WorldWideScience

Sample records for active shape models

  1. Oriented active shape models.

    Science.gov (United States)

    Liu, Jiamin; Udupa, Jayaram K

    2009-04-01

    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks

  2. Body shape model, physical activity and eating behaviour.

    Science.gov (United States)

    Jáuregui Lobera, I; Tomillo Cid, S; Santiago Fernández, M J; Bolaños Ríos, P

    2011-01-01

    Research on the influence of body shape model on adolescent males is scarce. The current study aimed to assess this influence among adult males involved in intense physical activity and to determine its relationship to eating behaviour. Possible variations between 1998 and 2008 were also analysed. A total of 950 males (672 in 1998 and 278 in 2008), all aspiring professional soldiers, were studied using the Questionnaire of Influences on Body Shape Model (CIMEC-V) and the Eating Attitudes Test-40 (EAT-40), as well as by assessing their physical/sporting activity and body mass index (BMI). Scores on the CIMEC-V were significantly correlated with the EAT-40 and BMI. As regards physical activity the only positive correlation referred to gym-based exercise. A cluster analysis revealed two subgroups with respect to physical activity, BMI, and scores on the CIMEC-V and EAT-40. One of them scored higher on these three variables and they also had a BMI > 25. The comparative study of data from 1998 and 2008 showed significant changes in some variables. Generally, the results differ considerably from those reported for younger samples (which would suggest a lower risk of disordered eating behaviour). However, there is a higher risk group in which the influence of body shape models, physical activity and eating behaviour are related to greater body volume. The influence of the body shape model on males has increased, especially as regards the influence of friends and in terms of behaviours aimed at weight loss.

  3. Characterization and modeling of light activated shape memory polymer

    Science.gov (United States)

    Beblo, Richard Vincent

    Shape memory polymers have recently become the focus of research for their unique ability to switch between two modulus states, allowing them to both recover from large amounts of strain as well as support complex loads. Part of this research involves engineering new formulas specifically designed for applications where traditional thermally activated SMPs are not ideal by tailoring the activation method used to transition the polymer. One such class of polymers is those that utilize optical energy at specific wavelengths to create and cleave crosslinks. It is the development of this new class of light activated shape memory polymers (LASMP) that is the focus of the presented work. Experimental methods are newly created for this novel class of active materials. Several candidate LASMP formulas are then subjected to this set of experiments characterizing their mechanical and optical properties. Experimentally observed variations among the formulae include virgin state modulus, percent change in modulus with stimulus, and in some instances inelastic response. To expedite the development of LASMP, a first principles multi-scale model based on the polymer's molecular structure is presented and used to predict the stress response of the candidate formulas. Rotational isomeric state (RIS) theory is used to build a molecular model of a phantom polymer chain. Assessment of the resulting conformation is then made via the Johnson family of statistical distributions and Boltzmann statistical thermodynamics. The ability of the presented model to predict material properties based on the molecular structure of the polymer reduces the time and resources required to test new candidate formulas of LASMP as well as aiding in the ability to tailor the polymer to specific application requirements. While the first principles model works well to identify promising formulas, it lacks precision. The stress contribution from the constraints on the polymer chain's junctions and neighboring

  4. Ultrasound Common Carotid Artery Segmentation Based on Active Shape Model

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2013-01-01

    Full Text Available Carotid atherosclerosis is a major reason of stroke, a leading cause of death and disability. In this paper, a segmentation method based on Active Shape Model (ASM is developed and evaluated to outline common carotid artery (CCA for carotid atherosclerosis computer-aided evaluation and diagnosis. The proposed method is used to segment both media-adventitia-boundary (MAB and lumen-intima-boundary (LIB on transverse views slices from three-dimensional ultrasound (3D US images. The data set consists of sixty-eight, 17 × 2 × 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80 mg atorvastatin and nine with placebo, who had carotid stenosis of 60% or more, at baseline and after three months of treatment. Manually outlined boundaries by expert are adopted as the ground truth for evaluation. For the MAB and LIB segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC of 94.4% ± 3.2% and 92.8% ± 3.3%, mean absolute distances (MAD of 0.26 ± 0.18 mm and 0.33 ± 0.21 mm, and maximum absolute distances (MAXD of 0.75 ± 0.46 mm and 0.84 ± 0.39 mm. It took 4.3 ± 0.5 mins to segment single 3D US images, while it took 11.7 ± 1.2 mins for manual segmentation. The method would promote the translation of carotid 3D US to clinical care for the monitoring of the atherosclerotic disease progression and regression.

  5. Active Shapes for Automatic 3D Modeling of Buildings

    NARCIS (Netherlands)

    Sirmacek, B.; Lindenbergh, R.C.

    2015-01-01

    Recent technological developments help us to acquire high quality 3D measurements of our urban environment. However, these measurements, which come as point clouds or Digital Surface Models (DSM), do not directly give 3D geometrical models of buildings. In addition to that, they are not suitable for

  6. Correction tool for Active Shape Model based lumbar muscle segmentation.

    Science.gov (United States)

    Valenzuela, Waldo; Ferguson, Stephen J; Ignasiak, Dominika; Diserens, Gaelle; Vermathen, Peter; Boesch, Chris; Reyes, Mauricio

    2015-08-01

    In the clinical environment, accuracy and speed of the image segmentation process plays a key role in the analysis of pathological regions. Despite advances in anatomic image segmentation, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a low number of interactions, and a user-independent solution. In this work we present a new interactive correction method for correcting the image segmentation. Given an initial segmentation and the original image, our tool provides a 2D/3D environment, that enables 3D shape correction through simple 2D interactions. Our scheme is based on direct manipulation of free form deformation adapted to a 2D environment. This approach enables an intuitive and natural correction of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle segmentation from Magnetic Resonance Images. Experimental results show that full segmentation correction could be performed within an average correction time of 6±4 minutes and an average of 68±37 number of interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.03.

  7. Automatic anatomy recognition via multiobject oriented active shape models.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2010-12-01

    This paper studies the feasibility of developing an automatic anatomy recognition (AAR) system in clinical radiology and demonstrates its operation on clinical 2D images. The anatomy recognition method described here consists of two main components: (a) multiobject generalization of OASM and (b) object recognition strategies. The OASM algorithm is generalized to multiple objects by including a model for each object and assigning a cost structure specific to each object in the spirit of live wire. The delineation of multiobject boundaries is done in MOASM via a three level dynamic programming algorithm, wherein the first level is at pixel level which aims to find optimal oriented boundary segments between successive landmarks, the second level is at landmark level which aims to find optimal location for the landmarks, and the third level is at the object level which aims to find optimal arrangement of object boundaries over all objects. The object recognition strategy attempts to find that pose vector (consisting of translation, rotation, and scale component) for the multiobject model that yields the smallest total boundary cost for all objects. The delineation and recognition accuracies were evaluated separately utilizing routine clinical chest CT, abdominal CT, and foot MRI data sets. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF and FPVF). The recognition accuracy was assessed (1) in terms of the size of the space of the pose vectors for the model assembly that yielded high delineation accuracy, (2) as a function of the number of objects and objects' distribution and size in the model, (3) in terms of the interdependence between delineation and recognition, and (4) in terms of the closeness of the optimum recognition result to the global optimum. When multiple objects are included in the model, the delineation accuracy in terms of TPVF can be improved to 97%-98% with a low FPVF of 0.1%-0.2%. Typically, a

  8. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.

    Science.gov (United States)

    Cheimariotis, Grigorios-Aris; Al-Mashat, Mariam; Haris, Kostas; Aletras, Anthony H; Jögi, Jonas; Bajc, Marika; Maglaveras, Nicolaos; Heiberg, Einar

    2018-02-01

    Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes. A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images. The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p segmentation on SPECT images are on par with manual segmentation on SPECT images. Relative large volumetric differences between manual delineations of functional SPECT images and anatomical CT images confirms that lung segmentation of functional SPECT images is a challenging task. The current algorithm is a first step towards automatic quantification of wide range of measurements.

  9. A shape constrained parametric active contour model for breast contour detection.

    Science.gov (United States)

    Lee, Juhun; Muralidhar, Gautam S; Reece, Gregory P; Markey, Mia K

    2012-01-01

    Quantitative measures of breast morphology can help a breast cancer survivor to understand outcomes of reconstructive surgeries. One bottleneck of quantifying breast morphology is that there are only a few reliable automation algorithms for detecting the breast contour. This study proposes a novel approach for detecting the breast contour, which is based on a parametric active contour model. In addition to employing the traditional parametric active contour model, the proposed approach enforces a mathematical shape constraint based on the catenary curve, which has been previously shown to capture the overall shape of the breast contour reliably. The mathematical shape constraint regulates the evolution of the active contour and helps the contour evolve towards the breast, while minimizing the undesired effects of other structures such as, the nipple/areola and scars. The efficacy of the proposed approach was evaluated on anterior posterior photographs of women who underwent or were scheduled for breast reconstruction surgery including autologous tissue reconstruction. The proposed algorithm shows promising results for detecting the breast contour.

  10. Application of the active shape model in a commercial medical device for bone densitometry

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Rosholm, Anders

    2003-01-01

    . This paper describes how this was solved using the active shape model (ASM). Standard ASM is unable to locate the metacarpal shafts in the direction along the bones. Therefore ASM was extended with a translation operator, which solved the problem. A hierarchical filtering method was used to construct...... a sufficient list of initial guesses for the ASM. The performance of ASM and the experience with the integration of ASM in a commercial medical device is reported. The ASM achieves 99.5% reconstruction success and is able to validate its own reconstruction in 97% of the cases. The system (Pronosco X...

  11. 3D active shape models using gradient descent optimization of description length.

    Science.gov (United States)

    Heimann, Tobias; Wolf, Ivo; Williams, Tomos; Meinzer, Hans-Peter

    2005-01-01

    Active Shape Models are a popular method for segmenting three-dimensional medical images. To obtain the required landmark correspondences, various automatic approaches have been proposed. In this work, we present an improved version of minimizing the description length (MDL) of the model. To initialize the algorithm, we describe a method to distribute landmarks on the training shapes using a conformal parameterization function. Next, we introduce a novel procedure to modify landmark positions locally without disturbing established correspondences. We employ a gradient descent optimization to minimize the MDL cost function, speeding up automatic model building by several orders of magnitude when compared to the original MDL approach. The necessary gradient information is estimated from a singular value decomposition, a more accurate technique to calculate the PCA than the commonly used eigendecomposition of the covariance matrix. Finally, we present results for several synthetic and real-world datasets demonstrating that our procedure generates models of significantly better quality in a fraction of the time needed by previous approaches.

  12. Markov Random Field Restoration of Point Correspondences for Active Shape Modelling

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2004-01-01

    In this paper it is described how to build a statistical shape model using a training set with a sparse of landmarks. A well defined model mesh is selected and fitted to all shapes in the training set using thin plate spline warping. This is followed by a projection of the points of the warped...... model mesh to the target shapes. When this is done by a nearest neighbour projection it can result in folds and inhomogeneities in the correspondence vector field. The novelty in this paper is the use and extension of a Markov random field regularisation of the correspondence field. The correspondence...... model that produces highly homogeneous polygonised shapes with improved reconstruction capabilities of the training data. Furthermore, the method leads to an overall reduction in the total variance of the resulting point distribution model. The method is demonstrated on a set of human ear canals...

  13. Knee cartilage segmentation using active shape models and local binary patterns

    Science.gov (United States)

    González, Germán.; Escalante-Ramírez, Boris

    2014-05-01

    Segmentation of knee cartilage has been useful for opportune diagnosis and treatment of osteoarthritis (OA). This paper presents a semiautomatic segmentation technique based on Active Shape Models (ASM) combined with Local Binary Patterns (LBP) and its approaches to describe the surrounding texture of femoral cartilage. The proposed technique is tested on a 16-image database of different patients and it is validated through Leave- One-Out method. We compare different segmentation techniques: ASM-LBP, ASM-medianLBP, and ASM proposed by Cootes. The ASM-LBP approaches are tested with different ratios to decide which of them describes the cartilage texture better. The results show that ASM-medianLBP has better performance than ASM-LBP and ASM. Furthermore, we add a routine which improves the robustness versus two principal problems: oversegmentation and initialization.

  14. Active shape model-based real-time tracking of deformable objects

    Science.gov (United States)

    Kim, Sangjin; Kim, Daehee; Shin, Jeongho; Paik, Joonki

    2005-10-01

    Tracking non-rigid objects such as people in video sequences is a daunting task due to computational complexity and unpredictable environment. The analysis and interpretation of video sequence containing moving, deformable objects have been an active research areas including video tracking, computer vision, and pattern recognition. In this paper we propose a robust, model-based, real-time system to cope with background clutter and occlusion. The proposed algorithm consists of following four steps: (i) localization of an object-of-interest by analyzing four directional motions, (ii) region tracker for tracking moving region detected by the motion detector, (iii) update of training sets using the Smart Snake Algorithm (SSA) without preprocessing, (iv) active shape model-based tracking in region information. The major contribution this work lies in the integration for a completed system, which covers from image processing to tracking algorithms. The approach of combining multiple algorithms succeeds in overcoming fundamental limitations of tracking and at the same time realizes real time implementation. Experimental results show that the proposed algorithm can track people under various environment in real-time. The proposed system has potential uses in the area of surveillance, sape analysis, and model-based coding, to name of few.

  15. An implicit spatiotemporal shape model for human activity localization and recognition

    NARCIS (Netherlands)

    Oikonomopoulos, A.; Patras, I.; Pantic, Maja

    2009-01-01

    In this paper we address the problem of localisation and recognition of human activities in unsegmented image sequences. The main contribution of the proposed method is the use of an implicit representation of the spatiotemporal shape of the activity which relies on the spatiotemporal localization

  16. Enhancing the T-shaped learning profile when teaching hydrology using data, modeling, and visualization activities

    Science.gov (United States)

    Sanchez, Christopher A.; Ruddell, Benjamin L.; Schiesser, Roy; Merwade, Venkatesh

    2016-03-01

    Previous research has suggested that the use of more authentic learning activities can produce more robust and durable knowledge gains. This is consistent with calls within civil engineering education, specifically hydrology, that suggest that curricula should more often include professional perspective and data analysis skills to better develop the "T-shaped" knowledge profile of a professional hydrologist (i.e., professional breadth combined with technical depth). It was expected that the inclusion of a data-driven simulation lab exercise that was contextualized within a real-world situation and more consistent with the job duties of a professional in the field, would provide enhanced learning and appreciation of job duties beyond more conventional paper-and-pencil exercises in a lower-division undergraduate course. Results indicate that while students learned in both conditions, learning was enhanced for the data-driven simulation group in nearly every content area. This pattern of results suggests that the use of data-driven modeling and visualization activities can have a significant positive impact on instruction. This increase in learning likely facilitates the development of student perspective and conceptual mastery, enabling students to make better choices about their studies, while also better preparing them for work as a professional in the field.

  17. Segmenting multiple overlapping objects via a hybrid active contour model incorporating shape priors: applications to digital pathology

    Science.gov (United States)

    Ali, Sahirzeeshan; Madabhushi, Anant

    2011-03-01

    Active contours and active shape models (ASM) have been widely employed in image segmentation. A major limitation of active contours, however, is in their (a) inability to resolve boundaries of intersecting objects and to (b) handle occlusion. Multiple overlapping objects are typically segmented out as a single object. On the other hand, ASMs are limited by point correspondence issues since object landmarks need to be identified across multiple objects for initial object alignment. ASMs are also are constrained in that they can usually only segment a single object in an image. In this paper, we present a novel synergistic boundary and region-based active contour model that incorporates shape priors in a level set formulation. We demonstrate an application of these synergistic active contour models using multiple level sets to segment nuclear and glandular structures on digitized histopathology images of breast and prostate biopsy specimens. Unlike previous related approaches, our model is able to resolve object overlap and separate occluded boundaries of multiple objects simultaneously. The energy functional of the active contour is comprised of three terms. The first term comprises the prior shape term, modeled on the object of interest, thereby constraining the deformation achievable by the active contour. The second term, a boundary based term detects object boundaries from image gradients. The third term drives the shape prior and the contour towards the object boundary based on region statistics. The results of qualitative and quantitative evaluation on 100 prostate and 14 breast cancer histology images for the task of detecting and segmenting nuclei, lymphocytes, and glands reveals that the model easily outperforms two state of the art segmentation schemes (Geodesic Active Contour (GAC) and Roussons shape based model) and resolves up to 92% of overlapping/occluded lymphocytes and nuclei on prostate and breast cancer histology images.

  18. Segmentation of parotid glands in head and neck CT images using a constrained active shape model with landmark uncertainty

    Science.gov (United States)

    Chen, Antong; Noble, Jack H.; Niermann, Kenneth J.; Deeley, Matthew A.; Dawant, Benoit M.

    2012-02-01

    Automatic segmentation of parotid glands in head and neck CT images for IMRT planning has drawn attention in recent years. Although previous approaches have achieved substantial success by reaching high overall volume-wise accuracy, suboptimal segmentations are observed on the interior boundary of the gland where the contrast is poor against the adjacent muscle groups. Herein we propose to use a constrained active shape model with landmark uncertainty to improve the segmentation in this area. Results obtained using this method are compared with results obtained using a regular active shape model through a leave-one-out experiment.

  19. Issues in Biological Shape Modelling

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen

    This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape or appear......This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape...

  20. Shape Modelling Using Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2001-01-01

    of Active Shape Models by Timothy Cootes and Christopher Taylor by building new information into the model. This new information consists of two types of prior knowledge. First, in many situation we will be given an ordering of the shapes of the training set. This situation occurs when the shapes....... Both these types of knowledge may be used to defined Shape Maximum Autocorrelation Factors. The resulting point distribution models are compared to ordinary principal components analysis using leave-one-out validation....

  1. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model

    Energy Technology Data Exchange (ETDEWEB)

    He, Baochun; Huang, Cheng; Zhou, Shoujun; Hu, Qingmao; Jia, Fucang, E-mail: fc.jia@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Sharp, Gregory [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Fang, Chihua; Fan, Yingfang [Department of Hepatology (I), Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China)

    2016-05-15

    Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic approach

  2. Summer activity patterns among teenage girls: harmonic shape invariant modeling to estimate circadian cycles

    Directory of Open Access Journals (Sweden)

    Ogbagaber Semhar

    2012-05-01

    Full Text Available Abstract Background Physical activity as measured by activity counts over short time intervals across a 24 h period are often used to assess circadian variation. We are interested in characterizing circadian patterns in activity among adolescents and examining how these patterns vary by obesity status. New statistical approaches are needed to examine how factors affect different features of the circadian pattern and to make appropriate covariate adjustments when the outcomes are longitudinal count data. Methods We develop a statistical model for longitudinal or repeated activity count data that is used to examine differences in the overall activity level, amplitude (defined as the difference between the lowest and highest activity level over a 24 hour period, and phase shift. Using seven days of continuous activity monitoring, we characterize the circadian patterns and compare them between obese and non-obese adolescent girls. Results We find a statistically significant phase delay in adolescent girls who were obese compared with their non-obese counterparts. After the appropriate adjustment for measured potential confounders, we did not find differences in mean activity level between the two groups. Conclusion New statistical methodology was developed to identify a phase delay in obese compared with non-obese adolescents. This new approach for analyzing longitudinal circadian rhythm count data provides a useful statistical technique to add to the repertoire for those analyzing circadian rhythm data.

  3. Cellinoid Shape Model for Asteroids

    Science.gov (United States)

    Lu, Xiaoping; Zhao, Haibin; You, Zhong

    2014-08-01

    The ellipsoid shape model plays an important role in physical research on asteroids. However, its symmetric structure cannot practically simulate real asteroids. This article applies a general shape model, named the cellinoid, instead of the ellipsoid model to simulate the asymmetric shape of asteroids. The cellinoid shape model consists of eight octants of ellipsoids having different semi-axes, with the constraint that adjacent octants must have two equal semi-axes in common. Totally, the shape of the cellinoid model is controlled by six parameters, not three as in the case of the shape of the ellipsoid. Using this shape model, the brightness of asteroids observed from the Earth can be fitted numerically by the surface triangularization of the cellinoid. The Levenberg-Marquardt algorithm is also employed here to solve a nonlinear minimization problem. Owing to the asymmetric shape of the cellinoid, the physical parameters of asteroids, such as the rotation period and pole orientation, can be fitted more accurately than in the case of the ellipsoid model. Finally, this is confirmed numerically by applying the shape to both synthetic light curves and real light curves of asteroids. Additionally, the center of mass and moment of inertia of the cellinoid are analyzed explicitly.

  4. Evaluating and Refining the Conceptual Model Used in the Study of Health and Activity in Preschool Environments (SHAPES) Intervention.

    Science.gov (United States)

    Saunders, Ruth P; Pfeiffer, Karin; Brown, William H; Howie, Erin K; Dowda, Marsha; O'Neill, Jennifer R; McIver, Kerry; Pate, Russell R

    2017-12-01

    This study investigated the utility of the Study of Health and Activity in Preschool Environments (SHAPES) conceptual model, which targeted physical activity (PA) behavior in preschool children, by examining the relationship between implementation monitoring data and child PA during the school day. We monitored implementation completeness and fidelity based on multiple elements identified in the conceptual model. Comparing high-implementing, low-implementing, and control groups revealed no association between implementation and outcomes. We performed post hoc analyses, using process data, to refine our conceptual model's depiction of an effective preschool PA-promoting environment. Results suggest that a single component of the original four-component conceptual model, providing opportunities for moderate-to-vigorous physical activity through recess for 4-year-old children in preschool settings, may be a good starting place for increasing moderate-to-vigorous physical activity. Interventions that are implemented with optimal levels of completeness and fidelity are more likely to achieve behavior change if they are based on accurate conceptual models. Examining the mechanisms through which an intervention produces its effects, as articulated in the conceptual model that guides it, is particularly important for environmentally focused interventions because they are guided by emerging frameworks. The results of this study underscore the utility of using implementation monitoring data to examine the conceptual model on which the intervention is based.

  5. Women in Shape Modeling Workshop

    CERN Document Server

    Tari, Sibel

    2015-01-01

    Presenting the latest research from the growing field of mathematical shape analysis, this volume is comprised of the collaborations of participants of the Women in Shape Modeling (WiSh) workshop, held at UCLA's Institute for Pure and Applied Mathematics in July 2013. Topics include: Simultaneous spectral and spatial analysis of shape Dimensionality reduction and visualization of data in tree-spaces, such as classes of anatomical trees like airways and blood vessels Geometric shape segmentation, exploring shape segmentation from a Gestalt perspective, using information from the Blum medial axis of edge fragments in an image Representing and editing self-similar details on 3D shapes, studying shape deformation and editing techniques Several chapters in the book directly address the problem of continuous measures of context-dependent nearness and right shape models. Medical and biological applications have been a major source of motivation in shape research, and key topics are examined here in detail. All...

  6. Robust boundary detection and tracking of left ventricles on ultrasound images using active shape model and ant colony optimization.

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Jiao, Jinling; Li, Xian; Li, Sai; Yang, Jun

    2014-01-01

    Information regarding the motion, strain and synchronization are important for cardiac diagnosis and therapy. Extraction of such information from ultrasound images remains an open problem till today. In this paper, a novel method is proposed to extract the boundaries of left ventricles and track these boundaries in ultrasound image sequences. The initial detection of boundaries was performed by an active shape model scheme. Subsequent refinement of the boundaries was done by using local variance information of the images. The main objective of this paper is the formulation of a new boundary tracking algorithm using ant colony optimization technique. The experiments conducted on the simulated image sequences and the real cardiac ultrasound image sequences shows a positive and promising result.

  7. Towards robust and effective shape modeling: sparse shape composition.

    Science.gov (United States)

    Zhang, Shaoting; Zhan, Yiqiang; Dewan, Maneesh; Huang, Junzhou; Metaxas, Dimitris N; Zhou, Xiang Sean

    2012-01-01

    Organ shape plays an important role in various clinical practices, e.g., diagnosis, surgical planning and treatment evaluation. It is usually derived from low level appearance cues in medical images. However, due to diseases and imaging artifacts, low level appearance cues might be weak or misleading. In this situation, shape priors become critical to infer and refine the shape derived by image appearances. Effective modeling of shape priors is challenging because: (1) shape variation is complex and cannot always be modeled by a parametric probability distribution; (2) a shape instance derived from image appearance cues (input shape) may have gross errors; and (3) local details of the input shape are difficult to preserve if they are not statistically significant in the training data. In this paper we propose a novel Sparse Shape Composition model (SSC) to deal with these three challenges in a unified framework. In our method, a sparse set of shapes in the shape repository is selected and composed together to infer/refine an input shape. The a priori information is thus implicitly incorporated on-the-fly. Our model leverages two sparsity observations of the input shape instance: (1) the input shape can be approximately represented by a sparse linear combination of shapes in the shape repository; (2) parts of the input shape may contain gross errors but such errors are sparse. Our model is formulated as a sparse learning problem. Using L1 norm relaxation, it can be solved by an efficient expectation-maximization (EM) type of framework. Our method is extensively validated on two medical applications, 2D lung localization in X-ray images and 3D liver segmentation in low-dose CT scans. Compared to state-of-the-art methods, our model exhibits better performance in both studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Statistical models of shape optimisation and evaluation

    CERN Document Server

    Davies, Rhodri; Taylor, Chris

    2014-01-01

    Deformable shape models have wide application in computer vision and biomedical image analysis. This book addresses a key issue in shape modelling: establishment of a meaningful correspondence between a set of shapes. Full implementation details are provided.

  9. Nonparametric joint shape learning for customized shape modeling

    OpenAIRE

    Ünal, Gözde; Unal, Gozde

    2010-01-01

    We present a shape optimization approach to compute patient-specific models in customized prototyping applications. We design a coupled shape prior to model the transformation between a related pair of surfaces, using a nonparametric joint probability density estimation. The coupled shape prior forces with the help of application-specific data forces and smoothness forces drive a surface deformation towards a desired output surface. We demonstrate the usefulness of the method for generatin...

  10. Shape Restoration by Active Self-Assembly

    Directory of Open Access Journals (Sweden)

    D. Arbuckle

    2005-01-01

    Full Text Available Shape restoration is defined as the problem of constructing a desired, or goal, solid shape Sg by growing an initial solid Si, which is a subset of the goal but is otherwise unknown. This definition attempts to capture abstractly a situation that often arises in the physical world when a solid object loses its desired shape due to wear and tear, corrosion or other phenomena. For example, if the top of the femur becomes distorted, the hip joint no longer functions properly and may have to be replaced surgically. Growing it in place back to its original shape would be an attractive alternative to replacement. This paper presents a solution to the shape restoration problem by using autonomous assembly agents (robots that self-assemble to fill the volume between Sg and Si. If the robots have very small dimension (micro or nano, the desired shape is approximated with high accuracy. The assembly agents initially execute a random walk. When two robots meet, they may exchange a small number of messages. The robot behavior is controlled by a finite state machine with a small number of states. Communication contact models chemical communication, which is likely to be the medium of choice for robots at the nanoscale, while small state and small messages are limitations that also are expected of nanorobots. Simulations presented here show that swarms of such robots organize themselves to achieve shape restoration by using distributed algorithms. This is one more example of an interesting geometric problem that can be solved by the Active Self-Assembly paradigm introduced in previous papers by the authors.

  11. Shaping Neuronal Network Activity by Presynaptic Mechanisms.

    Directory of Open Access Journals (Sweden)

    Ayal Lavi

    2015-09-01

    Full Text Available Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.

  12. Shaping Neuronal Network Activity by Presynaptic Mechanisms

    Science.gov (United States)

    Ashery, Uri

    2015-01-01

    Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. PMID:26372048

  13. GC-ASM: Synergistic Integration of Graph-Cut and Active Shape Model Strategies for Medical Image Segmentation.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2013-05-01

    Image segmentation methods may be classified into two categories: purely image based and model based. Each of these two classes has its own advantages and disadvantages. In this paper, we propose a novel synergistic combination of the image based graph-cut (GC) method with the model based ASM method to arrive at the GC-ASM method for medical image segmentation. A multi-object GC cost function is proposed which effectively integrates the ASM shape information into the GC framework. The proposed method consists of two phases: model building and segmentation. In the model building phase, the ASM model is built and the parameters of the GC are estimated. The segmentation phase consists of two main steps: initialization (recognition) and delineation. For initialization, an automatic method is proposed which estimates the pose (translation, orientation, and scale) of the model, and obtains a rough segmentation result which also provides the shape information for the GC method. For delineation, an iterative GC-ASM algorithm is proposed which performs finer delineation based on the initialization results. The proposed methods are implemented to operate on 2D images and evaluated on clinical chest CT, abdominal CT, and foot MRI data sets. The results show the following: (a) An overall delineation accuracy of TPVF > 96%, FPVF segmentation step compared to GC which requires seed specification and improves on the accuracy of GC. (e) One disadvantage of GC-ASM is its increased computational expense owing to the iterative nature of the algorithm.

  14. Shape Factor Modeling and Simulation

    Science.gov (United States)

    2016-06-01

    10 3. Shape Factor Distributions for Natural Fragments 12 3.1 Platonic Solids and Uniform Viewing from All Viewpoints 12 3.2 Natural Fragments from...12 Fig. 9 The 5 Platonic solids. ............................................................. 12 Fig. 10 Mean shape factor of...of the 5 Platonic solids............................................ 13 Table 3 Sequence of viewing angles in Icosahedron Gage

  15. Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor); Turner, Travis L. (Inventor)

    2017-01-01

    Provided is an electrically activated shape memory polymer composite capable of thermal shape reformation using electric power to heat the composite through its matrix glass transition temperature. The composite includes an adaptable polymer matrix component using a diglycidyl ether resin, at least one substantially well-dispersed conductive or magnetic nano-filler component, and at least one elastic, laminated layer. Also provided are methods of preparing the composite and methods of activating the composite. A shape reformation of the composite is triggered by applying an electric field at DC and/or at a frequency above about 1.mu.Hz for a sufficient time.

  16. Active Light Shaping using GPC

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark Jayson

    Generalized Phase Contrast (GPC) is a light efficient method for generating speckle-free contiguous optical distributions using binary-only or analog phase levels. It has been used in applications such as optical trapping and manipulation, active microscopy, structured illumination, optical...

  17. Shaping asteroid models using genetic evolution (SAGE)

    Science.gov (United States)

    Bartczak, P.; Dudziński, G.

    2018-02-01

    In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.

  18. A Heuristic Image Search Algorithm for Active Shape Model Segmentation of the Caudate Nucleus and Hippocampus in Brain MR Images of Children with FASD

    Directory of Open Access Journals (Sweden)

    A A Eicher

    2012-09-01

    Full Text Available Magnetic Resonance Imaging provides a non-invasive means to study the neural correlates of Fetal Alcohol Spectrum Disorder (FASD - the most common form of preventable mental retardation worldwide. One approach aims to detect brain abnormalities through an assessment of volume and shape of two sub-cortical structures, the caudate nucleus and hippocampus. We present a method for automatically segmenting these structures from high-resolution MR images captured as part of an ongoing study into the neural correlates of FASD. Our method incorporates an Active Shape Model, which is used to learn shape variation from manually segmented training data. A modified discrete Geometrically Deformable Model is used to generate point correspondence between training models. An ASM is then created from the landmark points. Experiments were conducted on the image search phase of ASM segmentation, in order to find the technique best suited to segmentation of the hippocampus and caudate nucleus. Various popular image search techniques were tested, including an edge detection method and a method based on grey profile Mahalanobis distance measurement. A novel heuristic image search method was also developed and tested. This heuristic method improves image segmentation by taking advantage of characteristics specific to the target data, such as a relatively homogeneous tissue colour in target structures. Results show that ASMs that use the heuristic image search technique produce the most accurate segmentations. An ASM constructed using this technique will enable researchers to quickly, reliably, and automatically segment test data for use in the FASD study.

  19. Topology-Varying Shape Matching and Modeling

    OpenAIRE

    Alhashim, Ibraheem

    2015-01-01

    The automatic creation of man-made 3D objects is an active area in computer graphics. Computer-assisted mixing and blending of components or subcomponents from existing example shapes can help users quickly produce interesting and creative designs. A key factor for automating this task is using algorithms that can match compatible parts between objects of different shape and structure. However, due to the coarse correspondence computed by current matching algorithms, automatic shape blending ...

  20. Necdin shapes serotonergic development and SERT activity modulating breathing in a mouse model for Prader-Willi syndrome.

    Science.gov (United States)

    Matarazzo, Valéry; Caccialupi, Laura; Schaller, Fabienne; Shvarev, Yuri; Kourdougli, Nazim; Bertoni, Alessandra; Menuet, Clément; Voituron, Nicolas; Deneris, Evan; Gaspar, Patricia; Bezin, Laurent; Durbec, Pascale; Hilaire, Gérard; Muscatelli, Françoise

    2017-10-31

    Prader-Willi syndrome (PWS) is a genetic neurodevelopmental disorder that presents with hypotonia and respiratory distress in neonates. The Necdin-deficient mouse is the only model that reproduces the respiratory phenotype of PWS (central apnea and blunted response to respiratory challenges). Here, we report that Necdin deletion disturbs the migration of serotonin (5-HT) neuronal precursors, leading to altered global serotonergic neuroarchitecture and increased spontaneous firing of 5-HT neurons. We show an increased expression and activity of 5-HT Transporter (SERT/Slc6a4) in 5-HT neurons leading to an increase of 5-HT uptake. In Necdin-KO pups, the genetic deletion of Slc6a4 or treatment with Fluoxetine, a 5-HT reuptake inhibitor, restored normal breathing. Unexpectedly, Fluoxetine administration was associated with respiratory side effects in wild-type animals. Overall, our results demonstrate that an increase of SERT activity is sufficient to cause the apneas in Necdin-KO pups, and that fluoxetine may offer therapeutic benefits to PWS patients with respiratory complications.

  1. Automated compromised right lung segmentation method using a robust atlas-based active volume model with sparse shape composition prior in CT.

    Science.gov (United States)

    Zhou, Jinghao; Yan, Zhennan; Lasio, Giovanni; Huang, Junzhou; Zhang, Baoshe; Sharma, Navesh; Prado, Karl; D'Souza, Warren

    2015-12-01

    To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation. Published by Elsevier Ltd.

  2. Continuous Aerodynamic Modelling of Entry Shapes

    NARCIS (Netherlands)

    Dirkx, D.; Mooij, E.

    2011-01-01

    During the conceptual design phase of a re-entry vehicle, the vehicle shape can be varied and its impact on performance evaluated. To this end, the continuous modeling of the aerodynamic characteristics as a function of the shape is useful in exploring the full design space. Local inclination

  3. The natural shape balloon and related models

    Science.gov (United States)

    Baginski, F.; Winker, J.

    Typically, the design shape of a large scientific balloon is an axisymmetric stat- ically determinate shape in which only the weight of the balloon system and the lifting gas are taken into consideration. These equations were originally developed in the 1950s at the University of Minnesota, and in the special case when the circumferential stress is zero, have come to be known as the natural shape equations. Over the years, variants of these equations have been redis- covered and their relation to the general framework sometimes obscured. We will present a brief exposition of the natural shape equations, and show how a number of balloon models follow from it.

  4. Minimum Description Length Shape and Appearance Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling is reviewed. It solves the point correspondence problem of selecting points on shapes defined as curves so that the points correspond across a data set. An efficient numerical implementation is presented and made available as open s...... source Matlab code. The problems with the early MDL approaches are discussed. Finally the MDL approach is extended to an MDL Appearance Model, which is proposed as a means to perform unsupervised image segmentation....

  5. Modeling Self-Occlusions/Disocclusions in Dynamic Shape and Appearance Tracking for Obtaining Precise Shape

    KAUST Repository

    Yang, Yanchao

    2013-05-01

    We present a method to determine the precise shape of a dynamic object from video. This problem is fundamental to computer vision, and has a number of applications, for example, 3D video/cinema post-production, activity recognition and augmented reality. Current tracking algorithms that determine precise shape can be roughly divided into two categories: 1) Global statistics partitioning methods, where the shape of the object is determined by discriminating global image statistics, and 2) Joint shape and appearance matching methods, where a template of the object from the previous frame is matched to the next image. The former is limited in cases of complex object appearance and cluttered background, where global statistics cannot distinguish between the object and background. The latter is able to cope with complex appearance and a cluttered background, but is limited in cases of camera viewpoint change and object articulation, which induce self-occlusions and self-disocclusions of the object of interest. The purpose of this thesis is to model self-occlusion/disocclusion phenomena in a joint shape and appearance tracking framework. We derive a non-linear dynamic model of the object shape and appearance taking into account occlusion phenomena, which is then used to infer self-occlusions/disocclusions, shape and appearance of the object in a variational optimization framework. To ensure robustness to other unmodeled phenomena that are present in real-video sequences, the Kalman filter is used for appearance updating. Experiments show that our method, which incorporates the modeling of self-occlusion/disocclusion, increases the accuracy of shape estimation in situations of viewpoint change and articulation, and out-performs current state-of-the-art methods for shape tracking.

  6. Multi-shape active composites by 3D printing of digital shape memory polymers

    Science.gov (United States)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  7. Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas.

    Science.gov (United States)

    Kemnitz, Jana; Eckstein, Felix; Culvenor, Adam G; Ruhdorfer, Anja; Dannhauer, Torben; Ring-Dimitriou, Susanne; Sänger, Alexandra M; Wirth, Wolfgang

    2017-04-28

    To validate a semi-automated method for thigh muscle and adipose tissue cross-sectional area (CSA) segmentation from MRI. An active shape model (ASM) was trained using 113 MRI CSAs from the Osteoarthritis Initiative (OAI) and combined with an active contour model and thresholding-based post-processing steps. This method was applied to 20 other MRIs from the OAI and to baseline and follow-up MRIs from a 12-week lower-limb strengthening or endurance training intervention (n = 35 females). The agreement of semi-automated vs. previous manual segmentation was assessed using the Dice similarity coefficient and Bland-Altman analyses. Longitudinal changes observed in the training intervention were compared between semi-automated and manual segmentations. High agreement was observed between manual and semi-automated segmentations for subcutaneous fat, quadriceps and hamstring CSAs. With strength training, both the semi-automated and manual segmentation method detected a significant reduction in adipose tissue CSA and a significant gain in quadriceps, hamstring and adductor CSAs. With endurance training, a significant reduction in adipose tissue CSAs was observed with both methods. The semi-automated approach showed high agreement with manual segmentation of thigh muscle and adipose tissue CSAs and showed longitudinal training effects similar to that observed using manual segmentation.

  8. Artificial Neuron Modelling Based on Wave Shape

    Directory of Open Access Journals (Sweden)

    Kieran Greer

    2013-10-01

    Full Text Available This paper describes a new model for an artificial neural network processing unit or neuron. It is slightly different to a traditional feedforward network by the fact that it favours a mechanism of trying to match the wave-like ‘shape’ of the input with the shape of the output against specific value error corrections. The expectation is then that a best fit shape can be transposed into the desired output values more easily. This allows for notions of reinforcement through resonance and also the construction of synapses.

  9. Limit Shapes in the Six Vertex Model

    Science.gov (United States)

    Sridhar, Ananth

    The purpose of this thesis is to present some new results about the six-vertex model and dimer model, andi in particular some aspects of the limit shapes that form in the thermodynamic limit and the partial differential equations that arise in their study. Chapter 1 provides a detailed introduction to limit shape phenomena and its mathematics. Chapter 2 reviews basic facts about the six-vertex model and dimer model and their properties in the thermodynamic limit. Chapter 3 investigates the role of integrability of the six vertex model in the formation of limit shapes. By integrability we mean, on one hand the discrete integrability of the six-vertex model in the sense of commutative families of transfer matrices, and on the other hand the integrability in the continuum limit in the Liouville sense of Poisson commutative families of functions (integrals of motion) on the phase space. The main result is to show that the partial differential equations describing the limit shape have an infinite number of conserved quantities. Chapter 4 explains the results of the previous chapter in a more general setting. The main result is a straightforward theorem in Hamiltonian mechanics, which gives conditions for the Poisson commutativity of two Hamiltonian functions in terms of their principal action functions. It suggests a generalization of our previous results to other integrable lattice models, for example, the generalizations of the six-vertex model related to other Lie algebras. Chapter 5 studies the six-vertex model for a special class of weights called the stochastic six-vertex model. for which the six vertex model is closely related to interacting particle models. The main result of this chapter is the derivation for the partial differential equations for the height function of the stochastic 6-vertex model on the cylinder. Chapter 6 studies models at the intersection of discrete geometry and statistical mechanics. The main result is the asymptotic expansion of the

  10. Automatic shape model building based on principal geodesic analysis bootstrapping

    DEFF Research Database (Denmark)

    Dam, Erik B; Fletcher, P Thomas; Pizer, Stephen M

    2008-01-01

    We present a novel method for automatic shape model building from a collection of training shapes. The result is a shape model consisting of the mean model and the major modes of variation with a dense correspondence map between individual shapes. The framework consists of iterations where a medial...... shape representation is deformed into the training shapes followed by computation of the shape mean and modes of shape variation. In the first iteration, a generic shape model is used as starting point - in the following iterations in the bootstrap method, the resulting mean and modes from the previous...... iteration are used. Thereby, we gradually capture the shape variation in the training collection better and better. Convergence of the method is explicitly enforced. The method is evaluated on collections of artificial training shapes where the expected shape mean and modes of variation are known by design...

  11. A comparative analysis of leaf shape of wheat, barley and maize using an empirical shape model.

    Science.gov (United States)

    Dornbusch, Tino; Watt, Jillian; Baccar, Rim; Fournier, Christian; Andrieu, Bruno

    2011-04-01

    The phenotypes of grasses show differences depending on growth conditions and ontogenetic stage. Understanding these responses and finding suitable mathematical formalizations are an essential part of the development of plant and crop models. Usually, a marked change in architecture between juvenile and adult plants is observed, where dimension and shape of leaves are likely to change. In this paper, the plasticity of leaf shape is analysed according to growth conditions and ontogeny. Leaf shape of Triticum aestivum, Hordeum vulgare and Zea mays cultivars grown under varying conditions was measured using digital image processing. An empirical leaf shape model was fitted to measured shape data of single leaves. Obtained values of model parameters were used to analyse the patterns in leaf shape. The model was able to delineate leaf shape of all studied species. The model error was small. Differences in leaf shape between juvenile and adult leaves in T. aestivum and H. vulgare were observed. Varying growth conditions impacted leaf dimensions but did not impact leaf shape of the respective species. Leaf shape of the studied T. aestivum and H. vulgare cultivars was remarkably stable for a comparable ontogenetic stage (leaf rank), but differed between stages. Along with other aspects of grass architecture, leaf shape changed during the transition from juvenile to adult growth phase. Model-based analysis of leaf shape is a method to investigate these differences. Presented results can be integrated into architectural models of plant development to delineate leaf shape for different species, cultivars and environmental conditions.

  12. Active haptic detection and discrimination of shape

    NARCIS (Netherlands)

    Louw, S.; Kappers, A.M.L.; Koenderink, J.J.

    2002-01-01

    In previous research, we have shown that detection thresholds for Gaussian shapes increase with a power of 1.3 of spatial width. In the present three experiments, we generalized this finding to more complex shapes and to discrimination tasks. In Experiment 1, we found that the slope of the

  13. Modeling and Correspondence of Topologically Complex 3D Shapes

    OpenAIRE

    Alhashim, Ibraheem

    2015-01-01

    3D shape creation and modeling remains a challenging task especially for novice users. Many methods in the field of computer graphics have been proposed to automate the often repetitive and precise operations needed during the modeling of detailed shapes. This report surveys different approaches of shape modeling and correspondence especially for shapes exhibiting topological complexity. We focus on methods designed to help generate or process shapes with large number of interconnected compon...

  14. Active subthreshold dendritic conductances shape the local field potential.

    Science.gov (United States)

    Ness, Torbjørn V; Remme, Michiel W H; Einevoll, Gaute T

    2016-07-01

    The local field potential (LFP), the low-frequency part of extracellular potentials recorded in neural tissue, is often used for probing neural circuit activity. Interpreting the LFP signal is difficult, however. While the cortical LFP is thought mainly to reflect synaptic inputs onto pyramidal neurons, little is known about the role of the various subthreshold active conductances in shaping the LFP. By means of biophysical modelling we obtain a comprehensive qualitative understanding of how the LFP generated by a single pyramidal neuron depends on the type and spatial distribution of active subthreshold currents. For pyramidal neurons, the h-type channels probably play a key role and can cause a distinct resonance in the LFP power spectrum. Our results show that the LFP signal can give information about the active properties of neurons and imply that preferred frequencies in the LFP can result from those cellular properties instead of, for example, network dynamics. The main contribution to the local field potential (LFP) is thought to stem from synaptic input to neurons and the ensuing subthreshold dendritic processing. The role of active dendritic conductances in shaping the LFP has received little attention, even though such ion channels are known to affect the subthreshold neuron dynamics. Here we used a modelling approach to investigate the effects of subthreshold dendritic conductances on the LFP. Using a biophysically detailed, experimentally constrained model of a cortical pyramidal neuron, we identified conditions under which subthreshold active conductances are a major factor in shaping the LFP. We found that, in particular, the hyperpolarization-activated inward current, Ih , can have a sizable effect and cause a resonance in the LFP power spectral density. To get a general, qualitative understanding of how any subthreshold active dendritic conductance and its cellular distribution can affect the LFP, we next performed a systematic study with a

  15. Multi-shape active composites by 3D printing of digital shape memory polymers

    OpenAIRE

    Jiangtao Wu; Chao Yuan; Zhen Ding; Michael Isakov; Yiqi Mao; Tiejun Wang; Dunn, Martin L.; Jerry Qi, H.

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of...

  16. Volume Sculpting: Intuitive, Interactive 3D Shape Modelling

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    A system for interactive modelling of 3D shapes on a computer is presented. The system is intuitive and has a flat learning curve. It is especially well suited to the creation of organic shapes and shapes of complex topology. The interaction is simple; the user can either add new shape features...

  17. Airfoil Shape Optimization based on Surrogate Model

    Science.gov (United States)

    Mukesh, R.; Lingadurai, K.; Selvakumar, U.

    2017-10-01

    Engineering design problems always require enormous amount of real-time experiments and computational simulations in order to assess and ensure the design objectives of the problems subject to various constraints. In most of the cases, the computational resources and time required per simulation are large. In certain cases like sensitivity analysis, design optimisation etc where thousands and millions of simulations have to be carried out, it leads to have a life time of difficulty for designers. Nowadays approximation models, otherwise called as surrogate models (SM), are more widely employed in order to reduce the requirement of computational resources and time in analysing various engineering systems. Various approaches such as Kriging, neural networks, polynomials, Gaussian processes etc are used to construct the approximation models. The primary intention of this work is to employ the k-fold cross validation approach to study and evaluate the influence of various theoretical variogram models on the accuracy of the surrogate model construction. Ordinary Kriging and design of experiments (DOE) approaches are used to construct the SMs by approximating panel and viscous solution algorithms which are primarily used to solve the flow around airfoils and aircraft wings. The method of coupling the SMs with a suitable optimisation scheme to carryout an aerodynamic design optimisation process for airfoil shapes is also discussed.

  18. Airfoil Shape Optimization based on Surrogate Model

    Science.gov (United States)

    Mukesh, R.; Lingadurai, K.; Selvakumar, U.

    2018-02-01

    Engineering design problems always require enormous amount of real-time experiments and computational simulations in order to assess and ensure the design objectives of the problems subject to various constraints. In most of the cases, the computational resources and time required per simulation are large. In certain cases like sensitivity analysis, design optimisation etc where thousands and millions of simulations have to be carried out, it leads to have a life time of difficulty for designers. Nowadays approximation models, otherwise called as surrogate models (SM), are more widely employed in order to reduce the requirement of computational resources and time in analysing various engineering systems. Various approaches such as Kriging, neural networks, polynomials, Gaussian processes etc are used to construct the approximation models. The primary intention of this work is to employ the k-fold cross validation approach to study and evaluate the influence of various theoretical variogram models on the accuracy of the surrogate model construction. Ordinary Kriging and design of experiments (DOE) approaches are used to construct the SMs by approximating panel and viscous solution algorithms which are primarily used to solve the flow around airfoils and aircraft wings. The method of coupling the SMs with a suitable optimisation scheme to carryout an aerodynamic design optimisation process for airfoil shapes is also discussed.

  19. Robust Diffeomorphic Mapping via Geodesically Controlled Active Shapes

    Directory of Open Access Journals (Sweden)

    Daniel J. Tward

    2013-01-01

    Full Text Available This paper presents recent advances in the use of diffeomorphic active shapes which incorporate the conservation laws of large deformation diffeomorphic metric mapping. The equations of evolution satisfying the conservation law are geodesics under the diffeomorphism metric and therefore termed geodesically controlled diffeomorphic active shapes (GDAS. Our principal application in this paper is on robust diffeomorphic mapping methods based on parameterized surface representations of subcortical template structures. Our parametrization of the GDAS evolution is via the initial momentum representation in the tangent space of the template surface. The dimension of this representation is constrained using principal component analysis generated from training samples. In this work, we seek to use template surfaces to generate segmentations of the hippocampus with three data attachment terms: surface matching, landmark matching, and inside-outside modeling from grayscale T1 MR imaging data. This is formulated as an energy minimization problem, where energy describes shape variability and data attachment accuracy, and we derive a variational solution. A gradient descent strategy is employed in the numerical optimization. For the landmark matching case, we demonstrate the robustness of this algorithm as applied to the workflow of a large neuroanatomical study by comparing to an existing diffeomorphic landmark matching algorithm.

  20. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2013-01-01

    Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in our previous study.

  1. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  2. The time course of activation of object shape and shape+colour representations during memory retrieval.

    Directory of Open Access Journals (Sweden)

    Toby J Lloyd-Jones

    Full Text Available Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP study. The main findings were as follows: (1 we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2 we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3 these findings were apparent across both familiar (i.e., correctly coloured - yellow banana and novel (i.e., incorrectly coloured - blue strawberry objects; and (4 neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.

  3. The time course of activation of object shape and shape+colour representations during memory retrieval.

    Science.gov (United States)

    Lloyd-Jones, Toby J; Roberts, Mark V; Leek, E Charles; Fouquet, Nathalie C; Truchanowicz, Ewa G

    2012-01-01

    Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured - yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.

  4. Using Cross Correlation for Evaluating Shape Models of Asteroids

    Science.gov (United States)

    Palmer, Eric; Weirich, John; Barnouin, Olivier; Campbell, Tanner; Lambert, Diane

    2017-10-01

    The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) sample return mission to Bennu will be using optical navigation during its proximity operations. Optical navigation is heavily dependent upon having an accurate shape model to calculate the spacecraft's position and pointing. In support of this, we have conducted extensive testing of the accuracy and precision of shape models. OSIRIS-REx will be using the shape models generated by stereophotoclinometry (Gaskell, 2008). The most typical technique to evaluate models is to subtract two shape models and produce the differences in the height of each node between the two models. During flight, absolute accuracy cannot be determined; however, our testing allowed us to characterize both systematic and non-systematic errors. We have demonstrated that SPC provides an accurate and reproducible shape model (Weirich, et al., 2017), but also that shape model subtraction only tells part of the story. Our advanced shape model evaluation uses normalized cross-correlation to show a different aspect of quality of the shape model. In this method, we generate synthetic images using the shape model and calculate their cross-correlation with images of the truth asteroid. This technique tests both the shape model's representation of the topographic features (size, shape, depth and relative position), but also estimates of the surface's albedo. This albedo can be used to determine both Bond and geometric albedo of the surface (Palmer, et al., 2014). A high correlation score between the model's synthetic images and the truth images shows that the local topography and albedo has been well represented over the length scale of the image. A global evaluation, such as global shape and size, is best shown by shape model subtraction.

  5. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos

    2012-07-01

    We present an approach to synthesizing shapes from complex domains, by identifying new plausible combinations of components from existing shapes. Our primary contribution is a new generative model of component-based shape structure. The model represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation that can be effectively learned without supervision from a set of compatibly segmented shapes. We evaluate the model on a number of shape datasets with complex structural variability and demonstrate its application to amplification of shape databases and to interactive shape synthesis. © 2012 ACM 0730-0301/2012/08-ART55.

  6. Fourier Series, the DFT and Shape Modelling

    DEFF Research Database (Denmark)

    Skoglund, Karl

    2004-01-01

    This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...

  7. Numerical modeling of shape memory alloy linear actuator

    Science.gov (United States)

    Jani, Jaronie Mohd; Huang, Sunan; Leary, Martin; Subic, Aleksandar

    2015-09-01

    The demand for shape memory alloy (SMA) actuators in high-technology applications is increasing; however, there exist technical challenges to the commercial application of SMA actuator technologies, especially associated with actuation duration. Excessive activation duration results in actuator damage due to overheating while excessive deactivation duration is not practical for high-frequency applications. Analytical and finite difference equation models were developed in this work to predict the activation and deactivation durations and associated SMA thermomechanical behavior under variable environmental and design conditions. Relevant factors, including latent heat effect, induced stress and material property variability are accommodated. An existing constitutive model was integrated into the proposed models to generate custom SMA stress-strain curves. Strong agreement was achieved between the proposed numerical models and experimental results; confirming their applicability for predicting the behavior of SMA actuators with variable thermomechanical conditions.

  8. Automatic construction of statistical shape models using deformable simplex meshes with vector field convolution energy.

    Science.gov (United States)

    Wang, Jinke; Shi, Changfa

    2017-04-24

    In the active shape model framework, principal component analysis (PCA) based statistical shape models (SSMs) are widely employed to incorporate high-level a priori shape knowledge of the structure to be segmented to achieve robustness. A crucial component of building SSMs is to establish shape correspondence between all training shapes, which is a very challenging task, especially in three dimensions. We propose a novel mesh-to-volume registration based shape correspondence establishment method to improve the accuracy and reduce the computational cost. Specifically, we present a greedy algorithm based deformable simplex mesh that uses vector field convolution as the external energy. Furthermore, we develop an automatic shape initialization method by using a Gaussian mixture model based registration algorithm, to derive an initial shape that has high overlap with the object of interest, such that the deformable models can then evolve more locally. We apply the proposed deformable surface model to the application of femur statistical shape model construction to illustrate its accuracy and efficiency. Extensive experiments on ten femur CT scans show that the quality of the constructed femur shape models via the proposed method is much better than that of the classical spherical harmonics (SPHARM) method. Moreover, the proposed method achieves much higher computational efficiency than the SPHARM method. The experimental results suggest that our method can be employed for effective statistical shape model construction.

  9. Adding Curvature to Minimum Description Length Shape Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Ólafsdóttir, Hildur

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling seeks a compact description of a set of shapes in terms of the coordinates of marks on the shapes. It has been shown that the mark positions resulting from this optimisation to a large extent solve the so-called point correspondence...

  10. Modeling the shape hierarchy for visually guided grasping

    CSIR Research Space (South Africa)

    Rezai, O

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient...

  11. Propagating uncertainties in statistical model based shape prediction

    Science.gov (United States)

    Syrkina, Ekaterina; Blanc, Rémi; Székely, Gàbor

    2011-03-01

    This paper addresses the question of accuracy assessment and confidence regions estimation in statistical model based shape prediction. Shape prediction consists in estimating the shape of an organ based on a partial observation, due e.g. to a limited field of view or poorly contrasted images, and generally requires a statistical model. However, such predictions can be impaired by several sources of uncertainty, in particular the presence of noise in the observation, limited correlations between the predictors and the shape to predict, as well as limitations of the statistical shape model - in particular the number of training samples. We propose a framework which takes these into account and derives confidence regions around the predicted shape. Our method relies on the construction of two separate statistical shape models, for the predictors and for the unseen parts, and exploits the correlations between them assuming a joint Gaussian distribution. Limitations of the models are taken into account by jointly optimizing the prediction and minimizing the shape reconstruction error through cross-validation. An application to the prediction of the shape of the proximal part of the human tibia given the shape of the distal femur is proposed, as well as the evaluation of the reliability of the estimated confidence regions, using a database of 184 samples. Potential applications are reconstructive surgery, e.g. to assess whether an implant fits in a range of acceptable shapes, or functional neurosurgery when the target's position is not directly visible and needs to be inferred from nearby visible structures.

  12. Asteroid Shape Models Refined By Stellar Occultation Silhouettes

    Science.gov (United States)

    Durech, J.; Kaasalainen, M.

    2004-12-01

    We present shape models of asteroids 2 Pallas, 3 Juno, 39 Laetitia, 41 Daphne, 52 Europa, 85 Io, 129 Antigone, and 208 Lacrimosa derived from their lightcurves and stellar occultation silhouettes. Lightcurve inversion shape models and rotation states of those asteroids were already published. The occultation silhouettes give direct information about the size and shape of asteroid's projected cross-section. We process the lightcurve and occultation data simultaneously and derive more detailed shape models, remove possible ambiguities in the pole directions, and calibrate the models to absolute dimensions.

  13. Statistical Shape Modelling and Markov Random Field Restoration (invited tutorial and exercise)

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen

    This tutorial focuses on statistical shape analysis using point distribution models (PDM) which is widely used in modelling biological shape variability over a set of annotated training data. Furthermore, Active Shape Models (ASM) and Active Appearance Models (AAM) are based on PDMs and have proven...... themselves a generic holistic tool in various segmentation and simulation studies. Finding a basis of homologous points is a fundamental issue in PDMs which effects both alignment and decomposition of the training data, and may be aided by Markov Random Field Restoration (MRF) of the correspondence...... deformation field between shapes. The tutorial demonstrates both generative active shape and appearance models, and MRF restoration on 3D polygonized surfaces. ''Exercise: Spectral-Spatial classification of multivariate images'' From annotated training data this exercise applies spatial image restoration...

  14. Shape and space activities for children with mathematical learning difficulties

    CERN Document Server

    Lever, Mel

    2013-01-01

    This short series of three books - "Number", "Shape and Space" and "Measures and Handling Data" - gives teachers and parents a range of ideas to help children with mathematical learning difficulties get to grip with mathematics. In order to help these children effectively, statements and teaching points need to be rephrased and produced in a variety of ways, using concrete and pictorial aids. The activities in these books aim to help teachers to offer children a wide-ranging mathematical vocabulary - adding meaning to the words children already use rather than just adding words to their repertoire. These activities are flexible and can be used in order with children of a range of ages and ability levels. Activities focusing on shape and space include: symmetry; shapes and patterns; properties of shapes; points of the compass; angle and turn; measurement of angles and use of compass and protractor; and coordinates.

  15. Model Equations of Shape Memory Effect - Nitinol

    Directory of Open Access Journals (Sweden)

    Ion Vela

    2010-01-01

    Full Text Available Even it has been already confirmed that SMA’s have high potential for robotic actuators, actuators included in space robotics, underwater robotics, robotics for logistics, safety, as well as “green robotics” (robotics for the environment, energy conservation, sustainable development or agriculture, the number of applications of SMA-based actuators is still quite small, especially in applications in which their large strains, high specific work output and structural integration potential are useful,. The paper presents a formulated mathematical model calculated for binary SMA (Ni-Ti, helpful to estimate the stress distribution along with the transformation ratio of a SMA active element.

  16. Marine soundscape shaped by fishing activity.

    Science.gov (United States)

    Coquereau, Laura; Lossent, Julie; Grall, Jacques; Chauvaud, Laurent

    2017-01-01

    Marine communities face anthropogenic pressures that degrade ecosystems. Because underwater soundscapes carry information about habitat quality, we explored whether destructive impacts of fishing could be evaluated via the soundscape. Maerl beds are recognized as biodiversity hotspots and they experience major worldwide degradation owing to fishing. We collected field acoustic recordings in maerl beds exposed to different fishing practices. We found that unfished maerl beds were threefold louder and exhibited sound frequencies more diversified than those recorded in fished maerl beds. Analyses of associated fauna samples indicated that snapping shrimps provided a major contribution to the maerl bed soundscape. Moreover, sea urchins and squat lobsters most likely contributed to differences between the soundscapes of unfished and fished maerl beds. Our results supported the idea that the soundscape can provide valuable information on maerl bed ecosystem health related to fishing activity.

  17. Objective models of compressed breast shapes undergoing mammography

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Steve Si Jia [Department of Biomedical Engineering, Georgia Institute of Technology and Emory University and Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Patel, Bhavika [Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sechopoulos, Ioannis [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States)

    2013-03-15

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  18. Learning shapes spontaneous activity itinerating over memorized states.

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2011-03-08

    Learning is a process that helps create neural dynamical systems so that an appropriate output pattern is generated for a given input. Often, such a memory is considered to be included in one of the attractors in neural dynamical systems, depending on the initial neural state specified by an input. Neither neural activities observed in the absence of inputs nor changes caused in the neural activity when an input is provided were studied extensively in the past. However, recent experimental studies have reported existence of structured spontaneous neural activity and its changes when an input is provided. With this background, we propose that memory recall occurs when the spontaneous neural activity changes to an appropriate output activity upon the application of an input, and this phenomenon is known as bifurcation in the dynamical systems theory. We introduce a reinforcement-learning-based layered neural network model with two synaptic time scales; in this network, I/O relations are successively memorized when the difference between the time scales is appropriate. After the learning process is complete, the neural dynamics are shaped so that it changes appropriately with each input. As the number of memorized patterns is increased, the generated spontaneous neural activity after learning shows itineration over the previously learned output patterns. This theoretical finding also shows remarkable agreement with recent experimental reports, where spontaneous neural activity in the visual cortex without stimuli itinerate over evoked patterns by previously applied signals. Our results suggest that itinerant spontaneous activity can be a natural outcome of successive learning of several patterns, and it facilitates bifurcation of the network when an input is provided.

  19. Learning shapes spontaneous activity itinerating over memorized states.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Learning is a process that helps create neural dynamical systems so that an appropriate output pattern is generated for a given input. Often, such a memory is considered to be included in one of the attractors in neural dynamical systems, depending on the initial neural state specified by an input. Neither neural activities observed in the absence of inputs nor changes caused in the neural activity when an input is provided were studied extensively in the past. However, recent experimental studies have reported existence of structured spontaneous neural activity and its changes when an input is provided. With this background, we propose that memory recall occurs when the spontaneous neural activity changes to an appropriate output activity upon the application of an input, and this phenomenon is known as bifurcation in the dynamical systems theory. We introduce a reinforcement-learning-based layered neural network model with two synaptic time scales; in this network, I/O relations are successively memorized when the difference between the time scales is appropriate. After the learning process is complete, the neural dynamics are shaped so that it changes appropriately with each input. As the number of memorized patterns is increased, the generated spontaneous neural activity after learning shows itineration over the previously learned output patterns. This theoretical finding also shows remarkable agreement with recent experimental reports, where spontaneous neural activity in the visual cortex without stimuli itinerate over evoked patterns by previously applied signals. Our results suggest that itinerant spontaneous activity can be a natural outcome of successive learning of several patterns, and it facilitates bifurcation of the network when an input is provided.

  20. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  1. Conditional shape models for cardiac motion estimation

    DEFF Research Database (Denmark)

    Metz, Coert; Baka, Nora; Kirisli, Hortense

    2010-01-01

    alignment of pre-operative CTA data with intra-operative X-ray imaging. Due to a trend towards prospective electrocardiogram gating techniques, 4D imaging data, from which motion information could be extracted, is not commonly available. The prediction of motion from shape information is thus relevant...

  2. Modeling self-occlusions in dynamic shape and appearance tracking

    KAUST Repository

    Yang, Yanchao

    2013-12-01

    We present a method to track the precise shape of a dynamic object in video. Joint dynamic shape and appearance models, in which a template of the object is propagated to match the object shape and radiance in the next frame, are advantageous over methods employing global image statistics in cases of complex object radiance and cluttered background. In cases of complex 3D object motion and relative viewpoint change, self-occlusions and disocclusions of the object are prominent, and current methods employing joint shape and appearance models are unable to accurately adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Experiments on video exhibiting occlusion/dis-occlusion, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy compared to recent methods employing joint shape/appearance models or employing global statistics. © 2013 IEEE.

  3. GASKELL TETHYS SHAPE MODEL V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The shape model of Tethys derived by Robert Gaskell from Cassini Imaging Science Subsystem narrow and wide angle camera (ISSNA and ISSWA) images. The model is...

  4. GASKELL PHOEBE SHAPE MODEL V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The shape model of Phoebe derived by Robert Gaskell from Cassini images. The model is provided in the implicitly connected quadrilateral (ICQ) format. This version...

  5. GASKELL PHOEBE SHAPE MODEL V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The shape model of Phoebe derived by Robert Gaskell from Cassini images. The model is provided in the implicitly connected quadrilateral (ICQ) format. This version...

  6. Mathematical and computer modeling of component surface shaping

    Science.gov (United States)

    Lyashkov, A.

    2016-04-01

    The process of shaping technical surfaces is an interaction of a tool (a shape element) and a component (a formable element or a workpiece) in their relative movements. It was established that the main objects of formation are: 1) a discriminant of a surfaces family, formed by the movement of the shape element relatively the workpiece; 2) an enveloping model of the real component surface obtained after machining, including transition curves and undercut lines; 3) The model of cut-off layers obtained in the process of shaping. When modeling shaping objects there are a lot of insufficiently solved or unsolved issues that make up a single scientific problem - a problem of qualitative shaping of the surface of the tool and then the component surface produced by this tool. The improvement of known metal-cutting tools, intensive development of systems of their computer-aided design requires further improvement of the methods of shaping the mating surfaces. In this regard, an important role is played by the study of the processes of shaping of technical surfaces with the use of the positive aspects of analytical and numerical mathematical methods and techniques associated with the use of mathematical and computer modeling. The author of the paper has posed and has solved the problem of development of mathematical, geometric and algorithmic support of computer-aided design of cutting tools based on computer simulation of the shaping process of surfaces.

  7. Confidence of model based shape reconstruction from sparse data

    DEFF Research Database (Denmark)

    Baka, N.; de Bruijne, Marleen; Reiber, J. H. C.

    2010-01-01

    Statistical shape models (SSM) are commonly applied for plausible interpolation of missing data in medical imaging. However, when fitting a shape model to sparse information, many solutions may fit the available data. In this paper we derive a constrained SSM to fit noisy sparse input landmarks...... and assign a confidence value to the resulting reconstructed shape. An evaluation study is performed to compare three methods used for sparse SSM fitting w.r.t. specificity, generalization ability, and correctness of estimated confidence limits with an increasing amount of input information. We find...... that the proposed constrained shape model outperforms the other models, is robust against the selection and amount of sparse information, and indicates the shape confidence well....

  8. Object detection via structural feature selection and shape model.

    Science.gov (United States)

    Zhang, Huigang; Bai, Xiao; Zhou, Jun; Cheng, Jian; Zhao, Huijie

    2013-12-01

    In this paper, we propose an approach for object detection via structural feature selection and part-based shape model. It automatically learns a shape model from cluttered training images without need to explicitly use bounding boxes on objects. Our approach first builds a class-specific codebook of local contour features, and then generates structural feature descriptors by combining context shape information. These descriptors are robust to both within-class variations and scale changes. Through exploring pairwise image matching using fast earth mover's distance, feature weights can be iteratively updated. Those discriminative foreground features are assigned high weights and then selected to build a part-based shape model. Finally, object detection is performed by matching each testing image with this model. Experiments show that the proposed method is very effective. It has achieved comparable performance to the state-of-the-art shape-based detection methods, but requires much less training information.

  9. Irregular Shaped Building Design Optimization with Building Information Modelling

    OpenAIRE

    Lee, Xia Sheng; Yan, Chung Pui; See, Zi Siang

    2016-01-01

    This research is to recognise the function of Building Information Modelling (BIM) in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or ...

  10. Coupled Shape Model Segmentation in Pig Carcasses

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Larsen, Rasmus; Ersbøll, Bjarne Kjær

    2006-01-01

    In this paper we are concerned with multi-object segmentation. For each object we will train a level set function based shape prior from a sample set of outlines. The outlines are aligned in a multi-resolution scheme wrt. an Euclidean similarity transformation in order to maximize the overlap...... the initialization of the next search from already found objects; 2) all objects are found simultaneously and a repelling force is introduced in order to avoid overlap between outlines in the solution. The methods are applied to segmentation of cross sections of muscles in slices of CT scans of pig backs for quality...

  11. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    Science.gov (United States)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  12. 3D shape modeling by integration visual and tactile cues

    Science.gov (United States)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2015-10-01

    With the progress in CAD (Computer Aided Design) systems, many mechanical components can be designed efficiently with high precision. But, such a system is unfit for some organic shapes, for example, a toy. In this paper, an easy way to dealing with such shapes is presented, combing visual perception with tangible interaction. The method is divided into three phases: two tangible interaction phases and one visual reconstruction. In the first tangible phase, a clay model is used to represent the raw shape, and the designer can change the shape intuitively with his hands. Then the raw shape is scanned into a digital volume model through a low cost vision system. In the last tangible phase, a desktop haptic device from SensAble is used to refine the scanned volume model and convert it into a surface model. A physical clay model and a virtual clay mode are all used in this method to deal with the main shape and the details respectively, and the vision system is used to bridge the two tangible phases. The vision reconstruction system is only made of a camera to acquire raw shape through shape from silhouettes method. All of the systems are installed on a single desktop, make it convenient for designers. The vision system details and a design example are presented in the papers.

  13. Limiting Shapes for Deterministic Centrally Seeded Growth Models

    NARCIS (Netherlands)

    Fey-den Boer, Anne; Redig, Frank

    2007-01-01

    We study the rotor router model and two deterministic sandpile models. For the rotor router model in ℤ d , Levine and Peres proved that the limiting shape of the growth cluster is a sphere. For the other two models, only bounds in dimension 2 are known. A unified approach for these models with a

  14. Shape modelling using Markov random field restoration of point correspondences.

    Science.gov (United States)

    Paulsen, Rasmus R; Hilger, Klaus B

    2003-07-01

    A method for building statistical point distribution models is proposed. The novelty in this paper is the adaption of Markov random field regularization of the correspondence field over the set of shapes. The new approach leads to a generative model that produces highly homogeneous polygonized shapes and improves the capability of reconstruction of the training data. Furthermore, the method leads to an overall reduction in the total variance of the point distribution model. Thus, it finds correspondence between semi-landmarks that are highly correlated in the shape tangent space. The method is demonstrated on a set of human ear canals extracted from 3D-laser scans.

  15. Shape Modelling Using Markov Random Field Restoration of Point Correspondences

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Hilger, Klaus Baggesen

    2003-01-01

    A method for building statistical point distribution models is proposed. The novelty in this paper is the adaption of Markov random field regularization of the correspondence field over the set of shapes. The new approach leads to a generative model that produces highly homogeneous polygonized...... shapes and improves the capability of reconstruction of the training data. Furthermore, the method leads to an overall reduction in the total variance of the point distribution model. Thus, it finds correspondence between semilandmarks that are highly correlated in the shape tangent space. The method...

  16. Shape 4.0: 3D Shape Modeling and Processing Using Semantics.

    Science.gov (United States)

    Spagnuolo, Michela

    2016-01-01

    In the last decade, sensor, communication, and computing technologies have advanced rapidly, producing dramatic changes in our daily lives and in a variety of application domains. Emerging technologies are leading us to a gradual, but inescapable integration of our material and digital realities and the advent of cyber-physical worlds. Although attaining visual realism is within the grasp of current 3D modeling approaches, it is less clear whether current modeling techniques will accommodate the needs of human communication and of the applications that we can already envisage in those futuristic worlds. Inspired by the evolution trends of the Web, this article describes the evolution of shape modeling from the Shape 1.0 geometry-only, mesh-based stage to the forthcoming semantics-driven Shape 4.0 era.

  17. Analysis for Cellinoid shape model in inverse process from lightcurves

    Science.gov (United States)

    Lu, Xiao-Ping; Ip, Wing-Huen; Huang, Xiang-Jie; Zhao, Hai-Bin

    2017-01-01

    Based on the special shape first introduced by Alberto Cellino, which consists of eight ellipsoidal octants with the constraint that adjacent octants must have two identical semi-axes, an efficient algorithm to derive the physical parameters, such as the rotational period, pole orientation, and overall shape from either lightcurves or sparse photometric data of asteroids, is developed by Lu et al. and named as 'Cellinoid' shape model. For thoroughly investigating the relationship between the morphology of the synthetic lightcurves generated by the Cellinoid shape and its six semi-axes as well as rotational period and pole, the numerical tests are implemented to compare the synthetic lightcurves generated by three Cellinoid models with different parameters in this article. Furthermore, from the synthetic lightcurves generated by two convex shape models of (6) Hebe and (4179) Toutatis, the inverse process based on Cellinoid shape model is applied to search the best-fit parameters. Especially, for better simulating the real observations, the synthetic lightcurves are generated under the orbit limit of the two asteroids. By comparing the results derived from synthetic lightcurves observed in one apparition and multiple apparitions, the performance of Cellinoid shape model is confirmed and the suggestions for observations are presented. Finally, the whole process is also applied to real observed lightcurves of (433) Eros and the derived results are consistent with the known results.

  18. Theory of simple biochemical ``shape recognition'' via diffusion from activator coated nanoshapes

    Science.gov (United States)

    Daniels, D. R.

    2008-09-01

    Inspired by recent experiments, we model the shape sensitivity, via a typical threshold initiation response, of an underlying complex biochemical reaction network to activator coated nanoshapes. Our theory re-emphasizes that shape effects can be vitally important for the onset of functional behavior in nanopatches and nanoparticles. For certain critical or particular shapes, activator coated nanoshapes do not evoke a threshold response in a complex biochemical network setting, while for different critical or specific shapes, the threshold response is rapidly achieved. The model thus provides a general theoretical understanding for how activator coated nanoshapes can enable a chemical system to perform simple "shape recognition," with an associated "all or nothing" response. The novel and interesting cases of the chemical response due to a nanoshape that shrinks with time is additionally considered, as well as activator coated nanospheres. Possible important applications of this work include the initiation of blood clotting by nanoshapes, nanoshape effects in nanocatalysis, physiological toxicity to nanoparticles, as well as nanoshapes in nanomedicine, drug delivery, and T cell immunological response. The aim of the theory presented here is that it inspires further experimentation on simple biochemical shape recognition via diffusion from activator coated nanoshapes.

  19. STOOKE SMALL BODY SHAPE MODELS V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Philip Stooke shape models for 243 Ida, 253 Mathilde, 951 Gaspra, comet Halley, J5 Amalthea, J14 Thebe, N7 Larissa, N8 Proteus, S10 Janus, S11...

  20. Models for Metal Hydride Particle Shape, Packing, and Heat Transfer

    OpenAIRE

    Smith, Kyle C.; Fisher, Timothy S.

    2012-01-01

    A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decrepitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structu...

  1. Fast Newton active appearance models

    NARCIS (Netherlands)

    Kossaifi, Jean; Tzimiropoulos, Georgios; Pantic, Maja

    2014-01-01

    Active Appearance Models (AAMs) are statistical models of shape and appearance widely used in computer vision to detect landmarks on objects like faces. Fitting an AAM to a new image can be formulated as a non-linear least-squares problem which is typically solved using iterative methods. Owing to

  2. Shape memory activation can affect cell seeding of shape memory polymer scaffolds designed for tissue engineering and regenerative medicine.

    Science.gov (United States)

    Wang, Jing; Brasch, Megan E; Baker, Richard M; Tseng, Ling-Fang; Peña, Alexis N; Henderson, James H

    2017-08-31

    The ability of a three-dimensional scaffold to support cell seeding prior to implantation is a critical criterion for many scaffold-based tissue engineering and regenerative medicine strategies. Shape memory polymer functionality may present important new opportunities and challenges in cell seeding, but the extent to which shape memory activation can positively or negatively affect cell seeding has yet to be reported. The goal of this study was to determine whether shape memory activation can affect cell seeding. The hypothesis was that shape memory activation of porous scaffolds during cell seeding can affect both the number of cells seeded in a scaffold and the distribution (in terms of average infiltration distance) of cells following seeding. Here, we used a porous shape memory foam scaffold programmed to expand when triggered to study cell number and average cell infiltration distance following shape memory activation. We found that shape memory activation can affect both the number of cells and the average cell infiltration distance. The effect was found to be a function of rate of shape change and scaffold pore interconnectivity. Magnitude of shape change had no effect. Only reductions in cell number and infiltration distance (relative to control and benchmark) were observed. The findings suggest that strategies for tissue engineering and regenerative medicine that involve shape memory activation in the presence of a cell-containing medium in vitro or in vivo should consider how recovery rate and scaffold pore interconnectivity may ultimately impact cell seeding.

  3. Shape modeling and analysis with entropy-based particle systems.

    Science.gov (United States)

    Cates, Joshua; Fletcher, P Thomas; Styner, Martin; Shenton, Martha; Whitaker, Ross

    2007-01-01

    This paper presents a new method for constructing compact statistical point-based models of ensembles of similar shapes that does not rely on any specific surface parameterization. The method requires very little preprocessing or parameter tuning, and is applicable to a wider range of problems than existing methods, including nonmanifold surfaces and objects of arbitrary topology. The proposed method is to construct a point-based sampling of the shape ensemble that simultaneously maximizes both the geometric accuracy and the statistical simplicity of the model. Surface point samples, which also define the shape-to-shape correspondences, are modeled as sets of dynamic particles that are constrained to lie on a set of implicit surfaces. Sample positions are optimized by gradient descent on an energy function that balances the negative entropy of the distribution on each shape with the positive entropy of the ensemble of shapes. We also extend the method with a curvature-adaptive sampling strategy in order to better approximate the geometry of the objects. This paper presents the formulation; several synthetic examples in two and three dimensions; and an application to the statistical shape analysis of the caudate and hippocampus brain structures from two clinical studies.

  4. Evaluation of an anthropometric shape model of the human scalp.

    Science.gov (United States)

    Lacko, Daniël; Huysmans, Toon; Parizel, Paul M; De Bruyne, Guido; Verwulgen, Stijn; Van Hulle, Marc M; Sijbers, Jan

    2015-05-01

    This paper presents the evaluation a 3D shape model of the human head. A statistical shape model of the head is created from a set of 100 MRI scans. The ability of the shape model to predict new head shapes is evaluated by considering the prediction error distributions. The effect of using intuitive anthropometric measurements as parameters is examined and the sensitivity to measurement errors is determined. Using all anthropometric measurements, the average prediction error is 1.60 ± 0.36 mm, which shows the feasibility of the new parameters. The most sensitive measurement is the ear height, the least sensitive is the arc length. Finally, two applications of the anthropometric shape model are considered: the study of the male and female population and the design of a brain-computer interface headset. The results show that an anthropometric shape model can be a valuable tool for both research and design. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. Aeroelastic Modeling of Elastically Shaped Aircraft Concept via Wing Shaping Control for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; James Urnes, Sr.

    2012-01-01

    Lightweight aircraft design has received a considerable attention in recent years as a means for improving cruise efficiency. Reducing aircraft weight results in lower lift requirements which directly translate into lower drag, hence reduced engine thrust requirements during cruise. The use of lightweight materials such as advanced composite materials has been adopted by airframe manufacturers in current and future aircraft. Modern lightweight materials can provide less structural rigidity while maintaining load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Abstract This paper describes a recent aeroelastic modeling effort for an elastically shaped aircraft concept (ESAC). The aircraft model is based on the rigid-body generic transport model (GTM) originally developed at NASA Langley Research Center. The ESAC distinguishes itself from the GTM in that it is equipped with highly flexible wing structures as a weight reduction design feature. More significantly, the wings are outfitted with a novel control effector concept called variable camber continuous trailing edge (VCCTE) flap system for active control of wing aeroelastic deflections to optimize the local angle of attack of wing sections for improved aerodynamic efficiency through cruise drag reduction and lift enhancement during take-off and landing. The VCCTE flap is a multi-functional and aerodynamically efficient device capable of achieving high lift-to-drag ratios. The flap system is comprised of three chordwise segments that form the variable camber feature of the flap and multiple spanwise segments that form a piecewise continuous trailing edge. By configuring the flap camber and trailing edge shape, drag reduction could be

  6. Modelling the shape hierarchy for visually guided grasping

    Directory of Open Access Journals (Sweden)

    Omid eRezai

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modelled shape tuning in visual AIP neurons and its relationship with curvature and gradient information from the caudal intraparietal area (CIP. The main goal was to gain insight into the kinds of shape parameterizations that can account for AIP tuning and that are consistent with both the inputs to AIP and the role of AIP in grasping. We first experimented with superquadric shape parameters. We considered superquadrics because they occupy a role in robotics that is similar to AIP, in that superquadric fits are derived from visual input and used for grasp planning. We also experimented with an alternative shape parameterization that was based on an Isomap dimension reduction of spatial derivatives of depth (i.e. distance from the observer to the object surface. We considered an Isomap-based model because its parameters lacked discontinuities between similar shapes. When we matched the dimension of the Isomap to the number of superquadric parameters, the superquadric model fit the AIP data somewhat more closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that the Isomap parameters could be approximated much more accurately than superquadric parameters by feedforward neural networks with CIP-like inputs. We conclude that Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP, provide a promising model of AIP electrophysiology data. However (in contrast with superquadrics further work is needed to test whether such shape parameterizations actually provide an effective basis for grasp control.

  7. Error Model and Compensation of Bell-Shaped Vibratory Gyro

    OpenAIRE

    Zhong Su; Ning Liu; Qing Li

    2015-01-01

    A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error source...

  8. Ideal Coulomb Plasma Approximation in Line Shape Models: Problematic Issues

    Directory of Open Access Journals (Sweden)

    Joel Rosato

    2014-06-01

    Full Text Available In weakly coupled plasmas, it is common to describe the microfield using a Debye model. We examine here an “artificial” ideal one-component plasma with an infinite Debye length, which has been used for the test of line shape codes. We show that the infinite Debye length assumption can lead to a misinterpretation of numerical simulations results, in particular regarding the convergence of calculations. Our discussion is done within an analytical collision operator model developed for hydrogen line shapes in near-impact regimes. When properly employed, this model can serve as a reference for testing the convergence of simulations.

  9. Shape Modeling of a Concentric-tube Continuum Robot

    DEFF Research Database (Denmark)

    Bai, Shaoping; Xing, Charles Chuhao

    2012-01-01

    is modeled on the basis of energy approach for both the in-plane and out-plane cases. The torsional influences on the shape of the concentric-tube robots are considered. An experimental device was build for the model validation. The results of simulation and experiments are included and analyzed.......Concentric-tube continuum robots feature with simple and compact structures and have a great potential in medical applications. The paper is concerned with the shape modeling of a type of concentric-tube continuum robot built with a collection of super-elastic NiTiNol tubes. The mechanics...

  10. An implicit shape model based approach to identify armed persons

    Science.gov (United States)

    Becker, Stefan; Jüngling, Kai

    2011-06-01

    In addition to detecting and tracking persons via video surveillance in public spaces like airports and train stations, another important aspect of a situation analysis is the appearance of objects in the periphery of a person. Not only from a military perspective, in certain environments, an unidentified armed person can be an indicator for a potential threat. In order to become aware of an unidentified armed person and to initiate counteractive measures, the ability to identify persons carrying weapons is needed. In this paper we present a classification approach, which fits into an Implicit Shape Model (ISM) based person detection and is capable to differentiate between unarmed persons and persons in an aiming body posture. The approach relies on SIFT features and thus is completely independent of sensor-specific features which might only be perceivable in the visible spectrum. For person representation and detection, a generalized appearance codebook is used. Compared to a stand-alone person detection strategy with ISM, an additional training step is introduced that allows interpretation of a person hypothesis delivered by the ISM. During training, the codebook activations and positions of participated features are stored for the desired classes, in this case, persons in an aiming posture and unarmed persons. With the stored information, one is able to calculate weight factors for every feature participating in a person hypothesis in order to derive a specific classification model. The introduced model is validated using an infrared dataset which shows persons in aiming and non-aiming body postures from different angles.

  11. Multi-region Statistical Shape Model for Cochlear Implantation

    DEFF Research Database (Denmark)

    Romera, Jordi; Kjer, H. Martin; Piella, Gemma

    2016-01-01

    Statistical shape models are commonly used to analyze the variability between similar anatomical structures and their use is established as a tool for analysis and segmentation of medical images. However, using a global model to capture the variability of complex structures is not enough to achie...

  12. Modeling particle shape-dependent dynamics in nanomedicine.

    Science.gov (United States)

    Shah, Samar; Liu, Yaling; Hu, Walter; Gao, Jinming

    2011-02-01

    One of the major challenges in nanomedicine is to improve nanoparticle cell selectivity and adhesion efficiency through designing functionalized nanoparticles of controlled sizes, shapes, and material compositions. Recent data on cylindrically shaped filomicelles are beginning to show that non-spherical particles remarkably improved the biological properties over spherical counterpart. Despite these exciting advances, non-spherical particles have not been widely used in nanomedicine applications due to the lack of fundamental understanding of shape effect on targeting efficiency. This paper intends to investigate the shape-dependent adhesion kinetics of non-spherical nanoparticles through computational modeling. The ligand-receptor binding kinetics is coupled with Brownian dynamics to study the dynamic delivery process of nanorods under various vascular flow conditions. The influences of nanoparticle shape, ligand density, and shear rate on adhesion probability are studied. Nanorods are observed to contact and adhere to the wall much easier than their spherical counterparts under the same configuration due to their tumbling motion. The binding probability of a nanorod under a shear rate of 8 s(-1) is found to be three times higher than that of a nanosphere with the same volume. The particle binding probability decreases with increased flow shear rate and channel height. The Brownian motion is found to largely enhance nanoparticle binding. Results from this study contribute to the fundamental understanding and knowledge on how particle shape affects the transport and targeting efficiency of nanocarriers, which will provide mechanistic insights on the design of shape-specific nanomedicine for targeted drug delivery applications.

  13. Thermoelectric control of shape memory alloy microactuators: a thermal model

    Science.gov (United States)

    Abadie, J.; Chaillet, Nicolas; Lexcellent, Christian; Bourjault, Alain

    1999-06-01

    Microtechnologies and microsystems engineering use new active materials. These materials are interesting to realize microactuators and microsensors. In this category of materials, Shape Memory Alloys (SMA) are good candidates for microactuation. SMA wires, or thin plates, can be used as active material in microfingers. These microstructures are able to provide very important forces, but have low dynamic response, especially for cooling, in confined environment. The control of the SMA phase transformations, and then the mechanical power generation, is made by the temperature. The Joule effect is an easy and efficiency way to heat the SMA wires, but cooling is not so easy. The dynamic response of the actuator depends on cooling capabilities. The thermal convection and conduction are the traditional ways to cool the SMA, but have limitations for microsystems. We are looking for a reversible way of heating and cooling SMA microactuators, based on the thermoelectric effects. Using Peltier effect, a positive or a negative electrical courant is able to pump or produce heat, in the SMA actuator. A physical model based on thermal exchanges between a Nickel/Titanium (NiTi) SMA, and Bismuth/Telluride (Te3Bi2) thermoelectric material has been developed. For simulation, we use a numerical resolution of our model, with finite elements, which takes into account the Peltier effect, the Joule effect, the convection, the conduction and the phase transformation of the SMA. We have also developed the corresponding experimental system, with two thermoelectric junctions, where the SMA actuator is one of the element of each junction. In this paper, the physical model and its numerical resolution are given, the experimental system used to validate the model is described, and experimental results are shown.

  14. A parametric model of child body shape in seated postures.

    Science.gov (United States)

    Park, Byoung-Keon D; Ebert, Sheila; Reed, Matthew P

    2017-07-04

    The shape of the current physical and computational surrogates of children used for restraint system assessments is based largely on standard anthropometric dimensions. These scalar dimensions provide valuable information on the overall size of the individual but do not provide good guidance on shape or posture. This study introduced the development of a parametric model that statistically predicts individual child body shapes in seated postures with a few given parameters. Surface geometry data from a laser scanner of children ages 3 to 11 (n = 135) were standardized by a 2-level fitting method using intermediate templates. The standardized data were analyzed by principal component analysis (PCA) to efficiently describe the body shape variance. Parameters such as stature, body mass index, erect sitting height, and 2 posture variables related to torso recline and lumbar spine flexion were associated with the PCA model using regression. When the original scan data were compared with the predictions of the model using the given subject dimensions, the average root mean square error for the torso was 9.5 mm, and the 95th percentile error was 17.35 mm. For the first time, a statistical model of child body shapes in seated postures is available. This parametric model allows the generation of an infinite number of virtual children spanning a wide range of body sizes and postures. The results have broad applicability in product design and safety analysis. Future work is needed to improve the representation of hands and feet and to extend the age range of the model. The model presented in this article is publicly available online through HumanShape.org.

  15. A whole body statistical shape model for radio frequency simulation.

    Science.gov (United States)

    Lee, Su-Lin; Ali, Khaleda; Brizzi, Alessio; Keegan, Jennifer; Hao, Yang; Yang, Guang-Zhong

    2011-01-01

    The development of ultra low power wireless sensors for customized wearable and implantable medical devices requires patient specific models for radio frequency simulation to understand wave propagation in the body. In practice, the creation of a patient specific whole-body model is difficult and time consuming to create. It is therefore necessary to establish a method for studying a population in a statistical manner. In this paper, we present a statistical shape model for the whole body for RF simulation. It is built from 10 male and 10 female subjects of varying size and height. This model has the ability to instantiate a new surface mesh with the parameters allowed by the training set. This model would provide shapes of varying sizes for studies, without the requirement of obtaining subject specific whole body models. Results from finite-differences time-domain simulation are presented on the extreme shapes from the model and demonstrate the need for a full understanding of the range in body shapes.

  16. Quantitative modeling of transcription factor binding specificities using DNA shape.

    Science.gov (United States)

    Zhou, Tianyin; Shen, Ning; Yang, Lin; Abe, Namiko; Horton, John; Mann, Richard S; Bussemaker, Harmen J; Gordân, Raluca; Rohs, Remo

    2015-04-14

    DNA binding specificities of transcription factors (TFs) are a key component of gene regulatory processes. Underlying mechanisms that explain the highly specific binding of TFs to their genomic target sites are poorly understood. A better understanding of TF-DNA binding requires the ability to quantitatively model TF binding to accessible DNA as its basic step, before additional in vivo components can be considered. Traditionally, these models were built based on nucleotide sequence. Here, we integrated 3D DNA shape information derived with a high-throughput approach into the modeling of TF binding specificities. Using support vector regression, we trained quantitative models of TF binding specificity based on protein binding microarray (PBM) data for 68 mammalian TFs. The evaluation of our models included cross-validation on specific PBM array designs, testing across different PBM array designs, and using PBM-trained models to predict relative binding affinities derived from in vitro selection combined with deep sequencing (SELEX-seq). Our results showed that shape-augmented models compared favorably to sequence-based models. Although both k-mer and DNA shape features can encode interdependencies between nucleotide positions of the binding site, using DNA shape features reduced the dimensionality of the feature space. In addition, analyzing the feature weights of DNA shape-augmented models uncovered TF family-specific structural readout mechanisms that were not revealed by the DNA sequence. As such, this work combines knowledge from structural biology and genomics, and suggests a new path toward understanding TF binding and genome function.

  17. Photometry and shape modeling of Mars crosser asteroid (1011 Laodamia

    Directory of Open Access Journals (Sweden)

    Apostolovska G.

    2014-01-01

    Full Text Available An analysis of photometric observations of Mars crosser asteroid 1011 Laodamia conducted at Bulgarian National Astronomical Observatory Rozhen over a twelve year interval (2002, 2003, 2004, 2006, 2007, 2008, 2011, 2012 and 2013 is made. Based on the obtained lightcurves the spin vector, sense of rotation, and preliminary shape model of (1011 Laodamia have been determined using the lightcurve inversion method. The aim of this investigation is to increase the set of asteroids with known spin and shape parameters and to contribute in improving the model in combination with other techniques and sparse data produced by photometric asteroid surveys such as Pan-STARRS or GAIA.

  18. Active shape control of composite structures under thermal loading

    Science.gov (United States)

    Binette, P.; Dano, M.-L.; Gendron, G.

    2009-02-01

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon-epoxy face sheets. Macro-fiber composite (MFC™) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC™ actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC™ actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC™ actuators can compensate thermal distortion at all times, and that this is an efficient methodology.

  19. Remote activation of nanomagnetite reinforced shape memory polymer foam

    Science.gov (United States)

    Vialle, Greg; Di Prima, Matthew; Hocking, Erica; Gall, Ken; Garmestani, Hamid; Sanderson, Terry; Arzberger, Steven C.

    2009-11-01

    Shape memory polymer foams are thermally activated using remote induction of magnetic susceptor filler particles dispersed in the thermoset foam matrix. Material properties and foam performance are characterized and compared over a range of fillers, induction parameters, and packaging configurations. This investigation indicates an improvement in heating performance for increased weight percentage of filler without sacrifice in foam thermo-mechanical properties up to 10 wt% filler. Detailed analysis of the results indicates that the primary factor in improving heating performance is heat transfer between the filler nanoparticles and the bulk foam.

  20. 3D Shape Modeling Using High Level Descriptors

    DEFF Research Database (Denmark)

    Andersen, Vedrana

    The goal of this Ph.D. project is to investigate and improve the methods for describing the surface of 3D objects, with focus on modeling geometric texture on surfaces. Surface modeling being a large field of research, the work done during this project concentrated around a few smaller areas...... features like thorns, bark and scales. Presented here is a simple method for easy modeling, transferring and editing that kind of texture. The method is an extension of the height-field texture, but incorporates an additional tilt of the height field. Related to modeling non-heightfield textures, a part...... of my work involved developing feature-aware resizing of models with complex surfaces consisting of underlying shape and a distinctive texture detail. The aim was to deform an object while preserving the shape and size of the features....

  1. Conformon-driven biopolymer shape changes in cell modeling.

    Science.gov (United States)

    Ji, Sungchul; Ciobanu, Gabriel

    2003-07-01

    Conceptual models of the atom preceded the mathematical model of the hydrogen atom in physics in the second decade of the 20th century. The computer modeling of the living cell in the 21st century may follow a similar course of development. A conceptual model of the cell called the Bhopalator was formulated in the mid-1980s, along with its twin theories known as the conformon theory of molecular machines and the cell language theory of biopolymer interactions [Ann. N.Y. Acad. Sci. 227 (1974) 211; BioSystems 44 (1997) 17; Ann. N.Y. Acad. Sci. 870 (1999a) 411; BioSystems 54 (2000) 107; Semiotica 138 (1-4) (2002a) 15; Fundamenta Informaticae 49 (2002b) 147]. The conformon theory accounts for the reversible actions of individual biopolymers coupled to irreversible chemical reactions, while the cell language theory provides a theoretical framework for understanding the complex networks of dynamic interactions among biopolymers in the cell. These two theories are reviewed and further elaborated for the benefit of both computational biologists and computer scientists who are interested in modeling the living cell and its functions. One of the critical components of the mechanisms of cell communication and cell computing has been postulated to be space- and time-organized teleonomic (i.e. goal-directed) shape changes of biopolymers that are driven by exergonic (free energy-releasing) chemical reactions. The generalized Franck-Condon principle is suggested to be essential in resolving the apparent paradox arising when one attempts to couple endergonic (free energy-requiring) biopolymer shape changes to the exergonic chemical reactions that are catalyzed by biopolymer shape changes themselves. Conformons, defined as sequence-specific mechanical strains of biopolymers first invoked three decades ago to account for energy coupling in mitochondria, have been identified as shape changers, the agents that cause shape changes in biopolymers. Given a set of space- and time

  2. Tracking facial feature points with Gabor wavelets and shape models

    NARCIS (Netherlands)

    McKenna, SJ; Gong, SG; Wurtz, RP; Tanner, J; Banin, D; Bigun, J; Chollet, G; Borgefors, G

    1997-01-01

    A feature-based approach to tracking rigid and non-rigid facial motion is described. Feature points are characterised using Gabor wavelets and can be individually tracked by phase-based displacement estimation. In order to achieve robust tracking a flexible shape model is used to impose global

  3. Stimulation model for dental arch shapes | Pokhariyal | East African ...

    African Journals Online (AJOL)

    Stimulation model for dental arch shapes. GP Pokhariyal, CA Moturi, J Hassanali. Abstract. No Abstract. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More ...

  4. Discriminatively Trained And-Or Graph Models for Object Shape Detection.

    Science.gov (United States)

    Lin, Liang; Wang, Xiaolong; Yang, Wei; Lai, Jian-Huang

    2015-05-01

    In this paper, we investigate a novel reconfigurable part-based model, namely And-Or graph model, to recognize object shapes in images. Our proposed model consists of four layers: leaf-nodes at the bottom are local classifiers for detecting contour fragments; or-nodes above the leaf-nodes function as the switches to activate their child leaf-nodes, making the model reconfigurable during inference; and-nodes in a higher layer capture holistic shape deformations; one root-node on the top, which is also an or-node, activates one of its child and-nodes to deal with large global variations (e.g. different poses and views). We propose a novel structural optimization algorithm to discriminatively train the And-Or model from weakly annotated data. This algorithm iteratively determines the model structures (e.g. the nodes and their layouts) along with the parameter learning. On several challenging datasets, our model demonstrates the effectiveness to perform robust shape-based object detection against background clutter and outperforms the other state-of-the-art approaches. We also release a new shape database with annotations, which includes more than 1500 challenging shape instances, for recognition and detection.

  5. Irregular Shaped Building Design Optimization with Building Information Modelling

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available This research is to recognise the function of Building Information Modelling (BIM in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or sculpture-like buildings which are very different when compared to regular buildings. Construction industry stakeholders are facing stiff challenges in many aspects such as buildability, cost effectiveness, delivery time and facility management when dealing with irregular shaped building projects. Building Information Modelling (BIM is being utilized to enable architects, engineers and constructors to gain improved visualization for irregular shaped buildings; this has a purpose of identifying critical issues before initiating physical construction work. In this study, three variations of design options differing in rotating angle: 30 degrees, 60 degrees and 90 degrees are created to conduct quantifiable comparisons. Discussions are focused on three major aspects including structural planning, usable building space, and structural constructability. This research concludes that Building Information Modelling is instrumental in facilitating design optimization for irregular shaped building. In the process of comparing different design variations, instead of just giving “yes or no” type of response, stakeholders can now easily visualize, evaluate and decide to achieve the right balance based on their own criteria. Therefore, construction project stakeholders are empowered with superior evaluation and decision making capability.

  6. Patch-based generative shape model and MDL model selection for statistical analysis of archipelagos

    DEFF Research Database (Denmark)

    Ganz, Melanie; Nielsen, Mads; Brandt, Sami

    2010-01-01

    a patch-based dictionary for possible shapes, (2) building up a time-homogeneous Markov model to model the neighbourhood correlations between the patches, and (3) automatic selection of the model complexity by the minimum description length principle. The generative shape model is proposed...

  7. Statistical shape model-based femur kinematics from biplane fluoroscopy

    DEFF Research Database (Denmark)

    Baka, N.; de Bruijne, Marleen; Walsum, T. van

    2012-01-01

    could potentially lower costs and radiation dose. Therefore, we propose to substitute the segmented bone surface with a statistical shape model based estimate. A dedicated dynamic reconstruction and tracking algorithm was developed estimating the shape based on all frames, and pose per frame....... The algorithm minimizes the difference between the projected bone contour and image edges. To increase robustness, we employ a dynamic prior, image features, and prior knowledge about bone edge appearances. This enables tracking and reconstruction from a single initial pose per sequence. We evaluated our method...

  8. First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations

    CERN Document Server

    Kastner, Oliver

    2012-01-01

    Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and thei...

  9. Shape Synthesis from Sketches via Procedural Models and Convolutional Networks.

    Science.gov (United States)

    Huang, Haibin; Kalogerakis, Evangelos; Yumer, Ersin; Mech, Radomir

    2017-08-01

    Procedural modeling techniques can produce high quality visual content through complex rule sets. However, controlling the outputs of these techniques for design purposes is often notoriously difficult for users due to the large number of parameters involved in these rule sets and also their non-linear relationship to the resulting content. To circumvent this problem, we present a sketch-based approach to procedural modeling. Given an approximate and abstract hand-drawn 2D sketch provided by a user, our algorithm automatically computes a set of procedural model parameters, which in turn yield multiple, detailed output shapes that resemble the user's input sketch. The user can then select an output shape, or further modify the sketch to explore alternative ones. At the heart of our approach is a deep Convolutional Neural Network (CNN) that is trained to map sketches to procedural model parameters. The network is trained by large amounts of automatically generated synthetic line drawings. By using an intuitive medium, i.e., freehand sketching as input, users are set free from manually adjusting procedural model parameters, yet they are still able to create high quality content. We demonstrate the accuracy and efficacy of our method in a variety of procedural modeling scenarios including design of man-made and organic shapes.

  10. Invading the Mediterranean Sea: biodiversity patterns shaped by human activities

    Directory of Open Access Journals (Sweden)

    Stelios eKatsanevakis

    2014-09-01

    Full Text Available Human activities, such as shipping, aquaculture, and the opening of the Suez Canal, have led to the introduction of nearly 1,000 alien species into the Mediterranean Sea. We investigated how human activities, by providing pathways for the introduction of alien species, may shape the biodiversity patterns in the Mediterranean Sea. Richness of Red Sea species introduced through the Suez Canal (Lessepsian species is very high along the eastern Mediterranean coastline, reaching a maximum of 129 species per 100 km2, and declines towards the north and west. The distribution of species introduced by shipping is strikingly different, with several hotspot areas occurring throughout the Mediterranean basin. Two main hotspots for aquaculture-introduced species are observed (the Thau and Venice lagoons. Certain taxonomic groups were mostly introduced through specific pathways – fish through the Suez Canal, macrophytes by aquaculture, and invertebrates through the Suez Canal and by shipping. Hence, the local taxonomic identity of the alien species was greatly dependent on the dominant maritime activities/interventions and the related pathways of introduction. The composition of alien species differs among Mediterranean ecoregions; such differences are greater for Lessepsian and aquaculture-introduced species. The spatial pattern of native species biodiversity differs from that of alien species: the overall richness of native species declines from the north-western to the south-eastern regions, while the opposite trend is observed for alien species. The biodiversity of the Mediterranean Sea is changing, and further research is needed to better understand how the new biodiversity patterns shaped by human activities will affect the Mediterranean food webs, ecosystem functioning, and the provision of ecosystem services.

  11. Modeling of shape memory alloys and application to porous materials

    Science.gov (United States)

    Panico, Michele

    In the last two decades the number of innovative applications for advanced materials has been rapidly increasing. Shape memory alloys (SMAs) are an exciting class of these materials which exhibit large reversible stresses and strains due to a thermoelastic phase transformation. SMAs have been employed in the biomedical field for producing cardiovascular stents, shape memory foams have been successfully tested as bone implant material, and SMAs are being used as deployable switches in aerospace applications. The behavior of shape memory alloys is intrinsically complex due to the coupling of phase transformation with thermomechanical loading, so it is critical for constitutive models to correctly simulate their response over a wide range of stress and temperature. In the first part of this dissertation, we propose a macroscopic phenomenological model for SMAs that is based on the classical framework of thermodynamics of irreversible processes and accounts for the effect of multiaxial stress states and non-proportional loading histories. The model is able to account for the evolution of both self-accommodated and oriented martensite. Moreover, reorientation of the product phase according to loading direction is specifically accounted for. Computational tests demonstrate the ability of the model to simulate the main aspects of the shape memory response in a one-dimensional setting and some of the features that have been experimentally found in the case of multi-axial non-proportional loading histories. In the second part of this dissertation, this constitutive model has been used to study the mesoscopic behavior of porous shape memory alloys with particular attention to the mechanical response under cyclic loading conditions. In order to perform numerical simulations, the model was implemented into the commercial finite element code ABAQUS. Due to stress concentrations in a porous microstructure, the constitutive law was enhanced to account for the development of

  12. Radar observations and shape model of asteroid 16 Psyche

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine; Males, Jared R.; Morzinski, Katie M.; Close, Laird M.; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Benner, Lance A. M.; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.

    2017-01-01

    Using the S-band radar at Arecibo Observatory, we observed 16 Psyche, the largest M-class asteroid in the main belt. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images (Drummond et al., 2016) to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image (Hanus et al., 2013) and three multi-chord occultations. Our shape model has dimensions 279 × 232 × 189 km (± 10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves (Hanus et al., 2013). Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ∼50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kgm-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ∼40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  13. Atypical chemokine receptor 4 shapes activated B cell fate.

    Science.gov (United States)

    Kara, Ervin E; Bastow, Cameron R; McKenzie, Duncan R; Gregor, Carly E; Fenix, Kevin A; Babb, Rachelle; Norton, Todd S; Zotos, Dimitra; Rodda, Lauren B; Hermes, Jana R; Bourne, Katherine; Gilchrist, Derek S; Nibbs, Robert J; Alsharifi, Mohammed; Vinuesa, Carola G; Tarlinton, David M; Brink, Robert; Hill, Geoffrey R; Cyster, Jason G; Comerford, Iain; McColl, Shaun R

    2018-01-31

    Activated B cells can initially differentiate into three functionally distinct fates-early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells-by mechanisms that remain poorly understood. Here, we identify atypical chemokine receptor 4 (ACKR4), a decoy receptor that binds and degrades CCR7 ligands CCL19/CCL21, as a regulator of early activated B cell differentiation. By restricting initial access to splenic interfollicular zones (IFZs), ACKR4 limits the early proliferation of activated B cells, reducing the numbers available for subsequent differentiation. Consequently, ACKR4 deficiency enhanced early PB and GC B cell responses in a CCL19/CCL21-dependent and B cell-intrinsic manner. Conversely, aberrant localization of ACKR4-deficient activated B cells to the IFZ was associated with their preferential commitment to the early PB linage. Our results reveal a regulatory mechanism of B cell trafficking via an atypical chemokine receptor that shapes activated B cell fate. © 2018 Kara et al.

  14. Mesoscale Architecture Shapes Initiation and Richness of Spontaneous Network Activity.

    Science.gov (United States)

    Okujeni, Samora; Kandler, Steffen; Egert, Ulrich

    2017-04-05

    Spontaneous activity in the absence of external input, including propagating waves of activity, is a robust feature of neuronal networks in vivo and in vitro The neurophysiological and anatomical requirements for initiation and persistence of such activity, however, are poorly understood, as is their role in the function of neuronal networks. Computational network studies indicate that clustered connectivity may foster the generation, maintenance, and richness of spontaneous activity. Since this mesoscale architecture cannot be systematically modified in intact tissue, testing these predictions is impracticable in vivo Here, we investigate how the mesoscale structure shapes spontaneous activity in generic networks of rat cortical neurons in vitro In these networks, neurons spontaneously arrange into local clusters with high neurite density and form fasciculating long-range axons. We modified this structure by modulation of protein kinase C, an enzyme regulating neurite growth and cell migration. Inhibition of protein kinase C reduced neuronal aggregation and fasciculation of axons, i.e., promoted uniform architecture. Conversely, activation of protein kinase C promoted aggregation of neurons into clusters, local connectivity, and bundling of long-range axons. Supporting predictions from theory, clustered networks were more spontaneously active and generated diverse activity patterns. Neurons within clusters received stronger synaptic inputs and displayed increased membrane potential fluctuations. Intensified clustering promoted the initiation of synchronous bursting events but entailed incomplete network recruitment. Moderately clustered networks appear optimal for initiation and propagation of diverse patterns of activity. Our findings support a crucial role of the mesoscale architectures in the regulation of spontaneous activity dynamics. SIGNIFICANCE STATEMENT Computational studies predict richer and persisting spatiotemporal patterns of spontaneous activity in

  15. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  16. Polyenergetic known-component reconstruction without prior shape models

    Science.gov (United States)

    Zhang, C.; Zbijewski, W.; Zhang, X.; Xu, S.; Stayman, J. W.

    2017-03-01

    Purpose: Previous work has demonstrated that structural models of surgical tools and implants can be integrated into model-based CT reconstruction to greatly reduce metal artifacts and improve image quality. This work extends a polyenergetic formulation of known-component reconstruction (Poly-KCR) by removing the requirement that a physical model (e.g. CAD drawing) be known a priori, permitting much more widespread application. Methods: We adopt a single-threshold segmentation technique with the help of morphological structuring elements to build a shape model of metal components in a patient scan based on initial filtered-backprojection (FBP) reconstruction. This shape model is used as an input to Poly-KCR, a formulation of known-component reconstruction that does not require a prior knowledge of beam quality or component material composition. An investigation of performance as a function of segmentation thresholds is performed in simulation studies, and qualitative comparisons to Poly-KCR with an a priori shape model are made using physical CBCT data of an implanted cadaver and in patient data from a prototype extremities scanner. Results: We find that model-free Poly-KCR (MF-Poly-KCR) provides much better image quality compared to conventional reconstruction techniques (e.g. FBP). Moreover, the performance closely approximates that of Poly- KCR with an a prior shape model. In simulation studies, we find that imaging performance generally follows segmentation accuracy with slight under- or over-estimation based on the shape of the implant. In both simulation and physical data studies we find that the proposed approach can remove most of the blooming and streak artifacts around the component permitting visualization of the surrounding soft-tissues. Conclusion: This work shows that it is possible to perform known-component reconstruction without prior knowledge of the known component. In conjunction with the Poly-KCR technique that does not require knowledge of

  17. Statistical Shape Modeling of Proximal Femoral Shape Deformities in Legg-Calvé-Perthes Disease and Slipped Capital Femoral Epiphysis

    Science.gov (United States)

    Chan, Elaine F.; Farnsworth, Christine L.; Koziol, James A.; Hosalkar, Harish S.; Sah, Robert L.

    2013-01-01

    Introduction The current understanding of morphological deformities of the hip such as femoroacetabular impingement (FAI), Legg-Calve-Perthes disease (LCPD), and slipped capital femoral epiphysis (SCFE) is based on 2-dimensional metrics, primarily involving the femoral head, that only partially describe the complex skeletal morphology. Objective This study aimed to improve the 3-dimensional understanding of shape variations during normal growth, and in LCPD and SCFE, through statistical shape modeling. Design Thirty-two patients with asymptomatic, LCPD, and SCFE hips, determined from physical and radiographic examination, were scanned using 3-D CT at a voxel size of (0.5–0.9mm)2 in-plane and 0.63mm slice thickness. Statistical shape modeling was performed on segmented proximal femoral surfaces to determine modes of variation and shape variables quantifying 3-D shape. In addition, conventional variables were determined for all femora. Results Proximal femur shape was described by 8 modes of variation and corresponding shape variables. Statistical shape variables were distinct with age and revealed coordinated, growth-associated differences in neck length-to-width ratio, femoral head medialization, and trochanter protrusion. After size and age-based shape adjustment, diseased proximal femora were characterized by shape variables distinct from those of asymptomatic hips. The shape variables defined morphology in health and disease, and were correlated with certain conventional variables of shape, including neck-shaft angle, head diameter, and neck diameter. Conclusion 3-D quantitative analyses of proximal femoral bone shape during growth and in disease are useful for furthering the understanding of normal and abnormal shape deviations which affect cartilage biomechanics and risk of developing osteoarthritis. PMID:23274103

  18. Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings.

    Science.gov (United States)

    Li, Ye-Fei; Liu, Zhi-Pan

    2011-10-05

    TiO(2) nanoparticles have been widely utilized in photocatalysis, but the atomic level understanding on their working mechanism falls much short of expectations. In particular, the correlation between the particle structure and the photocatalytic activity is not established yet, although it was observed that the activity is sensitive to the particle size and shape. This work, by investigating a series of TiO(2) anatase nanoparticles with different size and shape as the photocatalyst for water oxidation, correlates quantitatively the particle size and shape with the photocatalytic activity of the oxygen evolution reaction (OER). Extensive density functional theory (DFT) calculations combined with the periodic continuum solvation model have been utilized to compute the electronic structure of nanoparticles in aqueous solution and provide the reaction energetics for the key elementary reaction. We demonstrate that the equilibrium shape of nanoparticle is sensitive to its size from 1 to 30 nm, and the sharp crystals possess much higher activity than the flat crystals in OER, which in combination lead to the morphology dependence of photocatalytic activity. The conventionally regarded quantum size effect is excluded as the major cause. The physical origin for the shape-activity relationship is identified to be the unique spatial separation/localization of the frontier orbitals in the sharp nanoparticles, which benefits the adsorption of the key reaction intermediate (i.e., OH) in OER on the exposed five-coordinated Ti of {101} facet. The theoretical results here provide a firm basis for maximizing photocatalytic activity via nanostructure engineering and are also of significance for understanding photocatalysis on nanomaterials in general.

  19. Interactive Modelling of Shapes Using the Level-Set Method

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2002-01-01

    In this paper, we propose a technique for intuitive, interactive modelling of {3D} shapes. The technique is based on the Level-Set Method which has the virtue of easily handling changes to the topology of the represented solid. Furthermore, this method also leads to sculpting operations that are ...... tools have been incorporated in our sculpting system which also includes facilities for volumetric {CSG} and several techniques for visualization....

  20. Shape and vibration control of active laminated plates for RF and optical applications

    Science.gov (United States)

    Punhani, Amitesh; Washington, Gregory N.

    2006-03-01

    Active shape and vibration control of large structures have long been desired for many practical applications. PVDF being one of the most suitable materials for these applications due to its strong piezoelectric properties and availability in thin sheets has been the focal point of most researchers in this area. Most of the research has been done to find an open loop solution, which would be able to shape the structure as per the desired requirements in an ideal atmosphere. Unmodeled dynamics and external disturbances prevent the open loop (no feedback) solution from achieving the desired shape. This research develops a dynamic model of a laminated plate consisting of two layers of PVDF film joined with a layer of epoxy. The orthotropic properties of PVDF have been modeled and the epoxy layer is considered to be isotropic. A general control model is developed, which would work for most boundary conditions and developed for a simply supported beam with patch actuators. The methodology is then extended for a simply supported laminated plate. This model could be used for real time dynamic disturbance rejection and shape and vibration control of the structure.

  1. A simple shape prior model for iris image segmentation

    Science.gov (United States)

    Bishop, Daniel A.; Yezzi, Anthony, Jr.

    2011-06-01

    In order to make biometric systems faster and more user-friendly, lower-quality images must be accepted. A major hurdle in this task is accurate segmentation of the boundaries of the iris in these images. Quite commonly, circle-fitting is used to approximate the boundaries of the inner (pupil) and outer (limbic) boundaries of the iris, but this assumption does not hold for off-axis or otherwise non-circular boundaries. In this paper we present a novel, foundational method for elliptical segmentation of off-axis iris images. This method uses active contours with constrained flow to achieve a simplified form of shape prior active contours. This is done by calculating a region-based contour evolution and projecting it upon a properly chosen set of vectors to confine it to a class of shapes. In this case, that class of shapes is ellipses. This serves to regularize the contour, simplifying the curve evolution and preventing the development of irregularities that present challenges in iris segmentation. The proposed method is tested using images from the UBIRIS v.1 and CASIA-IrisV3 image data sets, with both near-ideal and off-axis images. Additional testing has been performed using the WVU Off Axis/Angle Iris Dataset, Release 1. By avoiding many of the assumptions commonly used in iris segmentation methods, the proposed method is able to accurately fit elliptical boundaries to off-axis images.

  2. Shaping tissues by balancing active forces and geometric constraints

    Science.gov (United States)

    Foolen, Jasper; Yamashita, Tadahiro; Kollmannsberger, Philip

    2016-02-01

    The self-organization of cells into complex tissues during growth and regeneration is a combination of physical-mechanical events and biochemical signal processing. Cells actively generate forces at all stages in this process, and according to the laws of mechanics, these forces result in stress fields defined by the geometric boundary conditions of the cell and tissue. The unique ability of cells to translate such force patterns into biochemical information and vice versa sets biological tissues apart from any other material. In this topical review, we summarize the current knowledge and open questions of how forces and geometry act together on scales from the single cell to tissues and organisms, and how their interaction determines biological shape and structure. Starting with a planar surface as the simplest type of geometric constraint, we review literature on how forces during cell spreading and adhesion together with geometric constraints impact cell shape, stress patterns, and the resulting biological response. We then move on to include cell-cell interactions and the role of forces in monolayers and in collective cell migration, and introduce curvature at the transition from flat cell sheets to three-dimensional (3D) tissues. Fibrous 3D environments, as cells experience them in the body, introduce new mechanical boundary conditions and change cell behaviour compared to flat surfaces. Starting from early work on force transmission and collagen remodelling, we discuss recent discoveries on the interaction with geometric constraints and the resulting structure formation and network organization in 3D. Recent literature on two physiological scenarios—embryonic development and bone—is reviewed to demonstrate the role of the force-geometry balance in living organisms. Furthermore, the role of mechanics in pathological scenarios such as cancer is discussed. We conclude by highlighting common physical principles guiding cell mechanics, tissue patterning and

  3. Orthodontic applications of a superelastic shape-memory alloy model

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, R.W.; Enlow, R.L. [Otago Univ., Dunedin (New Zealand). Dept. of Math. and Stat.; Hood, J.A.A. [Dept. of Oral Sciences and Orthodontics, Univ. of Otago, Dunedin (New Zealand)

    2000-07-01

    During orthodontic treatment, dental appliances (braces) made of shape memory alloys have the potential to provide nearly uniform low level stresses to dentitions during tooth movement over a large range of tooth displacement. In this paper we model superelastic behaviour of dental appliances using the finite element method and constitutive equations developed by F. Auricchio et al. Results of the mathematical model for 3-point bending and several promising 'closing loop' designs are compared with laboratory results for the same configurations. (orig.)

  4. Sparse Principal Component Analysis in Medical Shape Modeling

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Stegmann, Mikkel Bille; Larsen, Rasmus

    2006-01-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims...... at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape...

  5. Model of fission yeast cell shape driven by membrane-bound growth factors and the cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Tyler Drake

    Full Text Available Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular

  6. Tracheal stent prediction using statistical deformable models of tubular shapes

    Science.gov (United States)

    Pinho, R.; Huysmans, T.; Vos, W.; Sijbers, J.

    2008-03-01

    Tracheal stenosis is a narrowing of the trachea that impedes normal breathing. Tracheotomy is one solution, but subjects patients to intubation. An alternative technique employs tracheal stents, which are tubular structures that push the walls of the stenotic areas to their original location. They are implanted with endoscopes, therefore reducing the surgical risk to the patient. Stents can also be used in tracheal reconstruction to aid the recovery of reconstructed areas. Correct preoperative stent length and diameter specification is crucial to successful treatment, otherwise stents might not cover the stenotic area nor push the walls as required. The level of stenosis is usually measured from inside the trachea, either with endoscopes or with image processing techniques that, eg compute the distance from the centre line to the walls of the trachea. These methods are not suited for the prediction of stent sizes because they can not trivially estimate the healthy calibre of the trachea at the stenotic region. We propose an automatic method that enables the estimation of stent dimensions with statistical shape models of the trachea. An average trachea obtained from a training set of CT scans of healthy tracheas is placed in a CT image of a diseased person. The shape deforms according to the statistical model to match the walls of the trachea, except at stenotic areas. Since the deformed shape gives an estimation of the healthy trachea, it is possible to predict the size and diameter of the stent to be implanted in that specific subject.

  7. Modelling shape of architectural structure: Elliptic hyperboloid of one sheet

    Directory of Open Access Journals (Sweden)

    Dragović Magdalena

    2014-01-01

    Full Text Available The combination of straight lines of constructive elements and curved contours of structural shapes is always challenging in the engineering practice. The 2nd order surface - elliptic hyperboloid of one sheet (ELHY provides such combination. Given that in the architectural surroundings, arts, or other scientific fields ELHY is less common, than the other representatives of the same family of ruled surfaces, it is worth of attention and research. Here presented constructive geometry approach resulted in Auto CAD application for generating 3D wire-frame and triangulated net model of ELHY surface and some examples of structures - prototypes of structural shapes, designed by using ELHY fragments. [Projekat Ministarstva nauke Republike Srbije, br. TR36008: Development and application of scientific methods in design and building of high economic structural systems by application of new technologies, the part of which is the present study

  8. A sloped piecemeal Gaussian model for characterising foveal pit shape.

    Science.gov (United States)

    Liu, Lei; Marsh-Tootle, Wendy; Harb, Elise N; Hou, Wei; Zhang, Qinghua; Anderson, Heather A; Norton, Thomas T; Weise, Katherine K; Gwiazda, Jane E; Hyman, Leslie

    2016-11-01

    High-quality optical coherence tomography (OCT) macular scans make it possible to distinguish a range of normal and diseased states by characterising foveal pit shape. Existing mathematical models lack the flexibility to capture all known pit variations and thus characterise the pit with limited accuracy. This study aimed to develop a new model that provides a more robust characterisation of individual foveal pit variations. A Sloped Piecemeal Gaussian (SPG) model, consisting of a linear combination of a tilted line and a piecemeal Gaussian function (two halves of a Gaussian connected by a separate straight line), was developed to fit retinal thickness data with the flexibility to characterise different degrees of pit asymmetry and pit bottom flatness. It fitted the raw pit data between the two rims of the fovea to improve accuracy. The model was tested on 3488 macular scans from both eyes of 581 young adults (376 myopes and 206 non-myopes, mean (S.D.) age 21.9 (1.4) years). Estimates for retinal thickness, wall height and slope, pit depth and width were derived from the best-fitting model curve. Ten variations of Gaussian and Difference of Gaussian models were fitted to the same scans and compared with the SPG model for goodness of fit (by Root mean square error, RMSE), model complexity (by the Bayesian Information Criteria) and model fidelity. The SPG model produced excellent goodness of fit (mean RMSE = 4.25 and 3.89 μm; 95% CI: 4.20, 4.30 and 3.86, 3.93 for fitting horizontal and vertical profiles respectively). The SPG model showed pit asymmetry, with average nasal walls 17.6 (11.6) μm higher and 0.96 (0.61)(°) steeper than temporal walls and average superior walls 7.0 (12.2) μm higher and 0.41 (0.65)(°) steeper than the inferior walls. The SPG model also revealed a continuum of human foveal shapes, from round bottoms to extended flat bottoms (up to 563 μm). 49.1% of foveal profiles were best fitted with a flat bottom >30 μm wide. Compared with

  9. Improved thermodynamic model for magnetic shape memory alloys

    Science.gov (United States)

    Waldauer, Alex B.; Feigenbaum, Heidi P.; Ciocanel, Constantin; Bruno, Nickolaus M.

    2012-09-01

    Magnetic shape memory alloys (MSMAs) are a class of materials that can exhibit up to 10% recoverable strain as a result of the application of either magnetic field or compressive stress. This unique property makes MSMAs potentially suitable for commercial applications such as sensors, power harvesters, or actuators. Before any commercial applications are fully realized, effective models capable of accurately predicting the magneto-mechanical behavior of MSMAs need to be developed. This paper builds on an existing thermodynamic based constitutive model for MSMAs by accounting for the three-dimensional nature of the demagnetization phenomenon. In particular, the importance of using a demagnetization factor that comes from a solution to the three-dimensional magneto-static boundary value problem is highlighted. Also, the magnetic field present in directions other than that applied because of demagnetization is included in the model. Finally, this work proposes a more flexible means of calibrating thermodynamic based constitutive models for MSMAs.

  10. Skin injury model classification based on shape vector analysis.

    Science.gov (United States)

    Röhrich, Emil; Thali, Michael; Schweitzer, Wolf

    2012-11-06

    Skin injuries can be crucial in judicial decision making. Forensic experts base their classification on subjective opinions. This study investigates whether known classes of simulated skin injuries are correctly classified statistically based on 3D surface models and derived numerical shape descriptors. Skin injury surface characteristics are simulated with plasticine. Six injury classes - abrasions, incised wounds, gunshot entry wounds, smooth and textured strangulation marks as well as patterned injuries - with 18 instances each are used for a k-fold cross validation with six partitions. Deformed plasticine models are captured with a 3D surface scanner. Mean curvature is estimated for each polygon surface vertex. Subsequently, distance distributions and derived aspect ratios, convex hulls, concentric spheres, hyperbolic points and Fourier transforms are used to generate 1284-dimensional shape vectors. Subsequent descriptor reduction maximizing SNR (signal-to-noise ratio) result in an average of 41 descriptors (varying across k-folds). With non-normal multivariate distribution of heteroskedastic data, requirements for LDA (linear discriminant analysis) are not met. Thus, shrinkage parameters of RDA (regularized discriminant analysis) are optimized yielding a best performance with λ = 0.99 and γ = 0.001. Receiver Operating Characteristic of a descriptive RDA yields an ideal Area Under the Curve of 1.0 for all six categories. Predictive RDA results in an average CRR (correct recognition rate) of 97,22% under a 6 partition k-fold. Adding uniform noise within the range of one standard deviation degrades the average CRR to 71,3%. Digitized 3D surface shape data can be used to automatically classify idealized shape models of simulated skin injuries. Deriving some well established descriptors such as histograms, saddle shape of hyperbolic points or convex hulls with subsequent reduction of dimensionality while maximizing SNR seem to work well for the data at hand, as

  11. Comparing Active Vision Models

    NARCIS (Netherlands)

    Croon, G.C.H.E. de; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.

    2009-01-01

    Active vision models can simplify visual tasks, provided that they can select sensible actions given incoming sensory inputs. Many active vision models have been proposed, but a comparative evaluation of these models is lacking. We present a comparison of active vision models from two different

  12. Comparing active vision models

    NARCIS (Netherlands)

    Croon, G.C.H.E. de; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.

    2009-01-01

    Active vision models can simplify visual tasks, provided that they can select sensible actions given incoming sensory inputs. Many active vision models have been proposed, but a comparative evaluation of these models is lacking. We present a comparison of active vision models from two different

  13. Error Model and Compensation of Bell-Shaped Vibratory Gyro.

    Science.gov (United States)

    Su, Zhong; Liu, Ning; Li, Qing

    2015-09-17

    A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h(1/2) to 0.7°/h(1/2) and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement.

  14. Fresnel wavefront propagation model for shearography shape measurement

    Science.gov (United States)

    Anand, Arun; Groves, Roger M.; Schwab, Xavier; Pedrini, Giancarlo; Osten, Wolfgang

    2007-06-01

    This paper describes a new technique for modelling slope fringes in shearography using Fresnel wavefront propagation. Shearography is a full-field speckle interferometry technique usually used for displacement gradient and for shape measurement. One feature of shearography is that it uses a close to common path interferometer. This has the advantage of reducing sensitivity to environmental disturbances, but the disadvantage of a non-linear response. Previously one of the authors has used a ray tracing model of the fringe formation to improve the shape and slope measurement capabilities of shearography. The calculation involved was relatively time consuming as it required the calculation of the phase for each camera pixel individually. In this new Fresnel wavefront propagation model the approach is different. The system is modelled by propagation of the entire wavefront. This includes propagating the light through optical elements, such as a lens. This initial study has been for the formation of slope fringes in shearography using the source displacement technique. The advantages of this new technique are that it is easier to introduce optical elements and the effects of speckle noise into the simulation.

  15. SHADE: A Shape-Memory-Activated Device Promoting Ankle Dorsiflexion

    Science.gov (United States)

    Pittaccio, S.; Viscuso, S.; Rossini, M.; Magoni, L.; Pirovano, S.; Villa, E.; Besseghini, S.; Molteni, F.

    2009-08-01

    Acute post-stroke rehabilitation protocols include passive mobilization as a means to prevent contractures. A device (SHADE) that provides repetitive passive motion to a flaccid ankle by using shape memory alloy actuators could be of great help in providing this treatment. A suitable actuator was designed as a cartridge of approximately 150 × 20 × 15 mm, containing 2.5 m of 0.25 mm diameter NiTi wire. This actuator was activated by Joule’s effect employing a 7 s current input at 0.7 A, which provided 10 N through 76 mm displacement. Cooling and reset by natural convection took 30 s. A prototype of SHADE was assembled with two thermoplastic shells hinged together at the ankle and strapped on the shin and foot. Two actuators were fixed on the upper shell while an inextensible thread connected each NiTi wire to the foot shell. The passive ankle motion (passive range of motion, PROM) generated by SHADE was evaluated optoelectronically on three flaccid patients (58 ± 5 years old); acceptability was assessed by a questionnaire presented to further three flaccid patients (44 ± 11.5 years old) who used SHADE for 5 days, 30 min a day. SHADE was well accepted by all patients, produced good PROM, and caused no pain. The results prove that suitable limb mobilization can be produced by SMA actuators.

  16. Genetic Fuzzy Modelling of User Perception of 3D Shapes

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed-Kristensen, Saeema

    2011-01-01

    the emotion/perception with different shapes composed of a set of different geometric features. In this paper, the authors propose an automatic approach to formalize the relationships between geometric information of 3D objects and the intended emotional content using fuzzy logic. In addition......, the automatically generated fuzzy knowledge base was compared to the user’s perceptions and to the manually constructed fuzzy knowledge base. The initial findings indicate that the approach is indeed valid to formalize geometric information with perceptions and validate the author’s manually developed fuzzy models....

  17. Modeling the Shape of Ions in Pyrite-Type Crystals

    Directory of Open Access Journals (Sweden)

    Mario Birkholz

    2014-09-01

    Full Text Available The geometrical shape of ions in crystals and the concept of ionic radii are re-considered. The re-investigation is motivated by the fact that a spherical modelling is justified for p valence shell ions on cubic lattice sites only. For the majority of point groups, however, the ionic radius must be assumed to be an anisotropic quantity. An appropriate modelling of p valence ions then has to be performed by ellipsoids. The approach is tested for pyrite-structured dichalcogenides MX2, with chalcogen ions X = O, S, Se and Te. The latter are found to exhibit the shape of ellipsoids being compressed along the <111> symmetry axes, with two radii r|| and r⊥ describing their spatial extension. Based on this ansatz, accurate interatomic M–X distances can be derived and a consistent geometrical model emerges for pyrite-structured compounds. Remarkably, the volumes of chalcogen ions are found to vary only little in different MX2 compounds, suggesting the ionic volume rather than the ionic radius to behave as a crystal-chemical constant.

  18. Pump function curve shape for a model lymphatic vessel.

    Science.gov (United States)

    Bertram, C D; Macaskill, C; Moore, J E

    2016-07-01

    The transport capacity of a contractile segment of lymphatic vessel is defined by its pump function curve relating mean flow-rate and adverse pressure difference. Numerous system characteristics affect curve shape and the magnitude of the generated flow-rates and pressures. Some cannot be varied experimentally, but their separate and interacting effects can be systematically revealed numerically. This paper explores variations in the rate of change of active tension and the form of the relation between active tension and muscle length, factors not known from experiment to functional precision. Whether the pump function curve bends toward or away from the origin depends partly on the curvature of the passive pressure-diameter relation near zero transmural pressure, but rather more on the form of the relation between active tension and muscle length. A pump function curve bending away from the origin defines a well-performing pump by maximum steady output power. This behaviour is favoured by a length/active-tension relationship which sustains tension at smaller lengths. Such a relationship also favours high peak mechanical efficiency, defined as output power divided by the input power obtained from the lymphangion diameter changes and active-tension time-course. The results highlight the need to pin down experimentally the form of the length/active-tension relationship. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Statistical shape modelling to aid surgical planning: associations between surgical parameters and head shapes following spring-assisted cranioplasty.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Bruse, Jan L; Borghi, Alessandro; Vercruysse, Herman; Ong, Juling; James, Greg; Pennec, Xavier; Dunaway, David J; Jeelani, N U Owase; Schievano, Silvia

    2017-10-01

    Spring-assisted cranioplasty is performed to correct the long and narrow head shape of children with sagittal synostosis. Such corrective surgery involves osteotomies and the placement of spring-like distractors, which gradually expand to widen the skull until removal about 4 months later. Due to its dynamic nature, associations between surgical parameters and post-operative 3D head shape features are difficult to comprehend. The current study aimed at applying population-based statistical shape modelling to gain insight into how the choice of surgical parameters such as craniotomy size and spring positioning affects post-surgical head shape. Twenty consecutive patients with sagittal synostosis who underwent spring-assisted cranioplasty at Great Ormond Street Hospital for Children (London, UK) were prospectively recruited. Using a nonparametric statistical modelling technique based on mathematical currents, a 3D head shape template was computed from surface head scans of sagittal patients after spring removal. Partial least squares (PLS) regression was employed to quantify and visualise trends of localised head shape changes associated with the surgical parameters recorded during spring insertion: anterior-posterior and lateral craniotomy dimensions, anterior spring position and distance between anterior and posterior springs. Bivariate correlations between surgical parameters and corresponding PLS shape vectors demonstrated that anterior-posterior (Pearson's [Formula: see text]) and lateral craniotomy dimensions (Spearman's [Formula: see text]), as well as the position of the anterior spring ([Formula: see text]) and the distance between both springs ([Formula: see text]) on average had significant effects on head shapes at the time of spring removal. Such effects were visualised on 3D models. Population-based analysis of 3D post-operative medical images via computational statistical modelling tools allowed for detection of novel associations between surgical

  20. 4D Shape-Preserving Modelling of Bone Growth

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt; Nielsen, Mads; Kreiborg, Sven

    1998-01-01

    subdivide the growth analysis into growth simulation, growth modelling, and finally the growth analysis. In this paper, we present results of growth simulation of the mandible from 3 scannings of the same patient in the age of 9 months, 21 months, and 7 years. We also present the first growth models......From a set of temporally separated scannings of the same anatomical structure we wish to identify and analyze the growth in terms of a metamorphosis. That is, we study the tempral change of shape which may prowide an understanding of the biological processes which govern the growth process. We...... and growth analyzes. The ultimative goal is to predict/simulate human growth which would be extremely useful in many surgical procedures....

  1. A Gradient-Based Constitutive Model for Shape Memory Alloys

    Science.gov (United States)

    Tabesh, Majid; Boyd, James; Lagoudas, Dimitris

    2017-06-01

    Constitutive models are necessary to design shape memory alloy (SMA) components at nano- and micro-scales in NEMS and MEMS. The behavior of small-scale SMA structures deviates from that of the bulk material. Unfortunately, this response cannot be modeled using conventional constitutive models which lack an intrinsic length scale. At small scales, size effects are often observed along with large gradients in the stress or strain. Therefore, a gradient-based thermodynamically consistent constitutive framework is established. Generalized surface and body forces are assumed to contribute to the free energy as work conjugates to the martensite volume fraction, transformation strain tensor, and their spatial gradients. The rates of evolution of these variables are obtained by invoking the principal of maximum dissipation after assuming a transformation surface, which is a differential equation in space. This approach is compared to the theories that use a configurational force (microforce) balance law. The developed constitutive model includes energetic and dissipative length scales that can be calibrated experimentally. Boundary value problems, including pure bending of SMA beams and simple torsion of SMA cylindrical bars, are solved to demonstrate the capabilities of this model. These problems contain the differential equation for the transformation surface as well as the equilibrium equation and are solved analytically and numerically. The simplest version of the model, containing only the additional gradient of martensite volume fraction, predicts a response with greater transformation hardening for smaller structures.

  2. Multiobjective muffler shape optimization with hybrid acoustics modeling.

    Science.gov (United States)

    Airaksinen, Tuomas; Heikkola, Erkki

    2011-09-01

    This paper considers the combined use of a hybrid numerical method for the modeling of acoustic mufflers and a genetic algorithm for multiobjective optimization. The hybrid numerical method provides accurate modeling of sound propagation in uniform waveguides with non-uniform obstructions. It is based on coupling a wave based modal solution in the uniform sections of the waveguide to a finite element solution in the non-uniform component. Finite element method provides flexible modeling of complicated geometries, varying material parameters, and boundary conditions, while the wave based solution leads to accurate treatment of non-reflecting boundaries and straightforward computation of the transmission loss (TL) of the muffler. The goal of optimization is to maximize TL at multiple frequency ranges simultaneously by adjusting chosen shape parameters of the muffler. This task is formulated as a multiobjective optimization problem with the objectives depending on the solution of the simulation model. NSGA-II genetic algorithm is used for solving the multiobjective optimization problem. Genetic algorithms can be easily combined with different simulation methods, and they are not sensitive to the smoothness properties of the objective functions. Numerical experiments demonstrate the accuracy and feasibility of the model-based optimization method in muffler design. © 2011 Acoustical Society of America

  3. Fully Automatic Myocardial Segmentation of Contrast Echocardiography Sequence Using Random Forests Guided by Shape Model.

    Science.gov (United States)

    Li, Yuanwei; Ho, Chin Pang; Toulemonde, Matthieu; Chahal, Navtej; Senior, Roxy; Tang, Meng-Xing

    2017-09-26

    Myocardial contrast echocardiography (MCE) is an imaging technique that assesses left ventricle function and myocardial perfusion for the detection of coronary artery diseases. Automatic MCE perfusion quantification is challenging and requires accurate segmentation of the myocardium from noisy and time-varying images. Random forests (RF) have been successfully applied to many medical image segmentation tasks. However, the pixel-wise RF classifier ignores contextual relationships between label outputs of individual pixels. RF which only utilizes local appearance features is also susceptible to data suffering from large intensity variations. In this paper, we demonstrate how to overcome the above limitations of classic RF by presenting a fully automatic segmentation pipeline for myocardial segmentation in full-cycle 2D MCE data. Specifically, a statistical shape model is used to provide shape prior information that guide the RF segmentation in two ways. First, a novel shape model (SM) feature is incorporated into the RF framework to generate a more accurate RF probability map. Second, the shape model is fitted to the RF probability map to refine and constrain the final segmentation to plausible myocardial shapes. We further improve the performance by introducing a bounding box detection algorithm as a preprocessing step in the segmentation pipeline. Our approach on 2D image is further extended to 2D+t sequences which ensures temporal consistency in the final sequence segmentations. When evaluated on clinical MCE datasets, our proposed method achieves notable improvement in segmentation accuracy and outperforms other state-of-the-art methods including the classic RF and its variants, active shape model and image registration.

  4. Statistical shape analysis of clavicular cortical bone with applications to the development of mean and boundary shape models.

    Science.gov (United States)

    Lu, Yuan-Chiao; Untaroiu, Costin D

    2013-09-01

    During car collisions, the shoulder belt exposes the occupant's clavicle to large loading conditions which often leads to a bone fracture. To better understand the geometric variability of clavicular cortical bone which may influence its injury tolerance, twenty human clavicles were evaluated using statistical shape analysis. The interior and exterior clavicular cortical bone surfaces were reconstructed from CT-scan images. Registration between one selected template and the remaining 19 clavicle models was conducted to remove translation and rotation differences. The correspondences of landmarks between the models were then established using coordinates and surface normals. Three registration methods were compared: the LM-ICP method; the global method; and the SHREC method. The LM-ICP registration method showed better performance than the global and SHREC registration methods, in terms of compactness, generalization, and specificity. The first four principal components obtained by using the LM-ICP registration method account for 61% and 67% of the overall anatomical variation for the exterior and interior cortical bone shapes, respectively. The length was found to be the most significant variation mode of the human clavicle. The mean and two boundary shape models were created using the four most significant principal components to investigate the size and shape variation of clavicular cortical bone. In the future, boundary shape models could be used to develop probabilistic finite element models which may help to better understand the variability in biomechanical responses and injuries to the clavicle. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Smooth extrapolation of unknown anatomy via statistical shape models

    Science.gov (United States)

    Grupp, R. B.; Chiang, H.; Otake, Y.; Murphy, R. J.; Gordon, C. R.; Armand, M.; Taylor, R. H.

    2015-03-01

    Several methods to perform extrapolation of unknown anatomy were evaluated. The primary application is to enhance surgical procedures that may use partial medical images or medical images of incomplete anatomy. Le Fort-based, face-jaw-teeth transplant is one such procedure. From CT data of 36 skulls and 21 mandibles separate Statistical Shape Models of the anatomical surfaces were created. Using the Statistical Shape Models, incomplete surfaces were projected to obtain complete surface estimates. The surface estimates exhibit non-zero error in regions where the true surface is known; it is desirable to keep the true surface and seamlessly merge the estimated unknown surface. Existing extrapolation techniques produce non-smooth transitions from the true surface to the estimated surface, resulting in additional error and a less aesthetically pleasing result. The three extrapolation techniques evaluated were: copying and pasting of the surface estimate (non-smooth baseline), a feathering between the patient surface and surface estimate, and an estimate generated via a Thin Plate Spline trained from displacements between the surface estimate and corresponding vertices of the known patient surface. Feathering and Thin Plate Spline approaches both yielded smooth transitions. However, feathering corrupted known vertex values. Leave-one-out analyses were conducted, with 5% to 50% of known anatomy removed from the left-out patient and estimated via the proposed approaches. The Thin Plate Spline approach yielded smaller errors than the other two approaches, with an average vertex error improvement of 1.46 mm and 1.38 mm for the skull and mandible respectively, over the baseline approach.

  6. Statistical shape modeling based renal volume measurement using tracked ultrasound

    Science.gov (United States)

    Pai Raikar, Vipul; Kwartowitz, David M.

    2017-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common cause of kidney transplant worldwide accounting for 7-10% of all cases. Although ADPKD usually progresses over many decades, accurate risk prediction is an important task.1 Identifying patients with progressive disease is vital to providing new treatments being developed and enable them to enter clinical trials for new therapy. Among other factors, total kidney volume (TKV) is a major biomarker predicting the progression of ADPKD. Consortium for Radiologic Imaging Studies in Polycystic Kidney Disease (CRISP)2 have shown that TKV is an early, and accurate measure of cystic burden and likely growth rate. It is strongly associated with loss of renal function.3 While ultrasound (US) has proven as an excellent tool for diagnosing the disease; monitoring short-term changes using ultrasound has been shown to not be accurate. This is attributed to high operator variability and reproducibility as compared to tomographic modalities such as CT and MR (Gold standard). Ultrasound has emerged as one of the standout modality for intra-procedural imaging and with methods for spatial localization has afforded us the ability to track 2D ultrasound in physical space which it is being used. In addition to this, the vast amount of recorded tomographic data can be used to generate statistical shape models that allow us to extract clinical value from archived image sets. In this work, we aim at improving the prognostic value of US in managing ADPKD by assessing the accuracy of using statistical shape model augmented US data, to predict TKV, with the end goal of monitoring short-term changes.

  7. Styrene-based shape memory foam: fabrication and mathematical modeling

    Science.gov (United States)

    Yao, Yongtao; Zhou, Tianyang; Qin, Chao; Liu, Yanju; Leng, Jinsong

    2016-10-01

    Shape memory polymer foam is a promising kind of structure in the biomedical and aerospace field. Shape memory styrene foam with uniform and controlled open-cell structure was successfully fabricated using a salt particulate leaching method. Shape recovery capability exists for foam programming in both high-temperature compression and low-temperature compression (Shape recovery properties such as shape fixing property and shape recovery ratio were also characterized. In order to provide guidance for the future fabrication of shape memory foam, the theories of Gibson and Ashby as well as differential micromechanics theory were applied to predict Young’s modulus and the mechanical behavior of SMP styrene foams during the compression process.

  8. Understanding the Shape of the Land and Watersheds Using Simple Models in the Classroom

    Science.gov (United States)

    Gardiner, L.; Johnson, R.; Russell, R.; Bergman, J.; Genyuk, J.; Lagrave, M.

    2006-12-01

    Middle school students can gain essential understandings of the Earth and its processes in the classroom by making and manipulating simple models. While no substitute for field experiences, simple models made of easily-obtained materials can foster student understanding of natural environments. Through this collection of hands-on activities, students build and manipulate simple models that demonstrate (1) tectonic processes that shape the land, (2) the shape of the land surface, (3) how the shape of the land influences the distribution of waterways and watersheds, and (4) how the human communities within a watershed are interconnected through use of surface water. The classroom activities described in this presentation are available on Windows to the Universe (www.windows.ucar.edu), a project of the University Corporation for Atmospheric Research Office of Education and Outreach. Windows to the Universe, a long-standing Web resource supporting Earth and space science education, provides users with content about the Earth and space sciences at three levels (beginner, intermediate, and advanced) in English and Spanish. Approximately 80 hands-on classroom activities appropriate for K-12 classrooms are available within the teacher resources section of the Windows to the Universe.

  9. Shape optimization of active and passive drag-reducing devices on a D-shaped bluff body

    CERN Document Server

    Semaan, Richard

    2016-01-01

    Shape optimization of an active and a passive drag-reducing device on a two-dimensional D-shaped bluff body is performed. The two devices are: Coanda actuator, and randomly-shaped trailing-edge flap. The optimization sequence is performed by coupling the genetic algorithm software DAKOTA to the mesh generator Pointwise and to the CFD solver OpenFOAM. For the the active device the cost functional is the power ratio, whereas for the passive device it is the drag coefficient. The optimization leads to total power savings of $\\approx 70\\%$ for the optimal Coanda actuator, and a 40\\% drag reduction for the optimal flap. This reduction is mainly achieved through streamlining the base flow and suppressing the vortex shedding. The addition of either an active or a passive device creates two additional smaller recirculation regions in the base cavity that shifts the larger recirculation region away from the body and increases the base pressure. The results are validated against more refined URANS simulations for selec...

  10. 3D human shape model adaptation by automatic frame selection and batch-mode optimization

    NARCIS (Netherlands)

    Hofmann, M.; Gavrila, D.M.

    2011-01-01

    We present a novel approach for 3D human body shape model adaptation to a sequence of multi-view images, given an initial shape model and initial pose sequence. In a first step, the most informative frames are determined by optimization of an objective function that maximizes a shape-texture

  11. Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models

    NARCIS (Netherlands)

    Shen, Kai-kai; Fripp, Jurgen; Mériaudeau, Fabrice; Chételat, Gaël; Salvado, Olivier; Bourgeat, Pierrick; Saradha, A.; Abdi, Hervé; Abdulkadir, Ahmed; Acharya, Deepa; Achuthan, Anusha; Adluru, Nagesh; Aghajanian, Jania; Agrusti, Antonella; Agyemang, Alex; Ahdidan, Jamila; Ahmad, Duaa; Ahmed, Shiek; Aisen, Paul; Akhondi-Asl, Alireza; Aksu, Yaman; Alberca, Roman; Alcauter, Sarael; Alexander, Daniel; Alin, Aylin; Almeida, Fabio; Alvarez-Lineara, Juan; Amlien, Inge; Anand, Shyam; Anderson, Dallas; Ang, Amma; Angersbach, Steve; Ansarian, Reza; Aoyama, Eiji; Appannah, Arti; Arfanakis, Konstantinos; Armor, Tom; Arrighi, Michael; Arumughababu, S. Vethanayaki; Arunagiri, Vidhya; Ashe-McNalley, Cody; Ashford, Wes; Le Page, Aurelie; Avants, Brian; Aviv, Richard; Awasthi, Sukrati; Ayache, Nicholas; Ayan-Oshodi, Mosun; Ayhan, Murat; Sumana, B. V.; Babic, Tomislav; Baek, Young; Bagepally, Bhavani; Baird, Geoffrey; Baker, John; Baker, Suzanne; Bakker, Arnold; Barbash, Shahar; Bard, Jonathan; Barker, Warren; Bartlett, Jonathan; Baruchin, Andrea; Battaglini, Iacopo; Bauer, Corinna; Bayley, Peter; Beck, Irene; Becker, James; Becker, J. Alex; Beckett, Laurel; Bednar, Martin; Bedner, Arkadiusz; Beg, Mirza Faisal; Bekris, Lynn; Belaroussi, Boubakeur; Belloch, Vicente; Belmokhtar, Nabil; Ben Ahmed, Olfa; Bender, J. Dennis; Benois-Pineau, Jenny; Bhaskar, Uday; Bienkowska, Katarzyna; Biffi, Alessandro; Bigler, Erin; Bilgic, Basar; Bishop, Courtney; Bittner, Daniel; Black, Sandra; Bloss, Cinnamon; Bocti, Christian; Bohorquez, Adriana; Bokde, Arun; Boone, John; Boppana, Madhu; Borrie, Michael; Bouttout, Haroune; Bowes, Mike; Bowman, DuBois; Bowman, Gene; Bracard, Serge; Braskie, Meredith; Braunewell, Karl; Breitner, Joihn; Bresell, Anders; Brewer, James; Brickhouse, Michael; Brickman, Adam; Britschgi, Markus; Broadbent, Steve; Brogren, Jacob; Brunton, Simon; Buchsbaum, Monte; Buckley, Chris; Buerger, Katharina; Bunce, David; Burnham, Samantha; Burns, Jeffrey; Burton, David; Burzykowski, Tomasz; Butler, Tracy; Cabeza, Rafael; Caffery, Terrell; Cairns, Nigel; Callhoff, Johanna; Calvini, Piero; Carbotti, Angela; Carle, Adam; Carmasin, Jeremy; Carmichael, Owen; Carvalho, Janessa; Casabianca, Jodi; Casanova, Ramon; Casey, Anne; Cash, David; Cataldo, Rosella; Cedarbaum, Jesse; Cella, Massimo; Celsis, Pierre; Chakravarty, Mallar; Chang, Ih; Chao, Linda; Charil, Arnaud; Chang, Che-Wei; Chemali, Zeina; Chen, Kewei; Chen, Shuzhong; Chen, Rong; Chen, Qiang; Chen, Jung-Tai; Chen, Gang; Chen, Jake; Chen, Wei; Cheng, Wei-Chen; Cheng, Xi; Cherkas, Yauheniya; Chertkow, Howard; Cheung, Vinci; Cheung, Charlton; Chiang, Gloria; Chiao, Ping; chibane, Mouatez Billah; Chida, Noriko; Chin, Simon; Ching, Christopher; Chisholm, Jane; Cho, Claire; Cho, Youngsang; Choe, John; Choubey, Suresh; Chowbina, Sudhir; Christensen, Anette Luther; Ciocia, Gianluigi; Clark, David; Clark, Chris; Clarkson, Matt; Clerc, Stephanie; Clunie, David; Coen, Michael; Ciombra, Alexandre; Compton, David; Coppola, Giovanni; Coubard, Olivier; Coulin, Samuel; Cover, Keith S.; Crane, Paul; Crans, Gerald; Croop, Robert; Crowther, Daniel; Crum, William; Cui, Yue; Curry, Charles; Cutter, Gary; Da, Long; Daliri, Mohammad Reza; Damato, Vito Domenico; Darby, Eveleen; Darkner, Sune; Davatzikos, Christos; DavidPrakash, Bhaskaran; Davidson, Christopher; Davis, Melissa; de Bruijne, Marleen; de Meyer, Geert; de Nunzio, Giorgio; Decarli, Charles; Dechairo, Bryan; DeDuck, Kristina; Dehghan, Hossein; Delfino, Manuel; Della Rosa, Pasquale Anthony; Dellavedova, Luca; Delpassand, Ebrahim; Delrieu, Julien; DeOrchis, Vincent; Dépy Carron, Delphine; Desjardins, Benoit; deToledo-Morrell, Leyla; Devanand, Davangere; Devanarayan, Viswanath; Devier, Deidre; DeVous, Michael; Dgetluck, Nancy; Di, Jianing; Di, Xin; Diaz-Arrastia, Ramon; Dickerson, Bradford; Dickie, David Alexander; Dill, Vanderson; Ding, Xiaobo; Dinov, Ivo; Dobosh, Brian; Dobson, Howard; Dodge, Hiroko; Dolman, Andrew; Dolmo, Bess-Carolina; Donohue, Michael; Dore, Vincent; Dorflinger, Ernest; Dowling, Maritza; Dragicevic, Natasa; Dubal, Dena; Duchesne, Simon; Duff, Kevin; Dukart, Jürgen; Durazzo, Timothy; Dutta, Joyita; DWors, Robert; Earl, Nancy; Edula, Goutham; Elcoroaristizabal, Xabier; Emahazion, Tesfai; Endres, Christopher; Epstein, Noam; Ereshefsky, Larry; Eskildsen, Simon; Espinosa, Ana; Esposito, Mario; Ewers, Michael; Falcone, Guido; Fan, Yong; Fan, Jing; Fan, Lingzhong; Farahibozorg, Seyedehrezvan; Farb, Norman; Fardo, David; Farias, Sarah; Farnum, Michael; Farrer, Lindsay; Fatke, Bastian; Faux, Noel; Feldman, Howard; Feldman, Susan; Feldman, Betsy; Félix, Zandra; Fennema-Notestine, Christine; Fernandes, Michel; Fernandez, Elsa; Ferreira, Manuel Joao; Ferrer, Eugene; Fetterman, Bob; Figurski, Michal; Fillit, Howard; Finch, Stephen; Fiot, Jean-Baptiste; Flenniken, Derek; Fletcher, Evan; Flores, Christopher; Longmire, Crystal Flynn; Focke, Niels; Forman, Mark; Forsythe, Alan; Fox, Steven; Fox-Bosetti, Sabrina; Foxhall, Suzanne; Franko, Edit; Freeman, Roderick; Friedrich, Christoph M.; Friesenhahn, Michel; Frisoni, Giovanni; Fritzsche, Klaus; Fujimoto, Yoko; Fujiwara, Ken; Fullerton, Terence; Gaffour, Yacine; Galvin, Ben; Gamst, Anthony; Gao, Sujuan; Garg, Gaurav; Gaser, Christian; Gastineau, Edward; Gattaz, Wagner; Gaubert, Malo; Gauthier, Serge; Gavett, Brandon; Ge, Tian; Gemme, Gianluca; Geraci, Joseph; Gholipour, Farhad; Ghosh, Debashis; Ghosh, Satrajit; Gieschke, Ronald; Gill, Ryan; Gillespie, William; Gitelman, Darren; Gkontra, Xenia; Gleason, Carey; Glymour, M. Maria; Godbey, Michael; Gold, Brian; Goldberg, Terry; Goldman, Jennifer; Gonzalez-Beltran, Alejandra; Goodro, Robert; Gore, Chris; Gorriz, Juan Manuel; Goto, Masami; Grachev, Igor; Gradkowski, Wojciech; Grandey, Emily; Grasela, Thaddeus; Gray, Katherine; Greenberg, Barry; Greicius, Michael; Grill, Joshua; Gross, Alden; Gross, Alan; Grydeland, Håkon; Guignot, Isabelle; Guo, Qimiao; Guo, Liang-Hao; Guo, Hongbin; Gupta, Vinay; Guyot, Jennifer; Habeck, Christian; Habte, Frezghi; Haight, Thaddeus; Hajaj, Chen; Hajiesmaeili, Maryam; Hajjar, Ihab; Hammarstrom, Per; Hampel, Harald; Han, Duke; Han, Jian; Han, Zhaoying; Hanna, Yousef; Hao, Yongfu; Hardy, Peter; Harvey, Danielle; Hasan, Md Kamrul; Hayashi, Toshihiro; Haynes, John-Dylan; He, Huiguang; He, Yong; Head, Denise; Heckemann, Rolf; Heegaard, Niels; Heidebrink, Judith; Hellyer, Peter; Helwig, Michael; Henderson, David; Herholz, Karl; Herskovits, A. Zara; Hess, Christopher; Hildenbrand, Maike; Ming, Au Yeung Ho; Hobart, Jeremy; Hochstetler, Helen; Hofer, Scott; Hoffman, John; Holder, Daniel; Hollingworth, Paul; Holmes, Robin; Hong, Quan; Honigberg, Lee; Hope, Thomas; Hoppin, Jack; Hot, Pascal; Hou, Yangyang; Hsieh, Helen; Hsu, Ailing; Hu, Xiaochen; Hu, Mingxing; Hu, William; Hua, Wen-Yu; Huang, Shuai; Huang, Fude; Huang, Zihan; Huang, Chun-Jung; Huang, Chien-Chih; Huang, Juebin; Hubbard, Rebecca; Huentelman, Matthew; Huppertz, Hans-Jürgen; Hurko, Orest; Hurt, Stephen; Hutchins, Jim; Hwang, Scott; Hyun, JungMoon; Ifeachor, Emmanuel; Iglesias, Martina; Ikari, Yasuhiko; Ikonomidou, Vasiliki; Iman, Adjoudj; Imani, Farzin; Immermann, Fred; Inlow, Mark; Inoue, Lurdes; Insel, Philip; Irizarry, Michael; Ishibashi, Taro; Ishii, Kenji; Ismail, Sara; Ito, Kaori; Iturria-Medina, Yasser; Iwatsubo, Takeshi; Jacks, Adam; Jacobson, Mark; Jacqmin, Philippe; Jaffe, Carl; Jagust, William; Janousova, Eva; Jara, Hernan; Jasperse, Bas; Jedynak, Bruno; Jefferson, Angela; Jennings, J. Richard; Jenq, John; Jessen, Walter; Jia, Fucang; Jiang, Tianzi; Jiao, Yun; Jing, Huang; Johnson, Kent; Johnson, Sterling; Johnson, David K.; Johnson, Julene; Jones, Gareth; Jones, Mark; Jones, Richard; Joshi, Shantanu; Jouvent, Eric; Juengling, Freimut; Julin, Per; Junjie, Zhuo; Kabilan, Meena; Kadish, Bill; Kairui, Zhang; Kam, Hye Jin; Kamboh, M. Ilyas; Kamer, Angela; Kanakaraj, Sithara; Kanchev, Vladimir; Kaneko, Tomoki; Kaneta, Tomohiro; Kang, Hyunseok; Kang, Ju Hee; Kang, Jian; Karageorgiou, Elissaios; Karantzoulis, Stella; Karlawish, Jason; Katz, Elyse; Kaushik, Sandeep S.; Kauwe, John; Kawakami, Hirofumi; Kawashima, Shoji; Kaye, Edward; Kazemi, Samaneh; Ke, Han; Kelleher, Thomas; Kennedy, Richard; Keogh, Bart; Kerchner, Geoffrey; Kerr, Daniel; Keshava, Nirmal; Khalil, Iya; Khalil, Andre; Khondker, Zakaria; Kihara, Takeshi; Killeen, Neil; Killiany, Ron; Kim, Dajung; Kim, Hyoungkyu; Kim, Seongkyun; Kim, Jong Hun; Kim, Ana; Kim, Jung-Hyun; Kimberg, Daniel; Kimura, Tokunori; King, Richard; Kirby, Justin; Kirsch, Wolff; Klimas, Michael; Kline, Richard; Kling, Mitchel; Klopfenstein, Erin; Koen, Joshua; Koikkalainen, Juha; Kokomoor, Anders; Kong, Xiangnan; Koppel, Jeremy; Korolev, Igor; Kotran, Nickolas; Kowalczyk, Adam; Krahnke, Tillmann; Krams, Michael; Kuceyeski, Amy; Kuhl, Donald; Kumar, Vinod; Roy, P. Kumar; Kuo, Julie; Labrish, Catherine; Lai, Song; Lakatos, Anita; Lalonde, François; Lam, On Ki; Lampron, Antoine; Landau, Susan; Lane, Richard; Lane, Barton; Langbaum, Jessica; Langford, Dianne; Lanius, Vivian; Latella, Marco; Leahy, Richard; an Lee, Jong; Lee, Dongsoo; Lee, Noah; Lee, Sei; Lee, Doheon; Lee, Grace; Lefkimmiatis, Stamatis; Lemaitre, Herve; Lenfant, Pierre; Lenz, Robert; Leong, Josiah; Leoutsakos, Jeannie-Marie; Leung, Yuk Yee; Levey, Alan; Li, Rui; Li, Xiaodong; Li, Weidong; Li, Xiaobo; Li, Ming; Li, Lexin; Li, Jun; Li, Gang; Li, Quanzheng; Li, Yi; Li, Junning; Li, Jie; Li, Yue; Li, Shanshan; Liang, Kelvin; Liang, Kuchang; Liang, Peipeng; Liang, Lichen; Liao, Weiqi; Liaquat, Saad; Liberman, Gilad; Lin, Lan; Lin, Ai-Ling; Lin, Frank; Liu, Tao; Liu, Dazhong; Liu, Li; Liu, Honggang; Liu, Sidong; Liu, Tianming; Liu, Xiuwen; Liu, Sophia; Liu, Linda; Liu, Wei; Liu, Guodong; Liu, Yangping; Liu, Collins; Lo, Raymond; Lobanov, Victor; Lockhart, Andrew; Loewenstein, David; Logovinsky, Veronika; Long, Miaomiao; Long, Ziyi; Long, Xiaojing; Looi, Jeffrey; Lu, Huanxiang; Lu, Po-Haong; Lucena, Nathaniel; Lukas, Carsten; Lukic, Ana; Luo, Lei; Luo, Xiongjian; Luo, Xi; Lynch, John; Ma, Shen-Ming; Mackin, Scott; Mada, Marius; Madabhushi, Anant; Maglio, Silvio; Mahanta, Mohammad Shahin; Maikusa, Norihide; Maldjian, Joseph; Mandal, Indrajit; Manjon, Jose; Mantri, Ninad; Manzour, Amir; Marchewka, Artur; Marcus, Daniel; Margolin, Richard; Marrett, Sean; Marshall, Gad; Gonzalez, Alberto Martinez; Torteya, Antonio Martinez; Mather, Mara; Mathis, Chester; Mattei, Peter; Matthews, Dawn; McArdle, John; McCarroll, Steven; McEvoy, Linda; McGeown, William; McGinnis, Scott; McGonigle, John; McIntyre, John; McLaren, Donald; McQuail, Joseph; Meadowcroft, Mark; Meda, Shashwath; Melie-Garcia, Lester; Melrose, Rebecca; Mendelson, Alexander; Mendez, Mario; Menendez, Enrique; Meng, Meng; Meredith, Jere; Metti, Andrea; Meyer, Carsten; Mez, Jesse; Mickael, Guedj; Miftahof, Roustem; Mikula, Margit; Miller, Michael; Millikin, Colleen; Mintun, Mark; Mirza, Mubeena; Mistridis, Panagiota; Mitchell, Meghan; Mitsis, Effie; Mon, Anderson; Moore, Dana; Morabito, Francesco C.; Birgani, Parmida Moradi; Moratal, David; Morimoto, Bruce; Mormino, Elizabeth; Morris, Jill; Mortamet, Bénédicte; Moscato, Pablo; Mueller, Kathyrne; Mueller, Susanne; Mukherjee, Shubhabrata; Mulder, Emma; Mungas, Dan; Munir, Kamran; Murayama, Shigeo; Murphy, Michael; Myers, Amanda; Sairam, N.; Nagata, Ken; Nair, Anil; Nativio, Raffaella; Nazarparvar, Babak; Nazeri, Arash; Nejad, Leila; Nekooei, Sirous; Nettiksimmons, Jasmine; Neu, Scott; Ng, Yen-Bee; Nguyen, Nghi; Nichols, Thomas; Nicodemus, Kristin; Niecko, Timothy; Nielsen, Casper; Nishio, Tomoyuki; Nordstrom, Matthew; Noshad, Sina; Notomi, Keiji; Novak, Nic; Nutakki, Gopi Chand; O'Bryant, Sid; Obisesan, Thomas; Oh, Joonmi; Okonkwo, Ozioma; Olde Rikkert, Marcel; Oliveira, Ailton; Oliveira, João; Oliver, Ruth; Olmos, Salvador; Oltra, Javier; Ortner, Marion; Osadebey, Michael; Ostrowitzki, Susanne; Overholser, Rosanna; Anishiya, P.; Chitra, P. K. A.; Pa, Judy; Palanisamy, Preethi; Pan, Sarah; Pan, Zhifang; Pande, Yogesh; Pardo, Jose; Pardoe, Heath; Park, Sang hyun; Park, Sujin; Park, Lovingly; Park, Hyunjin; Park, Moon Ho; Parker, Christopher; Patel, Yogen; Patil, Amol; Patil, Manasi; Pawlak, Mikolaj; Payoux, Pierre; Pearson, Jim; Pell, Gaby; Peng, Yahong; Pennec, Xavier; Pepin, Jean louis; Pereira, Francisco; Perneczky, Robert; Petitti, Diana; Petrella, Jeffrey; Peyrat, Jean-Marc; Ngoc, Phuong Trinh Pham; Phillips, Justin; Phillips, Nicole; Pian, Wen-ting; Pierson, Ronald; Piovezan, Mauro; Pipitone, Jon; Pirraglia, Elizabeth; Planes, Xavi; Podhorski, Adam; Pollari, Mika; Pomara, Nunzio; Pontecorvo, Michael; Popov, Veljko; Poppenk, Jordan; Posner, Holly; Potkin, Steven; Potter, Guy; Potter, Elizabeth; Poulin, Stephane; Prastawa, Marcel; Prince, Jerry; Priya, Anandh; Pruessner, Jens; Qiu, Wendy; Qu, Annie; Qualls, Constance Dean; Quarg, Peter; Quinlan, Judith; Rabbia, Michael; Rajagovindan, Rajasimhan; Rajeesh, Rajeesh; Rallabandi, V. P. Subramanyam; Ramadubramani, Vanamamalai; Ramage, Amy; Ramirez, Alfredo; Randolph, Chrstopher; Rao, Anil; Rao, Hengyi; Rao, Divya; Raubertas, Richard; Ray, Debashis; Razak, Hana; Reed, Bruce; Reid, Andrew; Reihac, Anthonin; Reiner, Peggy; Reinsberger, Claus; Restrepo, Lucas; Retico, Alessandra; Rhatigan, Lewis; Rhinn, Herve; Rhoades, Earl; Ribbens, Annemie; Richard, Edo; Richards, John; Richter, Mirco; Riddle, William; Ridgway, Gerard; Ries, Michele; Ringman, John; Rischall, Matt; Rizk-Jackson, Angela; Rizzi, Massimo; Robieson, Weining; Rodriguez, Laura; Rodriguez-Vieitez, Elena; Rogalski, Emily; Rogers, Elizabeth; Balderrama, Javier Rojas; Rokicki, Jaroslav; Romero, Klaus; Rorden, Chris; Rosand, Jonathan; Rosen, Ori; Rosenberg, Paul; Roubini, Eli; Rousseau, François; Rowe, Christopher; Rubin, Daniel; Rubright, Jonathan; Rucinski, Marek; Ruiz, Agustin; Rulseh, Aaron; Rusinek, Henry; Ryan, Laurie; Saad, Ahmed; Sabuncu, Mert; Sahuquillo, Juan; Said, Yasmine; Saito, Naomi; Sakata, Muneyuki; Salama, Mahetab; Salazar, Diego; Salter, Hugh; Saman, Sudad; Sanchez, Luciano; Sanders, Elizabeth; Sankar, Tejas; Santhamma, Sindhumol; Sarnel, Haldun; Sasaki, Toshiaki; Sasaya, Tenta; Sato, Hajime; Sattlecker, Martina; Saumier, Daniel; Savio, Alexandre; Saykin, Andrew; Scanlon, Blake; Scharre, Douglas; Schegerin, Marc; Schmand, Ben; Schmansky, Nick; Schmidt-Wilcke, Tobias; Schramm, Hauke; Schuerch, Markus; Schwartz, Craig; Schwartz, Eben; Schwarz, Adam; Schwarz, John; Selnes, Per; Sembritzki, Klaus; Senjem, Matthew; Sevigny, Jeffrey; Sfikas, Giorgos; Sghedoni, Roberto; Shah, Said Khalid; Shahbaba, Babak; Shams, Soheil; Shankle, William; Shattuck, David; Shaw, Leslie; Sheela, Jaba; Shen, Jie; Shen, Qi; Shen, Weijia; Shen, Qian; Shera, David; Sherman, John; Sherva, Richard; Shi, Jie; Shi, Yonggang; Shi, Feng; Shokouhi, Sepideh; Shukla, Vinay; Shulman, Joshua; Sideris, Konstantinos; Siegel, Rene; Silveira, Margarida; Silverman, Daniel; Sim, Ida; Simak, Alex; Simmons, Andy; Simoes, Rita; Simon, Adam; Simon, Melvin; Simpson, Ivor; Singh, Nikhil; Singh, Simer Preet; Sinha, Neelam; Siuciak, Judy; Sjögren, Niclas; Skinner, Jeannine; Smith, Michael; Smith, Charles; Smyth, Timothy; Snow, Sarah; Snyder, Peter; Soares, Holly; Soldan, Anja; Soldea, Octavian; Solomon, Alan; Solomon, Paul; Som, Subhojit; Song, Zhuang; Song, Shide; Sosova, Iveta; Soydemir, Melih; Spampinato, Maria Vittoria; Speier, William; Sperling, Reisa; Renãâ, Spiegel; Spies, Lothar; Springate, Beth; Staff, Roger; Steffener, Jason; Stern, Yaakov; Stokman, Harro; Straw, Jack; Stricker, Nikki; Stühler, Elisabeth; Styren, Scot; Subramanian, Vijayalakshmi; Suen, Summit; Sugishita, Morihiro; Sukkar, Rafid; Sun, Ying; Sun, Jia; Sun, Yu; Sundell, Karen; Suzuki, Akiyuki; Svetnik, Vladimir; Swan, Melanie; Symons, Sean; Szigeti, Kinga; Szoeke, Cassandra; Sørensen, Lauge; Genish, T.; Takahasi, Tetsuhiko; Takeuchi, Tomoko; Tanaka, Shoji; Tanaka, Rie; Tanchi, Chaturaphat; Tancredi, Daniel; Tang, Qi; Tarnow, Eugen; Tartaglia, Maria Carmela; Tarver, Erika; Tassy, Dominique; Tauber, Clovis; Taylor-Reinwald, Lisa; Teipel, Stefan; Teng, Edmond; Terriza, Felipe; Thambisetty, Madhav; Thames, April; Thatavarti, Raja Sekhar; Thiele, Frank; Thomas, Charlene; Thomas, Ronald; Thomas, Benjamin; Thompson, Paul; Thompson, Wesley; Thornton-Wells, Tricia; Thorvaldsson, Valgeir; Thurfjell, Lennart; Tokuda, Takahiko; Toledo, Juan B.; Tölli, Tuomas; Toma, Ahmed; Tomita, Naoki; Toro, Roberto; Torrealdea, Patxi; Tosto, Giuseppe; Tosun, Duygu; Tousian, Mona; Toussaint, Paule; Toyoshiba, Hiroyoshi; Tractenberg, Rochelle E.; Triggs, Tyler; Trittschuh, Emily; Trojanowski, John; Trotta, Gabriele; Huu, Tram Truong; Truran, Diana; Tsanas, Athanasios; Tsang, Candy; Tufail, Ahsan; Tung, Joyce; Turken, And; Ueda, Yoji; Uematsu, Daisuke; Ullrich, Lauren; Venkataraju, Kannan Umadevi; Umar, Nisser; Ungar, Leo; Uzunbas, Gokhan; van de Nes, Joseph; van der Brug, Marcel; van der Lijn, Fedde; van Hecke, Wim; van Horn, John; van Leemput, Koen; van Train, Kenneth; Varkuti, Balint; Vasanawala, Minal; Veeraraghavan, Harini; Vemuri, Prashanthi; Verma, Manish; Videbaek, Charlotte; Vidoni, Eric; Villanueva-Meyer, Javier; Vinyes, Georgina; Visser, Pieter Jelle; Vitek, Michael; Vogel, Simon; Voineskos, Aristotle; Vos, Stephanie; Vounou, Maria; Wade, Sara; Walsh, Alexander; Wan, Hong; Wang, Tianyao; Wang, Yongmei Michelle; Wang, Wei; Wang, Angela; Wang, Song; Wang, Lubin; Wang, Li; Wang, Yaping; Wang, Li-San; Wang, Lei; Wang, Alex; Wang, Yue; Wang, Xu; Wang, Ze; Wang, Tiger; Ward, Michael; Ward, Andrew; Watanabe, Toshiyuki; Watson, David; Webb, David; Wefel, Jeffrey; Weiner, Michael; Westlye, Lars T.; Wheland, David; Whitcher, Brandon; White, Brooke; Whitlow, Christopher; Wilhelmsen, Kirk; Wilmot, Beth; Wilson, Lorraine; Wimsatt, Matt; Wingo, Thomas; Wirth, Miranka; Wishart, Heather; Wiste, Heather; Wolf, Henrike; Wolke, Ira; Wolz, Robin; Wong, Koon; Woo, Jongwook; Woo, Ellen; Woods, Lynn; Worth, Andrew; Wu, Yanjun; Wu, Liang; Wu, Ellen; Wyman, Bradley; Xiao, Guanghua; Xie, Sharon; Xu, Ye; Xu, Yi-Zheng; Xu, Guofan; Xu, Steven; Xu, Shunbin; Xu, Jun; Yamada, Tomoko; Yamashita, Fumio; Yan, Yunyi; Yan, Pingkun; Yang, Chung-Yi; Yang, Zijiang; Yang, Edward; Yang, Guang; Yang, Wenlu; Yang, Eric; Yank, Hyun Duk; Yang, Jinzhong; Yassa, Michael; Yavorsky, Christian; Ye, Byoung Seok; Ye, Liang; Ye, Jong; Yee, Laura; Ying, Song; Yokoyama, Takao; Young, Stewart; Young, Jonathan; Younhyun, Jung; Yu, Dongchuan; Yu, Shiwei; Yu, C. Q.; Yu, Peng; Yuan, Ying; Yuan, Kai; Yuan, Guihong; Yuen, Bob; Yushkevich, Paul; Zaborszky, Laszlo; Zagorodnov, Vitali; Zagorski, Michael; Zahodne, Laura; Zarei, Mojtaba; Zawadzki, Rezi; Zeitzer, Jamie; Zelinski, Elizabeth; Zeskind, Benjamin; Zhan, Shu; Zhang, Jing; Zhang, Lijun; Zhang, Zhiguo; Zhang, Linda; Zhang, Zhe; Zhang, Daoqiang; Zhang, Huixiong; Zhang, Xin; Zhang, Tianhao; Zhang, Ping; Zhao, Jim; Zhao, Qinying; Zhao, Peng; Zhen, Xiantong; Zhijun, Yao; Zhou, Luping; Zhou, Bin; Zhou, Yongxia; Zhou, Sheng; Zhu, Hongtu; Zhu, Wen; Zhu, Wanlin; Zhu, Xuyan; Ziegler, Gabriel; Zilka, Samantha; Zisserman, Andrew; Zito, Giancarlo; Zu, Chen; Zulfigar, Annam

    2012-01-01

    The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). With the use of structural magnetic resonance (MR) imaging, we can investigate the effect of AD on the morphology of the hippocampus. The hippocampal shape variations among a population can be usually

  12. The Social Shaping of Canteen TakeAway activitis

    DEFF Research Database (Denmark)

    Poulsen, Signe

    find it difficult to find time to prepare healthy meals, the concept of Canteen TakeAway (CTA) was developed. CTA is offered by worksites to their employees as ready-to-heat meals they can take home. The aim of this thesis has been to gain knowledge of how such CTA schemes are shaped, and to understand...... for the employees. Furthermore, in two of the cases, CTA is also linked to providing employees working irregular hours with a meal solution. The shaping of the scheme is thus decisive for who that can integrate the scheme into their everyday life. It is found that number of users of CTA are limited, which could...... this has primarily importance after the employees have become users. The wish for big portions and a great amount of meat was important for the acceptance of the scheme at the industrial worksite. The production of CTA is integrated into the existing food production by a reduction in other services...

  13. Correlating particle size and shape of supported Ru/gamma-Al2O3 catalysts with NH3 decomposition activity.

    Science.gov (United States)

    Karim, Ayman M; Prasad, Vinay; Mpourmpakis, Giannis; Lonergan, William W; Frenkel, Anatoly I; Chen, Jingguang G; Vlachos, Dionisios G

    2009-09-02

    While ammonia synthesis and decomposition on Ru are known to be structure-sensitive reactions, the effect of particle shape on controlling the particle size giving maximum turnover frequency (TOF) is not understood. By controlling the catalyst pretreatment conditions, we have varied the particle size and shape of supported Ru/gamma-Al(2)O(3) catalysts. The Ru particle shape was reconstructed by combining microscopy, chemisorption, and extended X-ray absorption fine structure (EXAFS) techniques. We show that the particle shape can change from a round one, for smaller particles, to an elongated, flat one, for larger particles, with suitable pretreatment. Density functional theory calculations suggest that the calcination most likely leads to planar structures. We show for the first time that the number of active (here B(5)) sites is highly dependent on particle shape and increases with particle size up to 7 nm for flat nanoparticles. The maximum TOF (based on total exposed Ru atoms) and number of active (B(5)) sites occur at approximately 7 nm for elongated nanoparticles compared to at approximately 1.8-3 nm for hemispherical nanoparticles. A complete, first-principles based microkinetic model is constructed that can quantitatively describe for the first time the effect of varying particle size and shape on Ru activity and provide further support of the characterization results. In very small nanoparticles, particle size polydispersity (due to the presence of larger particles) appears to be responsible for the observed activity.

  14. Active registration models

    Science.gov (United States)

    Marstal, Kasper; Klein, Stefan

    2017-02-01

    We present the Active Registration Model (ARM) that couples medical image registration with regularization using a statistical model of intensity. Inspired by Active Appearance Models (AAMs), the statistical model is embedded in the registration procedure as a regularization term that penalize differences between a target image and a synthesized model reconstruction of that image. We demonstrate that the method generalizes AAMs to 3D images, many different transformation models, and many different gradient descent optimization methods. The method is validated on magnetic resonance images of human brains.

  15. A white-box model of S-shaped and double S-shaped single-species population growth

    Directory of Open Access Journals (Sweden)

    Lev V. Kalmykov

    2015-05-01

    Full Text Available Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological, white-box (mechanistic, based on the first principles and grey-box (mixtures of phenomenological and mechanistic models. Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems.

  16. Rhythmic auditory cortex activity at multiple timescales shapes stimulus-response gain and background firing.

    Science.gov (United States)

    Kayser, Christoph; Wilson, Caroline; Safaai, Houman; Sakata, Shuzo; Panzeri, Stefano

    2015-05-20

    The phase of low-frequency network activity in the auditory cortex captures changes in neural excitability, entrains to the temporal structure of natural sounds, and correlates with the perceptual performance in acoustic tasks. Although these observations suggest a causal link between network rhythms and perception, it remains unknown how precisely they affect the processes by which neural populations encode sounds. We addressed this question by analyzing neural responses in the auditory cortex of anesthetized rats using stimulus-response models. These models included a parametric dependence on the phase of local field potential rhythms in both stimulus-unrelated background activity and the stimulus-response transfer function. We found that phase-dependent models better reproduced the observed responses than static models, during both stimulation with a series of natural sounds and epochs of silence. This was attributable to two factors: (1) phase-dependent variations in background firing (most prominent for delta; 1-4 Hz); and (2) modulations of response gain that rhythmically amplify and attenuate the responses at specific phases of the rhythm (prominent for frequencies between 2 and 12 Hz). These results provide a quantitative characterization of how slow auditory cortical rhythms shape sound encoding and suggest a differential contribution of network activity at different timescales. In addition, they highlight a putative mechanism that may implement the selective amplification of appropriately timed sound tokens relative to the phase of rhythmic auditory cortex activity. Copyright © 2015 Kayser et al.

  17. Shape-shift: semicircular canal morphology responds to selective breeding for increased locomotor activity.

    Science.gov (United States)

    Schutz, Heidi; Jamniczky, Heather A; Hallgrímsson, Benedikt; Garland, Theodore

    2014-11-01

    Variation in semicircular canal morphology correlates with locomotor agility among species of mammals. An experimental evolutionary mouse model was used to test the hypotheses that semicircular canal morphology (1) evolves in response to selective breeding for increased locomotor activity, (2) exhibits phenotypic plasticity in response to early-onset chronic exercise, and (3) is unique in individuals possessing the minimuscle phenotype. We examined responses in canal morphology to prolonged wheel access and selection in laboratory mice from four replicate lines bred for high voluntary wheel-running (HR) and four nonselected control (C) lines. Linear measurements and a suite of 3D landmarks were obtained from 3D reconstructions of μCT-scanned mouse crania (μCT is microcomputed tomography). Body mass was smaller in HR than C mice and was a significant predictor of both radius of curvature and 3D canal shape. Controlling for body mass, radius of curvature did not differ statistically between HR and C mice, but semicircular canal shape did. Neither chronic wheel access nor minimuscle affected radius of curvature or canal shape These findings suggest that semicircular canal morphology is responsive to evolutionary changes in locomotor behavior, but the pattern of response is potentially different in small- versus large-bodied species. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  18. Segmentation of the quadratus lumborum muscle using statistical shape modeling.

    Science.gov (United States)

    Engstrom, Craig M; Fripp, Jurgen; Jurcak, Valer; Walker, Duncan G; Salvado, Olivier; Crozier, Stuart

    2011-06-01

    To compare automated segmentation of the quadratus lumborum (QL) based on statistical shape modeling (SSM) with conventional manual processing of magnetic resonance (MR) images for segmentation of this paraspinal muscle. The automated SSM scheme for QL segmentation was developed using an MR database of 7 mm axial images of the lumbar region from 20 subjects (cricket fast bowlers and athletic controls). Specifically, a hierarchical 3D-SSM scheme for segmentation of the QL, and surrounding psoas major (PS) and erector spinae+multifidus (ES+MT) musculature, was implemented after image preprocessing (bias field correction, partial volume interpolation) followed by image registration procedures to develop average and probabilistic MR atlases for initializing and constraining the SSM segmentation of the QL. The automated and manual QL segmentations were compared using spatial overlap and average surface distance metrics. The spatial overlap between the automated SSM and manual segmentations had a median Dice similarity metric of 0.87 (mean = 0.86, SD = 0.08) and mean average surface distance of 1.26 mm (SD = 0.61) and 1.32 mm (SD = 0.60) for the right and left QL muscles, respectively. The current SSM scheme represents a promising approach for future automated morphometric analyses of the QL and other paraspinal muscles from MR images. Copyright © 2011 Wiley-Liss, Inc.

  19. Activation of shape and semantic information during ambiguous homophone processing: eye tracking evidence from Hindi.

    Science.gov (United States)

    Mishra, Ramesh Kumar; Singh, Siddharth

    2014-11-01

    In two visual world eye tracking studies, we examined the activation of subordinate meanings of ambiguous homophones in Hindi and particularly when the sentence context is biased towards the dominant meaning. Participants listened to sentences that were either neutral or biased towards the dominant meaning of the homophone and saw a display containing four pictures. In experiment 1, the display had a shape competitor of the subordinate meaning of the homophone in both neutral and biased conditions along with three unrelated distractors. Experiment 2 had semantic competitors of the subordinate meaning of the homophones along with three distractors. Proportion of fixations to different objects overtime suggested that participants activated the subordinate meanings and oriented their attention to the shape and semantic competitors even when the prior context was biased towards the dominant meaning. Overall, these data from Hindi provide further support to those models of lexical access that assume exhaustive access of both the meanings of an ambiguous homophone. These data suggest even a dominant bias does not eliminate the activation of perceptual and conceptual features of the subordinate meaning.

  20. Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments

    Directory of Open Access Journals (Sweden)

    A. Lendlein

    2012-01-01

    Full Text Available Thermo-sensitive shape-memory polymers (SMP, which are capable of memorizing two or more different shapes, have generated significant research and technological interest. A triple-shape effect (TSE of SMP can be activated e.g. by increasing the environmental temperature (Tenv, whereby two switching temperatures (Tsw have to be exceeded to enable the subsequent shape changes from shape (A to shape (B and finally the original shape (C. In this work, we explored the thermally and magnetically initiated shape-memory properties of triple-shape nanocomposites with various compositions and particle contents using different shape-memory creation procedures (SMCP. The nanocomposites were prepared by the incorporation of magnetite nanoparticles into a multiphase polymer network matrix with grafted polymer network architecture containing crystallizable poly(ethylene glycol (PEG side chains and poly(ε-caprolactone (PCL crosslinks named CLEGC. Excellent triple-shape properties were achieved for nanocomposites with high PEG weight fraction when two-step programming procedures were applied. In contrast, single-step programming resulted in dual-shape properties for all investigated materials as here the temporary shape (A was predominantly fixed by PCL crystallites.

  1. Shape-Enhanced Photocatalytic Activities of Thoroughly Mesoporous ZnO Nanofibers

    KAUST Repository

    Ren, Xiaolong

    2016-06-24

    1D mesoporous materials have attracted extensive interest recently, owning to their fascinating properties and versatile applications. However, it remains as a grand challenge to develop a simple and efficient technique to produce oxide nanofibers with mesoporous architectures, controlled morphologies, large surface areas, and optimal performances. In this work, a facile foaming-assisted electrospinning strategy with foaming agent of tea saponin is used to produce thoroughly mesoporous ZnO nanofibers with high purity and controlled morphology. Interestingly, mesoporous fibers with elliptical cross-section exhibit the significantly enhanced photocatalytic activity for hydrogen production, as compared to the counterparts with circular and rectangular cross-sections, and they also perform better than the commercial ZnO nanopowders. The unexpected shape dependence of photocatalytic activities is attributed to the different stacking modes of the mesoporous fibers, and a geometrical model is developed to account for the shape dependence. This work represents an important step toward producing thoroughly mesoporous ZnO nanofibers with tailored morphologies, and the discovery that fibers with elliptical cross-section render the best performance provides a valuable guideline for improving the photocatalytic performance of such mesoporous nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Design optimization study of a shape memory alloy active needle for biomedical applications.

    Science.gov (United States)

    Konh, Bardia; Honarvar, Mohammad; Hutapea, Parsaoran

    2015-05-01

    Majority of cancer interventions today are performed percutaneously using needle-based procedures, i.e. through the skin and soft tissue. The difficulty in most of these procedures is to attain a precise navigation through tissue reaching target locations. To overcome this challenge, active needles have been proposed recently where actuation forces from shape memory alloys (SMAs) are utilized to assist the maneuverability and accuracy of surgical needles. In the first part of this study, actuation capability of SMA wires was studied. The complex response of SMAs was investigated via a MATLAB implementation of the Brinson model and verified via experimental tests. The isothermal stress-strain curves of SMAs were simulated and defined as a material model in finite element analysis (FEA). The FEA was validated experimentally with developed prototypes. In the second part of this study, the active needle design was optimized using genetic algorithm aiming its maximum flexibility. Design parameters influencing the steerability include the needle's diameter, wire diameter, pre-strain and its offset from the needle. A simplified model was presented to decrease the computation time in iterative analyses. Integration of the SMA characteristics with the automated optimization schemes described in this study led to an improved design of the active needle. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    Science.gov (United States)

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  4. Shaping Student Activists: Discursive Sensemaking of Activism and Participation Research

    Science.gov (United States)

    Taha, Diane E.; Hastings, Sally O.; Minei, Elizabeth M.

    2015-01-01

    As social media becomes a more potent force in society, particularly for younger generations, the role in activism has been contested. This qualitative study examines 35 interviews with students regarding their perceptions of the use of social media in social change, their perceptions of activists, and their level of self-identification as an…

  5. Weed Identification Using An Automated Active Shape Matching (AASM) Technique

    DEFF Research Database (Denmark)

    Swain, K C; Nørremark, Michael; Jørgensen, R N

    2011-01-01

    Weed identification and control is a challenge for intercultural operations in agriculture. As an alternative to chemical pest control, a smart weed identification technique followed by mechanical weed control system could be developed. The proposed smart identification technique works on the con......Weed identification and control is a challenge for intercultural operations in agriculture. As an alternative to chemical pest control, a smart weed identification technique followed by mechanical weed control system could be developed. The proposed smart identification technique works......-leaf growth stage model for Solanum nigrum L. (nightshade) is generated from 32 segmented training images in Matlab software environment. Using the AASM algorithm, the leaf model was aligned and placed at the centre of the target plant and a model deformation process carried out. The parameters used...

  6. A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation.

    Science.gov (United States)

    Heimann, Tobias; Münzing, Sascha; Meinzer, Hans-Peter; Wolf, Ivo

    2007-01-01

    We present a novel method for the segmentation of volumetric images, which is especially suitable for highly variable soft tissue structures. Core of the algorithm is a statistical shape model (SSM) of the structure of interest. A global search with an evolutionary algorithm is employed to detect suitable initial parameters for the model, which are subsequently optimized by a local search similar to the Active Shape mechanism. After that, a deformable mesh with the same topology as the SSM is used for the final segmentation: While external forces strive to maximize the posterior probability of the mesh given the local appearance around the boundary, internal forces governed by tension and rigidity terms keep the shape similar to the underlying SSM. To prevent outliers and increase robustness, we determine the applied external forces by an algorithm for optimal surface detection with smoothness constraints. The approach is evaluated on 54 CT images of the liver and reaches an average surface distance of 1.6 +/- 0.5 mm in comparison to manual reference segmentations.

  7. Dissociated active and passive tactile shape recognition: a case study of pure tactile apraxia.

    Science.gov (United States)

    Valenza, N; Ptak, R; Zimine, I; Badan, M; Lazeyras, F; Schnider, A

    2001-11-01

    Disorders of tactile object recognition (TOR) may result from primary motor or sensory deficits or higher cognitive impairment of tactile shape representations or semantic memory. Studies with healthy participants suggest the existence of exploratory motor procedures directly linked to the extraction of specific properties of objects. A pure deficit of these procedures without concomitant gnostic disorders has never been described in a brain-damaged patient. Here, we present a patient with a right hemispheric infarction who, in spite of intact sensorimotor functions, had impaired TOR with the left hand. Recognition of 2D shapes and objects was severely deficient under the condition of spontaneous exploration. Tactile exploration of shapes was disorganized and exploratory procedures, such as the contour-following strategy, which is necessary to identify the precise shape of an object, were severely disturbed. However, recognition of 2D shapes under manually or verbally guided exploration and the recognition of shapes traced on the skin were intact, indicating a dissociation in shape recognition between active and passive touch. Functional MRI during sensory stimulation of the left hand showed preserved activation of the spared primary sensory cortex in the right hemisphere. We interpret the deficit of our patient as a pure tactile apraxia without tactile agnosia, i.e. a specific inability to use tactile feedback to generate the exploratory procedures necessary for tactile shape recognition.

  8. Using a Shape Model in the Design of Hearing Aids

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Nielsen, Claus; Laugesen, Søren

    2004-01-01

    Today the design of custom completely-in-the-canal hearing aids is a manual process and therefore there is a variation in the quality of the finished hearing aids. Especially the placement of the so-called faceplate on the hearing aid strongly influences the size and shape of the hearing aid. Since...

  9. Sparse decomposition and modeling of anatomical shape variation

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Rostrup, Egill; Ryberg, Charlotte

    2007-01-01

    of anatomical variation related to clinical outcome. In the present application, landmark-based shape data of the corpus callosum is analyzed in relation to age, gender, and clinical tests of walking speed and verbal fluency. To put the data-driven sparse principal component method into perspective, we consider...

  10. Sparse Decomposition and Modeling of Anatomical Shape Variation

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Rostrup, Egill; Ryberg, Charlotte

    2007-01-01

    of anatomical variation related to clinical outcome. In the present application, landmark-based shape data of the corpus callosum is analyzed in relation to age, gender, and clinical tests of walking speed and verbal fluency. To put the data-driven sparse principal component method into perspective, we consider...

  11. Global cortical activity predicts shape of hand during grasping

    Directory of Open Access Journals (Sweden)

    Harshavardhan Ashok Agashe

    2015-04-01

    Full Text Available Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG. Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across fifteen hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06 and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural ‘symphony’ as opposed to local members of the neural ensemble (as in intracranial approaches, may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs.

  12. Global cortical activity predicts shape of hand during grasping

    Science.gov (United States)

    Agashe, Harshavardhan A.; Paek, Andrew Y.; Zhang, Yuhang; Contreras-Vidal, José L.

    2015-01-01

    Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural “symphony” as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. PMID:25914616

  13. Model-based RSA of a femoral hip stem using surface and geometrical shape models.

    Science.gov (United States)

    Kaptein, Bart L; Valstar, Edward R; Spoor, Cees W; Stoel, Berend C; Rozing, Piet M

    2006-07-01

    Roentgen stereophotogrammetry (RSA) is a highly accurate three-dimensional measuring technique for assessing micromotion of orthopaedic implants. A drawback is that markers have to be attached to the implant. Model-based techniques have been developed to prevent using special marked implants. We compared two model-based RSA methods with standard marker-based RSA techniques. The first model-based RSA method used surface models, and the second method used elementary geometrical shape (EGS) models. We used a commercially available stem to perform experiments with a phantom as well as reanalysis of patient RSA radiographs. The data from the phantom experiment indicated the accuracy and precision of the elementary geometrical shape model-based RSA method is equal to marker-based RSA. For model-based RSA using surface models, the accuracy is equal to the accuracy of marker-based RSA, but its precision is worse. We found no difference in accuracy and precision between the two model-based RSA techniques in clinical data. For this particular hip stem, EGS model-based RSA is a good alternative for marker-based RSA.

  14. Shape memory behavior of epoxy-based model materials: Tailoring approaches and thermo-mechanical modeling

    Science.gov (United States)

    Pandini, Stefano; Avanzini, Andrea; Battini, Davide; Berardi, Mario; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    A series of structurally related epoxy resins were prepared as model systems for the investigation of the shape memory response, with the aim to assess the possibility of tailoring their thermo-mechanical response and conveniently describing their strain evolution under triggering stimuli with a simple thermoviscoelastic model. The resins formulation was varied in order to obtain systems with controlled glass transition temperature and crosslink density. The shape memory response was investigated by means of properly designed thermo-mechanical cycles, which allowed to measure both the ability to fully recover the applied strain and to exert a stress on a confining medium. The results were also compared with the predictions obtained by finite element simulations of the thermo-mechanical cycle by the employ of a model whose parameters were implemented from classical DMA analysis.

  15. Emergence of Oblong School Shape : Models and Empirical Data of Fish

    NARCIS (Netherlands)

    Hemelrijk, Charlotte K.; Hildenbrandt, Hanno; Reinders, Jose; Stamhuis, Eize J.

    2010-01-01

    The main benefit of the oblong shape of schools of fish is supposed to be the protection against predation. Models of self-organised travelling groups have shown that this shape may arise as a side effect of the avoidance of collisions with group members. These models were developed for schools of

  16. Teaching and Learning of Computational Modelling in Creative Shaping Processes

    Directory of Open Access Journals (Sweden)

    Daniela REIMANN

    2017-10-01

    Full Text Available Today, not only diverse design-related disciplines are required to actively deal with the digitization of information and its potentials and side effects for education processes. In Germany, technology didactics developed in vocational education and computer science education in general education, both separated from media pedagogy as an after-school program. Media education is not a subject in German schools yet. However, in the paper we argue for an interdisciplinary approach to learn about computational modeling in creative processes and aesthetic contexts. It crosses the borders of programming technology, arts and design processes in meaningful contexts. Educational scenarios using smart textile environments are introduced and reflected for project based learning.

  17. Wind turbine model and loop shaping controller design

    Science.gov (United States)

    Gilev, Bogdan

    2017-12-01

    A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.

  18. Achilles tendon shape and echogenicity on ultrasound among active badminton players.

    Science.gov (United States)

    Malliaras, P; Voss, C; Garau, G; Richards, P; Maffulli, N

    2012-04-01

    The relationship between Achilles tendon ultrasound abnormalities, including a spindle shape and heterogeneous echogenicity, is unclear. This study investigated the relationship between these abnormalities, tendon thickness, Doppler flow and pain. Sixty-one badminton players (122 tendons, 36 men, and 25 women) were recruited. Achilles tendon thickness, shape (spindle, parallel), echogenicity (heterogeneous, homogeneous) and Doppler flow (present or absent) were measured bilaterally with ultrasound. Achilles tendon pain (during or after activity over the last week) and pain and function [Victorian Institute of Sport Achilles Assessment (VISA-A)] were measured. Sixty-eight (56%) tendons were parallel with homogeneous echogenicity (normal), 22 (18%) were spindle shaped with homogeneous echogenicity, 16 (13%) were parallel with heterogeneous echogenicity and 16 (13%) were spindle shaped with heterogeneous echogenicity. Spindle shape was associated with self-reported pain (P<0.05). Heterogeneous echogenicity was associated with lower VISA-A scores than normal tendon (P<0.05). There was an ordinal relationship between normal tendon, parallel and heterogeneous and spindle shaped and heterogeneous tendons with regard to increasing thickness and likelihood of Doppler flow. Heterogeneous echogenicity with a parallel shape may be a physiological phase and may develop into heterogeneous echogenicity with a spindle shape that is more likely to be pathological. © 2010 John Wiley & Sons A/S.

  19. Computational Modeling aided Near Net Shape Manufacturing for Aluminum Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will focus on developing and validating computational models for near-net shape processing of aluminum alloys. Computational models will be developed...

  20. Detecting Surgical Tools by Modelling Local Appearance and Global Shape.

    Science.gov (United States)

    Bouget, David; Benenson, Rodrigo; Omran, Mohamed; Riffaud, Laurent; Schiele, Bernt; Jannin, Pierre

    2015-12-01

    Detecting tools in surgical videos is an important ingredient for context-aware computer-assisted surgical systems. To this end, we present a new surgical tool detection dataset and a method for joint tool detection and pose estimation in 2d images. Our two-stage pipeline is data-driven and relaxes strong assumptions made by previous works regarding the geometry, number, and position of tools in the image. The first stage classifies each pixel based on local appearance only, while the second stage evaluates a tool-specific shape template to enforce global shape. Both local appearance and global shape are learned from training data. Our method is validated on a new surgical tool dataset of 2 476 images from neurosurgical microscopes, which is made freely available. It improves over existing datasets in size, diversity and detail of annotation. We show that our method significantly improves over competitive baselines from the computer vision field. We achieve 15% detection miss-rate at 10(-1) false positives per image (for the suction tube) over our surgical tool dataset. Results indicate that performing semantic labelling as an intermediate task is key for high quality detection.

  1. Analysis of Body Shapes and Physical Activity Dominant Patterns in a Coloring Books Collection

    Directory of Open Access Journals (Sweden)

    Vladimir Martínez Bello

    2014-06-01

    Full Text Available Curriculum materials play an important role in the construction of the concept of the body to the extent that they are transmitters of knowledge, ideas and values. The aim of the study was to analyse whether the images in a collection of coloring books entitled The Boys´ Doodles Book and The girl´s Doodles Book show sexist stereotypes about body models and dominant patterns of physical activity. An independent observational group studied the images of the body through content analysis with a coding scheme using categories (gender, age, somatotype, space and type of physical activity previously adopted by experts. The Boys´ Doodles Book shows an adult man with different body types, while women are not represented. In both books, the bodies do not maintain a preferred location. The Girls´Doodles Book represents a higher percentage of girls with a slender body, while men, who were under-represented, assume different body types. The Girls´Doodles Book tends to represent women in physical activities or sports with an artistic component. In conclusion, the images in both coloring books, promote sexist body shapes and physical activities. It is a warning to parents and mothers, as well as publishing houses, libraries and government agencies to critically analyse underlying patterns on coloring books.

  2. On the directional decoupling characteristics of active stiffeners for shape control of two-dimensional structures

    Science.gov (United States)

    Philen, Michael K.; Wang, K. W.

    2004-04-01

    A substantial amount of research exists concerning shape control of two-dimensional optical mirror structures with attached piezoelectric ceramic sheet actuators. Researchers have investigated the optimal placement, size, and electrode pattern of the piezoceramic actuators for maximizing the system performance. In many situations, the performance could be further improved with tailoring of the actuator configuration. For example, it was found that to avoid 'exciting' higher order deformation modes (the wrinkling effect) in two-dimensional structures, the ideal actuator would be one that is directionally decoupled, i.e., only actuates in one direction when controlling certain deformation modes of interest. The active stiffener (AS) concept has been proposed to realize such an effect, where a stiffener is inserted between a host structure and the piezoelectric ceramic actuator patch. The objective of the research presented in this paper is to develop a local analysis of the AS actuator to gain good insight into its characteristics and determine parameters that can best achieve the decoupling actions. Using a three-dimensional finite element model, analyses of a single active stiffener attached to rigid and flexible host structures are presented. The effects of various material and system parameters on the bending moments applied to the host structure are illustrated. It is shown that, with proper design, the active stiffener can significantly reduce the bending moment (active authority) in a selected direction while maintaining sufficient authority in the orthogonal direction. The results of this investigation should provide valuable guidelines for the design of effective AS actuators.

  3. Model reference adaptive control based on kp model for magnetically controlled shape memory alloy actuators.

    Science.gov (United States)

    Zhou, Miaolei; Zhang, Yannan; Ji, Kun; Zhu, Dong

    2017-06-16

    Magnetically controlled shape memory alloy (MSMA) actuators take advantages of their large deformation and high controllability. However, the intricate hysteresis nonlinearity often results in low positioning accuracy and slow actuator response. In this paper, a modified Krasnosel'skii-Pokrovskii model was adopted to describe the complicated hysteresis phenomenon in the MSMA actuators. Adaptive recursive algorithm was employed to identify the density parameters of the adopted model. Subsequently, to further eliminate the hysteresis nonlinearity and improve the positioning accuracy, the model reference adaptive control method was proposed to optimize the model and inverse model compensation. The simulation experiments show that the model reference adaptive control adopted in the paper significantly improves the control precision of the actuators, with a maximum tracking error of 0.0072 mm. The results prove that the model reference adaptive control method is efficient to eliminate hysteresis nonlinearity and achieves a higher positioning accuracy of the MSMA actuators.

  4. Controlling active self-assembly through broken particle-shape symmetry.

    Science.gov (United States)

    Wensink, H H; Kantsler, V; Goldstein, R E; Dunkel, J

    2014-01-01

    Many structural properties of conventional passive materials are known to arise from the symmetries of their microscopic constituents. By contrast, it is largely unclear how the interplay between particle shape and self-propulsion controls the meso- and macroscale behavior of active matter. Here we use large-scale simulations of homo- and heterogeneous self-propelled particle systems to identify generic effects of broken particle-shape symmetry on collective motion. We find that even small violations of fore-aft symmetry lead to fundamentally different collective behaviors, which may facilitate demixing of differently shaped species as well as the spontaneous formation of stable microrotors. These results suggest that variation of particle shape yields robust physical mechanisms to control self-assembly of active matter, with possibly profound implications for biology and materials design.

  5. Quantitative modeling of gene expression using DNA shape features of binding sites.

    Science.gov (United States)

    Peng, Pei-Chen; Sinha, Saurabh

    2016-07-27

    Prediction of gene expression levels driven by regulatory sequences is pivotal in genomic biology. A major focus in transcriptional regulation is sequence-to-expression modeling, which interprets the enhancer sequence based on transcription factor concentrations and DNA binding specificities and predicts precise gene expression levels in varying cellular contexts. Such models largely rely on the position weight matrix (PWM) model for DNA binding, and the effect of alternative models based on DNA shape remains unexplored. Here, we propose a statistical thermodynamics model of gene expression using DNA shape features of binding sites. We used rigorous methods to evaluate the fits of expression readouts of 37 enhancers regulating spatial gene expression patterns in Drosophila embryo, and show that DNA shape-based models perform arguably better than PWM-based models. We also observed DNA shape captures information complimentary to the PWM, in a way that is useful for expression modeling. Furthermore, we tested if combining shape and PWM-based features provides better predictions than using either binding model alone. Our work demonstrates that the increasingly popular DNA-binding models based on local DNA shape can be useful in sequence-to-expression modeling. It also provides a framework for future studies to predict gene expression better than with PWM models alone. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Towards Low-Cost Effective and Homogeneous Thermal Activation of Shape Memory Polymers.

    Science.gov (United States)

    Lantada, Andrés Díaz; Rebollo, María Santamaría

    2013-11-27

    A typical limitation of intelligent devices based on the use of shape-memory polymers as actuators is linked to the widespread use of distributed heating resistors, via Joule effect, as activation method, which involves several relevant issues needing attention, such as: (a) Final device size is importantly increased due to the additional space required for the resistances; (b) the use of resistances limits materials' strength and the obtained devices are normally weaker; (c) the activation process through heating resistances is not homogeneous, thus leading to important temperature differences among the polymeric structure and to undesirable thermal gradients and stresses, also limiting the application fields of shape-memory polymers. In our present work we describe interesting activation alternatives, based on coating shape-memory polymers with different kinds of conductive materials, including textiles, conductive threads and conductive paint, which stand out for their easy, rapid and very cheap implementation. Distributed heating and homogeneous activation can be achieved in several of the alternatives studied and the technical results are comparable to those obtained by using advanced shape-memory nanocomposites, which have to deal with complex synthesis, processing and security aspects. Different combinations of shape memory epoxy resin with several coating electrotextiles, conductive films and paints are prepared, simulated with the help of thermal finite element method based resources and characterized using infrared thermography for validating the simulations and overall design process. A final application linked to an active catheter pincer is detailed and the advantages of using distributed heating instead of conventional resistors are discussed.

  7. Nonlinear Model of Pseudoelastic Shape Memory Alloy Damper Considering Residual Martensite Strain Effect

    Directory of Open Access Journals (Sweden)

    Y. M. Parulekar

    2012-01-01

    Full Text Available Recently, there has been increasing interest in using superelastic shape memory alloys for applications in seismic resistant-design. Shape memory alloys (SMAs have a unique property by which they can recover their original shape after experiencing large strains up to 8% either by heating (shape memory effect or removing stress (pseudoelastic effect. Many simplified shape memory alloy models are suggested in the past literature for capturing the pseudoelastic response of SMAs in passive vibration control of structures. Most of these models do not consider the cyclic effects of SMA's and resulting residual martensite deformation. Therefore, a suitable constitutive model of shape memory alloy damper which represents the nonlinear hysterical dynamic system appropriately is essential. In this paper a multilinear hysteretic model incorporating residual martensite strain effect of pseudoelastic shape memory alloy damper is developed and experimentally validated using SMA wire, based damper device. A sensitivity analysis is done using the proposed model along with three other simplified SMA models. The models are implemented on a steel frame representing an SDOF system and the comparison of seismic response of structure with all the models is made in the numerical study.

  8. Direct-write fabrication of 4D active shape-changing behavior based on a shape memory polymer and its nanocomposite (Conference Presentation)

    Science.gov (United States)

    Wei, Hongqiu; Zhang, Qiwei; Yao, Yongtao; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs), a typical class of smart materials, have been witnessed significant advances in the past decades. Based on the unique performance to recover the initial shape after going through a shape deformation, the applications of SMPs have aroused growing interests. However, most of the researches are hindered by traditional processing technologies which limit the design space of SMPs-based structures. Three-dimension (3D) printing as an emerging technology endows design freedom to manufacture materials with complex structures. In present article, we show that by employing direct-write printing method; one can realize the printing of SMPs to achieve 4D active shape-changing structures. We first fabricated a kind of 3D printable polylactide (PLA)-based SMPs and characterized the overall properties of such materials. Results demonstrated the prepared PLA-based SMPs presenting excellent shape memory effect. In what follows, the rheological properties of such PLA-based SMP ink during printing process were discussed in detail. Finally, we designed and printed several 3D configurations for investigation. By combining 3D printing with shape memory behavior, these printed structures achieve 4D active shape-changing performance under heat stimuli. This research presents a high flexible method to realize the fabrication of SMP-based 4D active shape-changing structures, which opens the way for further developments and improvements of high-tech fields like 4D printing, soft robotics, micro-systems and biomedical devices.

  9. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells.

    Science.gov (United States)

    Sunshine, Joel C; Perica, Karlo; Schneck, Jonathan P; Green, Jordan J

    2014-01-01

    Previous work developing particle-based acellular, artificial antigen presenting cells (aAPCs) has focused exclusively on spherical platforms. To explore the role of shape, we generated ellipsoidal PLGA microparticles with varying aspect ratios (ARs) and synthesized aAPCs from them. The ellipsoidal biomimetic aAPCs with high-AR showed significantly enhanced in vitro and in vivo activity above spherical aAPCs with particle volume and antigen content held constant. Confocal imaging indicates that CD8+ T cells preferentially migrate to and are activated by interaction with the long axis of the aAPC. Importantly, enhanced activity of high-AR aAPCs was seen in a mouse melanoma model, with high-AR aAPCs improving melanoma survival compared to non-cognate aAPCs (p = 0.004) and cognate spherical aAPCs (p = 0.05). These findings indicate that particle geometry is a critical design criterion in the generation of aAPCs, and may offer insight into the essential role of geometry in the interaction between CD8+ T cells and biological APCs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. On the Relation between Edge and Vertex Modelling in Shape Analysis

    DEFF Research Database (Denmark)

    Hobolth, Asger; Kent, John Thomas; Dryden, Ian L.

    2002-01-01

    circulant covariance matrix to model the edge transformation vector. This type of model is also feasible for the vertex transformation vector and in certain cases the free parameters of the two models match up in a simple way. A vertex model and an edge model are applied to a data set of sand particles...... to explore shape variability....

  11. Automated segmentation of recuts abdominis muscle using shape model in X-ray CT images.

    Science.gov (United States)

    Kamiya, N; Zhou, X; Chen, H; Muramatsu, C; Hara, T; Yokoyama, R; Kanematsu, M; Hoshi, H; Fujita, H

    2011-01-01

    Our purpose in this study is to segment the rectus abdominis muscle region in X-ray CT images, and we propose a novel recognition method based on the shape model. In this method, three steps are included in the segmentation process. The first is to generate a shape model for the rectus abdominis muscle. The second is to recognize anatomical feature points corresponding to the origin and insertion of the muscle, and the third is to segment the rectus abdominis muscles based on the shape model. We generated the shape model from 20 CT cases and tested the model to recognize the muscle in 20 other CT cases. The average values for the Jaccard similarity coefficient (JSC) and true segmentation coefficient (TSC) were 0.841 and 0.863, respectively. The results suggest the validity of the model-based segmentation for the rectus abdominis muscle.

  12. Gallbladder Boundary Segmentation from Ultrasound Images Using Active Contour Model

    Science.gov (United States)

    Ciecholewski, Marcin

    Extracting the shape of the gallbladder from an ultrasonography (US) image allows superfluous information which is immaterial in the diagnostic process to be eliminated. In this project an active contour model was used to extract the shape of the gallbladder, both for cases free of lesions, and for those showing specific disease units, namely: lithiasis, polyps and changes in the shape of the organ, such as folds or turns of the gallbladder. The approximate shape of the gallbladder was found by applying the motion equation model. The tests conducted have shown that for the 220 US images of the gallbladder, the area error rate (AER) amounted to 18.15%.

  13. Active Orientation Models for Face Alignment In-the-Wild

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Alabort-i-Medina, Joan; Zafeiriou, Stefanos; Pantic, Maja

    2014-01-01

    We present Active Orientation Models (AOMs), generative models of facial shape and appearance, which extend the well-known paradigm of Active Appearance Models (AAMs) for the case of generic face alignment under unconstrained conditions. Robustness stems from the fact that the proposed AOMs employ a

  14. Model-based shape matching of orthopaedic implants in RSA and fluoroscopy

    NARCIS (Netherlands)

    Prins, Anne Hendrik

    2015-01-01

    Model-based shape matching is commonly used, for example to measure the migration of an implant with Roentgen stereophotogrammetric analysis (RSA) or to measure implant kinematics with fluoroscopy. The aim of this thesis was to investigate the general usability of shape matching and to improve the

  15. Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects

    Directory of Open Access Journals (Sweden)

    Bernard Durand

    2013-09-01

    Full Text Available The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called “controlled behavior composite material (CBCM” is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work.

  16. Content-Based Search on a Database of Geometric Models: Identifying Objects of Similar Shape

    Energy Technology Data Exchange (ETDEWEB)

    XAVIER, PATRICK G.; HENRY, TYSON R.; LAFARGE, ROBERT A.; MEIRANS, LILITA; RAY, LAWRENCE P.

    2001-11-01

    The Geometric Search Engine is a software system for storing and searching a database of geometric models. The database maybe searched for modeled objects similar in shape to a target model supplied by the user. The database models are generally from CAD models while the target model may be either a CAD model or a model generated from range data collected from a physical object. This document describes key generation, database layout, and search of the database.

  17. MARR: active vision model

    Science.gov (United States)

    Podladchikova, Lubov N.; Gusakova, Valentina I.; Shaposhnikov, Dmitry G.; Faure, Alain; Golovan, Alexander V.; Shevtsova, Natalia A.

    1997-09-01

    Earlier, the biologically plausible active vision, model for multiresolutional attentional representation and recognition (MARR) has been developed. The model is based on the scanpath theory of Noton and Stark and provides invariant recognition of gray-level images. In the present paper, the algorithm of automatic image viewing trajectory formation in the MARR model, the results of psychophysical experiments, and possible applications of the model are considered. Algorithm of automatic image viewing trajectory formation is based on imitation of the scanpath formed by operator. Several propositions about possible mechanisms for a consecutive selection of fixation points in human visual perception inspired by computer simulation results and known psychophysical data have been tested and confirmed in our psychophysical experiments. In particular, we have found that gaze switch may be directed (1) to a peripheral part of the vision field which contains an edge oriented orthogonally to the edge in the point of fixation, and (2) to a peripheral part of the vision field containing crossing edges. Our experimental results have been used to optimize automatic algorithm of image viewing in the MARR model. The modified model demonstrates an ability to recognize complex real world images invariantly with respect to scale, shift, rotation, illumination conditions, and, in part, to point of view and can be used to solve some robot vision tasks.

  18. A new automated method for analysis of gated-SPECT images based on a three-dimensional heart shaped model

    DEFF Research Database (Denmark)

    Lomsky, Milan; Richter, Jens; Johansson, Lena

    2005-01-01

    A new automated method for quantification of left ventricular function from gated-single photon emission computed tomography (SPECT) images has been developed. The method for quantification of cardiac function (CAFU) is based on a heart shaped model and the active shape algorithm. The model...... contains statistical information of the variability of left ventricular shape. CAFU was adjusted based on the results from the analysis of five simulated gated-SPECT studies with well defined volumes of the left ventricle. The digital phantom NURBS-based Cardiac-Torso (NCAT) and the Monte-Carlo method...... agreement between QGS and CAFU. The findings of this study indicate that our new automated method for quantification of gated-SPECT images can accurately measure left ventricular volumes and EF....

  19. Physical activity and low back pain: a U-shaped relation?

    Science.gov (United States)

    Heneweer, Hans; Vanhees, Luc; Picavet, H Susan J

    2009-05-01

    Being physically active is often suggested to be important in the prevention and management of low back pain. This simple view does not take into account that the relation between the level of activity and back pain may be a U-shaped curve - i.e. both inactivity and excessive activities (back-unhealthy activity) present an increased risk for back pain. We explored the U-shaped association between physical activity and chronic low back pain (3 months duration) by analyzing cross-sectional data from the Dutch population-based Musculoskeletal Complaints and Consequences Cohort study (DMC(3), 1998) of a sex-age stratified sample of 25 years and older (n=3364). Type of activity (daily routine, leisure time and sport activity), intensity of and time spent on these activities, and back exertion of sport activities were taken into account. Physical activity was not associated with chronic low back pain (CLBP) when studied by the dimension of activity, by the intensity or by the duration of physical activity. Only engaging in sport activity was associated with less CLBP (OR 0.78: 95% CI 0.66-0.93). The extremes of the total physical activity pattern were associated with CLBP. A moderate increased risk for CLBP was found for both participants with a sedentary lifestyle (OR 1.31: 95% CI 1.08-1.58) and for those being involved in physical strenuous activities (OR 1.22: 95% CI 1.00-1.49). This was especially true for women (sedentary: OR 1.44: 95% CI 1.10-1.83; physically active: OR 1.36: 95% CI 1.04-1.78). This study provides some evidence that the relation between physical activity and CLBP is U-shaped.

  20. Feature Classification for Robust Shape-Based Collaborative Tracking and Model Updating

    Directory of Open Access Journals (Sweden)

    C. S. Regazzoni

    2008-09-01

    Full Text Available A new collaborative tracking approach is introduced which takes advantage of classified features. The core of this tracker is a single tracker that is able to detect occlusions and classify features contributing in localizing the object. Features are classified in four classes: good, suspicious, malicious, and neutral. Good features are estimated to be parts of the object with a high degree of confidence. Suspicious ones have a lower, yet significantly high, degree of confidence to be a part of the object. Malicious features are estimated to be generated by clutter, while neutral features are characterized with not a sufficient level of uncertainty to be assigned to the tracked object. When there is no occlusion, the single tracker acts alone, and the feature classification module helps it to overcome distracters such as still objects or little clutter in the scene. When more than one desired moving objects bounding boxes are close enough, the collaborative tracker is activated and it exploits the advantages of the classified features to localize each object precisely as well as updating the objects shape models more precisely by assigning again the classified features to the objects. The experimental results show successful tracking compared with the collaborative tracker that does not use the classified features. Moreover, more precise updated object shape models will be shown.

  1. Event-Based Activity Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2004-01-01

    We present and discuss a modeling approach that supports event-based modeling of information and activity in information systems. Interacting human actors and IT-actors may carry out such activity. We use events to create meaningful relations between information structures and the related...... activities inside and outside an IT-system. We use event-activity diagrams to model activity. Such diagrams support the modeling of activity flow, object flow, shared events, triggering events, and interrupting events....

  2. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    mechanisms with the application of flexible modeling techniques taking into account the various factors during co-firing. In addition, realistic microstructures in time/temperature need to be considered while defining the deformational behaviors of the sintering body in order to improve the predictive...... capabilities of the existing constitutive models. In this context, a simulation method or framework has been developed, which involves the use of sintering experiments, analytical and numerical methods. In addition to the intrinsic material parameters (shrinkage and viscous behaviors), the effect of extrinsic....... This model excels in requiring a single optical dilatometry run to collect all the necessary input parameters for modeling of the sintering of the bi-layers. The determined input parameters have also been used in a finite element model, which is developed based on the continuum theory of sintering, to model...

  3. Midpoint Shapes.

    Science.gov (United States)

    Welchman, Rosamond; Urso, Josephine

    2000-01-01

    Emphasizes the importance of children exploring hands-on and minds-on mathematics. Presents a midpoint shape activity for students to explore the midpoint shape of familiar quadrilaterals, such as squares and rectangles. (KHR)

  4. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  5. PLATE SHAPE MODEL OF COMET 103P/HARTLEY 2 V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Shape model of comet 103P/Hartley 2, as derived from the Deep Impact spacecraft images obtained around the time of closest approach to the comet during the EPOXI...

  6. PLATE SHAPE MODEL OF COMET 9P/TEMPEL 1 V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Plate shape model of comet 9P/Tempel 1, as derived from Deep Impact and Stardust NEXT images obtained around the times of closest approach to the comet.

  7. An ideal model for stress-induced martensitic transformations in shape-memory alloys

    National Research Council Canada - National Science Library

    Michele Marino

    2014-01-01

    ... (both for transformation and stiffness properties). The model is developed under the assumption of ideal behavior during martensitic transformation, and the predicted response is governed by few parameters, standard in the context of shape-memory...

  8. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian

    2017-11-01

    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  9. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles - upscaling an aggregate biophysical model.

    Science.gov (United States)

    Ebrahimi, Ali; Or, Dani

    2016-09-01

    Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. © 2016 John Wiley & Sons Ltd.

  10. New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images

    Science.gov (United States)

    Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas

    2016-10-01

    Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay

  11. 3D Morphometric and posture study of felid scapulae using statistical shape modelling.

    Science.gov (United States)

    Zhang, Kai Yu; Wiktorowicz-Conroy, Alexis; Hutchinson, John R; Doube, Michael; Klosowski, Michal; Shefelbine, Sandra J; Bull, Anthony M J

    2012-01-01

    We present a three dimensional (3D) morphometric modelling study of the scapulae of Felidae, with a focus on the correlations between forelimb postures and extracted scapular shape variations. Our shape modelling results indicate that the scapular infraspinous fossa becomes larger and relatively broader along the craniocaudal axis in larger felids. We infer that this enlargement of the scapular fossa may be a size-related specialization for postural support of the shoulder joint.

  12. Leaders Are the Network: Applying the Kotter Model in Shaping Future Information Systems

    Science.gov (United States)

    2010-01-01

    Comunications and Information Systems ,” New York, NY: Springer Publishing, 1997, 183-193. Findley, Mike and Luck, Gary, “Information Overload...1 LEADERS ARE THE NETWORK: APPLYING THE KOTTER MODEL IN SHAPING FUTURE INFORMATION SYSTEMS Submitted...Model in Shaping Future Information Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e

  13. Breaking of rod-shaped model material during compression

    Directory of Open Access Journals (Sweden)

    Lukas Kulaviak

    2017-01-01

    Full Text Available The breakage of a model anisometric dry granular material caused by uniaxial compression was studied. The bed of uniform rod-like pasta particles (8 mm long, aspect ratio 1:8 was compressed (Gamlen Tablet Press and their size distribution was measured after each run (Dynamic Image Analysing. The compression dynamics was recorded and the effect of several parameters was tested (rate of compression, volume of granular bed, pressure magnitude and mode of application. Besides the experiments, numerical modelling of the compressed breakable material was performed as well, employing the DEM approach (Discrete Element Method. The comparison between the data and the model looks promising.

  14. Breaking of rod-shaped model material during compression

    Science.gov (United States)

    Lukas, Kulaviak; Vera, Penkavova; Marek, Ruzicka; Miroslav, Puncochar; Petr, Zamostny; Zdenek, Grof; Frantisek, Stepanek; Marek, Schongut; Jaromir, Havlica

    2017-06-01

    The breakage of a model anisometric dry granular material caused by uniaxial compression was studied. The bed of uniform rod-like pasta particles (8 mm long, aspect ratio 1:8) was compressed (Gamlen Tablet Press) and their size distribution was measured after each run (Dynamic Image Analysing). The compression dynamics was recorded and the effect of several parameters was tested (rate of compression, volume of granular bed, pressure magnitude and mode of application). Besides the experiments, numerical modelling of the compressed breakable material was performed as well, employing the DEM approach (Discrete Element Method). The comparison between the data and the model looks promising.

  15. Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    Science.gov (United States)

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653

  16. High solid-state fluorescence in ring-shaped AEE-active tetraphenylsilole derivatives.

    Science.gov (United States)

    Cai, Yuanjing; Samedov, Kerim; Albright, Haley; Dolinar, Brian S; Guzei, Ilia A; Hu, Rongrong; Zhang, Chaocan; Tang, Ben Zhong; West, Robert

    2014-10-28

    Three ring-shaped AEE-active silole-containing compounds were synthesized by mild condensation reactions. Cyclotrisiloxane compound 1 displays high solid-state quantum yield (Φfl = 0.86) with the fluorescence maximum at 512 nm. This high fluorescence efficiency results mainly from decreased vibrational pathways to fluorescence decay due to the intramolecular C-H···π interactions.

  17. How Open Data Shapes In Silico Transporter Modeling

    Directory of Open Access Journals (Sweden)

    Floriane Montanari

    2017-03-01

    Full Text Available Chemical compound bioactivity and related data are nowadays easily available from open data sources and the open medicinal chemistry literature for many transmembrane proteins. Computational ligand-based modeling of transporters has therefore experienced a shift from local (quantitative models to more global, qualitative, predictive models. As the size and heterogeneity of the data set rises, careful data curation becomes even more important. This includes, for example, not only a tailored cutoff setting for the generation of binary classes, but also the proper assessment of the applicability domain. Powerful machine learning algorithms (such as multi-label classification now allow the simultaneous prediction of multiple related targets. However, the more complex, the less interpretable these models will get. We emphasize that transmembrane transporters are very peculiar, some of which act as off-targets rather than as real drug targets. Thus, careful selection of the right modeling technique is important, as well as cautious interpretation of results. We hope that, as more and more data will become available, we will be able to ameliorate and specify our models, coming closer towards function elucidation and the development of safer medicine.

  18. How Open Data Shapes In Silico Transporter Modeling.

    Science.gov (United States)

    Montanari, Floriane; Zdrazil, Barbara

    2017-03-07

    Chemical compound bioactivity and related data are nowadays easily available from open data sources and the open medicinal chemistry literature for many transmembrane proteins. Computational ligand-based modeling of transporters has therefore experienced a shift from local (quantitative) models to more global, qualitative, predictive models. As the size and heterogeneity of the data set rises, careful data curation becomes even more important. This includes, for example, not only a tailored cutoff setting for the generation of binary classes, but also the proper assessment of the applicability domain. Powerful machine learning algorithms (such as multi-label classification) now allow the simultaneous prediction of multiple related targets. However, the more complex, the less interpretable these models will get. We emphasize that transmembrane transporters are very peculiar, some of which act as off-targets rather than as real drug targets. Thus, careful selection of the right modeling technique is important, as well as cautious interpretation of results. We hope that, as more and more data will become available, we will be able to ameliorate and specify our models, coming closer towards function elucidation and the development of safer medicine.

  19. An analytical model for shape memory alloy fiber-reinforced composite thin-walled beam undergoing large deflection

    Directory of Open Access Journals (Sweden)

    Yongsheng Ren

    2015-03-01

    Full Text Available The structural model of the thin-walled laminated beams with integral shape memory alloy active fibers and accounting for geometrically nonlinear is presented in this article. The structural modeling is split into two parts: a two-dimensional analysis over the cross section and a geometrically nonlinear analysis of a beam along the beam span. The variational asymptotic method is used to formulate the force–deformation relationship equations taking into account the presence of active shape memory alloy fibers distributed along the cross section of the beam. The geometrically nonlinear governing equations are derived using variational principle and based on the von Kármán-type nonlinear strain–displacement relations. The equations are then solved using Galerkin’s method and an incremental Newton–Raphson method. The validation for the proposed model has been carried out by comparison of the present results with those available in the literature. The results show that significant extension, bending, and twisting coupled nonlinear deflections occur during the phase transformation due to shape memory alloy actuation. The effects of the volume fraction of the shape memory alloy fiber and ply angle are also addressed.

  20. Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators

    Energy Technology Data Exchange (ETDEWEB)

    Raja, Mohan, E-mail: mohanraja27@yahoo.com [King Abdullah Institute of Nanotechnology, King Saud University, Riyadh-11451 (Saudi Arabia); Shanmugharaj, A.M.; Ryu, Sung Hun [College of Engineering and Department of Chemical Engineering, Industrial Liaison Research Institute, Green Energy Center, Kyung Hee University, Yongin, Kyunggi-Do 449-701 (Korea, Republic of); Subha, J. [Central Institute of Plastics Engineering and Technology (CIPET), ' G' Sector, J.K.Road, Govindpura, Industrial Area, Bhopal -462023 (India)

    2011-10-03

    Highlights: {yields} Polyurethane based on pristine and metal (Ag and Cu) nanoparticle decorated CNTs nanocomposites are prepared through melt blending process. {yields} The electrical, mechanical, dynamic mechanical, thermal conductivity and electro active shape memory properties of the PU nanocomposites were investigated. {yields} The influence of metal nanoparticle decorated CNTs showed significant improvement in their all properties to compare to pristine CNTs. {yields} Electro active shape memory studies of the PU/M-CNTs nanocomposites reveal extraordinary recoverability of its shape at lower applied dc voltages. - Abstract: Polymer nanocomposites based on thermoplastic polyurethane (PU) elastomer and metal nanoparticle (Ag and Cu) decorated multiwall carbon nanotubes (M-CNTs) were prepared through melt mixing process and investigated for its mechanical, dynamic mechanical and electro active shape memory properties. Structural characterization and morphological characterization of the PU nanocomposites were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Morphological characterization revealed better dispersion of M-CNTs in the polyurethane, which is attributed to the improved interaction between the M-CNTs and polyurethane. Loading of the metal nanoparticle coated carbon nanotubes resulted in the significant improvement on the mechanical properties such as tensile strength of the PU composites in comparison to the pristine carbon nanotubes (P-CNTs). Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the polyurethane increases slightly with increasing loading of both pristine and metal nanoparticle functionalized carbon nanotubes. The metal nanoparticles decorated carbon nanotubes also showed significant improvement in the thermal and electrical conductivity of the PU/M-CNTs nanocomposites. Shape memory studies of the PU/M-CNTs nanocomposites exhibit remarkable recoverability of its shape at lower

  1. A multi-branch finite deformation constitutive model for a shape memory polymer based syntactic foam

    Science.gov (United States)

    Gu, Jianping; Sun, Huiyu; Fang, Changqing

    2015-02-01

    A multi-branch thermoviscoelastic-themoviscoplastic finite deformation constitutive model incorporated with structural and stress relaxation is developed for a thermally activated shape memory polymer (SMP) based syntactic foam. In this paper, the total mechanical deformation of the foam is divided into the components of the SMP and the elastic glass microballoons by using the mixture rule. The nonlinear Adam-Gibbs model is used to describe the structural relaxation of the SMP as the temperature crosses the glass transition temperature (Tg). Further, a multi-branch model combined with the modified Eying model of viscous flow is used to capture the multitude of relaxation processes of the SMP. The deformation of the glass microballoons could be split into elastic and inelastic components. In addition, the phenomenological evolution rule is implemented in order to further characterize the macroscopic post-yield strain softening behaviors of the syntactic foam. A comparison between the numerical simulation and the thermomechanical experiment shows an acceptable agreement. Moreover, a parametric study is conducted to examine the predictability of the model and to provide guidance for reasonable design of the syntactic foam.

  2. Towards Low-Cost Effective and Homogeneous Thermal Activation of Shape Memory Polymers

    Science.gov (United States)

    Lantada, Andrés Díaz; Rebollo, María Ángeles Santamaría

    2013-01-01

    A typical limitation of intelligent devices based on the use of shape-memory polymers as actuators is linked to the widespread use of distributed heating resistors, via Joule effect, as activation method, which involves several relevant issues needing attention, such as: (a) Final device size is importantly increased due to the additional space required for the resistances; (b) the use of resistances limits materials’ strength and the obtained devices are normally weaker; (c) the activation process through heating resistances is not homogeneous, thus leading to important temperature differences among the polymeric structure and to undesirable thermal gradients and stresses, also limiting the application fields of shape-memory polymers. In our present work we describe interesting activation alternatives, based on coating shape-memory polymers with different kinds of conductive materials, including textiles, conductive threads and conductive paint, which stand out for their easy, rapid and very cheap implementation. Distributed heating and homogeneous activation can be achieved in several of the alternatives studied and the technical results are comparable to those obtained by using advanced shape-memory nanocomposites, which have to deal with complex synthesis, processing and security aspects. Different combinations of shape memory epoxy resin with several coating electrotextiles, conductive films and paints are prepared, simulated with the help of thermal finite element method based resources and characterized using infrared thermography for validating the simulations and overall design process. A final application linked to an active catheter pincer is detailed and the advantages of using distributed heating instead of conventional resistors are discussed. PMID:28788401

  3. Towards Low-Cost Effective and Homogeneous Thermal Activation of Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    Andrés Díaz Lantada

    2013-11-01

    Full Text Available A typical limitation of intelligent devices based on the use of shape-memory polymers as actuators is linked to the widespread use of distributed heating resistors, via Joule effect, as activation method, which involves several relevant issues needing attention, such as: (a Final device size is importantly increased due to the additional space required for the resistances; (b the use of resistances limits materials’ strength and the obtained devices are normally weaker; (c the activation process through heating resistances is not homogeneous, thus leading to important temperature differences among the polymeric structure and to undesirable thermal gradients and stresses, also limiting the application fields of shape-memory polymers. In our present work we describe interesting activation alternatives, based on coating shape-memory polymers with different kinds of conductive materials, including textiles, conductive threads and conductive paint, which stand out for their easy, rapid and very cheap implementation. Distributed heating and homogeneous activation can be achieved in several of the alternatives studied and the technical results are comparable to those obtained by using advanced shape-memory nanocomposites, which have to deal with complex synthesis, processing and security aspects. Different combinations of shape memory epoxy resin with several coating electrotextiles, conductive films and paints are prepared, simulated with the help of thermal finite element method based resources and characterized using infrared thermography for validating the simulations and overall design process. A final application linked to an active catheter pincer is detailed and the advantages of using distributed heating instead of conventional resistors are discussed.

  4. Towards Low-Cost Effective and Homogeneous Thermal Activation of Shape Memory Polymers

    OpenAIRE

    Andrés Díaz Lantada; María Santamaría Rebollo

    2013-01-01

    A typical limitation of intelligent devices based on the use of shape-memory polymers as actuators is linked to the widespread use of distributed heating resistors, via Joule effect, as activation method, which involves several relevant issues needing attention, such as: (a) Final device size is importantly increased due to the additional space required for the resistances; (b) the use of resistances limits materials’ strength and the obtained devices are normally weaker; (c) the activation p...

  5. A continuous model of the dynamical systems capable to memorise multiple shapes

    Science.gov (United States)

    Yudashkin, Alexander

    2008-10-01

    This paper proposes the novel approach to the mathematical synthesis of continuous self-organising systems capable to memorise and restore own multiple shapes defined by means of functions of single spatial variable or parametric models in two-dimensional space. The model is based on the certain universal form of the integral operator with the kernel representing the system memory. The technique for memorising shapes uses the composition of singular kernels of integral operators. The whole system is described by the potential function, whose minimisation leads to the non-linear dynamics of shape reconstruction by integro-differential non-linear equations with partial derivatives. The corresponding models are proposed and analysed for both parametric and non-parametric shape definitions. Main features of the proposed model are considered, and the results of numerical simulation are shown in case of three shapes memorising and retrieval. The proposed model can be used in theory of smart materials, artificial intelligence and some other branches of non-linear sciences where the effect of multiple shapes memorising and retrieval appears as the core feature.

  6. CPM : A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles

    NARCIS (Netherlands)

    Jalba, Andrei C.; Wilkinson, Michael H.F.; Roerdink, Jos B.T.M.

    2004-01-01

    A novel, physically motivated deformable model for shape recovery and segmentation is presented. The model, referred to as the charged-particle model (CPM), is inspired by classical electrodynamics and is based on a simulation of charged particles moving in an electrostatic field. The charges are

  7. The Influence of Particle Shape and Size on the Activity of Platinum Nanoparticles for Oxygen Reduction Reaction: A Density Functional Theory Study

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Bligaard, Thomas

    2014-01-01

    We present first principle investigation of the influence of platinum nanoparticle shape and size on the oxygen reduction reaction activity. We compare the activities of nanoparticles with specific shapes (tetrahedron, octahedron, cube and truncated octahedron) with that of equilibrium particle...... shape at 0.9 V. Furthermore, the influence of support is assessed by looking at the particles with and without support interactions. The equilibrium shape is determined by calculating the changes in surface energies with potential for low-index platinum facets; (111), (100) and (110). This has been done...... by explicitly taking the coverage of oxygenated species into account. A kinetic model derived from counting the number of sites shows that the theoretical activity obtained for equilibrium particle fits well with experimental data. Particles with similar to 3 nm diameter are found to possess the highest...

  8. Method of Modeling and Simulation of Shaped External Occulters

    Science.gov (United States)

    Lyon, Richard G. (Inventor); Clampin, Mark (Inventor); Petrone, Peter, III (Inventor)

    2016-01-01

    The present invention relates to modeling an external occulter including: providing at least one processor executing program code to implement a simulation system, the program code including: providing an external occulter having a plurality of petals, the occulter being coupled to a telescope; and propagating light from the occulter to a telescope aperture of the telescope by scalar Fresnel propagation, by: obtaining an incident field strength at a predetermined wavelength at an occulter surface; obtaining a field propagation from the occulter to the telescope aperture using a Fresnel integral; modeling a celestial object at differing field angles by shifting a location of a shadow cast by the occulter on the telescope aperture; calculating an intensity of the occulter shadow on the telescope aperture; and applying a telescope aperture mask to a field of the occulter shadow, and propagating the light to a focal plane of the telescope via FFT techniques.

  9. Modeling Latency and Shape Changes in Trial Based Neuroimaging Data

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    2011-01-01

    To overcome poor signal-to-noise ratios in neuroimaging, data sets are often acquired over repeated trials that form a three-way array of spacetimetrials. As neuroimaging data contain multiple inter-mixed signal components blind signal separation and decomposition methods are frequently invoked...... representation. We demonstrate how this alleviates degeneracy and helps to extract physiologically plausible components. The resulting convolutive multi-linear decomposition can model realistic trial variability as demonstrated in EEG and fMRI data....

  10. Review of Shape Deviation Modeling for Additive Manufacturing

    OpenAIRE

    Zhu, Zuowei; Keimasi, Safa; Anwer, Nabil; Mathieu, Luc; Qiao, Lihong

    2016-01-01

    International audience; Additive Manufacturing (AM) is becoming a promising technology capable of building complex customized parts with internal geometries and graded material by stacking up thin individual layers. However, a comprehensive geometric model for Additive Manufacturing is not mature yet. Dimensional and form accuracy and surface finish are still a bottleneck for AM regarding quality control. In this paper, an up-to-date review is drawn on methods and approaches that have been de...

  11. A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta.

    Science.gov (United States)

    Bruse, Jan L; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N; Capelli, Claudio; Hsia, Tain-Yen; Sermesant, Maxime; Pennec, Xavier; Taylor, Andrew M; Schievano, Silvia

    2016-05-31

    Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover

  12. Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent

    Directory of Open Access Journals (Sweden)

    Matthews Dennis L

    2007-11-01

    Full Text Available Abstract Background Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel. Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. Methods A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. Results At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of ~8 W. Conclusion We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.

  13. Fabrication and In Vitro Deployment of a Laser-Activated Shape Memory Polymer Vascular Stent

    Energy Technology Data Exchange (ETDEWEB)

    Baer, G M; Small IV, W; Wilson, T S; Benett, W J; Matthews, D L; Hartman, J; Maitland, D J

    2007-04-25

    Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of {approx}8 W. We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.

  14. Environmental Stress-mediated EPS Production Shape Microbial Activity on Various Hydrated Rough Surfaces

    Science.gov (United States)

    Wang, G.; Liu, L.; Chen, G.

    2016-12-01

    The complex environmental physical and chemical processes and interplay with the associating biological responses are keys to understanding the environmental microbiology ensconced in environmental remediation, water quality control, food safety, nutrient cycling, and etc., yet remain poorly understood. Using experimental micromodels, we study how environmental conditions (e.g., hydration fluctuation, nutrient limitation, pH variation, etc.) affect microbial extracellular polymeric substances (EPS) production and their configuration within various hydrated surfaces, and impacts on microbial motility, surface attachment, aggregation, and other bioremediation activities. To elucidate the potential mechanisms underlying the complex bio-physicochemical processes, we developed an individual-based and spatio-temporally resolved modeling platform that explicitly considers microscale aqueous-phase configuration and nutrient transport/diffusion and associated biophysical processes affecting individual microbial cell life history. We quantitatively explore the effects of the above microscale environmental processes on bio-physicochemical interactions affecting microbial growth, motility, surface attachment and aggregation, and shaping population interactions and functions. Simulation scenarios of microbial induced pollutant (e.g., roxarsone) biotransformation on various hydrated rough surfaces will also be present.

  15. Deep Learning Guided Partitioned Shape Model for Anterior Visual Pathway Segmentation.

    Science.gov (United States)

    Mansoor, Awais; Cerrolaza, Juan J; Idrees, Rabia; Biggs, Elijah; Alsharid, Mohammad A; Avery, Robert A; Linguraru, Marius George

    2016-08-01

    Analysis of cranial nerve systems, such as the anterior visual pathway (AVP), from MRI sequences is challenging due to their thin long architecture, structural variations along the path, and low contrast with adjacent anatomic structures. Segmentation of a pathologic AVP (e.g., with low-grade gliomas) poses additional challenges. In this work, we propose a fully automated partitioned shape model segmentation mechanism for AVP steered by multiple MRI sequences and deep learning features. Employing deep learning feature representation, this framework presents a joint partitioned statistical shape model able to deal with healthy and pathological AVP. The deep learning assistance is particularly useful in the poor contrast regions, such as optic tracts and pathological areas. Our main contributions are: 1) a fast and robust shape localization method using conditional space deep learning, 2) a volumetric multiscale curvelet transform-based intensity normalization method for robust statistical model, and 3) optimally partitioned statistical shape and appearance models based on regional shape variations for greater local flexibility. Our method was evaluated on MRI sequences obtained from 165 pediatric subjects. A mean Dice similarity coefficient of 0.779 was obtained for the segmentation of the entire AVP (optic nerve only =0.791 ) using the leave-one-out validation. Results demonstrated that the proposed localized shape and sparse appearance-based learning approach significantly outperforms current state-of-the-art segmentation approaches and is as robust as the manual segmentation.

  16. Improved radiograph measurement inter-observer reliability by use of statistical shape models

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, E.C., E-mail: elise.pegg@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Mellon, S.J., E-mail: stephen.mellon@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Salmon, G. [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Alvand, A., E-mail: abtin.alvand@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Pandit, H., E-mail: hemant.pandit@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Murray, D.W., E-mail: david.murray@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Gill, H.S., E-mail: richie.gill@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom)

    2012-10-15

    Pre- and post-operative radiographs of patients undergoing joint arthroplasty are often examined for a variety of purposes including preoperative planning and patient assessment. This work examines the feasibility of using active shape models (ASM) to semi-automate measurements from post-operative radiographs for the specific case of the Oxford™ Unicompartmental Knee. Measurements of the proximal tibia and the position of the tibial tray were made using the ASM model and manually. Data were obtained by four observers and one observer took four sets of measurements to allow assessment of the inter- and intra-observer reliability, respectively. The parameters measured were the tibial tray angle, the tray overhang, the tray size, the sagittal cut position, the resection level and the tibial width. Results demonstrated improved reliability (average of 27% and 11.2% increase for intra- and inter-reliability, respectively) and equivalent accuracy (p > 0.05 for compared data values) for all of the measurements using the ASM model, with the exception of the tray overhang (p = 0.0001). Less time (15 s) was required to take measurements using the ASM model compared with manual measurements, which was significant. These encouraging results indicate that semi-automated measurement techniques could improve the reliability of radiographic measurements.

  17. [Influence of active commuting on happiness, well-being, psychological distress and body shape in adolescents].

    Science.gov (United States)

    Ruiz-Ariza, Alberto; de la Torre-Cruz, Manuel J; Redecillas-Peiró, María T; Martínez-López, Emilio J

    2015-01-01

    To analyse the association between active commuting to secondary school and indicators of psychological health in a sample of 1012 adolescents. Active commuting was assessed through a questionnaire, subjective happiness with the Subjective Happiness Scale, well-being and psychological distress with the General Well-Being Scale, and body shape was assessed using the short version of the Body Shape Questionnaire. Adolescents who spent more than 15 minutes per day actively commuting to secondary school had higher levels of subjective happiness (p=0.032) and psychological well-being (p=0.021) and lower levels of psychological distress (p=0.021) than adolescents who spent 15 minutes or less per day. There were no differences in body shape between less and more active adolescents (p >0.05). Active commuting to secondary school for more of 15 minutes per day is recommended because it is associated with higher levels of happiness and well-being in adolescents. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.

  18. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.

    Science.gov (United States)

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-03-01

    Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.

  19. Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy

    DEFF Research Database (Denmark)

    Baka, Nora; Kaptein, Bart L.; Giphart, J. Erik

    2014-01-01

    decrease costs and radiation dose (when eliminating CT). SSM based kinematics, however, have not yet been evaluated on clinically relevant joint motion parameters. Therefore, in this work the applicability of SSMs for computing knee kinematics from biplane fluoroscopic sequences was explored. Kinematic......State-of-the-art fluoroscopic knee kinematic analysis methods require the patient-specific bone shapes segmented from CT or MRI. Substituting the patient-specific bone shapes with personalizable models, such as statistical shape models (SSM), could eliminate the CT/MRI acquisitions, and thereby......-posterior tibial drawer, joint distraction-contraction, flexion, tibial rotation and adduction. The relationship between kinematic precision and bone shape accuracy was also investigated. The SSM based kinematics resulted in sub-millimeter (0.48-0.81mm) and approximately 1° (0.69-0.99°) median precision...

  20. Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model

    Directory of Open Access Journals (Sweden)

    Miaolei Zhou

    2013-01-01

    Full Text Available As a new type of intelligent material, magnetically shape memory alloy (MSMA has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.

  1. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Bijan; Faramarzi, Mohammad Ali; Sepehrizadeh, Zargham [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451 Tehran (Iran, Islamic Republic of); Shakibaie, Mojtaba [Department of Pharmacognosy and Biotechnology, School of Pharmacy, Pharmaceutics Research Center, Kerman University of Medical Sciences, P.O. Box 76175-493 Kerman (Iran, Islamic Republic of); Rezaie, Sassan [Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza, E-mail: shahverd@sina.tums.ac.ir [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451 Tehran (Iran, Islamic Republic of)

    2012-11-15

    Highlights: ► Biosynthesis of rod shape tellurium nanoparticles with a hexagonal crystal structure. ► Extraction procedure for isolation of tellurium nanoparticles from Bacillus sp. BZ. ► Extracted tellurium nanoparticles have good bactericidal activity against some bacteria. -- Abstract: In this study, a tellurium-transforming Bacillus sp. BZ was isolated from the Caspian Sea in northern Iran. The isolate was identified by various tests and 16S rDNA analysis, and then used to prepare elemental tellurium nanoparticles. The isolate was subsequently used for the intracellular biosynthesis of elemental tellurium nanoparticles. The biogenic nanoparticles were released by liquid nitrogen and purified by an n-octyl alcohol water extraction system. The shape, size, and composition of the extracted nanoparticles were characterized. The transmission electron micrograph showed rod-shaped nanoparticles with dimensions of about 20 nm × 180 nm. The energy dispersive X-ray and X-ray diffraction spectra respectively demonstrated that the extracted nanoparticles consisted of only tellurium and have a hexagonal crystal structure. This is the first study to demonstrate a biological method for synthesizing rod-shaped elemental tellurium by a Bacillus sp., its extraction and its antibacterial activity against different clinical isolates.

  2. Conductive nanoparticles in electro activated shape memory polymer sensor and actuator

    Science.gov (United States)

    Leng, Jinsong; Lu, Haibao; Liu, Yanju; Du, Shanyi

    2008-03-01

    There is a strong interest in the use of conductive shape memory polymer (SMP) for actuation by passing an electrical current. This paper presents a systematic study on the effect of multi-walled carbon nanotubes (MWCNTs) and carbon nanoparticles on the electro activate shape memory polymer (SMP). The first is the fabrication and characterization of styrene-based SMP filled with MWCNTs was investigated. Then the resistivity of 8 wt% MWNTs sample is 80 ohm•cm obtained by using four-point probe Van De Pawn method, and for 8.0×2.0×0.2 cm 3 rectangle sheet, it can be triggered by passing an electrical current with a constant voltage of 200 V. The second is focused on the effect of conductive particulate and fibrous fillers on the electrical property of composite. The electrical conductivity of the composites achieves 8.73×10 -2, 9.63×10 -2 and 1.13×10 -1 S/cm by DC measurement and 0.12, 1.05 and 3 S/cm by four-point probe Van De Pauw method. Their shape recovery can be activated by passing an electrical current of 25 V voltages. In this paper, the sensors using conducting SMP composites testified by the temperature-dependent resistance and strain-dependent resistance tests. At the same time, the shape self-recovery of SMPs and their composites when heated above transition temperature acts as actuator.

  3. Thermo-mechanical modeling of semi-crystalline thermoplastic shape memory polymer under large strain

    Science.gov (United States)

    Bouaziz, R.; Roger, F.; Prashantha, K.

    2017-05-01

    In this work, a constitutive mechanical model is proposed to describe the thermo-mechanical cycle of a semi-crystalline shape memory polyurethane which is able to recover its initial shape after applying more than 100% strain during a shape memory cycle. To explore this performance, experimental tests were conducted to determine the cyclic thermo-mechanical behavior of a polymer submitted to five shape memory cycles. Indeed, uniaxial tensile tests at small strain rates were performed at 60 °C in order to analyze its hyper-elastic response. At the end of the previous tensile loading, relaxation tests were carried out to determine the viscoelastic behavior during the shape memory cycle. The shape memory effect was investigated by means of free and constrained recovery experiments. These experimental results are used to identify the parameters of the constitutive model by means of curve-fitting algorithm employing least-squares optimization approach. The proposed model is then implemented in the finite element software Comsol Multiphysics© and predicts quite well an in-plane strained cylindrical ring.

  4. Interactive Shape Modeling using a Skeleton-Mesh Co-Representation

    DEFF Research Database (Denmark)

    Bærentzen, Jacob Andreas; Abdrashitov, Rinat; Singh, Karan

    2014-01-01

    of a shape is uniquely embedded in the mesh connectivity of a PAM, enabling both surface and skeletal modeling operations, interchangeably and directly on the mesh itself. We develop an algorithm to convert arbitrary triangle meshes into PAMs as well as techniques to simplify PAMs and a method to convert......We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology...... a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models....

  5. CELL TRACKING USING PARTICLE FILTERS WITH IMPLICIT CONVEX SHAPE MODEL IN 4D CONFOCAL MICROSCOPY IMAGES.

    Science.gov (United States)

    Ramesh, Nisha; Tasdizen, Tolga

    2014-10-01

    Bayesian frameworks are commonly used in tracking algorithms. An important example is the particle filter, where a stochastic motion model describes the evolution of the state, and the observation model relates the noisy measurements to the state. Particle filters have been used to track the lineage of cells. Propagating the shape model of the cell through the particle filter is beneficial for tracking. We approximate arbitrary shapes of cells with a novel implicit convex function. The importance sampling step of the particle filter is defined using the cost associated with fitting our implicit convex shape model to the observations. Our technique is capable of tracking the lineage of cells for nonmitotic stages. We validate our algorithm by tracking the lineage of retinal and lens cells in zebrafish embryos.

  6. Building and Testing a Statistical Shape Model of the Human Ear Canal

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Larsen, Rasmus; Laugesen, Søren

    2002-01-01

    on a training set of laser scanned ear impressions and a sparse set of anatomical landmarks placed by an expert. The landmarks are used to warp a template mesh onto all shapes in the training set. Using the vertices from the warped meshes, a 3D point distribution model is made. The model is used for testing......Today the design of custom in-the-ear hearing aids is based on personal experience and skills and not on a systematic description of the variation of the shape of the ear canal. In this paper it is described how a dense surface point distribution model of the human ear canal is built based...

  7. On the selection of shape and orientation of a greenhouse. Thermal modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 004, Punjab (India)

    2009-01-15

    In this study, five most commonly used single span shapes of greenhouses viz. even-span, uneven-span, vinery, modified arch and quonset type have been selected for comparison. The length, width and height (at the center) are kept same for all the selected shapes. A mathematical model for computing transmitted total solar radiation (beam, diffused and ground reflected) at each hour, for each month and at any latitude for the selected geometry greenhouses (through each wall, inclined surfaces and roofs) is developed for both east-west and north-south orientation. Computed transmitted solar radiation is then introduced in a transient thermal model developed to compute hourly inside air temperature for each shape and orientation. Experimental validation of both the models is carried out for the measured total solar radiation and inside air temperature for an east-west orientation, even-span greenhouse (for a typical day in summer) at Ludhiana (31 N and 77 E) Punjab, India. During the experimentation, capsicum crop is grown inside the greenhouse. The predicted and measured values are in close agreement. Results show that uneven-span shape greenhouse receives the maximum and quonset shape receives the minimum solar radiation during each month of the year at all latitudes. East-west orientation is the best suited for year round greenhouse applications at all latitudes as this orientation receives greater total radiation in winter and less in summer except near the equator. Results also show that inside air temperature rise depends upon the shape of the greenhouse and this variation from uneven-span shape to quonset shape is 4.6 C (maximum) and 3.5 C (daily average) at 31 N latitude. (author)

  8. A model of growth restraints to explain the development and evolution of tooth shapes in mammals.

    Science.gov (United States)

    Osborn, Jeffrey W

    2008-12-07

    The problem investigated here is control of the development of tooth shape. Cells at the growing soft tissue interface between the ectoderm and mesoderm in a tooth anlage are observed to buckle and fold into a template for the shape of the tooth crown. The final shape is created by enamel secreted onto the folds. The pattern in which the folds develop is generally explained as a response to the pattern in which genes are locally expressed at the interface. This congruence leaves the problem of control unanswered because it does not explain how either pattern is controlled. Obviously, cells are subject to Newton's laws of motion so that mechanical forces and constraints must ultimately cause the movements of cells during tooth morphogenesis. A computer model is used to test the hypothesis that directional resistances to growth of the epithelial part of the interface could account for the shape into which the interface folds. The model starts with a single epithelial cell whose growth is constrained by 4 constant directional resistances (anterior, posterior, medial and lateral). The constraints force the growing epithelium to buckle and fold. By entering into the model different values for these constraints the modeled epithelium is induced to buckle and fold into the different shapes associated with the evolution of a human upper molar from that of a reptilian ancestor. The patterns and sizes of cusps and the sequences in which they develop are all correctly reproduced. The model predicts the changes in the 4 directional constraints necessary to develop and evolve from one tooth shape into another. I conclude more generally expressed genes that control directional resistances to growth, not locally expressed genes, may provide the information for the shape into which a tooth develops.

  9. Modeling fluid structure interaction with shape memory alloy actuated morphing aerostructures

    Science.gov (United States)

    Oehler, Stephen D.; Hartl, Darren J.; Turner, Travis L.; Lagoudas, Dimitris C.

    2012-04-01

    The development of efficient and accurate analysis techniques for morphing aerostructures incorporating shape memory alloys (SMAs) continues to garner attention. These active materials have a high actuation energy density, making them an ideal replacement for conventional actuation mechanisms in morphing structures. However, SMA components are often exposed to the same highly variable environments experienced by the aeroelastic assemblies into which they are incorporated. This is motivating design engineers to consider modeling fluidstructure interaction for prescribing dynamic, solution-dependent boundary conditions. This work presents a computational study of a particular morphing aerostructure with embedded, thermally actuating SMA ribbons and demonstrates the effective use of fluid-structure interaction modeling. A cosimulation analysis is utilized to determine the surface deflections and stress distributions of an example aerostructure with embedded SMA ribbons using the Abaqus Finite Element Analysis (FEA) software suite, combined with an Abaqus Computational Fluid Dynamics (CFD) processor. The global FEA solver utilizes a robust user-defined material subroutine which contains an accurate three-dimensional SMA constitutive model. Variations in the ambient fluid environment are computed using the CFD solver, and fluid pressure is mapped into surface distributed loads. Results from the analysis are qualitatively validated with independently obtained data from representative flow tests previously conducted on a physical prototype of the same aerostructure.

  10. An integrated numerical model for the prediction of Gaussian and billet shapes

    DEFF Research Database (Denmark)

    Hattel, Jesper; Pryds, Nini; Pedersen, Trine Bjerre

    2004-01-01

    Separate models for the atomisation and the deposition stages were recently integrated by the authors to form a unified model describing the entire spray-forming process. In the present paper, the focus is on describing the shape of the deposited material during the spray-forming process, obtaine...

  11. Detecting Growth Shape Misspecifications in Latent Growth Models: An Evaluation of Fit Indexes

    Science.gov (United States)

    Leite, Walter L.; Stapleton, Laura M.

    2011-01-01

    In this study, the authors compared the likelihood ratio test and fit indexes for detection of misspecifications of growth shape in latent growth models through a simulation study and a graphical analysis. They found that the likelihood ratio test, MFI, and root mean square error of approximation performed best for detecting model misspecification…

  12. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  13. Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis

    Science.gov (United States)

    Zhong, Ming

    In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with

  14. Synthesis of image sequences for Korean sign language using 3D shape model

    Science.gov (United States)

    Hong, Mun-Ho; Choi, Chang-Seok; Kim, Chang-Seok; Jeon, Joon-Hyeon

    1995-05-01

    This paper proposes a method for offering information and realizing communication to the deaf-mute. The deaf-mute communicates with another person by means of sign language, but most people are unfamiliar with it. This method enables to convert text data into the corresponding image sequences for Korean sign language (KSL). Using a general 3D shape model of the upper body leads to generating the 3D motions of KSL. It is necessary to construct the general 3D shape model considering the anatomical structure of the human body. To obtain a personal 3D shape model, this general model is to adjust to the personal base images. Image synthesis for KSL consists of deforming a personal 3D shape model and texture-mapping the personal images onto the deformed model. The 3D motions for KSL have the facial expressions and the 3D movements of the head, trunk, arms and hands and are parameterized for easily deforming the model. These motion parameters of the upper body are extracted from a skilled signer's motion for each KSL and are stored to the database. Editing the parameters according to the inputs of text data yields to generate the image sequences of 3D motions.

  15. Crowd modeling framework using fast head detection and shape-aware matching

    Science.gov (United States)

    Zhou, Tao; Yang, Jie; Loza, Artur; Bhaskar, Harish; Al-Mualla, Mohammed

    2015-03-01

    A framework for crowd modeling using a combination of multiple kernel learning (MKL)-based fast head detection and shape-aware matching is proposed. First, the MKL technique is used to train a classifier for head detection using a combination of the histogram of oriented gradient and local binary patterns feature sets. Further, the head detection process is accelerated by implementing the classification procedure only at those spatial locations in the image where the gradient points overlap with moving objects. Such moving objects are determined using an adaptive background subtraction technique. Finally, the crowd is modeled as a deformable shape through connected boundary points (head detection) and matched with the subsequent detection from the next frame in a shape-aware manner. Experimental results obtained from crowded videos show that the proposed framework, while being characterized by a low computation load, performs better than other state-of-art techniques and results in reliable crowd modeling.

  16. Automatic liver segmentation using a statistical shape model with optimal surface detection.

    Science.gov (United States)

    Zhang, Xing; Tian, Jie; Deng, Kexin; Wu, Yongfang; Li, Xiuli

    2010-10-01

    In this letter, we present an approach for automatic liver segmentation from computed tomography (CT) scans that is based on a statistical shape model (SSM) integrated with an optimal-surface-detection strategy. The proposed method is a hybrid method that combines three steps. First, we use localization of the average liver shape model in a test CT volume via 3-D generalized Hough transform. Second, we use subspace initialization of the SSM through intensity and gradient profile. Third, we deform the shape model to adapt to liver contour through an optimal-surface-detection approach based on graph theory. The proposed method is evaluated on MICCAI 2007 liver-segmentation challenge datasets. The experiment results demonstrate availability of the proposed method.

  17. Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation

    Science.gov (United States)

    Zhang, Xuwei; Yin, Huajie; Wang, Jinfeng; Chang, Lin; Gao, Yan; Liu, Wei; Tang, Zhiyong

    2013-08-01

    The catalytic activity of different-shaped and monodispersed palladium nanocrystals, including cubes, octahedra and rhombic dodecahedra, toward the electrochemical oxidation of formic acid has been systematically evaluated in both HClO4 and H2SO4 solutions. Notably, the cubic palladium nanocrystals wholly exposed with {100} facets exhibit the highest activity, while the rhombic dodecahedra with {110} facets show the lowest electrocatalytic performance. Furthermore, compared with HClO4 electrolyte, the catalytic activity is found to be obviously lower in H2SO4 solution likely due to the competitive adsorption of SO42- ions and formic acid on the surface of Pd nanocrystals.The catalytic activity of different-shaped and monodispersed palladium nanocrystals, including cubes, octahedra and rhombic dodecahedra, toward the electrochemical oxidation of formic acid has been systematically evaluated in both HClO4 and H2SO4 solutions. Notably, the cubic palladium nanocrystals wholly exposed with {100} facets exhibit the highest activity, while the rhombic dodecahedra with {110} facets show the lowest electrocatalytic performance. Furthermore, compared with HClO4 electrolyte, the catalytic activity is found to be obviously lower in H2SO4 solution likely due to the competitive adsorption of SO42- ions and formic acid on the surface of Pd nanocrystals. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03100d

  18. What shape is your neighbourhood? Investigating the micro geographies of physical activity.

    Science.gov (United States)

    Ivory, Vivienne C; Russell, Marie; Witten, Karen; Hooper, Carolyn M; Pearce, Jamie; Blakely, Tony

    2015-05-01

    Being physically active has demonstrated health benefits, and more walkable neighbourhoods can potentially increase physical activity. Yet not all neighbourhoods provide opportunities for active lifestyles. This paper examines the social context of being active in local and non-local places. We use a social practice theoretical framework to examine how residents talk about and make sense of physical activity and places, contrasting individual and neighbourhood factors. In 2010, fourteen focus groups were held in four neighbourhoods varying by walkability and area-level deprivation (two Auckland and two Wellington, New Zealand), and with participants grouped by gender, ethnicity, and employment. Focus groups elicited discussion on where local residents go for physical activity, and the opportunities and barriers to physical activity in their local area and beyond. Thematic analyses compared across all groups for contrasts and similarities in the issues discussed. Neighbourhood walkability factors appeared to shape where residents engage with public places, with residents seeking out good places. Individual factors (e.g. employment status) also influenced how residents engage with their local neighbourhoods. All groups referred to being active in places both close by and further afield, but residents in less walkable neighbourhoods with fewer local destinations drew attention to the need to go elsewhere, notably for exercise, being social, and to be in pleasant, restorative environments. Being physically active in public settings was valued for social connection and mental restoration, over and above specifically 'health' reasons. Residents talk about being active in local and non-local places revealed agency in how they managed the limitations and opportunities within their immediate residential setting. That is, factors of place and people contributed to the 'shape' of everyday residential environments, at least with regard to physical activity. Copyright © 2014

  19. Quantitative vertebral fracture detection on DXA images using shape and appearance models.

    Science.gov (United States)

    Roberts, Martin; Cootes, Tim; Pacheco, Elisa; Adams, Judith

    2007-10-01

    Current quantitative morphometric methods of vertebral fracture detection lack specificity, particularly with mild fractures. We use more detailed shape and texture information to develop quantitative classifiers. The detailed shape and appearance of vertebrae on 360 lateral dual energy x-ray absorptiometry scans were statistically modeled, thus producing a set of shape and appearance parameters for each vertebra. The vertebrae were given a "gold standard" classification using a consensus reading by two radiologists. Linear discriminants were trained on the vertebral shape and appearance parameters. The appearance-based classifiers gave significantly better specificity than shape-based methods in all regions of the spine (overall specificity 92% at a sensitivity of 95%), while using the full shape parameters slightly improved specificity in the thoracic spine compared with using three standard height ratios. The main improvement was in the detection of mild fractures. Performance varied over different regions of the spine. False-positive rates at 95% sensitivity for the lumbar, mid-thoracic (T12-T10) and upper thoracic (T9-T7) regions were 2.9%, 14.6%, and 5.5%, respectively, compared with 6.4%, 32.6%, and 21.1% for three-height morphometry. The appearance and shape parameters of statistical models could provide more powerful quantitative classifiers of osteoporotic vertebral fracture, particularly mild fractures. False positive rates can be substantially reduced at high sensitivity by using an appearance-based classifier, because this can better distinguish between mild fractures and some kinds of non-fracture shape deformities.

  20. 3D geometry analysis of the medial meniscus – a statistical shape modeling approach

    Science.gov (United States)

    Vrancken, A C T; Crijns, S P M; Ploegmakers, M J M; O'Kane, C; van Tienen, T G; Janssen, D; Buma, P; Verdonschot, N

    2014-01-01

    The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size- or shape-driven. Also we performed a cluster analysis to identify distinct morphological groups of medial menisci and assessed whether meniscal geometry is gender-dependent. A statistical shape model was created, containing the meniscus geometries of 35 subjects (20 females, 15 males) that were obtained from MR images. A principal component analysis was performed to determine the most important modes of geometry variation and the characteristic changes per principal component were evaluated. Each meniscus from the original dataset was then reconstructed as a linear combination of principal components. This allowed the comparison of male and female menisci, and a cluster analysis to determine distinct morphological meniscus groups. Of the variation in medial meniscus geometry, 53.8% was found to be due to primarily size-related differences and 29.6% due to shape differences. Shape changes were most prominent in the cross-sectional plane, rather than in the transverse plane. Significant differences between male and female menisci were only found for principal component 1, which predominantly reflected size differences. The cluster analysis resulted in four clusters, yet these clusters represented two statistically different meniscal shapes, as differences between cluster 1, 2 and 4 were only present for principal component 1. This study illustrates that differences in meniscal geometry cannot be explained by scaling only, but that different meniscal shapes can be distinguished. Functional analysis, e.g. through finite element modeling, is required to assess whether these distinct shapes actually influence

  1. 3D geometry analysis of the medial meniscus--a statistical shape modeling approach.

    Science.gov (United States)

    Vrancken, A C T; Crijns, S P M; Ploegmakers, M J M; O'Kane, C; van Tienen, T G; Janssen, D; Buma, P; Verdonschot, N

    2014-10-01

    The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size- or shape-driven. Also we performed a cluster analysis to identify distinct morphological groups of medial menisci and assessed whether meniscal geometry is gender-dependent. A statistical shape model was created, containing the meniscus geometries of 35 subjects (20 females, 15 males) that were obtained from MR images. A principal component analysis was performed to determine the most important modes of geometry variation and the characteristic changes per principal component were evaluated. Each meniscus from the original dataset was then reconstructed as a linear combination of principal components. This allowed the comparison of male and female menisci, and a cluster analysis to determine distinct morphological meniscus groups. Of the variation in medial meniscus geometry, 53.8% was found to be due to primarily size-related differences and 29.6% due to shape differences. Shape changes were most prominent in the cross-sectional plane, rather than in the transverse plane. Significant differences between male and female menisci were only found for principal component 1, which predominantly reflected size differences. The cluster analysis resulted in four clusters, yet these clusters represented two statistically different meniscal shapes, as differences between cluster 1, 2 and 4 were only present for principal component 1. This study illustrates that differences in meniscal geometry cannot be explained by scaling only, but that different meniscal shapes can be distinguished. Functional analysis, e.g. through finite element modeling, is required to assess whether these distinct shapes actually influence

  2. Multi-scale and shape constrained localized region-based active contour segmentation of uterine fibroid ultrasound images in HIFU therapy.

    Directory of Open Access Journals (Sweden)

    Xiangyun Liao

    Full Text Available To overcome the severe intensity inhomogeneity and blurry boundaries in HIFU (High Intensity Focused Ultrasound ultrasound images, an accurate and efficient multi-scale and shape constrained localized region-based active contour model (MSLCV, was developed to accurately and efficiently segment the target region in HIFU ultrasound images of uterine fibroids.We incorporated a new shape constraint into the localized region-based active contour, which constrained the active contour to obtain the desired, accurate segmentation, avoiding boundary leakage and excessive contraction. Localized region-based active contour modeling is suitable for ultrasound images, but it still cannot acquire satisfactory segmentation for HIFU ultrasound images of uterine fibroids. We improved the localized region-based active contour model by incorporating a shape constraint into region-based level set framework to increase segmentation accuracy. Some improvement measures were proposed to overcome the sensitivity of initialization, and a multi-scale segmentation method was proposed to improve segmentation efficiency. We also designed an adaptive localizing radius size selection function to acquire better segmentation results.Experimental results demonstrated that the MSLCV model was significantly more accurate and efficient than conventional methods. The MSLCV model has been quantitatively validated via experiments, obtaining an average of 0.94 for the DSC (Dice similarity coefficient and 25.16 for the MSSD (mean sum of square distance. Moreover, by using the multi-scale segmentation method, the MSLCV model's average segmentation time was decreased to approximately 1/8 that of the localized region-based active contour model (the LCV model.An accurate and efficient multi-scale and shape constrained localized region-based active contour model was designed for the semi-automatic segmentation of uterine fibroid ultrasound (UFUS images in HIFU therapy. Compared with other

  3. Neural activations are related to body-shape, anxiety, and outcomes in adolescent anorexia nervosa.

    Science.gov (United States)

    Xu, Jie; Harper, Jessica A; Van Enkevort, Erin A; Latimer, Kelsey; Kelley, Urszula; McAdams, Carrie J

    2017-04-01

    Anorexia nervosa (AN) is an illness that frequently begins during adolescence and involves weight loss. Two groups of adolescent girls (AN-A, weight-recovered following AN) and (HC-A, healthy comparison) completed a functional magnetic resonance imaging task involving social evaluations, allowing comparison of neural activations during self-evaluations, friend-evaluations, and perspective-taking self-evaluations. Although the two groups were not different in their whole-brain activations, anxiety and body shape concerns were correlated with neural activity in a priori regions of interest. A cluster in medial prefrontal cortex and the dorsal anterior cingulate correlated with the body shape questionnaire; subjects with more body shape concerns used this area less during self than friend evaluations. A cluster in medial prefrontal cortex and the cingulate also correlated with anxiety such that more anxiety was associated with engagement when disagreeing rather than agreeing with social terms during self-evaluations. This data suggests that differences in the utilization of frontal brain regions during social evaluations may contribute to both anxiety and body shape concerns in adolescents with AN. Clinical follow-up was obtained, allowing exploration of whether brain function early in course of disease relates to illness trajectory. The adolescents successful in recovery used the posterior cingulate and precuneus more for friend than self evaluations than the adolescents that remained ill, suggesting that neural differences related to social evaluations may provide clinical predictive value. Utilization of both MPFC and the precuneus during social and self evaluations may be a key biological component for achieving sustained weight-recovery in adolescents with AN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage...

  5. Shape interior modeling and mass property optimization using ray-reps

    DEFF Research Database (Denmark)

    Wu, Jun; Kramer, Lou; Westermann, Rüdiger

    2016-01-01

    We present a novel method for the modeling and optimization of the material distribution inside 3D shapes, such that their 3D printed replicas satisfy prescribed constraints regarding mass properties. In particular, we introduce an extension of ray-representation to shape interior modeling......, and prove this parametrization covers the optimal interior regarding static and rotational stability criteria. This compact formulation thoroughly reduces the number of design variables compared to the general volumetric element-wise formulation. We demonstrate the effectiveness of our reduced formulation...

  6. Surface tension and Wulff shape for a lattice model without spin flip symmetry.

    CERN Document Server

    Bodineau, T

    2003-01-01

    We propose a new definition of surface tension and check it in a spin model of the Pirogov-Sinai class where the spin flip symmetry is broken. We study the model at low temperatures on the phase transitions line and prove: (i) existence of the surface tension in the thermodynamic limit, for any orientation of the surface and in all dimensions $d\\ge 2$; (ii) the Wulff shape constructed with such a surface tension coincides with the equilibrium shape of the cluster which appears when fixing the total spin magnetization (Wulff problem).

  7. Dispersionless optical activity based on novel windmill-shaped chiral metamaterial

    Science.gov (United States)

    Ma, Xiaolong; Xiao, Zhongyin; Liu, Dejun; Wang, Lei; Xu, Kai; Tang, Jingyao; Wang, Zihua

    2016-01-01

    In this paper, the optical properties of the novel windmill-shaped chiral metamaterial (CMM) with low ellipticity have been studied numerically in THz band. The dispersionless optical activity can be achieved in a wide frequency range (i.e. from 1.7 THz to 2.7 THz). The dependence of CMM’s optical properties on the structural parameters is studied systematically and the frequency range of low ellipticity can be controlled dynamically through adjusting the width of the metal. The excitation mechanism of optical activity based on the current distribution is also analyzed in detail.

  8. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.

    Science.gov (United States)

    Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P

    2017-12-01

    The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Modeling of evolution of shape of ductile metal disk for isotropic bombardment

    Science.gov (United States)

    Osipov, Dulustaan R.; Yakovlev, Boris V.; Matveev, Andrei I.; Osipov, Dulustan A.

    2017-11-01

    This work is devoted to a calculation of formation time of a toroidal shape of a flat piece of ductile metal in enrichment of minerals. Gold grains occurring in nature, in most cases, originally have a form of a flat plate (the scaly form). Continuous bombardment of the surface of a piece of gold with surrounding grains of sand during the enrichment of ores in various jigging, separation, and crusher devices results in the piece assuming a toroidal shape. When separating, the shape of the grains in the form of a torus is considered to be the most effective. Therefore, the problem of calculation of the formation time of the toroidal shape of the piece of gold is urgent. In this paper, we propose a physical model for the formation of the toroidal shape of the piece of ductile metal, in which an isotropic, homogeneous flow of particles deforming a plane body (disk) is introduced. Based on the proposed physical model, a mathematical model of evolution of the surface under deformation of a body was developed. A first-order differential equation is obtained with respect to the deformable surface, which is solved by the Runge-Kutta method. As a result of the study, the dependence of the deformed surface on the time was determined.

  10. Self-activated mesh device using shape memory alloy for periosteal expansion osteogenesis.

    Science.gov (United States)

    Yamauchi, Kensuke; Takahashi, Tetsu; Tanaka, Kenko; Nogami, Shinnosuke; Kaneuji, Takeshi; Kanetaka, Hiroyasu; Miyazaki, Toshiki; Lethaus, Bernd; Kessler, Peter

    2013-07-01

    The present study evaluated the use of this self-activated shape memory alloy (SMA) device, with a focus on its effects in the region under the periosteum. Twelve Japanese white rabbits were used in this study. The device was inserted under the periosteum at the forehead. In the experimental group, the device was pushed, bent, and attached to the bone surface and fixed with a titanium screw. In control group, the device was only inserted under the periosteum. After 14 days, the screw was removed and the mesh was activated in the experimental group. Rabbits were sacrificed 5 and 8 weeks after the operation and newly formed bone was histologically and radiographically evaluated. The quantitative data by the area and the occupation of newly formed bone indicated that the experimental group had a higher volume of new bone than the control group at each consolidation period. Histologically, some newly formed bone was observed and most of the subperiosteal space underneath the device was filled with fibrous tissue, and a thin layer of immature bone was observed in the control group. In the experimental group, multiple dome-shaped bones, outlined by thin and scattered trabeculae, were clearly observed under the SMA mesh device. The use of self-activated devices for the periosteal expansion technique may make it possible to avoid donor site morbidity, trans-skin activation rods, any bone-cutting procedure, and the following intermittent activation procedure. Copyright © 2013 Wiley Periodicals, Inc.

  11. Multi-scale modeling of shape distortions during sintering of bi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Bjørk, Rasmus; Olevsky, Eugene

    2014-01-01

    Models for deformational behaviors of porous bodies during sintering often rely on limited number of internal variables as they are formulated based on simplified or ideal microstructures. Considering realistic microstructures can improve the predictive capabilities of the already established...... theories like the continuum theory of sintering. A new multi-scale numerical approach for modeling of shape distortions during sintering of macroscopically inhomogeneous structures combined with a microstructure model is developed. The microstructures of the porous body are described by unit cells based...

  12. A model for estimating body shape biological age based on clinical parameters associated with body composition

    Directory of Open Access Journals (Sweden)

    Bae CY

    2012-12-01

    Full Text Available Chul-Young Bae,1 Young Gon Kang,2 Young-Sung Suh,3 Jee Hye Han,4 Sung-Soo Kim,5 Kyung Won Shim61MediAge Research Center, Seoul, Korea; 2Chaum Power Aging Center, College of Medicine, CHA University, Seoul, Korea; 3Health Promotion Center, Keimyung University Dongsam Medical Center, Daegu, Korea; 4Department of Family Medicine, College of Medicine, Eulji University, Seoul, Korea; 5Department of Family Medicine, College of Medicine, Chungnam National University, Daejeon, Korea; 6Department of Family Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul, KoreaBackground: To date, no studies have attempted to estimate body shape biological age using clinical parameters associated with body composition for the purposes of examining a person's body shape based on their age.Objective: We examined the relations between clinical parameters associated with body composition and chronological age, and proposed a model for estimating the body shape biological age.Methods: The study was conducted in 243,778 subjects aged between 20 and 90 years who received a general medical checkup at health promotion centers at university and community hospitals in Korea from 2004 to 2011.Results: In men, the clinical parameters with the highest correlation to age included the waist-to-hip ratio (r = 0.786, P < 0.001, hip circumference (r = −0.448, P < 0.001, and height (r = −0.377, P < 0.001. In women, the clinical parameters with the highest correlation to age include the waist-to-hip ratio (r = 0.859, P < 0.001, waist circumference (r = 0.580, P < 0.001, and hip circumference (r = 0.520, P < 0.001. To estimate the optimal body shape biological age based on clinical parameters associated with body composition, we performed a multiple regression analysis. In a model estimating the body shape biological age, the coefficient of determination (R2 was 0.71 in men and 0.76 in women.Conclusion: Our model for estimating body shape biological age

  13. Exponentiated Weibull distribution approach based inflection S-shaped software reliability growth model

    Directory of Open Access Journals (Sweden)

    B.B. Sagar

    2016-09-01

    Full Text Available The aim of this paper was to estimate the number of defects in software and remove them successfully. This paper incorporates Weibull distribution approach along with inflection S-shaped Software Reliability Growth Models (SRGM. In this combination two parameter Weibull distribution methodology is used. Relative Prediction Error (RPE is calculated to predict the validity criterion of the developed model. Experimental results on actual data from five data sets are compared with two other existing models, which expose that the proposed software reliability growth model predicts better estimation to remove the defects. This paper presents best software reliability growth model with including feature of both Weibull distribution and inflection S-shaped SRGM to estimate the defects of software system, and provide help to researchers and software industries to develop highly reliable software products.

  14. A tissue-engineering model for the manufacture of auricular-shaped cartilage implants.

    Science.gov (United States)

    Haisch, Andreas; Kläring, Svea; Gröger, Andreas; Gebert, Christopher; Sittinger, Michael

    2002-07-01

    The established surgical methods of external ear reconstruction using autogenous tissue represent the current state of the art. Because of the limited possibilities for shaping conventional harvested autogenous rib cartilage, the cosmetic results of auricular reconstruction are frequently unsatisfactory. Tissue engineering could represent an alternative technique for obtaining a precisely shaped cartilage implant that avoids donor site morbidity and unsatisfactory cosmetic results. In this study, the reliability and quality of a tissue-engineering model for the manufacture of auricular-shaped human cartilage implants was investigated, focusing on the feasibility of the manufacturing process and the in vivo and in vitro maturation of an extracellular cartilage-like matrix. Implants were molded within an auricular-shaped silicone cylinder, and human nasal septal chondrocytes crosslinked by human fibrin within bioresorbable PGLA-PLLA polymer scaffolds were used. After an in vitro incubation of up to 6 weeks, defined fragments of the prefabricated auricular-shaped construct were implanted subcutaneously on the backs of nude mice for at least 6 to 12 weeks ( n=7). Scaffolds without cell loading served as controls. Macroscopic and histochemical examination after 3 and 6 weeks in vitro showed a solid compound of homogenously distributed chondrocytes within the polymer scaffold, leading only to a limited pericellular matrix formation. Analysis after 6 and 12 weeks of in vivo maturation demonstrated a solid tissue compound and neocartilage formation with the presence of cartilage-specific matrix components. Implants obtained shape and size during the entire period of implantation. The model of cartilage implant manufacturing presented here meets all biocompatible requirements for in vitro prefabrication and in vivo maturation of autogenous, individually shaped cartilage transplants.

  15. Star-shaped ZnO/Ag hybrid nanostructures for enhanced photocatalysis and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, George R.S., E-mail: grsandrade@hotmail.com [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Nascimento, Cristiane C. [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Federal Institute of Education, Science and Technology of Sergipe, Glória Campus, Nossa Senhora da Glória, SE (Brazil); Lima, Zenon M. [Postgraduate Program in Industrial Biochemistry, Tiradentes University, Aracaju, SE (Brazil); Teixeira-Neto, Erico [LNNano − Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP (Brazil); Costa, Luiz P. [Postgraduate Program in Industrial Biochemistry, Tiradentes University, Aracaju, SE (Brazil); ITPS − Technological and Research Institute of Sergipe, Aracaju, SE (Brazil); Gimenez, Iara F. [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil)

    2017-03-31

    Highlights: • A new and simple one-pot method for preparing star-shaped ZnO particles was reported. • ZnO particles were decorated with Ag nanoparticles (SNPs) by a photodeposition method. • The presence of SNC{sup −} ions on ZnO surface prevented uncontrollable growth of SNPs. • ZnO/Ag particles showed plasmon-enhanced photocatalytic activity toward an AZO dye. • SNP improved 16 times the antibacterial activity of ZnO toward 4 bacterial strains. - Abstract: Zinc oxide (ZnO) particles with a star-shaped morphology have been synthesized by a novel and simple room-temperature method and decorated with silver nanoparticles (SNPs) for enhanced photocatalysis and bactericide applications. The presence of thiourea during the precipitation of ZnO in alkaline conditions allowed the control of morphological features (e.g. average size and shape) and the surface functionalization with thiocyanate ions (SCN{sup −}). SNPs were deposited into the ZnO surface by a photoreduction method and their sizes could be easily controlled by changing the ZnO/AgNO{sub 3} ratio. The presence of SCN{sup −} on the semiconductor surface prevents uncontrollable growth of Ag nanoparticles into different morphologies and high degrees of polydispersity. XRD, SEM, TEM, FTIR, UV-vis-NIR and PL were employed for characterizing the structure, morphology and optical properties of the as-obtained pure and hybrid nanostructures. Finally, the hybrid ZnO/Ag particles have shown plasmon-enhanced performance for applications in photocatalysis and antibacterial activity compared to the pure ZnO counterpart. In this work, evaluation of the photodegradation of an aqueous methylene blue solution under UV-A irradiation and the antibacterial activity toward 4 bacterial strains, including Gram-positive bacteria Staphylococcus aureus (ATCC 43300, ATCC 25923 and ATCC 33591) and Gram-negative bacteria Pseudomonas aeruginosa (ATCC 27853).

  16. Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium

    Science.gov (United States)

    Alshareef, A.; Laird, K.; Cross, R. B. M.

    2017-12-01

    Silver nanoparticles (AgNPs) have been shown to exhibit strong antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria including antibiotic resistant strains. This study aims to compare the bactericidal effect of different shaped AgNPs (spherical and truncated octahedral) against Escherichia coli and Enterococcus faecium. The antimicrobial activity of a range of concentrations (50, 100, 1000 μg/ml) was determined over 24 h using both optical density and viable counts. Truncated octahedral AgNPs (AgNOct) were found to be more active when compared with spherical AgNPs (AgNS). The difference in shape resulted in differences in efficacy which may be due to the higher surface area of AgNOct compared to AgNS, and differences in active facets and surface energies, with AgNPs having a bacteriostatic effect and AgNOct being bactericidal after 4 h. The results suggest that AgNPs can be used as effective growth inhibitors in different microorganisms, rendering them applicable to various medical devices and antimicrobial control systems.

  17. The KOALA Shape Modeling Technique Validated at (21) Lutetia by ESA Rosetta Mission

    Science.gov (United States)

    Carry, Benoit; Merline, W. J.; Kaasalainen, M.; Conrad, A.; Drummond, J. D.; Dumas, C.; Kueppers, M.; OSIRIS Instrument Team

    2010-10-01

    We recently developed a shape reconstruction algorithm, dubbed KOALA (Kaasalainen, IPI 2010; Carry et al., Icarus 2010), which allows the determination of the size, shape, and spin properties of asteroids from a combined data set of disk-resolved images, optical lightcurves, and stellar occultations. Using adaptive optics (AO) imaging systems on the Keck and VLT telescopes, we acquired more than 300 images of the main-belt asteroid (21) Lutetia in 2007 and 2008. We combined these images with 50 lightcurves spanning some 48 years and including data taken almost up until the time of flyby. We produced a 3D shape model of Lutetia and determined the spin pole and rotation rate (Carry et al., submitted to A&A). On 2010 July 10, the International Rosetta Mission of the European Space Agency successfully encountered (21) Lutetia. The images recorded by the OSIRIS camera on-board Rosetta revealed our shape prediction to be accurate. We will present the KOALA (Knitted Occultation, Adaptive-optics, and Lightcurve Analysis) method, and a comparison of our shape model with the high-resolution images acquired by Rosetta during the flyby.

  18. Accurate Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition and Conditional Models.

    Science.gov (United States)

    Pereañez, Marco; Lekadir, Karim; Castro-Mateos, Isaac; Pozo, José Maria; Lazáry, Áron; Frangi, Alejandro F

    2015-08-01

    Detailed segmentation of the vertebrae is an important pre-requisite in various applications of image-based spine assessment, surgery and biomechanical modeling. In particular, accurate segmentation of the processes is required for image-guided interventions, for example for optimal placement of bone grafts between the transverse processes. Furthermore, the geometry of the processes is now required in musculoskeletal models due to their interaction with the muscles and ligaments. In this paper, we present a new method for detailed segmentation of both the vertebral bodies and processes based on statistical shape decomposition and conditional models. The proposed technique is specifically developed with the aim to handle the complex geometry of the processes and the large variability between individuals. The key technical novelty in this work is the introduction of a part-based statistical decomposition of the vertebrae, such that the complexity of the subparts is effectively reduced, and model specificity is increased. Subsequently, in order to maintain the statistical and anatomic coherence of the ensemble, conditional models are used to model the statistical inter-relationships between the different subparts. For shape reconstruction and segmentation, a robust model fitting procedure is used to exclude improbable inter-part relationships in the estimation of the shape parameters. Segmentation results based on a dataset of 30 healthy CT scans and a dataset of 10 pathological scans show a point-to-surface error improvement of 20% and 17% respectively, and the potential of the proposed technique for detailed vertebral modeling.

  19. Parametric model of human body shape and ligaments for patient-specific epidural simulation.

    Science.gov (United States)

    Vaughan, Neil; Dubey, Venketesh N; Wee, Michael Y K; Isaacs, Richard

    2014-10-01

    This work is to build upon the concept of matching a person's weight, height and age to their overall body shape to create an adjustable three-dimensional model. A versatile and accurate predictor of body size and shape and ligament thickness is required to improve simulation for medical procedures. A model which is adjustable for any size, shape, body mass, age or height would provide ability to simulate procedures on patients of various body compositions. Three methods are provided for estimating body circumferences and ligament thicknesses for each patient. The first method is using empirical relations from body shape and size. The second method is to load a dataset from a magnetic resonance imaging (MRI) scan or ultrasound scan containing accurate ligament measurements. The third method is a developed artificial neural network (ANN) which uses MRI dataset as a training set and improves accuracy using error back-propagation, which learns to increase accuracy as more patient data is added. The ANN is trained and tested with clinical data from 23,088 patients. The ANN can predict subscapular skinfold thickness within 3.54 mm, waist circumference 3.92 cm, thigh circumference 2.00 cm, arm circumference 1.21 cm, calf circumference 1.40 cm, triceps skinfold thickness 3.43 mm. Alternative regression analysis method gave overall slightly less accurate predictions for subscapular skinfold thickness within 3.75 mm, waist circumference 3.84 cm, thigh circumference 2.16 cm, arm circumference 1.34 cm, calf circumference 1.46 cm, triceps skinfold thickness 3.89 mm. These calculations are used to display a 3D graphics model of the patient's body shape using OpenGL and adjusted by 3D mesh deformations. A patient-specific epidural simulator is presented using the developed body shape model, able to simulate needle insertion procedures on a 3D model of any patient size and shape. The developed ANN gave the most accurate results for body shape, size and ligament thickness. The

  20. Short Term Evaluation of an Anatomically Shaped Polycarbonate Urethane Total Meniscus Replacement in a Goat Model

    NARCIS (Netherlands)

    Vrancken, A.C.T.; Madej, W.; Hannink, G.; Verdonschot, N.J.; Tienen, T.G. van; Buma, P.

    2015-01-01

    PURPOSE: Since the treatment options for symptomatic total meniscectomy patients are still limited, an anatomically shaped, polycarbonate urethane (PCU), total meniscus replacement was developed. This study evaluates the in vivo performance of the implant in a goat model, with a specific focus on

  1. Short term evaluation of an anatomically shaped polycarbonate urethane total meniscus replacement in a goat model

    NARCIS (Netherlands)

    Vrancken, A.C.T.; Madej, W.; Hannink, G.; Verdonschot, Nicolaas Jacobus Joseph; van Tienen, T.G.; Buma, P.

    2015-01-01

    Purpose: Since the treatment options for symptomatic total meniscectomy patients are still limited, an anatomically shaped, polycarbonate urethane (PCU), total meniscus replacement was developed. This study evaluates the in vivo performance of the implant in a goat model, with a specific focus on

  2. Numerical Modeling of Induction Heating Process using Inductors with Circular Shape Turns

    Directory of Open Access Journals (Sweden)

    Mihaela Novac

    2008-05-01

    Full Text Available This paper is focused on the problemof numerical modeling of electromagneticfield coupled with the thermal one in theheating process of the steel billets, usinginductors with circular shape turns. As resultswe have: electromagnetic field lines evolutionand map temperatures in piece at the endingof heating process.

  3. Probability density function shape sensitivity in the statistical modeling of turbulent particle dispersion

    Science.gov (United States)

    Litchford, Ron J.; Jeng, San-Mou

    1992-01-01

    The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.

  4. Model-free 3D face shape reconstruction from video sequences

    NARCIS (Netherlands)

    van Dam, C.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan

    In forensic comparison of facial video data, often only the best quality frontal face frames are selected, and hence much video data is ignored. To improve 2D facial comparison for law enforcement and forensic investigation, we introduce a model-free 3D shape reconstruction algorithm based on 2D

  5. Landmark-based model-free 3D face shape reconstruction from video sequences

    NARCIS (Netherlands)

    van Dam, C.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan; Broemme, A.; Busch, C.

    2013-01-01

    In forensic comparison of facial video data, often only the best quality frontal face frames are selected, and hence potentially useful video data is ignored. To improve 2D facial comparison for law enforcement and forensic investigation, we introduce a model-free 3D shape reconstruction algorithm

  6. Shapes and excitations of heavy nuclei: Exploiting the simplicities of algebraic models

    Energy Technology Data Exchange (ETDEWEB)

    Casten, R.F. (Brookhaven National Lab., Upton, NY (United States) Koeln Univ. (Germany). Inst. fuer Kernphysik)

    1991-01-01

    Despite years of study there are still major unanswered questions concerning the shapes of medium and heavy nuclei and the nature of their intrinsic excitations. Some of these questions may profitably be addressed by exploiting the simplicities inherent in algebraic models. Examples, using the IBA, focusing on axial asymmetry, the nature of {beta} and {gamma} vibrations, and octupole correlations will be briefly discussed.

  7. Shapes and excitations of heavy nuclei: Exploiting the simplicities of algebraic models

    Energy Technology Data Exchange (ETDEWEB)

    Casten, R.F. [Brookhaven National Lab., Upton, NY (United States)]|[Koeln Univ. (Germany). Inst. fuer Kernphysik

    1991-12-31

    Despite years of study there are still major unanswered questions concerning the shapes of medium and heavy nuclei and the nature of their intrinsic excitations. Some of these questions may profitably be addressed by exploiting the simplicities inherent in algebraic models. Examples, using the IBA, focusing on axial asymmetry, the nature of {beta} and {gamma} vibrations, and octupole correlations will be briefly discussed.

  8. Pedestrian detection and tracking using a mixture of view-based shape-texture models

    NARCIS (Netherlands)

    Munder, S.; Schnörr, C.; Gavrila, D.M.

    2008-01-01

    This paper presents a robust multicue approach to the integrated detection and tracking of pedestrians in a cluttered urban environment. A novel spatiotemporal object representation is proposed, which combines a generative shape model and a discriminative texture classifier, both of which are

  9. Extraction of the mode shapes of a segmented ship model with a hydroelastic response

    Directory of Open Access Journals (Sweden)

    Yooil Kim

    2015-11-01

    Full Text Available The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the sim-plicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave ex-citation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were meas-ured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.

  10. Activity-based DEVS modeling

    DEFF Research Database (Denmark)

    Alshareef, Abdurrahman; Sarjoughian, Hessam S.; Zarrin, Bahram

    2018-01-01

    Use of model-driven approaches has been increasing to significantly benefit the process of building complex systems. Recently, an approach for specifying model behavior using UML activities has been devised to support the creation of DEVS models in a disciplined manner based on the model driven...... architecture and the UML concepts. In this paper, we further this work by grounding Activity-based DEVS modeling and developing a fully-fledged modeling engine to demonstrate applicability. We also detail the relevant aspects of the created metamodel in terms of modeling and simulation. A significant number...... of the artifacts of the UML 2.5 activities and actions, from the vantage point of DEVS behavioral modeling, is covered in details. Their semantics are discussed to the extent of time-accurate requirements for simulation. We characterize them in correspondence with the specification of the atomic model behavior. We...

  11. Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape

    DEFF Research Database (Denmark)

    Agn, Mikael; Puonti, Oula; Rosenschöld, Per Munck af

    2016-01-01

    In this paper, we present a fully automated generative method for brain tumor segmentation in multi-modal magnetic resonance images. The method is based on the type of generative model often used for segmenting healthy brain tissues, where tissues are modeled by Gaussian mixture models combined...... with a spatial atlas-based tissue prior. We extend this basic model with a tumor prior, which uses convolutional restricted Boltzmann machines (cRBMs) to model the shape of both tumor core and complete tumor, which includes edema and core. The cRBMs are trained on expert segmentations of training images, without...

  12. Sensitivity Analysis for Iceberg Geometry Shape in Ship-Iceberg Collision in View of Different Material Models

    Directory of Open Access Journals (Sweden)

    Yan Gao

    2014-01-01

    Full Text Available The increasing marine activities in Arctic area have brought growing interest in ship-iceberg collision study. The purpose of this paper is to study the iceberg geometry shape effect on the collision process. In order to estimate the sensitivity parameter, five different geometry iceberg models and two iceberg material models are adopted in the analysis. The FEM numerical simulation is used to predict the scenario and the related responses. The simulation results including energy dissipation and impact force are investigated and compared. It is shown that the collision process and energy dissipation are more sensitive to iceberg local shape than other factors when the elastic-plastic iceberg material model is applied. The blunt iceberg models act rigidly while the sharp ones crush easily during the simulation process. With respect to the crushable foam iceberg material model, the iceberg geometry has relatively small influence on the collision process. The spherical iceberg model shows the most rigidity for both iceberg material models and should be paid the most attention for ice-resist design for ships.

  13. Approximate Mathematical Modeling of Osmotic Dehydration of Cone-Shaped Fruits and Vegetables in Hypertonic Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Sirousazar

    2017-07-01

    Full Text Available Water loss kinetics in osmotic dehydration of cone-shaped fruits and vegetables was modeled on the basis of diffusion mechanism, using the Fick’s second law. The model was developed by taking into account the influences of the fruit geometrical characteristics, initial water content of fruit, water diffusion coefficient in fruit, and the water concentration in hypertonic solution. Based on the obtained model, it was shown that the water diffusion coefficient and the initial water concentration of fruit have direct effects on the dehydration rate and also inverse influence on the dehydration duration. The geometrical parameters of fruit and water concentration in hypertonic solution showed direct effect on the dehydration duration as well as inverse effect on the dehydration rate. The presented model seems to be useful tool to predict the dehydration kinetics of cone-shaped fruit during osmotic dehydration process and to optimize the process prior to perform the experiments.

  14. New algorithm for mode shape estimation based on ambient signals considering model order selection

    Science.gov (United States)

    Wu, Chao; Lu, Chao; Han, Yingduo

    2013-12-01

    Using time-synchronized phasor measurements, a new signal processing approach for estimating the electromechanical mode shape properties from ambient signals is proposed. In this method, Bayesian information criterion and the ARMA(2 n,2 n - 1) modeling procedure are first used to automatically select the optimal model order, and the auto regressive moving averaging models are built based on ambient data, then the low-frequency oscillation modal frequency and damping ratio are identified. Next, Prony models of ambient signals are presented, and the mode shape information of multiple dominant interarea oscillation modes are simultaneously estimated. The advantages of the new ARMA-P method are demonstrated by its applications in both a simulation system and measured data from China Southern Power Grid.

  15. Lip-Synching Using Speaker-Specific Articulation, Shape and Appearance Models

    Directory of Open Access Journals (Sweden)

    Breton Gaspard

    2009-01-01

    Full Text Available We describe here the control, shape and appearance models that are built using an original photogrammetric method to capture characteristics of speaker-specific facial articulation, anatomy, and texture. Two original contributions are put forward here: the trainable trajectory formation model that predicts articulatory trajectories of a talking face from phonetic input and the texture model that computes a texture for each 3D facial shape according to articulation. Using motion capture data from different speakers and module-specific evaluation procedures, we show here that this cloning system restores detailed idiosyncrasies and the global coherence of visible articulation. Results of a subjective evaluation of the global system with competing trajectory formation models are further presented and commented.

  16. Uncertainty analysis of a one-dimensional constitutive model for shape memory alloy thermomechanical description

    DEFF Research Database (Denmark)

    Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.

    2014-01-01

    The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...

  17. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    Science.gov (United States)

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.

  18. A Deformed Shape Monitoring Model for Building Structures Based on a 2D Laser Scanner

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2013-05-01

    Full Text Available High-rise buildings subjected to lateral loads such as wind and earthquake loads must be checked not to exceed the limits on the maximum lateral displacement or the maximum inter-story drift ratios. In this paper, a sensing model for deformed shapes of a building structure in motion is presented. The deformed shape sensing model based on a 2D scanner consists of five modules: (1 module for acquiring coordinate information of a point in a building; (2 module for coordinate transformation and data arrangement for generation of time history of the point; (3 module for smoothing by adjacent averaging technique; (4 module for generation of the displacement history for each story and deformed shape of a building, and (5 module for evaluation of the serviceability of a building. The feasibility of the sensing model based on a 2D laser scanner is tested through free vibration tests of a three-story steel frame structure with a relatively high slenderness ratio of 5.0. Free vibration responses measured from both laser displacement sensors and a 2D laser scanner are compared. In the experimentation, the deformed shapes were obtained from three different methods: the model based on the 2D laser scanner, the direct measurement based on laser displacement sensors, and the numerical method using acceleration data and the displacements from GPS. As a result, it is confirmed that the deformed shape measurement model based on a 2D laser scanner can be a promising alternative for high-rise buildings where installation of laser displacement sensors is impossible.

  19. A novel methodology to model the cooling processes of packed horticultural produce using 3D shape models

    Science.gov (United States)

    Gruyters, Willem; Verboven, Pieter; Rogge, Seppe; Vanmaercke, Simon; Ramon, Herman; Nicolai, Bart

    2017-10-01

    Freshly harvested horticultural produce require a proper temperature management to maintain their high economic value. Towards this end, low temperature storage is of crucial importance to maintain a high product quality. Optimizing both the package design of packed produce and the different steps in the postharvest cold chain can be achieved by numerical modelling of the relevant transport phenomena. This work presents a novel methodology to accurately model both the random filling of produce in a package and the subsequent cooling process. First, a cultivar-specific database of more than 100 realistic CAD models of apple and pear fruit is built with a validated geometrical 3D shape model generator. To have an accurate representation of a realistic picking season, the model generator also takes into account the biological variability of the produce shape. Next, a discrete element model (DEM) randomly chooses surface meshed bodies from the database to simulate the gravitational filling process of produce in a box or bin, using actual mechanical properties of the fruit. A computational fluid dynamics (CFD) model is then developed with the final stacking arrangement of the produce to study the cooling efficiency of packages under several conditions and configurations. Here, a typical precooling operation is simulated to demonstrate the large differences between using actual 3D shapes of the fruit and an equivalent spheres approach that simplifies the problem drastically. From this study, it is concluded that using a simplified representation of the actual fruit shape may lead to a severe overestimation of the cooling behaviour.

  20. Epitaxial graphene growth and shape dynamics on copper: phase-field modeling and experiments.

    Science.gov (United States)

    Meca, Esteban; Lowengrub, John; Kim, Hokwon; Mattevi, Cecilia; Shenoy, Vivek B

    2013-01-01

    The epitaxial growth of graphene on copper foils is a complex process, influenced by thermodynamic, kinetic, and growth parameters, often leading to diverse island shapes including dendrites, squares, stars, hexagons, butterflies, and lobes. Here, we introduce a phase-field model that provides a unified description of these diverse growth morphologies and compare the model results with new experiments. Our model explicitly accounts for the anisotropies in the energies of growing graphene edges, kinetics of attachment of carbon at the edges, and the crystallinity of the underlying copper substrate (through anisotropy in surface diffusion). We show that anisotropic diffusion has a very important, counterintuitive role in the determination of the shape of islands, and we present a "phase diagram" of growth shapes as a function of growth rate for different copper facets. Our results are shown to be in excellent agreement with growth shapes observed for high symmetry facets such as (111) and (001) as well as for high-index surfaces such as (221) and (310).

  1. Gaussian mixture models based 2D-3D registration of bone shapes for orthopedic surgery planning.

    Science.gov (United States)

    Valenti, Marta; Ferrigno, Giancarlo; Martina, Dario; Yu, Weimin; Zheng, Guoyan; Shandiz, Mohsen Akbari; Anglin, Carolyn; De Momi, Elena

    2016-11-01

    In orthopedic surgery, precise kinematics assessment helps the diagnosis and the planning of the intervention. The correct placement of the prosthetic component in the case of knee replacement is necessary to ensure a correct load distribution and to avoid revision of the implant. 3D reconstruction of the knee kinematics under weight-bearing conditions becomes fundamental to understand existing in vivo loads and improve the joint motion tracking. Existing methods rely on the semiautomatic positioning of a shape previously segmented from a CT or MRI on a sequence of fluoroscopic images acquired during knee flexion. We propose a method based on statistical shape models (SSM) automatically superimposed on a sequence of fluoroscopic datasets. Our method is based on Gaussian mixture models, and the core of the algorithm is the maximization of the likelihood of the association between the projected silhouette and the extracted contour from the fluoroscopy image. We evaluated the algorithm using digitally reconstructed radiographies of both healthy and diseased subjects, with a CT-extracted shape and a SSM as the 3D model. In vivo tests were done with fluoroscopically acquired images and subject-specific CT shapes. The results obtained are in line with the literature, but the computational time is substantially reduced.

  2. Experimental Investigation of Dynamic Wetting Models: Interface Shapes and Velocity Fields Near the Moving Contact Line.

    Science.gov (United States)

    Chen, Qun

    Dynamic wetting is the displacement of one fluid by another immiscible fluid across a solid surface as it spreads. Such processes control many natural phenomena and technological applications. The spreading dynamics of macroscopic fluid bodies are dictated by the hydrodynamics in a microscopic region near the moving contact line. Analytical models have been developed to describe the interface shape and velocity field near the contact line. Using videomicroscopy, particle image velocimetry, and digital image analysis, we make simultaneous measurements of the fluid/fluid interface shape and fluid flow field within the first few hundred microns near a moving contact line. Our experiments establish the validity and limitations of these analytical models. This work extensively tests assumptions embedded in the models and sets up bounds on the parameter space in which the models are valid. The models successfully describe the hydrodynamics near the contact line up to a capillary number ~0.10 but break down at higher capillary number. We determine the origins of this breakdown. We also carefully probe those regions near the contact line where the interface shape and flow field are independent of the macroscopic geometry. Our experimental technique provides a means of obtaining such material-dependent,, geometry-independent information about the system. Such information serves as boundary conditions transferable among different macroscopic geometries. It is an essential ingredient for numerical calculations of the spreading dynamics. The work reported in this thesis sets the stage for predictive modeling of dynamic wetting.

  3. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    Science.gov (United States)

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Simultaneous shape and deformation measurements in a blood vessel model by two wavelength interferometry

    Science.gov (United States)

    Andrés, Nieves; Pinto, Cristina; Lobera, Julia; Palero, Virginia; Arroyo, M. Pilar

    2017-06-01

    Holographic techniques have been used to measure the shape and the radial deformation of a blood vessel model and a real sheep aorta. Measurements are obtained from several holograms recorded for different object states. For each object state, two holograms with two different wavelengths are multiplexed in the same digital recording. Thus both holograms are simultaneously recorded but the information from each of them is separately obtained. The shape analysis gives a wrapped phase map whose fringes are related to a synthetic wavelength. After a filtering and unwrapping process, the 3D shape can be obtained. The shape data for each line are fitted to a circumference in order to determine the local vessel radius and center. The deformation analysis also results in a wrapped phase map, but the fringes are related to the laser wavelength used in the corresponding hologram. After the filtering and unwrapping process, a 2D map of the deformation in an out-of-plane direction is reconstructed. The radial deformation is then calculated by using the shape information.

  5. Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model.

    Science.gov (United States)

    Ghezelbash, Farshid; Shirazi-Adl, Aboulfazl; Plamondon, André; Arjmand, Navid; Parnianpour, Mohamad

    2017-10-01

    Underlying mechanisms of obesity-related back pain remain unexplored. Thus, we aim to determine the effect of obesity and its shapes on the spinal loads and the associated risks of injury. Obesity shapes were initially constructed by principal component analysis based on datasets on 5852 obese individuals. Spinal loads, cycles to vertebral failure and trunk stability margin were estimated in a subject-specific trunk model taking account of personalized musculature, passive ligamentous spine, obesity shapes, segmental weights, spine kinematics and bone mineral density. Three obesity shapes (mean and extreme abdominal circumferences) at three body weights (BWs) of 86, 98 and 109 kg were analyzed. Additional BW (12 kg) increased spinal loads by ~11.8%. Higher waist circumferences at identical BW increased spinal forces to the tune of ~20 kg additional BW and the risk of vertebral fatigue compression fracture by 3-7 times when compared with smaller waist circumferences. Forward flexion, greater BW and load in hands increased the trunk stability margin. Spinal loads markedly increased with BW, especially at greater waist circumferences. The risk of vertebral fatigue fracture also substantially increased at greater waist circumferences though not at smaller ones. Obesity and its shape should be considered in spine biomechanics.

  6. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    Science.gov (United States)

    Rodríguez-Ruiz, Alejandro; Agasthya, Greeshma A.; Sechopoulos, Ioannis

    2017-09-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.

  7. Crystal shape 2D modeling for transient CZ silicon crystal growth

    Science.gov (United States)

    Sabanskis, A.; Bergfelds, K.; Muiznieks, A.; Schröck, Th.; Krauze, A.

    2013-08-01

    A non-stationary axisymmetric model of Czochralski silicon single crystal growth is presented. The model describes transient behavior of crystal-melt, melt-gas and crystal-gas interfaces in connection with PID-based control of crystal diameter by changing crystal pulling velocity and heater power. To calculate significant crystal shape changes, unstructured finite element mesh is used in crystal and melt together with automatic element size control. Heater temperature changes are modeled with a simplified integral model. A numerical simulation example of start cone growth is given.

  8. The Nuclear Shape Phase Transitions Studied within the Geometric Collective Model

    Directory of Open Access Journals (Sweden)

    Khalaf A. M.

    2013-04-01

    Full Text Available In the framework of the Geometric Collective Model (GCM, quantum phase transition between spherical and deformed shapes of doubly even nuclei are investigated. The validity of the model is examined for the case of lanthanide chains Nd / Sm and actinide chains Th / U. The parameters of the model were obtained by performing a computer simulated search program in order to obtain minimum root mean square deviations be- tween the calculated and the experimental excitation energies. Calculated potential en- ergy surfaces (PES’s describing all deformation effects of each nucleus are extracted. Our systematic studies on lanthanide and actinide chains have revealed a shape transi- tion from spherical vibrator to axially deformed rotor when moving from the lighter to the heavier isotopes.

  9. Interaction Between Familial Transmission and a Constitutively Active Immune System Shapes Gut Microbiota in Drosophila melanogaster

    Science.gov (United States)

    Mistry, Rupal; Kounatidis, Ilias; Ligoxygakis, Petros

    2017-01-01

    Resident gut bacteria are constantly influencing the immune system, yet the role of the immune system in shaping microbiota composition during an organism’s life span has remained unclear. Experiments in mice have been inconclusive due to differences in husbandry schemes that led to conflicting results. We used Drosophila as a genetically tractable system with a simpler gut bacterial population structure streamlined genetic backgrounds and established cross schemes to address this issue. We found that, depending on their genetic background, young flies had microbiota of different diversities that converged with age to the same Acetobacteraceae-dominated pattern in healthy flies. This pattern was accelerated in immune-compromised flies with higher bacterial load and gut cell death. Nevertheless, immune-compromised flies resembled their genetic background, indicating that familial transmission was the main force regulating gut microbiota. In contrast, flies with a constitutively active immune system had microbiota readily distinguishable from their genetic background with the introduction and establishment of previously undetectable bacterial families. This indicated the influence of immunity over familial transmission. Moreover, hyperactive immunity and increased enterocyte death resulted in the highest bacterial load observed starting from early adulthood. Cohousing experiments showed that the microenvironment also played an important role in the structure of the microbiota where flies with constitutive immunity defined the gut microbiota of their cohabitants. Our data show that, in Drosophila, constitutively active immunity shapes the structure and density of gut microbiota. PMID:28413160

  10. Star-shaped ZnO/Ag hybrid nanostructures for enhanced photocatalysis and antibacterial activity

    Science.gov (United States)

    Andrade, George R. S.; Nascimento, Cristiane C.; Lima, Zenon M.; Teixeira-Neto, Erico; Costa, Luiz P.; Gimenez, Iara F.

    2017-03-01

    Zinc oxide (ZnO) particles with a star-shaped morphology have been synthesized by a novel and simple room-temperature method and decorated with silver nanoparticles (SNPs) for enhanced photocatalysis and bactericide applications. The presence of thiourea during the precipitation of ZnO in alkaline conditions allowed the control of morphological features (e.g. average size and shape) and the surface functionalization with thiocyanate ions (SCN-). SNPs were deposited into the ZnO surface by a photoreduction method and their sizes could be easily controlled by changing the ZnO/AgNO3 ratio. The presence of SCN- on the semiconductor surface prevents uncontrollable growth of Ag nanoparticles into different morphologies and high degrees of polydispersity. XRD, SEM, TEM, FTIR, UV-vis-NIR and PL were employed for characterizing the structure, morphology and optical properties of the as-obtained pure and hybrid nanostructures. Finally, the hybrid ZnO/Ag particles have shown plasmon-enhanced performance for applications in photocatalysis and antibacterial activity compared to the pure ZnO counterpart. In this work, evaluation of the photodegradation of an aqueous methylene blue solution under UV-A irradiation and the antibacterial activity toward 4 bacterial strains, including Gram-positive bacteria Staphylococcus aureus (ATCC 43300, ATCC 25923 and ATCC 33591) and Gram-negative bacteria Pseudomonas aeruginosa (ATCC 27853).

  11. Learning a generative model of images by factoring appearance and shape.

    Science.gov (United States)

    Le Roux, Nicolas; Heess, Nicolas; Shotton, Jamie; Winn, John

    2011-03-01

    Computer vision has grown tremendously in the past two decades. Despite all efforts, existing attempts at matching parts of the human visual system's extraordinary ability to understand visual scenes lack either scope or power. By combining the advantages of general low-level generative models and powerful layer-based and hierarchical models, this work aims at being a first step toward richer, more flexible models of images. After comparing various types of restricted Boltzmann machines (RBMs) able to model continuous-valued data, we introduce our basic model, the masked RBM, which explicitly models occlusion boundaries in image patches by factoring the appearance of any patch region from its shape. We then propose a generative model of larger images using a field of such RBMs. Finally, we discuss how masked RBMs could be stacked to form a deep model able to generate more complicated structures and suitable for various tasks such as segmentation or object recognition.

  12. Human vision model in relation to characteristics of shapes for the Mach band effect.

    Science.gov (United States)

    Wu, Bo-Wen; Fang, Yi-Chin

    2015-10-01

    For human vision to recognize the contours of objects means that, as the contrast variation at the object's edges increases, so will the Mach band effect of human vision. This paper more deeply investigates the relationship between changes in the contours of an object and the Mach band effect of human vision. Based on lateral inhibition and the Mach band effect, we studied subjects' eyes as they watched images of different shapes under a fixed brightness at 34  cd/m2, with changes of contrast and spatial frequency. Three types of display were used: a television, a computer monitor, and a projector. For each display used, we conducted a separate experiment for each shape. Although the maximum values for the contrast sensitivity function curves of the displays were different, their variations were minimal. As the spatial frequency changed, the diminishing effect of the different lines also was minimal. However, as the shapes at the contour intersections were modified by the Mach band effect, a greater degree of variation occurred. In addition, as the spatial frequency at a contour intersection increased, the Mach band effect became lower, along with changes in the corresponding contrast sensitivity function curve. Our experimental results on the characteristics of human vision have led to what we believe is a new vision model based on tests with different shapes. This new model may be used for future development and implementation of an artificial vision system.

  13. Quantitative model for the generic 3D shape of ICMEs at 1 AU

    Science.gov (United States)

    Démoulin, P.; Janvier, M.; Masías-Meza, J. J.; Dasso, S.

    2016-10-01

    Context. Interplanetary imagers provide 2D projected views of the densest plasma parts of interplanetary coronal mass ejections (ICMEs), while in situ measurements provide magnetic field and plasma parameter measurements along the spacecraft trajectory, that is, along a 1D cut. The data therefore only give a partial view of the 3D structures of ICMEs. Aims: By studying a large number of ICMEs, crossed at different distances from their apex, we develop statistical methods to obtain a quantitative generic 3D shape of ICMEs. Methods: In a first approach we theoretically obtained the expected statistical distribution of the shock-normal orientation from assuming simple models of 3D shock shapes, including distorted profiles, and compared their compatibility with observed distributions. In a second approach we used the shock normal and the flux rope axis orientations together with the impact parameter to provide statistical information across the spacecraft trajectory. Results: The study of different 3D shock models shows that the observations are compatible with a shock that is symmetric around the Sun-apex line as well as with an asymmetry up to an aspect ratio of around 3. Moreover, flat or dipped shock surfaces near their apex can only be rare cases. Next, the sheath thickness and the ICME velocity have no global trend along the ICME front. Finally, regrouping all these new results and those of our previous articles, we provide a quantitative ICME generic 3D shape, including the global shape of the shock, the sheath, and the flux rope. Conclusions: The obtained quantitative generic ICME shape will have implications for several aims. For example, it constrains the output of typical ICME numerical simulations. It is also a base for studying the transport of high-energy solar and cosmic particles during an ICME propagation as well as for modeling and forecasting space weather conditions near Earth.

  14. Pulmonary nodule detection in CT images based on shape constraint CV model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing; Tian, Xuedong [College of Mathematics and Computer Science, Hebei University, Baoding 071002 (China); Wang, Qian [Hebei Geological Laboratory, Baoding 071000, China and Multi-disciplinary Research Center, Hebei University, Baoding 071002 (China); Yang, Ying [Hebei University Affiliated Hospital, Baoding 071002 (China); Xie, Hongzhi, E-mail: gulixu@sjtu.edu.cn, E-mail: xiehongzhi@medmail.com.cn; Zhang, Shuyang [Department of Cardiology, Peking Union Medical College Hospital, Peking 100005 (China); Gu, Lixu, E-mail: gulixu@sjtu.edu.cn, E-mail: xiehongzhi@medmail.com.cn [Multi-disciplinary Research Center, Hebei University, Baoding 071002, China and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2015-03-15

    Purpose: Accurate detection of pulmonary nodules remains a technical challenge in computer-aided diagnosis systems because some nodules may adhere to the blood vessels or the lung wall, which have low contrast compared to the surrounding tissues. In this paper, the analysis of typical shape features of candidate nodules based on a shape constraint Chan–Vese (CV) model combined with calculation of the number of blood branches adhered to nodule candidates is proposed to reduce false positive (FP) nodules from candidate nodules. Methods: The proposed scheme consists of three major stages: (1) Segmentation of lung parenchyma from computed tomography images. (2) Extraction of candidate nodules. (3) Reduction of FP nodules. A gray level enhancement combined with a spherical shape enhancement filter is introduced to extract the candidate nodules and their sphere-like contour regions. FPs are removed by analysis of the typical shape features of nodule candidates based on the CV model using spherical constraint and by investigating the number of blood branches adhered to the candidate nodules. The constrained shapes of CV model are automatically achieved from the extracted candidate nodules. Results: The detection performance was evaluated on 127 nodules of 103 cases including three types of challenging nodules, which are juxta-pleural nodules, juxta-vascular nodules, and ground glass opacity nodules. The free-receiver operating characteristic (FROC) curve shows that the proposed method is able to detect 88% of all the nodules in the data set with 4 FPs per case. Conclusions: Evaluation shows that the authors’ method is feasible and effective for detection of three types of nodules in this study.

  15. Pulmonary nodule detection in CT images based on shape constraint CV model.

    Science.gov (United States)

    Wang, Bing; Tian, Xuedong; Wang, Qian; Yang, Ying; Xie, Hongzhi; Zhang, Shuyang; Gu, Lixu

    2015-03-01

    Accurate detection of pulmonary nodules remains a technical challenge in computer-aided diagnosis systems because some nodules may adhere to the blood vessels or the lung wall, which have low contrast compared to the surrounding tissues. In this paper, the analysis of typical shape features of candidate nodules based on a shape constraint Chan-Vese (CV) model combined with calculation of the number of blood branches adhered to nodule candidates is proposed to reduce false positive (FP) nodules from candidate nodules. The proposed scheme consists of three major stages: (1) Segmentation of lung parenchyma from computed tomography images. (2) Extraction of candidate nodules. (3) Reduction of FP nodules. A gray level enhancement combined with a spherical shape enhancement filter is introduced to extract the candidate nodules and their sphere-like contour regions. FPs are removed by analysis of the typical shape features of nodule candidates based on the CV model using spherical constraint and by investigating the number of blood branches adhered to the candidate nodules. The constrained shapes of CV model are automatically achieved from the extracted candidate nodules. The detection performance was evaluated on 127 nodules of 103 cases including three types of challenging nodules, which are juxta-pleural nodules, juxta-vascular nodules, and ground glass opacity nodules. The free-receiver operating characteristic (FROC) curve shows that the proposed method is able to detect 88% of all the nodules in the data set with 4 FPs per case. Evaluation shows that the authors' method is feasible and effective for detection of three types of nodules in this study.

  16. Liver segmentation from CT images using a sparse priori statistical shape model (SP-SSM).

    Science.gov (United States)

    Wang, Xuehu; Zheng, Yongchang; Gan, Lan; Wang, Xuan; Sang, Xinting; Kong, Xiangfeng; Zhao, Jie

    2017-01-01

    This study proposes a new liver segmentation method based on a sparse a priori statistical shape model (SP-SSM). First, mark points are selected in the liver a priori model and the original image. Then, the a priori shape and its mark points are used to obtain a dictionary for the liver boundary information. Second, the sparse coefficient is calculated based on the correspondence between mark points in the original image and those in the a priori model, and then the sparse statistical model is established by combining the sparse coefficients and the dictionary. Finally, the intensity energy and boundary energy models are built based on the intensity information and the specific boundary information of the original image. Then, the sparse matching constraint model is established based on the sparse coding theory. These models jointly drive the iterative deformation of the sparse statistical model to approximate and accurately extract the liver boundaries. This method can solve the problems of deformation model initialization and a priori method accuracy using the sparse dictionary. The SP-SSM can achieve a mean overlap error of 4.8% and a mean volume difference of 1.8%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 0.8 mm and 1.4 mm, respectively.

  17. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model

    Science.gov (United States)

    Pomerantseva, Irina; Bichara, David A.; Tseng, Alan; Cronce, Michael J.; Cervantes, Thomas M.; Kimura, Anya M.; Neville, Craig M.; Roscioli, Nick; Vacanti, Joseph P.; Randolph, Mark A.

    2016-01-01

    Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage

  18. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization.

    Science.gov (United States)

    Ding, Jinliang; Chai, Tianyou; Wang, Hong

    2011-03-01

    This paper presents a novel offline modeling for product quality prediction of mineral processing which consists of a number of unit processes in series. The prediction of the product quality of the whole mineral process (i.e., the mixed concentrate grade) plays an important role and the establishment of its predictive model is a key issue for the plantwide optimization. For this purpose, a hybrid modeling approach of the mixed concentrate grade prediction is proposed, which consists of a linear model and a nonlinear model. The least-squares support vector machine is adopted to establish the nonlinear model. The inputs of the predictive model are the performance indices of each unit process, while the output is the mixed concentrate grade. In this paper, the model parameter selection is transformed into the shape control of the probability density function (PDF) of the modeling error. In this context, both the PDF-control-based and minimum-entropy-based model parameter selection approaches are proposed. Indeed, this is the first time that the PDF shape control idea is used to deal with system modeling, where the key idea is to turn model parameters so that either the modeling error PDF is controlled to follow a target PDF or the modeling error entropy is minimized. The experimental results using the real plant data and the comparison of the two approaches are discussed. The results show the effectiveness of the proposed approaches.

  19. PREDICTION OF BLOOD PATTERN IN S-SHAPED MODEL OF ARTERY UNDER NORMAL BLOOD PRESSURE

    Directory of Open Access Journals (Sweden)

    Mohd Azrul Hisham Mohd Adib

    2013-06-01

    Full Text Available Athletes are susceptible to a wide variety of traumatic and non-traumatic vascular injuries to the lower limb. This paper aims to predict the three-dimensional flow pattern of blood through an S-shaped geometrical artery model. This model has created by using Fluid Structure Interaction (FSI software. The modeling of the geometrical S-shaped artery is suitable for understanding the pattern of blood flow under constant normal blood pressure. In this study, a numerical method is used that works on the assumption that the blood is incompressible and Newtonian; thus, a laminar type of flow can be considered. The authors have compared the results with a previous study with FSI validation simulation. The validation and verification of the simulation studies is performed by comparing the maximum velocity at t = 0.4 s, because at this time, the blood accelerates rapidly. In addition, the resulting blood flow at various times, under the same boundary conditions in the S-shaped geometrical artery model, is presented. The graph shows that velocity increases linearly with time. Thus, it can be concluded that the flow of blood increases with respect to the pressure inside the body.

  20. Modelling stochastic chances in curve shape, with an application to cancer diagnostics

    DEFF Research Database (Denmark)

    Hobolth, A; Jensen, Eva B. Vedel

    2000-01-01

    Often, the statistical analysis of the shape of a random planar curve is based on a model for a polygonal approximation to the curve. In the present paper, we instead describe the curve as a continuous stochastic deformation of a template curve. The advantage of this continuous approach...... is that the parameters in the model do not relate to a particular polygonal approximation. A somewhat similar approach has been used by Kent et al. (1996), who describe the limiting behaviour of a model with a first-order Markov property as the landmarks on the curve become closely spaced; see also Grenander(1993......). The model studied in the present paper is an extension of this model. Our model possesses a second-order Markov property. Its geometrical characteristics are studied in some detail and an explicit expression for the covariance function is derived. The model is applied to the boundaries of profiles of cell...

  1. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Directory of Open Access Journals (Sweden)

    Hau-Tieng Wu

    Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  2. A phenomenological two-phase constitutive model for porous shape memory alloys

    KAUST Repository

    El Sayed, Tamer S.

    2012-07-01

    We present a two-phase constitutive model for pseudoelastoplastic behavior of porous shape memory alloys (SMAs). The model consists of a dense SMA phase and a porous plasticity phase. The overall response of the porous SMA is obtained by a weighted average of responses of individual phases. Based on the chosen constitutive model parameters, the model incorporates the pseudoelastic and pseudoplastic behavior simultaneously (commonly reported for porous SMAs) as well as sequentially (i.e. dense SMAs; pseudoelastic deformation followed by the pseudoplastic deformation until failure). The presented model also incorporates failure due to the deviatoric (shear band formation) and volumetric (void growth and coalescence) plastic deformation. The model is calibrated by representative volume elements (RVEs) with different sizes of spherical voids that are solved by unit cell finite element calculations. The overall response of the model is tested against experimental results from literature. Finally, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement with the experimental data reported in the literature. © 2012 Elsevier B.V. All rights reserved.

  3. Applicability of Shape Memory Alloy Wire for an Active, Soft Orthotic

    Science.gov (United States)

    Stirling, Leia; Yu, Chih-Han; Miller, Jason; Hawkes, Elliot; Wood, Robert; Goldfield, Eugene; Nagpal, Radhika

    2011-07-01

    Current treatments for gait pathologies associated with neuromuscular disorders may employ a passive, rigid brace. While these provide certain benefits, they can also cause muscle atrophy. In this study, we examined NiTi shape memory alloy (SMA) wires that were annealed into springs to develop an active, soft orthotic (ASO) for the knee. Actively controlled SMA springs may provide variable assistances depending on factors such as when, during the gait cycle, the springs are activated; ongoing muscle activity level; and needs of the wearer. Unlike a passive brace, an active orthotic may provide individualized control, assisting the muscles so that they may be used more appropriately, and possibly leading to a re-education of the neuro-motor system and eventual independence from the orthotic system. A prototype was tested on a suspended, robotic leg to simulate the swing phase of a typical gait. The total deflection generated by the orthotic depended on the knee angle and the total number of actuators triggered, with a max deflection of 35°. While SMA wires have a high energy density, they require a significant amount of power. Furthermore, the loaded SMA spring response times were much longer than the natural frequency of an average gait for the power conditions tested. While the SMA wires are not appropriate for correction of gait pathologies as currently implemented, the ability to have a soft, actuated material could be appropriate for slower timescale applications.

  4. The Shape of Uterine Contractions and Labor Progress in the Spontaneous Active Labor

    Directory of Open Access Journals (Sweden)

    Samira Ebrahimzadeh Zagami

    2015-03-01

    Full Text Available Background: Dystocia is the most common indication of primary cesarean section. The most common cause of dystocia is uterine dysfunction. In prolonged labor, more attention is usually paid to the fetus and pelvis rather than to the role of uterine contractions in a delivery. Therefore, we decided to determine the relationship between the labor progress and uterine contractions shapes. Methods: In this cross-sectional study, 200 primiparous women participated having a single pregnancy and cephalic presentation. Uterus contractions were recorded using electronic fetal monitoring at the beginning of the active phase of labor (dilatation 3-5 cm for 30 min. Fall to rise (F:R ratio was calculated by determining the duration of returning from a contraction peak to its baseline (fall and the duration of the rise time from baseline to peak (rise in two groups. The data were analyzed using t-test and Chi-square test. Results: In this study, 162 women had a normal delivery and 38 women had a cesarean (CS delivery due to the lack of labor progress. The average F:R ratio was 1.13±0.193 seconds in the vaginal delivery group and 1.64±0.301 seconds in the CS group. This difference was statistically significant (P<0.001. The frequency of contractions in the vaginal delivery group was more than the CS group (P=0.008. Conclusion: Our findings demonstrated that uterine contractions shapes change; and F:R ratio was higher in the group that lacked labor progress. Therefore, contraction shapes can be used to predict the labor progress.

  5. The shape of uterine contractions and labor progress in the spontaneous active labor.

    Science.gov (United States)

    Ebrahimzadeh Zagami, Samira; Golmakani, Nahid; Saadatjoo, Seyyed Ali-Reza; Ghomian, Nayyereh; Baghbani, Behjat

    2015-03-01

    Dystocia is the most common indication of primary cesarean section. The most common cause of dystocia is uterine dysfunction. In prolonged labor, more attention is usually paid to the fetus and pelvis rather than to the role of uterine contractions in a delivery. Therefore, we decided to determine the relationship between the labor progress and uterine contractions shapes. In this cross-sectional study, 200 primiparous women participated having a single pregnancy and cephalic presentation. Uterus contractions were recorded using electronic fetal monitoring at the beginning of the active phase of labor (dilatation 3-5 cm) for 30 min. Fall to rise (F:R) ratio was calculated by determining the duration of returning from a contraction peak to its baseline (fall) and the duration of the rise time from baseline to peak (rise) in two groups. The data were analyzed using t-test and Chi-square test. In this study, 162 women had a normal delivery and 38 women had a cesarean (CS) delivery due to the lack of labor progress. The average F:R ratio was 1.13±0.193 seconds in the vaginal delivery group and 1.64±0.301 seconds in the CS group. This difference was statistically significant (Pcontractions in the vaginal delivery group was more than the CS group (P=0.008). Our findings demonstrated that uterine contractions shapes change; and F:R ratio was higher in the group that lacked labor progress. Therefore, contraction shapes can be used to predict the labor progress.

  6. Incorporating shape constraints in generalized additive modelling of the height-diameter relationship for Norway spruce

    Directory of Open Access Journals (Sweden)

    Natalya Pya

    2016-02-01

    Full Text Available Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM and shape constrained generalized additive models (SCAM for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand. The definition of constraints leads only to marginal or minor decline in the model statistics like AIC. An observed structured spatial trend in tree height is modelled via 2-dimensional surface

  7. Modeling and measurements of circular and trapezoidal shape HTS coils for electrical machines applications

    Science.gov (United States)

    Messina, G.; Morici, L.; Besi Vetrella, U.; Celentano, G.; Marchetti, M.; Viola, R.; Sabatino, P.

    2014-05-01

    Axial Flux Electrical Machines (AFEM) with good power-to-weight and diameter-to-length ratio and high efficiency are very attractive for most industrial and power applications. Investigations with both theoretical and experimental methods of ac losses are important for a reliable prediction of dissipation mechanisms in AFEM. In this paper, simulated and measured results for both critical current (Ic) and transport current losses (Ploss), obtained on HTS coils, are reported. To investigate shape effects, double pancake coils with variable turns and shapes have been manufacted. Commercial grade ReBa2Cu3O7-x (Re = Y or rare earths, ReBCO) tape and epoxy resin has been used for coil winding. A magneto-static 2D finite element model (FEM) for the coils cross section, and a lumped model for AC losses estimations, have been implemented. The agreement among measured and simulated results are satisfactory.

  8. Mathematical modelling of the viable epidermis: impact of cell shape and vertical arrangement

    KAUST Repository

    Wittum, Rebecca

    2017-12-07

    In-silico methods are valuable tools for understanding the barrier function of the skin. The key benefit is that mathematical modelling allows the interplay between cell shape and function to be elucidated. This study focuses on the viable (living) epidermis. For this region, previous works suggested a diffusion model and an approximation of the cells by hexagonal prisms. The work at hand extends this in three ways. First, the extracellular space is treated with full spatial resolution. This induces a decrease of permeability by about 10%. Second, cells of tetrakaidecahedral shape are considered, in addition to the original hexagonal prisms. For both cell types, the resulting membrane permeabilities are compared. Third, for the first time, the influence of cell stacking in the vertical direction is considered. This is particularly important for the stratum granulosum, where tight junctions are present.

  9. IMC-PID design based on model matching approach and closed-loop shaping.

    Science.gov (United States)

    Jin, Qi B; Liu, Q

    2014-03-01

    Motivated by the limitations of the conventional internal model control (IMC), this communication addresses the design of IMC-based PID in terms of the robust performance of the control system. The IMC controller form is obtained by solving an H-infinity problem based on the model matching approach, and the parameters are determined by closed-loop shaping. The shaping of the closed-loop transfer function is considered both for the set-point tracking and for the load disturbance rejection. The design procedure is formulated as a multi-objective optimization problem which is solved by a specific optimization algorithm. A nice feature of this design method is that it permits a clear tradeoff between robustness and performance. Simulation examples show that the proposed method is effective and has a wide applicability. Crown Copyright © 2013 Published by ISA on behalf of ISA All rights reserved.

  10. Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models

    Science.gov (United States)

    Rothenberger, Michael J.

    This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input

  11. Modelling elasticity in solids using active cubes - application to simulated operations

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1995-01-01

    The paper describes an approach to elastic modelling of human tissue based on the use of 3D solid active models-active cubes (M. Bro-Nielsen, 1994)-and a shape description based on the metric tensor in a solid. Active cubes are used because they provide a natural parameterization of the surface...... and the interior of the given object when deformed to match the object's shape. Using the metric tensor to store the shape of the deformed active cube, the elastic behaviour of the object in response to applied forces or subject to constraints is modelled by minimizing an energy based on the metric tensor...

  12. In vivo tissue response following implantation of shape memory polyurethane foam in a porcine aneurysm model

    OpenAIRE

    Rodriguez, Jennifer N.; Clubb, Fred J.; Wilson, Thomas S.; Miller, Matthew W.; Fossum, Theresa W.; Hartman, Jonathan; Tuzun, Egemen; Singhal, Pooja; Maitland, Duncan J.

    2013-01-01

    Cerebral aneurysms treated by traditional endovascular methods using platinum coils have a tendency to be unstable, either due to chronic inflammation, compaction of coils, or growth of the aneurysm. We propose to use alternate filling methods for the treatment of intracranial aneurysms using polyurethane based shape memory polymer (SMP) foams. SMP polyurethane foams were surgically implanted in a porcine aneurysm model to determine biocompatibility, localized thrombogenicity, and their abili...

  13. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    OpenAIRE

    Volk, Brent L.; LAGOUDAS, Dimitris C.; Maitland, Duncan J.

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling are performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigate the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles are performed during each test. The material is observed to recover 100% of the applied deformati...

  14. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    Science.gov (United States)

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio (α:β), with high probability, using Θ(α + β) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling. This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235-253, 2009

  15. Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia

    Science.gov (United States)

    Carry, B.; Kaasalainen, M.; Merline, W. J.; Müller, T. G.; Jorda, L.; Drummond, J. D.; Berthier, J.; O'Rourke, L.; Ďurech, J.; Küppers, M.; Conrad, A.; Tamblyn, P.; Dumas, C.; Sierks, H.; Osiris Team (M. A'Hearn, F. Angrilli, C. Barbieri, A. Barucci, J.-L. Bertaux, G.Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, S. Fornasier, M. Fulle, O. Groussin, P. Gutiérrez, W.-H. Ip, S. Hviid, H.U. Keller, D. Koschny, J. Knollenberg, J.R. Kramm, E. Kuehrt, P. Lamy, L.M. Lara, M. Lazzarin, J.J. López-Moreno, F. Marzari, H. Michalik, G. Naletto, H. Rickman, R. Rodrigo, L. Sabau, N. Thomas, K.-P. Wenzel.)

    2012-06-01

    We present here a comparison of our results from ground-based observations of asteroid (21) Lutetia with imaging data acquired during the flyby of the asteroid by the ESA Rosetta mission. This flyby provided a unique opportunity to evaluate and calibrate our method of determination of size, 3-D shape, and spin of an asteroid from ground-based observations. Knowledge of certain observable physical properties of small bodies (e.g., size, spin, 3-D shape, and density) have far-reaching implications in furthering our understanding of these objects, such as composition, internal structure, and the effects of non-gravitational forces. We review the different observing techniques used to determine the above physical properties of asteroids and present our 3-D shape-modeling technique KOALA - Knitted Occultation, Adaptive-optics, and Lightcurve Analysis - which is based on multi-dataset inversion. We compare the results we obtained with KOALA, prior to the flyby, on asteroid (21) Lutetia with the high-spatial resolution images of the asteroid taken with the OSIRIS camera on-board the ESA Rosetta spacecraft, during its encounter with Lutetia on 2010 July 10. The spin axis determined with KOALA was found to be accurate to within 2°, while the KOALA diameter determinations were within 2% of the Rosetta-derived values. The 3-D shape of the KOALA model is also confirmed by the spectacular visual agreement between both 3-D shape models (KOALA pre- and OSIRIS post-flyby). We found a typical deviation of only 2 km at local scales between the profiles from KOALA predictions and OSIRIS images, resulting in a volume uncertainty provided by KOALA better than 10%. Radiometric techniques for the interpretation of thermal infrared data also benefit greatly from the KOALA shape model: the absolute size and geometric albedo can be derived with high accuracy, and thermal properties, for example the thermal inertia, can be determined unambiguously. The corresponding Lutetia analysis leads

  16. Analysis of Computational Models of Shaped Charges for Jet Formation and Penetration

    Science.gov (United States)

    Haefner, Jonah; Ferguson, Jim

    2016-11-01

    Shaped charges came into use during the Second World War demonstrating the immense penetration power of explosively formed projectiles and since has become a tool used by nearly every nation in the world. Penetration is critically dependent on how the metal liner is collapsed into a jet. The theory of jet formation has been studied in depth since the late 1940s, based on simple models that neglect the strength and compressibility of the metal liner. Although attempts have been made to improve these models, simplifying assumptions limit the understanding of how the material properties affect the jet formation. With a wide range of material and strength models available for simulation, a validation study was necessary to guide code users in choosing models for shaped charge simulations. Using PAGOSA, a finite-volume Eulerian hydrocode designed to model hypervelocity materials and strong shock waves developed by Los Alamos National Laboratory, and experimental data, we investigated the effects of various equations of state and material strength models on jet formation and penetration of a steel target. Comparing PAGOSA simulations against modern experimental data, we analyzed the strengths and weaknesses of available computational models. LA-UR-16-25639 Los Alamos National Laboratory.

  17. Automated liver segmentation from a postmortem CT scan based on a statistical shape model.

    Science.gov (United States)

    Saito, Atsushi; Yamamoto, Seiji; Nawano, Shigeru; Shimizu, Akinobu

    2017-02-01

    Automated liver segmentation from a postmortem computed tomography (PMCT) volume is a challenging problem owing to the large deformation and intensity changes caused by severe pathology and/or postmortem changes. This paper addresses this problem by a novel segmentation algorithm using a statistical shape model (SSM) for a postmortem liver. The location and shape parameters of a liver are directly estimated from a given volume by the proposed SSM-guided expectation-maximization (EM) algorithm without any spatial standardization that might fail owing to the large deformation and intensity changes. The estimated location and shape parameters are then used as a constraint of the subsequent fine segmentation process based on graph cuts. Algorithms with eight different SSMs were trained using 144 in vivo and 32 postmortem livers, and the segmentation algorithm was tested on 32 postmortem livers in a twofold cross validation manner. The segmentation performance is measured by the Jaccard index (JI) between the segmentation result and the true liver label. The average JI of the segmentation result with the best SSM was 0.8501, which was better compared with the results obtained using conventional SSMs and the results of the previous postmortem liver segmentation with statistically significant difference. We proposed an algorithm for automated liver segmentation from a PMCT volume, in which an SSM-guided EM algorithm estimated the location and shape parameters of a liver in a given volume accurately. We demonstrated the effectiveness of the proposed algorithm using actual postmortem CT volumes.

  18. How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains.

    Science.gov (United States)

    Ostojic, Srdjan; Brunel, Nicolas; Hakim, Vincent

    2009-08-19

    Functional interactions between neurons in vivo are often quantified by cross-correlation functions (CCFs) between their spike trains. It is therefore essential to understand quantitatively how CCFs are shaped by different factors, such as connectivity, synaptic parameters, and background activity. Here, we study the CCF between two neurons using analytical calculations and numerical simulations. We quantify the role of synaptic parameters, such as peak conductance, decay time, and reversal potential, and analyze how various patterns of connectivity influence CCF shapes. In particular, we find that the symmetry of the CCF distinguishes in general, but not always, the case of shared inputs between two neurons from the case in which they are directly synaptically connected. We systematically examine the influence of background synaptic inputs from the surrounding network that set the baseline firing statistics of the neurons and modulate their response properties. We find that variations in the background noise modify the amplitude of the cross-correlation function as strongly as variations of synaptic strength. In particular, we show that the postsynaptic neuron spiking regularity has a pronounced influence on CCF amplitude. This suggests an efficient and flexible mechanism for modulating functional interactions.

  19. Shape Reconstruction Based on a New Blurring Model at the Micro/Nanometer Scale

    Directory of Open Access Journals (Sweden)

    Yangjie Wei

    2016-02-01

    Full Text Available Real-time observation of three-dimensional (3D information has great significance in nanotechnology. However, normal nanometer scale observation techniques, including transmission electron microscopy (TEM, and scanning probe microscopy (SPM, have some problems to obtain 3D information because they lack non-destructive, intuitive, and fast imaging ability under normal conditions, and optical methods have not widely used in micro/nanometer shape reconstruction due to the practical requirements and the imaging limitations in micro/nano manipulation. In this paper, a high resolution shape reconstruction method based on a new optical blurring model is proposed. Firstly, the heat diffusion physics equation is analyzed and the optical diffraction model is modified to directly explain the basic principles of image blurring resulting from depth variation. Secondly, a blurring imaging model is proposed based on curve fitting of a 4th order polynomial curve. The heat diffusion equations combined with the blurring imaging are introduced, and their solution is transformed into a dynamic optimization problem. Finally, the experiments with a standard nanogrid, an atomic force microscopy (AFM cantilever and a microlens have been conducted. The experiments prove that the proposed method can reconstruct 3D shapes at the micro/nanometer scale, and the minimal reconstruction error is 3 nm.

  20. Nuclear Phase Transition from Spherical to Axially Symmetric Deformed Shapes Using Interacting Boson Model

    Directory of Open Access Journals (Sweden)

    Khalaf A. M.

    2015-04-01

    Full Text Available The interacting boson model (sd-IBM1 with intrinsic coherent state is used to study the shape phase transitions from spherical U(5 to prolate deformed SU(3 shapes in Nd- Sm isotopic chains. The Hamiltonian is written in the creation and annihilation form with one and two body terms.For each nucleus a fitting procedure is adopted to get the best model parameters by fitting selected experimental energy levels, B(E2 transi- tion rates and two-neutron separation energies with the calculated ones.The U(5-SU(3 IBM potential energy surfaces (PES’s are analyzed and the critical phase transition points are identified in the space of model parameters.In Nd-Sm isotopic chains nuclei evolve from spherical to deformed shapes by increasing the boson number. The nuclei 150 Nd and 152 Sm have been found to be close to critical points.We have also studied the energy ratios and the B(E2 values for yrast band at the critical points.

  1. Detection and characterisation of bone destruction in murine rheumatoid arthritis using statistical shape models.

    Science.gov (United States)

    Brown, James M; Ross, Ewan; Desanti, Guillaume; Saghir, Atif; Clark, Andy; Buckley, Chris; Filer, Andrew; Naylor, Amy; Claridge, Ela

    2017-08-01

    Rheumatoid arthritis (RA) is an autoimmune disease in which chronic inflammation of the synovial joints can lead to destruction of cartilage and bone. Pre-clinical studies attempt to uncover the underlying causes by emulating the disease in genetically different mouse strains and characterising the nature and severity of bone shape changes as indicators of pathology. This paper presents a fully automated method for obtaining quantitative measurements of bone destruction from volumetric micro-CT images of a mouse hind paw. A statistical model of normal bone morphology derived from a training set of healthy examples serves as a template against which a given pathological sample is compared. Abnormalities in bone shapes are identified as deviations from the model statistics, characterised in terms of type (erosion / formation) and quantified in terms of severity (percentage affected bone area). The colour-coded magnitudes of the deviations superimposed on a three-dimensional rendering of the paw show at a glance the severity of malformations for the individual bones and joints. With quantitative data it is possible to derive population statistics characterising differences in bone malformations for different mouse strains and in different anatomical regions. The method was applied to data acquired from three different mouse strains. The derived quantitative indicators of bone destruction have shown agreement both with the subjective visual scores and with the previous biological findings. This suggests that pathological bone shape changes can be usefully and objectively identified as deviations from the model statistics. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Radar and Lightcurve Shape Model of Near-Earth Asteroid (1627) Ivar

    Science.gov (United States)

    Crowell, Jenna L.; Howell, Ellen S.; Magri, Christopher; Nolan, Michael C.; Fernández, Yanga R.; Richardson, James E.; Warner, Brian D.; Marshall, Sean E.; Springmann, Alessondra; Vervack, Ronald J.

    2017-07-01

    We present our shape model of Amor class near-Earth asteroid (1627) Ivar. During Ivar's apparition in 2013, in which it had a minimum distance of 0.32 AU, we obtained both CCD photometry and radar observations. The radar data consist of echo power spectra and delay-Doppler imaging with 300 m resolution and were obtained using the Arecibo Observatory's 2380 MHz radar. Lightcurve data were gathered using the 0.35 m telescope at the Palmer Divide Station. Using these data, we constructed a detailed shape model of Ivar that reveals more surface detail than earlier models. Ivar was found to have a rotational period of 4.7951689 ± 0.0000026 hours with a pole located within 6° of ecliptic longitude and latitude 336° and 37° respectively. Ivar is an elongated asteroid with maximum extensions along the three body-fixed coordinates being 15.15 × 6.25 × 5.66 km ± 10%. The results of surface slope analysis suggest that Ivar is covered with a loose regolith. Ivar appears to reside in, or near, an optimum state with respect to its shape, spin, and bulk density, such that dynamic topography, surface slopes, and erosion rates on the body are near minimum levels and is therefore dynamically stable.

  3. Development of Deflection Prediction Model for Concrete Block Pavement Considering the Block Shapes and Construction Patterns

    Directory of Open Access Journals (Sweden)

    Wuguang Lin

    2016-01-01

    Full Text Available Concrete block pavement (CBP is distinct from typical concrete or asphalt pavements. It is built by using individual blocks with unique construction patterns forming a discrete surface layer to bear traffic loadings. The surface structure of CBP varies depending on the block shapes and construction patterns, so it is hard to apply a general equivalent elastic modulus estimation method to define the surface structural strength. In this study, FEM analysis and dynamic loading test were carried out to develop a deflection prediction model for CBP considering the block shapes and construction patterns. Based on the analysis results, it was found that block shapes did not have much effect on load distribution, whereas construction patterns did. By applying the deflection prediction model to the rutting model for CBP proposed by Sun, the herringbone bond pattern showed the best performance comparing with stretcher bond or basket weave bond pattern. As the load repetition increased to 1.2 million, the rutting depth of CBP constructed by herringbone bond pattern was 2 mm smaller than those constructed by the other two patterns.

  4. Automatic Sex Determination of Skulls Based on a Statistical Shape Model

    Directory of Open Access Journals (Sweden)

    Li Luo

    2013-01-01

    Full Text Available Sex determination from skeletons is an important research subject in forensic medicine. Previous skeletal sex assessments are through subjective visual analysis by anthropologists or metric analysis of sexually dimorphic features. In this work, we present an automatic sex determination method for 3D digital skulls, in which a statistical shape model for skulls is constructed, which projects the high-dimensional skull data into a low-dimensional shape space, and Fisher discriminant analysis is used to classify skulls in the shape space. This method combines the advantages of metrical and morphological methods. It is easy to use without professional qualification and tedious manual measurement. With a group of Chinese skulls including 127 males and 81 females, we choose 92 males and 58 females to establish the discriminant model and validate the model with the other skulls. The correct rate is 95.7% and 91.4% for females and males, respectively. Leave-one-out test also shows that the method has a high accuracy.

  5. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind...

  6. A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation

    Science.gov (United States)

    Arghavani, J.; Auricchio, F.; Naghdabadi, R.; Reali, A.; Sohrabpour, S.

    2010-06-01

    Most devices based on shape memory alloys experience both finite deformations and non-proportional loading conditions in engineering applications. This motivates the development of constitutive models considering finite strain as well as martensite variant reorientation. To this end, in the present article, based on the principles of continuum thermodynamics with internal variables, a three-dimensional finite strain phenomenological constitutive model is proposed taking its basis from the recent model in the small strain regime proposed by Panico and Brinson (J Mech Phys Solids 55:2491-2511, 2007). In the finite strain constitutive model derivation, a multiplicative decomposition of the deformation gradient into elastic and inelastic parts, together with an additive decomposition of the inelastic strain rate tensor into transformation and reorientation parts is adopted. Moreover, it is shown that, when linearized, the proposed model reduces exactly to the original small strain model.

  7. Robust brain ROI segmentation by deformation regression and deformable shape model.

    Science.gov (United States)

    Wu, Zhengwang; Guo, Yanrong; Park, Sang Hyun; Gao, Yaozong; Dong, Pei; Lee, Seong-Whan; Shen, Dinggang

    2018-01-01

    We propose a robust and efficient learning-based deformable model for segmenting regions of interest (ROIs) from structural MR brain images. Different from the conventional deformable-model-based methods that deform a shape model locally around the initialization location, we learn an image-based regressor to guide the deformable model to fit for the target ROI. Specifically, given any voxel in a new image, the image-based regressor can predict the displacement vector from this voxel towards the boundary of target ROI, which can be used to guide the deformable segmentation. By predicting the displacement vector maps for the whole image, our deformable model is able to use multiple non-boundary predictions to jointly determine and iteratively converge the initial shape model to the target ROI boundary, which is more robust to the local prediction error and initialization. In addition, by introducing the prior shape model, our segmentation avoids the isolated segmentations as often occurred in the previous multi-atlas-based methods. In order to learn an image-based regressor for displacement vector prediction, we adopt the following novel strategies in the learning procedure: (1) a joint classification and regression random forest is proposed to learn an image-based regressor together with an ROI classifier in a multi-task manner; (2) high-level context features are extracted from intermediate (estimated) displacement vector and classification maps to enforce the relationship between predicted displacement vectors at neighboring voxels. To validate our method, we compare it with the state-of-the-art multi-atlas-based methods and other learning-based methods on three public brain MR datasets. The results consistently show that our method is better in terms of both segmentation accuracy and computational efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

    Directory of Open Access Journals (Sweden)

    P. Räisänen

    2017-12-01

    Full Text Available Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR model and in the Los Alamos sea ice model, version 4 (CICE4, both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM. In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH is compared with another (NONSPH in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77–0.78 in the visible region than in the spherical case ( ≈  0.89. Therefore, for the same effective snow grain size (or equivalently, the same specific projected area, the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02–0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. −0.22 W m−2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain

  9. Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

    Science.gov (United States)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf; Debernard, Jens B.

    2017-12-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77-0.78 in the visible region) than in the spherical case ( ≈ 0.89). Therefore, for the same effective snow grain size (or equivalently, the same specific projected area), the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02-0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. -0.22 W m-2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain size increased by ca. 70 %, the

  10. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  11. Preregistered Replication of "Affective Flexibility: Evaluative Processing Goals Shape Amygdala Activity".

    Science.gov (United States)

    Lumian, Daniel S; McRae, Kateri

    2017-09-01

    The human amygdala is sensitive to stimulus characteristics, and growing evidence suggests that it is also responsive to cognitive framing in the form of evaluative goals. To examine whether different evaluations of stimulus characteristics shape amygdala activation, we conducted a preregistered replication of Cunningham, Van Bavel, and Johnsen's (2008) study demonstrating flexible mapping of amygdala activation to stimulus characteristics, depending on evaluative goals. Participants underwent functional MRI scanning while viewing famous names under three conditions: They were asked to report their overall attitude toward each name, their positive associations only, or their negative associations only. We observed an interaction between condition and rating type, identified as the effect of interest in Cunningham et al. (2008). Specifically, postscan positivity, but not negativity, ratings predicted left amygdala activation when participants were asked to evaluate positive, but not negative, associations with the names. These results provide convergent evidence that cognitive framing, in the form of evaluative goals, can significantly alter whether amygdala activation indexes positivity or negativity.

  12. Prostate MR image segmentation using 3D active appearance models

    NARCIS (Netherlands)

    Maan, Bianca; van der Heijden, Ferdinand

    2012-01-01

    This paper presents a method for automatic segmentation of the prostate from transversal T2-weighted images based on 3D Active Appearance Models (AAM). The algorithm consist of two stages. Firstly, Shape Context based non-rigid surface registration of the manual segmented images is used to obtain

  13. Active vibration control of Flexible Joint Manipulator using Input Shaping and Adaptive Parameter Auto Disturbance Rejection Controller

    Science.gov (United States)

    Li, W. P.; Luo, B.; Huang, H.

    2016-02-01

    This paper presents a vibration control strategy for a two-link Flexible Joint Manipulator (FJM) with a Hexapod Active Manipulator (HAM). A dynamic model of the multi-body, rigid-flexible system composed of an FJM, a HAM and a spacecraft was built. A hybrid controller was proposed by combining the Input Shaping (IS) technique with an Adaptive-Parameter Auto Disturbance Rejection Controller (APADRC). The controller was used to suppress the vibration caused by external disturbances and input motions. Parameters of the APADRC were adaptively adjusted to ensure the characteristic of the closed loop system to be a given reference system, even if the configuration of the manipulator significantly changes during motion. Because precise parameters of the flexible manipulator are not required in the IS system, the operation of the controller was sufficiently robust to accommodate uncertainties in system parameters. Simulations results verified the effectiveness of the HAM scheme and controller in the vibration suppression of FJM during operation.

  14. Input Shaping enhanced Active Disturbance Rejection Control for a twin rotor multi-input multi-output system (TRMS).

    Science.gov (United States)

    Yang, Xiaoyan; Cui, Jianwei; Lao, Dazhong; Li, Donghai; Chen, Junhui

    2016-05-01

    In this paper, a composite control based on Active Disturbance Rejection Control (ADRC) and Input Shaping is presented for TRMS with two degrees of freedom (DOF). The control tasks consist of accurately tracking desired trajectories and obtaining disturbance rejection in both horizontal and vertical planes. Due to un-measurable states as well as uncertainties stemming from modeling uncertainty and unknown disturbance torques, ADRC is employed, and feed-forward Input Shaping is used to improve the dynamical response. In the proposed approach, because the coupling effects are maintained in controller derivation, there is no requirement to decouple the TRMS into horizontal and vertical subsystems, which is usually performed in the literature. Finally, the proposed method is implemented on the TRMS platform, and the results are compared with those of PID and ADRC in a similar structure. The experimental results demonstrate the effectiveness of the proposed method. The operation of the controller allows for an excellent set-point tracking behavior and disturbance rejection with system nonlinearity and complex coupling conditions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Design and Control of a Proof-of-Concept Active Jet Engine Intake Using Shape Memory Alloy Actuators

    Science.gov (United States)

    Song, Gangbing; Ma, Ning; Penney, Nicholas; Barr, Todd; Lee, Ho-Jun; Arnold, Steven M.

    2004-01-01

    The design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators is used to demonstrate the potential of an adaptive intake to improve the fuel efficiency of a jet engine. The Nitinol SMA material is selected for this research due to the material's ability to generate large strains of up to 5 percent for repeated operations, a high power-to-weight ratio, electrical resistive actuation, and easy fabrication into a variety of shapes. The proof-of-concept engine intake employs an overlapping leaf design arranged in a concentric configuration. Each leaf is mounted on a supporting bar that rotates upon actuation by SMA wires electrical resistive heating. Feedback control is enabled through the use of a laser range sensor to detect the movement of a leaf and determine the radius of the intake area. Due to the hysteresis behavior inherent in SMAs, a nonlinear robust controller is used to direct the SMA wire actuation. The controller design utilizes the sliding-mode approach to compensate for the nonlinearities associated with the SMA actuator. Feedback control experiments conducted on a fabricated proof-of-concept model have demonstrated the capability to precisely control the intake area and achieve up to a 25 percent reduction in intake area. The experiments demonstrate the feasibility of engine intake area control using the proposed design.

  16. Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions

    Science.gov (United States)

    Liu, C.; Charpentier, R.R.; Su, J.

    2011-01-01

    Two methods are compared for estimating the shape parameters of Pareto field-size (or pool-size) distributions for petroleum resource assessment. Both methods assume mature exploration in which most of the larger fields have been discovered. Both methods use the sizes of larger discovered fields to estimate the numbers and sizes of smaller fields: (1) the tail-truncated method uses a plot of field size versus size rank, and (2) the log-geometric method uses data binned in field-size classes and the ratios of adjacent bin counts. Simulation experiments were conducted using discovered oil and gas pool-size distributions from four petroleum systems in Alberta, Canada and using Pareto distributions generated by Monte Carlo simulation. The estimates of the shape parameters of the Pareto distributions, calculated by both the tail-truncated and log-geometric methods, generally stabilize where discovered pool numbers are greater than 100. However, with fewer than 100 discoveries, these estimates can vary greatly with each new discovery. The estimated shape parameters of the tail-truncated method are more stable and larger than those of the log-geometric method where the number of discovered pools is more than 100. Both methods, however, tend to underestimate the shape parameter. Monte Carlo simulation was also used to create sequences of discovered pool sizes by sampling from a Pareto distribution with a discovery process model using a defined exploration efficiency (in order to show how biased the sampling was in favor of larger fields being discovered first). A higher (more biased) exploration efficiency gives better estimates of the Pareto shape parameters. ?? 2011 International Association for Mathematical Geosciences.

  17. Modeling interdisciplinary activities involving Mathematics

    DEFF Research Database (Denmark)

    Iversen, Steffen Møllegaard

    2006-01-01

    In this paper a didactical model is presented. The goal of the model is to work as a didactical tool, or conceptual frame, for developing, carrying through and evaluating interdisciplinary activities involving the subject of mathematics and philosophy in the high schools. Through the terms...... of Horizontal Intertwining, Vertical Structuring and Horizontal Propagation the model consists of three phases, each considering different aspects of the nature of interdisciplinary activities. The theoretical modelling is inspired by work which focuses on the students abilities to concept formation in expanded...... domains (Michelsen, 2001, 2005a, 2005b). Furthermore the theoretical description rest on a series of qualitative interviews with teachers from the Danish high school (grades 9-11) conducted recently. The special case of concrete interdisciplinary activities between mathematics and philosophy is also...

  18. Improved shape-signature and matching methods for model-based robotic vision

    Science.gov (United States)

    Schwartz, J. T.; Wolfson, H. J.

    1987-01-01

    Researchers describe new techniques for curve matching and model-based object recognition, which are based on the notion of shape-signature. The signature which researchers use is an approximation of pointwise curvature. Described here is curve matching algorithm which generalizes a previous algorithm which was developed using this signature, allowing improvement and generalization of a previous model-based object recognition scheme. The results and the experiments described relate to 2-D images. However, natural extensions to the 3-D case exist and are being developed.

  19. Czochralski growth of crystals - Simple models for growth rate and interface shape

    Science.gov (United States)

    Srivastava, R. K.; Ramachandran, P. A.; Dudukovic, M. P.

    1986-01-01

    A simple model for the crystal growth by the Czochralski (CZ) process has been proposed based on semiquantitative arguments. The model provides empirical relationships for the dependence of the pulling rate and the interface shape on the important process variables such as crystal radius, crucible temperature, height of the melt level, and the height of the exposed portion of the crucible wall. The parameters of the model can be evaluated by matching the results obtained from a detailed mathematical model of the CZ process or from extensive experimental data. The model has, therefore, the potential application for determining the best process conditions and for on-line control and optimization of the crystal puller to grow crystals with constant diameter and nearly planar interface.

  20. Probabilistic clustering and shape modelling of white matter fibre bundles using regression mixtures.

    Science.gov (United States)

    Ratnarajah, Nagulan; Simmons, Andy; Hojjatoleslami, Ali

    2011-01-01

    We present a novel approach for probabilistic clustering of white matter fibre pathways using curve-based regression mixture modelling techniques in 3D curve space. The clustering algorithm is based on a principled method for probabilistic modelling of a set of fibre trajectories as individual sequences of points generated from a finite mixture model consisting of multivariate polynomial regression model components. Unsupervised learning is carried out using maximum likelihood principles. Specifically, conditional mixture is used together with an EM algorithm to estimate cluster membership. The result of clustering is a probabilistic assignment of fibre trajectories to each cluster and an estimate of cluster parameters. A statistical shape model is calculated for each clustered fibre bundle using fitted parameters of the probabilistic clustering. We illustrate the potential of our clustering approach on synthetic and real data.

  1. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape

    Directory of Open Access Journals (Sweden)

    Pei-Jian eShi

    2015-10-01

    Full Text Available Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modelled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems.

  2. A parabolic model to control quantum interference in T-shaped molecular junctions.

    Science.gov (United States)

    Nozaki, Daijiro; Sevinçli, Hâldun; Avdoshenko, Stanislav M; Gutierrez, Rafael; Cuniberti, Gianaurelio

    2013-09-07

    Quantum interference (QI) effects in molecular devices have drawn increasing attention over the past years due to their unique features observed in the conductance spectrum. For the further development of single molecular devices exploiting QI effects, it is of great theoretical and practical interest to develop simple methods controlling the emergence and the positions of QI effects like anti-resonances or Fano line shapes in conductance spectra. In this work, starting from a well-known generic molecular junction with a side group (T-shaped molecule), we propose a simple graphical method to visualize the conditions for the appearance of quantum interference, Fano resonances or anti-resonances, in the conductance spectrum. By introducing a simple graphical representation (parabolic diagram), we can easily visualize the relation between the electronic parameters and the positions of normal resonant peaks and anti-resonant peaks induced by quantum interference in the conductance spectrum. This parabolic model not only can predict the emergence and energetic position of quantum interference from a few electronic parameters but also can enable one to know the coupling between the side group and the main conduction channel from measurements in the case of orthogonal basis. The results obtained within the parabolic model are validated using density-functional based quantum transport calculations in realistic T-shaped molecular junctions.

  3. A Constitutive Model for Superelastic Shape Memory Alloys Considering the Influence of Strain Rate

    Directory of Open Access Journals (Sweden)

    Hui Qian

    2013-01-01

    Full Text Available Shape memory alloys (SMAs are a relatively new class of functional materials, exhibiting special thermomechanical behaviors, such as shape memory effect and superelasticity, which enable their applications in seismic engineering as energy dissipation devices. This paper investigates the properties of superelastic NiTi shape memory alloys, emphasizing the influence of strain rate on superelastic behavior under various strain amplitudes by cyclic tensile tests. A novel constitutive equation based on Graesser and Cozzarelli’s model is proposed to describe the strain-rate-dependent hysteretic behavior of superelastic SMAs at different strain levels. A stress variable including the influence of strain rate is introduced into Graesser and Cozzarelli’s model. To verify the effectiveness of the proposed constitutive equation, experiments on superelastic NiTi wires with different strain rates and strain levels are conducted. Numerical simulation results based on the proposed constitutive equation and experimental results are in good agreement. The findings in this paper will assist the future design of superelastic SMA-based energy dissipation devices for seismic protection of structures.

  4. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    Science.gov (United States)

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  5. Model shape and spin direction of the asteroid 2011 UW158

    Science.gov (United States)

    Silva, José; Monteiro, Filipe; Tamayo, Francisco

    2017-10-01

    We determinate the spin direction and convex model shape of the Near Earth Asteroid 2011 UW158 using the lightcurves from the Minor Planet Center database and obtained from the San Pedro Mártir observatory (Ensenada, Baja California, Mexico) and the Observatório Astronômico do Sertão de Itaparica (Itacuruba, Pernambuco, Brazil) by mean of the light-curve inversion technique.The shape model was compared with the radar images obtained from the 230-foot-wide Deep Space Network antenna at Goldstone, California, in concert with the National Radio Astronomy Observatory's 330-foot Green Bank Telescope in July 2015 and with the spin direction published for Carbognani et. al (2016).We found that the spin direction given for Carbognani et al. does not correspond with the visual geometry observed from the radar images. Also, we try to minimize the number of lightcurves that reproduce the shape in a robust way, with the objective of to plan future observations of asteroids better and prioritize time.

  6. Modeling Defects, Shape Evolution, and Programmed Auto-origami in Liquid Crystal Elastomers

    Directory of Open Access Journals (Sweden)

    Andrew eKonya

    2016-06-01

    Full Text Available Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape change trajectory is encoded in the material’s nematic director field. Using three-dimensional nonlinear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce formation of folds and twists, and a bas-relief structure. The inclusion of finite bending energy in the simulation model reveals features of actuation trajectory that may be absent when bending energy is neglected. We examine geometries with a director pattern uniform through the film thickness encoding multiple regions of positive Gaussian curvature. Simulations indicate that heating such a system uniformly produces a disordered state with curved regions emerging randomly in both directions due to the film’s up/down symmetry. By contrast, applying a thermal gradient by heating the material first on one side breaks up/down symmetry and results in a deterministic trajectory producing a more ordered final shape. We demonstrate that a folding zone design containing cut-out areas accommodates transverse displacements without warping or buckling; and demonstrate that bas-relief and more complex bent/twisted structures can be assembled by combining simple design motifs.

  7. Modelling changes in leaf shape prior to phyllode acquisition in Acacia mangium Willd. seedlings.

    Science.gov (United States)

    Leroy, Céline; Heuret, Patrick

    2008-02-01

    The aim of this study was to characterise changes in leaf shape prior to phyllode acquisition along the axes of Acacia mangium seedlings. The study area was located in North Lampung (South Sumatra, Indonesia), where these trees belong to a naturally regenerated stand. A total of 173 seedlings, less than three months old, were described node by node. Leaf shape and leaf length were recorded and the way in which one leaf type succeeded another was modelled using a hidden semi-Markov chain composed of seven states. The phyllotactical pattern was studied using another sample of forty 6-month-old seedlings. The results indicate (i) the existence of successive zones characterised by one or a combination of leaf types, and (ii) that phyllode acquisition seems to be accompanied by a change in the phyllotactical pattern. The concepts of juvenility and heteroblasty, as well as potential applications for taxonomy are discussed.

  8. An experimental investigation of vortex stability, tip shapes, compressibility, and noise for hovering model rotors

    Science.gov (United States)

    Tangler, J. L.; Wohlfeld, R. M.; Miley, S. J.

    1973-01-01

    Schlieren methods of flow visualization and hot-wire anemometry for velocity measurements were used to investigate the wakes generated by hovering model propellers and rotors. The research program was directed toward investigating (1) the stability of the tip vortex, (2) the effects produced by various tip shapes on performance and tip vortex characteristics, and (3) the shock formation and noise characteristics associated with various tip shapes. A free-wake analysis was also conducted for comparison with the vortex stability experimental results. Schlieren photographs showing wake asymmetry, interaction, and instability are presented along with a discussion of the effects produced by the number of blades, collective pitch, and tip speed. Two hot-wire anemometer techniques, used to measure the maximum circumferential velocity in the tip vortex, are discussed.

  9. Group-wise similarity registration of point sets using Student's t-mixture model for statistical shape models.

    Science.gov (United States)

    Ravikumar, Nishant; Gooya, Ali; Çimen, Serkan; Frangi, Alejandro F; Taylor, Zeike A

    2018-02-01

    A probabilistic group-wise similarity registration technique based on Student's t-mixture model (TMM) and a multi-resolution extension of the same (mr-TMM) are proposed in this study, to robustly align shapes and establish valid correspondences, for the purpose of training statistical shape models (SSMs). Shape analysis across large cohorts requires automatic generation of the requisite training sets. Automated segmentation and landmarking of medical images often result in shapes with varying proportions of outliers and consequently require a robust method of alignment and correspondence estimation. Both TMM and mrTMM are validated by comparison with state-of-the-art registration algorithms based on Gaussian mixture models (GMMs), using both synthetic and clinical data. Four clinical data sets are used for validation: (a) 2D femoral heads (K= 1000 samples generated from DXA images of healthy subjects); (b) control-hippocampi (K= 50 samples generated from T1-weighted magnetic resonance (MR) images of healthy subjects); (c) MCI-hippocampi (K= 28 samples generated from MR images of patients diagnosed with mild cognitive impairment); and (d) heart shapes comprising left and right ventricular endocardium and epicardium (K= 30 samples generated from short-axis MR images of: 10 healthy subjects, 10 patients diagnosed with pulmonary hypertension and 10 diagnosed with hypertrophic cardiomyopathy). The proposed methods significantly outperformed the state-of-the-art in terms of registration accuracy in the experiments involving synthetic data, with mrTMM offering significant improvement over TMM. With the clinical data, both methods performed comparably to the state-of-the-art for the hippocampi and heart data sets, which contained few outliers. They outperformed the state-of-the-art for the femur data set, containing large proportions of outliers, in terms of alignment accuracy, and the quality of SSMs trained, quantified in terms of generalization, compactness and

  10. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation

    Science.gov (United States)

    Granzin, Markus; Wagner, Juliane; Köhl, Ulrike; Cerwenka, Adelheid; Huppert, Volker; Ullrich, Evelyn

    2017-01-01

    Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an attractive option to increase NK cells in numbers and to improve their antitumor potential prior to clinical applications. Consequently, various strategies to generate NK cells for adoptive immunotherapy have been developed. Here, we give an overview of different NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture and expand NK cells. The selection of the respective cytokine combination is an important factor that directly affects NK cell maturation, proliferation, survival, distribution of NK cell subpopulations, activation, and function in terms of cytokine production and cytotoxic potential. Importantly, cytokines can upregulate the expression of certain activating receptors on NK cells, thereby increasing their responsiveness against tumor cells that express the corresponding ligands. Apart from using cytokines, cocultivation with autologous accessory non-NK cells or addition of growth-inactivated feeder cells are approaches for NK cell cultivation with pronounced effects on NK cell activation and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells become frequently dysfunctional in cancer patients, for instance, by downregulation of NK cell activating receptors, disabling them in their antitumor response. In such scenario, ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to overcome immunosuppression. In this review, we summarize the current knowledge on NK cell modulation by different ex vivo cultivation strategies focused on increasing NK cytotoxicity for clinical application in malignant

  11. Quantitative gene-gene and gene-environment mapping for leaf shape variation using tree-based models.

    Science.gov (United States)

    Fu, Guifang; Dai, Xiaotian; Symanzik, Jürgen; Bushman, Shaun

    2017-01-01

    Leaf shape traits have long been a focus of many disciplines, but the complex genetic and environmental interactive mechanisms regulating leaf shape variation have not yet been investigated in detail. The question of the respective roles of genes and environment and how they interact to modulate leaf shape is a thorny evolutionary problem, and sophisticated methodology is needed to address it. In this study, we investigated a framework-level approach that inputs shape image photographs and genetic and environmental data, and then outputs the relative importance ranks of all variables after integrating shape feature extraction, dimension reduction, and tree-based statistical models. The power of the proposed framework was confirmed by simulation and a Populus szechuanica var. tibetica data set. This new methodology resulted in the detection of novel shape characteristics, and also confirmed some previous findings. The quantitative modeling of a combination of polygenetic, plastic, epistatic, and gene-environment interactive effects, as investigated in this study, will improve the discernment of quantitative leaf shape characteristics, and the methods are ready to be applied to other leaf morphology data sets. Unlike the majority of approaches in the quantitative leaf shape literature, this framework-level approach is data-driven, without assuming any pre-known shape attributes, landmarks, or model structures. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Building better water models using the shape of the charge distribution of a water molecule

    Science.gov (United States)

    Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2017-11-01

    The unique properties of liquid water apparently arise from more than just the tetrahedral bond angle between the nuclei of a water molecule since simple three-site models of water are poor at mimicking these properties in computer simulations. Four- and five-site models add partial charges on dummy sites and are better at modeling these properties, which suggests that the shape of charge distribution is important. Since a multipole expansion of the electrostatic potential describes a charge distribution in an orthogonal basis set that is exact in the limit of infinite order, multipoles may be an even better way to model the charge distribution. In particular, molecular multipoles up to the octupole centered on the oxygen appear to describe the electrostatic potential from electronic structure calculations better than four- and five-site models, and molecular multipole models give better agreement with the temperature and pressure dependence of many liquid state properties of water while retaining the computational efficiency of three-site models. Here, the influence of the shape of the molecular charge distribution on liquid state properties is examined by correlating multipoles of non-polarizable water models with their liquid state properties in computer simulations. This will aid in the development of accurate water models for classical simulations as well as in determining the accuracy needed in quantum mechanical/molecular mechanical studies and ab initio molecular dynamics simulations of water. More fundamentally, this will lead to a greater understanding of how the charge distribution of a water molecule leads to the unique properties of liquid water. In particular, these studies indicate that p-orbital charge out of the molecular plane is important.

  13. Hysteresis model of shape memory alloy wire-based laminated rubber bearing under compression and unidirectional shear loadings

    Science.gov (United States)

    Hedayati Dezfuli, F.; Shahria Alam, M.

    2015-06-01

    Smart lead rubber bearings (LRBs), in which a shape memory alloy (SMA) is used in the form of wires, are a new generation of elastomeric isolators with improved performance in terms of recentering capability and energy dissipation capacity. It is of great interest to implement SMA wire-based lead rubber bearings (SMA-LRBs) in bridges; however, currently there is no appropriate hysteresis model for accurately simulating the behavior of such isolators. A constitutive model for SMA-LRBs is proposed in this study. An LRB is equipped with a double cross configuration of SMA wires (DC-SMAW) and subjected to compression and unidirectional shear loadings. Due to the complexity of the shear behavior of the SMA-LRB, a hysteresis model is developed for the DC-SMAWs and then combined with the bilinear kinematic hardening model, which is assumed for the LRB. Comparing the hysteretic response of decoupled systems with that of the SMA-LRB shows that the high recentering capability of the DC-SMAW model with zero residual deformation could noticeably reduce the residual deformation of the LRB. The developed constitutive model for DC-SMAWs is characterized by three stiffnesses when the shear strain exceeds a starting limit at which the SMA wires are activated due to phase transformation. An important point is that the shear hysteresis of the DC-SMAW model looks different from the flag-shaped hysteresis of the SMA because of the specific arrangement of wires and its effect on the resultant forces transferred from the wires to the rubber bearing.

  14. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Tomonori Kagawa

    Full Text Available A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS. Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7, extrastriate cortex (BA18, BA19, and striate cortex (BA17 activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7, extrastriate cortex (BA18, 19, and striate cortex (BA17, as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.

  15. Does Shape Discrimination by the Mouth Activate the Parietal and Occipital Lobes? – Near-Infrared Spectroscopy Study

    Science.gov (United States)

    Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke

    2014-01-01

    A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth. PMID:25299397

  16. The contents of predictions in sentence comprehension: activation of the shape of objects before they are referred to

    NARCIS (Netherlands)

    Rommers, J.; Meyer, A.S.; Praamstra, P.; Hüttig, F.

    2013-01-01

    When comprehending concrete words, listeners and readers can activate specific visual information such as the shape of the words' referents. In two experiments we examined whether such information can be activated in an anticipatory fashion. In Experiment 1, listeners' eye movements were tracked

  17. Computational modeling of anodic current distribution and anode shape change in aluminium reduction cells

    Directory of Open Access Journals (Sweden)

    Xu Y.

    2015-01-01

    Full Text Available In aluminium reduction cells, the profile of a new carbon anode changes with time before reaching a steady state shape, since the anode consumption rate, depending on the current density normal to anode surfaces, varies from one region to another. In this paper, a two-dimension model based on Laplace equation and Tafel equation was built up to calculate the secondary current distribution, and the shift of anode shape with time was simulated with arbitrary Lagrangian-Eulerian method. The time it takes to reach the steady shape for the anode increases with the enlargement of the width of the channels between the anodes or between the anode and the sidewall. This time can be shortened by making a sloped bottom or cutting off the lower corners of the new anode. Forming two slots in the bottom surface increases the anodic current density at the underside of the anode, but leads to the enlargement of the current at the side of the anode.

  18. VOF Modeling and Analysis of the Segmented Flow in Y-Shaped Microchannels for Microreactor Systems

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2013-01-01

    Full Text Available Microscaled devices receive great attention in microreactor systems for producing high renewable energy due to higher surface-to-volume, higher transport rates (heat or/and mass transfer rates, and other advantages over conventional-size reactors. In this paper, the two-phase liquid-liquid flow in a microchannel with various Y-shaped junctions has been studied numerically. Two kinds of immiscible liquids were injected into a microchannel from the Y-shaped junctions to generate the segment flow mode. The segment length was studied. The volume of fluid (VOF method was used to track the liquid-liquid interface and the piecewise-liner interface construction (PLIC technique was adopted to get a sharp interface. The interfacial tension was simulated with continuum surface force (CSF model and the wall adhesion boundary condition was taken into consideration. The simulated flow pattern presents consistence with our experimental one. The numerical results show that a segmented flow mode appears in the main channel. Under the same inlet velocities of two liquids, the segment lengths of the two liquids are the same and depend on the inclined angles of two lateral channels. The effect of inlet velocity is studied in a typical T-shaped microchannel. It is found that the ratio between the lengths of two liquids is almost equal to the ratio between their inlet velocities.

  19. COMPARING 3D FOOT SHAPE MODELS BETWEEN TAIWANESE AND JAPANESE FEMALES.

    Science.gov (United States)

    Lee, Yu-Chi; Kouchi, Makiko; Mochimaru, Masaaki; Wang, Mao-Jiun

    2015-06-01

    This study compares foot shape and foot dimensions between Taiwanese and Japanese females. One hundred Taiwanese and 100 Japanese female 3D foot scanning data were used for comparison. To avoid the allometry effect, data from 23 Taiwanese and 19 Japanese with foot length between 233 to 237 mm were used for shape comparison. Homologous models created for the right feet of the 42 subjects were analyzed by Multidimensional Scaling. The results showed that there were significant differences in the forefoot shape between the two groups, and Taiwanese females had slightly wider feet with straighter big toe than Japanese females. The results of body and foot dimension comparison indicated that Taiwanese females were taller, heavier and had larger feet than Japanese females, while Japanese females had significantly larger toe 1 angle. Since some Taiwanese shoemakers adopt the Japanese shoe sizing system for making shoes, appropriateness of the shoe sizing system was also discussed. The present results provide very useful information for improving shoe last design and footwear fit for Taiwanese females.

  20. Comparison of Different Turbulence Models for Numerical Simulation of Pressure Distribution in V-Shaped Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Zhaoliang Bai

    2017-01-01

    Full Text Available V-shaped stepped spillway is a new shaped stepped spillway, and the pressure distribution is quite different from that of the traditional stepped spillway. In this paper, five turbulence models were used to simulate the pressure distribution in the skimming flow regimes. Through comparing with the physical value, the realizable k-ε model had better precision in simulating the pressure distribution. Then, the flow pattern of V-shaped and traditional stepped spillways was given to illustrate the unique pressure distribution using realizable k-ε turbulence model.

  1. Free convection in parallelogram-shaped enclosures with isothermal active walls: viscous shear stress in active systems

    Energy Technology Data Exchange (ETDEWEB)

    Baieri, A; Zarco-Pernia, E; Laraqi, N [Laboratoire de Thermique Interfaces Environnement, LTIE-GTE EA 4415, Universite Paris Ouest, 50 Rue de Sevres, F-92410 Ville d' Avray (France); Garcia de Maria, J-M, E-mail: abairi@u-paris10.fr, E-mail: e.zarcopernia@yahoo.fr, E-mail: nlaraqi@u-paris10.fr, E-mail: juanmario.garcia@upm.es [Departamento de Fisica Aplicada, Universidad Politecnica de Madrid, Ronda de Valencia 3, E-28012 Madrid (Spain)

    2012-10-01

    Thermocouples are often used for thermoregulation of active thermal systems. When the junctions of these sensors are under a natural convection flow, it is necessary to take into account the viscous stress that can affect the measurement of temperature and therefore the regulation set points. The main objective of this work is to study the viscous shear stress taking place close to the active hot wall in closed air-filled cavities of parallelogrammic shape. The influence of shear stress is examined for different inclination angles of the cavity and large Rayleigh numbers which are usual in thermal applications. The local stress distributions are presented for the steady state for all the geometric configurations considered. The Nusselt number at the hot wall as well as the temperature and stream function distributions in the cavities are also included. The findings obtained from the numerical simulation using the finite volume method are validated by thermal measurements on an experimental cavity. This study confirms the need to properly choose the location of thermocouples in the reference cell used for controlling the active system. (paper)

  2. Particle size-shape distributions: the general spheroid problem. I. Mathematical model.

    Science.gov (United States)

    Orive, L M

    1976-08-01

    The development of stereological methods for the study of dilute phases of particles, voids or organelles embedded in a matrix, from measurements made on plane or linear intercepts through the aggregate, has deserved a great deal of effort. With almost no exception, the problem of describing the particulate phase is reduced to that of identifying the statistical distribution--histogram in practice--of a relevant size parameter, with the previous assumption that the particles are modelled by geometrical objects of a constant shape (e.g. spheres). Therefore, particles exhibiting a random variation about a given type of shape as well as a random variation in size, escape previous analyses. Such is the case of unequiaxed particles modelled by triaxial ellipsoids of variable size and eccentricity parameters. It has been conjectured (Moran, 1972) that this problem is indetermined in its generally (i.e. the elliptical sections do not furnish a sufficient information which permits a complete description of the ellipsoids). A proof of this conjecture is given in the Appendix. When the ellipsoids are biaxial (spheroids) and of the same type (prolate or oblate), the problem is identifiable. Previous attempts to solve it assume statistical independence between size and shape. A complete, theoretical solution of the spheroids problem--with the independence condition relaxed--is presented. A number of exact relationships--some of them of a striking simplicity--linking particle properties (e.g. mean-mean caliper length, mean axial ratio, correlation coefficient between principal diameters, etc.) on the one hand, with the major and minor dimensions of the ellipses of section on the other, emerge, and natural, consistent estimators of the mentioned properties are made easily accessible for practical computation. Finally, the scope and limitations of the mathematical model are discussed.

  3. Response of a Shape Memory Alloy Beam Model under Narrow Band Noise Excitation

    Directory of Open Access Journals (Sweden)

    Gen Ge

    2014-01-01

    Full Text Available To describe the hysteretic nonlinear characteristic of the strain-stress relation of shape memory alloy (SMA, a Van-der-Pol hysteretic cycle is applied to simulate the hysteretic loops. Then, the model of a simply supported SMA beam subject to transverse narrow band noise excitation with nonlinear damping was proposed. The deterministic and the stochastic responses are studied, respectively, applying the multiple scale method. The stability of the steady state responses is analyzed by Floquet theory and the moment method. The numerical simulation results quite agree with the theoretical analysis.

  4. Spin dependence of even-even nucleus shape in the model of Davydov-Chaban

    CERN Document Server

    Kashuba, I E

    2002-01-01

    The shape parameters of the even-even nuclei sup 1 sup 5 sup 4 Gd, sup 1 sup 5 sup 6 sup , sup 1 sup 5 sup 8 sup , sup 1 sup 6 sup 0 Dy, sup 1 sup 6 sup 4 sup , sup 1 sup 6 sup 8 Er, sup 1 sup 6 sup 8 Yb, sup 1 sup 7 sup 6 Hf, sup 1 sup 8 sup 0 W are calculated within the phenomenological model of the nonaxial soft by beta-oscillation deformed nucleus. The spin dependence of the softness, nonaxiality and energy factor is assumed

  5. REPEATED PHOTOGRAMMETRIC MEASUREMENTS AT SHAPING GEOTECHNICAL MODELS OF MULTI-LAYER LANDSLIDES

    Directory of Open Access Journals (Sweden)

    Želimir Ortolan

    1992-12-01

    Full Text Available Repeated photogrammetric measurements are a valuable source of »conserved« information during final shaping of geotechnical models of complex multi-layer landslides. Photogrammetric measurements of a sequence of detailed unchanged points enable establishing the clear limit between the moved and stable parts of the terrain. The paper provides a number of practical and theoretical findings resulting from an adequate interpretation of photogrammetric measurements made on a thoroughly analyzed landslide where a three-level slide was observed. The results obtained indicate that the method used in this paper should be adopted as a standard procedure.

  6. The contents of predictions in sentence comprehension: activation of the shape of objects before they are referred to.

    Science.gov (United States)

    Rommers, Joost; Meyer, Antje S; Praamstra, Peter; Huettig, Falk

    2013-02-01

    When comprehending concrete words, listeners and readers can activate specific visual information such as the shape of the words' referents. In two experiments we examined whether such information can be activated in an anticipatory fashion. In Experiment 1, listeners' eye movements were tracked while they were listening to sentences that were predictive of a specific critical word (e.g., "moon" in "In 1969 Neil Armstrong was the first man to set foot on the moon"). 500 ms before the acoustic onset of the critical word, participants were shown four-object displays featuring three unrelated distractor objects and a critical object, which was either the target object (e.g., moon), an object with a similar shape (e.g., tomato), or an unrelated control object (e.g., rice). In a time window before shape information from the spoken target word could be retrieved, participants already tended to fixate both the target and the shape competitors more often than they fixated the control objects, indicating that they had anticipatorily activated the shape of the upcoming word's referent. This was confirmed in Experiment 2, which was an ERP experiment without picture displays. Participants listened to the same lead-in sentences as in Experiment 1. The sentence-final words corresponded to the predictable target, the shape competitor, or the unrelated control object (yielding, for instance, "In 1969 Neil Armstrong was the first man to set foot on the moon/tomato/rice"). N400 amplitude in response to the final words was significantly attenuated in the shape-related compared to the unrelated condition. Taken together, these results suggest that listeners can activate perceptual attributes of objects before they are referred to in an utterance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A Thrombus Generation Model Applied to Aneurysms Treated with Shape Memory Polymer Foam and Metal Coils

    Science.gov (United States)

    Horn, John; Ortega, Jason; Hartman, Jonathan; Maitland, Duncan

    2015-11-01

    To prevent their rupture, intracranial aneurysms are often treated with endovascular metal coils which fill the aneurysm sac and isolate it from the arterial flow. Despite its widespread use, this method can result in suboptimal outcomes leading to aneurysm recurrence. Recently, shape memory polymer foam has been proposed as an alternative aneurysm filler. In this work, a computational model has been developed to predict thrombus formation in blood in response to such cardiovascular implantable devices. The model couples biofluid and biochemical phenomena present as the blood interacts with a device and stimulates thrombus formation. This model is applied to simulations of both metal coil and shape memory polymer foam treatments within an idealized 2D aneurysm geometry. Using the predicted thrombus responses, the performance of these treatments is evaluated and compared. The results suggest that foam-treated aneurysms may fill more quickly and more completely with thrombus than coil-filled aneurysms, potentially leading to improved long-term aneurysm healing. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Functional data analytic approach of modeling ECG T-wave shape to measure cardiovascular behavior

    CERN Document Server

    Zhou, Yingchun; 10.1214/09-AOAS273

    2010-01-01

    The T-wave of an electrocardiogram (ECG) represents the ventricular repolarization that is critical in restoration of the heart muscle to a pre-contractile state prior to the next beat. Alterations in the T-wave reflect various cardiac conditions; and links between abnormal (prolonged) ventricular repolarization and malignant arrhythmias have been documented. Cardiac safety testing prior to approval of any new drug currently relies on two points of the ECG waveform: onset of the Q-wave and termination of the T-wave; and only a few beats are measured. Using functional data analysis, a statistical approach extracts a common shape for each subject (reference curve) from a sequence of beats, and then models the deviation of each curve in the sequence from that reference curve as a four-dimensional vector. The representation can be used to distinguish differences between beats or to model shape changes in a subject's T-wave over time. This model provides physically interpretable parameters characterizing T-wave sh...

  9. A chest-shape target automatic detection method based on Deformable Part Models

    Science.gov (United States)

    Zhang, Mo; Jin, Weiqi; Li, Li

    2016-10-01

    Automatic weapon platform is one of the important research directions at domestic and overseas, it needs to accomplish fast searching for the object to be shot under complex background. Therefore, fast detection for given target is the foundation of further task. Considering that chest-shape target is common target of shoot practice, this paper treats chestshape target as the target and studies target automatic detection method based on Deformable Part Models. The algorithm computes Histograms of Oriented Gradient(HOG) features of the target and trains a model using Latent variable Support Vector Machine(SVM); In this model, target image is divided into several parts then we can obtain foot filter and part filters; Finally, the algorithm detects the target at the HOG features pyramid with method of sliding window. The running time of extracting HOG pyramid with lookup table can be shorten by 36%. The result indicates that this algorithm can detect the chest-shape target in natural environments indoors or outdoors. The true positive rate of detection reaches 76% with many hard samples, and the false positive rate approaches 0. Running on a PC (Intel(R)Core(TM) i5-4200H CPU) with C++ language, the detection time of images with the resolution of 640 × 480 is 2.093s. According to TI company run library about image pyramid and convolution for DM642 and other hardware, our detection algorithm is expected to be implemented on hardware platform, and it has application prospect in actual system.

  10. Detection performance and risk stratification using a model-based shape index characterizing heart rate turbulence.

    Science.gov (United States)

    Martínez, Juan Pablo; Cygankiewicz, Iwona; Smith, Danny; Bayés de Luna, Antonio; Laguna, Pablo; Sörnmo, Leif

    2010-10-01

    A detection-theoretic approach to quantify heart rate turbulence (HRT) following a ventricular premature beat is proposed and validated using an extended integral pulse frequency modulation (IPFM) model which accounts for HRT. The modulating signal of the extended IPFM model is projected into a three-dimensional subspace spanned by the Karhunen-Loève basis functions, characterizing HRT shape. The presence or absence of HRT is decided by means of a likelihood ratio test, the Neyman-Pearson detector, resulting in a quadratic detection statistic. Using a labeled dataset built from different interbeat interval series, detection performance is assessed and found to outperform the two widely used indices: turbulence onset (TO) and turbulence slope (TS). The ability of the proposed method to predict the risk of cardiac death is evaluated in a population of patients (n = 90) with ischemic cardiomyopathy and mild-to-moderate congestive heart failure. While both TS and the novel HRT index differ significantly in survivors and cardiac death patients, mortality analysis shows that the latter index exhibits much stronger association with risk of cardiac death (hazard ratio = 2.8, CI = 1.32-5.97, p = 0.008). It is also shown that the model-based shape indices, but not TO and TS, remain predictive of cardiac death in our population when computed from 4-h instead of 24-h ambulatory ECGs.

  11. A Multi-layered Model for the Shape, Zonal Winds and Gravitational Field of Jupiter

    Science.gov (United States)

    Schubert, G.; Zhang, K.; Kong, D.

    2016-12-01

    We have developed a three-dimensional, finite-element, multi-layered, non-spheroidal model of Jupiter consisting of an inner core, a metallic dynamo region and an outer molecular electrically insulating envelope. Different polytropic equations of state are used in the metallic and molecular regions. The zonal winds are on cylinders parallel to the rotation axis and are confined within the molecular envelope by magnetic braking. The effect of rotational distortion is fully accounted for; it is not treated as simply a small perturbation on a spherically symmetric state. The model determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter. It produces the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 with an accuracy of a few percent. The variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted Jupiter is also determined. Different cases, ranging from a deep wind profile to a very shallow profile, are considered. The model enables accurate interpretation of the zonal gravitational coefficients expected from the Juno mission.

  12. Explicit Nonlinear Model Predictive Control for a Saucer-Shaped Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Zhihui Xing

    2013-01-01

    Full Text Available A lifting body unmanned aerial vehicle (UAV generates lift by its body and shows many significant advantages due to the particular shape, such as huge loading space, small wetted area, high-strength fuselage structure, and large lifting area. However, designing the control law for a lifting body UAV is quite challenging because it has strong nonlinearity and coupling, and usually lacks it rudders. In this paper, an explicit nonlinear model predictive control (ENMPC strategy is employed to design a control law for a saucer-shaped UAV which can be adequately modeled with a rigid 6-degrees-of-freedom (DOF representation. In the ENMPC, control signal is calculated by approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order. It enhances the advantages of the nonlinear model predictive control and eliminates the time-consuming online optimization. The simulation results show that ENMPC is a propriety strategy for controlling lifting body UAVs and can compensate the insufficient control surface area.

  13. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling

    Science.gov (United States)

    Hu, G. F.; Damanpack, A. R.; Bodaghi, M.; Liao, W. H.

    2017-12-01

    The main objective of this paper is to introduce a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling (FDM) as a filament-based printing method is employed to program SMPs during depositing the material. This method is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 3D printed plate structures can transform into masonry-inspired 3D curved shell structures by simply heating. Good reliability of SMP programming during printing process is also demonstrated. A 3D macroscopic constitutive model is established to simulate thermo-mechanical features of the printed SMPs. Governing equations are also derived to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric nonlinearity and solved by implementing iterative Newton–Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is demonstrated that the theoretical model is able to replicate the main characteristics observed in the experiments. This research is likely to advance the state of the art FDM 4D printing, and provide pertinent results and computational tool that are instrumental in design of smart materials and structures with self-bending features.

  14. New and updated convex shape models of asteroids based on optical data from a large collaboration network

    Science.gov (United States)

    Hanuš, J.; Ďurech, J.; Oszkiewicz, D. A.; Behrend, R.; Carry, B.; Delbo, M.; Adam, O.; Afonina, V.; Anquetin, R.; Antonini, P.; Arnold, L.; Audejean, M.; Aurard, P.; Bachschmidt, M.; Baduel, B.; Barbotin, E.; Barroy, P.; Baudouin, P.; Berard, L.; Berger, N.; Bernasconi, L.; Bosch, J.-G.; Bouley, S.; Bozhinova, I.; Brinsfield, J.; Brunetto, L.; Canaud, G.; Caron, J.; Carrier, F.; Casalnuovo, G.; Casulli, S.; Cerda, M.; Chalamet, L.; Charbonnel, S.; Chinaglia, B.; Cikota, A.; Colas, F.; Coliac, J.-F.; Collet, A.; Coloma, J.; Conjat, M.; Conseil, E.; Costa, R.; Crippa, R.; Cristofanelli, M.; Damerdji, Y.; Debackère, A.; Decock, A.; Déhais, Q.; Déléage, T.; Delmelle, S.; Demeautis, C.; Dróżdż, M.; Dubos, G.; Dulcamara, T.; Dumont, M.; Durkee, R.; Dymock, R.; Escalante del Valle, A.; Esseiva, N.; Esseiva, R.; Esteban, M.; Fauchez, T.; Fauerbach, M.; Fauvaud, M.; Fauvaud, S.; Forné, E.; Fournel, C.; Fradet, D.; Garlitz, J.; Gerteis, O.; Gillier, C.; Gillon, M.; Giraud, R.; Godard, J.-P.; Goncalves, R.; Hamanowa, Hiroko; Hamanowa, Hiromi; Hay, K.; Hellmich, S.; Heterier, S.; Higgins, D.; Hirsch, R.; Hodosan, G.; Hren, M.; Hygate, A.; Innocent, N.; Jacquinot, H.; Jawahar, S.; Jehin, E.; Jerosimic, L.; Klotz, A.; Koff, W.; Korlevic, P.; Kosturkiewicz, E.; Krafft, P.; Krugly, Y.; Kugel, F.; Labrevoir, O.; Lecacheux, J.; Lehký, M.; Leroy, A.; Lesquerbault, B.; Lopez-Gonzales, M. J.; Lutz, M.; Mallecot, B.; Manfroid, J.; Manzini, F.; Marciniak, A.; Martin, A.; Modave, B.; Montaigut, R.; Montier, J.; Morelle, E.; Morton, B.; Mottola, S.; Naves, R.; Nomen, J.; Oey, J.; Ogłoza, W.; Paiella, M.; Pallares, H.; Peyrot, A.; Pilcher, F.; Pirenne, J.-F.; Piron, P.; Polińska, M.; Polotto, M.; Poncy, R.; Previt, J. P.; Reignier, F.; Renauld, D.; Ricci, D.; Richard, F.; Rinner, C.; Risoldi, V.; Robilliard, D.; Romeuf, D.; Rousseau, G.; Roy, R.; Ruthroff, J.; Salom, P. A.; Salvador, L.; Sanchez, S.; Santana-Ros, T.; Scholz, A.; Séné, G.; Skiff, B.; Sobkowiak, K.; Sogorb, P.; Soldán, F.; Spiridakis, A.; Splanska, E.; Sposetti, S.; Starkey, D.; Stephens, R.; Stiepen, A.; Stoss, R.; Strajnic, J.; Teng, J.-P.; Tumolo, G.; Vagnozzi, A.; Vanoutryve, B.; Vugnon, J. M.; Warner, B. D.; Waucomont, M.; Wertz, O.; Winiarski, M.; Wolf, M.

    2016-02-01

    Context. Asteroid modeling efforts in the last decade resulted in a comprehensive dataset of almost 400 convex shape models and their rotation states. These efforts already provided deep insight into physical properties of main-belt asteroids or large collisional families. Going into finer detail (e.g., smaller collisional families, asteroids with sizes ≲20 km) requires knowledge of physical parameters of more objects. Aims: We aim to increase the number of asteroid shape models and rotation states. Such results provide important input for further studies, such as analysis of asteroid physical properties in different populations, including smaller collisional families, thermophysical modeling, and scaling shape models by disk-resolved images, or stellar occultation data. This provides bulk density estimates in combination with known masses, but also constrains theoretical collisional and evolutional models of the solar system. Methods: We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. The key ingredient is the support of more that 100 observers who submit their optical data to publicly available databases. Results: We present updated shape models for 36 asteroids, for which mass estimates are currently available in the literature, or for which masses will most likely be determined from their gravitational influence on smaller bodies whose orbital deflections will be observed by the ESA Gaia astrometric mission. Moreover, we also present new shape model determinations for 250 asteroids, including 13 Hungarias and three near-Earth asteroids. The shape model revisions and determinations were enabled by using additional optical

  15. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    Directory of Open Access Journals (Sweden)

    François eThomas

    2014-06-01

    Full Text Available Salt marshes are highly productive ecosystems hosting an intense sulfur (S cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB. Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

  16. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments.

    Science.gov (United States)

    Thomas, François; Giblin, Anne E; Cardon, Zoe G; Sievert, Stefan M

    2014-01-01

    Salt marshes are highly productive ecosystems hosting an intense sulfur (S) cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB). Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT)-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

  17. Changes in diet and physical activity resulting from the Shape Up Somerville community intervention.

    Science.gov (United States)

    Folta, Sara C; Kuder, Julia F; Goldberg, Jeanne P; Hyatt, Raymond R; Must, Aviva; Naumova, Elena N; Nelson, Miriam E; Economos, Christina D

    2013-10-04

    The purpose of this study is to describe the behavioral changes in children resulting from Shape Up Somerville (SUS), a community-based, participatory obesity prevention intervention that used a multi-level, systems-based approach. It was set in Somerville, an urban, culturally diverse community in Massachusetts, USA. This was a non-randomized, controlled 2-year community-based intervention trial with children enrolled in grades 1 to 3 (ages 6-8 years). Overall, the SUS intervention was designed to create environmental and policy change to impact all aspects of a child's day. Pre-post outcomes were compared between Somerville and two control communities that were chosen based on socio-demographic similarities. Behavioral outcomes were fruit and vegetable and sugar-sweetened beverage consumption; number of organized sports and physical activities per year; walking to and from school; screen and television time; television in bedroom; and dinner in room with television on. These measures were assessed by parent/caregiver report using a 68-item Family Survey Form. Data were analyzed using multiple linear regression, accounting for covariates and clustering by community. Intervention group children, compared to the control group, significantly reduced sugar-sweetened beverage consumption (-2.0 ounces per day; 95% CI -3.8 to -0.2), increased participation in organized sports and physical activities (0.20 sports or activities per year; 95% CI 0.06 to 0.33), and reduced their screen time (-0.24 hours per day; 95% CI -0.42 to -0.06). Results of this study, particularly intake of sugar-sweetened beverages and screen time, are similar to others that used a multi-level approach to realize change in behavior. These results support the efficacy of a multi-level and systems-based approach for promoting the behavioral changes necessary for childhood obesity prevention. This study is registered at ClinicalTrials.gov as NCT00153322.

  18. Soft landing on an irregular shape asteroid using Multiple-Horizon Multiple-Model Predictive Control

    Science.gov (United States)

    AlandiHallaj, MohammadAmin; Assadian, Nima

    2017-11-01

    This study has introduced a predictive framework including a heuristic guidance law named Predictive Path Planning and Multiple-Horizon Multiple-Model Predictive Control as the control scheme for soft landing on an irregular-shaped asteroid. The dynamical model of spacecraft trajectory around an asteroid is introduced. The reference-landing trajectory is generated using Predictive Path Planning. Not only does the presented guidance law satisfy the collision avoidance constraint, but also guarantees the landing accuracy and vertical landing condition. Multiple-Horizon Multiple-Model Predictive Control is employed to make the spacecraft track the designed reference trajectory. The proposed control approach, which is a Model Predictive Control scheme, utilizes several prediction models instead of one. In this manner, it heritages the advantages of optimality and tackling external disturbances and model uncertainties from classical Model Predictive Control and at the same time has the advantage of lower computational burden than Model Predictive Control. Finally, numerical simulations are carried out to demonstrate the feasibility and effectiveness of the proposed control approach in achieving the desired conditions in presence of uncertainties and disturbances.

  19. Shape models of asteroids reconstructed from WISE data and sparse photometry

    Science.gov (United States)

    Durech, Josef; Hanus, Josef; Ali-Lagoa, Victor

    2017-10-01

    By combining sparse-in-time photometry from the Lowell Observatory photometry database with WISE observations, we reconstructed convex shape models for about 700 new asteroids and for other ~850 we derived 'partial' models with unconstrained ecliptic longitude of the spin axis direction. In our approach, the WISE data were treated as reflected light, which enabled us to directly join them with sparse photometry into one dataset that was processed by the lightcurve inversion method. This simplified treatment of thermal infrared data turned out to provide correct results, because in most cases the phase offset between optical and thermal lightcurves was small and the correct sidereal rotation period was determined. The spin and shape parameters derived from only optical data and from a combination of optical and WISE data were very similar. The new models together with those already available in the Database of Asteroid Models from Inversion Techniques (DAMIT) represent a sample of ~1650 asteroids. When including also partial models, the total sample is about 2500 asteroids, which significantly increases the number of models with respect to those that have been available so far. We will show the distribution of spin axes for different size groups and also for several collisional families. These observed distributions in general agree with theoretical expectations proving that smaller asteroids are more affected by YORP/Yarkovsky evolution. In asteroid families, we see a clear bimodal distribution of prograde/retrograde rotation that correlates with the position to the right/left from the center of the family measured by the semimajor axis.

  20. Formic acid electrooxidation on thallium-decorated shape-controlled platinum nanoparticles: an improvement in electrocatalytic activity

    OpenAIRE

    Busó-Rogero, Carlos; Perales-Rondón, Juan V.; Farias, Manuel J.S.; Vidal-Iglesias, Francisco J.; Solla-Gullón, José; Herrero, Enrique; Feliu, Juan M.

    2014-01-01

    Thallium modified shape-controlled Pt nanoparticles were prepared and their electrocatalytic activity towards formic acid electrooxidation was evaluated in 0.5 M sulfuric acid. The electrochemical and in situ FTIR spectroscopic results show a remarkable improvement in the electrocatalytic activity, especially in the low potential region (around 0.1–0.2 V vs. RHE). Cubic Pt nanoparticles modified with Tl were found to be more active than the octahedral Pt ones in the entire range of Tl coverag...

  1. Modeling shape effects in nano magnetic materials with Web based micromagnetics

    Science.gov (United States)

    Zhao, Zhidong

    This research work focuses on the geometry and shape effects on submicron magnetic material. A web based micromagnetics program is written to model the hysteresis loop of nano magnetic samples with arbitrary geometry shapes and multiple magnetic materials. Three material samples have been modeled with this program along with nano magnets with a variety of geometric shapes. Shape anisotropy has been introduced to a permalloy ring by adding a cross-tie structure with various widths. The in-plane hysteresis loop and reversal behavior have no notable difference in direction parallel to the cross-tie, but greatly changed in perpendicular and diagonal directions. The switching field distribution is significantly reduced. The two distinct "onion" bit states of the modified ring elements are stabilized in the hysteresis in the diagonal direction The changes in the modified rings make them better candidates for Magnetic Random Access Memory elements. Two Pac-Man elements, PM I and PM II, geometrically modified from disc and half disc respectively, are modeled. The PM I element undergoes a magnetic reversal through a two-stage mechanism that involves nucleation in the left and right middle areas followed by vortex core formation and vortex core motion in the lower middle area. The reversal process of the PM II element lacks the vortex core formation and motion stage. The switching field of the PM I and PM II elements are the same but the switching field distribution of the PM II elements is much narrower than that of the PM I element. Only the PM II element meets MRAM application requirements. The thickness dependence of the magnetic properties of a core-shell structure has been studied. The nano particles have a cobalt core and a permalloy shell. The nano spheres are the same size but with various shell thickness. Simulations reveal a multi-stage reversal process without the formation of a Bloch wall for thin shell structure and smooth reversal process with the formation

  2. Role of input correlations in shaping the variability and noise correlations of evoked activity in the neocortex.

    Science.gov (United States)

    Bujan, Alejandro F; Aertsen, Ad; Kumar, Arvind

    2015-06-03

    Recent analysis of evoked activity recorded across different brain regions and tasks revealed a marked decrease in noise correlations and trial-by-trial variability. Given the importance of correlations and variability for information processing within the rate coding paradigm, several mechanisms have been proposed to explain the reduction in these quantities despite an increase in firing rates. These models suggest that anatomical clusters and/or tightly balanced excitation-inhibition can generate intrinsic network dynamics that may exhibit a reduction in noise correlations and trial-by-trial variability when perturbed by an external input. Such mechanisms based on the recurrent feedback crucially ignore the contribution of feedforward input to the statistics of the evoked activity. Therefore, we investigated how statistical properties of the feedforward input shape the statistics of the evoked activity. Specifically, we focused on the effect of input correlation structure on the noise correlations and trial-by-trial variability. We show that the ability of neurons to transfer the input firing rate, correlation, and variability to the output depends on the correlations within the presynaptic pool of a neuron, and that an input with even weak within-correlations can be sufficient to reduce noise correlations and trial-by-trial variability, without requiring any specific recurrent connectivity structure. In general, depending on the ongoing activity state, feedforward input could either increase or decrease noise correlation and trial-by-trial variability. Thus, we propose that evoked activity statistics are jointly determined by the feedforward and feedback inputs. Copyright © 2015 the authors 0270-6474/15/358611-15$15.00/0.

  3. Pressure Pulsation Characteristics of a Model Pump-turbine Operating in the S-shaped Region: CFD Simulations

    National Research Council Canada - National Science Library

    Xia, Linsheng; Cheng, Yongguang; Cai, Fang

    2017-01-01

    ... vibration with an increased risk of mechanical failure. CFD simulations were carried out to analyze the impacts of flow evolution on the pressure pulsations in the S-shaped region of a model pump-turbine...

  4. Automated segmentation of psoas major muscle in X-ray CT images by use of a shape model: preliminary study.

    Science.gov (United States)

    Kamiya, Naoki; Zhou, Xiangrong; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2012-01-01

    Our motivation was to provide an automatic tool for radiologists and orthopedic surgeons for improving the quality of life of an aging population. We propose a method for generating a shape model and a fully automated segmenting scheme for the psoas major muscle in X-ray CT images by using the shape model. Our approach consists of two steps: (1) The generation of a shape model and its application to muscle segmentation. The shape model describes the muscle's outer shape and has two parameters, an outer shape parameter and a fitting parameter. The former was determined by approximating of the outer shape of the muscle region in training cases. The latter was determined for each test case in the recognition process. (2) Finally, the psoas major muscle was segmented by use of the shape model. To evaluate the performance of the method, we applied it to CT images for constructing the shape models by using 20 cases as training samples; 80 cases were used for testing. The accuracy of this method was measured by comparison of the extracted muscle regions with regions that were identified manually by an expert radiologist. The experimental results of the segmentation of the psoas major muscle gave a mean Jaccard similarity coefficient of 72.3%. The mean true segmentation coefficient was 76.2%. The proposed method can be used for the analysis of cross-sectional area and muscular thickness in a transverse section, offering radiologists an alternative to manual measurement for saving their time and improving the reproducibility of segmentation.

  5. Classification of bones from MR images in torso PET-MR imaging using a statistical shape model

    Energy Technology Data Exchange (ETDEWEB)

    Reza Ay, Mohammad, E-mail: mohammadreza_ay@tums.ac.ir [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Akbarzadeh, Afshin [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ahmadian, Alireza [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Biomedical Technology and Robotics, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, CH-1211 Geneva (Switzerland); Geneva Neuroscience Center, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen (Netherlands)

    2014-01-11

    of 20 clinical studies was designed. Using this training set, a bone atlas was trained taking advantage of PCA analysis. Our active shape segmentation technique uses the trained shape model to segment bones from user defined initial seed points. The segmentation algorithm was evaluated using 10 clinical datasets (aligned MR and CT pairs). The resulting attenuation maps were compared to corresponding attenuation maps derived from CT resulting in a mean relative difference less than 7%.

  6. Nanobiomimetic Active Shape Control - Fluidic and Swarm-Intelligence Embodiments for Planetary Exploration

    Science.gov (United States)

    Santoli, S.

    The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.

  7. Design of an actively controlled steerable needle with tendon actuation and FBG-based shape sensing.

    Science.gov (United States)

    van de Berg, Nick J; Dankelman, Jenny; van den Dobbelsteen, John J

    2015-06-01

    This work presents a new steerable needle to facilitate active steering toward predefined target locations. It focuses on mechanical aspects and design choices in relation to the observed response in a tissue phantom. Tip steering with two rotational degrees of freedom was achieved by a tendon actuated ball joint mechanism. During insertion, the flexible cannula bends as a result of asymmetric tip-tissue interaction forces. The stylet was equipped with fiber Bragg gratings to measure the needle shape and tip position during use. A PI-controller was implemented to facilitate steering to predefined targets. During the validation study, nine targets were defined at a depth of 100 mm below the gelatin surface. One was located below the insertion point, the others at a radial offset of 30 mm in each of the eight principle steering directions. Per location, six repetitions were performed. The targeting accuracy was 6.2 ± 1.4 mm (mean ± std). The steering precision was 2.6 ± 1.1 mm. The ability to steer with this new needle steering approach is presented and the mechanical characteristics are discussed for this representative subset of steering directions. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Community environments shaping transactional sex among sexually active men in Malawi, Nigeria, and Tanzania.

    Science.gov (United States)

    Stephenson, Rob; Winter, Amy; Elfstrom, Miriam

    2013-01-01

    Transactional sex, or the exchange of sex for material goods or money, is a risky sexual behavior that has been linked to HIV/AIDS and gender-based violence. Throughout sub-Saharan Africa, transactional sex remains a common practice, putting men and women at risk of HIV. However, little is known of how community environments shape men's participation in risky transactional sex. This analysis examines community-level influences on participation in risky transactional sex among sexually active men in three African countries (Malawi, Tanzania, and Nigeria). The analysis uses Demographic and Health Survey (DHS) data to examine the association between men's report of risky transactional sex and community characteristics including economic, gender norms, HIV behavior and knowledge, and demographic factors. The results show that men residing in communities with more female education and later age of first birth are less likely to report risky transactional sex, while men who live in communities where men report higher number of sexual partners are more likely to report risky transactional sex. While programmatic interventions should continue to improve women's status individually and relative to men, such efforts should be extended to recognize that many community and cultural influences also affect men's sexual behavior. Programs that understand, discuss, and challenge community factors that influence men's sexual behavior may be able to provide a more effective intervention resulting in opportunities for communities to initiate behavioral change.

  9. An Approach to 3d Digital Modeling of Surfaces with Poor Texture by Range Imaging Techniques. `SHAPE from Stereo' VS. `SHAPE from Silhouette' in Digitizing Jorge Oteiza's Sculptures

    Science.gov (United States)

    García Fernández, J.; Álvaro Tordesillas, A.; Barba, S.

    2015-02-01

    Despite eminent development of digital range imaging techniques, difficulties persist in the virtualization of objects with poor radiometric information, in other words, objects consisting of homogeneous colours (totally white, black, etc.), repetitive patterns, translucence, or materials with specular reflection. This is the case for much of the Jorge Oteiza's works, particularly in the sculpture collection of the Museo Fundación Jorge Oteiza (Navarra, Spain). The present study intend to analyse and asses the performance of two digital 3D-modeling methods based on imaging techniques, facing cultural heritage in singular cases, determined by radiometric characteristics as mentioned: Shape from Silhouette and Shape from Stereo. On the other hand, the text proposes the definition of a documentation workflow and presents the results of its application in the collection of sculptures created by Oteiza.

  10. The Earth's Shape and Movements: Teachers' Perception of the Relations Between Daily Observation and Scientific Models

    Science.gov (United States)

    Ferreira, Flávia Polati; Leite, Cristina

    2015-07-01

    The Earth’s shape and movements are some of the most common issues in official documents and research studies of astronomy education. Many didactic proposals suggest these issues within observational astronomy. Therefore, we present in this paper some of the main results of a research study of the teachers’ perception of the relations between the knowledge from daily observation and scientific models currently accepted about the “earth’s shape and movements”. Data were obtained in application of the didactic proposal during a teacher training course for teachers from São Paulo, have been constructed with the dynamics “Three Pedagogical Moments” and guided by some of the central ideas of the educator Paulo Freire. The results indicate that a small proportion of teachers seem to understand some of the relations of “apparent contradictions” and “limitations” with the concepts of spatiality, and many of them argued based only on vague phrases or "buzzwords", unconnected to the problem explored. The difficulties of teachers to relate elements of daily observation with scientific models seem to indicate a necessity to approach some these aspects with the astronomical knowledge in the teacher training courses.

  11. Kinetics modeling of precipitation with characteristic shape during post-implantation annealing

    Directory of Open Access Journals (Sweden)

    Kun-Dar Li

    2015-11-01

    Full Text Available In this study, we investigated the precipitation with characteristic shape in the microstructure during post-implantation annealing via a theoretical modeling approach. The processes of precipitates formation and evolution during phase separation were based on a nucleation and growth mechanism of atomic diffusion. Different stages of the precipitation, including the nucleation, growth and coalescence, were distinctly revealed in the numerical simulations. In addition, the influences of ion dose, temperature and crystallographic symmetry on the processes of faceted precipitation were also demonstrated. To comprehend the kinetic mechanism, the simulation results were further analyzed quantitatively by the Kolmogorov-Johnson-Mehl-Avrami (KJMA equation. The Avrami exponents obtained from the regression curves varied from 1.47 to 0.52 for different conditions. With the increase of ion dose and temperature, the nucleation and growth of precipitations were expedited in accordance with the shortened incubation time and the raised coefficient of growth rate. A miscellaneous shape of precipitates in various crystallographic symmetry systems could be simulated through this anisotropic model. From the analyses of the kinetics, more fundamental information about the nucleation and growth mechanism of faceted precipitation during post-implantation annealing was acquired for future application.

  12. Matrix-fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, E.; Hassanzadeh, H. [University of Calgary, Calgary, AB (Canada)

    2011-05-15

    The matrix-fracture transfer shape factor is one of the important parameters in the modeling of fluid flow in fractured porous media using a dual-porosity concept. The focus of this study is to find the shape factor for the single-phase flow of compressible fluids (gases) in fractured porous media. In this study, a model for the determination of the shape factor for compressible fluids is presented; and, the solution of nonlinear gas diffusivity equation is used to derive the shape factor. The integral method and the method of moments are used to solve the nonlinear governing equation by considering the pressure dependency of the viscosity and isothermal compressibility of the fluid. The approximate semi-analytical model for the shape factor presented in this study is verified using single-porosity, fine-grid, numerical simulations. The dependency of the shape factor on the gas specific gravity, pressure and temperature are also investigated. The theoretical analysis presented improves our understanding of fluid flow in fractured porous media. In addition, the developed matrix-fracture transfer shape factor can be used as an input for modeling flow of compressible fluids in dual-porosity systems, such as naturally fractured gas reservoirs, coal-bed methane reservoirs and fractured tight gas reservoirs.

  13. PARENT NURTURE MODEL IN SHAPING BEHAVIOR OF ADOLESCENCE 12-15 AGES

    Directory of Open Access Journals (Sweden)

    Dimas Hadi Prayoga

    2017-02-01

    Full Text Available Introduction: The deviation problem of smoking activity an adolescent is come to anxious level for parents, teachers, and society. The correlation between parents nurture model and smoking activity of adolescent needs to be examined further. The purpose of this study was to analyze the correlation between parents nurture model with smoking activity of adolescent (12-15 years old. Method: This was correlational research with cross sectional approach. The sample were 84 adolescent (12-15 years old at MTs Mojosari Nganjuk. The independent variables was parents nurture model and the dependent variable was adolescent smoking activity. Data were collected by using questionnare, then examined by using chi square with the level of significant α=0,05. Result: Statistical analysis had showed the low correlation between permissive parents nurture model with smoking activity of adolescent (12-15 years old at MTs Mojosari Nganjuk (p=0,049; r = 0,210 and no correlation between democratic nurture model (p=0,554 and authoritative nurture model (p=0,418 with smoking activity of adolescent (12-15 years old at MTs Mojosari Nganjuk, but only permissive model which correlate with smoking activity. The permissive parents with no control and demand caused adolescent to be feeling unimpeded to do smoking activity since there is no warning and punishment from the parents. Discussion: So that, School nurses should provide health promotion to parents in making appropriate parenting in adolescence. Parents should have the right parenting provided in accordance with the age and development of adolescents because appropriate parenting will have a positive impact on adolescent behavior. Further research on parenting questionnaires must be checked for cross-compatibility between questionnaire answers given adolescent and parents to know the truth in filling out the questionnaire. The differences in this study compared to previous studies is the researcher doing research in

  14. Active photo-thermal self-healing of shape memory polyurethanes

    Science.gov (United States)

    Kazemi-Lari, Mohammad A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2017-05-01

    Structural health monitoring (SHM) has received significant interest over the past decade and has led to the development of a wide variety of sensors and signal processing techniques to determine the presence of changes or damage in a structural system. The topic has attracted significant attention due to the safety and performance enhancing benefits as well as the potential lifesaving capabilities offered by the technology. While the resulting systems are capable of sensing their surrounding structural and environmental conditions, few methods exist for using the information to autonomously react and repair or protect the system. One of the major challenges in the future implementation of SHM systems is their coupling with materials that can react to the damage to heal themselves and return to normal function. The coupling of self-healing materials with SHM has the potential to significantly prolong the lifetime of structural systems and extend the required inspection intervals. In the present study, an optical fiber based self-healing system composed of mendable polyurethanes based on the thermally reversible Diels-Alder (DA) reaction is developed. Inspired by health monitoring techniques, active photo-thermal sensing and actuation is achieved using infrared laser light passing through an optical fiber and a thermal power sensor to detect the presence of cracking in the structure. Healing is triggered as the crack propagates through the polymer and fractures the embedded optical fiber. Through a feedback loop, the detected power drop by the sensor is utilized as a signal to heat the cracked area and stimulate the shape memory effect of the polyurethane and the retro-DA reaction. The healing performance results indicate that this novel integrated system can be effectively employed to monitor the incidence of damage and actively heal a crack in the polymer.

  15. Statistical modelling of the interplay between solute shape and rejection in porous membranes

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2012-01-01

    for spherical particles bigger or smaller than the pore radius, K was monotonically decreasing towards zero as the particles became more elongated. When relating the values of K to the friction model, the maximal rejection coefficient was found to reach a characteristic minimum when changing shape. The results......–membrane, it can be expected that the possibility for a solute particle to enter the membrane pore will only depend upon the relation between such molecular conformation and pore size. The objective of the present study is to use geometric and statistical modelling to determine the effect of particle elongation...... ellipsoid was approximately equal to the radius of the pores, in case the spherical size of the particle was smaller than the membrane pore. Furthermore, for spherical particles larger than the pore, such a maximum was found to occur after the smaller of the radii was smaller than the pore radius. Either...

  16. Modeling the Separating Pedestrian Flow in T-Shaped Passage Based on Guide Sign

    Directory of Open Access Journals (Sweden)

    Hong-fei Jia

    2016-01-01

    Full Text Available Considering the actual situation of separating pedestrian flow in T-shaped passage, the guide sign is set to guide the pedestrians and subconscious strength is introduced to show the effect of guide sign. Pedestrian subconscious strength model is established, and the subconscious strength calculation result is added to the pedestrian simulation model which is based on cellular automata. On the platform of MATLAB software, separating pedestrian flow simulation with the effect of guide sign is realized. Simulations indicate that, compared with the separating pedestrian flow without guide sign, the efficiency of pedestrians passing with guide sign is higher. Analyzing the effect of guide sign in different positions, the suitable position of guide sign is obtained.

  17. Automatic Cell Segmentation Using a Shape-Classification Model in Immunohistochemically Stained Cytological Images

    Science.gov (United States)

    Shah, Shishir

    This paper presents a segmentation method for detecting cells in immunohistochemically stained cytological images. A two-phase approach to segmentation is used where an unsupervised clustering approach coupled with cluster merging based on a fitness function is used as the first phase to obtain a first approximation of the cell locations. A joint segmentation-classification approach incorporating ellipse as a shape model is used as the second phase to detect the final cell contour. The segmentation model estimates a multivariate density function of low-level image features from training samples and uses it as a measure of how likely each image pixel is to be a cell. This estimate is constrained by the zero level set, which is obtained as a solution to an implicit representation of an ellipse. Results of segmentation are presented and compared to ground truth measurements.

  18. Finite element model of size, shape and blood pressure on rupture of intracranial saccular aneurysms

    Science.gov (United States)

    Rica Nabong, Jennica; David, Guido

    2017-10-01

    Rupture of intracranial saccular aneurysms is a primary concern for neurologists and patients because it leads to stroke and permanent disability. This paper examines the role of blood pressure, in connection with size of and wall thickness, in the rupture of saccular aneurysms. A bulb-shaped geometry of a saccular aneurysm is obtained from angiographic images of a patient and modeled using Finite Elements based on the principle of virtual work under the Fung stress-strain relationship. The numerical model is subjected to varying levels of systolic blood pressure. Rupture is assumed to occur when the wall stress exceeded its mechanical strength. The results show which sizes of this class of aneurysms are at high risk of rupture for varying levels of blood pressure.

  19. Shape model training for concurrent localization of the left and right knee

    Science.gov (United States)

    Ruppertshofen, Heike; Lorenz, Cristian; Schmidt, Sarah; Beyerlein, Peter; Salah, Zein; Rose, Georg; Schramm, Hauke

    2011-03-01

    An automatic algorithm for training of suitable models for the Generalized Hough Transform (GHT) is presented. The applied iterative approach learns the shape of the target object directly from training images and incorporates variability in pose and scale of the target object exhibited in the images. To make the model more robust and representative for the target object, an individual weight is estimated for each model point using a discriminative approach. These weights will be employed in the voting procedure of the GHT, increasing the impact of important points on the localization result. The proposed procedure is extended here with a new error measure and a revised point weight training to enable the generation of models representing several target objects. Common parts of the target objects will thereby obtain larger weights, while the model might also contain object specific model points, if necessary, to be representative for all targets. The method is applied here to the localization of knee joints in long-leg radiographs. A quantitative comparison of the new approach with the separate localization of right and left knee showed improved results concerning localization precision and performance.

  20. Hybrid micro-macro-mechanical constitutive model for shape-memory alloys

    Science.gov (United States)

    Wong, Franklin C.; Boissonneault, Olivier; Terriault, Patrick

    2005-05-01

    A substantial reduction in the size of control actuation systems employed in today's aerospace vehicles can enhance overall vehicle performance by reducing envelope volume requirements and inert weight. Functional materials such as shape memory alloys (SMA's) offer the opportunity to create compact, solid-state actuation systems by virtue of the material's ability to convert electrical energy to thermal energy to mechanical energy within its microstructure. A hybrid micro-macro-mechanical SMA model is developed for future closed-loop actuator development studies. The constitutive model is a combination of concepts originally presented by Likhatchev for microstructural modeling and Brinson for modeling of transformation kinetics. Global strain of the heterogeneous solid or polycrystal, where the grains are assumed to be randomly oriented, was calculated by averaging the elastic, thermal, stress-induced and autoaccomodation strains of each grain over the total material volume. The introduction of a frequency distribution function in the micromechanical model provided a convenient way to quantify texture. The model was successfully tested under constant temperature conditions and constant load-low frequency cycling conditions.

  1. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    NARCIS (Netherlands)

    Zhang, Y.; Zhao, Z.; Dai, M.; Jiao, N.; Herndl, G.J.

    2014-01-01

    To test the hypothesis that different drivers shape the diversity and biogeography of the total and active bacterial community, we examined the bacterial community composition along two transects, one from the inner Pearl River estuary to the open waters of the South China Sea (SCS) and the other

  2. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps

    Science.gov (United States)

    Kim, Kyoohyun; Park, Yongkeun

    2017-05-01

    Optical trapping can manipulate the three-dimensional (3D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and extensive computations. Here, we achieve the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3D refractive index distribution of samples. Engineering the 3D light field distribution of a trapping beam based on the measured 3D refractive index map of samples generates a light mould, which can manipulate colloidal and biological samples with arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can be directly applied in biophotonics and soft matter physics.

  3. Prediction of turbulent flow over L-shaped riblet surfaces with k-{epsilon} turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Myong, H.K. [Kookmin University, Seoul (Korea, Republic of)

    1998-01-01

    The paper reports the outcome of a numerical study of flow over idealized L-shaped ribleted surfaces with two-equation turbulence models. In the present study, the Launder and Sharma`s k-{epsilon} turbulence model (LS model) is basically N employed, but with a little modification of the additional {epsilon}-source term without affecting its level under 2-dimensional straining in which the term has been calibrated. Compared to the original LS model, the present model has predicted greatly improved drag reduction behavior for this geometry. As a drag reduction mechanism, it is found that the skin-friction in the riblet valleys might be sufficient to overcome the skin-friction increase near the riblet tip. The present predicted results are in good agreement with the recent DN S ones by Choi et al. (1993): differences in the mean velocity prof ile and turbulence quantities are found to be limited to the riblet cavity region. It is also found that turbulent kinetic energy and Reynolds shear stress above the riblets are also reduced in drag-reducing configurations. (author). 16 refs., 10 figs.

  4. Prospective Validation of a High Dimensional Shape Model for Organ Motion in Intact Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Casey W.; Green, Garrett; Noticewala, Sonal S.; Li, Nan; Shen, Hanjie [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Vaida, Florin [Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California (United States); Mell, Loren K., E-mail: lmell@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2016-11-15

    Purpose: Validated models are needed to justify strategies to define planning target volumes (PTVs) for intact cervical cancer used in clinical practice. Our objective was to independently validate a previously published shape model, using data collected prospectively from clinical trials. Methods and Materials: We analyzed 42 patients with intact cervical cancer treated with daily fractionated pelvic intensity modulated radiation therapy and concurrent chemotherapy in one of 2 prospective clinical trials. We collected online cone beam computed tomography (CBCT) scans before each fraction. Clinical target volume (CTV) structures from the planning computed tomography scan were cast onto each CBCT scan after rigid registration and manually redrawn to account for organ motion and deformation. We applied the 95% isodose cloud from the planning computed tomography scan to each CBCT scan and computed any CTV outside the 95% isodose cloud. The primary aim was to determine the proportion of CTVs that were encompassed within the 95% isodose volume. A 1-sample t test was used to test the hypothesis that the probability of complete coverage was different from 95%. We used mixed-effects logistic regression to assess effects of time and patient variability. Results: The 95% isodose line completely encompassed 92.3% of all CTVs (95% confidence interval, 88.3%-96.4%), not significantly different from the 95% probability anticipated a priori (P=.19). The overall proportion of missed CTVs was small: the grand mean of covered CTVs was 99.9%, and 95.2% of misses were located in the anterior body of the uterus. Time did not affect coverage probability (P=.71). Conclusions: With the clinical implementation of a previously proposed PTV definition strategy based on a shape model for intact cervical cancer, the probability of CTV coverage was high and the volume of CTV missed was low. This PTV expansion strategy is acceptable for clinical trials and practice; however, we recommend daily

  5. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  6. TECHNICAL NOTE: Thermal modelling of shape memory alloy fixator for medical application

    Science.gov (United States)

    Song, C.; Campbell, P. A.; Frank, T. G.; Cuschieri, A.

    2002-04-01

    Shape memory alloy has been recently used for tissue fixation in minimal access surgery (MAS). It offers an alternative to conventional thread-based suturing of human tissue, with the advantage that its deployment is faster and requires fewer surgical skills. To minimize the damage to surrounding tissue, thermal analysis of tissue-fixator interactions has been done to optimize the heating method, and to predict the heating effect and affected range. The finite-difference method has been used to solve the one-dimensional transient heat transfer problem, with fixator-tissue conduction boundary condition, and the finite-element method was used to build a three-dimensional model for the design optimization. The predicted temperature responses of tissue are considered within a safety range. Tissue temperature drops quickly after heating, and the affected tissue is limited to a layer 1 mm thick next to the fixator. Further in vivo animal studies on the use of the shape memory alloy fixator are ongoing for future applications of tissue suturing in MAS.

  7. Shape-dependent guidance of active Janus particles by chemically patterned surfaces

    Science.gov (United States)

    Uspal, W. E.; Popescu, M. N.; Tasinkevych, M.; Dietrich, S.

    2018-01-01

    Self-phoretic chemically active Janus particles move by inducing—via non-equilibrium chemical reactions occurring on their surfaces—changes in the chemical composition of the solution in which they are immersed. This process leads to gradients in chemical composition along the surface of the particle, as well as along any nearby boundaries, including solid walls. Chemical gradients along a wall can give rise to chemi-osmosis, i.e., the gradients drive surface flows which, in turn, drive flow in the volume of the solution. This bulk flow couples back to the particle, and thus contributes to its self-motility. Since chemi-osmosis strongly depends on the molecular interactions between the diffusing molecular species and the wall, the response flow induced and experienced by a particle encodes information about any chemical patterning of the wall. Here, we extend previous studies on self-phoresis of a sphere near a chemically patterned wall to the case of particles with rod-like, elongated shape. We focus our analysis on the new phenomenology potentially emerging from the coupling—which is inoperative for a spherical shape—of the elongated particle to the strain rate tensor of the chemi-osmotic flow. Via detailed numerical calculations, we show that the dynamics of a rod-like particle exhibits a novel ‘edge-following’ steady state: the particle translates along the edge of a chemical step at a steady distance from the step and with a steady orientation. Moreover, within a certain range of system parameters, the edge-following state co-exists with a ‘docking’ state (the particle stops at the step, oriented perpendicular to the step edge), i.e., a bistable dynamics occurs. These findings are rationalized as a consequence of the competition between the fluid vorticity and the rate of strain by using analytical theory based on the point-particle approximation which captures quasi-quantitatively the dynamics of the system.

  8. Three-dimensional MRI-based statistical shape model and application to a cohort of knees with acute ACL injury.

    Science.gov (United States)

    Pedoia, V; Lansdown, D A; Zaid, M; McCulloch, C E; Souza, R; Ma, C B; Li, X

    2015-10-01

    The aim of this study is to develop a novel 3D magnetic resonance imaging (MRI)-based Statistical Shape Modeling (SSM) and apply it in knee MRIs in order to extract and compare relevant shapes of the tibia and femur in patients with and without acute Anterior cruciate ligament (ACL) injuries. Bilateral MR images were acquired and analyzed for 50 patients with acute ACL injuries and for 19 control subjects. A shape model was extracted for the tibia and femur using an SSM algorithm based on a set of matched landmarks that are computed in a fully automatic manner. Shape differences were detected between the knees in the ACL-injury group and control group, suggesting a common shape feature that may predispose these knees to injury. Some of the detected shape features that discriminate between injured and control knees are related to intercondylar width and posterior tibia slope, features that have been suggested in previous studies as ACL morphological risk factors. However, shape modeling has the great potential to quantify these characteristics with a comprehensive description of the surfaces describing complex 3D deformation that cannot be represented with simple geometric indexes. 3D MRI-based bone shape quantification has the ability to identify specific anatomic risk factors for ACL injury. A better understanding of the role in bony shape on ligamentous injuries could help in the identification of subjects with an increased risk for an ACL tear and to develop targeted prevention strategies, including education and training. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Modeling the coupling between martensitic phase transformation and plasticity in shape memory alloys

    Science.gov (United States)

    Manchiraju, Sivom

    The thermo-mechanical response of NiTi shape memory alloys (SMAs) is predominantly dictated by two inelastic deformation processes---martensitic phase transformation and plastic deformation. This thesis presents a new microstructural finite element (MFE) model that couples these processes and anisotropic elasticity. The coupling occurs via the stress redistribution induced by each mechanism. The approach includes three key improvements to the literature. First, transformation and plasticity are modeled at a crystallographic level and can occur simultaneously. Second, a rigorous large-strain finite element formulation is used, thereby capturing texture development (crystal rotation). Third, the formulation adopts recent first principle calculations of monoclinic martensite stiffness. The model is calibrated to experimental data for polycrystalline NiTi (49.9 at% Ni). Inputs include anisotropic elastic properties, texture, and DSC data as well as a subset of pseudoelastic and load-biased thermal cycling data. This calibration process provides updated material values---namely, larger self-hardening between similar martensite plates. It is then assessed against additional pseudoelastic and load-biased thermal cycling experimental data and neutron diffraction measurements of martensite texture evolution. Several experimental trends are captured---in particular, the transformation strain during thermal cycling monotonically increases with increasing bias stress, reaching a peak and then decreasing due to intervention of plasticity---a trend which existing MFE models are unable to capture. Plasticity is also shown to enhance stress-induced martensite formation during loading and generate retained martensite upon unloading. The simulations even enable a quantitative connection between deformation processing and two-way shape memory effect. Some experimental trends are not captured---in particular, the ratcheting of macrostrain with repeated thermal cycling. This may

  10. Temperature dependent fracture properties of shape memory alloys: novel findings and a comprehensive model.

    Science.gov (United States)

    Maletta, Carmine; Sgambitterra, Emanuele; Niccoli, Fabrizio

    2016-12-21

    Temperature dependent fracture properties of NiTi-based Shape Memory Alloys (SMAs), within the pseudoelastic regime, were analyzed. In particular, the effective Stress Intensity Factor (SIF) was estimated, at different values of the testing temperature, by a fitting of the William's expansion series, based on Digital Image Correlation (DIC) measurements. It was found that temperature plays an important role on SIF and on critical fast fracture conditions. As a consequence, Linear Elastic Fracture Mechanics (LEFM) approaches are not suitable to predict fracture properties of SMAs, as they do not consider the effects of temperature. On the contrary, good agreements between DIC results and the predictions of an ad-hoc analytical model were observed. In fact, the model takes into account the whole thermo mechanical loading condition, including both mechanical load and temperature. Results revealed that crack tip stress-induced transformations do not represent a toughening effect and this is a completely novel result within the SMA community. Furthremore, it was demonstrated that the analytical model can be actually used to define a temperature independent fracture toughness parameter. Therefore, a new approach is proposed, based on the analytical model, where both mechanical load and temperature are considered as loading parameters in SIF computation.

  11. Modeling and validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx).

    Science.gov (United States)

    Solbrig, Harold R; Prud'hommeaux, Eric; Grieve, Grahame; McKenzie, Lloyd; Mandel, Joshua C; Sharma, Deepak K; Jiang, Guoqian

    2017-03-01

    HL7 Fast Healthcare Interoperability Resources (FHIR) is an emerging open standard for the exchange of electronic healthcare information. FHIR resources are defined in a specialized modeling language. FHIR instances can currently be represented in either XML or JSON. The FHIR and Semantic Web communities are developing a third FHIR instance representation format in Resource Description Framework (RDF). Shape Expressions (ShEx), a formal RDF data constraint language, is a candidate for describing and validating the FHIR RDF representation. Create a FHIR to ShEx model transformation and assess its ability to describe and validate FHIR RDF data. We created the methods and tools that generate the ShEx schemas modeling the FHIR to RDF specification being developed by HL7 ITS/W3C RDF Task Force, and evaluated the applicability of ShEx in the description and validation of FHIR to RDF transformations. The ShEx models contributed significantly to workgroup consensus. Algorithmic transformations from the FHIR model to ShEx schemas and FHIR example data to RDF transformations were incorporated into the FHIR build process. ShEx schemas representing 109 FHIR resources were used to validate 511 FHIR RDF data examples from the Standards for Trial Use (STU 3) Ballot version. We were able to uncover unresolved issues in the FHIR to RDF specification and detect 10 types of errors and root causes in the actual implementation. The FHIR ShEx representations have been included in the official FHIR web pages for the STU 3 Ballot version since September 2016. ShEx can be used to define and validate the syntax of a FHIR resource, which is complementary to the use of RDF Schema (RDFS) and Web Ontology Language (OWL) for semantic validation. ShEx proved useful for describing a standard model of FHIR RDF data. The combination of a formal model and a succinct format enabled comprehensive review and automated validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. In vivo tissue response following implantation of shape memory polyurethane foam in a porcine aneurysm model

    Science.gov (United States)

    Rodriguez, Jennifer N.; Clubb, Fred J.; Wilson, Thomas S.; Miller, Matthew W.; Fossum, Theresa W.; Hartman, Jonathan; Tuzun, Egemen; Singhal, Pooja; Maitland, Duncan J.

    2014-01-01

    Cerebral aneurysms treated by traditional endovascular methods using platinum coils have a tendency to be unstable, either due to chronic inflammation, compaction of coils, or growth of the aneurysm. We propose to use alternate filling methods for the treatment of intracranial aneurysms using polyurethane based shape memory polymer (SMP) foams. SMP polyurethane foams were surgically implanted in a porcine aneurysm model to determine biocompatibility, localized thrombogenicity, and their ability to serve as a stable filler material within an aneurysm. The degree of healing was evaluated via gross observation, histopathology and low vacuum scanning electron microscopy (LV-SEM) imaging after zero, thirty and ninety days. Clotting was initiated within the SMP foam at time zero (less than one hour exposure to blood prior to euthanization), partial healing was observed at thirty days, and almost complete healing had occurred at ninety days in vivo, with minimal inflammatory response. PMID:23650278

  13. In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model.

    Science.gov (United States)

    Rodriguez, Jennifer N; Clubb, Fred J; Wilson, Thomas S; Miller, Matthew W; Fossum, Theresa W; Hartman, Jonathan; Tuzun, Egemen; Singhal, Pooja; Maitland, Duncan J

    2014-05-01

    Cerebral aneurysms treated by traditional endovascular methods using platinum coils have a tendency to be unstable, either due to chronic inflammation, compaction of coils, or growth of the aneurysm. We propose to use alternate filling methods for the treatment of intracranial aneurysms using polyurethane-based shape memory polymer (SMP) foams. SMP polyurethane foams were surgically implanted in a porcine aneurysm model to determine biocompatibility, localized thrombogenicity, and their ability to serve as a stable filler material within an aneurysm. The degree of healing was evaluated via gross observation, histopathology, and low vacuum scanning electron microscopy imaging after 0, 30, and 90 days. Clotting was initiated within the SMP foam at time 0 (<1 h exposure to blood before euthanization), partial healing was observed at 30 days, and almost complete healing had occurred at 90 days in vivo, with minimal inflammatory response. Copyright © 2013 Wiley Periodicals, Inc.

  14. IMPLICIT SHAPE MODELS FOR OBJECT DETECTION IN 3D POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    A. Velizhev

    2012-07-01

    Full Text Available We present a method for automatic object localization and recognition in 3D point clouds representing outdoor urban scenes. The method is based on the implicit shape models (ISM framework, which recognizes objects by voting for their center locations. It requires only few training examples per class, which is an important property for practical use. We also introduce and evaluate an improved version of the spin image descriptor, more robust to point density variation and uncertainty in normal direction estimation. Our experiments reveal a significant impact of these modifications on the recognition performance. We compare our results against the state-of-the-art method and get significant improvement in both precision and recall on the Ohio dataset, consisting of combined aerial and terrestrial LiDAR scans of 150,000 m2 of urban area in total.

  15. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    Science.gov (United States)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  16. Scaling the Mode Shapes of a Building Model by Mass Changes

    DEFF Research Database (Denmark)

    Brincker, Rune; Rodrigues, J.; Andersen, P.

    2004-01-01

    It is well known, that when using natural input modal analysis, the loads are not known, and thus, the mode scaling factor that relates the magnitude of the loading to the magnitude of the response cannot be estimated. However It has been pointed out by several theoretical papers that mode shapes...... change technique can be used on a ¼ scale model of a 4-storey building. The uncertainties on the estimated scaling factors are illustrated by repeating the estimation using different mass changes....... can be scaled by performing  several natural input modal analysis tests with different mass changes, observe the frequency shift introduced by the mass changes and then follow an estimation scheme that allows the user to estimate the scaling factor modeby- mode, i.e. only information of the particular...

  17. Shape dependency of the extinction and absorption cross sections of dust aerosols modeled as randomly oriented spheroids

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2011-09-01

    Full Text Available We present computational results on the shape dependency of the extinction and absorption cross sections of dustlike aerosol particles that were modeled as randomly oriented spheroids. Shape dependent variations in the extinction cross sections are largest in the size regime that is governed by the interference structure. Elongated spheroids best fitted measured extinction spectra of re-dispersed Saharan dust samples. For dust particles smaller than 1.5 μm in diameter and low absorption potential, shape effects on the absorption cross sections are very small.

  18. Statistical shape and texture model of quadrature phase information for prostate segmentation.

    Science.gov (United States)

    Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Mitra, Jhimli; Vilanova, Joan C; Comet-Batlle, Josep; Meriaudeau, Fabrice

    2012-01-01

    Prostate volume estimation from segmentation of transrectal ultrasound (TRUS) images aids in diagnosis and treatment of prostate hypertrophy and cancer. Computer-aided accurate and computationally efficient prostate segmentation in TRUS images is a challenging task, owing to low signal-to-noise ratio, speckle noise, calcifications, and heterogeneous intensity distribution in the prostate region. A multi-resolution framework using texture features in a parametric deformable statistical model of shape and appearance was developed to segment the prostate. Local phase information of log-Gabor quadrature filter extracted texture of the prostate region in TRUS images. Large bandwidth of log-Gabor filter ensures easy estimation of local orientations, and zero response for a constant signal provides invariance to gray level shift. This aids in enhanced representation of the underlying texture information of the prostate unaffected by speckle noise and imaging artifacts. The parametric model of the propagating contour is derived from principal component analysis of prior shape and texture information of the prostate from the training data. The parameters were modified using prior knowledge of the optimization space to achieve segmentation. The proposed method achieves a mean Dice similarity coefficient value of 0.95 ± 0.02 and mean absolute distance of 1.26 ± 0.51 millimeter when validated with 24 TRUS images of 6 data sets in a leave-one-patient-out validation framework. The proposed method for prostate TRUS image segmentation is computationally efficient and provides accurate prostate segmentations in the presence of intensity heterogeneities and imaging artifacts.

  19. A case of impaired shape integration: Implications for models of visual object processing

    DEFF Research Database (Denmark)

    Gerlach, Christian; Marstrand, Lisbeth; Habekost, Thomas

    2005-01-01

    integration is not a prerequisite for normal object naming. However, on more demanding tests of visual object recognition, HE's performance deteriorated, with her performance being inversely related to the demand placed on integration of local elements into more elaborate shape descriptions. From this we...... conclude that shape integration is important for normal object recognition....... the notion that grouping may be divided into two general steps: (i) element clustering and (ii) shape configuration, with the latter operation being impaired in HE. As opposed to previous cases with shape integration deficits, HE was able to name objects accurately. Initially, this might suggest that shape...

  20. Controlled synthesis of T-shaped BiVO{sub 4} and enhanced visible light responsive photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shuying; Yu, Chongfei; Li, Yukun [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Li, Yihui [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Sun, Jianhui, E-mail: sunjh@htu.cn [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Geng, Xiaofei [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China)

    2014-03-15

    A novel T-shaped BiVO{sub 4} microcrystal photocatalyst was successfully synthesized by the hydrothermal method with the aid of a structure-directing surfactant SDBS in the present study. Having received well characterization with the aid of various techniques and the results showed that the SDBS greatly changed the microstructure of BiVO{sub 4}, which had a unique T shape and belonged to the monoclinic family. The fast exchange dynamics between the surfactants bound to the Bi{sup 3+} seed surface and the free VO{sub 3}{sup −} in the solution significantly increase the rate of heterogeneous nucleation. In addition, the photocatalytic activity of the prepared T-shaped BiVO{sub 4} was evaluated by the degradation of Methylene Blue solution under visible light irradiation, 17% and 47% higher decolorization rates than the commercial P25 and BiVO{sub 4} synthesized without SDBS, respectively. Meanwhile, it has been found that the degradation kinetics of MB fitted the pseudo-first-order kinetics and the T-shaped BiVO{sub 4} also displayed high photocatalytic performance for metronidazole degradation. -- Graphical abstract: H{sub 2}O{sub 2} molecules function as electron trapping reagent to react with e{sup −} to enhance the photocatalytic degradation efficiency of MB in the BiVO{sub 4}/H{sub 2}O{sub 2} system under visible light irradiation. Highlights: • T-shaped BiVO{sub 4} was synthesized using SDBS as a structure-directing surfactant. • SDBS greatly changed the microstructure of BiVO{sub 4}. • The T-shaped BiVO{sub 4} had a better visible-light photocatalytic activity. • Degradation kinetics of MB by BiVO{sub 4} fitted the pseudo-first-order kinetics.

  1. Hybrid Spreading Mechanisms and T Cell Activation Shape the Dynamics of HIV-1 Infection

    Science.gov (United States)

    Zhang, Changwang; Zhou, Shi; Groppelli, Elisabetta; Pellegrino, Pierre; Williams, Ian; Borrow, Persephone; Chain, Benjamin M.; Jolly, Clare

    2015-01-01

    HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments’ influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies. PMID:25837979

  2. Thermomechanical Characterization and Modeling of Superelastic Shape Memory Alloy Beams and Frames

    Science.gov (United States)

    Watkins, Ryan

    Of existing applications, the majority of shape memory alloy (SMA) devices consist of beam (orthodontic wire, eye glasses frames, catheter guide wires) and framed structures (cardiovascular stents, vena cava filters). Although uniaxial tension data is often sufficient to model basic beam behavior (which has been the main focus of the research community), the tension-compression asymmetry and complex phase transformation behavior of SMAs suggests more information is necessary to properly model higher complexity states of loading. In this work, SMA beams are experimentally characterized under general loading conditions (including tension, compression, pure bending, and buckling); furthermore, a model is developed with respect to general beam deformation based on the relevant phenomena observed in the experimental characterization. Stress induced phase transformation within superelastic SMA beams is shown to depend on not only the loading mode, but also kinematic constraints imposed by beam geometry (such as beam cross-section and length). In the cases of tension and pure bending, the structural behavior is unstable and corresponds to phase transformation localization and propagation. This unstable behavior is the result of a local level up--down--up stress/strain response in tension, which is measured here using a novel composite-based experimental technique. In addition to unstable phase transformation, intriguing post-buckling straightening is observed in short SMA columns during monotonic loading (termed unbuckling here). Based on this phenomenological understanding of SMA beam behavior, a trilinear based material law is developed in the context of a Shanley column model and is found to capture many of the relevant features of column buckling, including the experimentally observed unbuckling behavior. Due to the success of this model, it is generalized within the context of beam theory and, in conjunction with Bloch wave stability analysis, is used to model and

  3. Shape memory alloy micro-actuator performance prediction using a hybrid constitutive model

    Science.gov (United States)

    Wong, Franklin C.; Boissonneault, Olivier

    2006-03-01

    The volume and weight budgets in missiles and gun-launched munitions have decreased with the military forces' emphasis on soldier-centric systems and rapid deployability. Reduction in the size of control actuation systems employed in today's aerospace vehicles would enhance overall vehicle performance as long as there is no detrimental impact on flight performance. Functional materials such as shape memory alloys (SMA's) offer the opportunity to create compact, solid-state actuation systems for flight applications. A hybrid SMA model was developed for designing micro-actuated flow effectors. It was based on a combination of concepts originally presented by Likhatchev for microstructural modelling and Brinson for modelling of transformation kinetics. The phase diagram for a 0.1mm SMA wire was created by carrying out tensile tests in a Rheometrics RSA-II solids analyser over a range of temperatures from 30°C to 130°C. The characterization parameters were used in the hybrid model to predict the displacement-time trajectories for the wire. Experimental measurements were made for a SMA wire that was subjected to a constant 150g load and short, intense 4.5 to 10V pulses. Actuation frequency was limited by the cooling rate rather than the heating rate. A second set of experiments studied the performance of SMA wires in an antagonistic micro-actuator set-up. A series of 2 or 3V step inputs were alternately injected into each wire to characterize the peak to peak displacement and the motion time constant. A maximum frequency of 0.25Hz was observed. An antagonistic actuator model based on the hybrid SMA model predicted reasonably well the displacement-time results.

  4. Improving the Performance of Electrically Activated NiTi Shape Memory Actuators by Pre-Aging

    Science.gov (United States)

    Rathmann1, Christian; Fleczok1, Benjamin; Otibar1, Dennis; Kuhlenkötter, Bernd

    2017-06-01

    Shape memory alloys possess an array of unique functional properties which are influenced by a complex interaction of different factors. Due to thermal sensitivity, slight changes in temperature may cause the properties to change significantly. This poses a huge challenge especially for the use of shape memory alloys as actuators. The displacement is the key performance indicator, which has to be of equal or better quality compared to conventional actuators. One problem of shape memory alloys is the change in functional fatigue in the first cycles, which makes it rather difficult to design the actuator. Therefore, the reduction of this shakedown effect is crucial. For this reason, this paper investigates the effect of electrical heat treatment as a method for pre-aging. This topic has so far been little investigated so that the investigations focus on identifying important factors and effects by using the design of experiments.

  5. Shape optimization of spacer grids / development of a FE model their buckling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, B. M.; Im, S. Y.; Chang, J. H.; Jang, I. G.; Choi, K. H. [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    An optimal design method is adopted for spacer grids. For contact analysis, a typical cell out of repeated pattern in the assembly is modeled. A commercial code, ABAQUS, is used for detailed analysis of frictional contact. For the optimization, design variables are taken from geometric parameters and several objectives are considered. The optimized shapes and resulting performances are discussed and shown satisfactory. This method is illustrated as a good design tool for structures that has complex behavior due to friction and wear. In this study considered is the buckling of spacer grids in the nuclear fuel assembly, which are required to have a sufficient strength against an accident like earthquake. Special attention is given to the modeling of the spot-welding and the constraints between the unit spacers assembled together : it is found that a proper treatment of the constraints is critical for accurate assessment of the buckling behavior including strain localization at the point of spot welding. The buckling strength of the 17 x 17 spacer grid, which is difficult to analyze due to a large number of degrees of freedom, is obtained from analysis for the smaller models 3 x 3, 5 x 5, 7 x 7 and 9 x 9 spacer grids. 9 refs., 36 figs., 8 tabs. (Author)

  6. Characterisation and modelling of vacancy dynamics in Ni–Mn–Ga ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Merida, D., E-mail: david.merida@ehu.es [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); García, J.A. [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); BC Materials (Basque Centre for Materials, Application and Nanostructures), 48040 Leioa (Spain); Sánchez-Alarcos, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Pérez-Landazábal, J.I.; Recarte, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona (Spain); Plazaola, F. [Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain)

    2015-08-05

    Highlights: • We study the dynamics of vacancies for three different Ni–Mn–Ga alloy samples. • The formation and migration energies have been obtained experimentally. • The entropic factor and the distance a vacancy has to reach a sink are measured. • We present a theoretical model to explain the dynamics of vacancies. • Results are applicable for any thermal treatment and extensible to other alloys. - Abstract: The dynamics of vacancies in Ni–Mn–Ga shape memory alloys has been studied by positron annihilation lifetime spectroscopy. The temperature evolution of the vacancy concentration for three different Ni–Mn–Ga samples, two polycrystalline and one monocrystalline, have been determined. The formation and migration energies and the entropic factors are quite similar in all cases, but vary slightly according to composition. However, the number of jumps a vacancy has to overtake to reach a sink is five times higher in the single crystal. This is an expected result, due to the role that surfaces and grain boundaries should play in balancing the vacancy concentration. In all cases, the initial vacancy concentration for the samples quenched from 1173 K lies between 1000 ppm and 2000 ppm. A phenomenological model able to explain the dynamics of vacancies has been developed in terms of the previous parameters. The model can reproduce the vacancy dynamics for any different kind of thermal history and can be easily extended to other alloys.

  7. Fluid-structure interaction modelling of the roof tile-shaped modes in piezoelectric plate microresonators

    Science.gov (United States)

    Ruiz-Díez, V.; Toledo, J.; Hernando-García, J.; Pfusterschmied, G.; Schmid, U.; Sánchez-Rojas, J. L.

    2017-06-01

    In this paper, the fluid-structure interaction in cantilever-type devices vibrating in the first and higher roof tile-shaped modes is studied. These modes can be most efficiently excited by a thin piezoelectric film on top of the structure in combination with a tailored electrode design. The electrical and optical characterization of the different devices and modes is carried out in liquid media and then the performance of the resonators is evaluated in terms of quality factor and resonant frequency. The effect of the fluid on the in-liquid response is studied using analytical and finite element method models. For the latter, a fully coupled fluid-structure interaction model is developed and compared to a simpler model, in which no coupling feedback from the fluid to the structure is taken into account. The results show that, despite the substantially larger computational effort, the consideration of the fluid-structure coupling is absolutely necessary to explain the experimental results for higher order modes.

  8. On the emergence of molecular structure from atomic shape in the 1/r2 harmonium model.

    Science.gov (United States)

    Müller-Herold, Ulrich

    2006-01-07

    The formal similarity of the three-body Hamiltonians for helium and the hydrogen molecule ion is used to demonstrate the unfolding of a rotating dumbbell-like proton distribution from a (1s)2-type electron distribution by smooth variation of the particles' masses in the 1/r2 harmonium model. The 1/r2 harmonium is an exactly solvable modification of the harmonium model (also known as Hooke's law atom) where the attraction between different particles is harmonic and the repulsion between the two equal particles is given by a 1/r2 potential. The dumbbell-like molecular structure appears as an expression of increasing spatial correlation due to increasing mass. It gradually appears in the one-density distribution of the two equal particles if their mass exceeds a critical value depending on the mass of the third particle. For large mass of the equal particles, their one-density distribution approaches an asymptotic form derived from the Born-Oppenheimer treatment of H2+ in the 1/r2 harmonium model. Below the critical value, the one density is a spherical, Gaussian-type atomic density distribution with a maximum at the center of mass. The topological transition at the critical value separates molecular structure and atomic shape as two qualitatively different manifestations of spatial structure.

  9. Human performance modeling for system of systems analytics: combat performance-shaping factors.

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R.; Miller, Dwight Peter

    2006-01-01

    The US military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives. To support this goal, Sandia National Laboratories (SNL) has undertaken a program of HPM as an integral augmentation to its system-of-system (SoS) analytics capabilities. The previous effort, reported in SAND2005-6569, evaluated the effects of soldier cognitive fatigue on SoS performance. The current effort began with a very broad survey of any performance-shaping factors (PSFs) that also might affect soldiers performance in combat situations. The work included consideration of three different approaches to cognition modeling and how appropriate they would be for application to SoS analytics. This bulk of this report categorizes 47 PSFs into three groups (internal, external, and task-related) and provides brief descriptions of how each affects combat performance, according to the literature. The PSFs were then assembled into a matrix with 22 representative military tasks and assigned one of four levels of estimated negative impact on task performance, based on the literature. Blank versions of the matrix were then sent to two ex-military subject-matter experts to be filled out based on their personal experiences. Data analysis was performed to identify the consensus most influential PSFs. Results indicate that combat-related injury, cognitive fatigue, inadequate training, physical fatigue, thirst, stress, poor perceptual processing, and presence of chemical agents are among the PSFs with the most negative impact on combat performance.

  10. 24 CFR 1006.225 - Model activities.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out the...

  11. Chemical components and antioxidant activity of the peels of commercial apple-shaped pear (fruit of Pyrus pyrifolia cv. pingguoli).

    Science.gov (United States)

    Ma, Jian-Nan; Wang, Su-Le; Zhang, Ke; Wu, Zhi-Gang; Hattori, Masao; Chen, Gui-Lin; Ma, Chao-Mei

    2012-10-01

    The apple-shaped pear, the fruit of the Pyrus pyrifolia cv. pingguoli (Rosaceae) tree, is one of the most popular fruits in the northern part of China. The current study is the 1st report of its bioactive components. We identified 10 metabolites from the peels (exocarp) of apple-shaped pear and assessed their toxicity. We then compared the anti-oxidant activity, amount of total phenolic compounds, and total condensed tannin content of the peels and flesh (mesocarp) of apple-shaped pear. The 6 major components in the peels and flesh of this fruit were quantified with Ultra Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry. Results revealed that the peels possessed stronger anti-oxidant activity and contained larger amounts of phenolic compounds than the flesh. These results provide insights into the potential health benefits of this fruit and support the use of the fruit peels and products containing peels or peel components. The present research provided evidences that the pulp and peel waste from the juice industry of apple-shaped pear may be a source of useful compounds. © 2012 Institute of Food Technologists®

  12. An airway tree-shape model for geodesic airway branch labeling

    DEFF Research Database (Denmark)

    Feragen, Aasa; Lo, Pechin Chien Pau; Gorbunova, Vladlena

    2011-01-01

    We present a mathematical airway tree-shape framework where airway trees are compared using geodesic distances. The framework consists of a rigorously dened shape space for treelike shapes, endowed with a metric such that the shape space is a geodesic metric space. This means that the distance be...... tree and a set of labeled airway trees are combined with a voting scheme to perform automatic branch labeling of segmented airways from the challenging EXACT'09 test set. In spite of the varying quality of the data, we obtain robust labeling results.......We present a mathematical airway tree-shape framework where airway trees are compared using geodesic distances. The framework consists of a rigorously dened shape space for treelike shapes, endowed with a metric such that the shape space is a geodesic metric space. This means that the distance...... between two tree-shapes can be realized as the length of the geodesic, or shortest deformation, connecting the two shapes. By computing geodesics between airway trees, as well as the corresponding airway deformation, we generate airway branch correspondences. Correspondences between an unlabeled airway...

  13. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  14. Thermal and hydrodynamic modelling of active catheters for interventional radiology.

    Science.gov (United States)

    Marchandise, Emilie; Flaud, Patrice; Royon, Laurent; Blanc, Raphaël; Szewczyk, Jérome

    2011-07-01

    Interventional radiologists desire to improve their operating tools such as catheters. Active catheters in which the tip is moved using shape memory alloy actuators activated using the Joule effect present a promising approach for easier navigation in the small vessels. However, the increase in temperature caused by this Joule effect must be controlled in order to prevent damage to blood cells and tissues. This paper is devoted to the simulation and experimental validation of a fluid-thermal model of an active catheter prototype. Comparisons between computer-predicted and experimentally measured temperatures are presented for both experiments in air and water at 37°C. Good agreement between the computational and experimental results is found, demonstrating the validity of the developed computer model. These comparisons enable us to highlight some important issues in the modelling process and to determine the optimal current for the activation of the catheter.

  15. Short Term Evaluation of an Anatomically Shaped Polycarbonate Urethane Total Meniscus Replacement in a Goat Model.

    Directory of Open Access Journals (Sweden)

    A C T Vrancken

    Full Text Available Since the treatment options for symptomatic total meniscectomy patients are still limited, an anatomically shaped, polycarbonate urethane (PCU, total meniscus replacement was developed. This study evaluates the in vivo performance of the implant in a goat model, with a specific focus on the implant location in the joint, geometrical integrity of the implant and the effect of the implant on synovial membrane and articular cartilage histopathological condition.The right medial meniscus of seven Saanen goats was replaced by the implant. Sham surgery (transection of the MCL, arthrotomy and MCL suturing was performed in six animals. The contralateral knee joints of both groups served as control groups. After three months follow-up the following aspects of implant performance were evaluated: implant position, implant deformation and the histopathological condition of the synovium and cartilage.Implant geometry was well maintained during the three month implantation period. No signs of PCU wear were found and the implant did not induce an inflammatory response in the knee joint. In all animals, implant fixation was compromised due to suture breakage, wear or elongation, likely causing the increase in extrusion observed in the implant group. Both the femoral cartilage and tibial cartilage in direct contact with the implant showed increased damage compared to the sham and sham-control groups.This study demonstrates that the novel, anatomically shaped PCU total meniscal replacement is biocompatible and resistant to three months of physiological loading. Failure of the fixation sutures may have increased implant mobility, which probably induced implant extrusion and potentially stimulated cartilage degeneration. Evidently, redesigning the fixation method is necessary. Future animal studies should evaluate the improved fixation method and compare implant performance to current treatment standards, such as allografts.

  16. Synthesis and antioxidant activity of star-shape phenolic antioxidants catalyzed by acidic nanocatalyst based on reduced graphene oxide.

    Science.gov (United States)

    Golestanzadeh, Mohsen; Naeimi, Hossein; Zahraie, Zohreh

    2017-02-01

    Phenolic antioxidants play important role in prevention of oxidation in different industrials. The research objective in the current study was synthesis and evaluate of antioxidant activity of star-shape phenolic antioxidants. The synthetic compounds were prepared in the presence of sulfonated reduced graphene oxide. The antioxidant activity of synthesized compounds was investigated by spectrophotometrically method according to the DPPH assay. Overall, these compounds are potentially important antioxidant and also to limit activity of reactive oxygen species. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch

    Directory of Open Access Journals (Sweden)

    Haihua Hu

    2014-03-01

    Full Text Available Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM. The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.

  18. Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume

    Directory of Open Access Journals (Sweden)

    Prescilla Perrichon

    2017-07-01

    Full Text Available Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the “standard” prolate spheroid model as well as a cylinder and cone tip + cylinder model applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30–50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function—especially if stroke volume is the focus of the study—should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output.

  19. A two-dimensional analytical model and experimental validation of garter stitch knitted shape memory alloy actuator architecture

    Science.gov (United States)

    Abel, Julianna; Luntz, Jonathan;