H3.1 tended to maintain both conformers. Additional experiments indicate the importance of a propagation mechanism for ensuring the formation of a particular superhelical state over an extended region of the DNA. The potential relevance of these results to the maintenance of epigenetic information on a gene is discussed.

  10. Structure of TSA2 reveals novel features of the active-site loop of peroxiredoxins

    DEFF Research Database (Denmark)

    Nielsen, Maja Holch; Kidmose, Rune Thomas; Jenner, Lasse Bohl

    2016-01-01

    Saccharomyces cerevisiae TSA2 belongs to the family of typical 2-Cys peroxiredoxins, a ubiquitously expressed family of redox-active enzymes that utilize a conserved peroxidatic cysteine to reduce peroxides. Typical 2-Cys peroxiredoxins have been shown to be involved in protection against oxidative...... stress and in hydrogen peroxide signalling. Furthermore, several 2-Cys peroxiredoxins, including S. cerevisiae TSA1 and TSA2, are able to switch to chaperone activity upon hyperoxidation of their peroxidatic cysteine. This makes the sensitivity to hyperoxidation of the peroxidatic cysteine a very....... This requires a local unfolding of the active site and the C-terminus. The balance between the fully folded and locally unfolded conformations is of key importance for the reactivity and sensitivity to hyperoxidation of the different peroxiredoxins. Here, the structure of a C48S mutant of TSA2 from S...

  11. The Surface Groups and Active Site of Fibrous Mineral Materials

    Institute of Scientific and Technical Information of China (English)

    DONG Fa-qin; WAN Pu; FENG Qi-ming; SONG Gong-bao; PENG Tong-jiang; LI Ping; LI Guo-wu

    2004-01-01

    The exposed and transformed groups of fibrous brucite,wollastonite,chrysotile asbestos,sepiolite,palygorskite,clinoptilolite,crocidolite and diatomaceous earth mineral materials are analyzed by IR spectra after acid and alikali etching,strong mechanical and polarity molecular interaction.The results show the active sites concentrate on the ends in stick mineral materials and on the defect or hole edge in pipe mineral materials.The inside active site of mineral materials plays a main role in small molecular substance.The shape of minerals influence their distribution and density of active site.The strong mechanical impulsion and weak chemical force change the active site feature of minerals,the powder process enables minerals exposed more surface group and more combined types.The surface processing with the small polarity molecular or the brand of middle molecular may produce ionation and new coordinate bond,and change the active properties and level of original mineral materials.

  12. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás

    2010-01-26

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent highresolution X-ray structure, we conclude that formation of the P-O bond may be achieved through a transition state (TS) with a planar PO3 - ion. Surprisingly, there is a more than 40 kJ/mol difference between barrier heights of the loose and tight binding sites of the enzyme. This indicates that even a relatively small change in active site conformation, induced by the γ-subunit rotation, may effectively block the back reaction in βTP and, thus, promote ATP. © 2009 American Chemical Society.

  13. Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jingsong; Campobasso, Nino; Biju, Mangatt P.; Fisher, Kelly; Pan, Xiao-Qing; Cottom, Josh; Galbraith, Sarah; Ho, Thau; Zhang, Hong; Hong, Xuan; Ward, Paris; Hofmann, Glenn; Siegfried, Brett; Zappacosta, Francesca; Washio, Yoshiaki; Cao, Ping; Qu, Junya; Bertrand, Sophie; Wang, Da-Yuan; Head, Martha S.; Li, Hu; Moores, Sheri; Lai, Zhihong; Johanson, Kyung; Burton, George; Erickson-Miller, Connie; Simpson, Graham; Tummino, Peter; Copeland, Robert A.; Oliff, Allen (GSKPA)

    2014-10-02

    c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the {alpha}I helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the {alpha}I helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.

  14. Critical role of the H6-H7 loop in the conformational adaptation of all-trans retinoic acid and synthetic retinoids within the ligand-binding site of RARalpha.

    Science.gov (United States)

    Mailfait, S; Thoreau, E; Belaiche, D; Formstecher And B Sablonniè, P

    2000-06-01

    The pleiotropic effects of the natural and synthetic retinoids are mediated by the activation of the two subfamilies of nuclear receptors, the retinoic acid receptors (RARs) and the retinoic X receptors (RXRs). At the molecular level, these events begin with the specific ligand recognition by a nuclear receptor subtype. The adaptation of ligands to the receptor binding site leads to an optimal number of interactions for binding and selectivity which justifies elucidation of the structural requirements of the ligand binding pocket. To explore the contribution of H6-H7 loop folding in the ligand-induced conformational changes explained by the mouse-trap model, four RARalpha mutants were constructed. Ligand binding and transactivation studies revealed that three residues from the H6-H7 loop (Gly(301), Phe(302) and Gly(303)) are critical for the conformational adaptation of both synthetic agonists and antagonists. Model building and analysis of both RARalpha-ATRA and RARalpha-CD367 complexes demonstrate that accommodation of CD367 results in a less tight contact of the saturated ring of this ligand with the amino acid side chains of the receptor ligand-binding pocket compared with that of ATRA. According to the flexibility of the agonists tested (ATRA>TTNPB=Am580> CD367), we observed a decrease in binding that was dependent on ligand structure rigidity. In contrast, the binding and transactivating activities of the L266A mutant confirmed the structural constraints imposed by synthetic ligands on binding affinity for the receptor and revealed that subtle local rearrangements induced by specific conformational adaptation changes result in different binding affinities. Our results illustrate the dynamic nature of the interaction between RARalpha and its ligands and demonstrate the critical role of the H6-H7 loop in the binding of both synthetic retinoid agonists and antagonists.

  15. Relationship between Oversulfation and Conformation of Low and High Molecular Weight Fucoidans and Evaluation of Their in Vitro Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Myoung Lae Cho

    2010-12-01

    Full Text Available Low and high molecular weight fucoidans (F5-30K and F>30K were chemically modified through the addition of sulfate groups, and the effect of oversulfation on the in vitro anticancer activity was investigated. After the addition of sulfate groups, a considerable increase of 35.5 to 56.8% was observed in the sulfate content of the F5-30K fraction, while the sulfate content of the F>30K fraction increased to a lesser extent (from 31.7 to 41.2%. Significant differences in anticancer activity were observed between the oversulfated F5–30K and F>30K fractions, with activities of 37.3–68.0% and 20.6–35.8%, respectively. This variation in the anticancer activity of oversulfated fucoidan derivatives was likely due to differences in their sulfate content. The results suggest that the molecular conformation of these molecules is closely related to the extent of sulfation in the fucan backbones and that the sulfates are preferably substituted when the fucoidan polymers are in a loose molecular conformation.

  16. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    Directory of Open Access Journals (Sweden)

    Manik C Ghosh

    Full Text Available Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.

  17. Fluorescence energy transfer studies on the active site of papain

    OpenAIRE

    Henes, Jill B.; Briggs, Martha S.; Sligar, Stephen G.; Fruton, Joseph S.

    1980-01-01

    Measurements have been performed of the excited-state lifetimes and fluorescence yields of papain tryptophan units when acyl derivatives of Phe-glycinal are bound at the active site of the enzyme. The enhancement of tryptophan fluorescence in complexes of papain with the acetyl or benzyloxycarbonyl derivatives is not stereospecific with respect to the configuration of the phenylalanyl residue, and the L and D isomers are equally effective as active-site-directed inhibitors of papain action. E...

  18. Spacer conformation in biologically active molecules. Part 2. Structure and conformation of 4-[2-(diphenylmethylamino)ethyl]-1-(2-methoxyphenyl) piperazine and its diphenylmethoxy analog—potential 5-HT 1A receptor ligands

    Science.gov (United States)

    Karolak-Wojciechowska, J.; Fruziński, A.; Czylkowski, R.; Paluchowska, M. H.; Mokrosz, M. J.

    2003-09-01

    As a part of studies on biologically active molecule structures with aliphatic linking chain, the structures of 4-[2-diphenylmethylamino)ethyl]-1-(2-methoxyphenyl)piperazine dihydrochloride ( 1) and 4-[2-diphenylmethoxy)ethyl]-1-(2-methoxyphenyl)piperazine fumarate ( 2) have been reported. In both compounds, four atomic non-all-carbons linking chains (N)C-C-X-C are present. The conformation of that linking spacer depends on the nature of the X-atom. The preferred conformation for chain with XNH has been found to be fully extended while for that with XO—the bend one. It was confirmed by conformational calculations (strain energy distribution and random search) and crystallographic data, including statistics from CCDC.

  19. Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models.

    Directory of Open Access Journals (Sweden)

    Per Larsson

    Full Text Available Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proportion to the ability of the corresponding full-length hemagglutinin to drive lipid mixing in fusion assays. We have performed molecular dynamics simulations of influenza fusion peptides in lipid bilayers, comparing the X-31 influenza strain against a series of N-terminal mutants. As hypothesized, the probability of lipid tail protrusion correlates well with the lipid mixing rate induced by each mutant. This supports the conclusion that tail protrusion is important to the transition state for fusion. Furthermore, it suggests that tail protrusion can be used to examine how fusion peptides might interact with membranes to promote fusion. Previous models for native influenza fusion peptide structure in membranes include a kinked helix, a straight helix, and a helical hairpin. Our simulations visit each of these conformations. Thus, the free energy differences between each are likely low enough that specifics of the membrane environment and peptide construct may be sufficient to modulate the equilibrium between them. However, the kinked helix promotes lipid tail protrusion in our simulations much more strongly than the other two structures. We therefore predict that the kinked helix is the most fusogenic of these three conformations.

  20. Key messages from active CO2 storage sites

    Energy Technology Data Exchange (ETDEWEB)

    Wildenborg, T.; Wollenweber, J. [TNO, Princetonlaan 6, 3584 CB Utrecht (Netherlands); Chadwick, A. [BGS, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG (United Kingdom); Deflandre, J.P. [IFP Energies nouvelles, 1-4 avenue de Bois Preau, 92852 Rueil-Malmaison (France); Eiken, O. [Statoil Research Centre, Rotvoll, Arkitekt Ebbells vei 10, 7005 Trondheim (Norway); Mathieson, A. [BP, Alternative Energy, Chertsey Road, Sunbury on Thames (United Kingdom); Metcalfe, R. [QUINTESSA, The Hub, 14 Station Road, Henley-on-Thames, Oxfordshire (United Kingdom); Schmidt Hattenberger, C. [GFZ German Research Centre for Geosciences, Centre for CO2Storage, Potsdam (Germany)

    2013-07-01

    An extensive programme of modelling, monitoring and verification activities was deployed at a set of active storage sites worldwide including Sleipner, In Salah, Ketzin, Weyburn, K12-B and Snoehvit (EU CO2ReMoVe project). All investigated storage sites were well managed and did not have a negative impact on humans or the environment. Time-lapse seismic and pressure monitoring are key in verifying the deep subsurface performance of the storage sites. Evidence gathered during the site characterisation and operational phases is key to handover responsibility of the storage site to governmental authorities after injection has definitely ceased, which is the focus of the follow-up EU project CO2CARE.

  1. Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies

    NARCIS (Netherlands)

    Senthilkumar, K.; Grozema, F.C.; Bickelhaupt, F.M.; Siebbeles, L.D.A.

    2003-01-01

    Values of charge transfer integrals, spatial overlap integrals and site energies involved in transport of positive charges along columnar stacked triphenylene derivatives are provided. These parameters were calculated directly as the matrix elements of the Kohn–Sham Hamiltonian, defined in terms of

  2. Structural studies of conformational changes of proteins upon phosphorylation: Structures of activated CheY, CheY-N16-FliM complex, and AAA {sup +} ATPase domain of NtrC1 in both inactive and active states

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok-Yong

    2003-04-10

    Protein phosphorylation is a general mechanism for signal transduction as well as regulation of cellular function. Unlike phosphorylation in eukaryotic systems that uses Ser/Thr for the sites of modification, two-component signal transduction systems, which are prevalent in bacteria, archea, and lower eukaryotes, use an aspartate as the site of phosphorylation. Two-component systems comprise a histidine kinase and a receiver domain. The conformational change of the receiver domain upon phosphorylation leads to signal transfer to the downstream target, a process that had not been understood well at the molecular level. The transient nature of the phospho-Asp bond had made structural studies difficult. The discovery of an excellent analogue for acylphosphate, BeF{sub 3}{sup -}, enabled structural study of activated receiver domains. The structure of activated Chemotaxis protein Y (CheY) was determined both by NMR spectroscopy and X-ray crystallography. These structures revealed the molecular basis of the conformational change that is coupled to phosphorylation. Phosphorylation of the conserved Asp residue in the active site allows hydrogen bonding of the T87 O{gamma} to phospho-aspartate, which in turn leads to the rotation of Y106 into the ''in'' position (termed Y-T coupling). The structure of activated CheY complexed with the 16 N-terminal residues of FliM (N16-FliM), its target, was also determined by X-ray crystallography and confirmed the proposed mechanism of activation (Y-T coupling). First, N16-FliM binds to the region on CheY that undergoes a significant conformational change. Second, the ''in'' position of Y106 presents a better binding surface for FliM because the sidechain of Y106 in the inactive form of CheY (''out'' position) sterically interferes with binding of N16-FliM. In addition to confirmation of Y-T coupling, the structure of the activated CheY-N16-FliM complex suggested that the N16

  3. Computational investigation of locked nucleic acid (LNA) nucleotides in the active sites of DNA polymerases by molecular docking simulations.

    Science.gov (United States)

    Poongavanam, Vasanthanathan; Madala, Praveen K; Højland, Torben; Veedu, Rakesh N

    2014-01-01

    Aptamers constitute a potential class of therapeutic molecules typically selected from a large pool of oligonucleotides against a specific target. With a scope of developing unique shorter aptamers with very high biostability and affinity, locked nucleic acid (LNA) nucleotides have been investigated as a substrate for various polymerases. Various reports showed that some thermophilic B-family DNA polymerases, particularly KOD and Phusion DNA polymerases, accepted LNA-nucleoside 5'-triphosphates as substrates. In this study, we investigated the docking of LNA nucleotides in the active sites of RB69 and KOD DNA polymerases by molecular docking simulations. The study revealed that the incoming LNA-TTP is bound in the active site of the RB69 and KOD DNA polymerases in a manner similar to that seen in the case of dTTP, and with LNA structure, there is no other option than the locked C3'-endo conformation which in fact helps better orienting within the active site. PMID:25036012

  4. Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies

    OpenAIRE

    K. Senthilkumar; Grozema, F.C.; Bickelhaupt, F.M.; Siebbeles, L.D.A.

    2003-01-01

    Values of charge transfer integrals, spatial overlap integrals and site energies involved in transport of positive charges along columnar stacked triphenylene derivatives are provided. These parameters were calculated directly as the matrix elements of the Kohn–Sham Hamiltonian, defined in terms of the molecular orbitals on individual triphenylene molecules. This was realized by exploiting the unique feature of the Amsterdam density functional theory program that allows one to use molecular o...

  5. Conformational coupling between receptor and kinase binding sites through a conserved salt bridge in a signaling complex scaffold protein.

    Directory of Open Access Journals (Sweden)

    Davi R Ortega

    Full Text Available Bacterial chemotaxis is one of the best studied signal transduction pathways. CheW is a scaffold protein that mediates the association of the chemoreceptors and the CheA kinase in a ternary signaling complex. The effects of replacing conserved Arg62 of CheW with other residues suggested that the scaffold protein plays a more complex role than simply binding its partner proteins. Although R62A CheW had essentially the same affinity for chemoreceptors and CheA, cells expressing the mutant protein are impaired in chemotaxis. Using a combination of molecular dynamics simulations (MD, NMR spectroscopy, and circular dichroism (CD, we addressed the role of Arg62. Here we show that Arg62 forms a salt bridge with another highly conserved residue, Glu38. Although this interaction is unimportant for overall protein stability, it is essential to maintain the correct alignment of the chemoreceptor and kinase binding sites of CheW. Computational and experimental data suggest that the role of the salt bridge in maintaining the alignment of the two partner binding sites is fundamental to the function of the signaling complex but not to its assembly. We conclude that a key feature of CheW is to maintain the specific geometry between the two interaction sites required for its function as a scaffold.

  6. Dashboard applications to monitor experiment activities at sites

    Science.gov (United States)

    Andreeva, Julia; Belforte, Stefano; Boehm, Max; Casajus, Adrian; Flix, Josep; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciabà, Andrea; Tsaregorodtsev, Andrei

    2010-04-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  7. Dashboard applications to monitor experiment activities at sites

    CERN Document Server

    Andreeva, J; Boehm, M; Casajus, A; Flix, J; Gaidioz, B; Grigoras, C; Kokoszkiewicz, L; Lanciotti, E; Rocha, R; Saiz, P; Santinelli, R; Sidorova, I; Sciabà, A; Tsaregorodtsev, A

    2010-01-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  8. Dashboard applications to monitor experiment activities at sites

    International Nuclear Information System (INIS)

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  9. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    Science.gov (United States)

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide.

  10. Stabilizing a Flexible Interdomain Hinge Region Harboring the SMB Binding Site Drives uPAR into Its Closed Conformation

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Gandhi, Sonu; Yuan, Cai;

    2015-01-01

    The urokinase-type plasminogen activator receptor (uPAR) is a multidomain glycolipid-anchored membrane protein, which facilitates extracellular matrix remodeling by focalizing plasminogen activation to cell surfaces via its high-affinity interaction with uPA. The modular assembly of its three LU...

  11. Effect of ultrasound combined with malic acid on the activity and conformation of mushroom (Agaricus bisporus) polyphenoloxidase.

    Science.gov (United States)

    Zhou, Lei; Liu, Wei; Xiong, Zhiqiang; Zou, Liqiang; Liu, Junping; Zhong, Junzhen; Chen, Jun

    2016-08-01

    Polyphenoloxidase (PPO) plays an important role in the browning of vegetables, fruits and edible fungi. The effects of ultrasound, malic acid, and their combination on the activity and conformation of mushroom (Agaricus bisporus) PPO were studied. The activity of PPO decreased gradually with the increasing of malic acid concentrations (5-60mM). Neither medium concentrations (10, 20, 30mM) malic acid nor individual ultrasound (25kHz, 55.48W/cm(2)) treatment could remarkably inactivate PPO. However, the inactivation during their combination was more significant than the sum of ultrasound inactivation and malic acid inactivation. The inactivation kinetics of PPO followed a first-order kinetics under the combination of ultrasound and malic acid. The conformation of combination treated PPO was changed, which was reflected in the decrease of α-helix, increase of β-sheet contents and disruption of the tertiary structure. Results of molecular microstructure showed that ultrasound broke large molecular groups of PPO into small ones. Moreover, combined treatment disrupted the microstructure of PPO and molecules were connected together. PMID:27241293

  12. Self-objectification, feminist activism and conformity to feminine norms among female vegetarians, semi-vegetarians, and non-vegetarians.

    Science.gov (United States)

    Brinkman, Britney G; Khan, Aliya; Edner, Benjamin; Rosén, Lee A

    2014-01-01

    Recent research has suggested that vegetarians may be at an increased risk for developing disordered eating or body image issues when compared to non-vegetarians. However, the results of such studies are mixed, and no research has explored potential connections between vegetarianism and self-objectification. In the current study, the authors examine factors that predicted body surveillance, body shame, and appearance control beliefs; three aspects of self-objectification. Surveys were completed by 386 women from the United States who were categorized as vegetarian, semi-vegetarian, or non-vegetarian. The three groups differed regarding dietary motivations, levels of feminist activism, and body shame, but did not differ on their conformity to feminine norms. While conformity to feminine norms predicted body surveillance and body shame levels among all three groups of women, feminist activism predicted appearance control beliefs among non-vegetarians only. These findings suggest that it is important for researchers and clinicians to distinguish among these three groups when examining the relationship between vegetarianism and self-objectification. PMID:24411771

  13. Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery.

    Science.gov (United States)

    Hu, Jianping; Feng, Zhiwei; Ma, Shifan; Zhang, Yu; Tong, Qin; Alqarni, Mohammed Hamed; Gou, Xiaojun; Xie, Xiang-Qun

    2016-06-27

    Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse. The lack of an experimental three-dimensional CB2 structure has hindered not only the development of studies of conformational differences between the inactive and active CB2 but also the rational discovery of novel functional compounds targeting CB2. In this work, we constructed models of both inactive and active CB2 by homology modeling. Then we conducted two comparative 100 ns molecular dynamics (MD) simulations on the two systems-the active CB2 bound with both the agonist and G protein and the inactive CB2 bound with inverse agonist-to analyze the conformational difference of CB2 proteins and the key residues involved in molecular recognition. Our results showed that the inactive CB2 and the inverse agonist remained stable during the MD simulation. However, during the MD simulations, we observed dynamical details about the breakdown of the "ionic lock" between R131(3.50) and D240(6.30) as well as the outward/inward movements of transmembrane domains of the active CB2 that bind with G proteins and agonist (TM5, TM6, and TM7). All of these results are congruent with the experimental data and recent reports. Moreover, our results indicate that W258(6.48) in TM6 and residues in TM4 (V164(4.56)-L169(4.61)) contribute greatly to the binding of the agonist on the basis of the binding energy decomposition, while residues S180-F183 in extracellular loop 2 (ECL2) may be of importance in recognition of the inverse agonist. Furthermore, pharmacophore modeling and virtual screening were carried out for the inactive and active CB2 models in parallel. Among all 10 hits, two compounds exhibited novel scaffolds and can be used as novel chemical probes for future studies of CB2. Importantly, our studies show that the hits obtained from the inactive CB2 model mainly act as inverse agonist(s) or neutral

  14. Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery.

    Science.gov (United States)

    Hu, Jianping; Feng, Zhiwei; Ma, Shifan; Zhang, Yu; Tong, Qin; Alqarni, Mohammed Hamed; Gou, Xiaojun; Xie, Xiang-Qun

    2016-06-27

    Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse. The lack of an experimental three-dimensional CB2 structure has hindered not only the development of studies of conformational differences between the inactive and active CB2 but also the rational discovery of novel functional compounds targeting CB2. In this work, we constructed models of both inactive and active CB2 by homology modeling. Then we conducted two comparative 100 ns molecular dynamics (MD) simulations on the two systems-the active CB2 bound with both the agonist and G protein and the inactive CB2 bound with inverse agonist-to analyze the conformational difference of CB2 proteins and the key residues involved in molecular recognition. Our results showed that the inactive CB2 and the inverse agonist remained stable during the MD simulation. However, during the MD simulations, we observed dynamical details about the breakdown of the "ionic lock" between R131(3.50) and D240(6.30) as well as the outward/inward movements of transmembrane domains of the active CB2 that bind with G proteins and agonist (TM5, TM6, and TM7). All of these results are congruent with the experimental data and recent reports. Moreover, our results indicate that W258(6.48) in TM6 and residues in TM4 (V164(4.56)-L169(4.61)) contribute greatly to the binding of the agonist on the basis of the binding energy decomposition, while residues S180-F183 in extracellular loop 2 (ECL2) may be of importance in recognition of the inverse agonist. Furthermore, pharmacophore modeling and virtual screening were carried out for the inactive and active CB2 models in parallel. Among all 10 hits, two compounds exhibited novel scaffolds and can be used as novel chemical probes for future studies of CB2. Importantly, our studies show that the hits obtained from the inactive CB2 model mainly act as inverse agonist(s) or neutral

  15. Gideaa study site. Scope of activities and main results

    International Nuclear Information System (INIS)

    During the period from 1977-1986 SKB (Swedish Nuclear Fuel and Waste Management Co) performed surface and borehole investigations of 14 study sites for the purpose of assessing their suitability for a repository of spent nuclear fuel. The next phase in the SKB site selection programme will be to perform detailed characterization, including characterization from shafts and/or tunnels, of two or three sites. The detailed investigations will continue over several years to provide all the data needed for a licensing application to build a repository. Such an application is foreseen to be given to the authorities around the year 2003. It is presently not clear if anyone of the study sites will be selected as a site for detailed characterization. Other site with geological and/or socio-economical characteristics judged more favourable may very well be the ones selected. However, as a part of the background documentation needed for the site selection studies to come, summary reports will be prepared for most study sites. These reports will include scope of activities, main results, uncertainties and need of complementary investigations. This report concerns the Gideaa study site. (au)

  16. Comparative study of convolution, superposition, and fast superposition algorithms in conventional radiotherapy, three-dimensional conformal radiotherapy, and intensity modulated radiotherapy techniques for various sites, done on CMS XIO planning system

    OpenAIRE

    Muralidhar K; Murthy Narayana; Raju Alluri; Sresty NVNM

    2009-01-01

    The aim of this study is to compare the dosimetry results that are obtained by using Convolution, Superposition and Fast Superposition algorithms in Conventional Radiotherapy, Three-Dimensional Conformal Radiotherapy (3D-CRT), and Intensity Modulated Radiotherapy (IMRT) for different sites, and to study the suitability of algorithms with respect to site and technique. For each of the Conventional, 3D-CRT, and IMRT techniques, four different sites, namely, Lung, Esophagus, Prostate, and Hypoph...

  17. Catalytic-site conformational equilibrium in nerve-agent adducts of acetylcholinesterase: possible implications for the HI-6 antidote substrate specificity.

    Science.gov (United States)

    Artursson, Elisabet; Andersson, Per Ola; Akfur, Christine; Linusson, Anna; Börjegren, Susanne; Ekström, Fredrik

    2013-05-01

    Nerve agents such as tabun, cyclosarin and Russian VX inhibit the essential enzyme acetylcholinesterase (AChE) by organophosphorylating the catalytic serine residue. Nucleophiles, such as oximes, are used as antidotes as they can reactivate and restore the function of the inhibited enzyme. The oxime HI-6 shows a notably low activity on tabun adducts but can effectively reactivate adducts of cyclosarin and Russian VX. To examine the structural basis for the pronounced substrate specificity of HI-6, we determined the binary crystal structures of Mus musculus AChE (mAChE) conjugated by cyclosarin and Russian VX and found a conformational mobility of the side chains of Phe338 and His447. The interaction between HI-6 and tabun-adducts of AChE were subsequently investigated using a combination of time resolved fluorescence spectroscopy and X-ray crystallography. Our findings show that HI-6 binds to tabun inhibited Homo sapiens AChE (hAChE) with an IC50 value of 300μM and suggest that the reactive nucleophilic moiety of HI-6 is excluded from the phosphorus atom of tabun. We propose that a conformational mobility of the side-chains of Phe338 and His447 is a common feature in nerve-agent adducts of AChE. We also suggest that the conformational mobility allow HI-6 to reactivate conjugates of cyclosarin and Russian VX while a reduced mobility in tabun conjugated AChE results in steric hindrance that prevents efficient reactivation.

  18. The immunomodulatory activity of meningococcal lipoprotein Ag473 depends on the conformation made up of the lipid and protein moieties.

    Directory of Open Access Journals (Sweden)

    Ching-Liang Chu

    Full Text Available We have previously demonstrated that the meningococcal antigen Ag473 in the presence of Freund's adjuvant can elicit protective immune responses in mouse challenge model. In this study, we evaluated the structural requirement for the immunological activity and the possible signaling pathway of recombinant Ag473 antigen produced in E. coli. We found that lipidated Ag473 (L-Ag473 possesses an intrinsic adjuvant activity that could be attributed to its ability to activate dendritic cells and promote their maturation. In addition, we found that L-Ag473 can activate human monocytes and promote maturation of human monocyte-derived dendritic cells. These results provide an indirect support that L-Ag473 may also be immunogenic in human. Interestingly, the observed activity is dependent on the overall conformation of L-Ag473 because heating and proteinase K treatment can diminish and abolish the activity. Furthermore, our data suggest a species-differential TLR recognition of L-Ag473. Overall, these data suggest a new paradigm for the ligand-TLR interaction in addition to demonstrating the self-adjuvanting activity of the vaccine candidate L-Ag473.

  19. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  20. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  1. Influence of sodium alginate pretreated by ultrasound on papain properties: Activity, structure, conformation and molecular weight and distribution.

    Science.gov (United States)

    Feng, Liping; Cao, Yanping; Xu, Duoxia; You, Sasa; Han, Fu

    2016-09-01

    The aim of the study was to investigate the impact of sodium alginate (ALG) pretreated by ultrasound on the enzyme activity, structure, conformation and molecular weight and distribution of papain. ALG solutions were pretreated with ultrasound at varying power (0.05, 0.15, 0.25, 0.35, 0.45W/cm(2)), 135kHz, 50°C for 20min. The maximum relative activity of papain increased by 10.53% when mixed with ALG pretreated by ultrasound at 0.25W/cm(2), compared with the untreated ALG. The influence of ultrasound pretreated ALG on the conformation and secondary structure of papain were assessed by fluorescence spectroscopy and circular dichroism spectroscopy. The fluorescence spectra revealed that ultrasound pretreated ALG increased the number of tryptophan on papain surface, especially at 0.25W/cm(2). It indicated that ultrasound pretreatment induced molecular unfolding, causing the exposure of more hydrophobic groups and regions from inside to the outside of the papain molecules. Furthermore, ultrasound pretreated ALG resulted in minor changes in the secondary structure of the papain. The content of α-helix was slightly increased after ultrasound pretreatment and no significant change was observed at different ultrasound powers. ALG pretreated by ultrasound enhanced the stability of the secondary structure of papain, especially at 0.25W/cm(2). The free sulfhydryl (SH) content of papain was slightly increased and then decreased with the increase of ultrasonic power. The maximum content of free SH was observed at 0.25W/cm(2), under which the content of the free SH increased by 6.36% compared with the untreated ALG. Dynamic light scattering showed that the effect of ultrasound treatment was mainly the homogenization of the ALG particles in the mixed dispersion. The gel permeation chromatography coupled with the multi-angle laser light scattering photometer analysis showed that the molecular weight (Mw) of papain/ALG was decreased and then increased with the ultrasonic

  2. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Fourmann

    Full Text Available Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10-L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.

  3. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity.

    Science.gov (United States)

    Fourmann, Jean-Baptiste; Tillault, Anne-Sophie; Blaud, Magali; Leclerc, Fabrice; Branlant, Christiane; Charpentier, Bruno

    2013-01-01

    Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs) which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA) is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10-L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD) spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.

  4. Vibrational and electronic optical activity of the chiral disulphide group: implications for disulphide bridge conformation.

    Science.gov (United States)

    Bednárová, Lucie; Bour, Petr; Malon, Petr

    2010-05-15

    Using dihydrogendisulphide (H(2)S(2)), dimethyl- ((CH(3))(2)S(2)), and diethyldisulphide ((CH(3)CH(2))(2)S(2))as model molecules, theoretical ECD, VCD, and ROA spectra of nonplanar disulphides were calculated by DFT methods. Most of the calculated electronic and vibrational chiroptical features suffer an equivocal relation between calculatedsigns of ECD, VCD, or ROA and the sense of disulphide nonplanarity as noted earlier for low-lying ECD bands. This is a consequence of local C(2) symmetry of a disulphide group causing most electronic and vibrational transitions to occur as pairs falling to alternative A, B symmetry species, which become degenerate and switch their succession (and consequently the observed chiroptical sign pattern) at the energetically most favorable perpendicular conformation. According to present calculations, the key to resolving this ambiguity may involve the S-S stretching vibrational mode at approximately 500 cm(-1). The relation of signs of the relevant VCD and ROA features to sense of disulphide chirality seems simpler and less ambiguous. The right-handed arrangement of the S-S group (0 < chi(S-S) < 180 degrees) results in mostly negative VCD signals. Although relation to ROA still suffers some ambiguity, it gets clearer along the series H(2)S(2)-(CH(3))(2)S(2)-(CH(3)CH(2))(2)S(2). ROA is also attractive for the analysis of disulphide-containing peptides and proteins, because applying it to aqueous solutions is not problematic.

  5. An in silico study of the molecular basis of B-RAF activation and conformational stability

    DEFF Research Database (Denmark)

    Fratev, Filip Filipov; Jonsdottir, Svava Osk

    2009-01-01

    B-RAF kinase plays an important role both in tumour induction and maintenance in several cancers and it is an attractive new drug target. However, the structural basis of the B-RAF activation is still not well understood. RESULTS: In this study we suggest a novel molecular basis of B-RAF activation...... the A-loop and the alphaC-helix in the activating mutants, which presumably contribute to the flipping of the activation segment to an active form. Conversely, in the B-RAFD594V mutant that has impaired kinase activity, and in B-RAFWT these interactions were strong and stabilized the kinase inactive...

  6. An active site-tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase.

    Science.gov (United States)

    Murphy, Jesse R; Donini, Stefano; Kappock, T Joseph

    2015-10-01

    Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that `close' the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an `open' structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site-tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS. PMID:26457521

  7. Probing the active sites for CO dissociation on ruthenium nanoparticles

    DEFF Research Database (Denmark)

    Strebel, Christian Ejersbo; Murphy, Shane; Nielsen, Rasmus Munksgård;

    2012-01-01

    The active sites for CO dissociation were probed on mass-selected Ru nanoparticles on a HOPG support by temperature programmed desorption spectroscopy using isotopically labelled CO. Combined with transmission electron microscopy we gain insight on how the size and morphology of the nanoparticles...... microscopy. Surprisingly, it was found that larger particles were more active per surface area for CO dissociation. It is suggested that this is due to larger particles exposing a more rough surface than the smaller particles, giving rise to a higher relative amount of under-coordinated adsorption sites...

  8. Conformational Dynamics of Insulin

    Directory of Open Access Journals (Sweden)

    Qing-xin eHua

    2011-10-01

    Full Text Available We have exploited a prandial insulin analogue (insulin lispro, the active component of Humalog®; Eli Lilly and Co. to elucidate the underlying structure and dynamics of insulin as a monomer in solution. Whereas NMR-based modeling recapitulates structural relationships of insulin crystals (T-state protomers, dynamic anomalies are revealed by amide-proton exchange kinetics in D2O. Surprisingly, the majority of hydrogen bonds observed in crystal structures are only transiently maintained in solution, including key T-state-specific inter-chain contacts. Long-lived hydrogen bonds (as defined by global exchange kinetics exist only at a subset of four -helical sites (two per chain flanking an internal disulfide bridge (cystine A20-B19; these sites map within the proposed folding nucleus of proinsulin. The anomalous flexibility of insulin otherwise spans its active surface and may facilitate receptor binding. Because conformational fluctuations promote the degradation of pharmaceutical formulations, we envisage that dynamic re-engineering of insulin may enable design of ultra-stable formulations for humanitarian use in the developing world.

  9. Relating conformation to function in integrin α5β1.

    Science.gov (United States)

    Su, Yang; Xia, Wei; Li, Jing; Walz, Thomas; Humphries, Martin J; Vestweber, Dietmar; Cabañas, Carlos; Lu, Chafen; Springer, Timothy A

    2016-07-01

    Whether β1 integrin ectodomains visit conformational states similarly to β2 and β3 integrins has not been characterized. Furthermore, despite a wealth of activating and inhibitory antibodies to β1 integrins, the conformational states that these antibodies stabilize, and the relation of these conformations to function, remain incompletely characterized. Using negative-stain electron microscopy, we show that the integrin α5β1 ectodomain adopts extended-closed and extended-open conformations as well as a bent conformation. Antibodies SNAKA51, 8E3, N29, and 9EG7 bind to different domains in the α5 or β1 legs, activate, and stabilize extended ectodomain conformations. Antibodies 12G10 and HUTS-4 bind to the β1 βI domain and hybrid domains, respectively, activate, and stabilize the open headpiece conformation. Antibody TS2/16 binds a similar epitope as 12G10, activates, and appears to stabilize an open βI domain conformation without requiring extension or hybrid domain swing-out. mAb13 and SG/19 bind to the βI domain and βI-hybrid domain interface, respectively, inhibit, and stabilize the closed conformation of the headpiece. The effects of the antibodies on cell adhesion to fibronectin substrates suggest that the extended-open conformation of α5β1 is adhesive and that the extended-closed and bent-closed conformations are nonadhesive. The functional effects and binding sites of antibodies and fibronectin were consistent with their ability in binding to α5β1 on cell surfaces to cross-enhance or inhibit one another by competitive or noncompetitive (allosteric) mechanisms.

  10. Conformational Dynamics and Allostery in Pyruvate Kinase.

    Science.gov (United States)

    Donovan, Katherine A; Zhu, Shaolong; Liuni, Peter; Peng, Fen; Kessans, Sarah A; Wilson, Derek J; Dobson, Renwick C J

    2016-04-22

    Pyruvate kinase catalyzes the final step in glycolysis and is allosterically regulated to control flux through the pathway. Two models are proposed to explain how Escherichia coli pyruvate kinase type 1 is allosterically regulated: the "domain rotation model" suggests that both the domains within the monomer and the monomers within the tetramer reorient with respect to one another; the "rigid body reorientation model" proposes only a reorientation of the monomers within the tetramer causing rigidification of the active site. To test these hypotheses and elucidate the conformational and dynamic changes that drive allostery, we performed time-resolved electrospray ionization mass spectrometry coupled to hydrogen-deuterium exchange studies followed by mutagenic analysis to test the activation mechanism. Global exchange experiments, supported by thermostability studies, demonstrate that fructose 1,6-bisphosphate binding to the allosteric domain causes a shift toward a globally more dynamic ensemble of conformations. Mapping deuterium exchange to peptides within the enzyme highlight site-specific regions with altered conformational dynamics, many of which increase in conformational flexibility. Based upon these and mutagenic studies, we propose an allosteric mechanism whereby the binding of fructose 1,6-bisphosphate destabilizes an α-helix that bridges the allosteric and active site domains within the monomeric unit. This destabilizes the β-strands within the (β/α)8-barrel domain and the linked active site loops that are responsible for substrate binding. Our data are consistent with the domain rotation model but inconsistent with the rigid body reorientation model given the increased flexibility at the interdomain interface, and we can for the first time explain how fructose 1,6-bisphosphate affects the active site. PMID:26879751

  11. Computation of conformational coupling in allosteric proteins.

    Directory of Open Access Journals (Sweden)

    Brian A Kidd

    2009-08-01

    Full Text Available In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.

  12. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  13. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  14. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    Science.gov (United States)

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  15. Active Sites Environmental Monitoring Program: FY 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wickliff, D.S.; Morrissey, C.M.; Ashwood, T.L.

    1991-10-01

    Chapter 3 of US Department of Energy (DOE) Order 5820.2A (DOE 1988) sets forth requirements for environmental monitoring of active low-level waste (LLW) disposal sites. Active sites are defined as those LLW facilities that were in use on or after the date of the order (September 1988). The transuranic (TRU) waste storage areas in Solid Waste Storage Area (SWSA) 5 North are covered by Chap. 2 of the order. In both chapters, monitoring is required to provide for early warning of leaks before those leaks pose a threat to human health or the environment. Chapter 3 also requires that monitoring be conducted to evaluate the short- and long-term performance of LLW disposal facilities. In accordance with this order, the Solid Waste Operations Department at Oak Ridge National Laboratory (ORNL) has established an Active Sites Environmental Monitoring Program (ASEMP) that is implemented by staff of the Environmental Sciences Division (ESD) at ORNL. This report summarizes data from ASEMP monitoring activities for the final 6 months of FY 1990. A brief summary of the monitoring methodology for each site is presented also.

  16. Active site modeling in copper azurin molecular dynamics simulations

    NARCIS (Netherlands)

    Rizzuti, B; Swart, M; Sportelli, L; Guzzi, R

    2004-01-01

    Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the po

  17. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    Science.gov (United States)

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  18. The nature of the active site in heterogeneous metal catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Larsen, Britt Hvolbæk;

    2008-01-01

    This tutorial review, of relevance for the surface science and heterogeneous catalysis communities, provides a molecular-level discussion of the nature of the active sites in metal catalysis. Fundamental concepts such as "Bronsted-Evans-Polanyi relations'' and "volcano curves'' are introduced...

  19. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor.

    Directory of Open Access Journals (Sweden)

    Elton Zeqiraj

    2009-06-01

    Full Text Available Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADalpha in complex with MO25alpha. The structure reveals an intricate web of interactions between STRADalpha and MO25alpha involving the alphaC-helix of STRADalpha, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADalpha binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADalpha for MO25alpha, and conversely, binding of MO25alpha promotes interaction of STRADalpha with ATP. Mutagenesis studies reveal that association of STRADalpha with either ATP or MO25alpha is essential for LKB1 activation. We conclude that ATP and MO25alpha cooperate to maintain STRADalpha in an "active" closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADalpha that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE syndrome. We demonstrate this mutation destabilizes STRADalpha and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADalpha to activate LKB1 is dependent on a closed "active" conformation, aided by ATP and MO25alpha binding. Thus, the function of STRADalpha is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations.

  20. Volatile anesthetics inhibit the activity of calmodulin by interacting with its hydrophobic site

    Institute of Scientific and Technical Information of China (English)

    ZHOU Miao-miao; XIA Hui-min; LIU Jiao; XU You-nian; XIN Nai-xin; ZHANG Shi-hai

    2012-01-01

    Background Volatile anesthetics (VAs) may affect varied and complex physiology processes by manipulating Ca2+-calmodulin (CaM).However,the detailed mechanism about the action of VAs on CaM has not been elucidated.This study was undertaken to examine the effects of VAs on the conformational change,hydrophobic site,and downstream signaling pathway of CaM,to explore the possible mechanism of anesthetic action of VAs.Methods Real-time second-harmonic generation (SHG) was performed to monitor the conformational change of CaM in the presence of VAs, each plus 100 μmol/L Ca2+. A hydrophobic fluorescence indicator,8-anilinonaphthalene-1-sulfonate (ANS),was utilized to define whether the VAs would interact with CaM at the hydrophobic site or not.High-performance liquid chromatography (HPLC) was carried out to analyze the activity of CaM-dependent phosphodiesterase (PDE1) in the presence of VAs.The VAs studied were ether,enflurane,isoflurane,and sevoflurane,with their aqueous concentrations 7.6,9.5,11.4 mmol/L; 0.42,0.52,0.62 mmol/L; 0.25,0.31,0.37 mmol/L and 0.47,0.59,0.71 mmol/L respectively,each were equivalent to their 0.8,1.0 and 1.2 concentration for 50% of maximal effect (EC50) for general anesthesia.Results The second-harmonic radiation of CaM in the presence of Ca2+ was largely inhibited by the VAs.The fluorescence intensity of ANS,generated by binding of Ca2+ to CaM,was reversed by the VAs.HPLC results also showed that AMP,the product of the hydrolysis of cAMP by CaM-dependent PDE1,was reduced by the VAs.Conclusions Our findings demonstrate that the above VAs interact with the hydrophobic core of Ca2+-CaM and the interaction results in the inhibition of the conformational change and activity of CaM.This in vitro study may provide us insight into the possible mechanism of anesthetic action of VAs in vivo.

  1. Enhancement of Chaperone Activity of Plant-Specific Thioredoxin through γ-Ray Mediated Conformational Change

    Directory of Open Access Journals (Sweden)

    Seung Sik Lee

    2015-11-01

    Full Text Available AtTDX, a thioredoxin-like plant-specific protein present in Arabidospis is a thermo-stable and multi-functional enzyme. This enzyme is known to act as a thioredoxin and as a molecular chaperone depending upon its oligomeric status. The present study examines the effects of γ-irradiation on the structural and functional changes of AtTDX. Holdase chaperone activity of AtTDX was increased and reached a maximum at 10 kGy of γ-irradiation and declined subsequently in a dose-dependent manner, together with no effect on foldase chaperone activity. However, thioredoxin activity decreased gradually with increasing irradiation. Electrophoresis and size exclusion chromatography analysis showed that AtTDX had a tendency to form high molecular weight (HMW complexes after γ-irradiation and γ-ray-induced HMW complexes were tightly associated with a holdase chaperone activity. The hydrophobicity of AtTDX increased with an increase in irradiation dose till 20 kGy and thereafter decreased further. Analysis of the secondary structures of AtTDX using far UV-circular dichroism spectra revealed that the irradiation remarkably increased the exposure of β-sheets and random coils with a dramatic decrease in α-helices and turn elements in a dose-dependent manner. The data of the present study suggest that γ-irradiation may be a useful tool for increasing holdase chaperone activity without adversely affecting foldase chaperone activity of thioredoxin-like proteins.

  2. The Transcription Bubble of the RNA Polymerase-Promoter Open Complex Exhibits Conformational Heterogeneity and Millisecond-Scale Dynamics : Implications for Transcription Start-Site Selection

    NARCIS (Netherlands)

    Robb, Nicole C.; Cordes, Thorben; Hwang, Ling Chin; Gryte, Kristofer; Duchi, Diego; Craggs, Timothy D.; Santoso, Yusdi; Weiss, Shimon; Ebright, Richard H.; Kapanidis, Achillefs N.

    2013-01-01

    Bacterial transcription is initiated after RNA polymerase (RNAP) binds to promoter DNA, melts similar to 14 bp around the transcription start site and forms a single-stranded "transcription bubble" within a catalytically active RNAP-DNA open complex (RPo). There is significant flexibility in the tra

  3. Mapping the active site of vaccinia virus RNA triphosphatase

    International Nuclear Information System (INIS)

    The RNA triphosphatase component of vaccinia virus mRNA capping enzyme (the product of the viral D1 gene) belongs to a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, Chlorella virus, and baculoviruses. The family is defined by two glutamate-containing motifs (A and C) that form the metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight-stranded β barrel (the so-called ''triphosphate tunnel''). Here we queried whether vaccinia virus capping enzyme is a member of the tunnel subfamily, via mutational mapping of amino acids required for vaccinia triphosphatase activity. We identified four new essential side chains in vaccinia D1 via alanine scanning and illuminated structure-activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight a constellation of six acidic and three basic amino acids that likely compose the vaccinia triphosphatase active site (Glu37, Glu39, Arg77, Lys107, Glu126, Asp159, Lys161, Glu192, and Glu194). These nine essential residues are conserved in all vertebrate and invertebrate poxvirus RNA capping enzymes. We discerned no pattern of clustering of the catalytic residues of the poxvirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). We infer that the poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Their unique active site, which is completely different from that of the host cell's capping enzyme, recommends the poxvirus RNA triphosphatase as a molecular target for antipoxviral drug discovery

  4. Protein Conformational Populations and Functionally Relevant Sub-states

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Pratul K [ORNL; Burger, Virginia [University of Pittsburgh School of Medicine, Pittsburgh PA; Savol, Andrej [University of Pittsburgh School of Medicine, Pittsburgh PA; Ramanathan, Arvind [ORNL; Chennubhotla, Chakra [University of Pittsburgh School of Medicine, Pittsburgh PA

    2013-01-01

    it to attain the transition state, therefore promoting the reaction mechanism. In the long term, this emerging view of proteins with conformational substates has broad implications for improving our understanding of enzymes, enzyme engineering, and better drug design. Researchers have already used photoactivation to modulate protein conformations as a strategy to develop a hypercatalytic enzyme. In addition, the alteration of the conformational substates through binding of ligands at locations other than the active site provides the basis for the design of new medicines through allosteric modulation.

  5. Decommissioning and decontamination activity, Gnome Site, Eddy County, New Mexico

    International Nuclear Information System (INIS)

    The purpose of this assessment is to present a brief description of the proposed activity and its potential impacts on the environment. This assessment will constitute an evaluation as to whether or not a formal Environmental Statement need be prepared. As background to the proposed activity, Project Gnome was an underground nuclear test conducted in December 1961 as part of the PLOWSHARE Program. The project site is located about 25 miles southeast of Carlsbad, New Mexico. By means of an excavated shaft and tunnel, a 3-kiloton nuclear explosive was emplaced and detonated in a salt bed about 1200 feet below the surface. The uncontaminated rock and salt muck from the original excavation and subsequent contaminated muck and minor construction debris from reentry activities into the nuclear cavity is commingled and stored in a pile near the Gnome/Coach Shaft. Other areas on the site are known to have been contaminated. In 1969, a program was conducted to cleanup and dispose of all surface contamination to whatever depth it occurred in excess of 0.1 mR/hr. Contaminated materials and soil were collected and disposed into the Gnome shaft, which was filled and sealed. Since then, NV has proposed to DOE/HQ much lower criteria for residual radioactive contamination for the Gnome Site. These proposed criteria were to collect and dispose of surficial materials which contain more than 2 x 10-5 microcuries per gram of soil for beta/gamma emitters and 3 x 10-2 microcuries per milliliter of tritium in soil moisture. According to the latest reconnaissance in 1972, low concentrations of Cs-137, Sr-90 and tritium were present at various locations on the site in excess of these proposed guidelines. Other operational areas within the site are suspected of containing radioactive contamination in much lesser volume, which are to be determined by careful probing and monitoring, as described in the next section

  6. Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase

    DEFF Research Database (Denmark)

    Peters, Günther H.j.; Svendsen, A.; Langberg, H.;

    1998-01-01

    reveal that the hinges of the active site lid are more flexible in the wild-type Hll than in S146A. In contrast, larger fluctuations are observed in the middle region of the active site loop in S 146A than in Hll. These findings reveal that the single mutation (S146A) of the active site serine leads......We have investigated the binding properties of and dynamics in Humicola lanuginosa lipase (HII) and the inactive mutant S146A (active Ser146 substituted with Ala) using fluorescence spectroscopy and molecular dynamics simulations, respectively. Hll and S146A show significantly different binding......, whereas only small changes are observed for I-Ill suggesting that the active site Lid in the latter opens more easily and hence more lipase molecules are bound to the liposomes. These observations are in agreement with molecular dynamics simulations and subsequent essential dynamics analyses. The results...

  7. The purification of affinity-labelled active-site peptides

    International Nuclear Information System (INIS)

    The isolation of the labelled peptide from the protein digest, following the affinity labelling of the active sites of enzymes or antibodies, is described. Single-step affinity chromatography utilises the affinity of the native enzymes or antibody for the ligand used to label the same protein. The labelled peptide is the only one in the digest that displays affinity for the immobilised protein and can be released with eluants that dissociate the protein-ligand complex. (Auth.)

  8. Active sites in char gasification: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  9. Exploiting Innocuous Activity for Correlating Users Across Sites

    OpenAIRE

    Goga, Oana; Lei, Howard; Parthasarathi, Sree Hari Krishnan; Friedland, Gerald; Sommer, Robin; Teixeira, Renata

    2013-01-01

    International audience We study how potential attackers can identify accounts on different social network sites that all belong to the same user, exploiting only innocuous activity that inherently comes with posted content. We examine three specific features on Yelp, Flickr, and Twitter: the geo-location attached to a user's posts, the timestamp of posts, and the user's writing style as captured by language models. We show that among these three features the location of posts is the most po...

  10. The conformation and CETP inhibitory activity of [10]-dehydrogingerdione isolated from Zingiber officinale.

    Science.gov (United States)

    Choi, Soon-Yong; Park, Gil-Soon; Lee, Sung Yoon; Kim, Ji Yeon; Kim, Young Kook

    2011-05-01

    In the course of searching for cholesteryl ester transfer protein (CETP) inhibitors from natural sources, a new type of CETP inhibitor, [10]-dehydrogingerdione (1), was isolated from the extract of rhizomes of Zingiber officinale Roscoe. By NMR spectroscopic analysis of its (1)HNMR, (13)C-NMR, and (1)H-(1)H COSY, HMBC, HMQC and NOESY, more precise structure, compared with its originally proposed structures, of [10]-dehydrogingerdione has been elucidated. This active compound inhibited human plasma CETP with IC(50) values of 35 μM. PMID:21656357

  11. Inhibition and active-site modelling of prolidase.

    Science.gov (United States)

    King, G F; Crossley, M J; Kuchel, P W

    1989-03-15

    Consideration of the active-site model of prolidase led us to examine azetidine, pyrrolidine and piperidine substrate analogs as potential in vivo inhibitors of the enzyme. One of these, N-benzyloxycarbonyl-L-proline, was shown to be a potent competitive inhibitor of porcine kidney prolidase (Ki = 90 microM); its rapid protein-mediated permeation of human and sheep erythrocytes suggests that it may be effective in vivo. The higher homolog, N-benzyloxycarbonyl-L-pipecolic acid, was also a potent inhibitor of the enzyme while the antihypertensive drugs, captopril and enalaprilat, were shown to have mild and no inhibitory effects, respectively. Analysis of inhibitor action and consideration of X-ray crystallographic data of relevant Mn2+ complexes allowed the active-site model of prolidase to be further refined; a new model is presented in which the substrate acts as a bidentate ligand towards the active-site manganous ion. Various aspects of the new model help to explain why Mn2+ has been 'chosen' by the enzyme in preference to other biologically available metal ions. PMID:2924773

  12. Kinetic analysis of inhibition of glucoamylase and active site mutants via chemoselective oxime immobilization of acarbose on SPR chip surfaces

    DEFF Research Database (Denmark)

    Sauer, Jørgen; Abou Hachem, Maher; Svensson, Birte;

    2013-01-01

    We here report a quantitative study on the binding kinetics of inhibition of the enzyme glucoamylase and how individual active site amino acid mutations influence kinetics. To address this challenge, we have developed a fast and efficient method for anchoring native acarbose to gold chip surfaces...... for surface plasmon resonance studies employing wild type glucoamylase and active site mutants, Y175F, E180Q, and R54L, as analytes. The key method was the chemoselective and protecting group-free oxime functionalization of the pseudo-tetrasaccharide-based inhibitor acarbose. By using this technique we have...... shown that at pH 7.0 the association and dissociation rate constants for the acarbose-glucoamylase interaction are 104M−1s−1 and 103s−1, respectively, and that the conformational change to a tight enzyme–inhibitor complex affects the dissociation rate constant by a factor of 102s−1. Additionally...

  13. Hydrophobic Side-Chain Length Determines Activity and Conformational Heterogeneity of a Vancomycin Derivative Bound to the Cell Wall of Staphylococcus aureus§

    OpenAIRE

    Kim, Sung Joon; Schaefer, Jacob

    2008-01-01

    Disaccharide modified glycopeptides with hydrophobic sidechains are active against vancomycin-resistant enterococci and vancomycin-resistant S. aureus. The activity depends on the length of the sidechain. The benzyl sidechain of N-(4-fluorobenzyl)vancomycin (FBV) has the minimal length sufficient for enhancement in activity against vancomycin-resistant pathogens. The conformation of FBV bound to the peptidoglycan in whole cells of S. aureus has been determined using rotational-echo double res...

  14. Seismic activity parameters of the Finnish potential repository sites

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J. [Fortum Engineering Oy, Vantaa (Finland)

    2000-10-01

    Posiva Oy has started a project for estimating the possible earthquake induced rock movements on the deposition holes containing canisters of spent nuclear fuel. These estimates will be made for the four investigation sites, Romuvaara, Kivetty, Olkiluoto and Haestholmen. This study deals with the current and future seismicity associated with the above mentioned sites. Seismic belts that participate the seismic behaviour of the studied sites have been identified and the magnitude-frequency distributions of these belts have been estimated. The seismic activity parameters of the sites have been deduced from the characteristics of the seismic belts in order to forecast the seismicity during the next 100,000 years. The report discusses the possible earthquakes induced by future glaciation. The seismic interpretation seems to indicate that the previous postglacial faults in Finnish Lapland have been generated in compressional environment. The orientation of the rather uniform compression has been NW-SE, which coincide with the current stress field. It seems that, although the impact of postglacial crustal rebound must have been significant, the impact of plate tectonics has been dominant. A major assumption of this study has been that future seismicity will generally resemble the current seismicity. However, when the postglacial seismicity is concerned, the magnitude-frequency distribution is likely different and the expected maximum magnitude will be higher. Maximum magnitudes of future postglacial earthquakes have been approximated by strain release examinations. Seismicity has been examined within the framework of the lineament maps, in order to associate the future significant earthquakes with active fault zones in the vicinity of the potential repository sites. (orig.)

  15. Structure, chain conformation, and immunomodulatory activity of the polysaccharide purified from Bacillus Calmette Guerin formulation.

    Science.gov (United States)

    Liu, Wei; Wang, Hong; Yu, Juping; Liu, Yameng; Lu, Weisheng; Chai, Yin; Liu, Chao; Pan, Chun; Yao, Wenbing; Gao, Xiangdong

    2016-10-01

    A polysaccharide, coded as BDP, purified from the injection powder of Bacillus Calmette Guerin (BCG) polysaccharide and nucleic acid, was composed mainly of α-D-(1→4)-linked glucan with (1→6)-linked branches and trace amounts of fucose and mannose from the results of FT-IR, HPAEC-PAD and NMR spectrum. The Mw, Mn, Mz, and [Formula: see text] were determined to be 1.320×10(5)g/mol, 1.012×10(5)g/mol, 2.139×10(5)g/mol, and 21.8±3.2%nm by using HPSEC-MALLS, respectively. The ν value from [Formula: see text] was calculated to be 0.52±0.01, which firstly clarified that BDP existed as random coils in 0.9% NaCl aqueous solution. AFM and SEM combined with Congo-red test also revealed that the polysaccharide was irregular globular like or curly structure. Furthermore, in vitro tests on RAW264.7 murine macrophages cells revealed that BDP exhibited significant immunomodulatory activity. PMID:27312624

  16. Investigating the Conformational Structure and Potential Site Interactions of SOD Inhibitors on Ec-SOD in Marine Mud Crab Scylla serrata: A Molecular Modeling Approach.

    Science.gov (United States)

    Paital, Biswaranjan; Sablok, Gaurav; Kumar, Sunil; Singh, Sanjeev Kumar; Chainy, G B N

    2016-09-01

    Superoxide dismutases (SODs) act as a first line of the enzymatic antioxidant defense system to control cellular superoxide anion toxicity. Previously, several inhibitors have been widely identified and catalogued for inhibition of SOD activity; however, still the information about the mechanism of interaction and points toward the inhibitor interactions in structures of SODs in general and in extracellular (Ec)-SOD in particular is still in naive. In the present research, we present an insight to elucidate the molecular basis of interactions of SOD inhibitors with Ec-SOD in mud crab Scylla serrata using molecular modeling and docking approaches. Different inhibitors of SOD such as hydrogen peroxide [Formula: see text], potassium cyanide, sodium dodecyl sulfate (SDS), [Formula: see text]-mercaptoethanol and dithiocarbamate were screened to understand the potential sites that may act as sites for cleavage or blocking in the protein. SOD-SDS and [Formula: see text] complex interactions indicate residues Pro72 and Asp102 of the predicted crab Ec-SOD as common targets. The GOLD result indicates that Pro72, Asp102 and Thr103 are commonly acting as the site of interaction in Ec-SOD of S. serrata with SOD inhibitors. For the first time, the results of this study provide an insight into the structural properties of Ec-SOD of S. serrata and define the possible involvements between the amino acids present in its active sites, i.e., in the regions from 70 to 84 and from 101 to 103 and different inhibitors.

  17. The role of active site tyrosine 58 in Citrobacter freundii methionine γ-lyase.

    Science.gov (United States)

    Anufrieva, Natalya V; Faleev, Nicolai G; Morozova, Elena A; Bazhulina, Natalia P; Revtovich, Svetlana V; Timofeev, Vladimir P; Tkachev, Yaroslav V; Nikulin, Alexei D; Demidkina, Tatyana V

    2015-09-01

    In the spatial structure of methionine γ-lyase (MGL, EC 4.4.1.11) from Citrobacter freundii, Tyr58 is located at H-bonding distance to the oxygen atom of the phosphate "handle" of pyridoxal 5'-phosphate (PLP). It was replaced for phenylalanine by site-directed mutagenesis. The X-ray structure of the mutant enzyme was determined at 1.96Å resolution. Comparison of spatial structures and absorption spectra of wild-type and mutant holoenzymes demonstrated that the replacement did not result in essential changes of the conformation of the active site Tyr58Phe MGL. The Kd value of PLP for Tyr58Phe MGL proved to be comparable to the Kd value for the wild-type enzyme. The replacement led to a decrease of catalytic efficiencies in both γ- and β-elimination reactions of about two orders of magnitude as compared to those for the wild-type enzyme. The rates of exchange of C-α- and C-β- protons of inhibitors in D2O catalyzed by the mutant form are comparable with those for the wild-type enzyme. Spectral data on the complexes of the mutant form with the substrates and inhibitors showed that the replacement led to a change of rate the limiting step of the physiological reaction. The results allowed us to conclude that Tyr58 is involved in an optimal positioning of the active site Lys210 at some stages of γ- and β-elimination reactions. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.

  18. HDAC Inhibitors without an Active Site Zn2+-Binding Group

    DEFF Research Database (Denmark)

    Vickers, Chris J.; Olsen, Christian Adam; Leman, Luke J.;

    2012-01-01

    potency against class 1 HDACs and are active in tissue culture against various human cancer cell lines. Importantly, enzymological analysis of 26 indicates that the cyclic α3β-tetrapeptide is a fast-on/ off competitive inhibitor of HDACs 1−3 with Ki values of 49, 33, and 37 nM, respectively. Our proof......Natural and synthetic histone deacetylase (HDAC) inhibitors generally derive their strong binding affinity and high potency from a key functional group that binds to the Zn2+ ion within the enzyme active site. However, this feature is also thought to carry the potential liability of undesirable off......-target interactions with other metalloenzymes. As a step toward mitigating this issue, here, we describe the design, synthesis, and structure−activity characterizations of cyclic α3β-tetrapeptide HDAC inhibitors that lack the presumed indispensable Zn2+-binding group. The lead compounds (e.g., 15 and 26) display good...

  19. Current activities handbook: formerly utilized sites remedial action program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  20. Overview of the activities carried out at the FEBEX site

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.; Buil, B.; Garralon, A.; Gomez, P. [CIEMAT, Dept. de Medioambien te, 28040 Madrid (Spain); Perez-Estaun, A.; Carbonell, R. [Inst. Jaume Almera, CSIC (Spain); Suso, J.; Carretero, G.; Bueno, J.; Martinez, L. [AITEMIN (Spain) ; Hernan, P. [ENRESA (Spain)

    2007-06-15

    One of the main aim of WP 4.1 and 4.2 is to study solute migration mechanisms in crystalline host-rock in realistic conditions. Many organisations are participating in a joint study that is being performed in the FEBEX gallery (NAGRA's Grimsel Test Site, GTS, Switzerland). The FEBEX experiment reproduces at a real scale a high-level waste repository in granite and was installed more than 9 years ago. At moment, it represents the most realistic environment where the processes affecting radionuclide migration from the bentonite to granite can be studied. This paper summarises the main activities carried out at the FEBEX site during the second year of the project.

  1. Current activities handbook: formerly utilized sites remedial action program

    International Nuclear Information System (INIS)

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified

  2. The role of amino acid residues in the active site of L-methionine γ-lyase from Pseudomonas putida.

    Science.gov (United States)

    Fukumoto, Mitsuki; Kudou, Daizou; Murano, Shouko; Shiba, Tomoo; Sato, Dan; Tamura, Takashi; Harada, Shigeharu; Inagaki, Kenji

    2012-01-01

    Cys116, Lys240*, and Asp241* (asterisks indicate residues from the second subunit of the active dimer) at the active site of L-methionine γ-lyase of Pseudomonas putida (MGL_Pp) are highly conserved among heterologous MGLs. In a previous study, we found that substitution of Cys116 for His led to a drastic increase in activity toward L-cysteine and a decrease in that toward L-methionine. In this study, we examined some properties of the C116H mutant by kinetic analysis and 3D structural analysis. We assumed that substitution of Cys116 for His broke the original hydrogen-bond network and that this induced a significant effect of Tyr114 as a general acid catalyst, possibly due to the narrow space in the active site. The C116H mutant acquired a novel β-elimination activity and lead a drastic conformation change in the histidine residue at position 116 by binding the substrate, suggesting that this His residue affects the reaction specificity of C116H. Furthermore, we suggest that Lys240* is important for substrate recognition and structural stability and that Asp241* is also involved in substrate specificity in the elimination reaction. Based on this, we suggest that the hydrogen-bond network among Cys116, Lys240*, and Asp241* contributes to substrate specificity that is, to L-methionine recognition at the active site in MGL_Pp.

  3. Oxygen reduction and evolution at single-metal active sites

    DEFF Research Database (Denmark)

    Calle-Vallejo, F.; Martínez, J.I.; García Lastra, Juan Maria;

    2013-01-01

    A worldwide spread of clean technologies such as low-temperature fuel cells and electrolyzers depends strictly on their technical reliability and economic affordability. Currently, both conditions are hardly fulfilled mainly due to the same reason: the oxygen electrode, which has large overpotent...... may be improved by careful selections of the support and the ligand properties close to the active sites and/or the ramifications near them, so that charge is transferred back and forth during adsorption and selective hydrogen bonds are formed....

  4. 10 CFR 63.16 - Review of site characterization activities. 2

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Review of site characterization activities. 2 63.16... site characterization activities. 2 2 In addition to the review of site characterization activities... investigation and site characterization, to allow early identification of potential licensing issues for...

  5. 77 FR 39508 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Science.gov (United States)

    2012-07-03

    ... characterization activities (geophysical, geotechnical, archaeological, and biological surveys needed to develop..., site characterization, and site assessment in and around the Call Area (76 FR 51391). The Call Area...

  6. PCR-based site-specific mutagenesis of peptide antibiotics FALL-39 and its biologic activities

    Institute of Scientific and Technical Information of China (English)

    Yun-xia YANG; Yun FENG; Bo-yao WANG; Qi WU

    2004-01-01

    AIM: To construct PGEX-1λT-FALL-39 expression vector and its mutant vector, and study the relationship of function and structure. METHODS: A cDNA encoding mature FALL-39 was cloned from SPCA- 1 cell mRNA and the prokaryotic expression vector PGEX- 1λT-FALL-39 was constructed. Two kinds of polymerase chain reaction (PCR) for the site-direction mutagenesis were used to construct FALL-39 mutant expression vector, FALL-39-Lys-32 and FALL-39-Lys-24. Minimal effective concentration, minimal inhibitory concentration, and minimal bactericidal concentration were used to assay the antibacterial activities of these peptides. Effects of different solution on the antibacterial activity of FALL-39 and FALL-39-Lys-32 were observed by CFU determination. The hemolytic effects of these peptides were also examined on human red blood cells. RESULTS: Two site-specific mutants FALL-39-Lys-32 and FALL-39-Lys24 were obtained by PCR-induced mutagenesis. In comparison with two-step PCR which required two pairs of primers, one step PCR which required one pair of primers is a simple and efficient method for the PCR based site-specific mutagenesis. Using the prokaryotic expression system, the E coli-based products of recombinant FALL39 and its mutant peptides were also obtained. The antibacterial assay showed that FALL-39-Lys-32 and FALL-39-Lys24 were more potential in the antibacterial activity against E coli ML35p and Pseltdomonas aeruginosa ATCC27853 than that of FALL-39, and no increase in hemolysis was observed at the antibacterial concentrations. The antibacterial activity of FALL-39-Lys-32 against E coli was more potent than that of FALL-39 in NaCl-containing LB medium, while its activity was almost the same as FALL-39 in SO2-4 containing Medium E. CONCLUSION: PCR-based mutagensis is a useful model system for studying the structure and function relationship of antimicrobial peptides. Keeping α-helical conformation of FALL-39 and increasing net positive charge can increase the

  7. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-[beta]-glucosidase Active Site: Implications for Pharmacological Chaperone Design for Gaucher Disease

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan T.; Kelly, Jeffery W.; Lieberman, Raquel L. (Scripps); (GIT)

    2013-03-07

    Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.

  8. Strain relief at the active site of phosphoserine aminotransferase induced by radiation damage.

    Science.gov (United States)

    Dubnovitsky, Anatoly P; Ravelli, Raimond B G; Popov, Alexander N; Papageorgiou, Anastassios C

    2005-06-01

    The X-ray susceptibility of the lysine-pyridoxal-5'-phosphate Schiff base in Bacillus alcalophilus phosphoserine aminotransferase has been investigated using crystallographic data collected at 100 K to 1.3 A resolution, complemented by on-line spectroscopic studies. X-rays induce deprotonation of the internal aldimine, changes in the Schiff base conformation, displacement of the cofactor molecule, and disruption of the Schiff base linkage between pyridoxal-5'-phosphate and the Lys residue. Analysis of the "undamaged" structure reveals a significant chemical strain on the internal aldimine bond that leads to a pronounced geometrical distortion of the cofactor. However, upon crystal exposure to the X-rays, the strain and distortion are relaxed and eventually diminished when the total absorbed dose has exceeded 4.7 x 10(6) Ggamma. Our data provide new insights into the enzymatic activation of pyridoxal-5'-phosphate and suggest that special care should be taken while using macromolecular crystallography to study details in strained active sites.

  9. Probing the putative active site of YjdL

    DEFF Research Database (Denmark)

    Jensen, Johanne Mørch; Ismat, Fouzia; Szakonyi, Gerda;

    2012-01-01

    YjdL from E. coli is an unusual proton-coupled oligopeptide transporter (POT). Unlike prototypical POTs, dipeptides are preferred over tripeptides, in particular dipeptides with a positively charged C-terminal residue. To further understand this difference in peptide specificity, the sequences...... of YjdL and YdgR, a prototypical E. coli POT, were compared in light of the crystal structure of a POT from Shewanella oneidensis. Several residues found in the putative active site were mutated and the activities of the mutated variants were assessed in terms of substrate uptake assays, and changes...... pocket that opens towards the extracellular space. The C-terminal side chain faces in the opposite direction into a sub pocket that faces the cytoplasm. These data indicated a stabilizing effect on a bulky N-terminal residue by an Ala281Phe variant and on the dipeptide backbone by Trp278...

  10. Study the active site of flavonoid applying radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jilan; Sun Gang; Zhang Fugen; He Yongke; Li Jiuqiang [Department of Technical Physics, Peking Univ., Beijing (China)

    2000-03-01

    Flavonoid are a large and important class of naturally occurring, low molecular weight benzo-{gamma}-pyrone derivatives which are reported to have a myriad of biological activities, but the study on the active sites of flavonoids is still ambiguous. In this paper, rutin, quercetin and baicalin have been selected as model compounds. It is well known that rutin is used in inhibiting arteriosclerosis and baicalin is antibacterial and antiviral. They have similar basic structure, but their medicinal properties are so different, why? As most flavonoids contain carbonyl group, which can capture electron effectively, we predict that flavonoids can capture electron to form radical anion. The formation of anion radical may have influence on the mitochondrial electron transport chain. The difference in the ability of forming anion radical may cause the difference in their medicinal effects. (author)

  11. SITE-DIRECTED MUTAGENESIS OF PROPOSED ACTIVE-SITE RESIDUES OF PENICILLIN-BINDING PROTEIN-5 FROM ESCHERICHIA-COLI

    NARCIS (Netherlands)

    VANDERLINDEN, MPG; DEHAAN, L; DIDEBERG, O; KECK, W

    1994-01-01

    Alignment of the amino acid sequence of penicillin-binding protein 5 (PBP5) with the sequences of other members of the family of active-site-serine penicillin-interacting enzymes predicted the residues playing a role in the catalytic mechanism of PBP5. Apart from the active-site (Ser(44)), Lys(47),

  12. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  13. Maxey Flats low-level waste disposal site closure activities

    International Nuclear Information System (INIS)

    The Maxey Flats Radioactive Waste Disposal Facility in Fleming County, Kentucky is in the process of being closed. The facility opened for commercial business in the spring of 1963 and received approximately 4.75 million cubic feet of radioactive waste by the time it was closed in December of 1977. During fourteen years of operation approximately 2.5 million curies of by-product material, 240,000 kilograms of source material, and 430 kilograms of special nuclear material were disposed. The Commonwealth purchased the lease hold estate and rights in May 1978 from the operating company. This action was taken to stabilize the facility and prepare it for closure consisting of passive care and monitoring. To prepare the site for closure, a number of remedial activities had to be performed. The remediation activities implemented have included erosion control, surface drainage modifications, installation of a temporary plastic surface cover, leachate removal, analysis, treatment and evaporation, US DOE funded evaporator concentrates solidification project and their on-site disposal in an improved disposal trench with enhanced cover for use in a humid environment situated in a fractured geology, performance evaluation of a grout injection demonstration, USGS subsurface geologic investigation, development of conceptual closure designs, and finally being added to the US EPA National Priority List for remediation and closure under Superfund. 13 references, 3 figures

  14. Identification of covalent active site inhibitors of dengue virus protease

    Directory of Open Access Journals (Sweden)

    Koh-Stenta X

    2015-12-01

    Full Text Available Xiaoying Koh-Stenta,1 Joma Joy,1 Si Fang Wang,1 Perlyn Zekui Kwek,1 John Liang Kuan Wee,1 Kah Fei Wan,2 Shovanlal Gayen,1 Angela Shuyi Chen,1 CongBao Kang,1 May Ann Lee,1 Anders Poulsen,1 Subhash G Vasudevan,3 Jeffrey Hill,1 Kassoum Nacro11Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR, Singapore; 2Novartis Institute for Tropical Diseases, Singapore; 3Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, SingaporeAbstract: Dengue virus (DENV protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described.Keywords: flavivirus protease, small molecule optimization, covalent inhibitor, active site binding, pyrazole ester derivatives

  15. EFFECTS OF CONFORMATION OF POLYMER LIGANDS IN COPPER(Ⅱ) COMPLEXES ON CATALYLIC ACTIVITIES AND MECHANISM OF OXIDATIVE COUPLING OF β-NAPHTHOL

    Institute of Scientific and Technical Information of China (English)

    BIAN Kejian; LUO Chunqiao; CAO Mengjun

    1987-01-01

    Copper(Ⅱ) complexes of sericin, chitosan, 6-and 2-aminodeoxystarch were used as catalysts in oxidative coupling of β-naphthol, the effects of conformation of the polymer ligands in these complexes on activities of the catalysts and mechanisms of the reaction were studied. It was found that if the catalysts react with the substrate by mechanism similar to the enzymic catalysis they must be composed of polymer ligands with highly coiled, especially with densely helicoidal,conformations. While catalysts composed of loosely coiled or helicoidal ligands react with the substrate through molecular collision and have relatively lower activities only. Under nitrogen,catalysts from sericin and chitosam reacting with β-naphthol give optically active β-binaphthol,rotating polarized light to right, but the stereoselectivities are rather low.

  16. Homology models of dipeptidyl peptidases 8 and 9 with a focus on loop predictions near the active site.

    Science.gov (United States)

    Rummey, Christian; Metz, Günther

    2007-01-01

    Dipeptidyl peptidase 4 (DP4) inhibitors are currently under intensive investigation in late-stage clinical trials as a treatment for type II diabetes. Lack of selectivity toward the related enzymes DP8 and DP9 has recently emerged as a possible source of drug-induced toxicity. Unlike DP4, X-ray structures of DP8 and DP9 are not yet available. As an aid to understanding the structural basis for selectivity, the authors have constructed homology models of DP8 and DP9 based on the X-ray coordinates of DP4. Accurate sequence alignment reveals common structural features indicative for a well-preserved overall fold comprising two domains, namely, a hydrolase domain and a so-called beta-propeller, which together form the active site deeply buried within the protein. The conformation of two loops inside this deep cavity is particularly relevant for the active sites. The authors used a published protocol for loop prediction based on conformational sampling and energy analysis to generate plausible solutions for these two loops. The predictive power of the approach was successfully evaluated for the template protein DP4 and two additional known structures from the same protein family, namely, FAP and DPX. The authors also show that inclusion of the covalent ligand NVP-728 greatly enhances the refinement. Based on the established evaluation protocol, the corresponding loops of DP8 and DP9 were predicted and the resulting active sites were compared with DP4. In particular, the authors conclude that differences in the P2-pocket are relevant for the design of selective DP4 inhibitors. The loss of key interactions in DP8 and DP9 as predicted from their models is consistent with the selectivity profile of the DP4 clinical candidate MK-431.

  17. A single active catalytic site is sufficient to promote transport in P-glycoprotein.

    Science.gov (United States)

    Bársony, Orsolya; Szalóki, Gábor; Türk, Dóra; Tarapcsák, Szabolcs; Gutay-Tóth, Zsuzsanna; Bacsó, Zsolt; Holb, Imre J; Székvölgyi, Lóránt; Szabó, Gábor; Csanády, László; Szakács, Gergely; Goda, Katalin

    2016-01-01

    P-glycoprotein (Pgp) is an ABC transporter responsible for the ATP-dependent efflux of chemotherapeutic compounds from multidrug resistant cancer cells. Better understanding of the molecular mechanism of Pgp-mediated transport could promote rational drug design to circumvent multidrug resistance. By measuring drug binding affinity and reactivity to a conformation-sensitive antibody we show here that nucleotide binding drives Pgp from a high to a low substrate-affinity state and this switch coincides with the flip from the inward- to the outward-facing conformation. Furthermore, the outward-facing conformation survives ATP hydrolysis: the post-hydrolytic complex is stabilized by vanadate, and the slow recovery from this state requires two functional catalytic sites. The catalytically inactive double Walker A mutant is stabilized in a high substrate affinity inward-open conformation, but mutants with one intact catalytic center preserve their ability to hydrolyze ATP and to promote drug transport, suggesting that the two catalytic sites are randomly recruited for ATP hydrolysis. PMID:27117502

  18. Metals in the active site of native protein phosphatase-1.

    Science.gov (United States)

    Heroes, Ewald; Rip, Jens; Beullens, Monique; Van Meervelt, Luc; De Gendt, Stefan; Bollen, Mathieu

    2015-08-01

    Protein phosphatase-1 (PP1) is a major protein Ser/Thr phosphatase in eukaryotic cells. Its activity depends on two metal ions in the catalytic site, which were identified as manganese in the bacterially expressed phosphatase. However, the identity of the metal ions in native PP1 is unknown. In this study, total reflection X-ray fluorescence (TXRF) was used to detect iron and zinc in PP1 that was purified from rabbit skeletal muscle. Metal exchange experiments confirmed that the distinct substrate specificity of recombinant and native PP1 is determined by the nature of their associated metals. We also found that the iron level associated with native PP1 is decreased by incubation with inhibitor-2, consistent with a function of inhibitor-2 as a PP1 chaperone. PMID:25890482

  19. Effects of the substitution of amino acid residues, through chemical synthesis, on the conformation and activity of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Regina C. Adão

    2012-06-01

    Full Text Available Antimicrobial peptides make up an assorted group of molecules which contain from 12 to 50 amino acid residues and which may be produced by microorganisms, plants and animals. From the discovery that these biomolecules are lethal to bacteria, inhibiting the pathogenic organism’s growth, and are also related to innate and adapted defense mechanisms, the investigation of such molecules came to be an emergent research field, in which more than 1800 antimicrobial peptides have so far been discovered throughout the last three decades. These molecules are potential representatives of a new generation of antibiotic agents and the main motivation for such use is their activity against a wide variety of pathogens, including Gram-positive and Gram-negative bacteria as well as fungi and viruses. An important class of comprising some of these peptides may be found in anurans, from which it has been isolated, a considerable number of antimicrobial peptides with diverse sequences and structures, including linear and dimeric ones. In this work monomeric chains (CH1 e CH2 of the heterodimeric antimicrobial peptide distinctin (isolated in 1999 from Phyllomedusa distincta anurans, as well as its mutated monomers (CH1-S and CH2-S and the heterodimer itself were synthesized. The distinctin is the peptide with two chains of different sequences (Table 1 bound each other by disulfide bond from the cystein residues constituting the heterodimer. To investigate the effects on the biological activity by amino acids substitution at normal distinctin CH1 and CH2 chains, both were synthesized as well as their similar chains (CH1-S and CH2-S in which the cystein (Fig.1 a residues of each chain were changed by serin residues (Fig. 1 b. The new chains were named mutants. The synthesis was carried out in solid phase, using Fmoc strategy. The heterodimer distinctin was obtained from CH1 and CH2 chains coupling through cystein residues air oxidation. The results from HPLC

  20. Metavanadate at the active site of the phosphatase VHZ.

    Science.gov (United States)

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  1. The tertiary origin of the allosteric activation of E. coli glucosamine-6-phosphate deaminase studied by sol-gel nanoencapsulation of its T conformer.

    Directory of Open Access Journals (Sweden)

    Sergio Zonszein

    Full Text Available The role of tertiary conformational changes associated to ligand binding was explored using the allosteric enzyme glucosamine-6-phosphate (GlcN6P deaminase from Escherichia coli (EcGNPDA as an experimental model. This is an enzyme of amino sugar catabolism that deaminates GlcN6P, giving fructose 6-phosphate and ammonia, and is allosterically activated by N-acetylglucosamine 6-phosphate (GlcNAc6P. We resorted to the nanoencapsulation of this enzyme in wet silica sol-gels for studying the role of intrasubunit local mobility in its allosteric activation under the suppression of quaternary transition. The gel-trapped enzyme lost its characteristic homotropic cooperativity while keeping its catalytic properties and the allosteric activation by GlcNAc6P. The nanoencapsulation keeps the enzyme in the T quaternary conformation, making possible the study of its allosteric activation under a condition that is not possible to attain in a soluble phase. The involved local transition was slowed down by nanoencapsulation, thus easing the fluorometric analysis of its relaxation kinetics, which revealed an induced-fit mechanism. The absence of cooperativity produced allosterically activated transitory states displaying velocity against substrate concentration curves with apparent negative cooperativity, due to the simultaneous presence of subunits with different substrate affinities. Reaction kinetics experiments performed at different tertiary conformational relaxation times also reveal the sequential nature of the allosteric activation. We assumed as a minimal model the existence of two tertiary states, t and r, of low and high affinity, respectively, for the substrate and the activator. By fitting the velocity-substrate curves as a linear combination of two hyperbolic functions with Kt and Kr as KM values, we obtained comparable values to those reported for the quaternary conformers in solution fitted to MWC model. These results are discussed in the

  2. 10 CFR 60.18 - Review of site characterization activities. 2

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Review of site characterization activities. 2 60.18... IN GEOLOGIC REPOSITORIES Licenses Preapplication Review § 60.18 Review of site characterization activities. 2 2 In addition to the review of site characterization activities specified in this section,...

  3. Hazardous Material Storage Facilities and Sites - WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN: Active Permitted Solid Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN is a point shapefile that contains active permitted solid waste site locations in Indiana, provided by personnel of Indiana...

  4. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase

    Science.gov (United States)

    Pucheta-Martínez, Encarna; Saladino, Giorgio; Morando, Maria Agnese; Martinez-Torrecuadrada, Jorge; Lelli, Moreno; Sutto, Ludovico; D'Amelio, Nicola; Gervasio, Francesco Luigi

    2016-04-01

    Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.

  5. Relationship between SU Subdomains That Regulate the Receptor-Mediated Transition from the Native (Fusion-Inhibited) to the Fusion-Active Conformation of the Murine Leukemia Virus Glycoprotein

    OpenAIRE

    Lavillette, Dimitri; Ruggieri, Alessia; Boson, Bertrand; Maurice, Marielle; Cosset, François-Loïc

    2002-01-01

    Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has bee...

  6. Effects of lipid environment on the conformational changes of an ABC importer.

    Science.gov (United States)

    Rice, Austin J; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W

    2014-01-01

    In order to shuttle substrates across the lipid bilayer, membrane proteins undergo a series of conformation changes that are influenced by protein structure, ligands, and the lipid environment. To test the effect of lipid on conformation change of the ABC transporter MolBC, EPR studies were conducted in lipids and detergents of variable composition. In both a detergent and lipid environment, MolBC underwent the same general conformation changes as detected by site-directed EPR spectroscopy. However, differences in activity and the details of the EPR analysis indicate conformational rigidity that is dependent on the lipid environment. From these observations, we conclude that native-like lipid mixtures provide the transporter with greater activity and conformational flexibility as well as technical advantages such as reconstitution efficiency and protein stability.

  7. The conformational activation of antithrombin. A 2.85-A structure of a fluorescein derivative reveals an electrostatic link between the hinge and heparin binding regions.

    Science.gov (United States)

    Huntington, J A; McCoy, A; Belzar, K J; Pei, X Y; Gettins, P G; Carrell, R W

    2000-05-19

    Antithrombin is unique among the serpins in that it circulates in a native conformation that is kinetically inactive toward its target proteinase, factor Xa. Activation occurs upon binding of a specific pentasaccharide sequence found in heparin that results in a rearrangement of the reactive center loop removing constraints on the active center P1 residue. We determined the crystal structure of an activated antithrombin variant, N135Q S380C-fluorescein (P14-fluorescein), in order to see how full activation is achieved in the absence of heparin and how the structural effects of the substitution in the hinge region are translated to the heparin binding region. The crystal structure resembles native antithrombin except in the hinge and heparin binding regions. The absence of global conformational change allows for identification of specific interactions, centered on Glu(381) (P13), that are responsible for maintenance of the solution equilibrium between the native and activated forms and establishes the existence of an electrostatic link between the hinge region and the heparin binding region. A revised model for the mechanism of the allosteric activation of antithrombin is proposed.

  8. A comparative study of drug resistance mechanism associated with active site and non-active site mutations: I388N and D425G mutants of acetyl-coenzyme-A carboxylase.

    Science.gov (United States)

    Zhu, Xiao-Lei; Yang, Guang-Fu

    2012-03-01

    A major concern in the development of acetyl-CoA carboxylase-inhibiting (ACCase; EC 6.4.1.2) herbicides is the emergence of resistance as a result of the selection of distinct mutations within the CT domain. Mutations associated with resistance have been demonstrated to include both active sites and non-active sites, including Ile-1781-Leu, Trp- 2027-Cys, Ile-2041-Asn, Asp-2078-Gly, and Gly-2096-Ala (numbered according to the Alopecurus myosuroides plastid ACCase). In the present study, extensive computational simulations, including molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM/PBSA) calculations, were carried out to compare the molecular mechanisms of active site mutation (I388N) and non-active site mutation (D425G) in Alopecurus myosuroides resistance to some commercial herbicides targeting ACCase, including haloxyfop (HF), diclofop (DF) and fenoxaprop (FR). All of the computational model and energetic results indicated that both I388N and D425G mutations have effects on the conformational change of the binding pocket. The π-π interaction between ligand and Phe377 and Tyr161' residues, which make an important contribution to the binding affinity, was decreased after mutation. As a result, the mutant-type ACCase has a lower affinity for the inhibitor than the wild-type enzyme, which accounts for the molecular basis of herbicidal resistance. The structural and mechanistic insights obtained from the present study will deepen our understanding of the interactions between ACCase and herbicides, which provides a molecular basis for the future design of a promising inhibitor with low resistance risk. PMID:22242795

  9. The Role of the β5-α11 Loop in the Active-Site Dynamics of Acylated Penicillin-Binding Protein A from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher [MUSC; (UNC)

    2013-04-22

    Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constants for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.

  10. Detection limit for activation measurements in ultralow background sites

    Science.gov (United States)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  11. Comparative study of convolution, superposition, and fast superposition algorithms in conventional radiotherapy, three-dimensional conformal radiotherapy, and intensity modulated radiotherapy techniques for various sites, done on CMS XIO planning system

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2009-01-01

    Full Text Available The aim of this study is to compare the dosimetry results that are obtained by using Convolution, Superposition and Fast Superposition algorithms in Conventional Radiotherapy, Three-Dimensional Conformal Radiotherapy (3D-CRT, and Intensity Modulated Radiotherapy (IMRT for different sites, and to study the suitability of algorithms with respect to site and technique. For each of the Conventional, 3D-CRT, and IMRT techniques, four different sites, namely, Lung, Esophagus, Prostate, and Hypopharynx were analyzed. Treatment plans were created using 6MV Photon beam quality using the CMS XiO (Computerized Medical System, St.Louis, MO treatment planning system. The maximum percentage of variation recorded between algorithms was 3.7% in case of Ca.Lung, for the IMRT Technique. Statistical analysis was performed by comparing the mean relative difference, Conformity Index, and Homogeneity Index for target structures. The fast superposition algorithm showed excellent results for lung and esophagus cases for all techniques. For the prostate, the superposition algorithm showed better results in all techniques. In the conventional case of the hypopharynx, the convolution algorithm was good. In case of Ca. Lung, Ca Prostate, Ca Esophagus, and Ca Hypopharynx, OARs got more doses with the superposition algorithm; this progressively decreased for fast superposition and convolution algorithms, respectively. According to this study the dosimetric results using different algorithms led to significant variation and therefore care had to be taken while evaluating treatment plans. The choice of a dose calculation algorithm may in certain cases even influence clinical results.

  12. The mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase studied by molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Mykuliak V. V.

    2014-03-01

    Full Text Available Aim. To study the mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase (MtTyrRS. Methods. Complexes of MtTyrRS with tyrosine, ATP and tyrosyl adenylate were constructed by superposition of the MtTyrRS structure and crystallographic structures of bacterial TyrRS. All complexes of MtTyrRS with substrates were investigated by molecular dynamics (MD simulations in solution. Results. It was shown the formation of network of hydrogen bonds between substrates and the MtTyrRS active center, which were stable in the course of MD simulations. ATP binds in the active site both by hydrogen bonds and via electrostatic interactions with Lys231 and Lys234 of catalytic KFGKS motif. Conclusions. The L-tyrosine binding site in the enzyme active site is negatively charged, whereas the ATP binding site contains positive Lys231 and Lys234 residues of catalytic KFGKS motif. The occupancy of H-bonds between substrates and the enzyme evidences a significant conformational mobility of the active site.

  13. Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Keedy, Daniel A.; Kenner, Lillian R.; Warkentin, Matthew; Woldeyes, Rahel A.; Hopkins, Jesse B.; Thompson, Michael C.; Brewster, Aaron S.; Van Benschoten, Andrew H.; Baxter, Elizabeth L.; Uervirojnangkoorn, Monarin; McPhillips, Scott E.; Song, Jinhu; Alonso-Mori, Roberto; Holton, James M.; Weis, William I.; Brunger, Axel T.; Soltis, S. Michael; Lemke, Henrik; Gonzalez, Ana; Sauter, Nicholas K.; Cohen, Aina E.; van den Bedem, Henry; Thorne, Robert E.; Fraser, James S.

    2015-09-30

    Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.

  14. Conformal transformations and conformal invariance in gravitation

    CERN Document Server

    Dabrowski, Mariusz P; Blaschke, David B

    2008-01-01

    Conformal transformations are frequently used tools in order to study relations between various theories of gravity and Einstein relativity. Because of that, in this paper we discuss the rules of conformal transformations for geometric quantities in general relativity. In particular, we discuss the conformal transformations of the matter energy-momentum tensor. We thoroughly discuss the latter and show the subtlety of the conservation law (i.e., the geometrical Bianchi identity) imposed in one of the conformal frames in reference to the other. The subtlety refers to the fact that conformal transformation ``creates'' an extra matter term composed of the conformal factor which enters the conservation law. In an extreme case of the flat original spacetime the matter is ``created'' due to work done by the conformal transformation to bend the spacetime which was originally flat. We also discuss how to construct the conformally invariant gravity which, in the simplest version, is a special case of the Brans-Dicke t...

  15. Monoclonal antibody against the active site of caeruloplasmin and the ELISA system detecting active caeruloplasmin.

    Science.gov (United States)

    Hiyamuta, S; Ito, K

    1994-04-01

    Serum caeruloplasmin deficiency is a characteristic biochemical abnormality found in patients with Wilson's disease, but the mechanism of this disease is unknown. Although the phenylenediamine oxidase activity of serum caeruloplasmin is markedly low in patients with Wilson's disease, mRNA of caeruloplasmin exists to some extent. To investigate the deficiency of caeruloplasmin oxidase activity in Wilson's disease, we generated 14 monoclonal antibodies (MAbs) and selected ID1, which had the strongest reactivity, and ID2, which had neutralizing ability. We also established a system to measure active caeruloplasmin specifically using these MAbs. These MAbs and the system will be useful tools in analyzing the active site of caeruloplasmin in patients with Wilson's disease.

  16. Helix 3 acts as a conformational hinge in Class A GPCR activation: An analysis of interhelical interaction energies in crystal structures.

    Science.gov (United States)

    Lans, Isaias; Dalton, James A R; Giraldo, Jesús

    2015-12-01

    A collection of crystal structures of rhodopsin, β2-adrenergic and adenosine A2A receptors in active, intermediate and inactive states were selected for structural and energetic analyses to identify the changes involved in the activation/deactivation of Class A GPCRs. A set of helix interactions exclusive to either inactive or active/intermediate states were identified. The analysis of these interactions distinguished some local conformational changes involved in receptor activation, in particular, a packing between the intracellular domains of transmembrane helices H3 and H7 and a separation between those of H2 and H6. Also, differential movements of the extracellular and intracellular domains of these helices are apparent. Moreover, a segment of residues in helix H3, including residues L/I3.40 to L3.43, is identified as a key component of the activation mechanism, acting as a conformational hinge between extracellular and intracellular regions. Remarkably, the influence on the activation process of some glutamic and aspartic acidic residues and, as a consequence, the influence of variations on local pH is highlighted. Structural hypotheses that arose from the analysis of rhodopsin, β2-adrenergic and adenosine A2A receptors were tested on the active and inactive M2 muscarinic acetylcholine receptor structures and further discussed in the context of the new mechanistic insights provided by the recently determined active and inactive crystal structures of the μ-opioid receptor. Overall, the structural and energetic analyses of the interhelical interactions present in this collection of Class A GPCRs suggests the existence of a common general activation mechanism featuring a chemical space useful for drug discovery exploration.

  17. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    International Nuclear Information System (INIS)

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers

  18. Acyl-CoA esters antagonize the effects of ligands on peroxisome proliferator-activated receptor alpha conformation, DNA binding, and interaction with Co-factors

    DEFF Research Database (Denmark)

    Elholm, M; Dam, I; Jorgensen, C;

    2001-01-01

    The peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcription factor and a key regulator of lipid homeostasis. Numerous fatty acids and eicosanoids serve as ligands and activators for PPARalpha. Here we demonstrate that S-hexadecyl-CoA, a nonhydrolyzable...... palmitoyl-CoA analog, antagonizes the effects of agonists on PPARalpha conformation and function in vitro. In electrophoretic mobility shift assays, S-hexadecyl-CoA prevented agonist-induced binding of the PPARalpha-retinoid X receptor alpha heterodimer to the acyl-CoA oxidase peroxisome proliferator...... a functional PPARalpha ligand-binding pocket. S-Hexadecyl-CoA prevented ligand-induced interaction between the co-activator SRC-1 and PPARalpha but increased recruitment of the nuclear receptor co-repressor NCoR. In cells, the concentration of free acyl-CoA esters is kept in the low nanomolar range due...

  19. Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The conformal geometry of regular hypersurfaces in the conformal space is studied.We classify all the conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in the conformal space up to conformal equivalence.

  20. Interconversion of active and inactive 30 S ribosomal subunits is accompanied by a conformational change in the decoding region of 16 S rRNA

    DEFF Research Database (Denmark)

    Moazed, D; Van Stolk, B J; Douthwaite, S;

    1986-01-01

    Zamir, Elson and their co-workers have shown that 30 S ribosomal subunits are reversibly inactivated by depletion of monovalent or divalent cations. We have re-investigated the conformation of 16 S rRNA in the active and inactive forms of the 30 S subunit, using a strategy that is designed......' regions of 16 S rRNA. The inactive form also shows significantly decreased reactivity at positions 1533 to 1538 (the Shine-Dalgarno region), in agreement with earlier findings. The principal changes in reactivity involve the universally conserved nucleotides G926, C1395, A1398 and G1401. The three purines...

  1. Retraction: Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation. J. Diao, Y. D. Ma, and M. S. Hasson.

    Science.gov (United States)

    2012-06-01

    The following article from Proteins: Structure, Function, and Bioinformatics, "Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation," by Jiasheng Diao, Yunglin D. Ma, and Miriam S. Hasson, published online on 21 October 2010 in Wiley Online Library (onlinelibrary.wiley.com), has been retracted by agreement between the journal Editor in Chief, Bertrand Garcia-Moreno, and Wiley Periodicals. The retraction has been agreed because it was established by internal investigation performed by Purdue University that the authors of this article are not the owners of the data and have no right to publication.

  2. Ligand-dependent conformations and dynamics of the serotonin 5-HT(2A receptor determine its activation and membrane-driven oligomerization properties.

    Directory of Open Access Journals (Sweden)

    Jufang Shan

    Full Text Available From computational simulations of a serotonin 2A receptor (5-HT(2AR model complexed with pharmacologically and structurally diverse ligands we identify different conformational states and dynamics adopted by the receptor bound to the full agonist 5-HT, the partial agonist LSD, and the inverse agonist Ketanserin. The results from the unbiased all-atom molecular dynamics (MD simulations show that the three ligands affect differently the known GPCR activation elements including the toggle switch at W6.48, the changes in the ionic lock between E6.30 and R3.50 of the DRY motif in TM3, and the dynamics of the NPxxY motif in TM7. The computational results uncover a sequence of steps connecting these experimentally-identified elements of GPCR activation. The differences among the properties of the receptor molecule interacting with the ligands correlate with their distinct pharmacological properties. Combining these results with quantitative analysis of membrane deformation obtained with our new method (Mondal et al, Biophysical Journal 2011, we show that distinct conformational rearrangements produced by the three ligands also elicit different responses in the surrounding membrane. The differential reorganization of the receptor environment is reflected in (i-the involvement of cholesterol in the activation of the 5-HT(2AR, and (ii-different extents and patterns of membrane deformations. These findings are discussed in the context of their likely functional consequences and a predicted mechanism of ligand-specific GPCR oligomerization.

  3. Comparison of inactivation and conformational changes of native and apo yeast alcohol dehydrogenase during thermal denaturation.

    Science.gov (United States)

    Yang, Y; Chen, R; Zhou, H M

    1998-07-01

    The conformational changes of native and apo yeast alcohol dehydrogenase during thermal denaturation have been followed by fluorescence emission and circular dichroism spectra. A comparison of inactivation and conformational changes during thermal denaturation shows that for the native enzyme and for the apo-I YADH which has the conformational zinc removed, the extent of inactivation was larger than the extent of conformational changes at the same temperature. This result supported the suggestion by Tsou (Trends Biochem. Sci. 1986, 11, 427-429: Science 1993, 262, 380-381) that the enzyme active site is more flexible. The results also show that apo-I YADH without the conformational zinc was more easily inactivated with increasing incubation temperature, indicating that the stability of the apo-I YADH decreased. Kinetic analysis suggest that the substrate does not provide any protective effect during thermal inactivation of native and apo-I YADH.

  4. The active sites of supported silver particle catalysts in formaldehyde oxidation.

    Science.gov (United States)

    Chen, Yaxin; Huang, Zhiwei; Zhou, Meijuan; Hu, Pingping; Du, Chengtian; Kong, Lingdong; Chen, Jianmin; Tang, Xingfu

    2016-08-01

    Surface silver atoms with upshifted d-orbitals are identified as the catalytically active sites in formaldehyde oxidation by correlating their activity with the number of surface silver atoms, and the degree of the d-orbital upshift governs the catalytic performance of the active sites. PMID:27406403

  5. Interactions of plasminogen activator inhibitor-1 with vitronectin involve an extensive binding surface and induce mutual conformational rearrangements

    DEFF Research Database (Denmark)

    Blouse, Grant E; Dupont, Daniel Miotto; Schar, Christine R;

    2009-01-01

    . In support of this model are recent results that define a PAI-1-binding site on vitronectin that lies outside the somatomedin B domain (Schar, C. R., Blouse, G. E., Minor, K. H., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309) and the complementary site on PAI-1 (Schar, C. R., Jensen, J. K...

  6. Conformational Fluctuations in G-Protein-Coupled Receptors

    Science.gov (United States)

    Brown, Michael F.

    2014-03-01

    G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual

  7. Human population and activities in Forsmark. Site description

    Energy Technology Data Exchange (ETDEWEB)

    Miliander, Sofia; Punakivi, Mari; Kylaekorpi, Lasse; Rydgren, Bernt [SwedPower AB, Stockholm (Sweden)

    2004-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is in the process of selecting a safe and environmentally acceptable location for a deep repository of radioactive waste. Two alternative locations are under investigation. These are Forsmark, Oesthammars kommun (kommun = municipality) and Simpevarp/Laxemar, Oskarshamns kommun. SKB has expressed the importance of describing the humans and their activities in these areas and therefore has this synthesis concerning the human population in Forsmark been produced.The description is a statistical synthesis, mainly based upon statistical data from SCB (Statistics Sweden) that has been collected, processed and analysed. The statistical data has not been verified through site inspections and interviews. When using statistical data, it is advisable to note that the data becomes more unreliable if the areas are small, with small populations.The data in this description is essential for future evaluations of the impact on the environment and its human population (Environmental Impact Assessments). The data is also important when modelling the potential flows of radio nuclides and calculating the risk of exposure in future safety assessments.The actual area for the study is in this report called 'the Forsmark area', an area of 19.5 km{sup 2} near Forsmark nuclear power plant. The land use in the Forsmark area differs notably from the land use in Uppsala laen (laen = county). Only 0.04% of the total area is developed (built-up) compared to 4.9% in Uppsala laen and only 4% is agricultural land compared to 25% in the county. Furthermore, there are far more forest, wetlands and water areas in the Forsmark area. The forest area represents as much as 72.5% of the total area.The Forsmark area is uninhabited, and its surroundings are very sparsely populated. In 2002, the population density in Forsmark was 1.8 inhabitants per square kilometre, which was 24 times lower than in Uppsala laen. The population density in the

  8. Human population and activities in Forsmark. Site description

    International Nuclear Information System (INIS)

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is in the process of selecting a safe and environmentally acceptable location for a deep repository of radioactive waste. Two alternative locations are under investigation. These are Forsmark, Oesthammars kommun (kommun = municipality) and Simpevarp/Laxemar, Oskarshamns kommun. SKB has expressed the importance of describing the humans and their activities in these areas and therefore has this synthesis concerning the human population in Forsmark been produced.The description is a statistical synthesis, mainly based upon statistical data from SCB (Statistics Sweden) that has been collected, processed and analysed. The statistical data has not been verified through site inspections and interviews. When using statistical data, it is advisable to note that the data becomes more unreliable if the areas are small, with small populations.The data in this description is essential for future evaluations of the impact on the environment and its human population (Environmental Impact Assessments). The data is also important when modelling the potential flows of radio nuclides and calculating the risk of exposure in future safety assessments.The actual area for the study is in this report called 'the Forsmark area', an area of 19.5 km2 near Forsmark nuclear power plant. The land use in the Forsmark area differs notably from the land use in Uppsala laen (laen = county). Only 0.04% of the total area is developed (built-up) compared to 4.9% in Uppsala laen and only 4% is agricultural land compared to 25% in the county. Furthermore, there are far more forest, wetlands and water areas in the Forsmark area. The forest area represents as much as 72.5% of the total area.The Forsmark area is uninhabited, and its surroundings are very sparsely populated. In 2002, the population density in Forsmark was 1.8 inhabitants per square kilometre, which was 24 times lower than in Uppsala laen. The population density in the parish has been

  9. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts

    DEFF Research Database (Denmark)

    Jaramillo, Thomas; Jørgensen, Kristina Pilt; Bonde, Jacob;

    2007-01-01

    The identification of the active sites in heterogeneous catalysis requires a combination of surface sensitive methods and reactivity studies. We determined the active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) by atomically...... resolving the surface of this catalyst before measuring electrochemical activity in solution. By preparing MoS2 nanoparticles of different sizes, we systematically varied the distribution of surface sites on MoS2 nanoparticles on Au(111), which we quantified with scanning tunneling microscopy....... Electrocatalytic activity measurements for hydrogen evolution correlate linearly with the number of edge sites on the MoS2 catalyst....

  10. Substitution of Tyr254 with Phe at the active site of flavocytochrome b2: consequences on catalysis of lactate dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J.; Chapman, S.K.; Mathews, F.S.; Reid, G.A.; Lederer, F. (INSERM U 25, CNRS UA 122, Hopital Necker, Paris (France))

    1990-07-10

    A role for Tyr254 in L-lactate dehydrogenation catalyzed by flavocytochrome b2 has recently been proposed on the basis of the known active-site structure and of studies that had suggested a mechanism involving the initial formation of a lactate carbanion. This role is now examined after replacement of Tyr254 with phenylalanine. The kcat is decreased about 40-fold, Km for lactate appears unchanged, and the mainly rate-limiting step is still alpha-hydrogen abstraction, as judged from the steady-state deuterium isotope effect. Modeling studies with lactate introduced into the active site indicate two possible substrate conformations with different hydrogen-bonding partners for the substrate hydroxyl. If the hydrogen bond is formed with Tyr254, as was initially postulated, the mechanism must involve removal by His373 of the C2 hydrogen, with carbanion formation. If, in the absence of the Tyr254 phenol group, the hydrogen bond is formed with His373 N3, the substrate is positioned in such a way that the reaction must proceed by hydride transfer. Therefore the mechanism of the Y254F enzyme was investigated so as to distinguish between the two mechanistic possibilities. 2-Hydroxy-3-butynoate behaves with the mutant as a suicide reagent, as with the wild-type enzyme. Similarly, the mutant protein also catalyzes the reduction and the dehydrohalogenation of bromopyruvate under transhydrogenation conditions.

  11. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations.

    Science.gov (United States)

    Steinkellner, Georg; Gruber, Christian C; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Lyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites ('catalophores'). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C-C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  12. Effects of single N-glycosylation site knockout on folding and defibrinogenating activities of acutobin recombinants from HEK293T.

    Science.gov (United States)

    Tsai, Inn-Ho; Wang, Ying-Ming; Huang, Kai-Fa

    2015-02-01

    Acutobin, the α-fibrinogenase from Deinagkistrodon acutus venom, contains four N-glycosylation sites with disialylated complex-typed glycans. Here, we explore the functional roles of each of the N-glycan by site-directed mutagenesis. The wild-type (ATB-wt) and single glycan-knockout mutants of recombinant acutobin were prepared from HEK293T, demonstrating that mutations at Asn(77), Asn(81) and Asn(100) impaired the folding while the S79A mutant and various Asn(229)-deglycosylated mutants were correctly folded. Based on homology modeling of acutobin and multiple sequence alignment with various venom thrombin-like enzymes, the importance of a hydrophilic environment at each glycosylation site to the enzyme folding could be rationalized. Remarkably, all the mutants showed similar catalytic activities for the chromogenic substrate and similar thermal stabilities as ATB-wt, suggesting that the glycan knockout did not affect the gross conformation and stability of the active sites. Although SDS-PAGE analyses revealed that ATB-wt and the D229-mutant degraded all human fibrinogen subunits faster but less specifically in vitro as compared with other mutants that cleaved only the α-subunit, ATB-wt and D229-mutant were not able to release fibrinogen-peptide A and thus coagulated human plasma slower than the other mutants did. In the mice model, the defibrinogenating effect of ATB-wt was stronger and lasting-longer than those of all the mutants. Taken together, all the glycans contribute to the pharmacokinetics of acutobin and ATB-wt in vivo, and the microenvironment around the Asn(229)-glycan appears to regulate the fibrinogen-chain specificity of acutobin while the N-glycans at positions 77, 81 and 100 are crucial for its folding. PMID:25533529

  13. Ligand-induced conformational changes: Improved predictions of ligand binding conformations and affinities

    DEFF Research Database (Denmark)

    Frimurer, T.M.; Peters, Günther H.J.; Iversen, L.F.;

    2003-01-01

    A computational docking strategy using multiple conformations of the target protein is discussed and evaluated. A series of low molecular weight, competitive, nonpeptide protein tyrosine phosphatase inhibitors are considered for which the x-ray crystallographic structures in complex with protein...... tyrosine phosphatase 1 B (PTP1B) are known. To obtain a quantitative measure of the impact of conformational changes induced by the inhibitors, these were docked to the active site region of various structures of PTP1B using the docking program FlexX. Firstly, the inhibitors were docked to a PTP1B crystal...... with low estimated binding energies corresponded to relatively large RMS differences when aligned with the corresponding crystal structure. Secondly, the inhibitors were docked to their parent protein structures in which they were cocrystallized. In this case, there was a good correlation between low...

  14. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria

  15. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  16. 78 FR 33908 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Science.gov (United States)

    2013-06-05

    ... renewable energy leases and subsequent site characterization activities (geophysical, geotechnical, archaeological, and biological surveys needed to develop specific project proposals on those leases) in an... from leasing, site characterization, and site assessment in and around the Call Area (76 FR 51391)....

  17. Crystal Structure of a Bacterial Type IB DNA Topoisomerase Reveals a Preassembled Active Site in the Absence of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Asmita; Shuman, Stewart; Mondragon, Alfonso (NWU); (SKI)

    2010-03-08

    Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-{angstrom} crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) {beta}-sheet domain (amino acids 1-90) and a predominantly {alpha}-helical carboxyl-terminal (C) domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an 'open' conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.

  18. Conformal transformations and conformal invariance in gravitation

    OpenAIRE

    Dabrowski, Mariusz P.; Garecki, Janusz; Blaschke, David B.

    2008-01-01

    Conformal transformations are frequently used tools in order to study relations between various theories of gravity and the Einstein relativity. In this paper we discuss the rules of these transformations for geometric quantities as well as for the matter energy-momentum tensor. We show the subtlety of the matter energy-momentum conservation law which refers to the fact that the conformal transformation "creates" an extra matter term composed of the conformal factor which enters the conservat...

  19. Human population and activities at Simpevarp. Site description

    International Nuclear Information System (INIS)

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is in the process of selecting a safe and environmentally acceptable location for a deep repository of radioactive waste. Two alternative locations are under investigation. These are Forsmark, Oesthammars kommun (kommun = municipality) and Simpevarp/Laxemar, Oskarshamns kommun. SKB has expressed the importance of describing the humans and their activities in these areas and therefore has this synthesis concerning the human population in Forsmark been produced. The description is a statistical synthesis, mainly based upon statistical data from SCB (Statistics Sweden) that has been collected, processed and analysed. The statistical data has not been verified through site inspections and interviews. When using statistical data, it is advisable to note that the data becomes more unreliable if the areas are small, with small populations. The data in this description is essential for future evaluations of the impact on the environment and its human population (environmental impacts assessments). The data is also important when modelling the potential flows of radio nuclides and calculating the risk of exposure in future safety assessments. The actual area for the study is in this report called 'the Simpevarp area', an area of 127.0 km2 near Oskarshamn nuclear power plant. The land use in Simpevarp area differs notably from the land use in Kalmar laen. The forest area is far more dominating in Simpevarp area than in Kalmar laen and it represents as much as 89% compared to 63% of the total area. Only 4.4% of the area is arable land compared to 11.6% in Kalmar laen and only 0.3% is of other type (wetlands, bare rock, quarries, pites etc) compared to 15.6% in the county. The main observation is that Simpevarp area is a sparsely populated area located in a relatively lightly populated county. In 2002, the population density was 7.4 inhabitants/km2, three times lower than in Kalmar laen. The demography statistics show no

  20. Human population and activities at Simpevarp. Site description

    Energy Technology Data Exchange (ETDEWEB)

    Miliander, Sofia; Punakivi, Mari; Kylaekorpi, Lasse; Rydgren, Bernt [SwedPower AB, Stockholm (Sweden)

    2004-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is in the process of selecting a safe and environmentally acceptable location for a deep repository of radioactive waste. Two alternative locations are under investigation. These are Forsmark, Oesthammars kommun (kommun = municipality) and Simpevarp/Laxemar, Oskarshamns kommun. SKB has expressed the importance of describing the humans and their activities in these areas and therefore has this synthesis concerning the human population in Forsmark been produced. The description is a statistical synthesis, mainly based upon statistical data from SCB (Statistics Sweden) that has been collected, processed and analysed. The statistical data has not been verified through site inspections and interviews. When using statistical data, it is advisable to note that the data becomes more unreliable if the areas are small, with small populations. The data in this description is essential for future evaluations of the impact on the environment and its human population (environmental impacts assessments). The data is also important when modelling the potential flows of radio nuclides and calculating the risk of exposure in future safety assessments. The actual area for the study is in this report called 'the Simpevarp area', an area of 127.0 km{sup 2} near Oskarshamn nuclear power plant. The land use in Simpevarp area differs notably from the land use in Kalmar laen. The forest area is far more dominating in Simpevarp area than in Kalmar laen and it represents as much as 89% compared to 63% of the total area. Only 4.4% of the area is arable land compared to 11.6% in Kalmar laen and only 0.3% is of other type (wetlands, bare rock, quarries, pites etc) compared to 15.6% in the county. The main observation is that Simpevarp area is a sparsely populated area located in a relatively lightly populated county. In 2002, the population density was 7.4 inhabitants/km{sup 2}, three times lower than in Kalmar laen. The

  1. Human population and activities at Simpevarp. Site description

    Energy Technology Data Exchange (ETDEWEB)

    Miliander, Sofia; Punakivi, Mari; Kylaekorpi, Lasse; Rydgren, Bernt [SwedPower AB, Stockholm (Sweden)

    2004-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is in the process of selecting a safe and environmentally acceptable location for a deep repository of radioactive waste. Two alternative locations are under investigation. These are Forsmark, Oesthammars kommun (kommun = municipality) and Simpevarp/Laxemar, Oskarshamns kommun. SKB has expressed the importance of describing the humans and their activities in these areas and therefore has this synthesis concerning the human population in Forsmark been produced. The description is a statistical synthesis, mainly based upon statistical data from SCB (Statistics Sweden) that has been collected, processed and analysed. The statistical data has not been verified through site inspections and interviews. When using statistical data, it is advisable to note that the data becomes more unreliable if the areas are small, with small populations. The data in this description is essential for future evaluations of the impact on the environment and its human population (environmental impacts assessments). The data is also important when modelling the potential flows of radio nuclides and calculating the risk of exposure in future safety assessments. The actual area for the study is in this report called 'the Simpevarp area', an area of 127.0 km{sup 2} near Oskarshamn nuclear power plant. The land use in Simpevarp area differs notably from the land use in Kalmar laen. The forest area is far more dominating in Simpevarp area than in Kalmar laen and it represents as much as 89% compared to 63% of the total area. Only 4.4% of the area is arable land compared to 11.6% in Kalmar laen and only 0.3% is of other type (wetlands, bare rock, quarries, pites etc) compared to 15.6% in the county. The main observation is that Simpevarp area is a sparsely populated area located in a relatively lightly populated county. In 2002, the population density was 7.4 inhabitants/km{sup 2}, three times lower than in Kalmar laen. The

  2. Improved affinity of engineered streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site

    Science.gov (United States)

    Korndörfer, Ingo P.; Skerra, Arne

    2002-01-01

    The Strep-tag II is a nine-amino acid peptide that was developed as an affinity tool for the purification of corresponding fusion proteins on streptavidin columns. The peptide recognizes the same pocket of streptavidin where the natural ligand is normally bound so that biotin or its chemical derivatives can be used for competitive elution. We report here the crystal structures of the streptavidin mutants `1' and `2,' which had been engineered for 10-fold higher affinity towards the Strep-tag II. Both streptavidin mutants carry mutations at positions 44, 45, and 47, that is, in a flexible loop region close to the binding site. The crystal structures of the two apo-proteins and their complexes with the Strep-tag II peptide were refined at resolutions below 2 Å. Both in the presence and absence of the peptide, the lid-like loop next to the ligand pocket—comprising residues 45 through 52—adopts an `open' conformation in all four subunits within the asymmetric unit. The same loop was previously described to be disordered in the wild-type apo-streptavidin and to close over the pocket upon complexation of the natural ligand biotin. Our findings suggest that stabilization of the `open' loop conformation in the absence of a ligand abolishes the need for conformational rearrangement prior to the docking of the voluminous peptide. Because no direct contacts between the flexible part of the loop and the peptide ligand were detected, it seems likely that the higher affinity of the two streptavidin mutants for the Strep-tag II is caused by a predominantly entropic mechanism. PMID:11910031

  3. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinglong [ORNL; Baudry, Jerome Y [ORNL

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  4. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    Science.gov (United States)

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  5. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    International Nuclear Information System (INIS)

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation's energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization's ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization's commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans

  6. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  7. 76 FR 30696 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2011-05-26

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... eligible active uranium and thorium processing site licensees for reimbursement under Title X of the Energy... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  8. 76 FR 24871 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2011-05-03

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... from eligible active uranium and thorium processing site licensees for reimbursement under Title X of...). Title X requires DOE to reimburse eligible uranium and thorium licensees for certain costs...

  9. Applications of hydrogen deuterium exchange (HDX for the characterization of conformational dynamics in light-activated photoreceptors

    Directory of Open Access Journals (Sweden)

    Robert eLindner

    2015-06-01

    Full Text Available Rational design of optogenetic tools is inherently linked to the understanding of photoreceptor function. Structural analysis of elements involved in signal integration in individual sensor domains provides an initial idea of their mode of operation, but understanding how local structural rearrangements eventually affect signal transmission to output domains requires inclusion of the effector regions in the characterization. However, the dynamic nature of these assemblies renders their structural analysis challenging and therefore a combination of high- and low-resolution techniques is required to appreciate functional aspects of photoreceptors.This review focuses on the potential of Hydrogen-Deuterium exchange coupled to mass spectrometry (HDX-MS for complementing the structural characterization of photoreceptors. In this respect, the ability of HDX-MS to provide information on the conformational dynamics and the possibility to address multiple functionally relevant states in solution render this methodology ideally suitable. We highlight recent examples demonstrating the potential of HDX-MS and discuss how these results can help to improve existing optogenetic systems or guide the design of novel optogenetic tools.

  10. Conformal growth of ZnO on TiO{sub 2} nanowire array for enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Ru-Hua [Key Laboratory of Photonic Devices and Materials, Anhui Province, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Department of Physics, University of Coimbra, Rua Larga, Coimbra 3004-516 (Portugal); Wu, Jin-Ming, E-mail: msewjm@zju.edu.cn [State Key Laboratory of Silicon Materials and Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310027 (China); Xiao, Jing-Zhong [Department of Physics, University of Coimbra, Rua Larga, Coimbra 3004-516 (Portugal); Zhao, Yi-Ping; Dong, Wei-Wei; Fang, Xiao-Dong [Key Laboratory of Photonic Devices and Materials, Anhui Province, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of New Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-08-15

    Quasi-aligned core–shell TiO{sub 2}/ZnO nanowires were fabricated by a conformal growth of ZnO along TiO{sub 2} nanowires through pulsed laser deposition. The TiO{sub 2} nanowire array was fabricated simply by direct oxidation of metallic Ti substrates in hydrogen peroxide solutions containing trace melamine and nitric acid. The X-ray diffraction pattern shows that, the ZnO layer was oriented grown to exhibit an abnormal strong X-ray peak corresponding to (0 0 2). The UV–vis diffuse reflectance spectra reveal that the bandgap of TiO{sub 2} nanowire array and that after the ZnO deposition for 30 min was 3.1 eV and 2.7 eV, respectively. The pulsed laser deposition of ZnO on the TiO{sub 2} nanowire array is effective to improve both the photoelectrochemical response and the efficiency to assist photodegradation of rhodamine B in water.

  11. Structure and cytotoxic activity of sesquiterpene glycoside esters from Calendula officinalis L.: Studies on the conformation of viridiflorol.

    Science.gov (United States)

    D'Ambrosio, Michele; Ciocarlan, Alexandru; Colombo, Elisa; Guerriero, Antonio; Pizza, Cosimo; Sangiovanni, Enrico; Dell'Agli, Mario

    2015-09-01

    Topic applications of Calendula officinalis L. lipophilic extracts are used in phytotherapy to relieve skin inflammatory conditions whereas infusions are used as a remedy for gastric complaints. Such a different usage might be explained by some cytotoxicity of lipophilic extracts at gastric level but little is known about this. Therefore, we screened the CH2Cl2 extract from the flowers of C. officinalis by MTT and LDH assays in human epithelial gastric cells AGS. This bioassay-oriented approach led to the isolation of several sesquiterpene glycosides which were structurally characterized by spectroscopic measurements, chemical reactions and MM calculations. The conformational preferences of viridiflorol fucoside were established and a previously assigned stereochemistry was revised. The compounds 1a, 2a and 3f showed comparably high cytotoxicity in the MTT assays, whereas the effect on LDH release was lower. Our study provides new insights on the composition of C. officinalis extracts of medium polarity and identifies the main compounds that could be responsible for cytotoxic effects at gastric level. PMID:26057223

  12. Identification of ice nucleation active sites on feldspar dust particles.

    Science.gov (United States)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-03-19

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  13. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts.

    Science.gov (United States)

    Wang, Lu-Cun; Friend, C M; Fushimi, Rebecca; Madix, Robert J

    2016-07-01

    The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction. PMID:27376884

  14. Assessment of former uranium sites and their ongoing remediation activities

    International Nuclear Information System (INIS)

    Carried out analysis on tailing's buildings operation shows that period for engineer barrier service, taking into account any catastrophic natural impacts, is too little in comparison with life-time of long-live radionuclides. Priorities should be defined by danger degree and isolation costs (protection optimization), therefore uncommon, non-traditional methods, developed taking into account natural factors for long-live waste (radionuclides) isolation are necessary. That's why, it is necessary to carry out specialized research and development, design and exploratory and other works on monitoring of social-ecological condition of these sites, as well as on demographic public diseases, living in these regions.

  15. Synthesis and characterization of 18F-labeled active site inhibited factor VII (ASIS)

    DEFF Research Database (Denmark)

    Erlandsson, Maria; Nielsen, Carsten Haagen; Jeppesen, Troels Elmer;

    2015-01-01

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example......, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an 18F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[18F]fluorobenzoate, and the [18F]ASIS was purified on a PD-10 desalting...

  16. Flap Conformations in HIV-1 Protease are Altered by Mutations

    Science.gov (United States)

    Fanucci, Gail; Blackburn, Mandy; Veloro, Angelo; Galiano, Luis; Fangu, Ding; Simmerling, Carlos

    2009-03-01

    HIV-1 protease (PR) is an enzyme that is a major drug target in the treatment of AIDS. Although the structure and function of HIV-1 PR have been studied for over 20 years, questions remain regarding the conformations and dynamics of the β-hairpin turns (flaps) that cover the active site cavity. Distance measurements with pulsed EPR spectroscopy of spin labeled constructs of HIV-1 PR have been used to characterize the flap conformations in the apo and inhibitor bound states. From the most probably distances and the breadth of the distance distribution profiles from analysis of the EPR data, insights regarding the flap conformations and flexibility are gained. The EPR results clearly show how drug pressure selected mutations alter the average conformation of the flaps and the degree of opening of the flaps. Molecular dynamics simulations successfully regenerate the experimentally determined distance distribution profiles, and more importantly, provide structural models for full interpretation of the EPR results. By combining experiment and theory to understand the role that altered flap flexibility/conformations play in the mechanism of drug resistance, key insights are gained toward the rational development of new inhibitors of this important enzyme.

  17. Multi-Institution Prospective Trial of Reduced-Dose Craniospinal Irradiation (23.4 Gy) Followed by Conformal Posterior Fossa (36 Gy) and Primary Site Irradiation (55.8 Gy) and Dose-Intensive Chemotherapy for Average-Risk Medulloblastoma

    International Nuclear Information System (INIS)

    Purpose: Limiting the neurocognitive sequelae of radiotherapy (RT) has been an objective in the treatment of medulloblastoma. Conformal RT to less than the entire posterior fossa (PF) after craniospinal irradiation might reduce neurocognitive sequelae and requires evaluation. Methods and Materials: Between October 1996 and August 2003, 86 patients, 3-21 years of age, with newly diagnosed, average-risk medulloblastoma were treated in a prospective, institutional review board-approved, multi-institution trial of risk-adapted RT and dose-intensive chemotherapy. RT began within 28 days of definitive surgery and consisted of craniospinal irradiation (23.4 Gy), conformal PF RT (36.0 Gy), and primary site RT (55.8 Gy). The planning target volume for the primary site included the postoperative tumor bed surrounded by an anatomically confined margin of 2 cm that was then expanded with a geometric margin of 0.3-0.5 cm. Chemotherapy was initiated 6 weeks after RT and included four cycles of high-dose cyclophosphamide, cisplatin, and vincristine. Results: At a median follow-up of 61.2 months (range, 5.2-115.0 months), the estimated 5-year event-free survival and cumulative incidence of PF failure rate was 83.0% ± 5.3% and 4.9% ± 2.4% (± standard error), respectively. The targeting guidelines used in this study resulted in a mean reduction of 13% in the volume of the PF receiving doses >55 Gy compared with conventionally planned RT. The reductions in the dose to the temporal lobes, cochleae, and hypothalamus were statistically significant. Conclusion: This prospective trial has demonstrated that irradiation of less than the entire PF after 23.4 Gy craniospinal irradiation for average-risk medulloblastoma results in disease control comparable to that after treatment of the entire PF

  18. Lipolytic activity from bacteria prospected in polluted portuary sites

    Directory of Open Access Journals (Sweden)

    Kaori Levy Fonseca

    2014-06-01

    The aim of this study was to isolate and identify the TBT resistant marine bacteria capable to produce extracellular lipases and then test the lipolytic activity of their extracts. For this purpose, TBT resistant bacteria (able to grow at 3 mM TBT from 7 Portuguese harbors were collected (Póvoa de Varzim (V; 41.376120,-8.766945, Leixões (L; 41.195238,- 8.684177, Aveiro (A; 40.645899,-8.727098, Figueira da Foz (F; 40.146848,-8.849176, Peniche (P; 39.355422,-9.375479, Setúbal (St; 38.521228,-8.887277 e Sines (S; 37.950219,-8.864599, isolated and then REP-PCR characterized. Their extracellular lipase activity was assayed by the method of Rhodamine B in solid culture medium. Rhodamine is a dye which together with fatty acids released by the hydrolysis of triacylglycerols, forms a fluorescent complex when exposed to ultraviolet light. The use of this test was due to its sensitivity in detecting lipase activity even in organisms with low production of extracellular lipases. Lipolytic extracts activities were estimated using p-nitrophenyl palmitate method for optimization of activity conditions. This highly sensitive spectrophotometric method estimates the amount of p-nitrophenol (p-NP released during the hydrolysis of the substrate p-nitrophenyl palmitate (p-NPP. Isolates producing extracellular lipases were then identified by MALDI-TOF-M

  19. Rational design and validation of an anti-protein kinase C active-state specific antibody based on conformational changes

    Science.gov (United States)

    Pena, Darlene Aparecida; Andrade, Victor Piana de; Silva, Gabriela Ávila Fernandes; Neves, José Ivanildo; Oliveira, Paulo Sergio Lopes de; Alves, Maria Julia Manso; Devi, Lakshmi A.; Schechtman, Deborah

    2016-01-01

    Protein kinase C (PKC) plays a regulatory role in key pathways in cancer. However, since phosphorylation is a step for classical PKC (cPKC) maturation and does not correlate with activation, there is a lack of tools to detect active PKC in tissue samples. Here, a structure-based rational approach was used to select a peptide to generate an antibody that distinguishes active from inactive cPKC. A peptide conserved in all cPKCs, C2Cat, was chosen since modeling studies based on a crystal structure of PKCβ showed that it is localized at the interface between the C2 and catalytic domains of cPKCs in an inactive kinase. Anti-C2Cat recognizes active cPKCs at least two-fold better than inactive kinase in ELISA and immunoprecipitation assays, and detects the temporal dynamics of cPKC activation upon receptor or phorbol stimulation. Furthermore, the antibody is able to detect active PKC in human tissue. Higher levels of active cPKC were observed in the more aggressive triple negative breast cancer tumors as compared to the less aggressive estrogen receptor positive tumors. Thus, this antibody represents a reliable, hitherto unavailable and a valuable tool to study PKC activation in cells and tissues. Similar structure-based rational design strategies can be broadly applied to obtain active-state specific antibodies for other signal transduction molecules. PMID:26911897

  20. Rational design and validation of an anti-protein kinase C active-state specific antibody based on conformational changes.

    Science.gov (United States)

    Pena, Darlene Aparecida; Andrade, Victor Piana de; Silva, Gabriela Ávila Fernandes; Neves, José Ivanildo; Oliveira, Paulo Sergio Lopes de; Alves, Maria Julia Manso; Devi, Lakshmi A; Schechtman, Deborah

    2016-02-25

    Protein kinase C (PKC) plays a regulatory role in key pathways in cancer. However, since phosphorylation is a step for classical PKC (cPKC) maturation and does not correlate with activation, there is a lack of tools to detect active PKC in tissue samples. Here, a structure-based rational approach was used to select a peptide to generate an antibody that distinguishes active from inactive cPKC. A peptide conserved in all cPKCs, C2Cat, was chosen since modeling studies based on a crystal structure of PKCβ showed that it is localized at the interface between the C2 and catalytic domains of cPKCs in an inactive kinase. Anti-C2Cat recognizes active cPKCs at least two-fold better than inactive kinase in ELISA and immunoprecipitation assays, and detects the temporal dynamics of cPKC activation upon receptor or phorbol stimulation. Furthermore, the antibody is able to detect active PKC in human tissue. Higher levels of active cPKC were observed in the more aggressive triple negative breast cancer tumors as compared to the less aggressive estrogen receptor positive tumors. Thus, this antibody represents a reliable, hitherto unavailable and a valuable tool to study PKC activation in cells and tissues. Similar structure-based rational design strategies can be broadly applied to obtain active-state specific antibodies for other signal transduction molecules.

  1. Characterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    Science.gov (United States)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2013-12-01

    The goal of this project is to estimate volume loss of soil over time from this site, provide parameterizations on erodibility of ice rich permafrost and serve as a baseline for future landscape evolution simulations. Located in the zone of discontinuous permafrost, the interior region of Alaska (USA) is home to a large quantity of warm, unstable permafrost that is both high in ice content and has soil temperatures near the freezing point. Much of this permafrost maintains a frozen state despite the general warming air temperature trend in the region due to the presence of a thick insulating organic mat and a dense root network in the upper sub-surface of the soil column. At a rapidly evolving thermo-erosion site, located within the Caribou-Poker Creeks Research Watershed (part of the Bonanza Creek LTER) near Chatanika, Alaska (N65.140, W147.570), the protective organic layer and associated plants were disturbed by an adjacent traditional use trail and the shifting of a groundwater spring. These triggers have led to rapid geomorphological change on the landscape as the soil thaws and sediment is transported into the creek at the valley bottom. Since 2006 (approximately the time of initiation), the thermal erosion has grown to 170 meters length, 3 meters max depth, and 15 meters maximum width. This research combines several data sets: DGPS survey, imagery from an extremely low altitude pole-based remote sensing (3 to 5 meters above ground level), and imagery from an Unmanned Aerial System (UAS) at about 60m altitude.

  2. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  3. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    Science.gov (United States)

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites.

  4. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    Carbohydrate active enzymes, particularly those that are active on polysaccharides, are often found associated with carbohydrate binding modules (CBMs), which can play several roles in supporting enzyme function, such as localizing the enzyme to the substrate. However, the presence of CBMs...... is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...... identified in enzymes from a wide variety of families, though almost half are found in the α-amylase family GH13. The roles attributed to SBSs are not limited to targeting the enzyme to the substrate, but also include a variety of others such as guiding the substrate into the active site, altering enzyme...

  5. The landscape degradation in the mining sites with suspended activity

    Directory of Open Access Journals (Sweden)

    Anca IONCE

    2009-08-01

    Full Text Available The extracting industry, through its extraction activities, of shipping the ores, of breaking the ores, of preparing the practical substances, of stowing the useless rock, of transporting the practical substances, etc. might modify the area’s relief and the quality of ground, of thesurface waters and of the air. Suceava County has an old tradition of mining, where the results of this activity are visible, especially the visual point of view, and where not taking certain measures of ecological remediation will emphasize the disappointing image of the landscape within the areas of mining activity performing.The predominant mountainous landscape, in which mining activities have been held, is being affected also by the abandoned industrial and administrative buildings, in an advanced degradation state.The hydrographic system, very rich in mining areas, has its water quality affected by the acid rock drainage- phenomenon which appeared in many mining waste deposits.

  6. Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity.

    Science.gov (United States)

    Bright, Nicholas A; Davis, Luther J; Luzio, J Paul

    2016-09-12

    The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. PMID:27498570

  7. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.

    Science.gov (United States)

    Yang, G; Sandalova, T; Lohman, K; Lindqvist, Y; Rendina, A R

    1997-04-22

    , showed that the crystals were essentially isomorphous to that of the wild-type DTBS. The models of these mutant enzymes were well refined (1.9 -2.6 A) and showed good similarity to the wild-type enzyme (rmsd of C alpha atoms: 0.16-0.24 A). The crystal structure of S41C complexed with DAPA, Mn2+/Mg2+, and AMPPCP revealed a localized conformational change (rotations of side chains of Cys41 and Thr11) which can account for the changes in the kinetic parameters observed for S41C. The crystal structures of the Lys37 mutant enzymes showed that the positive charge of the side chain of Lys37 is indispensable. Mutations of Lys37 to either glutamine or leucine resulted in a shift of the metal ion (up to 0.5 A) together with side chains of other active site residues which could disrupt the subtle balance between the positive and negative charges in the active site. The conformational change of the phosphate binding loop (Gly8-X-X-X-X-X-Gly14-Lys15-Thr16) upon nucleotide binding observed previously [Huang, W., Jia, J., Gibson, K. J., Taylor, W. S., Rendina, A. R., Schneider, G., & Lindqvist, Y. (1995) Biochemistry 34, 10985] appears to be important to attain the proper active site scaffold. PMID:9125495

  8. Adsorption of enzymes to stimuli-responsive polymer brushes: Influence of brush conformation on adsorbed amount and biocatalytic activity.

    Science.gov (United States)

    Koenig, Meike; Bittrich, Eva; König, Ulla; Rajeev, Bhadra Lakshmi; Müller, Martin; Eichhorn, Klaus-Jochen; Thomas, Sabu; Stamm, Manfred; Uhlmann, Petra

    2016-10-01

    Polyelectrolyte brushes can be utilized to immobilize enzymes on macroscopic surfaces. This report investigates the influence of the pH value of the surrounding medium on the amount and the activity of enzymes adsorbed to poly(2-vinylpyridine) and poly(acrylic acid) brushes, as well as the creation of thermoresponsive biocatalytically active coatings via the adsorption of enzymes onto a mixed brush consisting of a polyelectrolyte and temperature-sensitive poly(N-isopropylacryl amide). Spectroscopic ellipsometry and attenuated total reflection-Fourier transform infrared spectroscopy are used to monitor the adsorption process. Additionally, infrared spectra are evaluated in terms of the secondary structure of the enzymes. Glucose oxidase is used as a model enzyme, where the enzymatic activity is measured after different adsorption conditions. Poly(acrylic acid) brushes generally adsorb larger amounts of enzyme, while less glucose oxidase is found on poly(2-vinylpyridine), which however exhibits higher specific activity. This difference in activity could be attributed to a difference in secondary structure of the adsorbed enzyme. For glucose oxidase adsorbed to mixed brushes, switching of enzymatic activity between an active state at 20°C and a less active state at 40°C as compared to the free enzyme in solution is observed. However, this switching is strongly depending on pH in mixed brushes of poly(acrylic acid) and poly(N-isopropylacryl amide) due to interactions between the polymers. PMID:27447452

  9. Active site proton delivery and the lyase activity of human CYP17A1

    Energy Technology Data Exchange (ETDEWEB)

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G., E-mail: s-sligar@illinois.edu

    2014-01-03

    equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.

  10. Full and partial agonists of thromboxane prostanoid receptor unveil fine tuning of receptor superactive conformation and G protein activation.

    Directory of Open Access Journals (Sweden)

    Valérie Capra

    Full Text Available The intrahelical salt bridge between E/D(3.49 and R(3.50 within the E/DRY motif on helix 3 (H3 and the interhelical hydrogen bonding between the E/DRY and residues on H6 are thought to be critical in stabilizing the class A G protein-coupled receptors in their inactive state. Removal of these interactions is expected to generate constitutively active receptors. This study examines how neutralization of E(3.49/6.30 in the thromboxane prostanoid (TP receptor alters ligand binding, basal, and agonist-induced activity and investigates the molecular mechanisms of G protein activation. We demonstrate here that a panel of full and partial agonists showed an increase in affinity and potency for E129V and E240V mutants. Yet, even augmenting the sensitivity to detect constitutive activity (CA with overexpression of the receptor or the G protein revealed resistance to an increase in basal activity, while retaining fully the ability to cause agonist-induced signaling. However, direct G protein activation measured through bioluminescence resonance energy transfer (BRET indicates that these mutants more efficiently communicate and/or activate their cognate G proteins. These results suggest the existence of additional constrains governing the shift of TP receptor to its active state, together with an increase propensity of these mutants to agonist-induced signaling, corroborating their definition as superactive mutants. The particular nature of the TP receptor as somehow "resistant" to CA should be examined in the context of its pathophysiological role in the cardiovascular system. Evolutionary forces may have favored regulation mechanisms leading to low basal activity and selected against more highly active phenotypes.

  11. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  12. Superspace conformal field theory

    International Nuclear Information System (INIS)

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  13. Conformal and non Conformal Dilaton Gravity

    CERN Document Server

    Alvarez, Enrique; Mart'\\in, C P

    2014-01-01

    The quantum dynamics of the gravitational field non-minimally coupled to an (also dynamical) scalar field is studied in the broken phase. For a particular value of the coupling the system is classically conformal, and can actually be understood as the group averaging of Einstein-Hilbert's action under conformal transformations. Contradicting cherished beliefs, a conformal anomaly is found in the trace of the equations of motion. To one loop order, this anomaly vanishes on shell. Arguments are given supporting the fact that this does not happen to two loop order, where the anomaly is argued to be a real physical effect.

  14. Identifying high dose activities in industrial site radiography

    International Nuclear Information System (INIS)

    Although the radiation doses received by industrial radiographers in the UK have progressively fallen over the last few years, with most now receiving less than 1 mSv/y, a few still receive, relative to the rest, much higher doses. As a percentage of all radiographers the number stays surprisingly constant from year to year. This paper describes a survey to identify the work causing these doses and suggest possible solutions. The UK Central Index of Dose Information was interrogated to identify the industrial radiography companies having staff (not necessarily the same person) with doses of greater than 5mSv/y in the last three years for which information was available. This was 15 in total. The people on the staff receiving these doses were identified and a questionnaire sent to the companies concerned requesting information about their work. A general questionnaire about the operation of the company was also included. With the agreement of the company these questionnaires were followed up by a visit to the company to interviews a number of the management and the radiographers if available. Both groups were generally very open about their problems and every discussion had a positive outcome. Several areas of work/reasons for the doses have been identified. These are: pipeline radiography, ultra sound radiographers working on nuclear reactors, complex plant work often with several teams in the area, inability to retreat from the wind out equipment due to height or access problems, site pressure to not follow the best practices and a lack of appreciation when a dose was being received or, alternatively, carelessness. Some o these problem areas are very difficult to resolve. However ways in which the Health and Safety can help influence the doses have been identified together with practical suggestions radiographers could adopt. These will be reported. (author)

  15. School Pharmacist/School Environmental Hygienic Activities at School Site.

    Science.gov (United States)

    Muramatsu, Akiyoshi

    2016-01-01

    The "School Health and Safety Act" was enforced in April 2009 in Japan, and "school environmental health standards" were established by the Minister of Education, Culture, Sports, Science and Technology. In Article 24 of the Enforcement Regulations, the duties of the school pharmacist have been clarified; school pharmacists have charged with promoting health activities in schools and carrying out complete and regular checks based on the "school environmental health standards" in order to protect the health of students and staff. In supported of this, the school pharmacist group of Japan Pharmaceutical Association has created and distributed digital video discs (DVDs) on "check methods of school environmental health standards" as support material. We use the DVD to ensure the basic issues that school pharmacists deal with, such as objectives, criteria, and methods for each item to be checked, advice, and post-measures. We conduct various workshops and classes, and set up Q&A committees so that inquiries from members are answered with the help of such activities. In addition, school pharmacists try to improve the knowledge of the school staff on environmental hygiene during their in-service training. They also conduct "drug abuse prevention classes" at school and seek to improve knowledge and recognition of drugs, including "dangerous drugs". PMID:27252053

  16. The evolutionary conformation from traditional lecture to active learning in an undergraduate biology course and its effects on student achievement

    Science.gov (United States)

    Diederich, Kirsten Bakke

    In response to the declining number of students in the United States entering into the STEM (science, technology, engineering, and math) disciplines, there has been an attempt to retain student interest in the sciences through the implementation of more active learning in the classroom. Active learning is defined as any instructional method that requires students do something in the classroom rather than simply listen to a lecture (Herreid, 2006). These student centered approaches provide the students with the opportunity to work cooperatively while developing the skills required for critical inquiry. They also help the students make the connections between what is being taught and how it can be applied in a real world setting. Science education researchers have attempted to analyze the efficacy of active learning. Although they find it difficult to compare the data, they state unequivocally that "Active learning is a better strategy for learning than the traditional didactic lecture format" (Prince, 2004). However, even though research supports the efficacy of active learning, instructors find it difficult to adopt this pedagogy into their classrooms due to concerns such as loss of content knowledge and student resistance. This three year qualitative and quantitative study addressed the level of student learning and satisfaction in an introductory vertebrate biology class at a small liberal arts college. The courses were taught by the same instructor using three pedagogical methods; traditional lecture (TL), problem-based learning (PBL), and case-based learning (CBL). Student grades and levels of assessment were compared between the TL and PBL, while student attrition rates, course satisfaction and views of active and group learning were analyzed across all three sections. The evolutionary confirmations from TL to PBL and ultimately the adoption of CBL as the method of choice are discussed from the view of both the faculty member and the students.

  17. Determination of structure-activity relationships between fentanyl analogs and human μ-opioid receptors based on active binding site models

    Institute of Scientific and Technical Information of China (English)

    Ming Liu; Xiaoli Liu; Ping Wan; Qiangsan Wu; Wenxiang Hu

    2011-01-01

    Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective μ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SiteID showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TM7. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution.

  18. Small Angle Neutron Scattering Reveals pH-dependent Conformational Changes in Trichoderma reesei Cellobiohydrolase I: IMPLICATIONS FOR ENZYMATIC ACTIVITY*

    OpenAIRE

    Pingali, Sai Venkatesh; O'Neill, Hugh M.; McGaughey, Joseph; Urban, Volker S.; Rempe, Caroline S.; Petridis, Loukas; Jeremy C Smith; Evans, Barbara R.; Heller, William T.

    2011-01-01

    Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4–5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solut...

  19. A Src-like inactive conformation in the abl tyrosine kinase domain.

    Directory of Open Access Journals (Sweden)

    Nicholas M Levinson

    2006-05-01

    Full Text Available The improper activation of the Abl tyrosine kinase results in chronic myeloid leukemia (CML. The recognition of an inactive conformation of Abl, in which a catalytically important Asp-Phe-Gly (DFG motif is flipped by approximately 180 degrees with respect to the active conformation, underlies the specificity of the cancer drug imatinib, which is used to treat CML. The DFG motif is not flipped in crystal structures of inactive forms of the closely related Src kinases, and imatinib does not inhibit c-Src. We present a structure of the kinase domain of Abl, determined in complex with an ATP-peptide conjugate, in which the protein adopts an inactive conformation that resembles closely that of the Src kinases. An interesting aspect of the Src-like inactive structure, suggested by molecular dynamics simulations and additional crystal structures, is the presence of features that might facilitate the flip of the DFG motif by providing room for the phenylalanine to move and by coordinating the aspartate side chain as it leaves the active site. One class of mutations in BCR-Abl that confers resistance to imatinib appears more likely to destabilize the inactive Src-like conformation than the active or imatinib-bound conformations. Our results suggest that interconversion between distinctly different inactive conformations is a characteristic feature of the Abl kinase domain.

  20. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    Science.gov (United States)

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  1. 77 FR 74218 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Science.gov (United States)

    2012-12-13

    ... published a Notice of Availability (NOA) in the Federal Register (72 FR 62,672) of the Programmatic EIS for... Federal Register (77 FR 5560) of the Final EA for Commercial Wind Lease Issuance and Site Assessment... Bureau of Ocean Energy Management Commercial Wind Leasing and Site Assessment Activities on the...

  2. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2010-11-24

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... uranium and thorium processing site licensees for reimbursement under Title X of the Energy Policy Act of... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  3. 77 FR 3460 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2012-01-24

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... uranium and thorium processing site licensees for reimbursement under Title X of the Energy Policy Act of... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  4. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Directory of Open Access Journals (Sweden)

    Vishal Prashar

    Full Text Available BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS. In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  5. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  6. Poisoning Experiments Aimed at Discriminating Active and Less-Active Sites of Silica-Supported Tantalum Hydride for Alkane Metathesis

    KAUST Repository

    Saggio, Guillaume

    2010-10-04

    Only 50% of the silica-supported tantalum hydride sites are active in the metathesis of propane. Indeed, more than 45% of the tantalum hydride can be eliminated by a selective oxygen poisoning of inactive sites with no significant decrease in the global turnover. Conversely, cyclopentane induces no such selective poisoning. Hence, the active tantalum hydride sites that show greater resistance to oxygen poisoning correspond to the νTa-H bands of higher wavenumbers, particularly that at 1860cm-1. These active tantalum hydride sites should correspond to tris- or monohydride species relatively far from silica surface oxygen atoms. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Coordination environment of the active-site metal ion of liver alcohol dehydrogenase.

    OpenAIRE

    Makinen, M W; Yim, M B

    1981-01-01

    The coordination environment of the catalytically active metal ion of horse liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) has been investigated by electron paramagnetic resonance (EPR) methods with use of the active-site-specific Co2+-reconstituted enzyme. The EPR absorption spectrum of the metal-substituted enzyme is characteristic of a rhombically distorted environment. The spectrum of the enzyme--NAD+ complex shows approximate axial symmetry of the metal ion site, i...

  8. Complement receptor 2–mediated targeting of complement inhibitors to sites of complement activation

    OpenAIRE

    Song, Hongbin; He, Chun; Knaak, Christian; GUTHRIDGE, JOEL M.; Holers, V. Michael; Tomlinson, Stephen

    2003-01-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the mem...

  9. The thermal stability of the framework, hydroxyl groups, and active sites of faujasites

    Energy Technology Data Exchange (ETDEWEB)

    Mishin, I.V.; Kalinin, V.P.; Nissenbaum, V.D. [Zelinskii Institute of Organic Chemistry, Moscow (Russian Federation); Beyer, H.K. [Hungarian Academy of Sciences, Budapest (Hungary); Karge, H.G. [Fritz Haber Institute of the Max Planck Soceity, Berlin (Germany)

    1994-07-01

    The effect of the framework composition on the crystallinity and {open_quotes}density{close_quotes} of hydroxyl groups and the concentration of active sites is reported for hydrogen forms of Y zeolites preheated at 400 - 1000{degrees}C. The increase in the Si/Al ratios results in improved resistance of the framework atoms and hydroxyl groups to high temperatures and in enhanced thermal stability of the sites that are active in the cracking of isooctane and disproportionation of ethylbenzene.

  10. Active site dynamics of toluene hydroxylation by cytochrome P-450

    International Nuclear Information System (INIS)

    Rat liver cytochrome P-450 hydroxylates toluene to benzyl alcohol plus o-, m-, and p-cresol. Deuterated toluenes were incubated under saturating conditions with liver microsomes from phenobarbital-pretreated rats, and product yields and ratios were measured. Stepwise deuteration of the methyl leads to stepwise decreases in the alcohol/cresol ratio without changing the cresol isomer ratios. Extensive deuterium retention in the benzyl alcohols from PhCH2D and PhCHD2 suggests there is a large intrinsic isotope effect for benzylic hydroxylation. After replacement of the third benzylic H by D, the drop in the alcohol/cresol ratio was particularly acute, suggsting that metabolic switching from D to H within the methyl group was easier than switching from the methyl to the ring. Comparison of the alcohol/cresol ratio for PhCH3 vs PhCD3 indicated a net isotope effect of 6.9 for benzylic hydroxylation. From product yield data for PhCH3 and PhCD3, DV for benzyl alcohol formation is only 1.92, whereas DV for total product formation is 0.67 (i.e., inverse). From competitive incubations of PhCH3/PhCD3 mixtures D(V/K) isotope effects on benzyl alcohol formation and total product formation (3.6 and 1.23, respectively) are greatly reduced, implying strong commitment to catalysis. In contrast, D(V/K) for the alcohol/cresol ratio is 6.3, indicating that the majority of the intrinsic isotope effect is expressed through metabolic switching. Overall, these data are consistent with reversible formation of a complex between toluene and the active oxygen form of cytochrome P-450, which rearranges internally and reacts to form products faster than it dissociates back to release substrate

  11. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation

    Science.gov (United States)

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W.; Lin, Jialing; Li, Jianing

    2016-07-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.

  12. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation.

    Science.gov (United States)

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W; Lin, Jialing; Li, Jianing

    2016-01-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model - using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation. PMID:27381287

  13. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    Science.gov (United States)

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-01

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins.

  14. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    Science.gov (United States)

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-01

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins. PMID:24635441

  15. Active sites for NO reduction over Fe-ZSM-5 catalysts.

    Science.gov (United States)

    Schwidder, M; Santhosh Kumar, M; Brückner, A; Grünert, W

    2005-02-14

    A study of Fe-ZSM-5 catalysts with variable amounts of isolated, oligomeric and heavily aggregated Fe3+ oxo sites (as evidenced by UV-Vis and EPR spectroscopic data) and their catalytic properties in the selective catalytic reduction of NO by isobutane or by NH3 is presented, which allows development of a unified concept of the active Fe sites in these reactions, according to which isolated Fe sites catalyse both SCR reactions while oligomeric sites, though also involved in the selective reduction path, limit the catalyst performance by causing the total oxidation of the reductant. PMID:15685345

  16. Benzene Hydroxylation over FeZSM-5 Catalysts: Which Fe-sites Are Active?

    OpenAIRE

    Yuranov, I.; Bulushev, D. A.; Renken, A.; Kiwi-Minsker, L.

    2004-01-01

    FeZSM-5 with a wide range of Fe content (0.015–2.1 wt%) were studied in the benzene hydroxylation to phenol with nitrous oxide (C6H6:N2O = 1:5) at low temperatures (98%) was obtained within 3 h without any deactivation of the catalyst. Three types of Fe(II) sites were formed in the zeolites extraframework due to activation and are attributed to: (1) Fe(II) sites in mononuclear species, (2) oligonuclear species with at least two oxygen-bridged Fe(II) sites, and (3) Fe(II) sites within Fe2O3 na...

  17. XAFS Study of the Photo-Active Site of Mo/MCM-41

    International Nuclear Information System (INIS)

    An Mo/MCM-41 catalyst was prepared and used for study of propene and 1-butene photo-metathesis reactions. XAFS analysis revealed that hydrogen reduction leads to a decreased role for the Mo=O site. The Mo-O site plays an important role for the olefin photo-metathesis reaction on the H2 reduced Mo/MCM-41. From EXAFS analysis, the active site of photo-metathesis reaction is the Mo=O part for oxidized Mo/MCM-41, whereas it is the Mo-O site for reduced Mo/MCM-41

  18. XAFS Study of the Photo-Active Site of Mo/MCM-41

    Science.gov (United States)

    Miyamoto, Daisuke; Ichikuni, Nobuyuki; Shimazu, Shogo

    2007-02-01

    An Mo/MCM-41 catalyst was prepared and used for study of propene and 1-butene photo-metathesis reactions. XAFS analysis revealed that hydrogen reduction leads to a decreased role for the Mo=O site. The Mo-O site plays an important role for the olefin photo-metathesis reaction on the H2 reduced Mo/MCM-41. From EXAFS analysis, the active site of photo-metathesis reaction is the Mo=O part for oxidized Mo/MCM-41, whereas it is the Mo-O site for reduced Mo/MCM-41.

  19. Activator anion binding site in pyridoxal phosphorylase b: the binding of phosphite, phosphate, and fluorophosphate in the crystal.

    Science.gov (United States)

    Oikonomakos, N G; Zographos, S E; Tsitsanou, K E; Johnson, L N; Acharya, K R

    1996-12-01

    It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis. PMID:8976550

  20. Concept for calculating dose rates from activated groundwater at accelerator sites

    CERN Document Server

    Prolingheuer, N; Vanderborght, J; Schlögl, B; Nabbi, R; Moormann, R

    Licensing of particle accelerators requires the proof that the groundwater outside of the site will not be significantly contaminated by activation products formed below accelerator and target. In order to reduce the effort for this proof, a site independent simplified but conservative method is under development. The conventional approach for calculation of activation of soil and groundwater is shortly described on example of a site close to Forschungszentrum Juelich, Germany. Additionally an updated overview of a data library for partition coefficients for relevant nuclides transported in the aquifer at the site is presented. The approximate model for transport of nuclides with ground water including exemplary results on nuclide concentrations outside of the site boundary and of resulting effective doses is described. Further applications and developments are finally outlined.

  1. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: A theoretical study

    Science.gov (United States)

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-01

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material.

  2. Conformational analysis of HAMLET, the folding variant of human alpha-lactalbumin associated with apoptosis.

    Science.gov (United States)

    Casbarra, Annarita; Birolo, Leila; Infusini, Giuseppe; Dal Piaz, Fabrizio; Svensson, Malin; Pucci, Piero; Svanborg, Catharina; Marino, Gennaro

    2004-05-01

    A combination of hydrogen/deuterium (H/D) exchange and limited proteolysis experiments coupled to mass spectrometry analysis was used to depict the conformation in solution of HAMLET, the folding variant of human alpha-lactalbumin, complexed to oleic acid, that induces apoptosis in tumor and immature cells. Although near- and far-UV CD and fluorescence spectroscopy were not able to discriminate between HAMLET and apo-alpha-lactalbumin, H/D exchange experiments clearly showed that they correspond to two distinct conformational states, with HAMLET incorporating a greater number of deuterium atoms than the apo and holo forms. Complementary proteolysis experiments revealed that HAMLET and apo are both accessible to proteases in the beta-domain but showed substantial differences in accessibility to proteases at specific sites. The overall results indicated that the conformational changes associated with the release of Ca2+ are not sufficient to induce the HAMLET conformation. Metal depletion might represent the first event to produce a partial unfolding in the beta-domain of alpha-lactalbumin, but some more unfolding is needed to generate the active conformation HAMLET, very likely allowing the protein to bind the C18:1 fatty acid moiety. On the basis of these data, a putative binding site of the oleic acid, which stabilizes the HAMLET conformation, is proposed.

  3. Side chain conformational averaging in human dihydrofolate reductase.

    Science.gov (United States)

    Tuttle, Lisa M; Dyson, H Jane; Wright, Peter E

    2014-02-25

    The three-dimensional structures of the dihydrofolate reductase enzymes from Escherichia coli (ecDHFR or ecE) and Homo sapiens (hDHFR or hE) are very similar, despite a rather low level of sequence identity. Whereas the active site loops of ecDHFR undergo major conformational rearrangements during progression through the reaction cycle, hDHFR remains fixed in a closed loop conformation in all of its catalytic intermediates. To elucidate the structural and dynamic differences between the human and E. coli enzymes, we conducted a comprehensive analysis of side chain flexibility and dynamics in complexes of hDHFR that represent intermediates in the major catalytic cycle. Nuclear magnetic resonance relaxation dispersion experiments show that, in marked contrast to the functionally important motions that feature prominently in the catalytic intermediates of ecDHFR, millisecond time scale fluctuations cannot be detected for hDHFR side chains. Ligand flux in hDHFR is thought to be mediated by conformational changes between a hinge-open state when the substrate/product-binding pocket is vacant and a hinge-closed state when this pocket is occupied. Comparison of X-ray structures of hinge-open and hinge-closed states shows that helix αF changes position by sliding between the two states. Analysis of χ1 rotamer populations derived from measurements of (3)JCγCO and (3)JCγN couplings indicates that many of the side chains that contact helix αF exhibit rotamer averaging that may facilitate the conformational change. The χ1 rotamer adopted by the Phe31 side chain depends upon whether the active site contains the substrate or product. In the holoenzyme (the binary complex of hDHFR with reduced nicotinamide adenine dinucleotide phosphate), a combination of hinge opening and a change in the Phe31 χ1 rotamer opens the active site to facilitate entry of the substrate. Overall, the data suggest that, unlike ecDHFR, hDHFR requires minimal backbone conformational rearrangement as

  4. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol;

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...... for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon...... resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding...

  5. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  6. Design and synthesis of side-chain conformationally restricted phenylalanines and their use for structure-activity studies on tachykinin NK-1 receptor.

    Science.gov (United States)

    Josien, H; Lavielle, S; Brunissen, A; Saffroy, M; Torrens, Y; Beaujouan, J C; Glowinski, J; Chassaing, G

    1994-05-27

    Constrained analogues of phenylalanine have been conceptually designed for analyzing the binding pockets of Phe7 (S7) and Phe8 (S8), two aromatic residues important for the pharmacological properties of SP, i.e., L-tetrahydroisoquinoleic acid, L-diphenylalanine, L-9-fluorenylglycine (Flg), 2-indanylglycine, the diastereomers of L-1-indanylglycine (Ing) and L-1-benz[f]indanylglycine (Bfi), and the Z and E isomers of dehydrophenylalanine (delta ZPhe, delta EPhe). Binding studies were performed with appropriate ligands and tissue preparations allowing the discrimination of the three tachykinin binding sites, NK-1, NK-2, and NK-3. The potencies of these agonists were evaluated in the guinea pig ileum bioassay. According to the binding data, we can conclude that the S7 subsite is small, only the gauche (-) probe [(2S,3S)-Ing7]SP presents a high affinity for specific NK-1 binding sites. Surprisingly, the [delta EPhe7]SP analogue, which projects the aromatic ring toward the trans orientation, is over 40-fold more potent than the Z isomer, [delta ZPhe7]SP. A plausible explanation of these conflictual results is that either the binding protein quenches the minor trans rotamer of [(2S,3S)-Ing7]SP in solution or this constrained amino acid side chain rotates when inserted in the protein. In position 8, the high binding affinities of [Flg8]SP and [(2S,3S)-Bfi8]SP suggest that the S8 subsite is large enough to accept two aromatic rings in the gauche (-) and one aromatic ring in the trans direction. Peptides bearing two conformational probes in positions 7, 8, or 9 led to postulate that S7, S8, and S9 subsites are independent from each other. The volumes available for side chains 7 and 8 can be estimated to be close to 110 and 240 A3, respectively. The large volume of the S8 subsite raises question on the localization of the SP-binding site in the NK-1 receptor. If SP were to bind in the transmembrane domains, the cleft defined by the seven transmembrane segments must rearrange

  7. The clusters-in-a-liquid approach for solvation: New insights from the conformer specific gas phase spectroscopy and vibrational optical activity spectroscopy

    Science.gov (United States)

    Xu, Yunjie; Perera, Angelo; Thomas, Javix; Poopari, Mohammad

    2016-02-01

    Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as a powerful spectroscopic tool for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed at the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones who contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed “clusters-in-a-liquid” approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with the

  8. Structural basis for the antipolymer activity of Hb ζ2βs2 trapped in a tense conformation

    Science.gov (United States)

    Safo, Martin K.; Ko, Tzu-Ping; Schreiter, Eric R.; Eric Russell, J.

    2015-11-01

    The phenotypical severity of sickle cell disease (SCD) can be mitigated by modifying mutant hemoglobin S (Hb s, Hb α2β 2s) to contain embryonic ζ globin in place of adult α-globin subunits (Hb ζ2β2s). Crystallographical analyses of liganded Hb ζζ2β2s, though, demonstrate a tense (T-state) quaternary structure that paradoxically predicts its participation in--rather than its exclusion from--pathological deoxyHb S polymers. We resolved this structure-function conundrum by examining the effects of α → ζ exchange on the characteristics of specific amino acids that mediate sickle polymer assembly. Superposition analyses of the βs subunits of T-state deoxyHb α2β2s and T-state CO-liganded Hb ζ2β2s reveal significant displacements of both mutant βsVal6 and conserved β-chain contact residues, predicting weakening of corresponding polymer-stabilizing interactions. Similar comparisons of the α- and ζ-globin subunits implicate four amino acids that are either repositioned or undergo non-conservative substitution, abrogating critical polymer contacts. CO-Hb ζ2βs2 additionally exhibits a unique trimer-of-heterotetramers crystal packing that is sustained by novel intermolecular interactions involving the pathological βsVal6, contrasting sharply with the classical double-stranded packing of deoxyHb S. Finally, the unusually large buried solvent-accessible surface area for CO-Hb ζ2β2s suggests that it does not co-assemble with deoxyHb S in vivo. In sum, the antipolymer activities of Hb ζ203b2;2s appear to arise from both repositioning and replacement of specific α- and βs-chain residues, favoring an alternate T-state solution structure that is excluded from pathological deoxyHb S polymers. These data account for the antipolymer activity of Hb ζ2β2s, and recommend the utility of SCD therapeutics that capitalize on α-globin exchange strategies.

  9. Structure of product-bound SMG1 lipase: active site gating implications.

    Science.gov (United States)

    Guo, Shaohua; Xu, Jinxin; Pavlidis, Ioannis V; Lan, Dongming; Bornscheuer, Uwe T; Liu, Jinsong; Wang, Yonghua

    2015-12-01

    Monoacylglycerol and diacylglycerol lipases are industrially interesting enzymes, due to the health benefits that arise from the consumption of diglycerides compared to the traditional triglyceride oils. Most lipases possess an α-helix (lid) directly over the catalytic pocket which regulates the activity of the enzyme. Generally, lipases exist in active and inactive conformations, depending on the positioning of this lid subdomain. However, lipase SMG1, a monoacylglycerol and diacylglycerol specific lipase, has an atypical activation mechanism. In the present study we were able to prove by crystallography, in silico analysis and activity tests that only two positions, residues 102 and 278, are responsible for a gating mechanism that regulates the active and inactive states of the lipase, and that no significant structural changes take place during activation except for oxyanion hole formation. The elucidation of the gating effect provided data enabling the rational design of improved lipases with 6-fold increase in the hydrolytic activity toward diacylglycerols, just by providing additional substrate stabilization with a single mutation (F278N or F278T). Due to the conservation of F278 among the monoacylglycerol and diacylglycerol lipases in the Rhizomucor miehei lipase-like family, the gating mechanism described herein might represent a general mechanism applicable to other monoacylglycerol and diacylglycerol lipases as well. Database: Structural data are available in the Protein Data Bank under the accession numbers 4ZRE (F278D mutant) and 4ZRD (F278N mutant). PMID:26365206

  10. Ensemble refinement shows conformational flexibility in crystal structures of human complement factor D

    Energy Technology Data Exchange (ETDEWEB)

    Forneris, Federico; Burnley, B. Tom; Gros, Piet, E-mail: p.gros@uu.nl [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2014-03-01

    Ensemble-refinement analysis of native and mutant factor D (FD) crystal structures indicates a dynamical transition in FD from a self-inhibited inactive conformation to a substrate-bound active conformation that is reminiscent of the allostery in thrombin. Comparison with previously observed dynamics in thrombin using NMR data supports the crystallographic ensembles. Human factor D (FD) is a self-inhibited thrombin-like serine proteinase that is critical for amplification of the complement immune response. FD is activated by its substrate through interactions outside the active site. The substrate-binding, or ‘exosite’, region displays a well defined and rigid conformation in FD. In contrast, remarkable flexibility is observed in thrombin and related proteinases, in which Na{sup +} and ligand binding is implied in allosteric regulation of enzymatic activity through protein dynamics. Here, ensemble refinement (ER) of FD and thrombin crystal structures is used to evaluate structure and dynamics simultaneously. A comparison with previously published NMR data for thrombin supports the ER analysis. The R202A FD variant has enhanced activity towards artificial peptides and simultaneously displays active and inactive conformations of the active site. ER revealed pronounced disorder in the exosite loops for this FD variant, reminiscent of thrombin in the absence of the stabilizing Na{sup +} ion. These data indicate that FD exhibits conformational dynamics like thrombin, but unlike in thrombin a mechanism has evolved in FD that locks the unbound native state into an ordered inactive conformation via the self-inhibitory loop. Thus, ensemble refinement of X-ray crystal structures may represent an approach alternative to spectroscopy to explore protein dynamics in atomic detail.

  11. Activity after Site-Directed Mutagenesis of CD59 on Complement-Mediated Cytolysis

    Institute of Scientific and Technical Information of China (English)

    Xinhong Zhu; Meihua Gao; Shurong Ren; Qiubo Wang; Cunzhi Lin

    2008-01-01

    CD59 may inhibit the cytolytic activity of complement by binding to C8/C9 and protect host cell membranes against homologous membrane attack complex (MAC). However, CD59 is widely overexpressed on tumor cells,which has been implicated in tumorigenesis. The active site of CD59 relative to MAC is still confused. As reported the MAC binding site is located in the vicinity of a hydrophobic groove on the membrane distal face of the protein centered around residue W40. Here two site-directed mutagenesis were performed by overlapping extension PCR to delete residue W40 site (Mutant 1, M1) or to change C39W40K41 to W39W40W41 (Mutant 2, M2). Then we constructed mutant CD59 eukaryotic expression system and investigated their biological function on CHO cells compared with wild-type CD59. Stable populations of CHO cells expressing recombinant proteins were screened by immunotechnique. After 30 passages culturing, proteins could be tested. Dye release assays suggest that M1CD59 loses the activity against complement, while M2CD59 increases the anti-complement activity slightly.Results indicate that W40 of human CD59 is important to its activity, and prohibition of this site may be a potential way to increase complement activity and to treat tumors.

  12. Modeling Steroid 5alpha-reductase and Characterizing Its Potential Active Sites

    Institute of Scientific and Technical Information of China (English)

    OU Min-Rui; LI Jun-Qian

    2012-01-01

    Steroid 5alpha-reductase of human is an enzyme in the biosynthetic pathway from testosterone (T) to dihydrotestosterone (DHT). Up to now, no crystal structure of this enzyme has been reported. However, knowledge of the tertiary structure and possible active sites is essential for understanding the catalysis mechanism and for the design of inhibitors. A model with putative active sites has been created and evaluated by using homology modeling and molecular docking techniques based on the bioinformatics knowledge. The homology model is optimized in Swiss PDB Viewer with MM method and substrate structures before docking are also optimized on HF/6-31G. The active site for the docking of NADP, T, DHT and Finasteride is located near the N-terminus of enzyme. Four active amino acids in the active site are identified as Ala26, Arg53, Arg176 and Lys177. Reaction procedure, binding pattern of active sites, the types of weak interaction and so on are also discussed.

  13. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    Science.gov (United States)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  14. Effects of resource activities upon repository siting and waste containment with reference to bedded salt

    International Nuclear Information System (INIS)

    The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases

  15. High pressure NMR reveals active-site hinge motion of folate-bound Escherichia coli dihydrofolate reductase.

    Science.gov (United States)

    Kitahara, R; Sareth, S; Yamada, H; Ohmae, E; Gekko, K; Akasaka, K

    2000-10-24

    A high-pressure (15)N/(1)H two-dimensional NMR study has been carried out on folate-bound dihydrofolate reductase (DHFR) from Escherichia coli in the pressure range between 30 and 2000 bar. Several cross-peaks in the (15)N/(1)H HSQC spectrum are split into two with increasing pressure, showing the presence of a second conformer in equilibrium with the first. Thermodynamic analysis of the pressure and temperature dependencies indicates that the second conformer is characterized by a smaller partial molar volume (DeltaV = -25 mL/mol at 15 degrees C) and smaller enthalpy and entropy values, suggesting that the second conformer is more open and hydrated than the first. The splittings of the cross-peaks (by approximately 1 ppm on (15)N axis at 2000 bar) arise from the hinges of the M20 loop, the C-helix, and the F-helix, all of which constitute the major binding site for the cofactor NADPH, suggesting that major differences in conformation occur in the orientations of the NADPH binding units. The Gibbs free energy of the second, open conformer is 5.2 kJ/mol above that of the first at 1 bar, giving an equilibrium population of about 10%. The second, open conformer is considered to be crucial for NADPH binding, and the NMR line width indicates that the upper limit for the rate of opening is 20 s(-)(1) at 2000 bar. These experiments show that high pressure NMR is a generally useful tool for detecting and analyzing "open" structures of a protein that may be directly involved in function.

  16. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts.

    Science.gov (United States)

    Catlow, C R A; French, S A; Sokol, A A; Thomas, J M

    2005-04-15

    We apply quantum chemical methods to the study of active site structures and reaction mechanisms in mesoporous silica and metal oxide catalysts. Our approach is based on the use of both molecular cluster and embedded cluster (QM/MM) techniques, where the active site and molecular complex are described using density functional theory (DFT) and the embedding matrix simulated by shell model potentials. We consider three case studies: alkene epoxidation over the microporous TS-1 catalyst; methanol synthesis on ZnO and Cu/ZnO and C-H bond activation over Li-doped MgO. PMID:15901543

  17. Insight into the mechanism of phosphoenolpyruvate mutase catalysis derived from site-directed mutagenesis studies of active site residues.

    Science.gov (United States)

    Jia, Y; Lu, Z; Huang, K; Herzberg, O; Dunaway-Mariano, D

    1999-10-26

    PEP mutase catalyzes the conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate in biosynthetic pathways leading to phosphonate secondary metabolites. A recent X-ray structure [Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D., and Herzberg, O. (1999) Structure (in press)] of the Mytilus edulis enzyme complexed with the Mg(II) cofactor and oxalate inhibitor reveals an alpha/beta-barrel backbone-fold housing an active site in which Mg(II) is bound by the two carboxylate groups of the oxalate ligand and the side chain of D85 and, via bridging water molecules, by the side chains of D58, D85, D87, and E114. The oxalate ligand, in turn, interacts with the side chains of R159, W44, and S46 and the backbone amide NHs of G47 and L48. Modeling studies identified two feasible PEP binding modes: model A in which PEP replaces oxalate with its carboxylate group interacting with R159 and its phosphoryl group positioned close to D58 and Mg(II) shifting slightly from its original position in the crystal structure, and model B in which PEP replaces oxalate with its phosphoryl group interacting with R159 and Mg(II) retaining its original position. Site-directed mutagenesis studies of the key mutase active site residues (R159, D58, D85, D87, and E114) were carried out in order to evaluate the catalytic roles predicted by the two models. The observed retention of low catalytic activity in the mutants R159A, D85A, D87A, and E114A, coupled with the absence of detectable catalytic activity in D58A, was interpreted as evidence for model A in which D58 functions in nucleophilic catalysis (phosphoryl transfer), R159 functions in PEP carboxylate group binding, and the carboxylates of D85, D87 and E114 function in Mg(II) binding. These results also provide evidence against model B in which R159 serves to mediate the phosphoryl transfer. A catalytic motif, which could serve both the phosphoryl transfer and the C-C cleavage enzymes of the PEP mutase superfamily, is proposed. PMID:10571990

  18. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  19. Pyrone-based Cu(II) complexes, their characterization, DFT based conformational drift from square planar to square pyramidal geometry and biological activities

    Indian Academy of Sciences (India)

    Pradeep Kumar Vishwakarma; Jan Mohammad Mir; Ram Charitra Maurya

    2016-04-01

    This work deals with the synthesis and characterization of a series of three -Dehydroacetic acid- 4-phenyl-3-thiosemicarbazide (H2dha-ptsc) Schiff base Cu(II) complexes based on combined experimental and theoretical approach, having the general composition formula as [Cu(dha-ptsc)(L-L)], where L-L is H2O, 2,2-bipyridine (bipy) or 1,10-phenanthroline (phen). H2O containing complex acts as origin for the latter two complexes and in due course, the geometry of the complex changes from square planar to square pyramidal. DFT calculations were carried out for both the geometrical forms. B3LYP/LANL2DZ level of theory was used to carry out the required computations. From the overall DFT computations, square pyramidal geometry was found to be more stable as compared to the square planar conformation for the complexes under investigation. Super oxide dismutation, thermal behaviour and electrochemical activity were also studied. The results have shown satisfactory super oxide scavenging potential, high degree of thermal resistance and efficient redox properties for the title complexes. Moreover, charge analysis and nonlinear optical properties were computed to establish a comprehensive note of atomic constituents differing in nature of charge delocalization.

  20. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang; (NU Sinapore); (Nankai); (Oxford); (Chinese Aca. Sci.); (Tsinghua)

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  1. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    International Nuclear Information System (INIS)

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn0.552+Fe0.183+)tet[Zr0.452+Fe1.823+]octO4 through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe3+ on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics

  2. Structure of Human Pancreatic Lipase-Related Protein 2 with the Lid in an Open Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Eydoux, Cecilia; Spinelli, Silvia; Davis, Tara L.; Walker, John R.; Seitova, Alma; Dhe-Paganon, Sirano; De Caro, Alain; Cambillau, Christian; Carriere, Frederic (CNRS-UMR); (Toronto)

    2008-10-02

    Access to the active site of pancreatic lipase (PL) is controlled by a surface loop, the lid, which normally undergoes conformational changes only upon addition of lipids or amphiphiles. Structures of PL with their lids in the open and functional conformation have required cocrystallization with amphiphiles. Here we report two crystal structures of wild-type and unglycosylated human pancreatic lipase-related protein 2 (HPLRP2) with the lid in an open conformation in the absence of amphiphiles. These structures solved independently are strikingly similar, with some residues of the lid being poorly defined in the electron-density map. The open conformation of the lid is however different from that previously observed in classical liganded PL, suggesting different kinetic properties for HPLRP2. Here we show that the HPLRP2 is directly inhibited by E600, does not present interfacial activation, and acts preferentially on substrates forming monomers or small aggregates (micelles) dispersed in solution like monoglycerides, phospholipids and galactolipids, whereas classical PL displays reverse properties and a high specificity for unsoluble substrates like triglycerides and diglycerides forming oil-in-water interfaces. These biochemical properties imply that the lid of HPLRP2 is likely to spontaneously adopt in solution the open conformation observed in the crystal structure. This open conformation generates a large cavity capable of accommodating the digalactose polar head of galactolipids, similar to that previously observed in the active site of the guinea pig PLRP2, but absent from the classical PL. Most of the structural and kinetic properties of HPLRP2 were found to be different from those of rat PLRP2, the structure of which was previously obtained with the lid in a closed conformation. Our findings illustrate the essential role of the lid in determining the substrate specificity and the mechanism of action of lipases.

  3. Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.

    Science.gov (United States)

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N; Nishida, Clinton R; de Montellano, Paul R Ortiz

    2015-04-17

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional (1)H,(15)N HSQC chemical shift perturbation mapping of (15)N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.

  4. The toponymy of communal activity: Anglo-Saxon assembly sites and their functions

    OpenAIRE

    Baker, John

    2014-01-01

    The paper builds on earlier discussion of the multiple functions of medieval judicial assembly sites, providing a comprehensive evaluation of relevant English hundred-names, and making reference to associated microtoponymy. While religious, military, commercial, and recreational activities may all have occurred at assembly-sites, it can be hard to delineate the evidence so clearly along these lines, and attempts to do so may be anachronistic in some instances; nevertheless, the analysis of di...

  5. Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase.

    OpenAIRE

    Batt, C A; Jamieson, A. C.; Vandeyar, M A

    1990-01-01

    Two conserved histidine residues (His-101 and His-271) appear to be essential components in the active site of the enzyme xylose (glucose) isomerase (EC 5.3.1.5). These amino acid residues were targeted for mutagenesis on the basis of sequence homology among xylose isomerases isolated from Escherichia coli, Bacillus subtilis, Ampullariella sp. strain 3876, and Streptomyces violaceus-niger. Each residue was selectively replaced by site-directed mutagenesis and shown to be essential for activit...

  6. Residents’ Environmental Conservation Behaviors at Tourist Sites: Broadening the Norm Activation Framework by Adopting Environment Attachment

    OpenAIRE

    Yuling Zhang; Jie Zhang; Yuyao Ye; Qitao Wu; Lixia Jin; Hongou Zhang

    2016-01-01

    Understanding the factors that affect residents’ environmental conservation behaviors help in managing the environment of tourist sites. This research provides an integrative understanding of how residents near tourist sites form their environmental conservation behaviors by merging the norm-activation model and cognitive-affective model into one theoretical framework. Results of the structural analysis from a sample of 642 residents showed that this study’s proposed composite model includes ...

  7. Conformal Bootstrap in Embedding Space

    CERN Document Server

    Fortin, Jean-François

    2016-01-01

    It is shown how to obtain conformal blocks from embedding space with the help of the operator product expansion. The minimal conformal block originates from scalar exchange in a four-point correlation functions of four scalars. All remaining conformal blocks are simple derivatives of the minimal conformal block. With the help of the orthogonality properties of the conformal blocks, the analytic conformal bootstrap can be implemented directly in embedding space, leading to a Jacobi-like definition of conformal field theories.

  8. Conformal bootstrap in embedding space

    Science.gov (United States)

    Fortin, Jean-François; Skiba, Witold

    2016-05-01

    It is shown how to obtain conformal blocks from embedding space with the help of the operator product expansion. The minimal conformal block originates from scalar exchange in a four-point correlation function of four scalars. All remaining conformal blocks are simple derivatives of the minimal conformal block. With the help of the orthogonality properties of the conformal blocks, the analytic conformal bootstrap can be implemented directly in embedding space, leading to a Jacobi-like definition of conformal field theories.

  9. Modified Active Site Coordination in a Clinical Mutant of Sulfite Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Doonan, C.J.; Wilson, H.L.; Rajagopalan, K.V.; Garrett, R.M.; Bennett, B.; Prince, R.C.; George, G.N.

    2009-06-02

    The molybdenum site of the Arginine 160 {yields} Glutamine clinical mutant of the physiologically vital enzyme sulfite oxidase has been investigated by a combination of X-ray absorption spectroscopy and density functional theory calculations. We conclude that the mutant enzyme has a six-coordinate pseudo-octahedral active site with coordination of Glutamine O{sup {epsilon}} to molybdenum. This contrasts with the wild-type enzyme which is five-coordinate with approximately square-based pyramidal geometry. This difference in the structure of the molybdenum site explains many of the properties of the mutant enzyme which have previously been reported.

  10. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, Charlotte S; Trandum, Christa; Larsen, Nanna Brink;

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (Tm) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal alpha-helix was of major importance to the conformational stability of calreticulin....

  11. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Trandum, C.; Larsen, N.;

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....

  12. Targeting the active site of the placental isozyme of alkaline phosphatase by phage-displayed scFv antibodies selected by a specific uncompetitive inhibitor

    Directory of Open Access Journals (Sweden)

    Kala Mrinalini

    2005-12-01

    Full Text Available Abstract Background The isozymes of alkaline phosphatase, the tissue non-specific, intestinal and placental, have similar properties and a high degree of identity. The placental isozyme (PLAP is an oncofetal antigen expressed in several malignancies including choriocarcinoma, seminoma and ovarian carcinoma. We had earlier attempted to isolate PLAP-specific scFv from a synthetic human immunoglobulin library but were unable to do so, presumably because of the similarity between the isozymes. In this work, we have employed a PLAP-specific uncompetitive inhibitor, L-Phe-Gly-Gly, to select isozyme specific scFvs. An uncompetitive inhibitor binds to the enzyme in the presence of substrate and stabilizes the enzyme-substrate complex. Several uncompetitive inhibitors have varying degrees of isozyme specificity for human alkaline phosphatase isozymes. A specific uncompetitive inhibitor would be able to unmask conformational differences between the otherwise very similar molecules. Also, such inhibitors would be directed to regions at/close to the active site of the enzyme. In this work, the library was first incubated with PLAP and the bound clones then eluted by incubation with L-Phe-Gly-Gly along with the substrate, para-nitro phenyl phosphate (pNPP. The scFvs were then studied with regard to the biochemical modulation of their binding, isozyme specificity and effect on enzyme activity. Results Of 13 clones studied initially, the binding of 9 was inhibited by L-Phe-Gly-Gly (with pNPP and 2 clones were inhibited by pNPP alone. Two clones had absolute and 2 clones had partial specificity to PLAP. Two clones were cross-reactive with only one other isozyme. Three scFv clones, having an accessible His6-tag, were purified and studied for their modulation of enzyme activity. All the three scFvs inhibited PLAP activity with the kinetics of competitive inhibition. Cell ELISA could demonstrate binding of the specific scFvs to the cell surface expressed PLAP

  13. Stringency of the 2-His-1-Asp active-site motif in prolyl 4-hydroxylase.

    Directory of Open Access Journals (Sweden)

    Kelly L Gorres

    Full Text Available The non-heme iron(II dioxygenase family of enzymes contain a common 2-His-1-carboxylate iron-binding motif. These enzymes catalyze a wide variety of oxidative reactions, such as the hydroxylation of aliphatic C-H bonds. Prolyl 4-hydroxylase (P4H is an alpha-ketoglutarate-dependent iron(II dioxygenase that catalyzes the post-translational hydroxylation of proline residues in protocollagen strands, stabilizing the ensuing triple helix. Human P4H residues His412, Asp414, and His483 have been identified as an iron-coordinating 2-His-1-carboxylate motif. Enzymes that catalyze oxidative halogenation do so by a mechanism similar to that of P4H. These halogenases retain the active-site histidine residues, but the carboxylate ligand is replaced with a halide ion. We replaced Asp414 of P4H with alanine (to mimic the active site of a halogenase and with glycine. These substitutions do not, however, convert P4H into a halogenase. Moreover, the hydroxylase activity of D414A P4H cannot be rescued with small molecules. In addition, rearranging the two His and one Asp residues in the active site eliminates hydroxylase activity. Our results demonstrate a high stringency for the iron-binding residues in the P4H active site. We conclude that P4H, which catalyzes an especially demanding chemical transformation, is recalcitrant to change.

  14. Quantum delocalization of protons in the hydrogen bond network of an enzyme active site

    CERN Document Server

    Wang, Lu; Boxer, Steven G; Markland, Thomas E

    2015-01-01

    Enzymes utilize protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.

  15. Mutations Closer to the Active Site Improve the Promiscuous Aldolase Activity of 4-Oxalocrotonate Tautomerase More Effectively than Distant Mutations.

    Science.gov (United States)

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poddar, Harshwardhan; Baas, Bert-Jan; Poelarends, Gerrit J

    2016-07-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which catalyzes enol-keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon-carbon bond-forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4-OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000-fold improvement in catalytic efficiency (kcat /Km ) and a >10(7) -fold change in reaction specificity, by exploring small libraries in which only "hotspots" are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4-OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site. PMID:27238293

  16. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    Science.gov (United States)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  17. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E. [Pacific Northwest Lab., Richland, WA (United States); Weiss, S.G.; Stegen, J.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  18. SABER: a computational method for identifying active sites for new reactions.

    Science.gov (United States)

    Nosrati, Geoffrey R; Houk, K N

    2012-05-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644-1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L-Ala D/L-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified.

  19. The active site of low-temperature methane hydroxylation in iron-containing zeolites

    Science.gov (United States)

    Snyder, Benjamin E. R.; Vanelderen, Pieter; Bols, Max L.; Hallaert, Simon D.; Böttger, Lars H.; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A.; Sels, Bert F.; Solomon, Edward I.

    2016-08-01

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(II), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species—α-Fe(II) and α-O—are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive ‘spectator’ iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(II) to be a mononuclear, high-spin, square planar Fe(II) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(IV)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function—producing what is known in the context of metalloenzymes as an ‘entatic’ state—might be a useful way to tune the activity of heterogeneous catalysts.

  20. The active site of low-temperature methane hydroxylation in iron-containing zeolites.

    Science.gov (United States)

    Snyder, Benjamin E R; Vanelderen, Pieter; Bols, Max L; Hallaert, Simon D; Böttger, Lars H; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2016-08-18

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts. PMID:27535535

  1. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Ramsdell, J.V.

    1986-04-01

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available.

  2. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    Science.gov (United States)

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  3. Activator anion binding site in pyridoxal phosphorylase b: the binding of phosphite, phosphate, and fluorophosphate in the crystal.

    OpenAIRE

    Oikonomakos, Nikos G.; Zographos, Spyros E.; Tsitsanou, K. E.; Johnson, L N; Acharya, K. R.

    1996-01-01

    It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of nativ...

  4. Changes to gonadotropin-releasing hormone (GnRH) receptor extracellular loops differentially affect GnRH analog binding and activation: evidence for distinct ligand-stabilized receptor conformations.

    Science.gov (United States)

    Pfleger, Kevin D G; Pawson, Adam J; Millar, Robert P

    2008-06-01

    GnRH and its structural variants bind to GnRH receptors from different species with different affinities and specificities. By investigating chimeric receptors that combine regions of mammalian and nonmammalian GnRH receptors, a greater understanding of how different domains influence ligand binding and receptor activation can be achieved. Using human-catfish and human-chicken chimeric receptors, we demonstrate the importance of extracellular loop conformation for ligand binding and agonist potency, providing further evidence for GnRH and GnRH II stabilization of distinct active receptor conformations. We demonstrate examples of GnRH receptor gain-of-function mutations that apparently improve agonist potency independently of affinity, implicating a role for extracellular loops in stabilizing the inactive receptor conformation. We also show that entire extracellular loop substitution can overcome the detrimental effects of localized mutations, thereby demonstrating the importance of considering the conformation of entire domains when drawing conclusions from point-mutation studies. Finally, we present evidence implicating the configuration of extracellular loops 2 and 3 in combination differentiating GnRH analog binding modes. Because there are two endogenous forms of GnRH ligand but only one functional form of full-length GnRH receptor in humans, understanding how GnRH and GnRH II can elicit distinct functional effects through the same receptor is likely to provide important insights into how these ligands can have differential effects in both physiological and pathological situations. PMID:18356273

  5. Utility experiences in redevelopment of formerly used sites -- Wisconsin Electric's risk management and economic development activities

    International Nuclear Information System (INIS)

    Wisconsin Electric Power Company, which recently celebrated its 100th anniversary, has actively promoted the redevelopment of its former sites as well as those of its customers. Serving Milwaukee and southeast Wisconsin, Wisconsin Electric's (WE) sites include former power plants, landfills, right-of-ways, and manufactured gas plant sites. In setting an example for others, as well as seeking to maximize the economic value of these sites, WE has either redeveloped or promoted the redevelopment of these sites by others. Examples include the East Wells Power Plant (now home of the Milwaukee Repertory Theater), the Lakeside Power Plant Site (now the home of Harnischfeger Corporation's headquarters), and the Commerce Street Power Plant located on the Milwaukee River near downtown Milwaukee. In each case the company evaluated the potential environmental liabilities against the unrealized asset value derived from facility location, site size, architectural uniqueness, or other characteristics. At the Commerce Street Power Plant, walking distance to the downtown Milwaukee business district combined with river frontage, were significant site values leveraged against a $5 million asbestos and lead-based paint removal project done to prepare the plant for marketing. More recently, WE has used its experience in promoting the redevelopment of the Menomonee River Valley, the original core of Milwaukee's industrial community, and in advancing a more practical regulatory approach to redeveloping older sites. Finally, the company is working with a non-profit community health clinic, community groups and local foundations in linking these redevelopment activities with the economic and physical health of inner city residents

  6. Crystal Structures of a Multidrug-Resistant Human Immunodeficiency Virus Type 1 Protease Reveal an Expanded Active-Site Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Logsdon, Bradley C.; Vickrey, John F.; Martin, Philip; Proteasa, Gheorghe; Koepke, Jay I.; Terlecky, Stanley R.; Wawrzak, Zdzislaw; Winters, Mark A.; Merigan, Thomas C.; Kovari, Ladislau C. (Stanford); (WSU-MED); (NWU); (Stanford-MED)

    2010-03-08

    The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-{angstrom} crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease 'flaps' stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 {angstrom}. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1', S3, and S3' pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k{sub off} rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k{sub on} and k{sub off} data (K{sub d} = k{sub off}/k{sub on}) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.

  7. Human Activities in Natura 2000 Sites: A Highly Diversified Conservation Network

    Science.gov (United States)

    Tsiafouli, Maria A.; Apostolopoulou, Evangelia; Mazaris, Antonios D.; Kallimanis, Athanasios S.; Drakou, Evangelia G.; Pantis, John D.

    2013-05-01

    The Natura 2000 network was established across the European Union's (EU) Member States with the aim to conserve biodiversity, while ensuring the sustainability of human activities. However, to what kind and to what extent Natura 2000 sites are subject to human activities and how this varies across Member States remains unspecified. Here, we analyzed 111,269 human activity records from 14,727 protected sites in 20 Member States. The frequency of occurrence of activities differs among countries, with more than 86 % of all sites being subjected to agriculture or forestry. Activities like hunting, fishing, urbanization, transportation, and tourism are more frequently recorded in south European sites than in northern or eastern ones. The observed variations indicate that Natura 2000 networks are highly heterogeneous among EU Member States. Our analysis highlights the importance of agriculture in European landscapes and indicates possible targets for policy interventions at national, European, or "sub-European" level. The strong human presence in the Natura 2000 network throughout Member States, shows that conservation initiatives could succeed only by combining social and ecological sustainability and by ensuring the integration of policies affecting biodiversity.

  8. Autocatalytic activation of the furin zymogen requires removal of the emerging enzyme's N-terminus from the active site.

    Directory of Open Access Journals (Sweden)

    Katarzyna Gawlik

    Full Text Available Before furin can act on protein substrates, it must go through an ordered process of activation. Similar to many other proteinases, furin is synthesized as a zymogen (profurin which becomes active only after the autocatalytic removal of its auto-inhibitory prodomain. We hypothesized that to activate profurin its prodomain had to be removed and, in addition, the emerging enzyme's N-terminus had to be ejected from the catalytic cleft.We constructed and analyzed the profurin mutants in which the egress of the emerging enzyme's N-terminus from the catalytic cleft was restricted. Mutants were autocatalytically processed at only the primary cleavage site Arg-Thr-Lys-Arg(107 downward arrowAsp(108, but not at both the primary and the secondary (Arg-Gly-Val-Thr-Lys-Arg(75 downward arrowSer(76 cleavage sites, yielding, as a result, the full-length prodomain and mature furins commencing from the N-terminal Asp108. These correctly processed furin mutants, however, remained self-inhibited by the constrained N-terminal sequence which continuously occupied the S' sub-sites of the catalytic cleft and interfered with the functional activity. Further, using the in vitro cleavage of the purified prodomain and the analyses of colon carcinoma LoVo cells with the reconstituted expression of the wild-type and mutant furins, we demonstrated that a three-step autocatalytic processing including the cleavage of the prodomain at the previously unidentified Arg-Leu-Gln-Arg(89 downward arrowGlu(90 site, is required for the efficient activation of furin.Collectively, our results show the restrictive role of the enzyme's N-terminal region in the autocatalytic activation mechanisms. In a conceptual form, our data apply not only to profurin alone but also to a range of self-activated proteinases.

  9. Immobilized low-activity waste site borehole 299-E17-21

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

    1998-08-01

    The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area.

  10. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction.

    Science.gov (United States)

    Algasaier, Sana I; Exell, Jack C; Bennet, Ian A; Thompson, Mark J; Gotham, Victoria J B; Shaw, Steven J; Craggs, Timothy D; Finger, L David; Grasby, Jane A

    2016-04-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5'-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5'-terminiin vivo Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5'-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5'-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr(40), Asp(181), and Arg(100)and a reacting duplex 5'-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5'-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage.

  11. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    Science.gov (United States)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  12. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo

    OpenAIRE

    Kono, Mari; Tucker, Ana E.; Tran, Jennifer; Bergner, Jennifer B.; Turner, Ewa M; Proia, Richard L.

    2014-01-01

    Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a ...

  13. POISONING OF ACTIVE SITES ON ZIEGLER-NATTA CATALYST FOR PROPYLENE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Kitti Tangjituabun; Sang Yull Kim; Yuichi Hiraoka; Toshiaki Taniike; Minoru Terano; Bunjerd Jongsomjit; Piyasan Praserthdam

    2008-01-01

    The effects of poisoning materials on catalytic activity and isospecificity of the supported Ziegler-Natta catalyst were investigated.A minor amount of simple structure of Lewis base,i.e.,methanol,acetone,ethyl acetate,was introduced into the catalyst slurry for partial poisoning catalytic active centers.It was found that the variations in deactivation power were in the order of methanol>acetone>ethyl acetate.The kinetic investigation via stopped-flow polymerization showed that poisoning compounds caused a decrease in activity through the reduction of the number of active sites whereas no effect on the degree of isotacticity was observed.

  14. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions.

    Science.gov (United States)

    Kelly, Paul P; Eichler, Anja; Herter, Susanne; Kranz, David C; Turner, Nicholas J; Flitsch, Sabine L

    2015-01-01

    Cytochrome P450 monooxygenases are useful biocatalysts for C-H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  15. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    Directory of Open Access Journals (Sweden)

    Paul P. Kelly

    2015-09-01

    Full Text Available Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  16. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions.

    Science.gov (United States)

    Kelly, Paul P; Eichler, Anja; Herter, Susanne; Kranz, David C; Turner, Nicholas J; Flitsch, Sabine L

    2015-01-01

    Cytochrome P450 monooxygenases are useful biocatalysts for C-H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations. PMID:26664590

  17. Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels.

    Science.gov (United States)

    Saam, Jan; Ivanov, Igor; Walther, Matthias; Holzhütter, Hermann-Georg; Kuhn, Hartmut

    2007-08-14

    Cells contain numerous enzymes that use molecular oxygen for their reactions. Often, their active sites are buried deeply inside the protein, which raises the question whether there are specific access channels guiding oxygen to the site of catalysis. Choosing 12/15-lipoxygenase as a typical example for such oxygen-dependent enzymes, we determined the oxygen distribution within the protein and defined potential routes for oxygen access. For this purpose, we have applied an integrated strategy of structural modeling, molecular dynamics simulations, site-directed mutagenesis, and kinetic measurements. First, we computed the 3D free-energy distribution for oxygen, which led to identification of four oxygen channels in the protein. All channels connect the protein surface with a region of high oxygen affinity at the active site. This region is localized opposite to the nonheme iron providing a structural explanation for the reaction specificity of this lipoxygenase isoform. The catalytically most relevant path can be obstructed by L367F exchange, which leads to a strongly increased Michaelis constant for oxygen. The blocking mechanism is explained in detail by reordering the hydrogen-bonding network of water molecules. Our results provide strong evidence that the main route for oxygen access to the active site of the enzyme follows a channel formed by transiently interconnected cavities whereby the opening and closure are governed by side chain dynamics. PMID:17675410

  18. Active catalytic sites in the ammoxidation of propane and propene over V-Sb-O catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Lehrstuhl fuer Technische Chemie

    1998-12-31

    The ammoxidation of propane over VSb{sub y}O{sub x} catalysts (y=1, 2, 5) was investigated with respect to the role of different oxygen species in the selective and non selective reaction steps using transient experiments in the Temporal Analysis of Products (TAP) reactor. Only lattice oxygen is involved in the oxidation reactions. Using isotopic labelled oxygen it is shown that two different active sites exist on the surface. On site A, which can be reoxidized faster by gas phase oxygen compared to site B, mainly CO is formed. On site B CO{sub 2} and acrolein as well as NO and N{sub 2}O in the presence of ammonia in the feed gas are formed and reoxidation mainly occurs with bulk lattice oxygen. (orig.)

  19. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    Science.gov (United States)

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase. PMID:17850513

  20. Identification and characterization of radioactively contaminated sites in Ukraine and planning for environmental restoration activities

    International Nuclear Information System (INIS)

    In the Pridniprovsk-Krivoy Rog region uranium, titanium, iron and manganese ores were mined and milled beginning in the 1950s. These activities have caused radioactive contamination of the environment at some sites. In recent times intensive works concerning the surveying of contaminated areas and substantiating the need for remediation have been initiated. The research methodologies applied and the results from radiation surveys are presented for the site of the first uranium mine in the Ukraine, for tailings originating from the Pridniprovsk Chemical Plant (PChP), for the recultivated dump-site of the former 'O'-mine, as well as for the wastes, raw materials and production of the Nicopol Ferro-Alloy Plant. The planning procedure for the remediation activities at the town of Zhovty Vody is described. (author)

  1. Study on the active sites of Cu-ZSM-5 in trichloroethylene catalytic combustion with air

    Institute of Scientific and Technical Information of China (English)

    Cheng Hua Xu; Chuan Qi Liu; Yan Zhong; Xiu Zhou Yang; Jian Ying Liu; Ying Chun Yang; Zhi Xiang Ye

    2008-01-01

    The catalytic activity of Cu-ZSM-5 in trichloroethylene (TCE) combustion increases with the increasing skeletal Cu amount and however decreases with the increase of surface amorphous CuO,which is detected by infrared spectroscopy (IR) and diffuse reflectance ultraviolet-visible spectroscopy (DRS-UV-vis),therefore the skeletal Cu species are concluded to be the active sites for the TCE combustion.

  2. Screening Approach to the Activation of Soil and Contamination of Groundwater at Linear Proton Accelerator Sites

    CERN Document Server

    Otto, Thomas

    The activation of soil and the contamination of groundwater at proton accelerator sites with the radionuclides 3H and 22Na are estimated with a Monte-Carlo calculation and a conservative soil- and ground water model. The obtained radionuclide concentrations show that the underground environment of future accelerators must be adequately protected against a migration of activation products. This study is of particular importance for the proton driver accelerator in the planned EURISOL facility.

  3. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity

    OpenAIRE

    1985-01-01

    A tetrapeptide sequence, Arg-Gly-Asp-Ser, is the minimal structure recognized by cells in the large, adhesive glycoprotein fibronectin. We now have defined the structural requirements for this cell recognition site by testing several synthetic variants of the active tetrapeptide sequence. The conservative substitutions of lysine for arginine, alanine for glycine, or glutamic acid for aspartic acid each resulted in abrogation of the cell attachment-promoting activity characteristic of the natu...

  4. Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active-site formation and catalytic specificity.

    Science.gov (United States)

    Itoh, Yuzuru; Bröcker, Markus J; Sekine, Shun-ichi; Söll, Dieter; Yokoyama, Shigeyuki

    2014-04-17

    The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins and is synthesized on its specific tRNA (tRNA(Sec)). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNA(Sec), formed by seryl-tRNA synthetase, to Sec-tRNA(Sec). SelA, a member of the fold-type-I pyridoxal 5'-phosphate-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNA(Sec) revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNA(Sec). The SelA catalytic site is close to the dimer-dimer interface, but the significance of the dimer pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of "depentamerized" SelA variants with mutations at the dimer-dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I pyridoxal 5'-phosphate-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures. PMID:24456689

  5. Biosynthesis of selenosubtilisin: A novel way to target selenium into the active site of subtilisin

    Institute of Scientific and Technical Information of China (English)

    LI Jing; LIU XiaoMan; JI YueTong; QI ZhenHui; GE Yan; XU JiaYun; LIU JunQiu; LUO GuiMin; SHEN JiaCong

    2008-01-01

    Glutathione peroxidase (GPx,EC1.11.1.9),an important anti-oxidative selenoenzyme,can catalyze the reduction of harmful hydroperoxides with concomitant glutathione,thereby protecting cells and other biological issues against oxidative damage.It captures considerable interest in redesign of its function for either the mechanism study or the pharmacological development as an antioxidant.In order to de-velop a general strategy for specifically targeting and operating selenium in active sites of enzymes,the catalytically essential residue selenocysteine (Sec) was first successfully bioincorporated into the catalytic center of subtilisin by using an auxotrophic expression system.The studies of the catalytic activity and the steady-state kinetics demonstrated that selenosubtilisin is an excellent GPx-like bio-catalyst.In comparison with the chemically modified method,biosynthesis exhibits obvious advan-tages:Sec could be site-directly incorporated into active sites of enzymes to overcome the non-speci-ficity generated by chemical modification.This study provides an important strategy for specifically targeting and operating selenium in the active site of an enzyme.

  6. 76 FR 51391 - Commercial Wind Lease Issuance and Site Characterization Activities on the Atlantic Outer...

    Science.gov (United States)

    2011-08-18

    ..., geotechnical, archeological, and biological surveys), and reasonably foreseeable site assessment scenarios... characterization activities (i.e., geological and geophysical surveys and core samples), a lessee must submit the results of such surveys before BOEMRE can consider its COP. See 30 CFR 285.626. 2. Proposed Action...

  7. Aberration-corrected imaging of active sites on industrial catalyst nanoparticles

    DEFF Research Database (Denmark)

    Gontard, Lionel Cervera; Chang, L-Y; Hetherington, CJD;

    2007-01-01

    Picture perfect: Information about the local topologies of active sites on commercial nanoparticles can be gained with atomic resolution through spherical-aberration-corrected transmission electron microscopy (TEM). A powder of Pt nanoparticles on carbon black was examined with two advanced TEM t...

  8. Comparative active-site mutation study of human and Caenorhabditis elegans thymidine kinase 1

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Uhlin, Ulla; Munch-Petersen, Birgitte

    2012-01-01

    ligands. To improve our understanding of TK1 substrate specificity, we performed a detailed, mutation-based comparative structure-function study of the active sites of two thymidine kinases: HuTK1 and Caenorhabditis elegans TK1 (CeTK1). Specifically, mutations were introduced into the hydrophobic pocket...

  9. Molecular Interactions Between the Active Sites of RGD (Arg-Gly-Asp with its Receptor (Integrine

    Directory of Open Access Journals (Sweden)

    E. Jauregui

    2000-03-01

    Full Text Available A study of the molecular interactions between the active sites of RGD (Arg-Gly-Asp with it Receptor using simultaions is reported. Our calculations indicate that the guanidine-carboxylate complex is energetically favourd with respect to the guanidine-methyl tetrazole complex.

  10. Artificial Metalloenzymes for Asymmetric Catalysis by Creation of Novel Active Sites in Protein and DNA Scaffolds

    NARCIS (Netherlands)

    Drienovska, Ivana; Roelfes, Gerard

    2015-01-01

    Artificial metalloenzymes have emerged as a promising new approach to asymmetric catalysis. In our group, we are exploring novel artificial metalloenzyme designs involving creation of a new active site in a protein or DNA scaffold that does not have an existing binding pocket. In this review, we giv

  11. 78 FR 8190 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Science.gov (United States)

    2013-02-05

    ... published the Notice in the Federal Register (77 FR 74218) inviting Federal, state, local government... Bureau of Ocean Energy Management Commercial Wind Leasing and Site Assessment Activities on the Atlantic... Notice of Intent to Prepare an Environmental Assessment (EA) for Commercial Wind Leasing and...

  12. 77 FR 5830 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Science.gov (United States)

    2012-02-06

    ... (NOA) in the Federal Register (72 FR 62,672) of the Programmatic EIS for Alternative Energy Development... FR 30,616) of the EA for Issuance of Leases for Wind Resource Data Collection on the Outer... Bureau of Ocean Energy Management Commercial Wind Leasing and Site Assessment Activities on the...

  13. Domestic activities at the Linear Pottery site of Elsloo (Netherlands) : a look from under the microscoop

    NARCIS (Netherlands)

    Gijn, van A.L.; Mazzucco, N.; Hamon, C.; Allard, P.; Ilett, M.

    2013-01-01

    Use-wear analysis of a sample of flint tools from the site of Elsloo, situated in the Graetheide cluster (NL), has shed light on the domestic activities carried out within the settlement. It was shown that hide processing predominates. The extent and character of the wear on the hide working impleme

  14. PubChem3D: Conformer generation

    Directory of Open Access Journals (Sweden)

    Bolton Evan E

    2011-01-01

    Full Text Available Abstract Background PubChem, an open archive for the biological activities of small molecules, provides search and analysis tools to assist users in locating desired information. Many of these tools focus on the notion of chemical structure similarity at some level. PubChem3D enables similarity of chemical structure 3-D conformers to augment the existing similarity of 2-D chemical structure graphs. It is also desirable to relate theoretical 3-D descriptions of chemical structures to experimental biological activity. As such, it is important to be assured that the theoretical conformer models can reproduce experimentally determined bioactive conformations. In the present study, we investigate the effects of three primary conformer generation parameters (the fragment sampling rate, the energy window size, and force field variant upon the accuracy of theoretical conformer models, and determined optimal settings for PubChem3D conformer model generation and conformer sampling. Results Using the software package OMEGA from OpenEye Scientific Software, Inc., theoretical 3-D conformer models were generated for 25,972 small-molecule ligands, whose 3-D structures were experimentally determined. Different values for primary conformer generation parameters were systematically tested to find optimal settings. Employing a greater fragment sampling rate than the default did not improve the accuracy of the theoretical conformer model ensembles. An ever increasing energy window did increase the overall average accuracy, with rapid convergence observed at 10 kcal/mol and 15 kcal/mol for model building and torsion search, respectively; however, subsequent study showed that an energy threshold of 25 kcal/mol for torsion search resulted in slightly improved results for larger and more flexible structures. Exclusion of coulomb terms from the 94s variant of the Merck molecular force field (MMFF94s in the torsion search stage gave more accurate conformer models at

  15. Inactivation of active thrombin-activable fibrinolysis inhibitor takes place by a process that involves conformational instability rather than proteolytic cleavage

    NARCIS (Netherlands)

    Marx, PF; Hackeng, TM; Dawson, PE; Griffin, JH; Meijers, JCM; Bouma, Bonno N.

    2000-01-01

    Thrombin-activable fibrinolysis inhibitor (TAFI) is present in the circulation as an inactive zymogen. Thrombin converts TAFI to a carboxypeptidase B-like enzyme (TAFIa) by cleaving at Arg(92) in a process accelerated by the cofactor, thrombomodulin. TAFIa attenuates fibrinolysis. TAFIa can be inact

  16. The role of the catalysts with highly dispersed and isolated active sites in the selective oxidation of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxuan; ZHAO Zhen

    2005-01-01

    This review summarizes the role of catalysts with highly dispersed and isolated active sites (active sites: supported atoms f≤0.5 % ) in the selective oxidation of light hydrocarbons, such as methane, ethane and propane, into oxygenatesand the epoxidation of olefins. The plausible structures of the highly dispersed and isolated active species, as well as their effects on the catalytic performances are discussed. The special physico-chemical properties and the functional mechanism of the catalysts with highly dispersed and isolated active sites, as well as the preparation, characterization of the catalysts with highly dispersed and isolated active sites and their applications in other types of reactions of lower hydrocarbons are summarized.

  17. Characterization of the active site properties of CYP4F12.

    Science.gov (United States)

    Eksterowicz, John; Rock, Dan A; Rock, Brooke M; Wienkers, Larry C; Foti, Robert S

    2014-10-01

    Cytochrome P450 4F12 is a drug-metabolizing enzyme that is primarily expressed in the liver, kidney, colon, small intestine, and heart. The properties of CYP4F12 that may impart an increased catalytic selectivity (decreased promiscuity) were explored through in vitro metabolite elucidation, kinetic isotope effect experiments, and computational modeling of the CYP4F12 active site. By using astemizole as a probe substrate for CYP4F12 and CYP3A4, it was observed that although CYP4F12 favored astemizole O-demethylation as the primary route of metabolism, CYP3A4 was capable of metabolizing astemizole at multiple sites on the molecule. Deuteration of astemizole at the site of O-demethylation resulted in an isotope effect of 7.1 as well as an 8.3-fold decrease in the rate of clearance for astemizole by CYP4F12. Conversely, although an isotope effect of 3.8 was observed for the formation of the O-desmethyl metabolite when deuterated astemizole was metabolized by CYP3A4, there was no decrease in the clearance of astemizole. Development of a homology model of CYP4F12 based on the crystal structure of cytochrome P450 BM3 predicted an active site volume for CYP4F12 that was approximately 76% of the active site volume of CYP3A4. As predicted, multiple favorable binding orientations were available for astemizole docked into the active site of CYP3A4, but only a single binding orientation with the site of O-demethylation oriented toward the heme was identified for CYP4F12. Overall, it appears that although CYP4F12 may be capable of binding similar ligands to other cytochrome P450 enzymes such as CYP3A4, the ability to achieve catalytically favorable orientations may be inherently more difficult because of the increased steric constraints of the CYP4F12 active site. PMID:25074871

  18. Conformal expansions and renormalons

    CERN Document Server

    Gardi, E; Gardi, Einan; Grunberg, Georges

    2001-01-01

    The large-order behaviour of QCD is dominated by renormalons. On the other hand renormalons do not occur in conformal theories, such as the one describing the infrared fixed-point of QCD at small beta_0 (the Banks--Zaks limit). Since the fixed-point has a perturbative realization, all-order perturbative relations exist between the conformal coefficients, which are renormalon-free, and the standard perturbative coefficients, which contain renormalons. Therefore, an explicit cancellation of renormalons should occur in these relations. The absence of renormalons in the conformal limit can thus be seen as a constraint on the structure of the QCD perturbative expansion. We show that the conformal constraint is non-trivial: a generic model for the large-order behaviour violates it. We also analyse a specific example, based on a renormalon-type integral over the two-loop running-coupling, where the required cancellation does occur.

  19. [Conformers of carnosine].

    Science.gov (United States)

    Kliuev, S A

    2006-01-01

    The geometric and energetic parameters of most stable conformations of carnosine were calculated by the semiempirical guantum-chemical method PM3. The carnosine-water-zinc (II) clusters were simulated. PMID:16909845

  20. Quantum massive conformal gravity

    International Nuclear Information System (INIS)

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)

  1. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  2. Quantum massive conformal gravity

    OpenAIRE

    Faria, F. F.

    2016-01-01

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.

  3. Quantum massive conformal gravity

    Science.gov (United States)

    Faria, F. F.

    2016-04-01

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.

  4. Quantum massive conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Faria, F.F. [Universidade Estadual do Piaui, Centro de Ciencias da Natureza, Teresina, PI (Brazil)

    2016-04-15

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)

  5. A split active site couples cap recognition by Dcp2 to activation

    OpenAIRE

    Floor, Stephen N.; Jones, Brittnee N.; Hernandez, Gail A.; Gross, John D.

    2010-01-01

    Decapping by Dcp2 is an essential step in 5′-3′ mRNA decay. In yeast, decapping requires an open-to-closed transition in Dcp2, though the link between closure and catalysis remains elusive. Here we show using NMR that cap binds conserved residues on both the catalytic and regulatory domains of Dcp2. Lesions in the cap-binding site on the regulatory domain reduce the catalytic step two orders of magnitude and block formation of the closed state whereas Dcp1 enhances the catalytic step by a fac...

  6. Number of active transcription factor binding sites is essential for the Hes7 oscillator

    Directory of Open Access Journals (Sweden)

    de Angelis Martin

    2006-02-01

    Full Text Available Abstract Background It is commonly accepted that embryonic segmentation of vertebrates is regulated by a segmentation clock, which is induced by the cycling genes Hes1 and Hes7. Their products form dimers that bind to the regulatory regions and thereby repress the transcription of their own encoding genes. An increase of the half-life of Hes7 protein causes irregular somite formation. This was shown in recent experiments by Hirata et al. In the same work, numerical simulations from a delay differential equations model, originally invented by Lewis, gave additional support. For a longer half-life of the Hes7 protein, these simulations exhibited strongly damped oscillations with, after few periods, severely attenuated the amplitudes. In these simulations, the Hill coefficient, a crucial model parameter, was set to 2 indicating that Hes7 has only one binding site in its promoter. On the other hand, Bessho et al. established three regulatory elements in the promoter region. Results We show that – with the same half life – the delay system is highly sensitive to changes in the Hill coefficient. A small increase changes the qualitative behaviour of the solutions drastically. There is sustained oscillation and hence the model can no longer explain the disruption of the segmentation clock. On the other hand, the Hill coefficient is correlated with the number of active binding sites, and with the way in which dimers bind to them. In this paper, we adopt response functions in order to estimate Hill coefficients for a variable number of active binding sites. It turns out that three active transcription factor binding sites increase the Hill coefficient by at least 20% as compared to one single active site. Conclusion Our findings lead to the following crucial dichotomy: either Hirata's model is correct for the Hes7 oscillator, in which case at most two binding sites are active in its promoter region; or at least three binding sites are active, in which

  7. Management of Ground and Groundwater Contamination on a Compact Site Constrained by Ongoing Activities

    International Nuclear Information System (INIS)

    Sellafield Site is a compact and complex site which since the 1940's has been home to a range of facilities associated with the production and reprocessing of fissile material. The site contains the UK equivalent of the Chicago Pile-1 reactor, Hanford B Reactor, Rocky Flats Buildings 771 and 774, West Valley Main Process Plant Building, Savannah River Vitrification Plant, Savannah River MOX Plant, Savannah River F Canyon, Hanford 222 Analytical Laboratory, Savannah River K-, L-, and P-Basins, and the Fort St. Vrain Reactor all in an area of approximately 1000 acres. Spent fuel reprocessing is still undertaken on site; however waste management and decommissioning activities are of increasing importance. These include the emptying and removal of fragile ponds and silos containing significant radioactive inventories, the decommissioning of reactors (including the world's first commercial reactor for power generation and the Windscale Piles, the site of a reactor fire in the late 1950's) and the construction of a new generation of vitrification and encapsulation plants. Leaks, spills and on-site disposals during the site's industrial lifetime have resulted in a legacy of fission products and other radionuclides in the ground and groundwater. Volumes of contaminated ground have been estimated as being as much as 18 million m3 and an estimated below ground inventory of approximately 1.8 E16 Bq. These have all occurred within close proximity to a range of receptors including farm land and the sea. The cramped nature of the facilities on site, overlapping source terms and ongoing decommissioning, waste management and operating activities all raise significant challenges in the management and remediation of contaminated land and groundwater. The strategy to address these challenges includes: 1. Data collection, management and interpretation. The congested nature of the site and the age of some of the monitoring facilities has resulted in particular difficulties. For example

  8. Integral Public Activities as a Support to the Site Selection Process for LILW Repository

    International Nuclear Information System (INIS)

    The first site selection process for low and intermediate level radioactive waste (LILW) repository took place between 1990 and 1993 in Slovenia was stopped unsuccessfully with very strong public opposition at local level, followed by political withdrawal on national level. As one of the consequences ARAO started to develop new approach to the site selection based also on the findings from sociology, psychology and other human sciences. The recommendations on public involvement and transparency were so strong that ARAO started with first limited public relation (PR) activities which later grew to the PR process which supports all technical activities in ARAO. Presently the PR process covers communication, information and research activities and assures careful planning, prompt responds and involvement of the highest responsible persons at ARAO. Integral public relation activities are divided in several parts. Majority of activities support the on-going site selection process where activities are presently focused on functioning of local partnerships developed as a basic communication tool to involve as much citizens and public as possible on local level. Presently two local partnerships are working in Krsko and Brezice community with clear role to enhance public involvement according to Aarchus convention. Each of the partnerships is organized in a specific way adjusted to the local needs. Communication activities are organized also for different other projects and are preparing the necessary basis for the work with different groups of stake holders and in different situations. As a foundation very broad information material, such as books, leaflets, reports, magazines, video cassettes, CD and DVD on the radioactive waste management is prepared and used for different purposes. We also try to be proactive with web pages and have a well organized visitors' center. Improvement of public relation process is achieved through constant survey and feed-back information

  9. Ionizing Groups at the Active Site of the Alkaline Phosphatase from Ostrea cucullate

    Institute of Scientific and Technical Information of China (English)

    CHEN Qiao; WANG Qin; LIAO Jinhua; CHEN Qingxi

    2006-01-01

    The ionizing groups at the active site of alkaline phosphatase (ALP, EC 3.1.3.1) from Ostrea cucullate were studied using kinetic methods. The ionization constant, pKe, of the ionizing groups at the active site of the enzyme was found to be 10.11 at 37.0℃ and the organic solvent, dioxin, had no effect on the pKe. The standard dissociation enthalpy (△Ho) was determined to be 10.57 kcal/mol (1 cal=4.18 J). The results show that the dissociation group of the enzyme active center is the з-NH3+ of lysine. Chemical modification of the enzyme by acetic anhydride and succinic anhydride demonstrates that the amino group is one of the enzyme's functional groups.

  10. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding.

    Science.gov (United States)

    Giannotti, Marina I; Cabeza de Vaca, Israel; Artés, Juan M; Sanz, Fausto; Guallar, Victor; Gorostiza, Pau

    2015-09-10

    The structural basis of the low reorganization energy of cupredoxins has long been debated. These proteins reconcile a conformationally heterogeneous and exposed metal-chelating site with the highly rigid copper center required for efficient electron transfer. Here we combine single-molecule mechanical unfolding experiments with statistical analysis and computer simulations to show that the metal-binding region of apo-azurin is mechanically flexible and that high mechanical stability is imparted by copper binding. The unfolding pathway of the metal site depends on the pulling residue and suggests that partial unfolding of the metal-binding site could be facilitated by the physical interaction with certain regions of the redox protein. PMID:26305718

  11. Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    CERN Document Server

    Parker, Shane M

    2014-01-01

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few {\\mu}Eh or less) with M = 128 in both cases, which is in contrast to conventional ab initio density matrix renormalization group.

  12. Mapping Topoisomerase IV Binding and Activity Sites on the E. coli Genome.

    Science.gov (United States)

    El Sayyed, Hafez; Le Chat, Ludovic; Lebailly, Elise; Vickridge, Elise; Pages, Carine; Cornet, Francois; Cosentino Lagomarsino, Marco; Espéli, Olivier

    2016-05-01

    Catenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding and catalytic activity of Topo IV in E. coli using genomic and molecular biology approaches. ChIP-seq revealed that Topo IV interaction with the E. coli chromosome is controlled by DNA replication. During replication, Topo IV has access to most of the genome but only selects a few hundred specific sites for its activity. Local chromatin and gene expression context influence site selection. Moreover strong DNA-binding and catalytic activities are found at the chromosome dimer resolution site, dif, located opposite the origin of replication. We reveal a physical and functional interaction between Topo IV and the XerCD recombinases acting at the dif site. This interaction is modulated by MatP, a protein involved in the organization of the Ter macrodomain. These results show that Topo IV, XerCD/dif and MatP are part of a network dedicated to the final step of chromosome management during the cell cycle. PMID:27171414

  13. Regulatory inspection activities on nuclear power plant sites during construction in the United Kingdom

    International Nuclear Information System (INIS)

    The work of regulatory inspection of the construction of the plant on the site is performed not only by the inspector who has been allocated to inspection duties for that site but also by the specialist staff who are involved with the safety assessment of the plant. The coordination of this work is described in the paper and examples are given of inspection activities associated with the enforcement requirements of license conditions as well as those related to the inspection of the plant itself

  14. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  15. Loop Electrostatics Asymmetry Modulates the Preexisting Conformational Equilibrium in Thrombin.

    Science.gov (United States)

    Pozzi, Nicola; Zerbetto, Mirco; Acquasaliente, Laura; Tescari, Simone; Frezzato, Diego; Polimeno, Antonino; Gohara, David W; Di Cera, Enrico; De Filippis, Vincenzo

    2016-07-19

    Thrombin exists as an ensemble of active (E) and inactive (E*) conformations that differ in their accessibility to the active site. Here we show that redistribution of the E*-E equilibrium can be achieved by perturbing the electrostatic properties of the enzyme. Removal of the negative charge of the catalytic Asp102 or Asp189 in the primary specificity site destabilizes the E form and causes a shift in the 215-217 segment that compromises substrate entrance. Solution studies and existing structures of D102N document stabilization of the E* form. A new high-resolution structure of D189A also reveals the mutant in the collapsed E* form. These findings establish a new paradigm for the control of the E*-E equilibrium in the trypsin fold. PMID:27347732

  16. Assessment of national systems for obtaining local acceptance of nuclear waste management siting activities

    International Nuclear Information System (INIS)

    On behalf of the United States Department of Energy (DOE), International Energy Associates Limited (IEAL) of Washington, D.C. has conducted surveys and analyses of fourteen countries' plans and approaches for dealing with the problems of obtaining local siting acceptance for nuclear waste management facilities. It was determined that the following elements of the formal systems generally facilitate and/or expedite waste management siting decisions: (1) a clear-cut pro-nuclear power position on the part of the government; (2) a willingness on the part of the central government to exert (with prudence and restraint) its pre-emptive rights in nuclear matters; (3) political structures in which the heads of regional or provincial governments are appointed by the central government; (4) national laws that link reactor licensing with a detailed plan for waste management; (5) an established and stable policy with regard to reprocessing. In contrast, it was determined that the following elements of the formal system generally hinder waste management siting activities: (1) historically strong local land used veto laws; (2) the use of national referenda for making nuclear decisions; (3) requirements for public hearings. The informal approaches fall into the following five categories: (1) political: e.g. assertion of will by political leaders, activities to enlist support of local politicians, activities to broaden involvement in decision-making; (2) economic: e.g. emphasis on normal benefits, provision for additional economic benefits; (3) siting: e.g. at or near existing nuclear facilities, on government or utility property, at multiple locations to spread the political burden; (4) timing: e.g. decoupling drilling activities from ultimate repository site decision, deliberate deferral to (long-range) future; (5) education: e.g. creation of special government programmes, enlisting of media support

  17. Kinetic model of ethopropazine interaction with horse serum butyrylcholinesterase and its docking into the active site.

    Science.gov (United States)

    Golicnik, Marko; Sinko, Goran; Simeon-Rudolf, Vera; Grubic, Zoran; Stojan, Jure

    2002-02-01

    The action of a potent tricyclic cholinesterase inhibitor ethopropazine on the hydrolysis of acetylthiocholine and butyrylthiocholine by purified horse serum butyrylcholinesterase (EC 3.1.1.8) was investigated at 25 and 37 degrees C. The enzyme activities were measured on a stopped-flow apparatus and the analysis of experimental data was done by applying a six-parameter model for substrate hydrolysis. The model, which was introduced to explain the kinetics of Drosophila melanogaster acetylcholinesterase [Stojan et al. (1998) FEBS Lett. 440, 85-88], is defined with two dissociation constants and four rate constants and can describe both cooperative phenomena, apparent activation at low substrate concentrations and substrate inhibition by excess of substrate. For the analysis of the data in the presence of ethopropazine at two temperatures, we have enlarged the reaction scheme to allow primarily its competition with the substrate at the peripheral site, but the competition at the acylation site was not excluded. The proposed reaction scheme revealed, upon analysis, competitive effects of ethopropazine at both sites; at 25 degrees C, three enzyme-inhibitor dissociation constants could be evaluated; at 37 degrees C, only two constants could be evaluated. Although the model considers both cooperative phenomena, it appears that decreased enzyme sensitivity at higher temperature, predominantly for the ligands at the peripheral binding site, makes the determination of some expected enzyme substrate and/or inhibitor complexes technically impossible. The same reason might also account for one of the paradoxes in cholinesterases: activities at 25 degrees C at low substrate concentrations are higher than at 37 degrees C. Positioning of ethopropazine in the active-site gorge by molecular dynamics simulations shows that A328, W82, D70, and Y332 amino acid residues stabilize binding of the inhibitor. PMID:11811945

  18. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    Science.gov (United States)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  19. Social influences towards conformism in economic experiments

    OpenAIRE

    Hargreaves Heap, Shaun P.

    2014-01-01

    This paper reviews some of the economic experimental evidence on conformism. There is nothing to match the early psychology experiments where subjects were often swayed by the behaviour of others to an extraordinary degree, but there is plenty of evidence of conformism. This seems built-in to our sociality either because we have preferences for conversation or status which are activated by the knowledge of what others do, or because other people face relevantly similar decisions to our own an...

  20. Conformational Mobility of GOx Coenzyme Complex on Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yu Kang

    2008-12-01

    Full Text Available A critical issue in bioelectrochemical applications that use electrodes modified by Single Wall Carbon Nanotubes (SWCNTs is to ensure high activity of the catalytic site of an immobilized enzyme protein interacting with nanomaterials. Since Flavin Adenine Dinucleotide (FAD, a coenzyme of glucose oxidase (GOx, is the active center of the catalytic site, conformation of which could determine the activity of enzyme, it is important to understand the dynamic mechanism of its conformational mobility while GOx is adsorbed on SWCNTs with multiple orientations. However, this dynamic mechanism still remains unclear at the atomic level due to the coenzyme being embedded in the apo-GOx and the limitations of appropriate experimental methods. In this study, a molecular dynamics (MD simulation was performed to investigate the conformational mobility mechanism of the coenzyme. The trajectory and the interaction energy clearly indicate that the adsorption of GOx onto SWCNTs plays an important role in the conformational mobility of the coenzyme, and its mobility is greatly affected by the distribution of water molecules due to it being hydrophobic.

  1. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    International Nuclear Information System (INIS)

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  2. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    Science.gov (United States)

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode.

  3. Objective interpretation as conforming interpretation

    Directory of Open Access Journals (Sweden)

    Lidka Rodak

    2011-12-01

    Full Text Available The practical discourse willingly uses the formula of “objective interpretation”, with no regards to its controversial nature that has been discussed in literature.The main aim of the article is to investigate what “objective interpretation” could mean and how it could be understood in the practical discourse, focusing on the understanding offered by judicature.The thesis of the article is that objective interpretation, as identified with textualists’ position, is not possible to uphold, and should be rather linked with conforming interpretation. And what this actually implies is that it is not the virtue of certainty and predictability – which are usually associated with objectivity- but coherence that makes the foundation of applicability of objectivity in law.What could be observed from the analyses, is that both the phenomenon of conforming interpretation and objective interpretation play the role of arguments in the interpretive discourse, arguments that provide justification that interpretation is not arbitrary or subjective. With regards to the important part of the ideology of legal application which is the conviction that decisions should be taken on the basis of law in order to exclude arbitrariness, objective interpretation could be read as a question “what kind of authority “supports” certain interpretation”? that is almost never free of judicial creativity and judicial activism.One can say that, objective and conforming interpretation are just another arguments used in legal discourse.

  4. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis (INAA) was used to determine concentrations of 42 elements in samples of surface soil collected at seven sites polluted from various anthropogenic activities and a control site in a relatively clean area. Elements studied were Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, Hg, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn, and Zr. The results are compared with data for trace elements atmospheric deposition in lichen transplants from the same sites. The most severe soil contamination was observed at Copsa Mica from non-ferrous metallurgy. Appreciable soil contamination was also indicated at Baia Mare (non-ferrous mining and metallurgy), Deva (coal-fired power plant, cement and building materials industry), Galati (ferrous metallurgy), Magurele and Afumati (general urban pollution), and Oradea (chemical and light industries). In most cases excessive levels of toxic metals in soils matched correspondingly high values in lichen transplants. Compared to Romanian norms, legal upper limits were exceeded for Zn and Cd at Copsa Mica. Also, As and Sb occurred in excessive levels at given sites. (orig.)

  5. Assessment of Tritium Activity in Groundwater at the Nuclear Objects Sites in Lithuania

    Directory of Open Access Journals (Sweden)

    Vigilija Cidzikienė

    2014-01-01

    Full Text Available The assessment of nuclear objects sites in Lithuania, including groundwater characterization, took place in the last few years. Tritium activity in groundwater is a very useful tool for determining how groundwater systems function. Natural and artificial tritium was measured in 8 wells in different layers (from 1.5 to 15 meters depth. The results were compared with other regions of Lithuania also. The evaluated tritium activities varied from 1.8 to 6.4 Bq/L at nuclear objects sites in Lithuania and they are coming to background level (1.83 Bq/L and other places in Lithuania. The data show, that groundwater at the nuclear power objects sites is not contaminated with artificial tritium. In this work, the vertical tritium transfer from soil water to the groundwater well at nuclear objects site was estimated. The data show that the main factor for vertical tritium transfer to the well depends on the depth of wells.

  6. Structure/function correlations over binuclear non-heme iron active sites.

    Science.gov (United States)

    Solomon, Edward I; Park, Kiyoung

    2016-09-01

    Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed. PMID:27369780

  7. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, A. [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Magurele, Ilfov County (Romania); Carmo Freitas, M. do [Technological and Nuclear Institute (ITN), Sacavem (Portugal); Ene, A. [Dunarea de Jos Univ. of Galati (Romania). Dept. of Chemistry, Physics and Environment; Steinnes, E. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Chemistry

    2013-03-01

    Instrumental neutron activation analysis (INAA) was used to determine concentrations of 42 elements in samples of surface soil collected at seven sites polluted from various anthropogenic activities and a control site in a relatively clean area. Elements studied were Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, Hg, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn, and Zr. The results are compared with data for trace elements atmospheric deposition in lichen transplants from the same sites. The most severe soil contamination was observed at Copsa Mica from non-ferrous metallurgy. Appreciable soil contamination was also indicated at Baia Mare (non-ferrous mining and metallurgy), Deva (coal-fired power plant, cement and building materials industry), Galati (ferrous metallurgy), Magurele and Afumati (general urban pollution), and Oradea (chemical and light industries). In most cases excessive levels of toxic metals in soils matched correspondingly high values in lichen transplants. Compared to Romanian norms, legal upper limits were exceeded for Zn and Cd at Copsa Mica. Also, As and Sb occurred in excessive levels at given sites. (orig.)

  8. Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Uranium Mill Tailing Remedial Action (UMTRA) Project`s Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations.

  9. 78 FR 21352 - Update on Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2013-04-10

    ... on Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY... reimbursement for cleanup work performed by licensees at eligible uranium and thorium processing sites in... licensees of eligible uranium and thorium processing sites. If licensees submit claims in FY 2013,...

  10. Computation of Rate Constants for Diffusion of Small Ligands to and from Buried Protein Active Sites.

    Science.gov (United States)

    Wang, P-H; De Sancho, D; Best, R B; Blumberger, J

    2016-01-01

    The diffusion of ligands to actives sites of proteins is essential to enzyme catalysis and many cellular signaling processes. In this contribution we review our recently developed methodology for calculation of rate constants for diffusion and binding of small molecules to buried protein active sites. The diffusive dynamics of the ligand obtained from molecular dynamics simulation is coarse grained and described by a Markov state model. Diffusion and binding rate constants are then obtained either from the reactive flux formalism or by fitting the time-dependent population of the Markov state model to a phenomenological rate law. The method is illustrated by applications to diffusion of substrate and inhibitors in [NiFe] hydrogenase, CO-dehydrogenase, and myoglobin. We also discuss a recently developed sensitivity analysis that allows one to identify hot spots in proteins, where mutations are expected to have the strongest effects on ligand diffusion rates. PMID:27497172

  11. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O' neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  12. Dynamics and Mechanism of Efficient DNA Repair Reviewed by Active-Site Mutants

    Science.gov (United States)

    Tan, Chuang; Liu, Zheyun; Li, Jiang; Guo, Xunmin; Wang, Lijuan; Zhong, Dongping

    2010-06-01

    Photolyases repair the UV-induced pyrimidine dimers in damage DNA via a photoreaction which includes a series of light-driven electron transfers between the two-electron-reduced flavin cofactor FADH^- and the dimer. We report here our systematic studies of the repair dynamics in E. coli photolyase with mutation of several active-site residues. With femtosecond resolution, we observed the significant change in the forward electron transfer from the excited FADH^- to the dimer and the back electron transfer from the repaired thymines by mutation of E274A, R226A, R342A, N378S and N378C. We also found that the mutation of E274A accelerates the bond-breaking of the thymine dimer. The dynamics changes are consistent with the quantum yield study of these mutants. These results suggest that the active-site residues play a significant role, structurally and chemically, in the DNA repair photocycle.

  13. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.

    Science.gov (United States)

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

  14. Structural insight into the active site of a Bombyx mori unclassified glutathione transferase.

    Science.gov (United States)

    Hossain, Md Tofazzal; Yamamoto, Kohji

    2015-01-01

    Glutathione transferases (GSTs) are major detoxification enzymes that play central roles in the defense against various environmental toxicants as well as oxidative stress. Here, we identify amino acid residues of an unclassified GST from Bombyx mori, bmGSTu-interacting glutathione (GSH). Site-directed mutagenesis of bmGSTu mutants indicated that amino acid residues Asp103, Ser162, and Ser166 contribute to catalytic activity.

  15. Chemistry related to the actives sites of the [Fe]- and [FeFe]-hydrogenases

    OpenAIRE

    Hill, Amanda D.

    2016-01-01

    Hydrogenases are an important group of enzymes found in a range of microorganisms. There are three phylogenetically distinct classes of hydrogenase all of which feature iron-containing complexes. The work contained in this thesis has two main focuses: the synthesis and characterization of novel mimics of the [Fe]-hydrogenase active site, and spectroscopic studies on the interaction of iron-sulfur clusters with CO and CN− relevant to the biosynthesis of the H-cluster of [FeFe]-hydrogenase. ...

  16. Interaction of mining activities and aquatic environment: A review from Greek mine sites.

    Science.gov (United States)

    Vasileiou, Eleni; Kallioras, Andreas

    2016-04-01

    In Greece a significant amount of mineral and ore deposits have been recorded accompanied by large industrial interest and a long mining history. Today many active and/or abandoned mine sites are scattered within the country; while mining activities take place in different sites for exploiting various deposits (clay, limestone, slate, gypsum, kaolin, mixed sulphide ores (lead, zinc, olivine, pozzolan, quartz lignite, nickel, magnesite, aluminum, bauxite, gold, marbles etc). The most prominent recent ones are: (i) the lignite exploitation that is extended in the area of Ptolemais (Western Macedonia) and Megalopolis (Central Peloponnese); and (ii) the major bauxite deposits located in central Greece within the Parnassos-Ghiona geotectonic zone and on Euboea Island. In the latter area, significant ores of magnesite were exploited and mixed sulphide ores. Centuries of intensive mining exploitation and metallurgical treatment of lead-silver deposits in Greece, have also resulted in significant abandoned sites, such as the one in Lavrion. Mining activities in Lavrio, were initiated in ancient times and continued until the 1980s, resulting in the production of significant waste stockpiles deposited in the area, crucial for the local water resources. Ιn many mining sites, environmental pressures are also recorded after the mine closure to the aquatic environment, as the surface waters flow through waste dump areas and contaminated soils. This paper aims to the geospatial visualization of the mining activities in Greece, in connection to their negative (surface- and/or ground-water pollution; overpumping due to extensive dewatering practices) or positive (enhanced groundwater recharge; pit lakes, improvement of water budget in the catchment scale) impacts on local water resources.

  17. Two putative protein kinase CK2 phosphorylation sites are important for Myf-5 activity

    DEFF Research Database (Denmark)

    Winter, B; Kautzner, I; Issinger, O G;

    1997-01-01

    Myf-5, a member of a family of muscle-specific transcription factors, is important for myogenic cell determination and differentiation. Here, we report that Myf-5 protein constitutes a substrate for phosphorylation in vitro by protein kinase CK2. We identified two potential phosphorylation sites...... localization and/or protein stability. Our data suggest that CK2-mediated phosphorylation of Myf-5 is required for Myf-5 activity....

  18. Characterization of the interactions between the active site of a protein tyrosine kinase and a divalent metal activator

    Directory of Open Access Journals (Sweden)

    Ayrapetov Marina K

    2005-11-01

    Full Text Available Abstract Background Protein tyrosine kinases are important enzymes for cell signalling and key targets for anticancer drug discovery. The catalytic mechanisms of protein tyrosine kinase-catalysed phosphorylation are not fully understood. Protein tyrosine kinase Csk requires two Mg2+ cations for activity: one (M1 binds to ATP, and the other (M2 acts as an essential activator. Results Experiments in this communication characterize the interaction between M2 and Csk. Csk activity is sensitive to pH in the range of 6 to 7. Kinetic characterization indicates that the sensitivity is not due to altered substrate binding, but caused by the sensitivity of M2 binding to pH. Several residues in the active site with potential of binding M2 are mutated and the effect on metal activation studied. An active mutant of Asn319 is generated, and this mutation does not alter the metal binding characteristics. Mutations of Glu236 or Asp332 abolish the kinase activity, precluding a positive or negative conclusion on their role in M2 coordination. Finally, the ability of divalent metal cations to activate Csk correlates to a combination of ionic radius and the coordination number. Conclusion These studies demonstrate that M2 binding to Csk is sensitive to pH, which is mainly responsible for Csk activity change in the acidic arm of the pH response curve. They also demonstrate critical differences in the metal activator coordination sphere in protein tyrosine kinase Csk and a protein Ser/Thr kinase, the cAMP-dependent protein kinase. They shed light on the physical interactions between a protein tyrosine kinase and a divalent metal activator.

  19. Methods for Determining the Activity Concentration Calibration Factor for Ventilation Duct in Cyclotron Sites

    International Nuclear Information System (INIS)

    Cyclotrons are commonly used for production of radioactive isotopes for nuclear medicine purposes. The nuclear process requires installation of a ventilation stack. According to the regulations in many countries, the released activity should be monitored and controlled in order to limit air pollution. This requires a stuck radiation detector and determining a converting factor that will translate the radiation detector reading into activity concentration units. Calibrating the conversion factor is done mainly by releasing a known amount of activity. Having a preliminary estimation of the conversion factor, during the site construction stage, is an important option for the duct configuration design, in order to achieve the required detection sensitivity. An algorithm for estimating the stack concentration calibration factor in positron emitting isotopes producing sites was developed. The algorithm which is described in this article is based on three independent methods that consist of MCNP simulations analytical calculations and experimental setup with controlled static calibration releases of gaseous 18F which was produced especially for this purpose by the cyclotron site in Soreq Nuclear Research Center Israel. The specified methods applied on few stack sections with different shapes and sizes

  20. Photoreduction of the Active Site of the Metalloprotein Putidaredoxin By Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, M.C.; /Stanford U., Chem. Dept.; Latimer, M.J.; Poulos, T.L.; Sevrioukova, I.F.; Hodgson, K.O.; /SLAC, SSRL /UC, Irvine /Stanford U., Chem. Dept. /SLAC, SSRL; Hedman, B.; /SLAC, SSRL

    2007-10-10

    X-ray damage to protein crystals is often assessed on the basis of the degradation of diffraction intensity, yet this measure is not sensitive to the rapid changes that occur at photosensitive groups such as the active sites of metalloproteins. Here, X-ray absorption spectroscopy is used to study the X-ray dose-dependent photoreduction of crystals of the [Fe2S2]-containing metalloprotein putidaredoxin. A dramatic decrease in the rate of photoreduction is observed in crystals cryocooled with liquid helium at 40 K compared with those cooled with liquid nitrogen at 110 K. Whereas structural changes consistent with cluster reduction occur in the active site of the crystal measured at 110 K, no such changes occur in the crystal measured at 40 K, even after an eightfold increase in dose. When the structural results from extended X-ray absorption fine-structure measurements are compared with those obtained by crystallography on this and similar proteins, it is apparent that X-ray-induced photoreduction has had an impact on the crystallographic data and subsequent structure solutions. These results strongly indicate the importance of using liquid-helium-based cooling for metalloprotein crystallography in order to avoid the subtle yet important changes that can take place at the metalloprotein active sites when liquid-nitrogen-based cooling is used. The study also illustrates the need for direct measurement of the redox states of the metals, through X-ray absorption spectroscopy, simultaneously with the crystallographic measurements.

  1. Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation.

    Science.gov (United States)

    Corbett, Mary C; Latimer, Matthew J; Poulos, Thomas L; Sevrioukova, Irina F; Hodgson, Keith O; Hedman, Britt

    2007-09-01

    X-ray damage to protein crystals is often assessed on the basis of the degradation of diffraction intensity, yet this measure is not sensitive to the rapid changes that occur at photosensitive groups such as the active sites of metalloproteins. Here, X-ray absorption spectroscopy is used to study the X-ray dose-dependent photoreduction of crystals of the [Fe(2)S(2)]-containing metalloprotein putidaredoxin. A dramatic decrease in the rate of photoreduction is observed in crystals cryocooled with liquid helium at 40 K compared with those cooled with liquid nitrogen at 110 K. Whereas structural changes consistent with cluster reduction occur in the active site of the crystal measured at 110 K, no such changes occur in the crystal measured at 40 K, even after an eightfold increase in dose. When the structural results from extended X-ray absorption fine-structure measurements are compared with those obtained by crystallography on this and similar proteins, it is apparent that X-ray-induced photoreduction has had an impact on the crystallographic data and subsequent structure solutions. These results strongly indicate the importance of using liquid-helium-based cooling for metalloprotein crystallography in order to avoid the subtle yet important changes that can take place at the metalloprotein active sites when liquid-nitrogen-based cooling is used. The study also illustrates the need for direct measurement of the redox states of the metals, through X-ray absorption spectroscopy, simultaneously with the crystallographic measurements.

  2. Dynamics of water molecules in the active-site cavity of human cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Rod, Thomas Holm; Olsen, Lars;

    2007-01-01

    We have studied the dynamics of water molecules in six crystal structures of four human cytochromes P450, 2A6, 2C8, 2C9, and 3A4, with molecular dynamics simulations. In the crystal structures, only a few water molecules are seen and the reported sizes of the active-site cavity vary a lot. In the...... molecules close to the heme iron ion in these simulations of the high-spin ferric state (the average distance to the closest water molecule is 3.3-5 A), and there are few ordered water molecules in the active sites, none of which is conserved in all proteins.......We have studied the dynamics of water molecules in six crystal structures of four human cytochromes P450, 2A6, 2C8, 2C9, and 3A4, with molecular dynamics simulations. In the crystal structures, only a few water molecules are seen and the reported sizes of the active-site cavity vary a lot....... In the simulations, the cavities are completely filled with water molecules, although with approximately 20% lower density than in bulk water. The 2A6 protein differs from the other three in that it has a very small cavity with only two water molecules and no exchange with the surroundings. The other three proteins...

  3. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J. (Abbott)

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  4. Days of dismantling activities of installations and rehabilitation of contaminated sites in France

    International Nuclear Information System (INIS)

    The objective of these days, organized by the section environment of the French society of radiation protection, is to present a panorama of the activities of nuclear installations dismantling and contaminated sites rehabilitation in France, by leaning in the same time on practical cases and by stating the French rule and the national and international recommendations on the subject. These days have also for object to approach the stakes associated with the sectors of waste management and the materials generated by these activities and in a more general way, the stakes to come for the different actors of the dismantling and the rehabilitation. (N.C.)

  5. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    Science.gov (United States)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  6. Conformational Dependence of a Protein Kinase Phosphate Transfer Reaction

    CERN Document Server

    Henkelman, Graeme; Tung, Chang-Shung; Fenimore,, P W; McMahon, Benjamin H

    2004-01-01

    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase (PKA) are calculated by plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In the TC, we calculate that the reactants and products are nearly isoenergetic with a 0.2 eV barrier; while phosphate transfer is unfavorable by over 1.2 eV in the RC, with an even higher barrier. With the protein in the TC, the motions involved in reaction are small, with only P$_\\gamma$ and the catalytic proton moving more than 0.5 \\AA. Examination of the structures reveals that in the RC the active site cleft is not completely closed and there is insufficient space for the phosphorylated serine residue in the product state. Together, these observations imply that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by...

  7. NMR crystallography of enzyme active sites: probing chemically detailed, three-dimensional structure in tryptophan synthase.

    Science.gov (United States)

    Mueller, Leonard J; Dunn, Michael F

    2013-09-17

    NMR crystallography--the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry--offers unprecedented insight into three-dimensional, chemically detailed structure. Initially, researchers used NMR crystallography to refine diffraction data from organic and inorganic solids. Now we are applying this technique to explore active sites in biomolecules, where it reveals chemically rich detail concerning the interactions between enzyme site residues and the reacting substrate. Researchers cannot achieve this level of detail from X-ray, NMR,or computational methodologies in isolation. For example, typical X-ray crystal structures (1.5-2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate but do not directly identify the protonation states. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but they rely on researcher-specified chemical details. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which scientists can develop models of the active site using computational chemistry; they can then distinguish these models by comparing calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at the highest possible resolution. In this Account, we detail our first steps in the development of

  8. Carbinolamine formation and dehydration in a DNA repair enzyme active site.

    Directory of Open Access Journals (Sweden)

    M L Dodson

    Full Text Available In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics-molecular mechanics potential (QM/MM. We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water-independent enzyme-catalyzed reaction had a bias-corrected Jarzynski-average barrier height of approximately (6.5 kcal mol(-1 (27.2 kJ mol(-1 for the carbinolamine formation reaction and 44.5 kcal mol(-1 (186 kJ mol(-1 for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately 15 kcal mol(-1 (62.8 kJ mol(-1 in the forward (formation reaction and 19 kcal mol(-1 (79.5 kJ mol(-1 for the reverse. In addition, two modes of unsteered (free dynamics carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water-independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N-terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product

  9. A kinetic description for sodium and potassium effects on (Na+ plus K+)-adenosine triphosphatase: a model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation.

    Science.gov (United States)

    Lindenmayer, G E; Schwartz, A; Thompson, H K

    1974-01-01

    1. Dissociation constants for sodium and potassium of a site that modulates the rate of ouabain-(Na(+)+K(+))-ATPase interaction were applied to models for potassium activation of (Na(+)+K(+))-ATPase. The constants for potassium (0.213 mM) and for sodium (13.7 mM) were defined, respectively, as activation constant, K(a) and inhibitory constant, K(i).2. Tests of the one- and the two-equivalent site models, that describe sodium and potassium competition, revealed that neither model adequately predicts the activation effects of potassium in the presence of 100 or 200 mM sodium.3. The potassium-activation data, obtained at low potassium and high sodium, were explained by a two-nonequivalent site model where the dissociation constants of the first site are 0.213 mM for potassium and 13.7 mM for sodium. The second site was characterized by dissociation constants of 0.091 mM for potassium and 74.1 mM for sodium.4. The two-nonequivalent site model adequately predicted the responses to concentrations of potassium between 0.25 and 5 mM in the presence of 100-500 mM sodium. At lower sodium concentrations the predicted responses formed an upper limit for the function of observed activities. This limit was reached at lower concentrations of potassium and higher concentrations of sodium, which inferred saturation of the sodium-activation sites with sodium.5. Sodium-activation data were corrected for sodium interaction with potassium-activation sites by use of the two-nonequivalent site model for potassium activation. Tests of equivalent site models suggested that the corrected data for sodium activation may be most consistent with a model that has three-equivalent sites. Other multiequivalent site models (n = 2, 4, 5 or 6), however, cannot be statistically eliminated as possibilities. The three-equivalent site activation model was characterized by dissociation constants of 1.39 mM for sodium and 11.7 mM for potassium. The system theoretically would be half-maximally activated by

  10. Charged conformal Killing spinors

    Energy Technology Data Exchange (ETDEWEB)

    Lischewski, Andree, E-mail: lischews@mathematik.hu-berlin.de [Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, Room 1.310, D12489 Berlin (Germany)

    2015-01-15

    We study the twistor equation on pseudo-Riemannian Spin{sup c}-manifolds whose solutions we call charged conformal Killing spinors (CCKSs). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears. A construction principle for Lorentzian manifolds admitting CCKS with nontrivial charge starting from CR-geometry is presented. We obtain a partial classification result in the Lorentzian case under the additional assumption that the associated Dirac current is normal conformal and complete the classification of manifolds admitting CCKS in all dimensions and signatures ≤5 which has recently been initiated in the study of supersymmetric field theories on curved space.

  11. Site selection and licensing issues: Southwest Compact low-level radioactive waste disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Grant, J.L.

    1989-11-01

    The low-level radioactive waste disposal site in California is being selected through a three-phase program. Phase 1 is a systematic statewide, regional, and local screening study. This program was conducted during 1986 and 1987, and culminated in the selection of three candidate sites fur further study. The candidate sites are identified as the Panamint, Silurian, and Ward Valley sites. Phase 2 comprises site characterization and environmental and socio-economic impact study activities at the three candidate sites. Based upon the site characterization studies, the candidate sites are ranked according to the desirability and conformance with regulatory requirements. Phase 3 comprises preparation of a license application for the selected candidate site. The license application will include a detailed characterization of the site, detailed design and operations plans for the proposed facility, and assessments of potential impacts of the site upon the environment and the local communities. Five types of siting criteria were developed to govern the site selection process. These types are: technical suitability exclusionary criteria, high-avoidance criteria beyond technical suitability requirements, discretionary criteria, public acceptance, and schedule requirements of the LLWR Policy Act Amendments. This paper discusses the application of the hydrological and geotechnical criteria during the siting and licensing studies in California. These criteria address site location and performance, and the degree to which present and future site behavior can be predicted. Primary regulatory requirements governing the suitability of a site are that the site must be hydrologically and geologically simple enough for the confident prediction of future behavior, and that the site must be stable enough that frequent or intensive maintenance of the closed site will not be required. This paper addresses the methods to measure site suitability at each stage of the process, methods to

  12. Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Stein, Joshua S.

    2003-01-01

    Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. This algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.

  13. IgG Conformer's Binding to Amyloidogenic Aggregates.

    Directory of Open Access Journals (Sweden)

    Monichan Phay

    Full Text Available Amyloid-reactive IgGs isolated from pooled blood of normal individuals (pAbs have demonstrated clinical utility for amyloid diseases by in vivo targeting and clearing amyloidogenic proteins and peptides. We now report the following three novel findings on pAb conformer's binding to amyloidogenic aggregates: 1 pAb aggregates have greater activity than monomers (HMW species > dimers > monomers, 2 pAbs interactions with amyloidogenic aggregates at least partially involves unconventional (non-CDR interactions of F(ab regions, and 3 pAb's activity can be easily modulated by trace aggregates generated during sample processing. Specifically, we show that HMW aggregates and dimeric pAbs present in commercial preparations of pAbs, intravenous immunoglobulin (IVIg, had up to ~200- and ~7-fold stronger binding to aggregates of Aβ and transthyretin (TTR than the monomeric antibody. Notably, HMW aggregates were primarily responsible for the enhanced anti-amyloid activities of Aβ- and Cibacron blue-isolated IVIg IgGs. Human pAb conformer's binding to amyloidogenic aggregates was retained in normal human sera, and mimicked by murine pAbs isolated from normal pooled plasmas. An unconventional (non-CDR component to pAb's activity was indicated from control human mAbs, generated against non-amyloid targets, binding to aggregated Aβ and TTR. Similar to pAbs, HMW and dimeric mAb conformers bound stronger than their monomeric forms to amyloidogenic aggregates. However, mAbs had lower maximum binding signals, indicating that pAbs were required to saturate a diverse collection of binding sites. Taken together, our findings strongly support further investigations on the physiological function and clinical utility of the inherent anti-amyloid activities of monomeric but not aggregated IgGs.

  14. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Huang

    Full Text Available Active site preorganization helps native enzymes electrostatically stabilize the transition state better than the ground state for their primary substrates and achieve significant rate enhancement. In this report, we hypothesize that a complex active site model for active site preorganization modeling should help to create preorganized active site design and afford higher starting activities towards target reactions. Our matching algorithm ProdaMatch was improved by invoking effective pruning strategies and the native active sites for ten scaffolds in a benchmark test set were reproduced. The root-mean squared deviations between the matched transition states and those in the crystal structures were < 1.0 Å for the ten scaffolds, and the repacking calculation results showed that 91% of the hydrogen bonds within the active sites are recovered, indicating that the active sites can be preorganized based on the predicted positions of transition states. The application of the complex active site model for de novo enzyme design was evaluated by scaffold selection using a classic catalytic triad motif for the hydrolysis of p-nitrophenyl acetate. Eighty scaffolds were identified from a scaffold library with 1,491 proteins and four scaffolds were native esterase. Furthermore, enzyme design for complicated substrates was investigated for the hydrolysis of cephalexin using scaffold selection based on two different catalytic motifs. Only three scaffolds were identified from the scaffold library by virtue of the classic catalytic triad-based motif. In contrast, 40 scaffolds were identified using a more flexible, but still preorganized catalytic motif, where one scaffold corresponded to the α-amino acid ester hydrolase that catalyzes the hydrolysis and synthesis of cephalexin. Thus, the complex active site modeling approach for de novo enzyme design with the aid of the improved ProdaMatch program is a promising approach for the creation of active sites with

  15. A novel mutation in the β-spectrin gene causes the activation of a cryptic 5'-splice site and the creation of a de novo 3'-splice site.

    Science.gov (United States)

    Salas, Pilar Carrasco; Rosales, José Miguel Lezana; Milla, Carmen Palma; Montiel, Javier López; Siles, Juan López

    2015-01-01

    The analysis of genes involved in hereditary spherocytosis, by next-generation sequencing in two patients with clinical diagnosis of the disease, showed the presence of the c.1795+1G>A mutation in the SPTB gene. cDNA amplification then revealed the occurrence of a consequent aberrant mRNA isoform produced from the activation of a cryptic 5'-splice site and the creation of a newly 3'-splice site. The mechanisms by which these two splice sites are used as a result of the same mutation should be analyzed in depth in further studies.

  16. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles.

    Science.gov (United States)

    Esmaeilnejad-Ahranjani, Parvaneh; Kazemeini, Mohammad; Singh, Gurvinder; Arpanaei, Ayyoob

    2016-04-01

    A facile approach for the preparation of core-shell structured poly(acrylic acid) (PAA)-coated Fe3O4 cluster@SiO2 nanocomposite particles as the support materials for the lipase immobilization is reported. Low- or high-molecular-weight (1800 and 100,000, respectively) PAA molecules were covalently attached onto the surface of amine-functionalized magnetic silica nanoacomposite particles. The successful preparation of particles were verified by scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential measurement, and Fourier-transform infrared (FTIR) techniques. Once lipase is covalently immobilized onto the particles with an average diameter of 210 ± 50 nm, resulting from high binding sites concentrations on the low- and high-molecular-weight PAA-coated particles, high lipase immobilization efficiencies (86.2% and 89.9%, respectively), and loading capacities (786 and 816 mg g(-1), respectively) are obtained. Results from circular dichroism (CD) analysis and catalytic activity tests reveal an increase in the β-sheet content of lipase molecules upon immobilization, along with an enhancement in their activities and stabilities. The lipases immobilized onto the low- and high-molecular-weight PAA-coated particles show maximum activities at 55 and 50 °C, respectively, which are ∼28% and ∼15% higher than that of the free lipase at its own optimum temperature (40 °C), respectively. The immobilized lipases exhibit excellent performance at broader temperature and pH ranges and high thermal and storage stabilities, as well as superior reusability. These prepared magnetic nanocomposite particles can be offered as suitable support materials for efficient immobilization of enzymes and improvement of the immobilized enzymes properties.

  17. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol.

    Science.gov (United States)

    Goedken, Eric R; Argiriadi, Maria A; Banach, David L; Fiamengo, Bryan A; Foley, Sage E; Frank, Kristine E; George, Jonathan S; Harris, Christopher M; Hobson, Adrian D; Ihle, David C; Marcotte, Douglas; Merta, Philip J; Michalak, Mark E; Murdock, Sara E; Tomlinson, Medha J; Voss, Jeffrey W

    2015-02-20

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases. PMID:25552479

  18. O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms

    Science.gov (United States)

    Chen, Peng; Solomon, Edward I.

    2004-09-01

    Binuclear Cu proteins play vital roles in O2 binding and activation in biology and can be classified into coupled and noncoupled binuclear sites based on the magnetic interaction between the two Cu centers. Coupled binuclear Cu proteins include hemocyanin, tyrosinase, and catechol oxidase. These proteins have two Cu centers strongly magnetically coupled through direct bridging ligands that provide a mechanism for the 2-electron reduction of O2 to a µ-2:2 side-on peroxide bridged species. This side-on bridged peroxo-CuII2 species is activated for electrophilic attack on the phenolic ring of substrates. Noncoupled binuclear Cu proteins include peptidylglycine -hydroxylating monooxygenase and dopamine -monooxygenase. These proteins have binuclear Cu active sites that are distant, that exhibit no exchange interaction, and that activate O2 at a single Cu center to generate a reactive CuII/O2 species for H-atom abstraction from the C-H bond of substrates. O2 intermediates in the coupled binuclear Cu enzymes can be trapped and studied spectroscopically. Possible intermediates in noncoupled binuclear Cu proteins can be defined through correlation to mononuclear CuII/O2 model complexes. The different intermediates in these two classes of binuclear Cu proteins exhibit different reactivities that correlate with their different electronic structures and exchange coupling interactions between the binuclear Cu centers. These studies provide insight into the role of exchange coupling between the Cu centers in their reaction mechanisms.

  19. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    Science.gov (United States)

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity.

  20. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine-200

    OpenAIRE

    Kovaleva, Elena G.; Rogers, Melanie S.; Lipscomb, John D.

    2015-01-01

    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homo...

  1. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    OpenAIRE

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr9...

  2. Integral communication activities in support of the repository site selection in Slovenia

    International Nuclear Information System (INIS)

    The siting and licensing of a radioactive waste repository requires a complete public consensus that is very difficult to obtain. The main reasons for the public reluctance to accept the radioactive waste repository are the feeling of being ignored in the decision making process and inadequate understanding of radioactivity. Therefore communication and information activities, as early as possible in the siting process, are very important for reducing the potential conflicts of interests between the local community and the investor of the radioactive waste repository on the potential repository sites. ARAO communication activities are based on research on public opinion and public knowledge about radioactive waste management. Communication strategies that provide two-way communication channels, such as interactive web pages, workshops, study circles, visitors' centre, are preferred. Different educational materials (leaflets, CD-ROMs, articles in the local newspapers, yearly magazine, and posters) are also being produced. Collaboration with non-governmental environmental organizations has also proved to be helpful in confidence building, as well as in informing the public. It is also very important for establishing competent public participation in the decision making process. (author)

  3. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    Science.gov (United States)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  4. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    Science.gov (United States)

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition. PMID:12813023

  5. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    Science.gov (United States)

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition.

  6. The conforming brain and deontological resolve.

    Directory of Open Access Journals (Sweden)

    Melanie Pincus

    Full Text Available Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  7. The conforming brain and deontological resolve.

    Science.gov (United States)

    Pincus, Melanie; LaViers, Lisa; Prietula, Michael J; Berns, Gregory

    2014-01-01

    Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  8. Conformal special relativity

    International Nuclear Information System (INIS)

    It is shown that the information loss/recovery theorem based on the ADS/CFT correspondence is not consistent with the stability of the Schwarzschild or Reissner-Nordstrom black holes. Nonetheless, the conformal invariance of Yang-Mills theory points to new relativity principle compatible with quantum unitarity near those black holes

  9. Extende conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Taormina, A. (Chicago Univ., IL (USA). Enrico Fermi Inst.)

    1990-08-01

    Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c{ge}1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification. (orig.).

  10. Extended conformal field theories

    Science.gov (United States)

    Taormina, Anne

    1990-08-01

    Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c≥1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification.

  11. Conformal General Relativity

    CERN Document Server

    Pervushin, V

    2001-01-01

    The inflation-free solution of problems of the modern cosmology (horizon, cosmic initial data, Planck era, arrow of time, singularity,homogeneity, and so on) is considered in the conformal-invariant unified theory given in the space with geometry of similarity where we can measure only the conformal-invariant ratio of all quantities. Conformal General Relativity is defined as the $SU_c(3)\\times SU(2)\\times U(1)$-Standard Model where the dimensional parameter in the Higgs potential is replaced by a dilaton scalar field described by the negative Penrose-Chernikov-Tagirov action. Spontaneous SU(2) symmetry breaking is made on the level of the conformal-invariant angle of the dilaton-Higgs mixing, and it allows us to keep the structure of Einstein's theory with the equivalence principle. We show that the lowest order of the linearized equations of motion solves the problems mentioned above and describes the Cold Universe Scenario with the constant temperature T and z-history of all masses with respect to an obser...

  12. Synthesis and characterization of (18)F-labeled active site inhibited factor VII (ASIS).

    Science.gov (United States)

    Erlandsson, Maria; Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Jesper B; Petersen, Lars C; Madsen, Jacob; Kjaer, Andreas

    2015-05-15

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an (18)F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[(18)F]fluorobenzoate, and the [(18)F]ASIS was purified on a PD-10 desalting column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [(18)F]ASIS to TF and to a specific anti-factor VII antibody (F1A2-mAb). No significant difference in binding efficacy between [(18)F]ASIS and ASIS could be detected. Furthermore, [(18)F]ASIS was relatively stable in vitro and in vivo in mice. In conclusion, [(18)F]ASIS has for the first time been successfully synthesized as a possible positron emission tomography tracer to image TF expression levels. In vivo positron emission tomography studies to evaluate the full potential of [(18)F]ASIS are in progress. PMID:25820758

  13. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  14. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    International Nuclear Information System (INIS)

    Studies of [3H]diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot [Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture]. Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the [3H]diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT

  15. Insights Into the Effects of Internal Variability, External Variability, and Active Sites on Heterogeneous Ice Nucleation

    Science.gov (United States)

    Beydoun, H.; Sullivan, R. C.; Polen, M.

    2015-12-01

    Heterogeneous ice nucleation (HIN) remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating HIN processes with relevant atmospheric conditions have largely contributed to the absence of a consistent and comprehensive parameterization. Here we formulate a new ice active surface site-based stochastic model of HIN with the unique feature of invoking a continuum assumption on the ice nucleation activity (contact angle) of an aerosol particle's surface. The result is a particle specific property g that defines a distribution of local surface ice nucleation rates. Upon integration this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a great resource for studying the freezing ability of many atmospheric aerosol systems. A method based on statistical significance and critical area analysis is presented that can resolve the two-dimensional nature of the ice nucleation ability of aerosol particles: variability in active sites and freezing rates along an individual particle's surface, as well as variability between two particles of the same type in an aerosol population. When applied to published experimental data, the method demonstrates its ability to comprehensively interpret droplet freezing spectra of variable particle mass and surface area concentrations. By fitting the high concentration freezing curves to a statistically significant active site density function, the lower concentration freezing curves are successfully fitted via a process of random sampling from the statistically significant distribution. Using the new scheme, comprehensive parameterizations that can track the frozen fraction of cloud droplets in larger atmospheric models are derived.

  16. Conformational States of HIV-1 Reverse Transcriptase for Nucleotide Incorporation vs Pyrophosphorolysis-Binding of Foscarnet.

    Science.gov (United States)

    Das, Kalyan; Balzarini, Jan; Miller, Matthew T; Maguire, Anita R; DeStefano, Jeffrey J; Arnold, Eddy

    2016-08-19

    HIV-1 reverse transcriptase (RT) catalytically incorporates individual nucleotides into a viral DNA strand complementing an RNA or DNA template strand; the polymerase active site of RT adopts multiple conformational and structural states while performing this task. The states associated are dNTP binding at the N site, catalytic incorporation of a nucleotide, release of a pyrophosphate, and translocation of the primer 3'-end to the P site. Structural characterization of each of these states may help in understanding the molecular mechanisms of drug activity and resistance and in developing new RT inhibitors. Using a 38-mer DNA template-primer aptamer as the substrate mimic, we crystallized an RT/dsDNA complex that is catalytically active, yet translocation-incompetent in crystals. The ability of RT to perform dNTP binding and incorporation in crystals permitted obtaining a series of structures: (I) RT/DNA (P-site), (II) RT/DNA/AZTTP ternary, (III) RT/AZT-terminated DNA (N-site), and (IV) RT/AZT-terminated DNA (N-site)/foscarnet complexes. The stable N-site complex permitted the binding of foscarnet as a pyrophosphate mimic. The Mg(2+) ions dissociated after catalytic addition of AZTMP in the pretranslocated structure III, whereas ions A and B had re-entered the active site to bind foscarnet in structure IV. The binding of foscarnet involves chelation with the Mg(2+) (B) ion and interactions with K65 and R72. The analysis of interactions of foscarnet and the recently discovered nucleotide-competing RT inhibitor (NcRTI) α-T-CNP in two different conformational states of the enzyme provides insights for developing new classes of polymerase active site RT inhibitors. PMID:27192549

  17. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability.

    Science.gov (United States)

    Stamenkovic, Vojislav R; Fowler, Ben; Mun, Bongjin Simon; Wang, Guofeng; Ross, Philip N; Lucas, Christopher A; Marković, Nenad M

    2007-01-26

    The slow rate of the oxygen reduction reaction (ORR) in the polymer electrolyte membrane fuel cell (PEMFC) is the main limitation for automotive applications. We demonstrated that the Pt3Ni(111) surface is 10-fold more active for the ORR than the corresponding Pt(111) surface and 90-fold more active than the current state-of-the-art Pt/C catalysts for PEMFC. The Pt3Ni(111) surface has an unusual electronic structure (d-band center position) and arrangement of surface atoms in the near-surface region. Under operating conditions relevant to fuel cells, its near-surface layer exhibits a highly structured compositional oscillation in the outermost and third layers, which are Pt-rich, and in the second atomic layer, which is Ni-rich. The weak interaction between the Pt surface atoms and nonreactive oxygenated species increases the number of active sites for O2 adsorption. PMID:17218494

  18. Active site-directed plasmin inhibitors: Extension on the P2 residue.

    Science.gov (United States)

    Hidaka, Koushi; Gohda, Keigo; Teno, Naoki; Wanaka, Keiko; Tsuda, Yuko

    2016-02-15

    Based on the structure of YO-2 [N-(trans-4-aminomethylcyclohexanecarbonyl)-l-Tyr(O-picolyl)-NH-octyl], active site-directed plasmin (Plm) inhibitors were explored. The picolyl moiety in the Tyr(O-picolyl) residue (namely, the P2 residue) was replaced with smaller or larger groups, such as hydrogen, tert-butyl, benzyl, (2-naphthyl)methyl, and (quinolin-2-yl)methyl. Those efforts produced compound 17 {N-(trans-4-aminomethylcyclohexanecarbonyl)-l-Tyr[O-(quinolin-2-yl)methyl]-NH-octyl} [IC50=0.22 and 77μM for Plm and urokinase (UK), respectively], which showed not only 2.4-fold greater Plm inhibition than YO-2, but also an improvement in selectivity (Plm/UK) by 35-fold. The docking experiments of the Plm-17 complexes disclosed that the amino group of the tranexamyl moiety interacted with the side-chain of Asp753 which formed S1 site.

  19. Three dimensional visualization in support of Yucca Mountain Site characterization activities

    International Nuclear Information System (INIS)

    An understanding of the geologic and hydrologic environment for the proposed high-level nuclear waste repository at Yucca Mountain, NV is a critical component of site characterization activities. Conventional methods allow visualization of geologic data in only two or two and a half dimensions. Recent advances in computer workstation hardware and software now make it possible to create interactive three dimensional visualizations. Visualization software has been used to create preliminary two-, two-and-a-half-, and three-dimensional visualizations of Yucca Mountain structure and stratigraphy. The three dimensional models can also display lithologically dependent or independent parametric data. Yucca Mountain site characterization studies that will be supported by this capability include structural, lithologic, and hydrologic modeling, and repository design

  20. Active site studies of Escherichia coli 2-keto-4-hydroxyglutarate aldolase

    Energy Technology Data Exchange (ETDEWEB)

    Vlahos, C.J.

    1987-01-01

    The data presented delineate the complete amino acid sequence of E. coli KHG aldolase and also identify Lys-133, Glu-45, and Arg-49 as aminoacyl residues required for catalytic activity. Incubation of E. coli KHG aldolase with (/sup 14/C)pyruvate in the presence of NaCNBH/sub 3/ results in the incorporation of one mol of /sup 14/C per mol of enzyme subunit. Digestion of this enzyme-adduct with trypsin, followed by purification of the peptides, allowed for the isolation of a unique radioactive peptide. Its amino acid sequence showed that the pyruvate-binding (i.e., Schiff-base forming) lysine residue is located at position 133 in the intact enzyme. E. coli KHG aldolase activity is lost when the enzyme is reacted with bromopyruvate; saturation kinetics are observed. The substrates, pyruvate and KHG, protect the enzyme from inactivation. Both facts suggest that the reagent is active-site specific. Incubation of the aldolase with (3-/sup 14/C)bromopyruvate is associated with a concomitant loss of enzymatic activity and esterification of Glu-45; if the enzyme is denatured in the presence of excess bromopyruvate, Cys-159 and Cys-180 are also alkylated. Blocking the active-site lysine residue with pyruvate prevents Glu-45 from being esterified but does not eliminate alkylation of these two cysteine residues. Woodward's Reagent K was also found to inactivate the aldolase under conditions that are usually specific for carboxyl group modification. This aldolase is also inactivated by 1,2-cyclohexanedione. Loss of enzymatic activity occurs concomitantly with modification of one arginine residue per enzyme subunit. Treatment of the aldolase with the arginine-specific reagent, 4-(oxyacetyl)phenoxyacetic acid, followed by digestion with trypsin allowed for the isolation of a unique peptide and the identification of Arg-49 as the specific residue involved.

  1. Chemotactic Activity of Cyclophilin A in the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco and Its Active Site for Chemotaxis

    Directory of Open Access Journals (Sweden)

    Farman Ullah Dawar

    2016-08-01

    Full Text Available Fish skin mucus is a dynamic barrier for invading pathogens with a variety of anti-microbial enzymes, including cyclophilin A (CypA, a multi-functional protein with peptidyl-prolyl cis/trans isomerase (PPIase activity. Beside various other immunological functions, CypA induces leucocytes migration in vitro in teleost. In the current study, we have discovered several novel immune-relevant proteins in yellow catfish skin mucus by mass spectrometry (MS. The CypA present among them was further detected by Western blot. Moreover, the CypA present in the skin mucus displayed strong chemotactic activity for yellow catfish leucocytes. Interestingly, asparagine (like arginine in mammals at position 69 was the critical site in yellow catfish CypA involved in leucocyte attraction. These novel efforts do not only highlight the enzymatic texture of skin mucus, but signify CypA to be targeted for anti-inflammatory therapeutics.

  2. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.

    Science.gov (United States)

    Huang, Xiaoqiang; Xue, Jing; Lin, Min; Zhu, Yushan

    2016-01-01

    Active site preorganization helps native enzymes electrostatically stabilize the transition state better than the ground state for their primary substrates and achieve significant rate enhancement. In this report, we hypothesize that a complex active site model for active site preorganization modeling should help to create preorganized active site design and afford higher starting activities towards target reactions. Our matching algorithm ProdaMatch was improved by invoking effective pruning strategies and the native active sites for ten scaffolds in a benchmark test set were reproduced. The root-mean squared deviations between the matched transition states and those in the crystal structures were cephalexin using scaffold selection based on two different catalytic motifs. Only three scaffolds were identified from the scaffold library by virtue of the classic catalytic triad-based motif. In contrast, 40 scaffolds were identified using a more flexible, but still preorganized catalytic motif, where one scaffold corresponded to the α-amino acid ester hydrolase that catalyzes the hydrolysis and synthesis of cephalexin. Thus, the complex active site modeling approach for de novo enzyme design with the aid of the improved ProdaMatch program is a promising approach for the creation of active sites with high catalytic efficiencies towards target reactions. PMID:27243223

  3. Evaluating the online activity of users of the e-Bug web site.

    Science.gov (United States)

    de Quincey, Ed; Kostkova, Patty; Jawaheer, Gawesh; Farrell, David; McNulty, Cliodna A M; Weinberg, Julius

    2011-06-01

    Web server log analysis is being increasingly used to evaluate the user behaviour on healthcare resource web sites due to the detailed record of activity that they contain. This study aimed to use this information to evaluate the e-Bug web site, a healthcare resource that provides a range of educational resources about microbes, hand and respiratory hygiene, and antibiotics. This evaluation was conducted by analysing the web server logs of the e-Bug web site for the period January 2008 to November 2009, using a proprietary application named Sawmill. The e-Bug web site has had >900,000 page views generated from >88,000 users, with an increase in May 2009 during the swine flu epidemic and a further increase in September 2009 following the official launch of e-Bug. The majority of visitors were from the UK, but visits were recorded from 190 different countries. Word(®) document resources were downloaded >169,000 times, with the most popular being a swine flu factsheet. PowerPoint(®) document resources were downloaded >36,000 times, with the most popular relating to the 'chain of infection'. The majority of visitor referrals originated from search engines, with the most popular referral keywords being variations on the e-Bug name. The most common non-search engine referrals were from other healthcare resources and agencies. Use of the site has increased markedly since the official launch of e-Bug, with average page views of >200,000 per month, from a range of countries, illustrating the international demand for a teaching resource for microbes, hygiene and antibiotics.

  4. Earthquake prediction activities and Damavand earthquake precursor test site in Iran

    Science.gov (United States)

    Mokhtari, Mohammad

    2010-01-01

    Iran has long been known as one of the most seismically active areas of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. The Alborz region in the northern part of Iran is an active EW trending mountain belt of 100 km wide and 600 km long. The Alborz range is bounded by the Talesh Mountains to the west and the Kopet Dagh Mountains to the east and consists of several sedimentary and volcanic layers of Cambrian to Eocene ages that were deformed during the late Cenozoic collision. Several active faults affect the central Alborz. The main active faults are the North Tehran and Mosha faults. The Mosha fault is one of the major active faults in the central Alborz as shown by its strong historical seismicity and its clear morphological signature. Situated in the vicinity of Tehran city, this 150-km-long N100° E trending fault represents an important potential seismic source. For earthquake monitoring and possible future prediction/precursory purposes, a test site has been established in the Alborz mountain region. The proximity to the capital of Iran with its high population density, low frequency but high magnitude earthquake occurrence, and active faults with their historical earthquake events have been considered as the main criteria for this selection. In addition, within the test site, there are hot springs and deep water wells that can be used for physico-chemical and radon gas analysis for earthquake precursory studies. The present activities include magnetic measurements; application of methodology for identification of seismogenic nodes for earthquakes of M ≥ 6.0 in the Alborz region developed by International Institute of Earthquake Prediction Theory and Mathematical Geophysics, IIEPT RAS, Russian Academy of Science, Moscow (IIEPT&MG RAS); a feasibility study using a dense seismic network for identification of future locations of seismic monitoring stations and application

  5. Protein function annotation with Structurally Aligned Local Sites of Activity (SALSAs

    Directory of Open Access Journals (Sweden)

    Wang Zhouxi

    2013-02-01

    Full Text Available Abstract Background The prediction of biochemical function from the 3D structure of a protein has proved to be much more difficult than was originally foreseen. A reliable method to test the likelihood of putative annotations and to predict function from structure would add tremendous value to structural genomics data. We report on a new method, Structurally Aligned Local Sites of Activity (SALSA, for the prediction of biochemical function based on a local structural match at the predicted catalytic or binding site. Results Implementation of the SALSA method is described. For the structural genomics protein PY01515 (PDB ID 2aqw from Plasmodium yoelii, it is shown that the putative annotation, Orotidine 5'-monophosphate decarboxylase (OMPDC, is most likely correct. SALSA analysis of YP_001304206.1 (PDB ID 3h3l, a putative sugar hydrolase from Parabacteroides distasonis, shows that its active site does not bear close resemblance to any previously characterized member of its superfamily, the Concanavalin A-like lectins/glucanases. It is noted that three residues in the active site of the thermophilic beta-1,4-xylanase from Nonomuraea flexuosa (PDB ID 1m4w, Y78, E87, and E176, overlap with POOL-predicted residues of similar type, Y168, D153, and E232, in YP_001304206.1. The substrate recognition regions of the two proteins are rather different, suggesting that YP_001304206.1 is a new functional type within the superfamily. A structural genomics protein from Mycobacterium avium (PDB ID 3q1t has been reported to be an enoyl-CoA hydratase (ECH, but SALSA analysis shows a poor match between the predicted residues for the SG protein and those of known ECHs. A better local structural match is obtained with Anabaena beta-diketone hydrolase (ABDH, a known β-diketone hydrolase from Cyanobacterium anabaena (PDB ID 2j5s. This suggests that the reported ECH function of the SG protein is incorrect and that it is more likely a β-diketone hydrolase. Conclusions

  6. Coordination geometries of Zn(II) and Cd(II) in phosphotriesterase: Influence of water molecules in the active site

    DEFF Research Database (Denmark)

    Krauss, M; Olsen, Lars; Antony, J;

    2002-01-01

    Models of the metal ion binding sites of native ZnZn and of cadmium-substituted ZnCd and CdCd phosphotriesterase, including full amino acid side chains, were geometry optimized with quantum mechanical methods, with effective fragment potentials (EFP) representing the protein environment surrounding...... the active site. One to three water molecules were included in the active site in addition to the bridging hydroxide. Comparison with recent X-ray diffraction results Benning, M. M.; Shim, H.; Raushel, F. M.; Holden, H. M. Biochemistry 2001, 40, 2712-22 is hindered by the presence of ethylene glycol...... molecules in the active site. We suggest that the ethylene glycol required for crystallization distorts the structure of the water network in the active site and that the theoretical structures provide a better description of the system in aqueous solution. Cd-113 NMR isotropic shielding calculations were...

  7. IN VITRO ANALYSIS OF τ PHOSPHORYLATION SITES AND ITS BIOLOGICAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective.To explore the association between the abnormal phosphorylation sites found in Alzheimer disease (AD) τ and the inhibition of its biological activity. Methods.Ultracentrifugation,chromatography,manual Edman degradation and autosequence techniques were used to prepare and phosphorylate human recombinant τ ,isolate and purify 32P τ peptides and determine phosphorylation sites. Results.Phosphorylation of τ by casein kinase 1 (CK 1),cyclic AMP dependent protein kinase (PKA) and glycogen synthetase kinase 3 (GSK 3) separately inhibited its biological activity and the inhibition of this activity by GSK 3 was significantly increased if τ was prephosphorylated by CK 1 or PKA.The most potent inhibition was seen by a combined phosphorylation of τ with PKA and GSK 3.The treatment of τ by PKA and GSK 3 combination induced phosphorylation of τ at Ser 195,Ser 198,Ser 199,Ser 202,Thr 205,Thr 231,Ser 235,Ser 262,Ser 356,Ser 404,whereas Thr 181,Ser 184,Ser 262,Ser 356 and Ser 400 were phosphorylated by GSK 3 alone under the same condition. Conclusion.Phosphorylation of τ by PKA plus GSK 3 at Thr 205 might play a key role in τ pathology in AD.

  8. The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia.

    Science.gov (United States)

    McCully, Kilmer S

    2015-01-01

    The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism. PMID:25887881

  9. Effect of zinc ions on conformational stability of yeast alcohol dehydrogenase.

    Science.gov (United States)

    Yang, Y; Zhou, H M

    2001-01-01

    Yeast alcohol dehydrogenase preparations were prepared with the conformational zinc ion removed (Apo-I YADH) and with both the conformational and catalytic zinc ions removed (Apo-II YADH). The unfolding of Apo-I YADH and Apo-II YADH during denaturation in urea solutions was then followed by fluorescence emission, circular dichroism, and second-derivative optical spectroscopies. Compared with the native enzyme, Apo-I YADH incurred some slight unfolding, and its stability against urea was markedly decreased, while Apo-II YADH incurred marked unfolding but contained residual ordered structure even at high urea concentrations. The results show that native YADH is more conformationally stable against urea denaturation than Apo-I YADH, indicating that the conformational Zn(2+) plays an important role in stabilizing the conformation of the YADH molecule. However, unfolding of the region around the conformational zinc ion is shown not to be the rate limited step in the unfolding of the molecule by the fact that the unfolding and inactivation rate constants of native and Apo-I YADH are the same. It is suggested that the catalytic zinc ion is more important in maintaining the structure of YADH. YADH lost its cooperative unfolding ability after the zinc ions were removed. The shape of the transition curves of Apo-I YADH suggests the existence of an unfolding intermediate. For both native and Apo-I YADH, inactivation occurs at much lower urea concentrations than that needed to produce significant conformational changes of the enzyme molecule. At urea concentration above 4 M, the inactivation rate constants are much higher than those of the fast phase of the reaction of unfolding. These results support the suggestion of flexibility at the active site of the enzyme (C. L. Tsou (1986) Trends Biochem. Sci., 11, 427-429; (1993) Science, 262, 308-381).

  10. Computational simulations of structural role of the active-site W374C mutation of acetyl-coenzyme-A carboxylase: multi-drug resistance mechanism.

    Science.gov (United States)

    Zhu, Xiao-Lei; Yang, Wen-Chao; Yu, Ning-Xi; Yang, Sheng-Gang; Yang, Guang-Fu

    2011-03-01

    Herbicides targeting grass plastidic acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) are selectively effective against graminicides. The intensive worldwide use of this herbicide family has selected for resistance genes in a number of grass weed species. Recently, the active-site W374C mutation was found to confer multi-drug resistance toward haloxyfop (HF), fenoxaprop (FR), Diclofop (DF), and clodinafop (CF) in A. myosuroides. In order to uncover the resistance mechanism due to W374C mutation, the binding of above-mentioned four herbicides to both wild-type and the mutant-type ACCase was investigated in the current work by molecular docking and molecular dynamics (MD) simulations. The binding free energies were calculated by molecular mechanics-Poisson-Boltzmann surface area (MM/PBSA) method. The calculated binding free energy values for four herbicides were qualitatively consistent with the experimental order of IC(50) values. All the computational model and energetic results indicated that the W374C mutation has great effects on the conformational change of the binding pocket and the ligand-protein interactions. The most significant conformational change was found to be associated with the aromatic amino acid residues, such as Phe377, Tyr161' and Trp346. As a result, the π-π interaction between the ligand and the residue of Phe377 and Tyr161', which make important contributions to the binding affinity, was decreased after mutation and the binding affinity for the inhibitors to the mutant-type ACCase was less than that to the wild-type enzyme, which accounts for the molecular basis of herbicidal resistance. The structural role and mechanistic insights obtained from computational simulations will provide a new starting point for the rational design of novel inhibitors to overcome drug resistance associated with W374C mutation. PMID:20499260

  11. A Conformal Extension Theorem based on Null Conformal Geodesics

    CERN Document Server

    Lübbe, Christian

    2008-01-01

    In this article we describe the formulation of null geodesics as null conformal geodesics and their description in the tractor formalism. A conformal extension theorem through an isotropic singularity is proven by requiring the boundedness of the tractor curvature and its derivatives to sufficient order along a congruence of null conformal geodesic. This article extends earlier work by Tod and Luebbe.

  12. Hanford Site implementation of the National Environmental Policy Act: Activities tracking

    Energy Technology Data Exchange (ETDEWEB)

    Killinger, M.H.; Selby, K.B.

    1989-06-01

    The National Environmental Policy Act (NEPA) environmental review process is mandatory for federal agencies. This report provides the DOE Richland Operations Office (DOE-RL) and the Hanford contractors with a method for tracking, integrating, and coordinating NEPA compliance activities at the Hanford Site. The environmental review process is briefly described and illustrated in a flow chart. The report then explains a method for developing project timecharts that show when documents or decision points were completed or are projected to be completed. The tracking system has been automated and placed on the Hanford Local Area Network (HLAN). Time schedules for many Hanford projects are available for viewing. 4 refs., 6 figs.

  13. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions

    KAUST Repository

    Walkiewicz, Katarzyna W.

    2015-06-17

    The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein ‘nanomachines’ to become activated in a site-specific manner.

  14. Determination of blood Cd in subjects living near dismessed mines and active industrial sites

    OpenAIRE

    Madeddu, Roberto Beniamino; Tolu, Paola; Asara, Yolande; Farace, Cristiano; Forte, Giovanni; Bocca, Beatrice

    2012-01-01

    The environmental exposure to Cd in 265 subjects living in a South-Western area of Sardinia (Sulcis-Iglesiente) with a great history of mining activities and large industrial settings was assessed. Individuals living near the industrial plants had geometric means (GM) of blood Cd (0.79 μg/l) significantly higher than controls (0.47 μg/l) and than residents of the mining sites (0.54 μg/l). Demographic and lifestyle variables were also investigated and data show...

  15. Multiple Conformations of Phosphodiesterase-5: Implications for Enzyme Function and Drug Developement

    Energy Technology Data Exchange (ETDEWEB)

    Wang,H.; Liu, Y.; Huai, Q.; Cai, J.; Zoraghi, R.; Francis, S.; Corbin, J.; Robinson, H.; Xin, Z.; et al.

    2006-01-01

    Phosphodiesterase-5 (PDE5) is the target for sildenafil, vardenafil, and tadalafil, which are drugs for treatment of erectile dysfunction and pulmonary hypertension. We report here the crystal structures of a fully active catalytic domain of unliganded PDE5A1 and its complexes with sildenafil or icarisid II. These structures together with the PDE5A1-isobutyl-1-methylxanthine complex show that the H-loop (residues 660-683) at the active site of PDE5A1 has four different conformations and migrates 7 to 35 Angstroms upon inhibitor binding. In addition, the conformation of sildenafil reported herein differs significantly from those in the previous structures of chimerically hybridized or almost inactive PDE5. Mutagenesis and kinetic analyses confirm that the H-loop is particularly important for substrate recognition and that invariant Gly659 which immediately precedes the H-loop is critical for optimal substrate affinity and catalytic activity.

  16. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site

    Science.gov (United States)

    Warren, Ean; Bekins, Barbara A.

    2015-11-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150-200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9 °C above background near the oil to 1.2 °C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7 °C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge.

  17. Prioritizing conservation activities using reserve site selection methods and population viability analysis.

    Science.gov (United States)

    Newbold, Stephen C; Siikamäki, Juha

    2009-10-01

    In recent years a large literature on reserve site selection (RSS) has developed at the interface between ecology, operations research, and environmental economics. Reserve site selection models use numerical optimization techniques to select sites for a network of nature reserves for protecting biodiversity. In this paper, we develop a population viability analysis (PVA) model for salmon and incorporate it into an RSS framework for prioritizing conservation activities in upstream watersheds. We use spawner return data for three closely related salmon stocks in the upper Columbia River basin and estimates of the economic costs of watershed protection from NOAA to illustrate the framework. We compare the relative cost-effectiveness of five alternative watershed prioritization methods, based on various combinations of biological and economic information. Prioritization based on biological benefit-economic cost comparisons and accounting for spatial interdependencies among watersheds substantially outperforms other more heuristic methods. When using this best-performing prioritization method, spending 10% of the cost of protecting all upstream watersheds yields 79% of the biological benefits (increase in stock persistence) from protecting all watersheds, compared to between 20% and 64% for the alternative methods. We also find that prioritization based on either costs or benefits alone can lead to severe reductions in cost-effectiveness. PMID:19831069

  18. Logarithmic conformal field theory

    Science.gov (United States)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  19. Multiscale conformal pattern transfer

    Science.gov (United States)

    Lodewijks, Kristof; Miljkovic, Vladimir; Massiot, Inès; Mekonnen, Addis; Verre, Ruggero; Olsson, Eva; Dmitriev, Alexandre

    2016-06-01

    We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics.

  20. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...... of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i...