WorldWideScience

Sample records for active safety systems

  1. Future testing of active safety systems

    NARCIS (Netherlands)

    Hendriks, F.M.; Pelders, H.A.A.W.

    2010-01-01

    Active safety systems are increasingly becoming available in trucks and passenger vehicles. Developments in the field of active safety are shifting from increasing driver comfort towards increasing occupant safety. Furthermore, this shift is seen within active safety systems: safety functions are ad

  2. Prestandardisation Activities for Computer Based Safety Systems

    DEFF Research Database (Denmark)

    Taylor, J. R.; Bologna, S.; Ehrenberger, W.;

    1981-01-01

    Questions of technical safety become more and more important. Due to the higher complexity of their functions computer based safety systems have special problems. Researchers, producers, licensing personnel and customers have met on a European basis to exchange knowledge and formulate positions....... The Commission of the european Community supports the work. Major topics comprise hardware configuration and self supervision, software design, verification and testing, documentation, system specification and concurrent processing. Preliminary results have been used for the draft of an IEC standard and for some...

  3. Development of a Safety Assessment Information System for the Management of Periodic Safety Assessment Activities

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Young [Nuclear Engineering and Technology Institute, Daejeon (Korea, Republic of)

    2007-07-01

    At present, the 10-year Periodic Safety Review(PSR) has been performing to confirm all the aspects of safety issues for all the operating plants in compliance with domestic nuclear law of article 23, subarticle 3. For each plant, in addition, Probabilistic Safety Assessment(PSA) and Severe Accident Management Guideline(SAMG) are being implemented and revised periodically to reflect the latest safety level according to principle fulfillment of severe accident policy statement. The assessment reports, as one of outcomes from these activities, are submitted into and reviewed by domestic regulatory body. During reviewing (in-office duty) and licensing (regulatory duty) process, a large number of outcomes of which most are the formal technical reports and licensing materials, are inevitably produced. Moreover, repeated review process over the plants can make them accumulated and produce a variety of documents additionally. This circumstance motivates to develop effective tool or system for the management of these reports and related technical documents for the future use in licensing process and for subsequent plant assessments. This paper presents the development status of Safety Assessment Information System(SAIS) which manages safety-related documents of PSR, PSA and SAMG for practical use for experienced engineers in charge of these areas.

  4. EC-sponsored research activities on innovative passive safety systems

    International Nuclear Information System (INIS)

    On April 26th 1994, the European Union (EU) adopted via a Council Decision a EURATOM Multiannual Programme for community activities in the field of Nuclear Fission Safety (NFS) Research for the period 1994 to 1998. An area of work having, as an objective, to 'explore innovative approaches' to improve the safety of future and existing reactors, was introduced in this programme. Most of the projects selected in this area, which have been grouped under a common cluster known as 'INNO', are currently being carried out on a 'cost-shared' basis, i.e. contribution of the European Commission is up to 50% of the total cost. At present, the 'INNO' cluster is composed of 10 projects in which 25 different organisations, representing research centres, universities, regulators, utilities and vendors from 7 EU member states and Switzerland, are involved. These projects are proving to be an efficient means to gain the necessary phenomenological knowledge and to solve the challenging problems, many times of generic nature, posed among others by the characteristically small driving forces of the systems studied and by the lack of really prototypical test facilities. (author)

  5. 78 FR 50079 - Information Collection Activities: Safety and Environmental Management Systems (SEMS); Proposed...

    Science.gov (United States)

    2013-08-16

    ... Bureau of Safety and Environmental Enforcement [Docket ID BSEE-2013-0005; OMB Control Number 1014-0017: 134E1700D2 EEEE500000 ET1SF0000.DAQ000] Information Collection Activities: Safety and Environmental Management Systems (SEMS); Proposed Collection; Comment Request Correction In notice document...

  6. Handbook of driver assistance systems basic information, components and systems for active safety and comfort

    CERN Document Server

    Hakuli, Stephan; Lotz, Felix; Singer, Christina

    2016-01-01

    This fundamental work explains in detail systems for active safety and driver assistance, considering both their structure and their function. These include the well-known standard systems such as Anti-lock braking system (ABS), Electronic Stability Control (ESC) or Adaptive Cruise Control (ACC). But it includes also new systems for protecting collisions protection, for changing the lane, or for convenient parking. The book aims at giving a complete picture focusing on the entire system. First, it describes the components which are necessary for assistance systems, such as sensors, actuators, mechatronic subsystems, and control elements. Then, it explains key features for the user-friendly design of human-machine interfaces between driver and assistance system. Finally, important characteristic features of driver assistance systems for particular vehicles are presented: Systems for commercial vehicles and motorcycles.

  7. Perspective on Secure Development Activities and Features of Safety I and C Systems

    International Nuclear Information System (INIS)

    The Enforcement Decree of the Act on Physical Protection and Radiological Emergency (ED-APPRE) was revised December 2013 to include security requirements on computer systems at nuclear facilities to protect those systems against malicious cyber-attacks. It means Cyber-Security-related measures, controls and activities of safety I and C systems against cyber-attacks shall meet the requirements of ED-APPRE. Still regulation upon inadvertent access or non-malicious modifications to the safety I and C systems is covered under the Nuclear Safety Act. The objective of this paper is to propose KINS' regulatory perspective on secure development and features against non-malicious access or modification of safety I and C systems. Secure development activities and features aim to prevent inadvertent and non-malicious access, and to prevent unwanted action from personnel or connected systems for ensuring reliable operation of safety I and C systems. Secure development activities of safety I and C systems are life cycle activities to ensure unwanted, unneeded and undocumented code is not incorporated into the systems. Secure features shall be developed, verified and qualified throughout the development life cycle

  8. Perspective on Secure Development Activities and Features of Safety I and C Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Youngdoo; Yu, Yeong Jin; Kim, Hyungtae; Kwon, Yong il; Park, Yeunsoo; Choo, Jaeyul; Son, Jun Young; Jeong, Choong Heui [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The Enforcement Decree of the Act on Physical Protection and Radiological Emergency (ED-APPRE) was revised December 2013 to include security requirements on computer systems at nuclear facilities to protect those systems against malicious cyber-attacks. It means Cyber-Security-related measures, controls and activities of safety I and C systems against cyber-attacks shall meet the requirements of ED-APPRE. Still regulation upon inadvertent access or non-malicious modifications to the safety I and C systems is covered under the Nuclear Safety Act. The objective of this paper is to propose KINS' regulatory perspective on secure development and features against non-malicious access or modification of safety I and C systems. Secure development activities and features aim to prevent inadvertent and non-malicious access, and to prevent unwanted action from personnel or connected systems for ensuring reliable operation of safety I and C systems. Secure development activities of safety I and C systems are life cycle activities to ensure unwanted, unneeded and undocumented code is not incorporated into the systems. Secure features shall be developed, verified and qualified throughout the development life cycle.

  9. Analysis of the reliability of the active injection safety systems of Angra I

    International Nuclear Information System (INIS)

    The reliability of the active emergency core cooling systems of Angra I nuclear power plant is evaluated. The fault tree analysis is employed. The unavailability of the above cited systems, is calculated. A parametric sensitivity analysis has been performed, due to the existing scattering in the failure and repair rate data of these system's components. The minimal cut sets were determined and, as a final step, a reliability importance analysis has been performed. This final step has required the development of a computer program. The methodology and data from the 'Reactor Safety Study' (Wash-1400) (in which the reliability of safety systems of a tipical PWR plant is calculated), is employed. The unavailability values for the safety systems analysed are too low, thus showing that in most cases the systems analysed are available to mitigate the effects of a loss-of-coolant accident. (Author)

  10. Benchmarking promotion and deployment activities regarding intelligent vehicle safety systems in the EU

    NARCIS (Netherlands)

    Kievit, M. de; Malone, K.M.; Zwijnenberg, H.; Arem, B. van

    2008-01-01

    This paper presents the results of a Benchmarking study performed in the European Union on Awareness and Promotion & Deployment activities related to Intelligent Vehicle Safety (IVS) systems (1). The study, commissioned by the European Commission under the Intelligent Car Initiative (a i2010 flagshi

  11. Radiation safety audit system - safety perspectives

    International Nuclear Information System (INIS)

    In 2005 Safety and Health at the University of Western Australia (UWA) implemented a system of Radiation Safety Audits. The system was implemented to ensure complete audits were carried out annually for each section of the University with radiation safety issues. The audits cover those aspects of radiation safety regulated in the Radiation Safety Act of Western Australia and include high powered lasers, UV emitting devices, radioactive materials, x-ray machines. In relation to these there are regulated considerations for equipment registration, location of use and storage registration, licensing of individual to use radiation, training, documentation, working rules, personal monitoring, calibrations and supervision. Within the University there are University systems to control materials and equipment coming onto campus, risk assessment protocols required for each new project or type of work, local permits and waste disposal. UWA Safety and Health have an active role in delivering control of radiation safety and ensuring that safety systems are appropriate relevant and used in an immediate and useful manner. Safety and Health has importantly built a network of key people on campus, made sure they are assisted, valued and that the systems are seen as a way to improve efficiency in delivering real, relevant and useful radiation safety outcomes. The systems include uniform documentation across campus, clear expectations and an ongoing interest from Safety and Health to ensure the systems remain alive. This has allowed the audits to become efficient and effective both for the sections involved but also for Safety and health in its recording systems and improvement follow up process.

  12. System safety education focused on flight safety

    Science.gov (United States)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  13. Functional Safety for Safety-Related Systems: 10 Common Mistakes

    OpenAIRE

    Brissaud, Florent; Turcinovic, Didier

    2015-01-01

    International audience The functional safety is the part of the overall safety relating to equipment/ system/ installation and their control systems that depends on the correct functioning of the safety-related systems. Due to the critical role of safety-related systems for managing risks, international standards have been developed to provide guidelines and requirements for all their safety lifecycle activities. The IEC 61508 and IEC 61511 are now recognized all around the world and have ...

  14. Reactor system safety assurance

    International Nuclear Information System (INIS)

    The philosophy of reactor safety is that design should follow established and conservative engineering practices, there should be safety margins in all modes of plant operation, special systems should be provided for accidents, and safety systems should have redundant components. This philosophy provides ''defense in depth.'' Additionally, the safety of nuclear power plants relies on ''safety systems'' to assure acceptable response to design basis events. Operating experience has shown the need to study plant response to more frequent upset conditions and to account for the influence of operators and non-safety systems on overall performance. Defense in depth is being supplemented by risk and reliability assessment

  15. Waste safety activities

    International Nuclear Information System (INIS)

    Safety standards develop by the IAEA in the Safety Standard Series and other publication are reviewed. The Waste Safety Action plan includes: Action 1: Develop a common framework for the management and disposal of different types of radioactive waste, paying particular attention to large volumes of waste containing long-lived naturally occurring radionuclides. Action 2: Assess the safety implications of the extended storage of radioactive waste and of any future reconditioning which may be necessary and develop safety standards for the long-term storage of radioactive waste. Action 3: Promptly develop safety standards for geological disposal, addressing inter alia, issues of human intrusion, institutional control, retrievability, the content of the safety case and any implications of nuclear safeguards requirements for the design of the repositories. Action 4: Develop an internationally accepted and harmonized approach for controlling the removal of materials and sites from regulatory control. Action 5: Develop a structured and systematic programme to ensure adequate application of the Agency waste safety standards and facilitate their application in implementation of the Joint Convention. Action 6: Explore ways to ensure that information, knowledge and skills concerning radioactive waste management are made available to future generations. Action 7: Address the broader societal dimensions of radioactive waste management. Action 8: Review the new developments related to policies for the control of radioactive discharges to the environment, taking into account the availability and cost-effectiveness of discharge reduction technologies and the broader implications for radioactive waste management of reducing discharges. Action 9: Explore international mechanisms for facilitating the management of spent sealed radioactive sources. Some other activities as training courses and technical cooperation are also presented

  16. Systematic assessment of core assurance activities in a company specific food safety management system

    NARCIS (Netherlands)

    Luning, P.A.; Marcelis, W.J.; Rovira, J.; Spiegel, van der M.; Uyttendaele, M.; Jacxsens, L.

    2009-01-01

    The dynamic environment wherein agri-food companies operate and the high requirements on food safety force companies to critically judge and improve their food safety management system (FSMS) and its performance. The objective of this study was to develop a diagnostic instrument enabling a systemati

  17. Modeling and Simulation of integrated steering and braking control for vehicle active safety system

    Directory of Open Access Journals (Sweden)

    Beibei Zhang

    2011-03-01

    Full Text Available Active chassis systems like braking, steering, suspension and propulsion systems are increasingly entering the market. In addition to their basic functions, these systems may be used for functions of integrated vehicle dynamics control. An experimental platform which aims to study the integration control of steering and braking is designed due to the research requirement of vehicle active safety control strategy in this paper. A test vehicle which is equipped with the systems of steer-by-wire and brake-bywire is provided and the Autobox, combined with Matlab/simulink and MSCCarsim, is used to fulfill the RCP (Rapid Control Prototyping and HIL (Hardware-in-loop. The seven-freedom vehicle model is constructed first and the approach of vehicle parameters estimation based on the Extended Kalman Filter (EKF is proposed. Testing the vehicle state through the sensor has its own disadvantage that the cost is high and easily affected by environment outside. To find a actual method of receiving the vehicle state using the ready-made sensors in vehicle, the researchers put forward various estimation method, of which have advantages and disadvantages. Based on the above, this paper applies the EKF to estimate the vehicle state, making the actual estimation come true. The primary control methods and controller designment is carried out to prove the validation of the platform.

  18. Instructional Resources Monograph Series: Safety in Wastewater Treatment Systems. Selected Instructional Activities and References.

    Science.gov (United States)

    Coon, Herbert L.

    Described are instructional and reference materials that may be useful to managers, supervisors, foremen and others who are interested in the safety education of workers in wastewater systems. Emphasis is upon items relevant to the development and presentation of wastewater treatment training programs. Part I contains descriptions and excerpts…

  19. Reactor safety systems

    International Nuclear Information System (INIS)

    The spectrum of possible accidents may become characterized by the 'maximum credible accident', which will/will not happen. Similary, the performance of safety systems in a multitude of situations is sometimes simplified to 'the emergency system will/will not work' or even 'reactors are/ are not safe'. In assessing safety, one must avoid this fallacy of reducing a complicated situation to the simple black-and-white picture of yes/no. Similarly, there is a natural tendency continually to improve the safety of a system to assure that it is 'safe enough'. Any system can be made safer and there is usually some additional cost. It is important to balance the increased safety against the increased costs. (orig.)

  20. IAEA Safety Standards on Management Systems and Safety Culture

    Directory of Open Access Journals (Sweden)

    K.D. Persson

    2007-01-01

    Full Text Available The IAEA has developed a new set of Safety Standards for applying an integrated Management System for facilities and activities. The objective of the new Safety Standards is to define requirements and provide guidance for establishing, implementing, assessing and continually improving a Management System that integrates safety, health, environmental, security, quality and economic related elements to ensure that safety is properly taken into account in all the activities of an organization. With an integrated approach to management systems it is also necessary to include the aspect of culture, where the organizational culture and safety culture is seen as crucial elements of the successful implementation of this management system and the attainment of all the goals and particularly the safety goals of the organization. The IAEA has developed a set of services aimed at assisting it’s Member States in establishing, implementing, assessing and continually improving an integrated management system.

  1. IAEA Safety Standards on Management Systems and Safety Culture

    International Nuclear Information System (INIS)

    The IAEA has developed a new set of Safety Standard for applying an integrated Management System for facilities and activities. The objective of the new Safety Standards is to define requirements and provide guidance for establishing, implementing, assessing and continually improving a Management System that integrates safety, health, environmental, security, quality and economic related elements to ensure that safety is properly taken into account in all the activities of an organization. With an integrated approach to management system it is also necessary to include the aspect of culture, where the organizational culture and safety culture is seen as crucial elements of the successful implementation of this management system and the attainment of all the goals and particularly the safety goals of the organization. The IAEA has developed a set of service aimed at assisting it's Member States in establishing. Implementing, assessing and continually improving an integrated management system. (author)

  2. A phase II, multicenter, open-label study evaluating dosing and preliminary safety and efficacy of canakinumab in systemic juvenile idiopathic arthritis with active systemic features

    NARCIS (Netherlands)

    Ruperto, Nicolino; Quartier, Pierre; Wulffraat, Nico; Woo, Patricia; Ravelli, Angelo; Mouy, Richard; Bader-Meunier, Brigitte; Vastert, Sebastiaan J.; Noseda, Emanuele; D'Ambrosio, Daniele; Lecot, Jean; Chakraborty, Abhijit; Martini, Alberto; Chioato, Andrea

    2012-01-01

    Objective To assess dosing, preliminary safety, and efficacy of canakinumab, a fully human antiinterleukin-1 beta (antiIL-1 beta) antibody, in children with systemic juvenile idiopathic arthritis (JIA) and active systemic features. Methods. In this phase II, multicenter, openlabel, dosage-escalation

  3. Safety analysis and review system

    International Nuclear Information System (INIS)

    Westinghouse Savannah River Company (WSRC) has developed a comprehensive Safety Analysis and Review System that satisfies Department of Energy safety analysis report requirements. This system consists of interrelated criteria for hazard classification, risk assessment, selection of Safety Class Items (SCIs), and selection of Operational Safety Requirements (OSRs). The system provides input for design decisions at appropriate project milestones as required by the life cycle of a project. The criteria used for selection in hazard classification, risk assessment, Safety Class Items (SCI) identification, and Operational Safety Requirement (OSR) identification are the subject of this paper

  4. Systems engineered health and safety criteria for safety analysis reports

    International Nuclear Information System (INIS)

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  5. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    Science.gov (United States)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  6. Safety in networks and systems

    International Nuclear Information System (INIS)

    State authorities have set safety criteria in the field of information technology as standard. A specific research and development direction has been initiated in order to fulfil these standards. At Siemens it is called ''network and system safety''. This edition of the Siemens magazine Special Research and Development gives an overview of the research and development works carried out in order to guarantee safety and reliability of Siemens products and systems. Computer networks, chips, fax coding, safety of railway signalling technique, control technology, telecommunication and safety control technique in nuclear power plants. (DG)

  7. Safety logic systems of PFBR

    International Nuclear Information System (INIS)

    Full text : PFBR is provided with two independent, fast acting and diverse shutdown systems to detect any abnormalities and to initiate safety action. Each system consists of sensors, signal processing systems, logics, drive mechanisms and absorber rods. The absorber rods of the first system are Control and Safety Rods (CSR) and that of the second are called as Diverse Safety Rods (DSR). There are nine CSR and three DSR. While CSR are used for startup, control of reactor power, controlled shutdown and SCRAM, the DSR are used only for SCRAM. The respective drive mechanisms are called as CSRDM and DSRDM. Each of these two systems is capable of executing the shutdown satisfactorily with single failure criteria. Two independent safety logic systems based on diverse principles have been designed for the two shut down systems. The analog outputs of the sensors of Core Monitoring Systems comprising of reactor flux monitoring, core temperature monitoring, failed fuel detection and core flow monitoring systems are processed and converted into binary signals depending on their instantaneous values. Safety logic systems receive the binary signals from these core-monitoring systems and process them logically to protect the reactor against postulated initiating events. Neutronic and power to flow (P/Q) signals form the inputs to safety logic system-I and temperature signals are inputs to the safety logic system II. Failed fuel detection signals are processed by both the shut down systems. The two logic systems to actuate the safety rods are also based on two diverse designs and implemented with solid-state devices to meet all the requirements of safety systems. Safety logic system I that caters to neutronic and P/Q signals is designed around combinational logic and has an on-line test facility to detect struck at faults. The second logic system is based on dynamic logic and hence is inherently safe. This paper gives an overview of the two logic systems that have been

  8. CDC STATE System Tobacco Legislation - Fire Safety

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Fire-Safety. The STATE...

  9. The Evolution of System Safety at NASA

    Science.gov (United States)

    Dezfuli, Homayoon; Everett, Chris; Groen, Frank

    2014-01-01

    The NASA system safety framework is in the process of change, motivated by the desire to promote an objectives-driven approach to system safety that explicitly focuses system safety efforts on system-level safety performance, and serves to unify, in a purposeful manner, safety-related activities that otherwise might be done in a way that results in gaps, redundancies, or unnecessary work. An objectives-driven approach to system safety affords more flexibility to determine, on a system-specific basis, the means by which adequate safety is achieved and verified. Such flexibility and efficiency is becoming increasingly important in the face of evolving engineering modalities and acquisition models, where, for example, NASA will increasingly rely on commercial providers for transportation services to low-earth orbit. A key element of this objectives-driven approach is the use of the risk-informed safety case (RISC): a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is or will be adequately safe for a given application in a given environment. The RISC addresses each of the objectives defined for the system, providing a rational basis for making informed risk acceptance decisions at relevant decision points in the system life cycle.

  10. Safety culture and quality system

    International Nuclear Information System (INIS)

    The purpose of this paper is to present the findings of the study conducted by a group of experts from EDF corporate departments on the conditions of the development of safety culture in the French nuclear power plants. The recommendations included in INSAG 4 sound rather like requirements concerning both the desirable attitudes of players and the operation of the organizations. The working group, referring to corporate and French culture, has deemed that the major leverage for cultural development was learning and understanding organization throughout its evolution. The quality system is one of the tools. Such a proposal should be placed against the background of some milestones of French nuclear power plant history. During the development phase, industrial challenge and safety requirements have led to putting a premium on the principles of industrial quality, on structured methods, working procedures, provisional risk and operating sequence analyses which resulted in effective mastery of technology and process. Within this strategy of production organization, human behaviour has been directed by strict guidelines and during this period, man has been perceived as a potential failure inducer. Quality remains the outstanding feature of nuclear industry. Design and plant operations activities as well as human behaviour are governed by quality requirements whose implementation methods are described in the QA manual. During this period, the structuring logics have been implementation, deviation, error. Currently, public opinion, safety authorities, government authorities, the nuclear industry itself are stepping up pressure on safety requirements and we are exploring paths of progress in the enhancement of human and organizational possibilities and resources. The ongoing in-depth transformation of the organization concerns operating methods, structures and management mode. A systemic approach should be a contributing factor to the reliability of this programme. This

  11. 77 FR 11120 - Patient Safety Organizations: Voluntary Relinquishment From UAB Health System Patient Safety...

    Science.gov (United States)

    2012-02-24

    ... mission and primary activity is to conduct activities to improve patient safety and the quality of health... Relinquishment From UAB Health System Patient Safety Organization AGENCY: Agency for Healthcare Research and... relinquishment from the UAB Health System Patient Safety Organization of its status as a Patient......

  12. Analgesic activity and safety of ash of silver used in Indian system of medicine in mice: A reverse pharmacological study

    Directory of Open Access Journals (Sweden)

    Deep Inder

    2012-01-01

    Full Text Available Objective: To study the analgesic activity of ash of silver used in Indian system of medicine and to explore its safety. Materials and Methods: Albino mice of either sex (20-30 gm were used to investigate the role of ash of silver against noxious stimuli: thermal (Eddy′s hot plate and analgesiometer, mechanical (tail clip, and chemical (0.6% acetic acid induced writhing. An effort was made to find nature and site of action of ash of silver following naloxone pre-treatment. Maximum tolerated dose (MTD and lethal dosage 50 (LD50 were also studied along with toxicological aspects of ash of silver. Results: Test drug (ash of silver at a dose of 50 mg/kg p.o exhibited analgesic activity against thermal, mechanical, and chemical stimuli. Analgesic effects were compared with the standard drug, morphine, in thermal and mechanical noxious stimuli and to aspirin in chemical stimulus. Analgesic activity of the test drug was reduced following naloxone pre-treatment. MTD was found out to be greater than 1.5 g/kg p.o. LD50 was 2 g/kg p.o. Fraction of mice showed symptoms of argyria as explained by autopsy reports. Conclusion: Test drug exhibited moderate analgesic activity at 50 mg/kg p.o against all type of noxious stimuli, also suggesting a role of opioidergic system. The ash of silver was been found to be safe upto a dose of 1.5 g/kg p.o. in mice without any untoward toxicity. Further studies are required to explore the effect of ash of silver on pain mediators and excitatory neurotransmitters like glutamate, aspartate, or N-methyl-D-aspartic acid (NMDA.

  13. Specialists' meeting on passive and active safety features of LMFRs

    International Nuclear Information System (INIS)

    The objective of the meeting was to discuss and exchange information on passive and active safety concepts and to find some reasonable coupling of these concept, aiming at firmer establishment of plant safety and at the same time of plant cost reduction. The following main topical areas were discussed by delegates: (1) Overview - review of national status on the safety design approaches of LMFRs (2) Safety characteristics of decay heat removal system (DHRS) (3) Safety characteristics of reactor protection system (RPS) and reactor shutdown system (RSS) (4) Core safety characteristics

  14. Software Safety Risk in Legacy Safety-Critical Computer Systems

    Science.gov (United States)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  15. System safety education focused on system management

    Science.gov (United States)

    Grose, V. L.

    1971-01-01

    System safety is defined and characteristics of the system are outlined. Some of the principle characteristics include role of humans in hazard analysis, clear language for input and output, system interdependence, self containment, and parallel analysis of elements.

  16. IAEA Activities on Education and training in Radiation and Waste Safety: Strategic approach for a sustainable system

    International Nuclear Information System (INIS)

    The statutory safety functions of the International Atomic Energy(IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place, enabling the Government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. the IAEA education and training activities follow the resolutions of its General Conference and reflect the latest IAEA standards and guidance. Several General Conference resolutions have emphasized the importance of education and training (e. g. GC(XXXV)/RES/552 in 1991; GC(XXXVI)/RES/584 in 1992; GC(43)/RES/13 in 1999 and more recently GC(44)/RES/13 in 2000). In response to GC(44)/RES/13, the IAEA prepared a Strategic Approach to Education and Training in Radiation and Waste Safety (Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in its Member States. This Strategy was endorsed by the General Conference resolution GC(45)/RES/10C that, inter alia, urged the Secretariat to implement the Strategy on Education and Training, and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member States national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. A technical meeting was held in Vienna in March 2002 and concluded with an action plan for implementing the strategy up to 2010, the immediate action being the formation of a Steering Committee by the middle of 2002. This Steering Committee has the general remit to advise on the development and implementation of the strategy, as well as monitoring its progress. The first technical meeting of the Steering Committee took place on 25

  17. System safety management lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Piatt, J.A.

    1989-05-01

    The Assistant Secretary of the Army for Research, Development and Acquisition directed the Army Safety Center to provide an audit of the causes of accidents and safety of use restrictions on recently fielded systems by tracking residual hazards back through the acquisition process. The objective was to develop ''lessons learned'' that could be applied to the acquisition process to minimize mishaps in fielded systems. System safety management lessons learned are defined as Army practices or policies, derived from past successes and failures, that are expected to be effective in eliminating or reducing specific systemic causes of residual hazards. They are broadly applicable and supportive of the Army structure and acquisition objectives. 29 refs., 7 figs.

  18. CERN Safety System Monitoring - SSM

    CERN Document Server

    Hakulinen, T; Valentini, F; Gonzalez, J; Salatko-Petryszcze, C

    2011-01-01

    CERN SSM (Safety System Monitoring) [1] is a system for monitoring state-of-health of the various access and safety systems of the CERN site and accelerator infrastructure. The emphasis of SSM is on the needs of maintenance and system operation with the aim of providing an independent and reliable verification path of the basic operational parameters of each system. Included are all network-connected devices, such as PLCs, servers, panel displays, operator posts, etc. The basic monitoring engine of SSM is a freely available system-monitoring framework Zabbix [2], on top of which a simplified traffic-light-type web-interface has been built. The web-interface of SSM is designed to be ultra-light to facilitate access from handheld devices over slow connections. The underlying Zabbix system offers history and notification mechanisms typical of advanced monitoring systems.

  19. Lightning Safety and Outdoor Sports Activities

    Science.gov (United States)

    ... Services Contact Us Glossary Lightning Safety and Outdoor Sports Activities I t’s a common situation — a thunderstorm ... associated with outdoor recreational activities. Officials responsible for sports outdoor activities need to understand thunderstorms and lightning ...

  20. System safety education focused on industrial engineering

    Science.gov (United States)

    Johnston, W. L.; Morris, R. S.

    1971-01-01

    An educational program, designed to train students with the specific skills needed to become safety specialists, is described. The discussion concentrates on application, selection, and utilization of various system safety analytical approaches. Emphasis is also placed on the management of a system safety program, its relationship with other disciplines, and new developments and applications of system safety techniques.

  1. Firefighter Safety for PV Systems

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Sera, Dezso; Spataru, Sergiu;

    2015-01-01

    An important and highly discussed safety issue for photovoltaic (PV) systems is that as long as the PV panels are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters that is independent of the state of the inverter's dc disconnection switc....... The presence of these energized conductors on the dc side of the PV system can pose a danger to anyone performing maintenance or firefighting....

  2. CANDU safety analysis system establishment

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo; Rhee, B. W.; Park, J. H.; Kim, H. T.; Choi, H. B.; Shim, J. I.; Yoon, C.; Yang, M. K

    2002-03-01

    To develop CANDU safety analysis system, methodology, and assessment technology, GAIs from CNSC and GSIs drived by IAEA are summarized. Furthermore, the following safety items are investigated in the present study. - It is intended to secure credibility of the void reactivity in the stage of nuclear design and analysis. The measurement data concerned with the void reactivity were reviewed and used to assess the physics code such as POWDERPUFS-V/RFSP, and the lattice code such as WIMS-AECL and MCNP-4B. - Reviewing the Final Safety Analysis Report for Wolsong-2/3/4 Units, the safety analysis methodology, classification for accident scenarios, safety analysis codes, their interface, etc. were examined. - The development of 3D CFD transient analysis model has been performed to predict local subcooling of the moderator in the vicinity of Calandria tubes in a CANDU-6 reactor in the case of Large LOCA transient. - The trip coverage analysis methodology based on CATHENA code is developed. The simulation of real plant transient showed good agreement. The trip coverage map was generated successfully for two typical depressurization and pressurization event. - The multi-dimensional analysis methodology for hydrogen distribution and hydrogen burning phenomena in PHWR containment is developed using GOTHIC code. The multi-dimensional analysis predicts the local hydrogen behaviour compared to the lumped parameter model.

  3. An Autonomous Flight Safety System

    Science.gov (United States)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  4. The ATLAS Detector Safety System

    CERN Multimedia

    Helfried Burckhart; Kathy Pommes; Heidi Sandaker

    The ATLAS Detector Safety System (DSS) has the mandate to put the detector in a safe state in case an abnormal situation arises which could be potentially dangerous for the detector. It covers the CERN alarm severity levels 1 and 2, which address serious risks for the equipment. The highest level 3, which also includes danger for persons, is the responsibility of the CERN-wide system CSAM, which always triggers an intervention by the CERN fire brigade. DSS works independently from and hence complements the Detector Control System, which is the tool to operate the experiment. The DSS is organized in a Front- End (FE), which fulfills autonomously the safety functions and a Back-End (BE) for interaction and configuration. The overall layout is shown in the picture below. ATLAS DSS configuration The FE implementation is based on a redundant Programmable Logical Crate (PLC) system which is used also in industry for such safety applications. Each of the two PLCs alone, one located underground and one at the s...

  5. Nuclear Safety for Space Systems

    Science.gov (United States)

    Offiong, Etim

    2010-09-01

    It is trite, albeit a truism, to say that nuclear power can provide propulsion thrust needed to launch space vehicles and also, to provide electricity for powering on-board systems, especially for missions to the Moon, Mars and other deep space missions. Nuclear Power Sources(NPSs) are known to provide more capabilities than solar power, fuel cells and conventional chemical means. The worry has always been that of safety. The earliest superpowers(US and former Soviet Union) have designed and launched several nuclear-powered systems, with some failures. Nuclear failures and accidents, however little the number, could be far-reaching geographically, and are catastrophic to humans and the environment. Building on the numerous research works on nuclear power on Earth and in space, this paper seeks to bring to bear, issues relating to safety of space systems - spacecrafts, astronauts, Earth environment and extra terrestrial habitats - in the use and application of nuclear power sources. It also introduces a new formal training course in Space Systems Safety.

  6. Recent Activities on Global Nuclear Safety Regime

    International Nuclear Information System (INIS)

    Recently, rapid progress on the globalization of the nuclear safety issues is being made in IAEA (International Atomic Energy Agency) and its member states. With the globalization, the need for international cooperation among international bodies and member states continues to grow for resolving these universal nuclear safety issues. Furthermore, the importance of strengthening the global nuclear safety regime is emphasized through various means, such as efforts in application of IAEA safety standards to all nuclear installations in the world and in strengthening the code of conduct and the convention on nuclear safety. In this regards, it is important for us to keep up with the activities related with the global nuclear safety regime as an IAEA member state and a leading country in nuclear safety regulation

  7. Safety Assessment for Facilities and Activities. General Safety Requirements

    International Nuclear Information System (INIS)

    This publication describes the generally applicable requirements to be fulfilled in safety assessments for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The requirements provide a consistent and coherent basis for safety assessments, facilitating the transfer of good practices between organizations. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication

  8. Active gated imaging for automotive safety applications

    Science.gov (United States)

    Grauer, Yoav; Sonn, Ezri

    2015-03-01

    The paper presents the Active Gated Imaging System (AGIS), in relation to the automotive field. AGIS is based on a fast gated-camera equipped with a unique Gated-CMOS sensor, and a pulsed Illuminator, synchronized in the time domain to record images of a certain range of interest which are then processed by computer vision real-time algorithms. In recent years we have learned the system parameters which are most beneficial to night-time driving in terms of; field of view, illumination profile, resolution and processing power. AGIS provides also day-time imaging with additional capabilities, which enhances computer vision safety applications. AGIS provides an excellent candidate for camera-based Advanced Driver Assistance Systems (ADAS) and the path for autonomous driving, in the future, based on its outstanding low/high light-level, harsh weather conditions capabilities and 3D potential growth capabilities.

  9. Integrated safety management system verification: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R.F.

    1998-08-12

    Department of Energy (DOE) Policy (P) 450.4, Safety Management System Policy, commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex. The DOE Acquisition Regulations (DEAR 48 CFR 970) requires contractors to manage and perform work in accordance with a documented Integrated Safety Management System. The Manager, Richland Operations Office (RL), initiated a combined Phase 1 and Phase 2 Integrated Safety Management Verification review to confirm that PNNL had successfully submitted a description of their ISMS and had implemented ISMS within the laboratory facilities and processes. A combined review was directed by the Manager, RL, based upon the progress PNNL had made in the implementation of ISM. This report documents the results of the review conducted to verify: (1) that the PNNL integrated safety management system description and enabling documents and processes conform to the guidance provided by the Manager, RL; (2) that corporate policy is implemented by line managers; (3) that PNNL has provided tailored direction to the facility management; and (4) the Manager, RL, has documented processes that integrate their safety activities and oversight with those of PNNL. The general conduct of the review was consistent with the direction provided by the Under Secretary`s Draft Safety Management System Review and Approval Protocol. The purpose of this review was to provide the Manager, RL, with a recommendation to the adequacy of the ISMS description of the Pacific Northwest Laboratory based upon compliance with the requirements of 49 CFR 970.5204(-2 and -78); and, to provide an evaluation of the extent and maturity of ISMS implementation within the Laboratory. Further, this review was intended to provide a model for other DOE Laboratories. In an effort to reduce the time and travel costs associated with ISM verification the team agreed to conduct preliminary training and orientation electronically and by phone. These

  10. Safety Verification for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Zhang, Lijun; She, Zhikun; Ratschan, Stefan;

    2012-01-01

    The interplay of random phenomena and continuous dynamics deserves increased attention, especially in the context of wireless sensing and control applications. Safety verification for such systems thus needs to consider probabilistic variants of systems with hybrid dynamics. In safety verification...... hybrid systems and develop a general abstraction technique for verifying probabilistic safety problems. This gives rise to the first mechanisable technique that can, in practice, formally verify safety properties of non-trivial continuous-time stochastic hybrid systems. Moreover, being based...

  11. ILO activities in the area of chemical safety.

    Science.gov (United States)

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety.

  12. ILO activities in the area of chemical safety.

    Science.gov (United States)

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety. PMID:12909402

  13. 75 FR 4610 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-01-28

    ... Hazardous Materials Safety Administration (PHMSA) published a notice in the Federal Register (74 FR 61403... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous Materials Safety Administration. ACTION: Notice and request for...

  14. System safety assessment by maintenance indicator

    International Nuclear Information System (INIS)

    The Maintenance Indicator was applied to evaluate the safety of nuclear power plants. A method was proposed to evaluate the reliability for 'a function' required for the system safety from the viewpoint of maintenance. (author)

  15. FOOD SAFETY CONTROL SYSTEM IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Liu Wei-jun; Wei Yi-min; Han Jun; Luo Dan; Pan Jia-rong

    2007-01-01

    Most countries have expended much effort to develop food safety control systems to ensure safe food supplies within their borders. China, as one of the world's largest food producers and consumers,pays a lot of attention to food safety issues. In recent years, China has taken actions and implemented a series of plans in respect to food safety. Food safety control systems including regulatory, supervisory,and science and technology systems, have begun to be established in China. Using, as a base, an analysis of the current Chinese food safety control system as measured against international standards, this paper discusses the need for China to standardize its food safety control system. We then suggest some policies and measures to improve the Chinese food safety control system.

  16. Safety Trigger Conditions for Critical Autonomous Systems

    OpenAIRE

    Mekki-Mokhtar, Amina; Blanquart, Jean-Paul; Guiochet, Jérémie; Powell, David; Roy, Matthieu

    2012-01-01

    International audience A systematic process for eliciting safety trigger conditions is presented. Starting from a risk analysis of the monitored system, critical transitions to catastrophic system states are identified and handled in order to specify safety margins on them. The conditions for existence of such safety margins are given and an alternative solution is proposed if no safety margin can be defined. The proposed process is illustrated on a robotic rollator.

  17. Progress report: 1996 Radiation Safety Systems Division

    International Nuclear Information System (INIS)

    The activities of Radiation Safety Systems Division include (i) development of specialised monitoring systems and radiation safety information network, (ii) radiation hazards control at the nuclear fuel cycle facilities, the radioisotope programmes at Bhabha Atomic Research Centre (BARC) and for the accelerators programme at BARC and Centre for Advanced Technology (CAT), Indore. The systems on which development and upgradation work was carried out during the year included aerial gamma spectrometer, automated environment monitor using railway network, radioisotope package monitor and air monitors for tritium and alpha active aerosols. Other R and D efforts at the division included assessment of risk for radiation exposures and evaluation of ICRP 60 recommendations in the Indian context, shielding evaluation and dosimetry for the new upcoming accelerator facilities and solid state nuclear track detector techniques for neutron measurements. The expertise of the divisional members was provided for 36 safety committees of BARC and Atomic Energy Regulatory Board (AERB). Twenty three publications were brought out during the year 1996. (author)

  18. Intermediate probabilistic safety assessment approach for safety critical digital systems

    Energy Technology Data Exchange (ETDEWEB)

    Taeyong, Sung; Hyun Gook, Kang [Korea Atomic Energy Research Inst., Integrated Safety Assessment Team, Taejon (Korea, Republic of)

    2001-07-01

    Even though the conventional probabilistic safety assessment methods are immature for applying to microprocessor-based digital systems, practical needs force to apply it. In the Korea, UCN 5 and 6 units are being constructed and Korean Next Generation Reactor is being designed using the digital instrumentation and control equipment for the safety related functions. Korean regulatory body requires probabilistic safety assessment. This paper analyzes the difficulties on the assessment of digital systems and suggests an intermediate framework for evaluating their safety using fault tree models. The framework deals with several important characteristics of digital systems including software modules and fault-tolerant features. We expect that the analysis result will provide valuable design feedback. (authors)

  19. Scientific Opinion on the safety assessment of the active substances, sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulphate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, for use as active system in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-02-01

    Full Text Available This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, used in mixture which is packed into sachets for absorbing oxygen/carbon dioxide emitting from/into the headspace surrounding packed food. All substances of this formulation have been evaluated and approved for use as additives in plastic food contact materials or as food additives. No migration of calcium, iron and sodium ions was detected. No volatile organic compounds other than carbon dioxide were detected at the limit of detection of 0.5 μg/l. The CEF Panel concluded that the use of the substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water does not raise a safety concern when used in oxygen absorber/carbon dioxide emitter systems, in sachets that prevent the physical release of their contents into the food. The sachets are to be placed in the headspace of the packaging and as such may come into occasional contact with the food, e.g. during handling. The sachet should not come into direct contact with liquid foods or foods that have and external aqueous liquid phase on the surface (liquid or exudates.

  20. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    Safety design requirements for JSFR were summarized taking the development targets of FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF and basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global-standard. The development targets for safety and reliability are set based on that of FaCT. Namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth philosophy is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, 8) Design against external events. Current specific requirements for the each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop type large output power plant with mixed oxide fuelled core. (author)

  1. Digital control systems for nuclear criticality safety

    International Nuclear Information System (INIS)

    Nuclear fuel cycle facilities, like much of the nuclear industry, are increasingly relying on digital instrumentation and control (DI and C) systems such as programmable logic controllers (PLCs) to maintain system variables for both production and safety purposes. Fuel cycle manufacturing processes are increasingly automated and relying on active engineered controls. Compliance with the double contingency principle requires that DI and C trains credited for criticality safety are independent. The additional requirements imposed as part of performing an Integrated Safety Analysis (ISA) in accordance with Title 10 of the Code of Federal Regulations (10 CFR) Part 70, Subpart H, mean that such DI and C systems must meet more stringent requirements than would otherwise be required to meet industry standards. This paper discusses the current status of the U.S. Nuclear Regulatory Commission's (NRC's) Digital I and C Working Group, and the requirements that would be imposed on such systems are a result of having to comply with the double contingency principle and the performance requirements of 10 CFR 70.61. Existing applicable NRC Interim Staff Guidance is summarized, and several case studies from ISA technical reviews are presented. (authors)

  2. The PIANC Safety Factor System for Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2000-01-01

    The paper presents a summary of the recommendations for implementation of safety in breakwater designs given by the PIANC PTC IT Working Group No 12 on Analysis of Rubble Mound Breakwaters with Vertical and Inclined Concrete Walls. The working groups developed for the most important failure modes...... a system of partial safety factors which facilitate design to any target safety level....

  3. Probabilistic safety criteria at the safety function/system level

    International Nuclear Information System (INIS)

    A Technical Committee Meeting was held in Vienna, Austria, from 26-30 January 1987. The objectives of the meeting were: to review the national developments of PSC at the level of safety functions/systems including future trends; to analyse basic principles, assumptions, and objectives; to compare numerical values and the rationale for choosing them; to compile the experience with use of such PSC; to analyse the role of uncertainties in particular regarding procedures for showing compliance. The general objective of establishing PSC at the level of safety functions/systems is to provide a pragmatic tool to evaluate plant safety which is placing emphasis on the prevention principle. Such criteria could thus lead to a better understanding of the importance to safety of the various functions which have to be performed to ensure the safety of the plant, and the engineering means of performing these functions. They would reflect the state-of-the-art in modern PSAs and could contribute to a balance in system design. This report, prepared by the participants of the meeting, reviews the current status and future trends in the field and should assist Member States in developing their national approaches. The draft of this document was also submitted to INSAG to be considered in its work to prepare a document on safety principles for nuclear power plants. Five papers presented at the meeting are also included in this publication. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  4. Convoy Active Safety Technologies Warfighter Experiment I

    Science.gov (United States)

    Schoenherr, Edward; Theisen, Bernard L.; Animashaun, Asisat; Davis, James, Jr.; Day, Christopher

    2008-04-01

    The operational ability to project and sustain forces in distant, anti-access and area denial environments poses new challenges for combatant commanders. One of the new challenges is the ability to conduct sustainment operations at operationally feasible times and places on the battlefield. Combatant commanders require a sustainment system that is agile, versatile, and survivable throughout the range of military operations and across the spectrum of conflict. A key component of conducting responsive, operationally feasible sustainment operations is the ability to conduct sustainment convoys. Sustainment convoys are critical to providing combatant commanders the right support, at the right time and place, and in the right quantities, across the full range of military operations. The ability to conduct sustainment convoys in a variety of hostile environments require force protection measures that address the enemy threat and protect the Soldier. One cost effective, technically feasible method of increasing the force protection for sustainment convoys is the use of robotic follower technology and autonomous navigation. The Convoy Active Safety Technologies (CAST) system is a driver assist, convoy autopilot technology aimed to address these issues. Warfigher Experiment I, held at A.P. Hill, VA in the fall of 2007, tested the utility of this vehicle following technology not only in measures of system integrity and performance vs. manual driving, but also the physiological effects on the operators themselves. This paper will detail the Warfigher Experiment's methodology, analysis, results and conclusions.

  5. A philosophy for space nuclear systems safety

    International Nuclear Information System (INIS)

    The unique requirements and contraints of space nuclear systems require careful consideration in the development of a safety policy. The Nuclear Safety Policy Working Group (NSPWG) for the Space Exploration Initiative has proposed a hierarchical approach with safety policy at the top of the hierarchy. This policy allows safety requirements to be tailored to specific applications while still providing reassurance to regulators and the general public that the necessary measures have been taken to assure safe application of space nuclear systems. The safety policy used by the NSPWG is recommended for all space nuclear programs and missions

  6. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-11-17

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  7. Safety Verification for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Zhang, Lijun; She, Zhikun; Ratschan, Stefan;

    2010-01-01

    The interplay of random phenomena and continuous real-time control deserves increased attention for instance in wireless sensing and control applications. Safety verification for such systems thus needs to consider probabilistic variations of systems with hybrid dynamics. In safety verification...... hybrid systems and develop a general abstraction technique for verifying probabilistic safety problems. This gives rise to the first mechanisable technique that can, in practice, formally verify safety properties of non-trivial continuous-time stochastic hybrid systems-without resorting to point...

  8. Automation for System Safety Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  9. Report of safety of the characterizing system of radioactive waste

    International Nuclear Information System (INIS)

    Report of safety of the system of radioactive waste of the ININ: Installation, participant personnel, selection of the place, description of the installation, equipment. Proposed activities: operations with radioactive material, calibration in energy, calibration in efficiency, types of waste. Maintenance: handling of radioactive waste, physical safety. Organization: radiological protection, armor-plating, personal dosemeter, risks and emergency plan, environmental impact, medical exams. (Author)

  10. Qualification of safety-critical software for digital reactor safety system in nuclear power plants

    International Nuclear Information System (INIS)

    This paper describes the software qualification activities for the safety-critical software of the digital reactor safety system in nuclear power plants. The main activities of the software qualification processes are the preparation of software planning documentations, verification and validation (V and V) of the software requirements specifications (SRS), software design specifications (SDS) and codes, and the testing of the integrated software and integrated system. Moreover, the software safety analysis and software configuration management are involved in the software qualification processes. The V and V procedure for SRS and SDS contains a technical evaluation, licensing suitability evaluation, inspection and traceability analysis, formal verification, software safety analysis, and an evaluation of the software configuration management. The V and V processes for the code are a traceability analysis, source code inspection, test case and test procedure generation. Testing is the major V and V activity of the software integration and system integration phases. The software safety analysis employs a hazard operability method and software fault tree analysis. The software configuration management in each software life cycle is performed by the use of a nuclear software configuration management tool. Through these activities, we can achieve the functionality, performance, reliability, and safety that are the major V and V objectives of the safety-critical software in nuclear power plants. (author)

  11. Airline Safety Management: The development of a proactive safety mechanism model for the evolution of safety management system

    OpenAIRE

    Hsu, Yueh-Ling

    2004-01-01

    The systemic origins of many accidents have led to heightened interest in the way in which organisations identify and manage risks within the airline industry. The activities which are thought to represent the term "organisational accident", "safety culture" and "proactive approach" are documented and seek to explain the fact that airlines differ in their willingness and ability to conduct safety management. However, an important but yet relatively undefined task in the airline...

  12. Communication and Networking Techniques for Traffic Safety Systems

    OpenAIRE

    Chisalita, Ioan

    2006-01-01

    Accident statistics indicate that every year a significant number of casualties and extensive property losses occur due to traffic accidents. Consequently, efforts are directed towards developing passive and active safety systems that help reduce the severity of crashes, or prevent vehicles from colliding with one another. To develop these systems, technologies such as sensor systems, computer vision and vehicular communication have been proposed. Safety vehicular communication is defined as ...

  13. Opportunistic Sensing in Train Safety Systems

    NARCIS (Netherlands)

    Scholten, Hans; Bakker, Pascal

    2011-01-01

    Train safety systems are complex and expensive, and changing them requires huge investments. Changes are evolutionary and small. Current developments, like faster - high speed - trains and a higher train density on the railway network, have initiated research on safety systems that can cope with the

  14. 76 FR 65778 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2011-10-24

    ..., PHMSA published a notice with request for comments in the Federal Register (76 FR 45904). The notice... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice and...

  15. 77 FR 15453 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-03-15

    ..., PHMSA published a notice with request for comments in the Federal Register (76 FR 81013). The notice... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice and...

  16. 78 FR 55775 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2013-09-11

    ... 23, 2013, (78 FR 23972). PHMSA received one comment in response to that notice. PHMSA is publishing... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice and...

  17. Maintaining the Safety of Operational Health ICT Systems

    Science.gov (United States)

    Debenham, Alan

    In the context of increasing complexity and scope of computer systems used in the UK National Health Service, this paper describes the response a Foundation Trust hospital has made to the challenge. From a set of ICT activities which were founded on informal but capable principles, the expansion of the computer systems identified the need for improvements. This increasing awareness was present in the wider NHS, resulting in the publication of standards for applying safety management principles to health related software. This paper summarises the improvement measures taken across a number of areas, taking the safety case report as the focus for safety management activities.

  18. Recommendations for the LHC safety alarm system

    CERN Document Server

    Laeger, H

    1999-01-01

    A working group was set up to define the LHC safety alarm system, also known as Alarm-of-Level-3-System (AL3S). The mandate asked for recommendations to be elaborated on four items: the overall concept of the AL3S for machine and experiments, the transmission and display of safety alarms, the AL3S during civil engineering construction, and the transition from the present LEP to the final LHC safety alarm system. The members of the working group represented a wide range of interest and experience including the CERN Fire Brigade, safety officers from experiments and machines, and specialists for safety and control systems. The recommendations highlight the need for a clear definition of responsibilities and procedures, well-engineered homogeneous systems across CERN, and they point to several important issues outside the mandate of the working group. These recommendations were presented, discussed and accepted by several CERN and LHC committees.

  19. Computer system reliability safety and usability

    CERN Document Server

    Dhillon, BS

    2013-01-01

    Computer systems have become an important element of the world economy, with billions of dollars spent each year on development, manufacture, operation, and maintenance. Combining coverage of computer system reliability, safety, usability, and other related topics into a single volume, Computer System Reliability: Safety and Usability eliminates the need to consult many different and diverse sources in the hunt for the information required to design better computer systems.After presenting introductory aspects of computer system reliability such as safety, usability-related facts and figures,

  20. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    As a part of the conceptual design for Japan sodium-cooled fast reactor (JSFR), safety design requirements of JSFR is now being established in collaboration with JAEA, JAPC and MFBR. The basic safety approach is based on the development targets of a fast reactor cycle technology development (FaCT) project, i.e., the deterministic design approach based on the defense-in-depth philosophy, in which prevention and mitigation against BDBEs are considered as well as against DBEs, is supported by the probabilistic evaluations. In order to embody a safety design, a higher level safety principle was broken down into a set of design requirements for each safety related system, structure and component (SSC). This paper will present an output of the safety requirements for safety related SSCs of JSFR. In the course of this study, related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, development targets of FaCT project, goals of GIF and basic principle of INPRO etc. were taken into account to develop a next-generation global-standard safety requirements. It is stressed that preventive and mitigative measures against BDBEs shall be considered from early design stage. The attached figure shows outline of the safety requirements. The systems and components to be studied are divided: (1)core and fuel, (2) reactor vessel and its internal structures, (3) primary coolant system, (4) intermediate coolant system, (5) decay heat removal system, (6) reactor shutdown and reactivity control systems, (7)safety protection system, instrumentation and control systems, (8) electric power system, (9) fuel handling system, (10) steam and power conversion systems, (11) containment system and reactor building, (12) auxiliary systems. These requirements can also be categorized into some levels. Although the lower level expresses design requirements specific for JSFR, the higher level can be commonly applied to sodium cooled fast reactors. This paper will

  1. OBTAINING FOOD SAFETY BY APPLYING HACCP SYSTEM

    Directory of Open Access Journals (Sweden)

    ION CRIVEANU

    2012-01-01

    Full Text Available In order to increase the confidence of the trading partners and consumers in the products which are sold on the market, enterprises producing food are required to implement the food safety system HACCP,a particularly useful system because the manufacturer is not able to fully control finished products . SR EN ISO 22000:2005 establishes requirements for a food safety management system where an organization in the food chain needs to proove its ability to control food safety hazards in order to ensure that food is safe at the time of human consumption. This paper presents the main steps which ensure food safety using the HACCP system, and SR EN ISO 20000:2005 requirements for food safety.

  2. System safety management: A new discipline

    Science.gov (United States)

    Pope, W. C.

    1971-01-01

    The systems theory is discussed in relation to safety management. It is suggested that systems safety management, as a new discipline, holds great promise for reducing operating errors, conserving labor resources, avoiding operating costs due to mistakes, and for improving managerial techniques. It is pointed out that managerial failures or system breakdowns are the basic reasons for human errors and condition defects. In this respect, a recommendation is made that safety engineers stop visualizing the problem only with the individual (supervisor or employee) and see the problem from the systems point of view.

  3. Adoption of digital safety protection system in Japan

    International Nuclear Information System (INIS)

    The application of micro-processor-based digital controllers has been widely propagated among various industries in recent years. While in the nuclear power plant industry, the application of them has also been expanding gradually starting from non-safety related systems, taking advantage of their reliability and maintainability over the conventional analog devices. Based on the careful study of the feasibility of digital controllers to the safety protection system, the Tokyo Electric Power Company proposed on May 1989 the adoption of digital controllers to the safety protection system in the Application for Permission of Establishment of Kashiwazaki-Kariwa units 6 and 7 (ABWR-1350Mwe each). MITI, Ministry of International Trade and Industry, the Japanese regulatory body for electric power generating facilities, had approved this application after careful review. This paper describes a series of supporting activities leading to the MITI's approval of the digital safety protection system and the MITI's licensing activities. (author)

  4. Software reliability and safety in nuclear reactor protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  5. Software reliability and safety in nuclear reactor protection systems

    International Nuclear Information System (INIS)

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor

  6. Wireless information and safety system for mines

    Energy Technology Data Exchange (ETDEWEB)

    L.K. Bandyopadhyay; S.K. Chaulya; P.K. Mishra; A. Choure; B.M. Baveja [Central Institute of Mining and Fuel Research (CIMFR), Dhanbad (India)

    2009-02-15

    This study presents a wireless information and safety system for mines developed by CIMFR, Dhanbad. The system consists of hardware devices and application software. Hardware module is ZigBee-compliant active radio frequency identification (RFID) devices transceivers, which can be programmed to act as an end device (tag), router or coordinator that enables them to form an IEEE 802.15.4-based mesh network. It uses a unified wireless mesh-networking infrastructure to locate, trace and manage mobile assets and people as well as monitor different environmental conditions using sensors. Another core module is wireless sensor network (WSN) software, which is developed for tracking of underground miners and moveable equipment by wireless sensor networking in mines. Software is especially designed for tracking of miners and vehicles, route tracking in opencast mines, preventing fatal accidents and vehicle collisions, environmental monitoring, observing miners' unsafe practice, sending alert message, and preparing computerized miners' duty hours record.

  7. LOFT integral test system final safety analysis report

    International Nuclear Information System (INIS)

    Safety analyses are presented for the following LOFT Reactor systems: engineering safety features; support buildings and facilities; instrumentation and controls; electrical systems; and auxiliary systems. (JWR)

  8. Design study on safety protection system of JSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, N.; Chikazawa, Y.; Fujita, K. [Japan Atomic Energy Agency JAEA, 4002 Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Yamada, Y.; Okazaki, H. [Mitsubishi FBR Systems, Inc. MFBR (Japan); Suzuki, S. [Japan Atomic Power Company JAPC (Japan)

    2012-07-01

    Development of Japan Sodium-cooled Fast Reactor (JSFR) has been progressed in Fast Reactor Cycle Technology Development (FaCT) project aiming at realizing high level of safety, reliability and economic competitiveness. For JSFR, design consideration on safety protection system has also been performed, which is essential for reactor shutdown in the case of design basis events (DBEs). In the design activity, consideration of safety protection system includes logic circuits configuration, selection of trip signals, and its setting values for reactor trip. In addition, it is necessary to evaluate the performance of the safety protection system by safety analysis taking into account the comprehensive parameter ranges. For this purpose, it has been evaluated whether adequate reactor trip signals can be ensured for satisfying safety standard regarding the fuel integrity (e.g., maximum fuel clad temperature) for DBEs. In this paper, results obtained from the design study on safety protection system of JSFR is presented focusing on the evaluation results of satisfaction of safety protection system for representative events of transient over power (TOP), loss of coolant flow (LOF) and loss of heat sink (LOHS). (authors)

  9. Integrating system safety into the basic systems engineering process

    Science.gov (United States)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  10. Aviation Safety Reporting System: Process and Procedures

    Science.gov (United States)

    Connell, Linda J.

    1997-01-01

    The Aviation Safety Reporting System (ASRS) was established in 1976 under an agreement between the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). This cooperative safety program invites pilots, air traffic controllers, flight attendants, maintenance personnel, and others to voluntarily report to NASA any aviation incident or safety hazard. The FAA provides most of the program funding. NASA administers the program, sets its policies in consultation with the FAA and aviation community, and receives the reports submitted to the program. The FAA offers those who use the ASRS program two important reporting guarantees: confidentiality and limited immunity. Reports sent to ASRS are held in strict confidence. More than 350,000 reports have been submitted since the program's beginning without a single reporter's identity being revealed. ASRS removes all personal names and other potentially identifying information before entering reports into its database. This system is a very successful, proof-of-concept for gathering safety data in order to provide timely information about safety issues. The ASRS information is crucial to aviation safety efforts both nationally and internationally. It can be utilized as the first step in safety by providing the direction and content to informed policies, procedures, and research, especially human factors. The ASRS process and procedures will be presented as one model of safety reporting feedback systems.

  11. Safety aspect of digital reactor protection system in Japan

    International Nuclear Information System (INIS)

    It was early in 1980's that the digital controllers were first applied to nuclear power plant in japan. After that, their application area had been expanding gradually, reaching to the overall integrated digital system including the safety system in Kashiwazaki-Kariwa units 6 and 7. The software for computer-based systems has been produced using the graphical language ''POL'' in Japanese nuclear power plants. It is the fundamental principle that the reliability of the software should be assured through the properly managed quality assurance. The POL-based system is fitted to this principle. In applying POL-based systems to safety system, the MITI, Ministry of International Trade and Industry, identified the licensing issues as the regulatory body, while the utilities had developed the digital technology feasible to the safety application. Through the activities, a specific industrial design guide for the software important to safety was established and the adequacy of the technology was certified through the demonstration tests of the integrated system. In the safety examination of the digital reactor protection system of K-6/7, the application of POL were approved. The POL-based systems in nuclear power plants were successful design and production process of the POL-based systems. This paper describes the activities in licensing and maintaining the computer-based systems by the utilities and manufacturers as well as the MITI. (author)

  12. Proactive Management of Aviation System Safety Risk

    Data.gov (United States)

    National Aeronautics and Space Administration — Aviation safety systems have undergone dramatic changes over the past fifty years. If you take a look at the early technology in this area, you'll see that there...

  13. Database management systems for process safety

    International Nuclear Information System (INIS)

    Several elements of the process safety management regulation (PSM) require tracking and documentation of actions; process hazard analyses, management of change, process safety information, operating procedures, training, contractor safety programs, pre-startup safety reviews, incident investigations, emergency planning, and compliance audits. These elements can result in hundreds of actions annually that require actions. This tracking and documentation commonly is a failing identified in compliance audits, and is difficult to manage through action lists, spreadsheets, or other tools that are comfortably manipulated by plant personnel. This paper discusses the recent implementation of a database management system at a chemical plant and chronicles the improvements accomplished through the introduction of a customized system. The system as implemented modeled the normal plant workflows, and provided simple, recognizable user interfaces for ease of use

  14. A management system integrating radiation protection and safety supporting safety culture in the hospital

    International Nuclear Information System (INIS)

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. (authors)

  15. System for controlling child safety seat environment

    Science.gov (United States)

    Dabney, Richard W. (Inventor); Elrod, Susan V. (Inventor)

    2008-01-01

    A system is provided to control the environment experienced by a child in a child safety seat. Each of a plurality of thermoelectric elements is individually controllable to be one of heated and cooled relative to an ambient temperature. A first portion of the thermoelectric elements are positioned on the child safety seat such that a child sitting therein is positioned thereover. A ventilator coupled to the child safety seat moves air past a second portion of the thermoelectric elements and filters the air moved therepast. One or more jets coupled to the ventilator receive the filtered air. Each jet is coupled to the child safety seat and can be positioned to direct the heated/cooled filtered air to the vicinity of the head of the child sitting in the child safety seat.

  16. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  17. K West integrated water treatment system subproject safety analysis document

    International Nuclear Information System (INIS)

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System

  18. Classification of Aeronautics System Health and Safety Documents

    Data.gov (United States)

    National Aeronautics and Space Administration — Most complex aerospace systems have many text reports on safety, maintenance, and associated issues. The Aviation Safety Reporting System (ASRS) spans several...

  19. 77 FR 58616 - Pipeline Safety: Information Collection Activities, Revision to Gas Transmission and Gathering...

    Science.gov (United States)

    2012-09-21

    ... Systems'' and the ``Incident Report--Natural and Other Gas Transmission and Gathering Pipeline Systems... Safety: Information Collection Activities, Revision to Gas Transmission and Gathering Pipeline Systems... Natural Gas Association of America (INGAA)--Trade Association (11) Northeast Gas Association...

  20. SNS Accelerator Facility Target Safety and Non-Safety Control Systems

    International Nuclear Information System (INIS)

    The SNS is a proton accelerator facility that generates neutrons for scientific researchers by spallation of neutrons from a mercury target. The SNS became operational on April 28, 2006 with first beam on target at approximately 200 watts. The SNS accelerator, target, and conventional facilities controls are integrated by standardized hardware and software throughout the facility and were designed and fabricated to SNS conventions to ensure compatibility of systems with Experimental Physics Integrated Control System (EPICS). ControlLogix PLCs interface to instruments and actuators, and EPICS performs the high-level integration of the PLCs such that all operator control can be accomplished from the Central Control room using EPICS graphical screens that pass process variables to and from the PLCs. Three active safety systems were designed to industry standards ISA S84.01 and IEEE 603 to meet the desired reliability for these safety systems. The safety systems protect facility workers and the environment from mercury vapor, mercury radiation, and proton beam radiation. The facility operators operated many of the systems prior to beam on target and developed the operating procedures. The safety and non-safety control systems were tested extensively prior to beam on target. This testing was crucial to identify wiring and software errors and failed components, the result of which was few problems during operation with beam on target. The SNS has continued beam on target since April to increase beam power, check out the scientific instruments, and continue testing the operation of facility subsystems

  1. System Safety in an IT Service Organization

    Science.gov (United States)

    Parsons, Mike; Scutt, Simon

    Within Logica UK, over 30 IT service projects are considered safetyrelated. These include operational IT services for airports, railway infrastructure asset management, nationwide radiation monitoring and hospital medical records services. A recent internal audit examined the processes and documents used to manage system safety on these services and made a series of recommendations for improvement. This paper looks at the changes and the challenges to introducing them, especially where the service is provided by multiple units supporting both safety and non-safety related services from multiple locations around the world. The recommendations include improvements to service agreements, improved process definitions, routine safety assessment of changes, enhanced call logging, improved staff competency and training, and increased safety awareness. Progress is reported as of today, together with a road map for implementation of the improvements to the service safety management system. A proposal for service assurance levels (SALs) is discussed as a way forward to cover the wide variety of services and associated safety risks.

  2. Hybrid SIT for Passive Safety System

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Taesoon; Park, Choonkyung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The injection pressure of the current SIT is about 4 MPa. Therefore, the SIT is not available during a high pressure SBLOCA or Station Black Out (SBO) accident because the RCS pressure is higher than that of the SIT. In addition, the AC-powered High Pressure Safety Injection (HPSI) System driven by an emergency diesel generator is not available during a SBO accident. However, as the RCS mass inventory is continuously decreased by releasing steam through the pressurizer safety valves after reactor trip, a high pressure safety injection is needed to mitigate the accident.

  3. Safety assessment of high consequence robotics system

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D.G.; Atcitty, C.B.

    1996-08-01

    This paper outlines the use of a failure modes and effects analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, the weigh and leak check system, is to replace a manual process for weight and leakage of nuclear materials at the DOE Pantex facility. Failure modes and effects analyses were completed for the robotics process to ensure that safety goals for the systems have been met. Due to the flexible nature of the robot configuration, traditional failure modes and effects analysis (FMEA) were not applicable. In addition, the primary focus of safety assessments of robotics systems has been the protection of personnel in the immediate area. In this application, the safety analysis must account for the sensitivities of the payload as well as traditional issues. A unique variation on the classical FMEA was developed that permits an organized and quite effective tool to be used to assure that safety was adequately considered during the development of the robotic system. The fundamental aspects of the approach are outlined in the paper.

  4. A thematic approach to system safety

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, M.E.; Werner, P.W.; Covan, J.M.; D`Antonio, P.E.

    1997-12-01

    Sandia National Laboratories has refined a process for developing inherently safer system designs, based on methods used by the Laboratories to design detonation safety into nuclear weapons. The process was created when the Laboratories realized that standard engineering practices did not provide the level of safety assurance necessary for nuclear weapon operations, with their potential for catastrophic accidents. A systematic approach, which relies on mutually supportive design principles integrated through fundamental physical principles, was developed to ensure a predictably safe system response under a variety of operational and accident based stresses. Robust, safe system designs result from this thematic approach to safety, minimizing the number of safety critical features. This safety assurance process has two profound benefits: the process avoids the need to understand or limit the ultimate intensity of off normal environments and it avoids the requirement to analyze and test a bewildering and virtually infinite array of accident environment scenarios (e.g., directional threats, sequencing of environments, time races, etc.) to demonstrate conformance to all safety requirements.

  5. A thematic approach to system safety

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, M.E.; Werner, P.W.; Covan, J.M.; D`Antonio, P.E. [Sandia National Labs., Albuquerque, NM (United States)

    1998-12-01

    Sandia National Laboratories (Sandia) has refined a process for developing inherently safer system designs based on methods used by Sandia to design detonation safety into nuclear weapons. The process was created when Sandia realized that standard engineering practices did not provide the level of safety assurance necessary for nuclear weapon operations, with their potential for catastrophic accidents. A systematic approach, which relies on mutually supportive design principles integrated through fundamental physical principles, was developed to ensure a predictably safe system response under a variety of operational and accident-based stresses. Robust, safe system designs result from this thematic approach to safety, minimizing the number of safety critical features. This safety assurance process has two profound benefits: the process avoids the need to understand or limit the ultimate intensity of off-normal environments and it avoids the requirement to analyze and test a large array of accident environment scenarios (e.g., directional threats, sequencing of environments, time races, etc.) to demonstrate conformance to all safety requirements.

  6. Research reactor management. Safety improvement activities in HANARO

    International Nuclear Information System (INIS)

    Safety activities in HANARO have been continuously conducted to enhance its safe operation. Great effort has been placed on a normalization and improvement of the safety attitude of the regular staff and other employees working at the reactor and other experimental facilities. This paper introduces the activities on safety improvement that were performed over the last few years. (author)

  7. Safety Problems of Small Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Tchórzewska-Cieślak Barbara

    2016-07-01

    Full Text Available The paper presents issues related to risks associated with the operation of small water supply systems on the background of water consumer safety assessment made on the basis of risk analysis. Definition of water consumer safety loss as a risk associated with the water consumption of poor quality or water lack was proposed. For this purpose, a three-parameter matrix is implemented with the parameters of the probability of a representative accident scenario, the losses of the water consumers and their protection. Risk management, together with the implementation of protective barriers of small water supply system against threats is a fundamental condition for the continued operation of the system.

  8. Integrated safety management system verification: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R.F.

    1998-08-10

    Department of Energy (DOE) Policy (P) 450.4, Safety Management System Policy, commits to institutionalization of an Integrated Safety Management System (ISMS) throughout the DOE complex. The DOE Acquisition Regulations (DEAR, 48 CFR 970) requires contractors to manage and perform work in accordance with a documented Integrated Safety Management System (ISMS). Guidance and expectations have been provided to PNNL by incorporation into the operating contract (Contract DE-ACM-76FL0 1830) and by letter. The contract requires that the contractor submit a description of their ISMS for approval by DOE. PNNL submitted their proposed Safety Management System Description for approval on November 25,1997. RL tentatively approved acceptance of the description pursuant to a favorable recommendation from this review. The Integrated Safety Management System Verification is a review of the adequacy of the ISMS description in fulfilling the requirements of the DEAR and the DOE Policy. The purpose of this review is to provide the Richland Operations Office Manager with a recommendation for approval of the ISMS description of the Pacific Northwest Laboratory based upon compliance with the requirements of 49 CFR 970.5204(-2 and -78); and to verify the extent and maturity of ISMS implementation within the Laboratory. Further the review will provide a model for other DOE laboratories managed by the Office of Assistant Secretary for Energy Research.

  9. Building a safety case for a small sized product line of Fuel Level Display Systems

    OpenAIRE

    Gallucci, Antonio

    2013-01-01

    ISO 26262 is an international standard valid for the automotive domain. It regulates all the activities to perform for developing safety critical systems in such domain. To be compliant with ISO 26262, all the required activities have to be performed and all the required work products have to be provided. Furthermore, in addition to develop a system in a safe way, following the safety standard guidelines, the achieved safety has also to be demonstrated. This is done through a safety case, a s...

  10. The plus for the safety. Active arcing faults protection in switchgears; Das Plus fuer die Sicherheit. Aktiver Stoerlichtbogenschutz in Schaltanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, Dirk; Brandt, Andreas; Aschenbroich, Ulrich [ABB AG Calor Emag Mittelspannungsprodukte, Ratingen (Germany)

    2012-06-11

    Arcing faults in medium voltage and high voltage systems are a safety hazard for people as well as devices and thus for the efficiency of network operations and industrial processes. Active safety systems help to eliminate their devastating effect largely.

  11. Expert systems and nuclear safety

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute have initiated a broad-based exploration of means to evaluate the potential applications of expert systems in the nuclear industry. This exploratory effort will assess the use of expert systems to augment the diagnostic and decision-making capabilities of personnel with the goal of enhancing productivity, reliability, and performance. The initial research effort is the development and documentation of guidelines for verifying and validating (V and V) expert systems. An initial application of expert systems in the nuclear industry is to aid operations and maintenance personnel in decision-making tasks. The scope of the decision aiding covers all types of cognitive behavior consisting of skill, rule, and knowledge-based behavior. For example, procedure trackers were designed and tested to support rule-based behavior. Further, these systems automate many of the tedious, error-prone human monitoring tasks, thereby reducing the potential for human error. The paper version of the procedure contains the knowledge base and the rules and thus serves as the basis of the design verification of the procedure tracker. Person-in-the-loop tests serve as the basis for the validation of a procedure tracker. When conducting validation tests, it is important to ascertain that the human retains the locus of control in the use of the expert system

  12. From Safe Systems to Patient Safety

    DEFF Research Database (Denmark)

    Aarts, J.; Nøhr, C.

    2010-01-01

    for the third conference with the theme: The ability to design, implement and evaluate safe, useable and effective systems within complex health care organizations. The theme for this conference was "Designing and Implementing Health IT: from safe systems to patient safety". The contributions have reflected...... on a number of important issues. How are the mutual adaptations of technology and work practice during implementation reflected in design and redesign? How are the successful implementations carried out as a process of organizational change? How does a socio-technical understanding improve the design...... and implementation of safe systems and thus contribute to the agenda of patient safety? The contributions demonstrate how the health informatics community has contributed to the performance of significant research and to translating research findings to develop health care delivery and improve patient safety...

  13. Recent advances in systems safety and security

    CERN Document Server

    Stamatescu, Grigore

    2016-01-01

    This book represents a timely overview of advances in systems safety and security, based on selected, revised and extended contributions from the 2nd and 3rd editions of the International Workshop on Systems Safety and Security – IWSSS, held in 2014 and 2015, respectively, in Bucharest, Romania. It includes 14 chapters, co-authored by 34 researchers from 7 countries. The book provides an useful reference from both theoretical and applied perspectives in what concerns recent progress in this area of critical interest. Contributions, broadly grouped by core topic, address challenges related to information theoretic methods for assuring systems safety and security, cloud-based solutions, image processing approaches, distributed sensor networks and legal or risk analysis viewpoints. These are mostly accompanied by associated case studies providing additional practical value and underlying the broad relevance and impact of the field.

  14. Modelling safety of multistate systems with ageing components

    Science.gov (United States)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    2016-06-01

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics of the consecutive "m out of n: F" is presented as well.

  15. Implementing and measuring safety goals and safety culture. 4. Utility's Activities for Better Safety Culture After the JCO Accident

    International Nuclear Information System (INIS)

    The criticality accident at the JCO plant prompted the Government to enact a law for nuclear emergency preparedness. The nuclear industry established NSnet to facilitate opportunities for peer review among its members. This paper describes the activities by NSnet and TEPCO's Kashiwazaki-Kariwa nuclear power station (NPS) for a better safety culture. Created as a voluntary organization by the nuclear industry in 1999, NSnet has 35 members and is assisted by CRIEPI and NUPEC for its activities relevant to human factors. Given the fact that nuclear facility operators not belonging to WANO had no institutional system available for exchange of experiences and good practices for better safety among themselves, NSnet's activities focus on peer review by member organizations and onsite seminars. Starting April 2000 with visits to three fuel fabricators, NSnet intends to have 23 peer-review visits in 2 yr (Ref. 1). The six-member review team stays on-site for 4 days, during which time they review-using guidelines available from WANO and IAEA-OSART-six areas: organization/management, emergency preparedness, education/training, operation/ maintenance, protection against occupational radiation exposure, and prevention of accidents. A series of on-site seminars is held at members' nuclear facilities, to which NSnet dispatches experts for lectures. NSnet plans to hold such seminars twice per month. Other activities include information-sharing through a newsletter, a Web site (www. nsnet.gr.jp), and others. Although considerable differences exist in the design and the practices in operation/maintenance between power reactors and JCO, utilities can extract lessons from the accident that will be worth consideration for their own facilities in the areas of safety culture, education and training, and interface between design and operation. This thinking prompted the Nuclear Safety Promotion Center at Kashiwazaki-Kariwa NPS, to which the author belonged at that time, to launch the

  16. Comprehensive analysis and differentiated assessment of food safety control systems: a diagnostic instrument

    NARCIS (Netherlands)

    Luning, P.A.; Bango, L.; Kussaga, J.; Rovira, J.; Marcelis, W.J.

    2008-01-01

    In this article, an instrument is presented to diagnose microbial safety control activities in a food safety management system. The need of such a tool is derived from the importance of microbial safety control and the need for improvement of existing control systems. Careful diagnosis of these syst

  17. Mine Safety Detection System (MSDS)

    OpenAIRE

    Ballard, B.; Degnan, T.; Kipp, M.; Johnson, J; Miller, D.; Minto, M.

    2012-01-01

    Systems Engineering Project Report Approved for public release, distribution unlimited The search, detection, identification and assessment components of the U.S. Navys organic modular in-stride Mine Countermeasure (MCM) Concept of Operations (CONOPS) have been evaluated for their effectiveness as part of a hypothetical exercise in response to the existence of sea mines placed in the sea lanes of the Strait of Hormuz. The current MCM CONOPS has been shown to be capable of supporting the...

  18. Safety analyse of cryptography protocol used within safety-related control systems in industry

    OpenAIRE

    Franeková, Mária; Fedor KÁLLAY; Kurytnik, Igor Piotr

    2008-01-01

    In the paper the possibilities of solution safety communication within area of safety-related control industry system are summarised with using cryptography techniques. Requirements to safety are based on generic standard for functional safety of Electrical/Electronic/Programmable Electronic (E/E/PE) systems IEC 61508 and standards, which define safety and security profiles in industrial network used in measurement and control systems. In mainly part of paper the model of safe...

  19. Development of the Digital Reactor Safety System

    International Nuclear Information System (INIS)

    Objectives of Project - Development of Digital Safety Grade PLC and Licensing - Development of Safety System(RPS) and Licensing - Development of Safety System(ESF-CCS) and Licensing Content and Result of Project - POSAFE-Q PLC : Development of PLC platform for Shin-UCN unit 1 and 2 ·Development Scope : Processor module, Power module, 3 kinds of Communication module, Bus extension module(Master and Slave), 16 kinds of Input and Output module ·PLC application software development tool(pSET) - IDiPS RPS and IDiPS ESF-CCS : Development of PPS for Sin-UCN 1 and 2 ·Development Scope - 4-channels RPS with the KNICS inherent architecture - A part of 1-channels ESF-CCS with the KNICS inherent architecture - Licensing ·optical Report Submitted and Expected to finish the licensing process until Aug. 2008

  20. Scientific Opinion on the safety assessment of the active substances iron powder, activated carbon, calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride, for use as active system in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-05-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances iron powder, activated carbon, calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride, used in mixture which is packed into labels, for absorbing oxygen from the headspace surrounding packed food. All substances of this formulation have been evaluated and approved for use as additives in plastic food contact materials or as food supplements. Migration of substances from the labels and formation and release of volatile constituents are not expected under the intended conditions of use. The CEF Panel concluded that the use of substances iron powder, activated carbon, calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride does not raise a safety concern when used in oxygen absorbers in labels, which prevent the physical release of their content into the food. When placed in the headspace of the packaging or when used in direct contact with foods, the labels should not intentionally or unintentionally come into direct contact with liquid foods or foods that have an external aqueous phase on the surface such as sliced fruits.

  1. Software qualification for digital safety system in KNICS project

    International Nuclear Information System (INIS)

    In order to achieve technical self-reliance in the area of nuclear instrumentation and control, the Korea Nuclear Instrumentation and Control System (KNICS) project had been running for seven years from 2001. The safety-grade Programmable Logic Controller (PLC) and the digital safety system were developed by KNICS project. All the software of the PLC and digital safety system were developed and verified following the software development life cycle Verification and Validation (V and V) procedure. The main activities of the V and V process are preparation of software planning documentations, verification of the Software Requirement Specification (SRS), Software Design Specification (SDS) and codes, and a testing of the software components, the integrated software, and the integrated system. In addition, a software safety analysis and a software configuration management are included in the activities. For the software safety analysis at the SRS and SDS phases, the software Hazard Operability (HAZOP) was performed and then the software fault tree analysis was applied. The software fault tree analysis was applied to a part of software module with some critical defects identified by the software HAZOP in SDS phase. The software configuration management was performed using the in-house tool developed in the KNICS project. (author)

  2. 78 FR 29392 - Embedded Digital Devices in Safety-Related Systems, Systems Important to Safety, and Items Relied...

    Science.gov (United States)

    2013-05-20

    ... COMMISSION Embedded Digital Devices in Safety-Related Systems, Systems Important to Safety, and Items Relied... Regulatory Issue Summary (RIS) 2013-XX, ``Embedded Digital Devices in Safety-Related Systems, Systems... Draft Regulatory Issue Summary (RIS) 2013-XX, ``Embedded Digital Devices in Safety-Related...

  3. Application of coal mine dynamic safety management and occupational health and safety management system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; WANG Chun-qiu; CAO Qing-gui; LIU Ye-jiao; LIN Xiao-fei

    2007-01-01

    A method system was put forward based on the occupational health and safety management system to develop the dynamic safety management of coal mine. It aimed at the problems in the mining safety management and was put in practice in Lingxin coal mine of Ningxia Coal Industry Group Co., Ltd.. And good effect was obtained in safety work. It developed the mining dynamic safety management based on the building of occupational health and safety management system of mining enterprise and its main contents are as follows: timely identification and dynamic control of accident risk, persistent improvement of safety management performance according to the "PDCA" circle.

  4. 77 FR 51848 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-08-27

    ... April 11, 2000 (65 FR 19477) or visit http://www.regulations.gov before submitting any such comments... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice and...

  5. 75 FR 53733 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-09-01

    ... Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477) or visit http... TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice...

  6. 75 FR 73160 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-11-29

    ... Register published on April 11, 2000 (65 FR 19477) or visit http://www.regulations.gov before submitting... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous Materials Safety Administration, DOT. ACTION: Notice and request...

  7. 76 FR 33808 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2011-06-09

    ... Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477) or visit http... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice and...

  8. 76 FR 45904 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2011-08-01

    ... complete Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477) or visit... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice and...

  9. The safety potential of navigation systems.

    NARCIS (Netherlands)

    Oei, H.-l.

    2002-01-01

    This study deals with the possible negative and positive effects of navigation systems on road safety. The literature shows that the human factors side is open for improvement: the design of the menu, possibility of manual programming during driving and shifting the attention of the driver from the

  10. The Dynamic Balancer electrical safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Konkel, H.

    1997-12-01

    The Pantex Plant Dynamic Balancer is used to identify physical imbalance in some weapon systems. This study was conducted at the request of the US Department of Energy/Albuquerque Operations Office (USDOE/AL) Dynamic Balancer Project Team to identify the electrical conditions required for motor over-speed to occur and to discuss the functions of the various electrical protective features associated with the Dynamic Balancer (DB). As is shown through the development of a fault tree, numerous electrical and human failures are required for over-speed conditions to occur. As directed by the Project Team, no effort was made to develop detailed fault trees for all electrical systems, to quantify basic events in the fault tree, or to develop accident scenarios leading to or resulting from over-speed. The Pantex Building 12-60, Bay 2, facility electrical circuits and grounding are described, and potential hazards are discussed. DB motor over-speed is a safety concern, and therefore, the controls that limit this condition are described and discussed in detail. Other safety-significant electrical circuits are discussed as well. These safety systems also are described in the facility Basis for Interim Operation. A potential for a motor over-speed that is not sensed by the standard safety protective systems does exist. This fault pathway is discussed, and recommendations to mitigate its effect are made.

  11. Safety and security system of radioactive sources in Poland

    International Nuclear Information System (INIS)

    Poland has national System of Safety and Security of Radioactive Sources that fulfil International Basic Safety Standards for Protection against Ionising Radiation and for the Safety of Radiation Sources. It includes all main principles of protection against exposure to ionising radiation and for the safety and security of radioactive sources, of the Code of Conduct. All activities related to the exposure to ionising radiation are under control of the President of the National Atomic Energy Agency (NAEA) according to the Polish Atomic Law and Executive Regulations. The radioactive sources in Poland are under a sustainable supervision. The President of NAEA, as the national regulatory authority based on a legal system originating from the Atomic Law, is competent in and responsible for nuclear safety and nuclear security as well as for radiological protection of workers and of public in general. That means that the NAEA licences and controls (from the point of view of nuclear safety and radiation protection) all activities involving each source of ionising radiation (other than excepted source), registers all the nuclear materials and controls their physical protection. NAEA keeps registers of sealed radioactive sources and individual radiation doses of workers. NAEA also supervises (within its competence) all activities undertaken in case of radiation emergency. There are implementing procedures for strengthening controls of exports, imports and other transfers of radioactive sources, national safety and security cultures, particularly through the training of workers and the provision of appropriate information. Keeping records of all activities concerning nuclear materials and sealed radioactive sources has been applied in Poland since 1957. At present, NAEA has effective access to information collected in its own electronic databases, which histories go back to 1986. (author)

  12. An approach for assessing ALWR passive safety system reliability

    International Nuclear Information System (INIS)

    Many of the advanced light water reactor (ALWR) concepts proposed for the next generation of nuclear power plants rely on passive rather than active systems to perform safety functions. Despite the reduced redundancy of the passive systems as compared to active systems in current plants, the assertion is that the overall safety of the plant is enhanced due to the much higher expected reliability of the passive systems. In order to investigate this assertion, a study is being conducted at Sandia National Laboratories to evaluate the reliability of ALWR passive safety features in the context of probabilistic risk assessment (PRA). The purpose of this paper is to provide a brief overview of the approach to this study. The quantification of passive system reliability is not as straightforward as for active systems, due to the lack of operating experience, and to the greater uncertainty in the governing physical phenomena. Thus, the adequacy of current methods for evaluating system reliability must be assessed, and alternatives proposed if necessary. For this study, the Westinghouse Advanced Passive 600 MWe reactor (AP600) was chosen as the advanced reactor for analysis, because of the availability of AP600 design information. This study compares the reliability of AP600 emergency cooling system with that of corresponding systems in a current generation reactor

  13. Maintenance of radiation safety information system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Sun [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Park, Moon Il; Chung, Chong Kyu; Lim, Bock Soo; Kim, Hyung Uk; Chang, Kwang Il; Nam, Kwan Hyun; Cho, Hye Ryan [AD center incubation LAB, Taejon (Korea, Republic of)

    2001-12-15

    The objectives of radiation safety information system maintenance are to maintain the requirement of users, change of job process and upgrade of the system performance stably and effectively while system maintenance. We conduct the code of conduct recommended by IAEA, management of radioisotope inventory database systematically using analysis for the state of inventory database integrated in this system. This system and database will be support the regulatory guidance, rule making and information to the MOST, KINS, other regulatory related organization and general public optimizationally.

  14. Safety Aspects of Big Cryogenic Systems Design

    Science.gov (United States)

    Chorowski, M.; Fydrych, J.; Poliński, J.

    2010-04-01

    Superconductivity and helium cryogenics are key technologies in the construction of large scientific instruments, like accelerators, fusion reactors or free electron lasers. Such cryogenic systems may contain more than hundred tons of helium, mostly in cold and high-density phases. In spite of the high reliability of the systems, accidental loss of the insulation vacuum, pipe rupture or rapid energy dissipation in the cold helium can not be overlooked. To avoid the danger of over-design pressure rise in the cryostats, they need to be equipped with a helium relief system. Such a system is comprised of safety valves, bursting disks and optionally cold or warm quench lines, collectors and storage tanks. Proper design of the helium safety relief system requires a good understanding of worst case scenarios. Such scenarios will be discussed, taking into account different possible failures of the cryogenic system. In any case it is necessary to estimate heat transfer through degraded vacuum superinsulation and mass flow through the valves and safety disks. Even if the design of the helium relief system does not foresee direct helium venting into the environment, an occasional emergency helium spill may happen. Helium propagation in the atmosphere and the origins of oxygen-deficiency hazards will be discussed.

  15. Formal verification of safety protocol in train control system

    OpenAIRE

    Zhang, Yan; TANG, TAO; Li, Keping; Mera Sanchez de Pedro, Jose Manuel; Zhu, Li; Zhao, Lin; Xu, Tianhua

    2011-01-01

    In order to satisfy the safety-critical requirements, the train control system (TCS) often employs a layered safety communication protocol to provide reliable services. However, both description and verification of the safety protocols may be formidable due to the system complexity. In this paper, interface automata (IA) are used to describe the safety service interface behaviors of safety communication protocol. A formal verification method is proposed to describe the safety communication pr...

  16. Assessment of the Safety management system in railway sectors

    OpenAIRE

    El-Koursi, Em; DUQUENNE, N

    2006-01-01

    The result of this work is done within the European project untitled SAMNET Safety Management and interoperability thematic Network for railways system launched by the Commission to investigate and to propose the approaches to specify and to implement the requirements identified in the Safety Directives. In particular, issues concerning policies on Safety Management System, Common Safety Indicators, Common Safety Targets and Common Safety Methods are addressed by this project. The project sta...

  17. Operational reliability of standby safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Grant, G.M.; Atwood, C.L.; Gentillon, C.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Idaho National Engineering Laboratory (INEL) is evaluating the operational reliability of several risk-significant standby safety systems based on the operating experience at US commercial nuclear power plants from 1987 through 1993. The reliability assessed is the probability that the system will perform its Probabilistic Risk Assessment (PRA) defined safety function. The quantitative estimates of system reliability are expected to be useful in risk-based regulation. This paper is an overview of the analysis methods and the results of the high pressure coolant injection (HPCI) system reliability study. Key characteristics include (1) descriptions of the data collection and analysis methods, (2) the statistical methods employed to estimate operational unreliability, (3) a description of how the operational unreliability estimates were compared with typical PRA results, both overall and for each dominant failure mode, and (4) a summary of results of the study.

  18. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  19. Romania: ALFRED Demonstrator – Safety Rods System

    International Nuclear Information System (INIS)

    The main goal of the ALFRED project is to play the role of a demonstrator for the European concept of a LFR, able to prove the safety and reliability in all operating conditions through the use of some simple engineering solutions while reducing to the largest possible extent the uncertainties related to all development stages: design, construction and operation. The ALFRED core has been designed taking into account in a comprehensive approach the main goals to be achieved, the safety performances required as well as the main technological constraints that should be fulfilled. In this context and taking into account the topic of the meeting, the presentation is focused on the safety rod system that has been successfully adapted from the CDT-MYRRHA project

  20. A Methodological Framework for Software Safety in Safety Critical Computer Systems

    Directory of Open Access Journals (Sweden)

    P. V. Srinivas Acharyulu

    2012-01-01

    Full Text Available Software safety must deal with the principles of safety management, safety engineering and software engineering for developing safety-critical computer systems, with the target of making the system safe, risk-free and fail-safe in addition to provide a clarified differentaition for assessing and evaluating the risk, with the principles of software risk management. Problem statement: Prevailing software quality models, standards were not subsisting in adequately addressing the software safety issues for real-time safety-critical embedded systems. At present no standard framework does exist addressing the safety management and safety engineering priniciples for the development of software safety in safety-critical computer systems. Approach: In this study we propose a methodological framework involving safety management practices, safety engineering practices and software development life cycle phases for the development of software safety. In this framework we make use of the safety management practices such as planning, defining priniciples, fixing responsibilities, creteria and targets, risk assessment, design for safety, formulating safety requirements and integrating skills and techniques to address safety issues early with a vision for assurance and so on. In this framework we have also analysed integration of applicability of generic industrial heirarchy and software development heirarchy, with derived cyclical review involving safety professionals generating a nodal point for software safety. Results: This framework is applied to safety-critical software based laboratory prototype Railroad Crossing Control System (RCCS with a limited complexity. The results have shown that all critical operations were safe and risk free. Conclusion: The development of software based on the proposed framework for RCCS have shown a clarified and improved safety-critical operations of the overall system peformance.

  1. Does the concept of safety culture help or hinder systems thinking in safety?

    Science.gov (United States)

    Reiman, Teemu; Rollenhagen, Carl

    2014-07-01

    The concept of safety culture has become established in safety management applications in all major safety-critical domains. The idea that safety culture somehow represents a "systemic view" on safety is seldom explicitly spoken out, but nevertheless seem to linger behind many safety culture discourses. However, in this paper we argue that the "new" contribution to safety management from safety culture never really became integrated with classical engineering principles and concepts. This integration would have been necessary for the development of a more genuine systems-oriented view on safety; e.g. a conception of safety in which human, technological, organisational and cultural factors are understood as mutually interacting elements. Without of this integration, researchers and the users of the various tools and methods associated with safety culture have sometimes fostered a belief that "safety culture" in fact represents such a systemic view about safety. This belief is, however, not backed up by theoretical or empirical evidence. It is true that safety culture, at least in some sense, represents a holistic term-a totality of factors that include human, organisational and technological aspects. However, the departure for such safety culture models is still human and organisational factors rather than technology (or safety) itself. The aim of this paper is to critically review the various uses of the concept of safety culture as representing a systemic view on safety. The article will take a look at the concepts of culture and safety culture based on previous studies, and outlines in more detail the theoretical challenges in safety culture as a systems concept. The paper also presents recommendations on how to make safety culture more systemic. PMID:24275532

  2. Annual activity report of Ignalina NPP Safety Analysis Group for 1996 year

    International Nuclear Information System (INIS)

    The main results of Ignalina NPP Safety Analysis Group (ISAG) investigations for 1996 are presented. ISAG is concentrating its research activities into four areas: the neutrons dynamics modelling, simulation of transient processes during loss of coolant accident, the reactor cooling systems modelling and the probabilistic safety assessment of accident confinement system. Ignalina Safety Analysis Report was prepared on the basis of these results. 37 refs., 9 tabs., 96 figs

  3. Development of a Highway Safety Management System for Indiana: Phase 1

    OpenAIRE

    Farooq, Omar; Sinha, Kumares C.; Nagle, John; James, Dwayne Stanley; Jiang, Yi

    1994-01-01

    This report presents the work plan for the development of a highway safety management system for Indiana. It identifies major activities and responsibilities for the development and implementation of a formal, statewide, interactive safety decision-making process. The safety management system of Indiana is perceived as a continuous process of considering all opportunities to improve highway safety in all phases of highway planning, design, construction, maintenance and operation. The primary ...

  4. Reactor safety: the Nova computer system

    International Nuclear Information System (INIS)

    After instances of maloperation, the causes of defects, the effectiveness of the measures taken to control the situation, and possibilities to avoid future recurrences need to be investigated above all before the plant is restarted. The most important aspect in all these efforts is to check the sequence in time, and the completeness, of the control measures initiated automatically. For this verification, a computer system is used instead of time-consuming manual analytical techniques, which produces the necessary information almost in real time. The results are available within minutes after completion of the measures initiated automatically. As all short-term safety functions are initiated by automatic systems, their consistent and comprehensive verification results in a clearly higher level of safety. The report covers the development of the computer system, and its implementation, in the Gundremmingen nuclear power station. Similar plans are being pursued in Biblis and Muelheim-Kaerlich. (orig.)

  5. Unavailability analysis of redundant safety systems

    International Nuclear Information System (INIS)

    Analytical equations have been obtained for the unavailabilities of redundant standby safety systems with components tested periodically. Test and repair contributions, hardware failures, human testing and repair errors as well as failures due to true demands have been taken into account. Equations have been derived for m-out-of-n systems (1 less than or equal to m less than or equal to n less than or equal to 4) with uniformly staggered, consecutive and random testing schemes. The equations have been used in a computer code, ICARUS, and applied to practical safety systems. The results are useful for optimizing the redundancy and testing and they illustrate the importance of human/testing errors and falures associated with true demands

  6. Spallation Neutron Source Accelerator Facility Target Safety and Non-safety Control Systems

    International Nuclear Information System (INIS)

    The Spallation Neutron Source (SNS) is a proton accelerator facility that generates neutrons for scientific researchers by spallation of neutrons from a mercury target. The SNS became operational on April 28, 2006, with first beam on target at approximately 200 W. The SNS accelerator, target, and conventional facilities controls are integrated by standardized hardware and software throughout the facility and were designed and fabricated to SNS conventions to ensure compatibility of systems with Experimental Physics Integrated Control System (EPICS). ControlLogix Programmable Logic Controllers (PLCs) interface to instruments and actuators, and EPICS performs the high-level integration of the PLCs such that all operator control can be accomplished from the Central Control room using EPICS graphical screens that pass process variables to and from the PLCs. Three active safety systems were designed to industry standards ISA S84.01 and IEEE 603 to meet the desired reliability for these safety systems. The safety systems protect facility workers and the environment from mercury vapor, mercury radiation, and proton beam radiation. The facility operators operated many of the systems prior to beam on target and developed the operating procedures. The safety and non-safety control systems were tested extensively prior to beam on target. This testing was crucial to identify wiring and software errors and failed components, the result of which was few problems during operation with beam on target. The SNS has continued beam on target since April to increase beam power, check out the scientific instruments, and continue testing the operation of facility subsystems

  7. Modelling of safety fieldbus system via SW tool SHARPE

    OpenAIRE

    Maria Franekova; Jan Rofar

    2008-01-01

    Paper deals with the modelling of the safety-related Fieldbus communication system, which has to guaranty Safety Integrity Level (SIL) according to standard IEC 61508. There are methods of safety analysis for the closed safety Fieldbus transmission system summarized. The mainly part the modeling SW tool SHARPE describes. The realized models are based on Fault Tree Analysis (FTA) and Markov analysis.

  8. Guidelines for implementation of RCM on safety systems

    International Nuclear Information System (INIS)

    Reliability Centered Maintenance (RCM) methodology was originally developed by the commercial airlines industry in the early 1960s for identifying applicable and effective preventive maintenance tasks and as currently used in nuclear power industry. Effective maintenance of the systems at a nuclear power plant (NPP) is essential for its safe and reliable operation. Reliability Centered Maintenance at NPP is the program to assure that plant systems remain within an original design criteria and are not adversely affected during the plant life time. The aim of this report is to provide the guidelines to implement the RCM approach on NPP safety systems. Safety systems are usually standby and therefore, we need to periodically detect and repair failures that may have occurred since the previous activation or inspection the equipment. The RCM guidelines are intended to help identify the failure modes and related root causes and then decide the maintenance policies to achieve the high level of safety and reliability. The RCM is intended to improve or maintain high levels of system reliability and plant availability. Since the reliability of plant systems will be improved, the plant safety correspondingly will be increased. Another goal of RCM is to optimize the maintenance and surveillance tasks such that the overall level of resources required to accomplish essential tasks is kept to minimum. RCM also strives to eliminate unnecessary corrective maintenance and to select yet most cost-effective approach to maintenance, testing and inspection for system components. 9 refs. (Author) .new

  9. Research on Food Safety Guarantee System Based on AHP

    OpenAIRE

    Pei Tang; Shanhong Zhu

    2015-01-01

    All kinds of food safety accidents occurred frequently in recent years, the main reason is that food safety system construction failed to synchronize with the internet, this study sets up food safety technical standard system based on the AHP evaluation model, learns lessons from food safety related bulletin, revises for the food industry standard, innovates from technology and regulatory reform, so as to promote international food safety system construction.

  10. Performance scorecard for occupational safety and health management systems

    Directory of Open Access Journals (Sweden)

    Hernâni Veloso Neto

    2012-06-01

    Full Text Available The pro-active and systematic search for best performances should be the two assumptions of any management system, so safety and health management in organizations must also be guided by these same precepts. However, the scientific production evidences that the performance evaluation processes in safety and health continue to be guided, in their essence, by intermittency, reactivity and negativity, which are not consistent with the assumptions referenced above. Therefore, it is essential that health and safety at work management systems (HSW MS are structured from an active and positive viewpoint, focusing on continuous improvement. This implies considering performance evaluation processes that incorporate, on the one hand, monitoring, measuring and verification procedures, and on the other hand, structured matrixes of results that capture the key factors of success, by mobilizing both reactive and proactive indicators. One of the instruments that can fulfill these precepts of health and safety performance evaluation is the SafetyCard, a performance scorecard for HSW MS that we developed and will seek to outline and demonstrate over this paper.

  11. Indus-2 beamline personal safety interlocks system

    International Nuclear Information System (INIS)

    Indus-2 is a 2.5 GeV, 300 mA synchrotron radiation source and is currently operating at 2 GeV and 100 mA in the round the clock shift. Two sources of ionizing radiation at Indus-2 can pose a hazard if not properly dealt with are, Bremsstrahlung radiation and synchrotron radiation. The former is mostly generated from collision of electrons with gas molecules and consists of very high energy radiation. A hutch is a structure that houses the beamline and other experimental equipment /apparatus, which is designed to prevent personnel access to areas where there is a potential for the synchrotron beam to generate high levels of ionizing radiation. Hutches are designed to reduce the direct and scattered beam dose rates to acceptably low levels outside. Personal Safety Interlock System (PSIS) is introduced to protect people from accidental exposure to high radiation when the beamlines are in use. PSIS ensures that (1) synchrotron radiation can be allowed to enter an experimental hutch only when no one is present in the hutch and all the doors of the hutch are properly closed; (2) in case of a person entering a hutch during operation, the radiation is stopped by closing the safety shutter and (3) when radiation level in the occupied area near the beamline exceeds the permissible level, it is brought down by closing the safety shutter. The PSIS system is linked with main front-end control system of each beamline. PSIS system consist of relay modules, timers, search and scram buttons, status display panels, door limit switches with latching mechanism and audio-visual alarms. This paper describes, in detail, the design and interlock scheme of a fail-safe and reliable Personal Safety Interlock System implemented at Indus-2 beamlines. (author)

  12. A Microbial Assessment Scheme to measure microbial performance of Food Safety Management Systems

    NARCIS (Netherlands)

    Jacxsens, L.; Kussaga, J.; Luning, P.A.; Spiegel, van der M.; Devlieghere, F.; Uyttendaele, M.

    2009-01-01

    A Food Safety Management System (FSMS) implemented in a food processing industry is based on Good Hygienic Practices (GHP), Hazard Analysis Critical Control Point (HACCP) principles and should address both food safety control and assurance activities in order to guarantee food safety. One of the mos

  13. Theoretical study on safety assessment indexes system of coal mines

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-liang(施式亮); LI Run-qiu(李润求); XIE Jian-xiang(谢建湘)

    2003-01-01

    The safety status of the coal mines is closely correlated with the operating status and its changes of the whole working system in the coal mines, and the safety system is the sub-system of the whole production system. In this paper, based on the analysis of the complicacy of the safety sub-system and its affecting factors, the theory basis of the indexes system of the safety assessment was studied, including the establishing principles of the indexes system , the structure of the indexes system, the determining methods of the assessment indexes. The complete indexes system was established for the safety assessment of the coal mines in the paper.

  14. Reactor safety; Description and evaluation of safety activities in Nordic countries

    International Nuclear Information System (INIS)

    The report gives a description of safety activities in the nuclear power industry. The study has been carried out as a part of the four year programme in Nordic Safety Research (NKS) which was completed in 1997. The objective of the NKS/RAK-1.1 project 'A survey and an evaluation of safety activities in nuclear power' was to make a broad description of various activities important for safety and to make an assessment of their efficiency. A special consideration was placed on a comparison of practices in Finland and Sweden, and between their nuclear utilities. The study has been divided into two parts, one theoretical part in which a model of the relationships between various activities important for safety has been constructed and one practical part where a total of 62 persons have been interviewed at the authorities, the nuclear utilities and one reactor vendor. To restrict the amount of work two activities, safety analysis and experience feedback, were selected. A few cases connected to incidents at nuclear power plants were discussed in more detail. The report has been structured around a simple model of nuclear safety consisting of the concepts of goals, means and outcomes. This model illustrates the importance of goal formulation, systematic planning and feedback of operational experience as major components in nuclear safety. In assessing organisation and management at authorities and the power utilities there is a clear trend of decentralisation and delegation of authority. The general impression from the study is that the safety activities in Finland and Sweden are efficient and well targeted. The experience from the methodology is favourable and the comparison of practices gives a good ground for a discussion of contents and targeting of safety activities. (EG) activities. (EG)

  15. Safety Cultures in Water-Based Outdoor Activities in Denmark

    DEFF Research Database (Denmark)

    Andkjær, Søren; Arvidsen, Jan

    2015-01-01

    In this paper, we report on the study Safe in Nature (Tryg i naturen) in which the aim was to analyze and discuss risk and safety related to outdoor recreation in the coastal regions of Denmark. A cultural perspective is applied to risk management and the safety cultures related to three selected...... water-based outdoor activities: small boat fishing, sea kayaking, and kite surfing. The theoretical framework used was cultural analysis and the methodological approach was mixed methods using case studies with survey and qualitative interviews. The study indicates that safety is a complex matter...... and that safety culture can be understood as the sum and interaction among six categories. The safety culture is closely related to the activity and differs widely among activities. We suggest a broad perspective be taken on risk management wherein risk and safety can be managed at different levels. Small boat...

  16. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    Science.gov (United States)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  17. Occupational Safety and Health Management System (OSHMS)

    International Nuclear Information System (INIS)

    Safe work environment has always been one of the major concerns at workplace. For this, Occupational Safety and Health Act 1994 has been promulgated for all workplaces to ensure the Safety, Health and Welfare of its employees and any person at workplaces. Malaysian Nuclear Agency therefore has started the initiative to review and improve the current Occupational Safety and Health Management System (OSHMS) by going for OHSAS 18001:2007 and MS 1722 standards certification. This would also help in our preparation to bid as the TSO (Technical Support Organization) for the NPP (Nuclear Power Plant) when it is established. With a developed and well maintained OSHMS, it helps to create a safe working condition and thus enhancing the productivity, quality and good morale. Ultimately, this will lead to a greater organization profit. However, successful OSHMS requires full commitment and support from all level of the organization to work hand in hand in implementing the safety and health policy. Therefore it is essential for all to acknowledge the progress of the implementation and be part of it. (author)

  18. Daniel K. Inouye Solar Telescope system safety

    Science.gov (United States)

    Hubbard, Robert P.; Bulau, Scott E.; Shimko, Steve; Williams, Timothy R.

    2014-08-01

    System safety for the Daniel K. Inouye Solar Telescope (DKIST) is the joint responsibility of a Maui-based safety team and the Tucson-based systems engineering group. The DKIST project is committed to the philosophy of "Safety by Design". To that end the project has implemented an aggressive hazard analysis, risk assessment, and mitigation system. It was initially based on MIL-STD-882D, but has since been augmented in a way that lends itself to direct application to the design of our Global Interlock System (GIS). This was accomplished by adopting the American National Standard for Industrial Robots and Robot Systems (ANSI/RIA R15.06) for all identified hazards that involve potential injury to personnel. In this paper we describe the details of our augmented hazard analysis system and its use by the project. Since most of the major hardware for the DKIST (e.g., the enclosure, and telescope mount assembly) has been designed and is being constructed by external contractors, the DKIST project has required our contractors to perform a uniform hazard analysis of their designs using our methods. This paper also describes the review and follow-up process implemented by the project that is applied to both internal and external subsystem designs. Our own weekly hazard analysis team meetings have now largely turned to system-level hazards and hazards related to specific tasks that will be encountered during integration, test, and commissioning and maintenance operations. Finally we discuss a few lessons learned, describing things we might do differently if we were starting over today.

  19. High-performance work systems and occupational safety.

    Science.gov (United States)

    Zacharatos, Anthea; Barling, Julian; Iverson, Roderick D

    2005-01-01

    Two studies were conducted investigating the relationship between high-performance work systems (HPWS) and occupational safety. In Study 1, data were obtained from company human resource and safety directors across 138 organizations. LISREL VIII results showed that an HPWS was positively related to occupational safety at the organizational level. Study 2 used data from 189 front-line employees in 2 organizations. Trust in management and perceived safety climate were found to mediate the relationship between an HPWS and safety performance measured in terms of personal-safety orientation (i.e., safety knowledge, safety motivation, safety compliance, and safety initiative) and safety incidents (i.e., injuries requiring first aid and near misses). These 2 studies provide confirmation of the important role organizational factors play in ensuring worker safety. PMID:15641891

  20. Security-Informed Safety Case Approach to Analysing MILS Systems

    OpenAIRE

    Netkachova, K.; Müller, K.; Paulitsch, M; Bloomfield, R. E.

    2015-01-01

    Safety cases are the development foundation for safety-critical systems and are often quite complex to understand depending on the size of the system and operational conditions. The recent advent of security aspects complicates the issues further. This paper describes an approach to analysing safety and security in a structured way and creating security-informed safety cases that provide justification of safety taking into particular consideration the impact of security. The paper includes an...

  1. The Management System for Nuclear Installations Safety Guide

    International Nuclear Information System (INIS)

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  2. Safety Analysis of Stochastic Dynamical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    This paper presents a method for verifying the safety of a stochastic system. In particular, we show how to compute the largest set of initial conditions such that a given stochastic system is safe with probability p. To compute the set of initial conditions we rely on the moment method that via...... Haviland's theorem allows an infinite dimensional optimization problem on measures to be formulated as a polynomial optimization problem. Subsequently, the moment sequence is truncated (relaxed) to obtain a finite dimensional polynomial optimization problem. Finally, we provide an illustrative example that...

  3. ESSAA: Embedded system safety analysis assistant

    Science.gov (United States)

    Wallace, Peter; Holzer, Joseph; Guarro, Sergio; Hyatt, Larry

    1987-01-01

    The Embedded System Safety Analysis Assistant (ESSAA) is a knowledge-based tool that can assist in identifying disaster scenarios. Imbedded software issues hazardous control commands to the surrounding hardware. ESSAA is intended to work from outputs to inputs, as a complement to simulation and verification methods. Rather than treating the software in isolation, it examines the context in which the software is to be deployed. Given a specified disasterous outcome, ESSAA works from a qualitative, abstract model of the complete system to infer sets of environmental conditions and/or failures that could cause a disasterous outcome. The scenarios can then be examined in depth for plausibility using existing techniques.

  4. Safety systems of heavy water reactors and small power reactors

    International Nuclear Information System (INIS)

    After introductional descriptions of heavy water reactors and natural circulation boiling water reactors the safety philosophy and safety systems like ECCS, residual heat removal, protection systems etc., are described. (RW)

  5. Total Quality Management and the System Safety Secretary

    Science.gov (United States)

    Elliott, Suzan E.

    1993-01-01

    The system safety secretary is a valuable member of the system safety team. As downsizing occurs to meet economic constraints, the Total Quality Management (TQM) approach is frequently adopted as a formula for success and, in some cases, for survival.

  6. Coupled seismic analysis of nuclear safety systems

    International Nuclear Information System (INIS)

    Seismic responses of structural systems obtained on the basis of coupled analysis (selected equipment modelled along with the civil structures) results in lower responses and economical designs when compared with uncoupled analysis. For Nuclear Safety Related Structures, from considerations of limiting problem size for analysis and also to reduce modelling efforts, it is necessary to select which equipment needs to be modelled with its supports so as to adequately obtain the response of the structural system with interaction of such equipment. Coupled analysis of a primary structure and secondary system is necessary when the effects of interaction between them are significant. This paper attempts to study the structural response of Reactor Building structures of PHWR as well as PFBR to arrive at specific conclusions with respect to effect of coupling of secondary systems. The paper presents an approach followed to evolve a rational basis for inclusion or non-inclusion of such equipment in the coupled model of the primary system. (author)

  7. Safety testing for LHC access system

    CERN Document Server

    Valentini, F; Ninin, P; Scibile, S

    2008-01-01

    In the domain of Safety Real-Time Systems the problem of testing represents always a big effort in terms of time, costs and efficiency to guarantee an adequate coverage degree. Exhaustive tests may, in fact, not be practicable for large and distributed systems. This paper describes the testing process followed during the validation of the CERN's LHC Access System [1], responsible for monitoring and preventing physical risks for the personnel accessing the underground areas. In the paper we also present a novel strategy for the testing problem, intended to drastically reduce the time for the test patterns generation and execution. In particular, we propose a methodology for blackbox testing that relies on the application of Model Checking techniques. Model Checking is a formal method from computer science, commonly adopted to prove correctness of system’s models through an automatic system’s state space exploration against some property formulas.

  8. Development of Network Protocol for the Integrated Safety System

    International Nuclear Information System (INIS)

    Communication devices in the safety system of nuclear power plants are distinguished from those developed for commercial purposes in terms of a strict requirement of safety. The concept of safety covers the determinability, the reliability, and the separation/isolation to prevent the undesirable interactions among devices. The safety also requires that these properties be never proof less. Most of the current commercialized communication products rarely have the safety properties. Moreover, they can be neither verified nor validated to satisfy the safety property of implementation process. This research proposes the novel architecture and protocol of a data communication network for the safety system in nuclear power plants

  9. Development of Network Protocol for the Integrated Safety System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. W.; Baek, J. I.; Lee, S. H.; Park, C. S.; Park, K. H.; Shin, J. M. [Hannam Univ., Daejeon (Korea, Republic of)

    2007-06-15

    Communication devices in the safety system of nuclear power plants are distinguished from those developed for commercial purposes in terms of a strict requirement of safety. The concept of safety covers the determinability, the reliability, and the separation/isolation to prevent the undesirable interactions among devices. The safety also requires that these properties be never proof less. Most of the current commercialized communication products rarely have the safety properties. Moreover, they can be neither verified nor validated to satisfy the safety property of implementation process. This research proposes the novel architecture and protocol of a data communication network for the safety system in nuclear power plants.

  10. System analysis for plant operation and safety

    International Nuclear Information System (INIS)

    In parallel with the established reactor support program utilizing design basis system analysis for licensing applications, NUSCO has a broad program underway utilizing best estimate system analysis in support of safe operation of its nuclear units. The latter analysis application requires the use of codes such as RETRAN, which have proven prediction capabilities under a wide range of physical conditions. The program utilizing best estimate system analysis, to varying degrees, in support of plant operation and safety includes the following areas of application: 1) Operator training. Specific application of system analysis in this support area include: best estimate analysis of FSAR transients, best estimate verification of plant specific simulators, and lessons learned through PRA best estimate analysis. 2) Operator guidance. Specific applications in this support area include: development, verification, and safety evaluations of emergency operator guidelines, and analysis of ambiguous scenarios to determine available fail-safe decisions and reversible actions. 3) Operator performance verification. Specific applications in this support area include: verification analysis of operational transients, and verifications of adequacy of system performance/operator actions. 4) Deterministic analyses for PRA support. 5) Verification and support of startup procedures

  11. Safety program considerations for space nuclear reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cropp, L.O.

    1984-08-01

    This report discusses the necessity for in-depth safety program planning for space nuclear reactor systems. The objectives of the safety program and a proposed task structure is presented for meeting those objectives. A proposed working relationship between the design and independent safety groups is suggested. Examples of safety-related design philosophies are given.

  12. Safety program considerations for space nuclear reactor systems

    International Nuclear Information System (INIS)

    This report discusses the necessity for in-depth safety program planning for space nuclear reactor systems. The objectives of the safety program and a proposed task structure is presented for meeting those objectives. A proposed working relationship between the design and independent safety groups is suggested. Examples of safety-related design philosophies are given

  13. Improved safety approach for general safety designs of the next generation sodium-cooled fast reactor systems

    International Nuclear Information System (INIS)

    For the future sodium-cooled fast reactor [SFR], safety approach should realize higher safety level than that of current generation reactor systems, by enhancing prevention and mitigation features of severe accidents with built-in measures in the safety designs. In this study, general safety approaches are developed for the next generation SFR based on the fundamental safety characteristics of the SFR system by comparing those of LWR system and with incorporating lessons learned from the TEPCO's Fukushima Daiichi nuclear power plants accidents. The fundamental characteristics of the SFR system are summarized into five key points: 1) reactivity related to reactor core configuration, 2) coolant pressure under operation, 3) coolant sub-cool margin to boiling, 4) ultimate heat sink, and 5) physical and chemical properties of sodium coolant. These points are considered to derive general safety approach related to fundamental function, i.e. reactor shutdown, decay heat removal, and containment, for the future SFR system. The key is to apply passive safety mechanism for prevention/mitigation of severe accident in design extension condition (DEC) with balancing active safety systems - passive mechanism should be built-in design for reactor shutdown and decay heat removal especially for DEC in order to enhance diversity to the engineered safety systems utilized for design basis accident (DBA). From the viewpoint of containment integrity, SFR system has favorable feature due to its low coolant pressure (almost atmospheric) under operation, whereas the potentials of pressure/temperature increases via sodium leak and of significant mechanical energy release by re-criticality in the course of the core disruptive accident (CDA) should be eliminated by the safety designs for both prevention and mitigation of the severe accidents. (author)

  14. Safety management systems. Audit tools and reliability of auditing

    Energy Technology Data Exchange (ETDEWEB)

    Kuusisto, A. [VTT Automation, Espoo (Finland). Safety Engineering

    2000-12-01

    Safety auditing is a systematic method to evaluate a company's safety management system. This work concentrates on evaluating the reliability of some safety audit tools. Firstly, the factors affecting reliability in auditing are clarified. Secondly, the inter-observer reliability of one of the audit tools is tested. This was done using an audit method, known as the D and S method, in six industrial companies in the USA, and in three companies in Finland. Finally, a new improved audit method called MISHA was developed, and its reliability was tested in two industrial companies. The results of the work show that safety audit tools do not ensure reliable and valid audit results. The auditor's expertise in the field of health and safety is particularly important when the company's compliance with the legal requirements is evaluated. A reasonably high reliability in the use of the D and S can be achieved when the auditor is familiar with the audit tool, the national legislation, and the company's culture. The MISHA method gives more reliable results than D and S when the auditor is not trained. On the other hand, it seems that the D and S is more reliable when the auditor is a trained expert. Some differences were found between the companies in the USA and in Finland. The organization and administration of safety activities was at a somewhat higher level among the companies in the USA. Industrial hazard control, as well as the control of fire hazards and industrial hygiene were at a high level in all companies in both countries. Most dispersion occurred in supervision, participation, motivation, and training activities. Finally, accident investigation and analysis were significantly better arranged among the companies in the USA. The results are in line with the findings of the literature survey on national differences in safety management procedures. (orig.)

  15. Design and Realization of the Safety Production Scheduling System

    Directory of Open Access Journals (Sweden)

    Qiang Fan

    2013-01-01

    Full Text Available In this study, we have a research of the design and realization of the Safety Production Scheduling System. Urged by the government departments as well as safety supervising institutions, many coal enterprises are embarking on designing and constructing an information system platform for safety production and scheduling. How to establish a systematic, comprehensive, standardized and scientific management platform for the safety production and scheduling has become a hot issue in the coal industry, which is also an important move to integrate various safety management measures in order to prevent major safety accidents and keep up with the international industry status. Taking a successful, large-scale safety production and scheduling system for example, this study elaborates on its overall design and construction. When the system is completed, it will play an important role in strengthening safety production of the coal mines, preventing accidents as well as increasing the overall safety level of the coal industry.

  16. Configuration and Data Management Process and the System Safety Professional

    Science.gov (United States)

    Shivers, Charles Herbert; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    This article presents a discussion of the configuration management (CM) and the Data Management (DM) functions and provides a perspective of the importance of configuration and data management processes to the success of system safety activities. The article addresses the basic requirements of configuration and data management generally based on NASA configuration and data management policies and practices, although the concepts are likely to represent processes of any public or private organization's well-designed configuration and data management program.

  17. Advocating System Safety Concept in Preventing Airline Accidents

    OpenAIRE

    Lu, Chien-tsung; Wetmore, Michael; Smith, John

    2005-01-01

    System safety was conceptualized by the aerospace industry in the late 1940s in the United States (U.S.). Traditionally, users of system safety applied analysis to identify operational hazards and subsequently provide countermeasures before or after an accident. Unfortunately, very few aviation safety researches from the airlines had utilized it to promote aviation safety. To enrich this knowledge and contribute interest from academia, this paper adopted the inductive techniques of system saf...

  18. Inspirations from Dupont Safety Management System

    Institute of Scientific and Technical Information of China (English)

    Ma Yong

    2009-01-01

    @@ Dupont,with its 200 years of safety management experience,tells us:all safety accidents can be prevented. Dupont has a history of more than 200 years,the concept of "safety is priority"has never changed.Dupont is just another word for safety.

  19. Safety drain system for fluid reservoir

    Science.gov (United States)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2012-01-01

    A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.

  20. Safety-Critical Java for Embedded Systems

    DEFF Research Database (Denmark)

    Rios Rivas, Juan Ricardo

    for Java aims at providing a reduced set of the Java programming language that can be used for systems that need to be certified at the highest levels of criticality. Safety-critical Java (SCJ) restricts how a developer can structure an application by providing a specific programming model...... and by restricting the set of methods and libraries that can be used. Furthermore, its memory model do not use a garbage-collected heap but scoped memories. In this thesis we examine the use of the SCJ specification through an implementation in a time-predictable, FPGA-based Java processor. The specification is now...

  1. The WIPP transportation system: Dedicated to safety

    International Nuclear Information System (INIS)

    When developing a transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites, the Department of Energy (DOE) recognized and addressed many challenges. Shipments of waste to the Waste Isolation Pilot Plant (WIPP) were to cover a twenty-five year period and utilize routes covering over twelve thousand miles in twenty-three states. Enhancing public safety by maximizing the payload, thus reducing the number of shipments, was the primary objective. To preclude the requirement for overweight permits, the DOE started with a total shipment weight limit of 80,000 pounds and developed an integrated transportation system consisting of a Type ''B'' package to transport the material, a lightweight tractor and trailer, stringent driver requirements, and a shipment tracking system referred to as ''TRANSCOM''

  2. Appraisal of Fire Safety Management Systems at Educational Buildings

    Directory of Open Access Journals (Sweden)

    Nadzim N.

    2014-01-01

    Full Text Available Educational buildings are one type of government asset that should be protected, and they play an important role as temporary communal meeting places for children, teachers and communities. In terms of management, schools need to emphasize fire safety for their buildings. It is well known that fires are not only a threat to the building’s occupants, but also to the property and the school environment. A study on fire safety management has been carried out on schools that have recently experienced fires in Penang. From the study, it was found that the school buildings require further enhancement in terms of both active and passive fire protection systems. For instance, adequate fire extinguishers should be provided to the school and the management should inspect and maintain fire protection devices regularly. The most effective methods to increase the level of awareness on fire safety are by organizing related programs on the management of fire safety involving all staff, teachers and students, educational talks on the dangers of fire and important actions to take in the event of an emergency, and, lastly, to appoint particular staff to join the management safety team in schools.

  3. Activities of nuclear safety culture in foreign organizations such as IAEA, etc

    International Nuclear Information System (INIS)

    Safety of nuclear facilities is guaranteed with the safety of instrument and equipment and of human, organization, management and system. In the guarantee, especially the encouragement and the growth of nuclear safety culture which is the basis of the safety of the latter are very important. In recent years, severe accidents and transients due to organizational issues have increased. Then, international organizations, regulatory organizations of each country and nuclear enterprises promote positively the developments of self-assessment methods of safety culture and safety management systems. The activities in the international organizations of IAEA and OECD/NEA and in the foreign regulatory organizations of US NRC and UK NII are described. (K. Kato)

  4. Remote mobile communication in safety support system

    International Nuclear Information System (INIS)

    Safety Support System (SSS) is a computerized operator support system for nuclear power plants, which is now under development. The concept of SSS covers 1) earlier detection of failure symptom and prediction of its influence to the plant operation, 2) improved transparency and robustness of plant control systems, 3) advanced human-machine interface and communication. The authors have been working on the third concept and proposed a remote mobile communication system called Plant Communication System (PCS). PCS aims to realize convenient communication between main control room and other areas such as plant local areas and site offices, using Personal Handyphone System (PHS) and wireless LAN (Local Area Network). PCS can transmit not only data but also graphic displays and dynamic video displays between the main control room and plant local areas. MPEG4 (Moving Picture Experts Group 4) technology is utilized in video data compression and decompression. The authors have developed the special multiplexing unit that connects PHS Cell Stations (CSs) and exiting coaxial cables. Voice recognition and announcement capability is also realized in the system, which enables verbal retrieval of information in the computer systems in the main control room from local areas. (author)

  5. Review of regulatory activities associated with safety culture and management of safety at UK nuclear installations

    International Nuclear Information System (INIS)

    The management of health and safety and the culture of the people who participate in the process have been fundamental to the development of the United Kingdom's nuclear power programme. In the early years of development, the organizations and systems set up in companies which designed, manufactured, constructed and operated nuclear power stations were based upon the best practices needed to ensure, not only the operability of the plant, but also the safety of the workers at the power stations and the public. Over the years the nuclear industry in the UK has changed as has the regulatory body responsible for licensing. The economic environment within which the nuclear electricity generators operate has caused them to review their business and organizational structures. The UK nuclear industry has developed its approach to health and safety management and it is generally recognized that commercially successful companies have excellent health and safety records. This paper discusses the importance of effective health and safety management to the maintenance of high safety standards and the delivery of business goals. It also discusses the model that has been developed to help assess safety management in the changing UK nuclear industry. Finally, it comments upon regulatory developments in management of safety and safety culture. (author)

  6. Model-based safety architecture framework for complex systems

    NARCIS (Netherlands)

    Schuitemaker, K.; Rajabalinejad, M.; Braakhuis, J.G.; Podofilini, Luca; Sudret, Bruno; Stojadinovic, Bozidar; Zio, Enrico; Kröger, Wolfgang

    2015-01-01

    The shift to transparency and rising need of the general public for safety, together with the increasing complexity and interdisciplinarity of modern safety-critical Systems of Systems (SoS) have resulted in a Model-Based Safety Architecture Framework (MBSAF) for capturing and sharing architectural

  7. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    International Nuclear Information System (INIS)

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites

  8. Development of a system for safety indicators

    International Nuclear Information System (INIS)

    This R and D effort was carried out to support the introduction of safety performance indicators (SPIs) for the SKI inspections. The main goal was to compile and evaluate indicators currently in use by the Swedish utilities, and those proposed by the SKI. The main parts of the work performed were: - a compilation of safety performance indicators used by the utilities and those proposed by the SKI; - an assessment of selected important attributes for each SPI; - a description of the data collection processes; - an evaluation of how the currently used SPIs cover the various focus areas of the SKI yearly safety performance assessments for the plants; - a proposal of which SPIs to use for the 2002 assessments; - participation in reference group meetings. The utilities have used SPIs since the early 1990s. SPIs are regularly calculated and presented at plants and at corporate offices, and the SPIs are today an integrated part of the management systems. The selection of SPIs is based both on the WANO SPIs and on SPIs defined by the users themselves. The compilation shows that the utilities currently use well over 20 SPIs for follow-up of safety at the plants, including all of the 8 WANO SPIs. A SKI pilot project has proposed a number of SPIs for internal use. The basis is the reporting requirements according to regulations in SKIFS 1998:1, with its barrier- and defence-in-depth principles. A first implementation is planned for the 2002 safety assessments of plant performance. The SKI has in the report proposed use of 9 groups of SPIs. Several are identical or similar to those used by the utilities. An analysis of the data extracted from the SKI LER database STAGBAS implies some quality assurance problems i.e. data are not easily re-created. The data base itself though should be well fit for the application. Users within the Vattenfall group perform various aggregations of the SPIs, while others so far have only presented indicator data for the individual SPIs. Several of

  9. Study on application of safety checklist in preventive maintenance activities

    International Nuclear Information System (INIS)

    The paper describes the principles and the characteristics of safety checklist as a risk evaluation method. Examples of application of safety checklists to preventive maintenance activities such as criteria comparison and checkup items in place in nuclear power plants are illustrated in details with issues appeared in the checklist establishment. Checklist has a good application in the RCM analysis or in the actual preventive maintenance program for Chashma Nuclear Power Plant indicated by concrete instances. In the light of safety checklist which is used to sustain preventive maintenance as a simple and applicable risk analysis approach, we can get deep knowledge of risks of nuclear power plant to perfect preventive maintenance activities. (authors)

  10. CEC activities in the field of LMFBR safety

    International Nuclear Information System (INIS)

    The aim of the ECC is to reach a common LMFBR Safety strategy in Europe. To this end the Commission promotes collaboration between the different fast reactor projects in the Community through working groups and collaborative arrangements and contributes with a research activity executed in its Joint Research Centre Ispra. A short description is given of the activity in the working groups and of the Ispra programme on LMFBR Safety. This programme covers: LMFBR thermohydraulics, fuel coolant interactions, dynamic structure loading and response, safety related material properties and whole core accident code development

  11. Workplace activities to promote small attempts for safety. Toward development of safety culture in a nuclear power plant

    International Nuclear Information System (INIS)

    Activities that could possibly grow into learning activities for developing safety culture were explored by intensive fieldwork in a nuclear power plant depending on Engestroem's activity theory. As a first step to achieve this goal, workers' small attempts that might contribute to nurturing a safety culture were investigated. Eight kinds of activity were observed and interpreted as having the possibility to facilitate small recognition and small practice, i.e., activities including (1) workgroup as community, (2) other workgroups and other departments as community, (3) meeting drawing remarks as mediating artifacts, (4) study session and Off-the-Job-Training as mediating artifact, (5) award as mediating artifact, (6) extended leave as mediating artifact, (7) check sheet as mediating artifact, and (8) skill-transfer system as mediating artifact. (author)

  12. Accelerator driven systems from the radiological safety point of view

    Indian Academy of Sciences (India)

    P K Sarkar; Maitreyee Nandy

    2007-02-01

    In the proposed accelerator driven systems (ADS) the possible use of several milliamperes of protons of about 1 GeV incident on high mass targets like the molten lead–bismuth eutectic is anticipated to pose radiological problems that have so far not been encountered by the radiation protection community. Spallation reaction products like high energy gammas, neutrons, muons, pions and several radiotoxic nuclides including Po-210 complicate the situation. In the present paper, we discuss radiation safety measures like bulk shielding, containment of radiation leakage through ducts and penetration and induced activity in the structure to protect radiation workers as well as estimation of sky-shine, soil and ground water activation, release of toxic gases to the environment to protect public as per the stipulations of the regulatory authorities. We recommend the application of the probabilistic safety analysis technique by assessing the probability and criticality of different hazard-initiating events using HAZOP and FMECA.

  13. Licensing process for safety-critical software-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, P. [VTT Automation, Espoo (Finland); Korhonen, J. [VTT Electronics, Espoo (Finland); Pulkkinen, U. [VTT Automation, Espoo (Finland)

    2000-12-01

    System vendors nowadays propose software-based technology even for the most critical safety functions in nuclear power plants. Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of these systems. In the research project 'Programmable automation systems in nuclear power plants (OHA)', financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT), various safety assessment methods and tools for software based systems are developed and evaluated. As a part of the OHA-work a reference model for the licensing process for software-based safety automation systems is defined. The licensing process is defined as the set of interrelated activities whose purpose is to produce and assess evidence concerning the safety and reliability of the system/application to be licensed and to make the decision about the granting the construction and operation permissions based on this evidence. The parties of the licensing process are the authority, the licensee (the utility company), system vendors and their subcontractors and possible external independent assessors. The responsibility about the production of the evidence in first place lies at the licensee who in most cases rests heavily on the vendor expertise. The evaluation and gauging of the evidence is carried out by the authority (possibly using external experts), who also can acquire additional evidence by using their own (independent) methods and tools. Central issue in the licensing process is to combine the quality evidence about the system development process with the information acquired through tests, analyses and operational experience. The purpose of the licensing process described in this report is to act as a reference model both for the authority and the licensee when planning the licensing of individual applications

  14. Licensing process for safety-critical software-based systems

    International Nuclear Information System (INIS)

    System vendors nowadays propose software-based technology even for the most critical safety functions in nuclear power plants. Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of these systems. In the research project 'Programmable automation systems in nuclear power plants (OHA)', financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT), various safety assessment methods and tools for software based systems are developed and evaluated. As a part of the OHA-work a reference model for the licensing process for software-based safety automation systems is defined. The licensing process is defined as the set of interrelated activities whose purpose is to produce and assess evidence concerning the safety and reliability of the system/application to be licensed and to make the decision about the granting the construction and operation permissions based on this evidence. The parties of the licensing process are the authority, the licensee (the utility company), system vendors and their subcontractors and possible external independent assessors. The responsibility about the production of the evidence in first place lies at the licensee who in most cases rests heavily on the vendor expertise. The evaluation and gauging of the evidence is carried out by the authority (possibly using external experts), who also can acquire additional evidence by using their own (independent) methods and tools. Central issue in the licensing process is to combine the quality evidence about the system development process with the information acquired through tests, analyses and operational experience. The purpose of the licensing process described in this report is to act as a reference model both for the authority and the licensee when planning the licensing of individual applications. Many of the

  15. Instrumentation and Control Systems and Software Important to Safety for Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    This Safety Guide provides recommendations and guidance on instrumentation and control systems and software important to safety for research reactors, including instrumentation and control system architecture and associated components, from sensors to actuators, operator interfaces and auxiliary equipment. It also provides recommendations on computer based systems and software, including software requirements and design, verification and validation, integration, and operation. This publication also addresses safety classification, design, implementation, qualification and operation of instrumentation as well as control systems. The recommendations and guidance apply to both the design and configuration management of instrumentation and control systems for new research reactors and the modernization of the instrumentation and control systems to existing research reactor facilities. In addition this Safety Guide provides recommendations and guidance on human factors engineering and human machine interfaces, and for computer based systems and software for use in instrumentation and control systems important to safety

  16. Identifying behaviour patterns of construction safety using system archetypes.

    Science.gov (United States)

    Guo, Brian H W; Yiu, Tak Wing; González, Vicente A

    2015-07-01

    Construction safety management involves complex issues (e.g., different trades, multi-organizational project structure, constantly changing work environment, and transient workforce). Systems thinking is widely considered as an effective approach to understanding and managing the complexity. This paper aims to better understand dynamic complexity of construction safety management by exploring archetypes of construction safety. To achieve this, this paper adopted the ground theory method (GTM) and 22 interviews were conducted with participants in various positions (government safety inspector, client, health and safety manager, safety consultant, safety auditor, and safety researcher). Eight archetypes were emerged from the collected data: (1) safety regulations, (2) incentive programs, (3) procurement and safety, (4) safety management in small businesses (5) production and safety, (6) workers' conflicting goals, (7) blame on workers, and (8) reactive and proactive learning. These archetypes capture the interactions between a wide range of factors within various hierarchical levels and subsystems. As a free-standing tool, they advance the understanding of dynamic complexity of construction safety management and provide systemic insights into dealing with the complexity. They also can facilitate system dynamics modelling of construction safety process. PMID:25909389

  17. System Interface for an Integrated Intelligent Safety System (ISS for Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2010-01-01

    Full Text Available This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS that includes an airbag deployment decision system (ADDS and a tire pressure monitoring system (TPMS. A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  18. Probabilistic safety assessment activities at Ignalina NPP

    International Nuclear Information System (INIS)

    The Barselina Project was initiated in the summer 1991. The project was a multilateral co-operation between Lithuania, Russia and Sweden up until phase 3, and phase 4 has been performed as a bilateral between Lithuania and Sweden. The long-range objective is to establish common perspectives and unified bases for assessment of severe accident risks and needs for remedial measures for the RBMK reactors. During phase 3, from 1993 to 1994, a full scope Probabilistic Safety Analysis (PSA) model of the Ignalina Nuclear Power Plant unit 2 was developed to identify possible safety improvement of risk importance. The probabilistic methodology was applied on a plant specific basis for a channel type reactor of RBMK design. During phase 4, from 1994 to 1996, the PSA was further developed, taking into account plant changes, improved modelling methods and extended plant information concerning dependencies (area events, dynamic effects, electrical and signal dependencies). The model reflected the plant status before the outage 1996. During phase 4+, 1998 to 1999 the PSA model was upgraded taking into account the newest plant modifications. The new PSA model of CPS/AZRT was developed. Modelling was based on the Single Failure Analysis

  19. NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert

    2011-01-01

    System safety assessment is defined in NPR 8715.3C, NASA General Safety Program Requirements as a disciplined, systematic approach to the analysis of risks resulting from hazards that can affect humans, the environment, and mission assets. Achievement of the highest practicable degree of system safety is one of NASA's highest priorities. Traditionally, system safety assessment at NASA and elsewhere has focused on the application of a set of safety analysis tools to identify safety risks and formulate effective controls.1 Familiar tools used for this purpose include various forms of hazard analyses, failure modes and effects analyses, and probabilistic safety assessment (commonly also referred to as probabilistic risk assessment (PRA)). In the past, it has been assumed that to show that a system is safe, it is sufficient to provide assurance that the process for identifying the hazards has been as comprehensive as possible and that each identified hazard has one or more associated controls. The NASA Aerospace Safety Advisory Panel (ASAP) has made several statements in its annual reports supporting a more holistic approach. In 2006, it recommended that "... a comprehensive risk assessment, communication and acceptance process be implemented to ensure that overall launch risk is considered in an integrated and consistent manner." In 2009, it advocated for "... a process for using a risk-informed design approach to produce a design that is optimally and sufficiently safe." As a rationale for the latter advocacy, it stated that "... the ASAP applauds switching to a performance-based approach because it emphasizes early risk identification to guide designs, thus enabling creative design approaches that might be more efficient, safer, or both." For purposes of this preface, it is worth mentioning three areas where the handbook emphasizes a more holistic type of thinking. First, the handbook takes the position that it is important to not just focus on risk on an individual

  20. Stakeholder Safety in Information Systems Research

    Directory of Open Access Journals (Sweden)

    R.H. Barbour

    2006-11-01

    Full Text Available Information Communication Technology (ICT researchers adapt and use tools from reference and cognate disciplines. This application of existing tools outside the context of their development has implications beyond the immediate problem context. ICT researchers have access to a wide variety of data sources including newer ones, such as the Internet, that may bring unexpected outcomes. ICT research can impact on researchers, their institutions and the researched in unexpected ways. People so affected are the stakeholders in ICT research activities. Reputations, welfare and property may be put at risk by unplanned events described in this paper. Legal aspects of ICT research are broadly identified and linked to the tort of negligence. The Social Research Association’s Code for researcher safety is described and its application extended to include the Internet as a potential data source. A common set of underlying ethical principles is identified suggesting that the ICT researcher can refine particular research protocols for specific social contexts.

  1. Safety evaluation by living probabilistic safety assessment. Procedures and applications for planning of operational activities and analysis of operating experience

    International Nuclear Information System (INIS)

    Living Probabilistic Safety Assessment (PSA) is a daily safety management system and it is based on a plant-specific PSA and supporting information systems. In the living use of PSA, plant status knowledge is used to represent actual plant safety status in monitoring or follow-up perspective. The PSA model must be able to express the risk at a given time and plant configuration. The process, to update the PSA model to represent the current or planned configuration and to use the model to evaluate and direct the changes in the configuration, is called living PSA programme. The main purposes to develop and increase the usefulness of living PSA are: Long term safety planning: To continue the risk assessment process started with the basic PSA by extending and improving the basic models and data to provide a general risk evaluation tool for analyzing the safety effects of changes in plant design and procedures. Risk planning of operational activities: To support the operational management by providing means for searching optimal operational maintenance and testing strategies from the safety point of view. The results provide support for risk decision making in the short term or in a planning mode. The operational limits and conditions given by technical specifications can be analyzed by evaluating the risk effects of alternative requirements in order to balance the requirements with respect to operational flexibility and plant economy. Risk analysis of operating experience: To provide a general risk evaluation tool for analyzing the safety effects of incidents and plant status changes. The analyses are used to: identify possible high risk situations, rank the occurred events from safety point of view, and get feedback from operational events for the identification of risk contributors. This report describes the methods, models and applications required to continue the process towards a living use of PSA. 19 tabs, 20 figs

  2. Safety system challenges in US commercial power reactors

    International Nuclear Information System (INIS)

    United States operating experience, especially the events at Three Mile Island Unit 2 in 1979, Salem Unit 1 in 1983, and Davis-Besse in 1985, has demonstrated that human errors should be expected, that multiple failures can occur, and that the frequency of challenge to safety systems is becoming an important consideration in the probability of a serious transient. To reduce challenges to plant safety, emphasis is shifting from just the mitigation of transients to attention to plant operating systems, the operator, and the routine activities of technicians. Since that date, over 300 reactor years of experience have been accumulated. The United States Nuclear Regulatory Commission (USNRC) has analysed that experience and this paper presents the safety system challenge information for that period (approximately three years). This experience and the root causes for the various challenges are discussed along with the efforts of the NRC and the US operating industry to reduce the frequency. Nuclear steam supply system (NSSS) vendors, utilities, and the Institute of Nuclear Power Operations of the US industry have formulated various programmes to reduce operational transients. Some of the highlights of these programmes are discussed. In addition to reducing the challenge frequency for the matured US plants, both the NRC and the utilities are engaged in programmes to improve substantially the learning curve in the first few years of plant operation. The NRC recently completed an evaluation of the causes for this behaviour. Selected results of this work are discussed. Invariably, these analyses of the US operating experience lead to an identification of the unreliability of some balance-of-plant systems. These balance-of-plant systems in some plants had little redundancy. NRC regulation strategy has not previously focused on this equipment since it was not directly considered to be safety related. Moreover, US plants vary in design, with little or no attention to

  3. Safety architecture of internet based multi-robot teleoperation system

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jie; GAO Yong-sheng; CAI He-gao

    2005-01-01

    Safety subsystem is one of the important parts in robot teleoperation system. In this paper, a safety architecture of safety subsystem in Internet based multi-operator-multi-robot (MOMR) teleoperation system is presented. The subsystem is divided into three layers in its logic architecture: interactive monitor layer, collaborative control layer and real-time control layer. The safety problems and the related strategy are clarified by detailed analysis of each layer and relationship among the layers. So we can obtain a high performance MOMR teleoperation system with multi-layer safety architecture.

  4. Coalmine Safety Assurance Information System Based on GIS

    Institute of Scientific and Technical Information of China (English)

    LIU Qiao-xi; MAO Shan-jun; MA Ai-nai; MAO Yun-de; BAO Qing-guo

    2003-01-01

    The mine ventilation and safety is one of the most important factors to influence on the coal production.More attention has been paid to manage safety information in scientific, efficient, and real-time way. Therefore, it is important to develop a practical mine safety assurance information system (CSAIS). Based on analyzing the actual management mode for ventilation and safety on mine, the paper studies the structure and function of the mine safety assurance information system based on GIS in detail. Moreover, it also suggests some applications and solutions. By combining with the practical situation, the paper realizes the whole function of the present system.

  5. System Study: High-Pressure Safety Injection 1998–2012

    Energy Technology Data Exchange (ETDEWEB)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  6. System Study: High-Pressure Safety Injection 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-02-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  7. System Study: High-Pressure Safety Injection 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  8. Manual on maintenance of systems and components important to safety

    International Nuclear Information System (INIS)

    The Manual should serve as guidance at the plant management level for the maintenance of systems and components important to safety. It includes a detailed description of management systems, administrative controls and procedures. The Annexes contain examples of documents and practices adopted by Operating Organizations of some Member States. It is not the intention of this Manual to address the technical problem of how to maintain a particular component but rather to cover the programmatic aspects of maintenance. It also contains some aspects of surveillance and verification activities. The Manual makes only general statements about radiation protection provisions in connection with maintenance; detailed guidance can be found in other IAEA documents

  9. A Taxonomy of Fallacies in System Safety Arguments

    Science.gov (United States)

    Greenwell, William S.; Knight, John C.; Holloway, C. Michael; Pease, Jacob J.

    2006-01-01

    Safety cases are gaining acceptance as assurance vehicles for safety-related systems. A safety case documents the evidence and argument that a system is safe to operate; however, logical fallacies in the underlying argument may undermine a system s safety claims. Removing these fallacies is essential to reduce the risk of safety-related system failure. We present a taxonomy of common fallacies in safety arguments that is intended to assist safety professionals in avoiding and detecting fallacious reasoning in the arguments they develop and review. The taxonomy derives from a survey of general argument fallacies and a separate survey of fallacies in real-world safety arguments. Our taxonomy is specific to safety argumentation, and it is targeted at professionals who work with safety arguments but may lack formal training in logic or argumentation. We discuss the rationale for the selection and categorization of fallacies in the taxonomy. In addition to its applications to the development and review of safety cases, our taxonomy could also support the analysis of system failures and promote the development of more robust safety case patterns.

  10. Safety Justification of Software Systems. Software Based Safety Systems. Regulatory Inspection Handbook

    International Nuclear Information System (INIS)

    The introduction of new software based technology in the safety systems in nuclear power plants also makes it necessary to develop new strategies for regulatory review and assessment of these new systems that is more focused on reviewing the processes at the different phases in design phases during the system life cycle. It is a general requirement that the licensee shall perform different kinds of reviews. From a regulatory point of view it is more cost effective to assess that the design activities at the suppliers and the review activities within the development project are performed with good quality. But the change from more technical reviews over to the development process oriented approach also cause problems. When reviewing development and quality aspects there are no 'hard facts' that can be judged against some specified criteria, the issues are more 'soft' and are more to build up structure of arguments and evidences that the requirements are met. The regulatory review strategy must therefore change to follow the development process over the whole life cycle from concept phase until installation and operation. Even if we know what factors that is of interest we need some guidance on how to interpret and judge the information.For that purpose SKl started research activities in this area at the end of the 1990s. In the first phase, in co-operation with Gustav Dahll at the Halden project, a life cycle model was selected. For the different phases a qualitative influence net was constructed of the type that is used in Bayesian Believe Network together with a discussion on different issues involved. In the second phase of the research work, in co-operation with Norman Wainwright, a former NII inspector, information from a selection of the most important sources as guidelines, IAEA and EC reports etc, was mapped into the influence net structure (the total list on used sources are in the report). The result is presented in the form of questions (Q) and a

  11. Safety Justification of Software Systems. Software Based Safety Systems. Regulatory Inspection Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Dahll, Gustav (OECD Halden Project, Halden (NO)); Liwaang, Bo (Swedish Nuclear Power Inspectorate, Stockholm (Sweden)); Wainwright, Norman (Wainwright Safety Advice (GB))

    2006-07-01

    The introduction of new software based technology in the safety systems in nuclear power plants also makes it necessary to develop new strategies for regulatory review and assessment of these new systems that is more focused on reviewing the processes at the different phases in design phases during the system life cycle. It is a general requirement that the licensee shall perform different kinds of reviews. From a regulatory point of view it is more cost effective to assess that the design activities at the suppliers and the review activities within the development project are performed with good quality. But the change from more technical reviews over to the development process oriented approach also cause problems. When reviewing development and quality aspects there are no 'hard facts' that can be judged against some specified criteria, the issues are more 'soft' and are more to build up structure of arguments and evidences that the requirements are met. The regulatory review strategy must therefore change to follow the development process over the whole life cycle from concept phase until installation and operation. Even if we know what factors that is of interest we need some guidance on how to interpret and judge the information.For that purpose SKl started research activities in this area at the end of the 1990s. In the first phase, in co-operation with Gustav Dahll at the Halden project, a life cycle model was selected. For the different phases a qualitative influence net was constructed of the type that is used in Bayesian Believe Network together with a discussion on different issues involved. In the second phase of the research work, in co-operation with Norman Wainwright, a former NII inspector, information from a selection of the most important sources as guidelines, IAEA and EC reports etc, was mapped into the influence net structure (the total list on used sources are in the report). The result is presented in the form of

  12. Mercury contamination study for flight system safety

    Science.gov (United States)

    Gorzynski, C. S., Jr.; Maycock, J. N.

    1972-01-01

    The effects and prevention of possible mercury pollution from the failure of solar electric propulsion spacecraft using mercury propellant were studied from tankage loading of post launch trajector injection. During preflight operations and initial flight mode there is little danger of mercury pollution if proper safety precautions are taken. Any spillage on the loading, mating, transportation, or launch pad areas is obvious and can be removed by vacuum cleaning soil and chemical fixing. Mercury spilled on Cape Kennedy ground soil will be chemically complexed and retained by the sandstone subsoil. A cover layer of sand or gravel on spilled mercury which has settled to the bottom of a water body adjacent to the system operation will control and eliminate the formation of toxic organic mercurials. Mercury released into the earth's atmosphere through leakage of a fireball will be diffused to low concentration levels. However, gas phase reactions of mercury with ozone could cause a local ozone depletion and result in serious ecological hazards.

  13. System and safety studies of accelerator driven systems for transmutation. Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasily; Fokau, Andrei; Persson, Calle; Runevall, Odd; Sandberg, Nils; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang (Div. of Reactor Physics, Royal Institute of Technology, Stockholm (Sweden))

    2008-05-15

    Within the project 'System and safety studies of accelerator driven systems for transmutation', research on design and safety of sub-critical reactors for recycling of minor actinides is performed. During 2007, the reactor physics division at KTH has calculated safety parameters for EFIT-400 with cermet fuel, permitting to start the transient safety analysis. The accuracy of different reactivity meters applied to the YALINA facility was assessed and neutron detection studies were performed. A model to address deviations from point kinetic behaviour was developed. Studies of basic radiation damage physics included calculations of vacancy formation and activation enthalpies in bcc niobium. In order to predict the oxygen potential of inert matrix fuels, a thermo-chemical model for mixed actinide oxides was implemented in a phase equilibrium code

  14. Development and implementation of setpoint tolerances for special safety systems

    International Nuclear Information System (INIS)

    The establishment of tolerances and impairment limits for special safety system setpoints is part of the process whereby the plant operator demonstrates to the regulatory authority that the plant operates safely and within the defined plant licensing envelope. The licensing envelope represents the set of limits and plant operating state and for which acceptably safe plant operation has been demonstrated by the safety analysis. By definition, operation beyond this envelope contributes to overall safety system unavailability. Definition of the licensing envelope is provided in a wide range of documents including the plant operating licence, the safety report, and the plant operating policies and principles documents. As part of the safety analysis, limits are derived for each special safety system initiating parameter such that the relevant safety design objectives are achieved for all design basis events. If initiation on a given parameter occurs at a level beyond its limit, there is a potential reduction in safety system effectiveness relative to the performance credited in the plant safety analysis. These safety system parameter limits, when corrected for random and systematic instrument errors and other errors inherent in the process of periodic testing or calibration, are then used to derive parameter impairment levels and setpoint tolerances. This paper describes the methodology that has evolved at Ontario Hydro for developing and implementing tolerances for special safety system parameters (i.e., the shutdown systems, emergency coolant injection system and containment system). Tolerances for special safety system initiation setpoints are addressed specifically, although many of the considerations discussed here will apply to performance limits for other safety system components. The first part of the paper deals with the approach that has been adopted for defining and establishing setpoint limits and tolerances. The remainder of the paper addresses operational

  15. Safety Reviews of Technical System Modifications in the Nuclear Industry

    OpenAIRE

    Falk, Thomas

    2013-01-01

    The function of safety reviews (here understood as expert judgements on proposals for design modifications and redesign of technical systems in commercial Nuclear Power Plants, supported by formalised safety review processes) plays a fundamental role for safety in nuclear installations. The primary aims of the presented case studies includes: critically examining and identifying the main areas for improvement of the existing technical safety review process as it is conducted at a Swedish nucl...

  16. Development of a safety parameter supervision system for Angra-1

    International Nuclear Information System (INIS)

    The Safety Parameter Supervision System (SSPS) which is a computerized system for monitoring essential parameters in real time, determining the safety status and emergency procedures for returning normal reactor operation, in case of an anomaly occurrence, is presented. The SSPS consists of three sub-systems: Integrated parameter monitoring system which gives to operators an integrated vision of values of a parameter set, able to detect any deviation of normal reactor operation; safety critical function system which evaluates safety status in terms of a safety critical function set appointed in advance, and in case of violation of any critical function, it initiates the adequate emergency procedure to return normal operation; and safety parameter computer system which carries out the arquirement of analogic and digital control signals of nuclear power plant. (M.C.K.)

  17. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security. Issue no. 4, June 2007

    International Nuclear Information System (INIS)

    This newsletter contains information on the Centre for Advanced Safety Assessment Tools (CASAT), the new strategy for the recovery of radioactive sources, the Technical Support Organization Conference and a message form the Director of the Division of Nuclear Installation Safety. To improve the efficiency of safety assessment methods, ensure transparency in their validation and application and establish an excellent knowledge base and training programmes, the IAEA's Centre for Advanced Safety Assessment Tools (CASAT) has therefore been formed. The Centre addresses the need for continuous technical support mechanisms for safety assessment methods. It provides support to Member States to enhance their safety assessment capabilities for present and future generations of nuclear systems, with a special focus on countries with a developing nuclear technology and nuclear safety infrastructure. It serves as a consolidated repository of relevant safety analysis knowledge, provides for focused training including advanced analytical simulations, and supports collaboration on safety assessment projects among Member States. The resources provided through CASAT include codes, models, databases, verification and validation information, analytical procedures and guides. The main purpose of the recently established Radioactive Source Technical Coordination Group (RSTCG) is to facilitate the technical coordination of activities of the IAEA related to the control and management of radioactive sources through the development of common approaches in technical matters and to advise the management of the relevant Divisions. It is the task of the RSTCG to provide the programme managers of the participating divisions/sections with a common opinion/advice on technical issues related to the control and management of radioactive sources. The RSTCG members obtain, inter alia from programme managers, information on all relevant project proposals, and share relevant materials in due time to

  18. Plant assessment system and safety culture

    International Nuclear Information System (INIS)

    The government, upon these events, keenly felt the necessity for developing the safety culture which was already forwarded in nuclear industries and started taking actions to propagate it to all parts of society. The government established a social safety director position under the Prime Minister's jurisdiction and also established a Safety Culture Promotion Headquarters in which 7 ministries and other organizations, such as Korea Economic Council, Federation of Korea Trade Union and Women's Federation Council were participating. In accordance with the government's strong will to enhance the safety consciousness of people, safety campaigns are being developed voluntarily in the private sector. The formation of non-governmental organizations, such as People's Central Council of Safety Culture Promotion, shows a good example of such movement

  19. Vehicle Safety Enhancement System: Sensing and Communication

    OpenAIRE

    Huihuan Qian; Yongquan Chen; Yuandong Sun; Niansheng Liu; Ning Ding; Yangsheng Xu; Guoqing Xu; Yunjian Tang; Jingyu Yan

    2013-01-01

    With the substantial increase of vehicles on road, driving safety and transportation efficiency have become increasingly concerned focus from drivers, passengers, and governments. Wireless networks constructed by vehicles and infrastructures provide abundant information to share for the sake of both enhanced safety and network efficiency. This paper presents the systematic research to enhance the vehicle safety by wireless communication, in the aspects of information acquisition through vehic...

  20. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    International Nuclear Information System (INIS)

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines

  1. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines.

  2. Design an optimum safety policy for personnel safety management - A system dynamic approach

    International Nuclear Information System (INIS)

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making

  3. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Science.gov (United States)

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  4. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, P. [The Glocal University, Mirzapur Pole, Delhi- Yamuntori Highway, Saharanpur 2470001 (India)

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  5. Automated Safety Incident Surveillance and Tracking System (ASISTS)

    Data.gov (United States)

    Department of Veterans Affairs — The Automated Safety Incident Surveillance and Tracking System (ASISTS) is a repository of Veterans Health Administration (VHA) employee accident data. Many types...

  6. Problems of Rural Food Safety and Strategies of Constructing Supervision System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper expounds the practical necessity of constructing diversified rural food safety supervision system as follows: it is the necessary requirements of guaranteeing people’s health and life safety; it is an important component of governmental function of social management and the logical extension of administrative responsibilities; it is the basis of maintaining order of rural society and constructing harmonious society. The main problems existing in the supervision of rural food safety are analyzed as follows: first, the legislative work of rural food safety lags behind to some extent; second, the supervision of governmental departments on rural food safety is insufficient; third, the industrial supervision mechanism of rural food security is not perfect; fourth, the role of rural social organizations in supervising food safety is limited; fifth, the farmers’ awareness of food safety supervision is not strong. Based on these problems, the targeted strategies of constructing diversified rural food safety supervision system are put forward as follows: accelerate the legislation of rural food safety, and ensure that there are laws to go by; give play to the dominant role of government, and strengthen administrative supervision on rural food safety; perfect industrial convention of rural food safety, and improve industrial supervision mechanism; actively support the fostering of social organizations, and give play to the role of supervision of organizations; cultivate correct concept of rights and obligations of farmers, and form awareness of food safety supervision.

  7. SAFETY MARGIN CRITERION OF NONLINEAR UNBALANCE ELASTIC AXLE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    陈予恕; 李银山; 薛禹胜

    2003-01-01

    The safety margin criterion of nonlinear dynamic question of an elastic rotor system are given. A series of observing spaces were separated from integral space by resolving and polymerizing method. The stable-state trajectory of high dimensional nonlinear dynamic systems was got within integral space. According to international standard of rotor system vibration, energy limits of safety criterion were determined. The safety margin was calculated within a series of observing spaces by comparative positive-area criterion (CPAC) method. A quantitative example calculating safety margin for unbalance elastic rotor system was given by CPAC. The safety margin criterion proposed includes the calculation of current stability margin in engineering. This criterion is an effective method to solve quantitative calculation question of safety margin and stability margin for nonlinear dynamic systems.

  8. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems

    Science.gov (United States)

    Lutz, Robyn R.

    1993-01-01

    This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.

  9. Safety System Designs and Characteristics of the 4S

    International Nuclear Information System (INIS)

    The 4S (Super-Safe, Small and Simple) is a small-sized, sodium-cooled fast reactor with a reflector-controlled core. The 4S design includes features such as 'no on-site refueling', 'passive safety' and 'low maintenance requirements'. In this paper, the safety design and safety features are described. The reactor shutdown system consists of two redundant and diverse systems, as does the residual heat removal system and either system can remove 100% of the core decay heat. The containment system consists of a guard vessel and a top dome. Measures to exclude any previously identified accident initiators have been applied to the 4S reflector drive, EMP and the steam generator. A 4S safety analysis has been carried out and demonstrates that the safety acceptance criteria is satisfied and the safety of 4S is confirmed. (author)

  10. A systems engineering approach to implementation of safety management systems in the Norwegian fishing fleet

    International Nuclear Information System (INIS)

    The fishing industry is plagued by a long history of fatality and injury occurrence. Commercial fishing is hence recognized as the most dangerous and difficult of professional callings, in all jurisdictions. Fishing vessels have their own unique set of hazards, a myriad collection of complex occupational accident potentials, barely controlled, co-existing in a perilous work environment. The work in this article is directed by the Norwegian Systematic Health, Environmental and Safety Activities in Enterprises (1997) (Internal Control Regulations [1]), the ISM Code [2] for vessels and their recent applicability to the fishing fleet of Norway. Both safety management works place requirements on the vessel operators and crew to actively manage safety as an on-going concern. The application of these safety management system (SMS) control documents to fishing vessels is just the latest instalment in a continual drive to improve safety in this sector. The difficulty is that there has been no previous systematic approach to safety within the fishing fleet. This article uses the tenants of systems engineering to determine the requirements for such a SMS, detailing the limiting factors and restrictive issues of this complex operating environment. - Highlights: • Systems engineer is applied as a tool for determining requirements for design and construction of a safety management system (SMS). • Outlining a simplistic format, identifying, designingand facilitating improvement opportunities in the conduction and application of SMS’s on fishing vessels. • Knowledge provision is a key requirement of management systems, through provision of understanding, detail orientation and applicable skills for realization. • Outlining, what is to be done and how it is to be completed to accomplish compliance with pertinent legislative requirements. • Promoting a combination of documentation and communication arrangements by which the actionsnecessary for management can be

  11. Safety evalution of cryptography modules within safety related control systems for railway applications

    OpenAIRE

    Maria Franekova; Marek Vyrostko

    2011-01-01

    The paper deals with the problem of safety evaluation of cryptographic modules used within safety-related control system for applications with increasing safety integrity level. The requirements to cryptographic tec...

  12. Further activities of safety culture toward nuclear transportation industry

    International Nuclear Information System (INIS)

    On September 30, 1999, a criticality accident occurred at the uranium processing facility of the JCO Co. Ltd. (hereinafter referred to as ''JCO'') Tokai plant, located in Tokaimura, Ibaraki Prefecture. This was an unprecedented accident in Japan's history of peaceful use of nuclear power, resulting in three workers exposed to severe radiation, two of whom died, and the evacuation and enforced indoor confinement of local residents. Nuclear power suppliers must take personal responsibility for ensuring safety. In this connection, the electric power industry, heavy electric machinery manufacturers, fuel fabricators, and nuclear power research organizations gathered together to establish the Nuclear Safety Network (NSnet) in December 1999, based on the resolve to share and improve the level of the safety culture across the entire nuclear power industry and to assure that such an accident never occurs again. NSnet serves as a link between nuclear power enterprises, research organizations, and other bodies, based on the principles of equality and reciprocity. A variety of activities are pursued, such as diffusing a safety culture, implementing mutual evaluation among members, and exchanging safety-related information. Aiming to share and improve the safety culture throughout the entire nuclear power industry, NSnet thoroughly implements the principle of safety first, while at the same time making efforts to restore trust in nuclear power

  13. Safety management systems and their role in achieving high standards of operational safety

    International Nuclear Information System (INIS)

    Achieving high standards of operational safety requires a robust management framework that is visible to all personnel with responsibility for its implementation. The structure of the management framework must ensure that all processes used to manage safety interlink in a logical and coherent manner, that is, they form a management system that leads to continuous improvement in safety performance. This Paper describes BNFL's safety management system (SMS). The SMS has management processes grouped within 5 main elements: 1. Policy, 2. Organisation, 3. Planning and Implementation, 4. Measuring and Reviewing Performance, 5. Audit. These elements reflect the overall process of setting safety objective (from Policy), measuring success and reviewing the performance. Effective implementation of the SMS requires senior managers to demonstrate leadership through their commitment and accountability. However, the SMS as a whole reflects that every employee at every level within BNFL is responsible for safety of operations under their control. The SMS therefore promotes a proactive safety culture and safe operations. The system is formally documented in the Company's Environmental, Health and Safety (EHS) Manual. Within in BNFL Group, the Company structures enables the Manual to provide overall SMS guidance and co-ordination to its range of nuclear businesses. Each business develops the SMS to be appropriate at all levels of its organisation, but ensuring that each level is consistent with the higher level. The Paper concludes with a summary of BNFL's safety performance. (author)

  14. A safety-based decision making architecture for autonomous systems

    Science.gov (United States)

    Musto, Joseph C.; Lauderbaugh, L. K.

    1991-01-01

    Engineering systems designed specifically for space applications often exhibit a high level of autonomy in the control and decision-making architecture. As the level of autonomy increases, more emphasis must be placed on assimilating the safety functions normally executed at the hardware level or by human supervisors into the control architecture of the system. The development of a decision-making structure which utilizes information on system safety is detailed. A quantitative measure of system safety, called the safety self-information, is defined. This measure is analogous to the reliability self-information defined by McInroy and Saridis, but includes weighting of task constraints to provide a measure of both reliability and cost. An example is presented in which the safety self-information is used as a decision criterion in a mobile robot controller. The safety self-information is shown to be consistent with the entropy-based Theory of Intelligent Machines defined by Saridis.

  15. Convoy active safety technologies war fighter experiment II

    Science.gov (United States)

    Schoenherr, Edward W.

    2009-01-01

    The operational ability to project and sustain forces in distant, anti-access and area denial environments poses new challenges for combatant commanders. One of the new challenges is the ability to conduct sustainment operations at operationally feasible times and places on the battlefield. Combatant commanders require a sustainment system that is agile, versatile, and survivable throughout the range of military operations and across the spectrum of conflict. A key component of conducting responsive, operationally feasible sustainment operations is the ability to conduct sustainment convoys. Sustainment convoys are critical to providing combatant commanders the right support, at the right time and place, and in the right quantities, across the full range of military operations. The ability to conduct sustainment convoys in a variety of hostile environments require force protection measures that address the enemy threat and protect the Soldier. One cost effective, technically feasible method of increasing the force protection for sustainment convoys is the use of robotic follower technology and autonomous navigation. The Convoy Active Safety Technologies (CAST) system is a driver assist, convoy autopilot technology aimed to address these issues. The CAST Warfigher Experiment II, being held at The Nevada Automotive Test Center in the fall of 2008, will continue analysis of the utility of this vehicle following technology not only in measures of system integrity and performance vs. manual driving, but also the physiological effects on the operators themselves. This paper will detail this experiment's methodology and analysis. Results will be presented at the SPIE Electronic Imaging 2009 symposium.

  16. Models Extracted from Text for System-Software Safety Analyses

    Science.gov (United States)

    Malin, Jane T.

    2010-01-01

    This presentation describes extraction and integration of requirements information and safety information in visualizations to support early review of completeness, correctness, and consistency of lengthy and diverse system safety analyses. Software tools have been developed and extended to perform the following tasks: 1) extract model parts and safety information from text in interface requirements documents, failure modes and effects analyses and hazard reports; 2) map and integrate the information to develop system architecture models and visualizations for safety analysts; and 3) provide model output to support virtual system integration testing. This presentation illustrates the methods and products with a rocket motor initiation case.

  17. Safety control program for complex system based on behavior science

    Institute of Scientific and Technical Information of China (English)

    LIANG Mei-jian; YANG Guang; CHEN Da-wei

    2008-01-01

    To control complex system's safety effectively, safety control program was supported based on the principles of behavioral science that shapes organizational be-havior, and organizational behavior produced individual behavior. The program can be structured into a model that consists of three modules including individual behavior rectifi-cation, organization behavior diagnosis and model of safety culture. The research result not only reveals the deep cause of complex system accidents but also provides structural descriptions with the accidents cause.

  18. Safety control program for complex system based on behavior science

    Institute of Scientific and Technical Information of China (English)

    LIANG Mei-jian; YANG Guang; CHEN Da-wei

    2008-01-01

    To control complex system's safety effectively,safety control program was supported based on the principles of behavioral science that shapes organizational behavior,and organizational behavior produced individual behavior.The program can be structured into a model that consists of three modules including individual behavior rectification,organization behavior diagnosis and model of safety culture.The research result not only reveals the deep cause of complex system accidents but also provides structural descriptions with the accidents cause.

  19. Specifying Safety Monitors for Autonomous Systems using Model-checking

    OpenAIRE

    Machin, Mathilde; Dufossé, Fanny; Blanquart, Jean-Paul; Guiochet, Jérémie; Powell, David; Waeselynck, Hélène

    2014-01-01

    International audience Autonomous systems operating in the vicinity of humans are critical in that they potentially harm humans. As the complexity of autonomous system software makes the zero-fault objective hardly at- tainable, we adopt a fault-tolerance approach. We consider a separate safety channel, called a monitor, that is able to partially observe the sys- tem and to trigger safety-ensuring actuations. A systematic process for specifying a safety monitor is presented. Hazards are fo...

  20. Nuclear power plants. Electrical equipment of the safety system. Qualification

    International Nuclear Information System (INIS)

    This International Standard applies to electrical parts of safety systems employed at nuclear power plants, including components and equipment of any interface whose failure could affect unfavourably properties of the safety system. The standard also applies to non-electrical safety-related interfaces. Furthermore, the standard describes the generic process of qualification certification procedures and methods of qualification testing and related documentation. (P.A.)

  1. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    International Nuclear Information System (INIS)

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author)

  2. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  3. Activities Related to Safety Regulations of Spent Fuel Interim Storage at Japan Nuclear Energy Safety Organization

    International Nuclear Information System (INIS)

    Major research activities in safety regulation of spent fuel interim storage at JNES are presented. In Japan, the first license application was approved by the government in May 2010 and the design and construction method will be submitted to the regulatory authority NISA soon. A commencement of its operation is expected at December 2012. In its plan, dual purpose metal casks for storage and transport will be stored in a concrete building for about 50 years, and then they will be transported to a spent fuel reprocessing facility. When they will be shipped out after the storage, no visual inspection for cask internals will be scheduled. Major reason of no visual inspection is to avoid any radiation exposure from contingent incident during opening the casks lid. JNES as TSO has conducted research activities to support NISA. Before the license application, those activities focused on three areas. The first area was to investigate fundamental safety function of the cask, that is, confinement, shielding, heat removal and subcriticality. Especially, a long term performance of the safety function was key issues. The second one was to confirm integrity of spent fuel cladding during the storage. The third one was to improves and verify the computer codes and/or methods for safety evaluation of the spent fuel interim storage facilities. In usual safety review process in Japan, NISA sometimes asks JNES to perform independent analysis and check the adequacy of the safety analysis conducted by licensees. After the approval of the license application, the applicant should have approvals of “design and construction method”, the welding inspection of the cask and the pre-service inspection. JNES is now supporting to prepare the criteria of the design and construction method. (author)

  4. System and safety studies of accelerator driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details.

  5. Safety enhancement of oil trunk pipeline crossing active faults on Sakhalin Island

    Science.gov (United States)

    Tishkina, E.; Antropova, N.; Korotchenko, T.

    2015-11-01

    The article explores the issues concerning safety enhancement of pipeline active fault crossing on Sakhalin Island. Based on the complexity and analysis results, all the faults crossed by pipeline system are classified into five categories - from very simple faults to extremely complex ones. The pipeline fault crossing design is developed in accordance with the fault category. To enhance pipeline safety at fault crossing, a set of methods should be applied: use of pipes of different safety classes and special trench design in accordance with soil permeability characteristics.

  6. Software for the occupational health and safety integrated management system

    Energy Technology Data Exchange (ETDEWEB)

    Vătăsescu, Mihaela [University Politehnica Timisoara, Department of Engineering and Management, 5 Revolutiei street, 331128 Hunedoara (Romania)

    2015-03-10

    This paper intends to present the design and the production of a software for the Occupational Health and Safety Integrated Management System with the view to a rapid drawing up of the system documents in the field of occupational health and safety.

  7. Safety implications of electronic driving support systems : an orientation.

    NARCIS (Netherlands)

    Gundy, C.M. Steyvers, F.J.J.M. & Kaptein, N.A.

    1995-01-01

    This report focuses on traffic safety aspects of driving support systems. The report consists of two parts. First of all, the report discusses a number of topics, relevant for the implementation and evaluation of driving support systems. These topics include: (1) safety research into driving support

  8. Software for the occupational health and safety integrated management system

    International Nuclear Information System (INIS)

    This paper intends to present the design and the production of a software for the Occupational Health and Safety Integrated Management System with the view to a rapid drawing up of the system documents in the field of occupational health and safety

  9. Safety Characteristics in System Application Software for Human Rated Exploration

    Science.gov (United States)

    Mango, E. J.

    2016-01-01

    NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development.

  10. The Effect of Safety System on Production Indices

    Directory of Open Access Journals (Sweden)

    Manouchehr Omidvari

    2012-01-01

    Full Text Available Nowadays, in addition to implement the quality of management systems and environment management and due to the effects of safety and health issues on working processes, the organizations have also sought to acquire health and safety management systems. This descriptive –analytic and past reviewing study has been implemented based on five years (from 2006 to 2010 recorded documents and statistics information in food industrial. Information was collected based on the food industries checklists. The safety indices including risk evaluation, safety auditing, personnel safety training, investment in personal protection equipments, accident severity, accident frequency, accident frequency-severity and job decease repetition coefficient were used for determination of safety programs successfulness degree. Productivity indices such as human forces productivity, wastage amount, production per capita, personnel absence, personnel complaint and production exploitation were for organizational productivity measurements. The results showed that the safety programs implementation have positive impacts on mentioned productivity indices. So there was a direct relationship between safety rules respect and work condition optimization which arouse productivity development in the organizations. Indices definition could be helpful for the safety system effectiveness and system continuous performance optimization.

  11. CONTROL COMMAND SYSTEMS IMPACT ON THE RAILWAY OPERATIONAL SAFETY

    Directory of Open Access Journals (Sweden)

    Marek Pawlik

    2015-04-01

    Full Text Available Purpose. Safety is seen as a must, for railway transport market. However it is not so obvious what does safety exactly mean as it means different things for different experts. Showing safety ensured by control command systems as a component of the railway operational safety and pointing associated challenges especially those arising from subdivision of the national railway system into different entities. Methodology. To achieve this purpose control command and signalling systems keeping safe distances between trains, preventing setting conflicting train routs, locking of the mobile elements of the switches, protecting the level crossings, enabling safe incorporation of additional trains were analyzed. Findings. Article analyses how control command system influence operational safety taking into account safety of the control-command system itself, interfaces on one side between signalling systems and control command system and on the other side between control command system and vehicle control systems, transmission, maintenance, and operation in degraded modes of running. Originality. New and high-effective scope of tests which are necessary for putting new control command installation into service both track-side and on-board are proposed. Practical value. Control command implementations will significantly improve operational safety, however it is possible only when recommendations defined in this article are taken into account. This means that all the components including interfaces have to meet acceptable hazard rate 10E-9 and have to be properly design, constructed, assembled and maintained, all taking into account whole chain of functions performed and supervised by different railway entities.

  12. Radiation safety interlock system at Indus accelerator complex

    International Nuclear Information System (INIS)

    A Radiation Safety Interlock System (a part of Radiation Safety System) that ensures protection of personnel during the facility operation from radiation hazards induced by electron beam and synchrotron radiation has been in operation very effectively for over a decade at Indus Accelerator complex (IAC). Radiation Safety Interlock System (RSIS) consists of two parts - Safety Interlock Unit (SIU) and Mode Selection Unit (MSU). Separate Safety Interlock Units are provided for four machine areas of IAC, namely Microtron and Booster, Indus-1 storage ring, Indus-1 user hall and Indus-2 storage ring. The efficacy of the Safety Interlock Units of Indus-1 user hall, Indus-1 storage ring and Indus-2 storage ring is governed by the operation modes that are selected through Mode Selection Unit. RSIS has been modified during past 1 and 1/2 year by addition of new interlock features and changes in the final beam control scheme. Machine Safety Interlock System (MSIS) was also interlocked with RSIS to facilitate termination of machine operation in case of any unsafe condition of Indus-2 systems. This paper describes the design philosophy, recent modifications, implementation and future upgrade plans of the present Radiation Safety Interlock Systems at Indus accelerator complex. (author)

  13. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    A synthesized methodology of safety analysis and evaluation for general fusion systems is proposed. In the course of the methodology development, its main frame has been constructed in order to take account of all safety-related items and to ensure a logical consistency. The safety-related items are divided broadly into two groups. One of them is the public protection from radiological hazard, which is introduced as a safety requirement from an external viewpoint for the fusion system. The other items are the matter from an internal viewpoint and are related to the fusion system behavior in itself. These items are composed of the understanding of a fusion system, the safety ensuring principle and the function based safety analysis. All of these items have been mapped on the frame, considering the mutual relations, among them, consistently. To complete the methodology development, the safety evaluation for the actual design of a fusion system has been performed in conformity to this methodology. Thus, it has been demonstrated that the methodology proposed here is appropriate to the safety analysis and evaluation for the fusion system. (author). 9 refs, 4 figs, 2 tabs

  14. Control, Operator Support and Safety System of PVC-reactors

    Directory of Open Access Journals (Sweden)

    Jens I. Ytreeide

    1997-01-01

    Full Text Available In modern petrochemical plants the corporate and societal demands to plant safety and minimum environmental effects are high. These demands rise high performance requirements to the technical systems, specially the process control and safety systems including an effective operator support system with fault detection capability. The systems must have high reliability also against erroneous operations which may cause shutdown situations or quality deviations.

  15. IAEA activities on safety aspects of NPP ageing

    International Nuclear Information System (INIS)

    A review of IAEA activities concerned with safety aspects of nuclear power plants ageing is given for the period from 1995 to 1998 with the prospects till year 2000. Coordinated Research programs were conducted on Management Ageing of Concrete Containment Buildings; Management of Ageing of In-Containment I and C cables. TECDOCs were published on Assessment and Management of Ageing of Major NPP Components Important for Safety of CANDU, PWR and BWR NPPs. Technical Committee Meetings and Interregional training courses concerned with the same subjects were held

  16. HIGH VOLTAGE SAFETY MANAGEMENT SYSTEM OF ELECTRIC VEHICLE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of high voltage system (HVS) to ensure the high voltage safety. A high voltage safety management system is developed to solve this critical issue. Several key electric parameters including pre-charge, contact resistance, insulation resistance and remaining capacity are monitored and analyzed based on the presented equivalent models. An electronic unit called high voltage safety controller is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated and the on-line electric parameters monitor strategy is discussed. The real vehicle experiment results indicate that the high voltage safety management system designed is suitable for EV application.

  17. A formal safety analysis for PLC software-based safety critical system using Z

    International Nuclear Information System (INIS)

    This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC (Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formal safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system. And also, we have found that some errors or mismatches in user requirement and final implemented PLC ladder logic while analyzing the process of the consistency and completeness of Z translated formal specifications. In the case of relatively small systems like Beamline hutch door interlock system, a formal safety analysis including explicit proof is highly recommended so that the safety of PLC-based critical system may be enhanced and guaranteed. It also provides a helpful benefits enough to comprehend user requirement expressed by ambiguous natural language

  18. Tank waste remediation system nuclear criticality safety program management review

    International Nuclear Information System (INIS)

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999

  19. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  20. From passive vehicle safety to integrated safety systems. The evolution of crash safety; Von der passiven Fahrzeugsicherheit zum vernetzten Sicherheitsystem. Eine Entwicklungsgeschichte

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, W. [Opel (A.) AG, Ruesselsheim (Germany)

    2004-07-01

    The centennial of automotive manufacturing in Zwickau provides a fitting occasion to take a look back at a special subdiscipline of vehicle development, namely crash safety. Conceptions of ''safety'' have changed considerably in the course of automotive history. Originally, safety was merely understood to mean the rigidity of the vehicle body. Later, measures relating to energy management at the body front end led to the development of a complex deformation structure which was required to function optimally in a wide variety of accident constellations. In car body design, the objective of crash safety has widened from its original focus on self-protection to include the protection of the other party. Today, crash safety is foremost aimed at ensuring vehicle compatibility. Developments in occupant safety systems have been equally dramatic. The central element of occupant safety continues to be the safety belt, which has evolved from a static, manually adjustable belt into a complex device with pyrotechnical and electrical retractors and variable force limiters. New potentials for improving crash safety are being tapped in the form of electronic sensing systems for occupants and the vehicle environment. However, further progress from here will require considerably higher expenditures. Significant improvements in vehicle safety will in future only be achievable through the integration of active and passive safety with vehicle communication and environment sensing systems. [German] Das hundertjaehrige Bestehen des Automobilbaus in der Stadt Zwickau gibt den Anlass zum Rueckblick auf ein spezielles Gebiet der Fahrzeugentwicklung, die Unfallsicherheit. Im Verlauf der Entwicklungsgeschichte des Automobils wandelte sich das Verstaendnis des Begriffs 'Sicherheit' massgeblich. Urspruenglich wurden darunter nur die Steifigkeit der Karosserie verstanden. Ueber Massnahmen zum Energiemanagement im Vorderbau vollzog sich ein Weg zur komplexen

  1. The development of regulatory expectations for computer-based safety systems for the UK nuclear programme

    International Nuclear Information System (INIS)

    The Nuclear Installations Inspectorate (NII) of the UK's Health and Safety Executive (HSE) has completed a review of their Safety Assessment Principles (SAPs) for Nuclear Installations recently. During the period of the SAPs review in 2004-2005 the designers of future UK naval reactor plant were optioneering the control and protection systems that might be implemented. Because there was insufficient regulatory guidance available in the naval sector to support this activity the Defence Nuclear Safety Regulator (DNSR) invited the NII to collaborate with the production of a guidance document that provides clarity of regulatory expectations for the production of safety cases for computer based safety systems. A key part of producing regulatory expectations was identifying the relevant extant standards and sector guidance that reflect good practice. The three principal sources of such good practice were: IAEA Safety Guide NS-G-1.1 (Software for Computer Based Systems Important to Safety in Nuclear Power Plants), European Commission consensus document (Common Position of European Nuclear Regulators for the Licensing of Safety Critical Software for Nuclear Reactors) and IEC nuclear sector standards such as IEC60880. A common understanding has been achieved between the NII and DNSR and regulatory guidance developed which will be used by both NII and DNSR in the assessment of computer-based safety systems and in the further development of more detailed joint technical assessment guidance for both regulatory organisations. (authors)

  2. Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    The meeting provided an overview of the key issues on passive safety. Technical problems which may affect future deployment, and the operating experience of passive systems and components, as well as, definitions of passive safety terms, were discussed. Advantages and disadvantages of passive systems were also highlighted. The philosophy behind different passive safety systems was presented and the range of possibility between fully passive and fully active systems was discussed. Refs, figs, tabs

  3. Development of the Advanced Nuclear Safety Information Management (ANSIM) System

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jae Min; Ko, Young Cheol; Song, Tai Gil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Korea has become a technically independent nuclear country and has grown into an exporter of nuclear technologies. Thus, nuclear facilities are increasing in significance at KAERI (Korea Atomic Energy Research Institute), and it is time to address the nuclear safety. The importance of nuclear safety cannot be overemphasized. Therefore, a management system is needed urgently to manage the safety of nuclear facilities and to enhance the efficiency of nuclear information. We have established ISP (Information Strategy Planning) for the Integrated Information System of nuclear facility and safety management. The purpose of this paper is to develop a management system for nuclear safety. Therefore, we developed the Advanced Nuclear Safety Information Management system (hereinafter referred to as the 'ANSIM system'). The ANSIM system has been designed and implemented to computerize nuclear safety information for standardization, integration, and sharing in real-time. Figure 1 shows the main home page of the ANSIM system. In this paper, we describe the design requirements, contents, configurations, and utilizations of the ANSIM system

  4. Development of a risk-informed safety management system at the Gentilly-2 Nuclear Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Komljenovic, D.; Hotte, G.; Beaudet, M. [Hydro-Quebec, Nuclear Generating Station Gentilly-2, Gentilly, Quebec (Canada)], E-mail: komljenovic.dragan@hydro.qc.ca

    2009-07-01

    The paper presents an overview regarding current and future activities related to the management of safety and regulatory framework at the Gentilly-2 Nuclear Generating Station. The paper discusses alignment of these activities with the best Canadian and international practices. It also proposes manners to develop a consistent risk-informed safety management system. The paper takes particularly into consideration the impact of this new framework on the refurbishment project, and the operations after the refurbishment of the station. (author)

  5. Study of system safety evaluation on LTO of national project. NISA safety research project on system safety of nuclear power plants

    International Nuclear Information System (INIS)

    Japanese safety regulatory body, that is, Nuclear and Industrial Safety Agency (NISA) started a 5-year national safety research project as 'the first stage' from 2006 FY to 2010 FY whose objective is 'Improve the technical information basis in order to utilize knowledge as well as information related to ageing management and maintenance of NPPs. Fukushima disaster happened in March 2011, and the priority of research needs for ageing management dramatically changed in Japan. The second-stage national project started in October 2011 with the concept of 'system safety' of NNPs where not only ageing management on degradation phenomena of important components but also safety management on total plant systems are paid attention to. The second-stage project is so called 'Japanese Ageing Management Program for System Safety (JAMPSS)'. (author)

  6. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    Fusion systems which are under development as future energy systems have reached a stage that the break even is expected to be realized in the near future. It is desirable to demonstrate that fusion systems are well acceptable to the societal environment. There are three crucial viewpoints to measure the acceptability, that is, technological feasibility, economy and safety. These three points have close interrelation. The safety problem is more important since three large scale tokamaks, JET, TFTR and JT-60, start experiment, and tritium will be introduced into some of them as the fusion fuel. It is desirable to establish a methodology to resolve the safety-related issues in harmony with the technological evolution. The promising fusion system toward reactors is not yet settled. This study has the objective to develop and adequate methodology which promotes the safety design of general fusion systems and to present a basis for proposing the R and D themes and establishing the data base. A framework of the methodology, the understanding and modeling of fusion systems, the principle of ensuring safety, the safety analysis based on the function and the application of the methodology are discussed. As the result of this study, the methodology for the safety analysis and evaluation of fusion systems was developed. New idea and approach were presented in the course of the methodology development. (Kako, I.)

  7. Research on the Evaluation System for Rural Public Safety Planning

    Institute of Scientific and Technical Information of China (English)

    Ming; SUN; Jianxin; YAN

    2014-01-01

    The indicator evaluation system is introduced to the study of rural public safety planning in this article.By researching the current rural public safety planning and environmental carrying capacity,we select some carrying capacity indicators influencing the rural public safety,such as land,population,ecological environment,water resources,infrastructure,economy and society,to establish the environmental carrying capacity indicator system.We standardize the indicators,use gray correlation analysis method to determine the weight of indicators,and make DEA evaluation of the indicator system,to obtain the evaluation results as the basis for decision making in rural safety planning,and provide scientific and quantified technical support for rural public safety planning.

  8. Safety Management Characteristics Reflected in Interviews at Swedish Nuclear Power Plants: A System Perspective Approach

    International Nuclear Information System (INIS)

    The present study investigated safety management characteristics reflected in interviews with participants from two Swedish nuclear power plants. A document analysis regarding the plants' organization, safety policies, and safety culture work was carried out as well. The participants (n=9) were all nuclear power professionals, and the majority managers at different levels with at least 10 years of nuclear power experience. The interview comprised themes relevant for organizational safety and safety management, such as: organizational structures and organizational change, threats to safety, information feedback and knowledge transfer, safety analysis, safety policy, and accident and incident analysis and reporting. The results were in part modeled to important themes derived from a general system theoretical framework suggested by Svenson and developed by Svenson and Salo in relation to studies of 'non-nuclear' safety organizations. A primer to important features of the system theoretical framework is presented in the introductory chapter. The results from the interviews generated interesting descriptions about nuclear safety management in relation to the above themes. Regarding organizational restructuring, mainly centralizations of resources, several examples of reasons for the restructuring and related benefits for this centralization of resources were identified. A number of important reminders that ought to be considered in relation to reorganization were also identified. Regarding threats to the own organization a number of such was interpreted from the interviews. Among them are risks related to generation and competence change-over and risks related to outsourcing of activities. A thorough picture of information management and practical implications related to this was revealed in the interviews. Related to information feedback is the issue of organizational safety indicators and safety indicators in general. The interview answers indicated that the area

  9. METIS: Dependable Cooperative Systems for Public Safety

    NARCIS (Netherlands)

    Hendriks, A.J.; Laar, P.J.L.J. van de

    2013-01-01

    Much, if not most, information needed to assess a crisis situation originates these days from cooperative sources such as the Internet and social networks. Public safety authorities face the challenge to compile this information of uncertain origin and quality in their situation understanding and re

  10. Eimpact: Impact assessment of in-vehicle safety systems

    NARCIS (Netherlands)

    Malone, K.; Wilmink, I.; Noort, M. van; Klunder, G.

    2007-01-01

    eIMPACT, a project in the EU's Sixth Framework Programme for Information Society Technologies and Media, assesses the socio-economic effects of Intelligent Vehicle Safety Systems (IVSS), their impact on traffic safety and efficiency. It addresses policy options and the views of the different stakeho

  11. Occupational Safety and Health Systems: A Three-Country Comparison.

    Science.gov (United States)

    Singleton, W. T.

    1983-01-01

    This article compares the occupational safety and health systems of Switzerland, the United Kingdom, and the United States, looking at the origins of their legislation and its effects on occupational safety and health, with a view to determining what lessons may emerge, particularly for developing countries. (Author/SSH)

  12. Development of a Comprehensive Database System for Safety Analyst

    Directory of Open Access Journals (Sweden)

    Alexander Paz

    2015-01-01

    Full Text Available This study addressed barriers associated with the use of Safety Analyst, a state-of-the-art tool that has been developed to assist during the entire Traffic Safety Management process but that is not widely used due to a number of challenges as described in this paper. As part of this study, a comprehensive database system and tools to provide data to multiple traffic safety applications, with a focus on Safety Analyst, were developed. A number of data management tools were developed to extract, collect, transform, integrate, and load the data. The system includes consistency-checking capabilities to ensure the adequate insertion and update of data into the database. This system focused on data from roadways, ramps, intersections, and traffic characteristics for Safety Analyst. To test the proposed system and tools, data from Clark County, which is the largest county in Nevada and includes the cities of Las Vegas, Henderson, Boulder City, and North Las Vegas, was used. The database and Safety Analyst together help identify the sites with the potential for safety improvements. Specifically, this study examined the results from two case studies. The first case study, which identified sites having a potential for safety improvements with respect to fatal and all injury crashes, included all roadway elements and used default and calibrated Safety Performance Functions (SPFs. The second case study identified sites having a potential for safety improvements with respect to fatal and all injury crashes, specifically regarding intersections; it used default and calibrated SPFs as well. Conclusions were developed for the calibration of safety performance functions and the classification of site subtypes. Guidelines were provided about the selection of a particular network screening type or performance measure for network screening.

  13. Regulatory system reform of occupational health and safety in China

    OpenAIRE

    WU, Fenghong; Chi, Yan

    2015-01-01

    With the explosive economic growth and social development, China’s regulatory system of occupational health and safety now faces more and more challenges. This article reviews the history of regulatory system of occupational health and safety in China, as well as the current reform of this regulatory system in the country. Comprehensive, a range of laws, regulations and standards that promulgated by Chinese government, duties and responsibilities of the regulatory departments are described. P...

  14. Risk Analysis of Safety-Critical Control Systems

    OpenAIRE

    Karol Rastocny

    2008-01-01

    This paper deals with problems associated with risks analysis of a safety-critical control system. In the paper there are introduced recommendations enabling practical enforceability of risk analysis by the assurance of sufficient objectivity level. In the initial phases of the system lifecycle risk analysis serves for a tolerable hazard rate definition for individual safety relevant functions. In the end of the control system development process the risk analysis (an analysis of failures con...

  15. BUCS: Patterns and Robustness: Experimentation with Safety Patterns in Safety-Critical Software Systems

    OpenAIRE

    Ljosland, Ingvar

    2006-01-01

    In modern society, we rely on safely working software systems. This is the final report in a masters degree project to reveal key issues in the science field of computer software architecture and design of safety-critical software systems. A pre-study of a navigation system implied that functionality related problems and safety-critical problems do not stack one to one, but rather is a case of solving these aspects in different layers. This means that changes in software systems functionalit...

  16. Fuzzy synthetic assessment of building fire safety system

    Institute of Scientific and Technical Information of China (English)

    YANG Gao-shang; PENG Li-min

    2005-01-01

    A multistage assessment index set is chosen based on the analysis of building fire safety system, whereby the weight of each index is determined through an analy tie.hierarchy process; a fuzzy synthetic assessment model for the building fire safety system is constructed, and the quantified result was obtained by using hierarchy parameter judgment. This fuzzy synthetic assessment method can quantify assessment result of the building fire safety system, so thatthe fire precautions may be accurately adopted, and the serious potential risk may be avoided. The application shows that this method possesses both objectivity and feasibility.

  17. Assessment of Primary Production of Horticultural Safety Management Systems of Mushroom Farms in South Africa.

    Science.gov (United States)

    Dzingirayi, Garikayi; Korsten, Lise

    2016-07-01

    Growing global consumer concern over food safety in the fresh produce industry requires producers to implement necessary quality assurance systems. Varying effectiveness has been noted in how countries and food companies interpret and implement food safety standards. A diagnostic instrument (DI) for global fresh produce industries was developed to measure the compliancy of companies with implemented food safety standards. The DI is made up of indicators and descriptive grids for context factors and control and assurance activities to measure food safety output. The instrument can be used in primary production to assess food safety performance. This study applied the DI to measure food safety standard compliancy of mushroom farming in South Africa. Ten farms representing almost half of the industry farms and more than 80% of production were independently assessed for their horticultural safety management system (HSMS) compliance via in-depth interviews with each farm's quality assurance personnel. The data were processed using Microsoft Office Excel 2010 and are represented in frequency tables. The diagnosis revealed that the mushroom farming industry had an average food safety output. The farms were implementing an average-toadvanced HSMS and operating in a medium-risk context. Insufficient performance areas in HSMSs included inadequate hazard analysis and analysis of control points, low specificity of pesticide assessment, and inadequate control of suppliers and incoming materials. Recommendations to the industry and current shortcomings are suggested for realization of an improved industry-wide food safety assurance system.

  18. Assessment of Primary Production of Horticultural Safety Management Systems of Mushroom Farms in South Africa.

    Science.gov (United States)

    Dzingirayi, Garikayi; Korsten, Lise

    2016-07-01

    Growing global consumer concern over food safety in the fresh produce industry requires producers to implement necessary quality assurance systems. Varying effectiveness has been noted in how countries and food companies interpret and implement food safety standards. A diagnostic instrument (DI) for global fresh produce industries was developed to measure the compliancy of companies with implemented food safety standards. The DI is made up of indicators and descriptive grids for context factors and control and assurance activities to measure food safety output. The instrument can be used in primary production to assess food safety performance. This study applied the DI to measure food safety standard compliancy of mushroom farming in South Africa. Ten farms representing almost half of the industry farms and more than 80% of production were independently assessed for their horticultural safety management system (HSMS) compliance via in-depth interviews with each farm's quality assurance personnel. The data were processed using Microsoft Office Excel 2010 and are represented in frequency tables. The diagnosis revealed that the mushroom farming industry had an average food safety output. The farms were implementing an average-toadvanced HSMS and operating in a medium-risk context. Insufficient performance areas in HSMSs included inadequate hazard analysis and analysis of control points, low specificity of pesticide assessment, and inadequate control of suppliers and incoming materials. Recommendations to the industry and current shortcomings are suggested for realization of an improved industry-wide food safety assurance system. PMID:27357039

  19. NASA safety program activities in support of the Space Exploration Initiatives Nuclear Propulsion program

    Science.gov (United States)

    Sawyer, J. C., Jr.

    1993-01-01

    The activities of the joint NASA/DOE/DOD Nuclear Propulsion Program Technical Panels have been used as the basis for the current development of safety policies and requirements for the Space Exploration Initiatives (SEI) Nuclear Propulsion Technology development program. The Safety Division of the NASA Office of Safety and Mission Quality has initiated efforts to develop policies for the safe use of nuclear propulsion in space through involvement in the joint agency Nuclear Safety Policy Working Group (NSPWG), encouraged expansion of the initial policy development into proposed programmatic requirements, and suggested further expansion into the overall risk assessment and risk management process for the NASA Exploration Program. Similar efforts are underway within the Department of Energy to ensure the safe development and testing of nuclear propulsion systems on Earth. This paper describes the NASA safety policy related to requirements for the design of systems that may operate where Earth re-entry is a possibility. The expected plan of action is to support and oversee activities related to the technology development of nuclear propulsion in space, and support the overall safety and risk management program being developed for the NASA Exploration Program.

  20. Safety evaluation and management of complex systems: A system engineering approach

    OpenAIRE

    Guillerm, Romaric; Demmou, Hamid; Sadou, Nabil

    2012-01-01

    International audience This paper addresses the problem of safety evaluation of complex systems. It proposes an original and rigorous approach that integrates safety analysis in system engineering processes. The approach is based on system engineering (SE) principles and uses the famous industrial SE standard ANSI/EIA-632. The objective is to help designers and safety engineers in safety management of complex systems. For an efficient design, the model driven design is adopted through the ...

  1. The Danish patient safety experience: the Act on Patient Safety in the Danish Health care system

    DEFF Research Database (Denmark)

    Lundgaard, Mette; Rabøl, Louise; Jensen, Elisabeth Agnete Brøgger;

    2005-01-01

    This paper describes the process that lead to the passing of the Act for Patient Safety in the Danisk health care sytem, the contents of the act and how the act is used in the Danish health care system. The act obligates frontline health care personnel to report adverse events, hospital owners...... to act on the reports and the National Board of Health to commuicate the learning nationally. The act protects health care providers from sanctions as a result of reporting. In January 2004, the Act on Patient Safety in the Danish health care system was put into force. In the first twelve months 5740...... adverse events were reported. the reports were analyzed locally (hospital and region), anonymized ad then sent to the National Board af Health. The Act on Patient Safety has driven the work with patient safety forward but there is room for improvement. Continuous and improved feedback from all parts...

  2. Towards integrated hygiene and food safety management systems: the Hygieneomic approach.

    Science.gov (United States)

    Armstrong, G D

    1999-09-15

    Integrated hygiene and food safety management systems in food production can give rise to exceptional improvements in food safety performance, but require high level commitment and full functional involvement. A new approach, named hygieneomics, has been developed to assist management in their introduction of hygiene and food safety systems. For an effective introduction, the management systems must be designed to fit with the current generational state of an organisation. There are, broadly speaking, four generational states of an organisation in their approach to food safety. They comprise: (i) rules setting; (ii) ensuring compliance; (iii) individual commitment; (iv) interdependent action. In order to set up an effective integrated hygiene and food safety management system a number of key managerial requirements are necessary. The most important ones are: (a) management systems must integrate the activities of key functions from research and development through to supply chain and all functions need to be involved; (b) there is a critical role for the senior executive, in communicating policy and standards; (c) responsibilities must be clearly defined, and it should be clear that food safety is a line management responsibility not to be delegated to technical or quality personnel; (d) a thorough and effective multi-level audit approach is necessary; (e) key activities in the system are HACCP and risk management, but it is stressed that these are ongoing management activities, not once-off paper generating exercises; and (f) executive management board level review is necessary of audit results, measurements, status and business benefits. PMID:10488840

  3. Reliability evaluation of communication network switching scheme for safety systems

    International Nuclear Information System (INIS)

    To develop the communication network architecture of a safety system of nuclear power plant, the five essence in the design requirements of a communication network for safety-critical systems are determined such as status based architecture, deterministic scheme, separation and isolation, high reliability, verification and validation. In this paper, the data communication network switching scheme for safety systems is proposed based on the circuit switched network with time division multiplexing bus technology considered adequate to the essence of the design requirements and the design elements. The proposed communication network switching scheme was applied to the network design of the SMART protection system, and the reliability was evaluated with the data of components failure rates to determine the applicability of the proposed switching scheme. The proposed switching scheme will be applied as basic communication network architecture of safety system

  4. Incident warning systems : accident review. DRIVE II Project V2002 Horizontal Project for the Evaluation of Safety HOPES, Deliverable 17, Workpackage 31, Activity 31.2.

    NARCIS (Netherlands)

    Oppe, S. Lindeijer, J.E. & Barjonet, P.

    1995-01-01

    The objective of this accident review is to check what proportion of accidents recorded in the past could in principle have been prevented by using an incident warning system (IWS). The accident review was carried out for all three IWS test sites that are part of the HOPES evaluation study. These in

  5. Entrainment analysis and monitoring major safety systems

    International Nuclear Information System (INIS)

    The authors are convinced that taking account of internal and external experience and a plant-specific living PSA frequently reduces the notifiable incidents occurring as design errors due to inadequate checks on safety margins. On the basis of the considerations formulated in this article, Leibstadt nuclear power station has decided to overhaul the earlier PSA and work towards and implement a living PSA. The project has been given the green light and should be completed in two years. 5 figs., 4 refs

  6. Active Cloud Services Safety Monitoring System of Server%可提供云服务的主动性服务器安全监测系统

    Institute of Scientific and Technical Information of China (English)

    赵鸣; 江肖强

    2013-01-01

    为了保障信息服务器日常运行的安全性和稳定性,文章利用物联网技术实现自动发现服务器故障、自动冗余信息过滤并及时报警。系统的构架层面主要是Web+DBS+SMS+Mail,易于管理和低成本运维,实现了对广域分布服务器的故障信息进行自动处理、传递、统计和存储以及综合分析。%In order to guarantee the security and stability of the information server’s daily operation, the system used the IOT technology to automatically discover the server failure, filter the redundant information and alarm timely. The structure of the system mainly is Web+DBS+SMS+Mail. It is very easy for management and low cost operation and maintenance, and implemented the fault information processing, transmission, storage, and comprehensive statistics and analysis for the wide distribution servers. This system focused on the research of the IOT data link reliability, the human-computer interactive data validity, and others.

  7. ITER safety

    International Nuclear Information System (INIS)

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  8. Analysis of Aviation Safety Reporting System Incident Data Associated With the Technical Challenges of the Vehicle Systems Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This analysis was conducted to support the Vehicle Systems Safety Technology (VSST) Project of the Aviation Safety Program (AVsP) milestone VSST4.2.1.01, "Identification of VSST-Related Trends." In particular, this is a review of incident data from the NASA Aviation Safety Reporting System (ASRS). The following three VSST-related technical challenges (TCs) were the focus of the incidents searched in the ASRS database: (1) Vechicle health assurance, (2) Effective crew-system interactions and decisions in all conditions; and (3) Aircraft loss of control prevention, mitigation, and recovery.

  9. Analyzing Software Errors in Safety-Critical Embedded Systems

    Science.gov (United States)

    Lutz, Robyn R.

    1994-01-01

    This paper analyzes the root causes of safty-related software faults identified as potentially hazardous to the system are distributed somewhat differently over the set of possible error causes than non-safety-related software faults.

  10. Expert system for evaluating the safety of pressure vessels

    Institute of Scientific and Technical Information of China (English)

    Dong Zhibo; Lu Yafeng; Wei Yanhong; Yang Yongfu; Ma Rui; Guo Ping

    2009-01-01

    With more application of welding technology in important structures more attention was paid to the evaluation of the safety of welded structures, the life prediction and decision to repair the welded structures. Based on material fiacture mechanism and Chinese standard of safety evaluations of pressure vessels, an expert system was developed to evaluate the safety of welded pressure vessels. The system can analyze the weld defects in a pressure vessel, convert different kinds of defects into equivalent cracks and obtain their equivalent sizes. Furthermore, the system can calculate the stress and strain in the positions of weld defects and make decision on whether the defects are tolerable or not according to the code. When it is tolerable, the system will calculate the safety margin. The fatigue life can be predicted if the defects undergo fatigue load too. Moreover, data bases are built for storing mechanical properties of material and evaluated results.

  11. Automated Flight Safety Inference Engine (AFSIE) System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an innovative Autonomous Flight Safety Inference Engine (AFSIE) system to autonomously and reliably terminate the flight of an errant launch...

  12. 14 CFR 417.309 - Flight safety system analysis.

    Science.gov (United States)

    2010-01-01

    ... 12-dB margin, each link analysis must account for the following nominal system performance and... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety system analysis. 417.309... analysis. (a) General. (1) Each flight termination system and command control system, including each...

  13. Development of active rear steer actuator. Development of four wheel steer actuator for active safety; Active rear steer actuator no kaihatsu. Yobo anzen ni muketa 4WS actuator no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, T. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, ecology, energy saving and safety have become important issues. And Active Safety is spotlighted in vehicle control area. Many researches and developments on four wheel steer system have been done to improve vehicle stability. We have developed the Active Rear Steer system with electromechanical Actuator, which is mass-productive, compact, and high response and durable. 10 figs., 5 tabs.

  14. Computational methods for criticality safety analysis within the scale system

    International Nuclear Information System (INIS)

    The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs

  15. Concepts and techniques: Active electronics and computers in safety-critical accelerator operation

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, R.S.

    1995-12-31

    The Relativistic Heavy Ion Collider (RHIC) under construction at Brookhaven National Laboratory, requires an extensive Access Control System to protect personnel from Radiation, Oxygen Deficiency and Electrical hazards. In addition, the complicated nature of operation of the Collider as part of a complex of other Accelerators necessitates the use of active electronic measurement circuitry to ensure compliance with established Operational Safety Limits. Solutions were devised which permit the use of modern computer and interconnections technology for Safety-Critical applications, while preserving and enhancing, tried and proven protection methods. In addition a set of Guidelines, regarding required performance for Accelerator Safety Systems and a Handbook of design criteria and rules were developed to assist future system designers and to provide a framework for internal review and regulation.

  16. The strengthening of the nuclear safety regulatory system in restructuring of electric power industry sector

    International Nuclear Information System (INIS)

    Nuclear safety concern, which may accompany such external environmental factors as privatization and restructuring of the electric power industry, is emerging as an international issue. In order to cope with the concern about nuclear safety, it is important to feedback valuable experiences of advanced countries which ever restructured their electric power industries earlier and further to reflect the current safety issues, which are raised internationally, fully into the nuclear safety regulatory system. This paper is to review the safety issues that might take place in the process of increasing competition in the nuclear power industry, and further to present a basic direction and effective measures for ensuring nuclear safety in response thereto from the viewpoint of safety regulation. It includes a political direction for regulatory body's efforts to rationalize and enforce efficiently its regulation. It proposes to ensure that regulatory specialty and regulatory cost are stably secured. Also, this paper proposes for maintaining a sound nuclear safety regulatory system to monitor thoroughly the safety management activities of the industry, which might be neglected as a result of focusing on reduction of the cost for producing electric power

  17. The Effect of Safety System on Production Indices

    OpenAIRE

    Manouchehr Omidvari; Naser Javaheri; Masoud Davudi

    2012-01-01

    Nowadays, in addition to implement the quality of management systems and environment management and due to the effects of safety and health issues on working processes, the organizations have also sought to acquire health and safety management systems. This descriptive –analytic and past reviewing study has been implemented based on five years (from 2006 to 2010) recorded documents and statistics information in food industrial. Information was collected based on the food industries checklists...

  18. Remarks on statistical aspects of safety analysis of complex systems

    OpenAIRE

    Pal, L.; Makai, M.

    2003-01-01

    We analyze safety problems of complex systems using the methods of mathematical statistics for testing the output variables of a code simulating the operation of the system under consideration when the input variables are uncertain. We have defined a black box model of the code and derived formulas to calculate the number of runs needed for a given confidence level to achieve a preassigned measure of safety. In order to show the capabilities of different statistical methods, firstly we have i...

  19. The impact of blanket design on activation and thermal safety

    International Nuclear Information System (INIS)

    Activation and thermal safety analyses for experimental and power reactors are presented. The effects of a strong neutron absorber, B4C, on activation and temperature response of experimental reactors to Loss-of-Cooling Accidents are investigated. Operational neutron fluxes, radioactivities of elements and thermal transients are calculated using the codes ONEDANT, REAC and THIOD, respectively. The inclusion of a small amount of B4C in the steel blanket of an experimental reactor reduces its activation and the post LOCA temperature escalation significantly. Neither the inclusion of excessive amounts of B4C nor enriched 10B in the first walls of an experimental reactor bring much advantage. The employment of a 2 cm graphite tile liner before the first wall helps to limit the post LOCA escalation of first wall temperature. The effect of replacing a 20 cm thick section of a steel shield of a fusion power reactor with B4C is also analyzed. The first wall temperature peak is reduced by 100 degree C in the modified blanket. The natural convection effect on thermal safety of a liquid lithium cooled blanket are investigated. Natural convection has no impact at all, unless the magnetic field can be reduced. If magnets can be shut off rapidly after the accident, then the temperature escalation of the first wall will be limited. Upflow of the coolant is better than the initial downflow design from a thermal safety point of view. Activities of three structural materials, OTR stainless steel, SS-316 and VCrTi are compared. Although VCrTi has higher activity for a period of two hours after the accident, it has one to two orders of magnitude less activity than those of the steels in the mid- and long-terms. 29 refs., 42 figs., 9 tabs

  20. Kozloduy nuclear power plant. Units 1-4. Status of safety assessment activities. Rev. 2

    International Nuclear Information System (INIS)

    This paper presents the results of the status of safety assessment activities carried out by the Kozloduy Nuclear Power Plant (KNPP) in order to evaluate the current status of the safety of its reactor units 1-4. The steam supply system of this units is based of the reactor WWER-440/ B-230, which is a PWR of Russian design developed according to the safety standards in force in USSR in late 60-s. Now a days 10 reactor units of this type are in operation in four NPPs. Despite of efforts of the different plants to implement safety improvements measures during first 10-15 years of operation of this type of reactor its major safety problems were not eliminated and were a subject of international concern. The systematic evaluation of the deficiencies of the original design of this type of reactors have been initiated by IAEA in the beginning of 1990 and brought to developing a comprehensive list of safety problems which required urgent implementation of safety measures in all plants. To solve this problems in 1991 KNPP initiated implementation of so called 'short term' safety improvement program, developed with the help of WANO under agreement with Bulgarian Nuclear Safety Authority (BNSA) and consortium RISKAUDIT. The program was based on a stage approach and was foreseen to be implemented by tree stages in very tight time schedule in order to achieve significant and rapid improvements of the level of safety in operation of the units. The Short Tenn Program was implemented between the years 1991 and 1997 thanks of the strong safety commitment of NEK and KNPP staff and the broad international cooperation and financial support. Important part of resources were supplied under PHARE program of CEC, EBRD grant agreement and EDF support. The plant current safety level analysis has been performed using IAEA analytical methodology according to 50-SG-O12 standard 'Periodic safety review of operational nuclear power plants'. The approach and criteria for acceptable safety level

  1. Data Analysis of Occupational Health and Safety Management and Total Quality Management Systems

    Directory of Open Access Journals (Sweden)

    Ahmet Yakut

    2013-01-01

    Full Text Available In our study, Total Quality Management, Occupational Health and Safety on the effects of the construction industry, building sites of Istanbul evaluated with the results of the survey of 25 firms. For Occupational Health and Safety program, walked healthy, active employees in her role increased and will increase the importance of education. Due to non-implementation of the OHS system in our country enough, work-related accidents and deaths and injuries resulting from these accidents is very high. Firms as a result of the analysis, an effective health and safety management system needs to be able to fulfill their responsibilities. This system is designated as OHSAS 18001 Occupational Health and Safety Management System and the construction industry can be regarded as the imperatives.

  2. Behaviour analysis of AC-600 passive safety systems

    International Nuclear Information System (INIS)

    Southwest Center of Reactor Engineering Research and Design has finished the first step conceptual design of 600 mwe advanced PWR (AC-600). The main research emphases of AC-600 conceptual design include the advanced reactor core, the passive safety systems and the simplification. The passive safety systems of AC-600 consist of two reactor make up water tanks, two accumulators, two emergency feedwater tanks, two emergency natural draft air condensers, a containment water jacket and an enhanced primary cycle natural circulation flow system. 25% of the rated reactor power can be removed by the natural circulation cooling. The full pressure reactor make up water tanks are able to provide enough borated water which would be injected into the reactor coolant system during small LOCA. The coolant natural circulations can be established in the primary system and the passive secondary emergency feedwater system, removing residual heat from the reactor core to the atmosphere when station blackout occurs. It is indicated from analysis that the containment diameter of AC-600 is about 35 m. The large tanks and the large vertical distances between the tanks and reactor core are the main reason of using the big containment. It is also indicated from analysis that the low head safety injection pumps are required in AC-600 design to assure the recirculation system operation when large LOCA occurs. The reliability of AC-600 engineered safety systems is increased because the function of the passive safety systems is conducted through the immutable natural laws. The paper discusses the natural circulation ability and safety behavior of the passive safety systems during LOCA or station blackout for AC-600. The passive limits to excess reactivity and thermal hydraulic transients are also preliminarily discussed. Figs and tabs

  3. Radiation Safety System for SPIDER Neutral Beam Accelerator

    Science.gov (United States)

    Sandri, S.; Coniglio, A.; D'Arienzo, M.; Poggi, C.

    2011-12-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  4. Radiation Safety System for SPIDER Neutral Beam Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sandri, S.; Poggi, C. [ENEA, Radiation Protection Institute, IRP-FUAC, Frascati (Italy); Coniglio, A. [Medical Physics Department, S. Giovanni Calibita Hospital, Fatebenefratelli, Isola Tiberina, Roma (Italy); D' Arienzo, M. [ENEA, Ionizing Radiation Metrology National Institute, METR, Casaccia, Rome (Italy)

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  5. Comparative advantages of AP1000 passive safety system

    International Nuclear Information System (INIS)

    With the increasing need of nuclear power, almost all countries who want to build new nuclear power plant take the generation Ⅲ technology as their first choice. The main reason is that the safety of generation Ⅲ technology has been improved greatly than generation Ⅱ and Ⅱ + technology. The passive safety technology is introduced by AP1000 and it is one of the best in generation Ⅲ technologies. The representative passive containment cooling system of AP1000 and containment spray system of generation Ⅱ nuclear power plant were compared in the paper and analyzed using probabilistic safety assessment method. The reasons of passive safety system possessing comparative advantages were obtained by the concrete calculation. (authors)

  6. A concept of safety indicator system for nuclear power plants

    International Nuclear Information System (INIS)

    The fundamental principle in the safety technology of nuclear power is embodied in the strategy of defence in depth. The defence lines of the strategy, completed with a PSA logic model and structure, are considered to provide an appropriate framework for identification and structuring of the operational safety performance areas for nuclear power plants. Once these areas are identified the safety indicators can be defined. Based on this approach a concept of safety indicator system was outlined. About one hundred indicator specifications have been collected, refined and related to the performance areas. The specifications enable the utilities and authorities to check the coverage of their indicators set from the operational safety point of view and select or refine indicators for testing and routine use. Finally various statistical approaches and methods for using indicators in performance evaluation are presented. (orig.) (16 refs., 2 figs., 2 tabs.)

  7. KAERI software verification and validation guideline for developing safety-critical software in digital I and C system of NPP

    International Nuclear Information System (INIS)

    This technical report is to present V and V guideline development methodology for safety-critical software in NPP safety system. Therefore it is to present V and V guideline of planning phase for the NPP safety system in addition to critical safety items, for example, independence philosophy, software safety analysis concept, commercial off the shelf (COTS) software evaluation criteria, inter-relationships between other safety assurance organizations, including the concepts of existing industrial standard, IEEE Std-1012, IEEE Std-1059. This technical report includes scope of V and V guideline, guideline framework as part of acceptance criteria, V and V activities and task entrance as part of V and V activity and exit criteria, review and audit, testing and QA records of V and V material and configuration management, software verification and validation plan production etc., and safety-critical software V and V methodology. (author). 11 refs

  8. Bayesian Statistics and Uncertainty Quantification for Safety Boundary Analysis in Complex Systems

    Science.gov (United States)

    He, Yuning; Davies, Misty Dawn

    2014-01-01

    The analysis of a safety-critical system often requires detailed knowledge of safe regions and their highdimensional non-linear boundaries. We present a statistical approach to iteratively detect and characterize the boundaries, which are provided as parameterized shape candidates. Using methods from uncertainty quantification and active learning, we incrementally construct a statistical model from only few simulation runs and obtain statistically sound estimates of the shape parameters for safety boundaries.

  9. Modelling of Hazards Effect on Safety Integrity of Open Transmission Systems

    OpenAIRE

    Karol Rástočný; Mária Franeková; Peter Holečko; Iveta Zolotová

    2016-01-01

    The paper is concerned with safety appraisal of safety-related communication systems (SRComSs) with open transmission system, where except in addition to message transmission integrity also confidentiality is recommended to be provided. The authors focused on safety analysis of safety-related messages transmission secured using cryptographic and safety code mechanisms and on the possibilities of modelling safety-related industrial communication system, where a high safety integrity level SIL3...

  10. Nuclear activities at KIT: reactor safety research and safety research for waste

    International Nuclear Information System (INIS)

    The Karlsruhe Institute of Technology (KIT) is the merger of the former Forschungszentrum Karlsruhe (FZK), and the Technical University of Karlsruhe, into one single organisation, inheriting the previously existing missions of research, higher education and innovation, and creating a huge potential for synergies, that is now being successfully exploited step by step. One of the major strategic focuses of KIT is energy research, integrating more than 1 250 researchers from both KIT predecessors in the KIT Energy Centre.Within the KIT Energy Centre, the topic NUKLEAR is one of currently seven topics, together covering the integral field of energy including system and society aspects. Currently, the KIT Programme Nuclear Waste Disposal and Safety consists of about 250 research, technical, and management staff. After the reactor accident in Fukushima (Japan) in 2011, the German parliament decided with support of a broad societal consensus to terminate nuclear electricity production with the last nuclear power plant to be shutdown in 2022. Regarding the final disposal of radioactive waste, the Konrad repository is approved and will be available for the disposal of low and intermediate level waste at the end of this decade. A new federal law is expected to be issued in the near future to re-define the site selection procedure for the German high level waste repository. It seems clear that various host rock formations will be investigated. The long-term safety of such a repository is one of the most challenging aspects about nuclear energy in public debates. For these reasons, nuclear expertise in Germany must be maintained, focusing in particular on research into reactor safety and final disposal. Highest safety requirements have to be applied to the operation, shutdown and decommissioning of nuclear power plants and to the final disposal of radioactive waste

  11. Safety assessment of a robotic system handling nuclear material

    International Nuclear Information System (INIS)

    This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable

  12. A framework for software reuse in safety-critical system of systems

    OpenAIRE

    Warren, Bradley R.

    2008-01-01

    This thesis concerns the effective and safe software reuse in safety-critical system-of-systems. Software reuse offers many unutilized benefits such as achieving rapid system development, saving resources and time, and keeping up technologically in an increasingly advancing global environment. System software needs to be designed for both reuse and safety and available information shared effectively. We introduce a process neutral framework for software reuse in safety-critical system of ...

  13. Surface Mine System Simulation and Safety Risk Management

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-xin; YU Dong-fang; LI Xin-wang; YAO Xin-gang; LIU Yu

    2006-01-01

    Modern surface mines, either mono-system or multi-systems, need a large fleet of equipment consisting of excavators, loaders, haulers and auxiliary machines. Presently, the complexity of the system, the interference between sub-systems and the lag in management skills has been a bottle neck for improving productivity of the system. Based on the fact that the traditional tools for safety analysis have been insufficient to evaluate systematically and dynamically the safety risks, this paper tries to create a virtual reality tool consisting of human, machine and mines, using Pro/E and the 3D MAX software in order to evaluate visually the operations of typical mining equipment, such as the bucket wheel excavator (BWE), the shovel, the truck and the dragline. Within this virtual world, the behavior of the system, such as interaction, interference and potential risk can be replayed and reviewed visually. The objective of the study is to identify the critical safety issues of the system and to provide a convenient and powerful tool for safety training and safety management.

  14. Analyzing system safety in lithium-ion grid energy storage

    Science.gov (United States)

    Rosewater, David; Williams, Adam

    2015-12-01

    As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  15. Evaluation Indicator System for China’s Agricultural Industrial Safety

    Institute of Scientific and Technical Information of China (English)

    Qingpeng; GAO; Bin; CHEN; Qinyang; LI

    2013-01-01

    On the basis of new characteristics and trend of China’s agricultural development in the post-WTO period,combining analysis of factors influencing agricultural industrial safety,this paper builds an evaluation indicator system for China’s agricultural industrial safety by scientific indicator system design method.This indicator system includes risk factor indicators(showing risk degree)and capacity factor indicators(showing guaranteeing ability),and consists of 7 subsystems:consumption safety,production safety,industrial controlling capacity,industrial development capacity,industrial development environment,government functions and industrial foundation condition.Risk factor is divided into 5 levels:higher risk,high risk,medium risk,low risk and lower risk;guarantee risk is also divided into five levels:strong,healthy,normal,weak and disabled.According to the overall evaluation score obtained from weighting sum,the agricultural industrial safety includes 5 types:very safe,safe,basically safe,not safe and hazardous.This evaluation indicator system is expected to providing theoretical reference for evaluating China’s agricultural industrial safety.

  16. Challenges in Performance of Food Safety Management Systems: A Case of Fish Processing Companies in Tanzania

    NARCIS (Netherlands)

    Kussaga, J.B.; Luning, P.A.; Tiisekwa, B.P.M.; Jacxsens, L.

    2014-01-01

    This study provides insight for food safety (FS) performance in light of the current performance of core FS management system (FSMS) activities and context riskiness of these systems to identify the opportunities for improvement of the FSMS. A FSMS diagnostic instrument was applied to assess the per

  17. Current Activities on Nuclear Safety Culture in Korea. How to meet the challenges for Safety and Safety Culture?

    International Nuclear Information System (INIS)

    'Statement of Nuclear Safety Policy' declared by the Korean Government elucidates adherence to the principle of 'priority to safety'. The 3. Comprehensive Nuclear Energy Promotion Plan (2007-2011) more specifically addressed the necessity to develop and apply 'safety culture evaluation criteria' and to strengthen safety management of concerned organizations in an autonomous way. Putting these policies as a backdrop, Korean Government has taken diverse safety culture initiatives and has encouraged the relevant organizations to develop safety culture practices of their own accord. Accordingly, KHNP, the operating organization in Korea, developed a 'safety culture performance indicator', which has been used to evaluate safety mind of employees and the evaluation results have been continuously reflected in operational management and training programs. Furthermore, KHNP inserted 'nuclear safety culture subject' into every course of more than two week length, and provided employees with special lectures on safety culture. KINS, the regulatory organization, developed indicators for the safety culture evaluation based on the IAEA Guidelines. Also, KINS has hosted an annual Nuclear Safety Technology Information Meeting to share information between regulatory organizations and industries. Furthermore, KINS provided a nuclear safety culture class to the new employees and they are given a chance to participate in performance of a role-reversal socio-drama. Additionally, KINS developed a safety culture training program, published training materials and conducted a 'Nuclear Safety Culture Basic Course' in October 2007, 4 times of which are planed this year. In conclusion, from Government to relevant organizations, 'nuclear safety culture' concept is embraced as important and has been put into practice on a variety of forms. Specifically, 'education and training' is a starting line and sharing information and lessons learned through symposium, meeting, and etc are also done in a

  18. Digital Signal Processing for In-Vehicle Systems and Safety

    CERN Document Server

    Boyraz, Pinar; Takeda, Kazuya; Abut, Hüseyin

    2012-01-01

    Compiled from papers of the 4th Biennial Workshop on DSP (Digital Signal Processing) for In-Vehicle Systems and Safety this edited collection features world-class experts from diverse fields focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. Digital Signal Processing for In-Vehicle Systems and Safety presents new approaches on how to reduce driver inattention and prevent road accidents. The material addresses DSP technologies in adaptive automobiles, in-vehicle dialogue systems, human machine interfaces, video and audio processing, and in-vehicle speech systems. The volume also features: Recent advances in Smart-Car technology – vehicles that take into account and conform to the driver Driver-vehicle interfaces that take into account the driving task and cognitive load of the driver Best practices for In-Vehicle Corpus Development and distribution Information on multi-sensor analysis and fusion techniques for robust driver monitoring and driver recognition ...

  19. A safety system for a laser-beam utilising facility

    International Nuclear Information System (INIS)

    A safety system for a laser-beam utilising facility incorporates a safety enclosure and an infra-red monitoring system for detecting the development of hot spots at internal surfaces of the enclosure walls and ceiling which may occur as a result of stray laser radiation impinging on such surfaces. The development of a hot spot leads to shutting off the laser source or interruption of the beams by means of a shutter. The facility may be a welding or cutting apparatus and may be used with nuclear fuel elements. The monitoring system may be a scanning system. Two such scanning systems may be provided, scanning at different speeds, to detect respectively hot spots and the presence of a human body within the safety enclosure. (author)

  20. Design of Traceability System for Pork Safety Production

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the development of society and the improvement of living standards,consumers’demand for high quality meat products is constantly increasing.Traceability for livestock products is widely recognized to be an effective measure for any modern and integrated food safety control system.The quality tracing and traceability system of production’s entire processes is an important technology tool to protect pork safety.This paper proposes a RFID-enabled traceability system for pork supply chain.By adopting SQL Server 2000 databases and intelligent identification technology,a tracing system suitable to Chinese situation for monitoring and controlling quality of pork is constructed,and it manages to realize information traceability for entire pork production.The study indicates that the traceability system is valuable for practical reference and feasible.It can help consumers to confide in pork safety and encourage the pork industry developing.

  1. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    International Nuclear Information System (INIS)

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications

  2. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  3. Remarks on statistical aspects of safety analysis of complex systems

    CERN Document Server

    Pál, L

    2003-01-01

    We analyze safety problems of complex systems using the methods of mathematical statistics for testing the output variables of a code simulating the operation of the system under consideration when the input variables are uncertain. We have defined a black box model of the code and derived formulas to calculate the number of runs needed for a given confidence level to achieve a preassigned measure of safety. In order to show the capabilities of different statistical methods, firstly we have investigated one output variable with unknown and known distribution functions. The general conclusion has been that the different methods do not bring about large differences in the number of runs needed to ensure a given level of safety. Analyzing the case of several statistically dependent output variables we have arrived at the conclusion that the testing of the variables separately may lead to false, safety related decisions with unforseen consequences. We have advised two methods: the sign test and the tolerance inte...

  4. The advantages of reliability centered maintenance for standby safety systems

    International Nuclear Information System (INIS)

    of predictive monitoring. The testing in this strategy is part of an effort to ensure that the desired function is not only available today, but will be available tomorrow as well. This paper considers the application of a streamlined form of RCM to the Emergency Core Cooling (ECC) and Standby Diesel Generator (SDG) Systems of a CANDU plant. Recently completed studies provide useful insight into the important value added of the systematic assessment approach (using RCM techniques) for these standby safety systems. In the case of RCM analysis performed on the Emergency Core Cooling (ECC) System of Point Lepreau Nuclear Power Generating Station (PLGS), it was found that 60% of the current maintenance tasks are testing (functional, stroke, logic, and annunciation tests). Similarly, the SDGs have 50% of the maintenance tasks associated with testing. The paper considers how the results of the RCM analysis demonstrate that the analysis can be used to assist in the optimization of the testing program (as dictated by reliability) while also taking better advantage of the testing through condition monitoring and predictive maintenance techniques. Further, the results illustrate the importance of identifying and linking the different plant activities within a well integrated plant culture. (author)

  5. The advantages of reliability centered maintenance for standby safety systems

    International Nuclear Information System (INIS)

    predictive monitoring. The testing in this strategy is part of an effort to ensure that the desired function is not only available today, but will be available tomorrow as well. This paper considers the application of a streamlined form of RCM to the Emergency Core Cooling (ECC) and Standby Generator (SG) Systems of a CANDU plant. Recently completed studies provide useful insight into the important value added of the systematic assessment approach (using RCM techniques) for these standby safety systems. In the case of RCM analysis performed on the Emergency Core Cooling (ECC) System of Point Lepreau Nuclear Power Generating Station (PLGS), it was found that 60% of the current maintenance tasks are testing (functional, stroke, logic, and annunciation tests). Similarly, the SGs have 50% of the maintenance tasks associated with testing. The paper considers how the results of the RCM analysis demonstrate that the analysis can be used to assist in the optimization of the testing program dictated by reliability while also taking better advantage of the testing through condition monitoring and predictive maintenance techniques. Further, the results illustrate the importance of identifying and linking the different plant activities within a well integrated plant culture. (author)

  6. Capturing Safety Requirements to Enable Effective Task Allocation Between Humans and Automaton in Increasingly Autonomous Systems

    Science.gov (United States)

    Neogi, Natasha A.

    2016-01-01

    There is a current drive towards enabling the deployment of increasingly autonomous systems in the National Airspace System (NAS). However, shifting the traditional roles and responsibilities between humans and automation for safety critical tasks must be managed carefully, otherwise the current emergent safety properties of the NAS may be disrupted. In this paper, a verification activity to assess the emergent safety properties of a clearly defined, safety critical, operational scenario that possesses tasks that can be fluidly allocated between human and automated agents is conducted. Task allocation role sets were proposed for a human-automation team performing a contingency maneuver in a reduced crew context. A safety critical contingency procedure (engine out on takeoff) was modeled in the Soar cognitive architecture, then translated into the Hybrid Input Output formalism. Verification activities were then performed to determine whether or not the safety properties held over the increasingly autonomous system. The verification activities lead to the development of several key insights regarding the implicit assumptions on agent capability. It subsequently illustrated the usefulness of task annotations associated with specialized requirements (e.g., communication, timing etc.), and demonstrated the feasibility of this approach.

  7. HANARO Safety Performance Indicators

    International Nuclear Information System (INIS)

    HANARO is a 30 MW open-tank-in-pool type multi-purpose research reactor. Safety improvement activities have been implemented and the importance of safety management in nuclear activities for reactor application and utilization has also been emphasized. Safety performance indicators (SPIs) are used to assess the safety management status, in combination with other factors such as safety culture, human performance and operation status. The SPI system can provide a proactive approach to complement other safety assessment activities. HANARO has tried to develop a programme for the establishment of safety performance indicators. In this paper the application experience of safety performance indicators in HANARO is described. (author)

  8. Use of digital computing devices in systems important to safety

    International Nuclear Information System (INIS)

    The incorporation of digital computing devices in systems important to safety now is progressing fast in several countries, including Canada, France, Federal Republic of Germany, Japan, USA. There are now reactors with microprocessors in some trip systems. The major functions of those systems are: reactor trip initiation, display, monitoring, testing, re-calibration of detectors. The benefits of moving to a fully computerized shut-down system should be improved reliability, greater flexibility, better man-machine interface, improved testing, higher reactor output and lower overall cost. With the introduction of computer devices in systems important to safety, plant availability and safety are improved because disturbances are treated before they lead to safety action, in this way helping the operator to avoid errors. The Meeting presentations were divided into sessions devoted to the following topics: Needs for the use of digital devices (DCD) in safety important systems (SIS) (5 papers); Problems raised by the integration SIS in the NPP control (7 papers); Description and presentation of DCD of SIS (6 papers); Results of experiences in engineering, manufacture, qualification operation of DCD hardware and software (5 papers). A separate abstract was prepared for each of these papers

  9. IRIS safety system and equipment design verification test plan

    International Nuclear Information System (INIS)

    The International Reactor Innovative and Secure (IRIS) is an advanced, integral, light-water cooled reactor of medium generating capacity (335 MWe), geared at near term deployment (2012-2015). IRIS is an innovative design that features an integral reactor vessel that contains all the reactor coolant system components, including the steam generators, coolant pumps, pressurizer and heaters, and control rod drive mechanisms; in addition to the: typical core, internals, control rods and neutron reflector. Other IRIS innovations also include a small, high design pressure, spherical steel containment; and a simplified passive safety system concept and equipment features that derive from its unique 'safety-by-design' IM philosophy. The IRIS ('safety-by-design')TM approach not only improves safety, but it also reduces the overall cost by allowing a significant reduction and simplification in safety systems. Moreover, IRIS improved safety supports licensing the power plant without the need for off-site emergency response planning an objective which is part of the pre-application with NRC and is also is being pursued in collaboration with IAEA. The IRIS innovative integral reactor coolant system design, as well as its innovative ('safety-by-design')TM approach features, has resulted in the need for new safety analyses and new equipment design and qualification, in order to successfully license the plant. Therefore, the IRIS design team has developed a test plan that will provide the necessary data for safety analyses verification as well as the demonstration of equipment manufacturing feasibility and operation. This paper will present the 'IRIS Safety System and Equipment Design Verification Test Plan' which develops and confirms the operation of all the IRIS unique features, and includes component manufacturing feasibility tests, component separate effects tests, component qualification tests, and integral effects tests. These tests will also provide the data necessary to

  10. Safety activities and human resource development at NCA

    International Nuclear Information System (INIS)

    Toshiba Nuclear Critical Assembly (NCA) has been safely operated since the first criticality in December 1963. The topics covered in this Yayoi Meeting Report are: (1) the outline of NCA, (2) the safety control situation mainly after the Great East Japan Earthquake in 2011, (3) educational training incorporates the lessons learned in this earthquake, and (4) human resource development during 2008-2015. Regarding safety control, facility maintenance has been conducted systematically according to the maintenance plan from the viewpoint of preventive maintenance. Regarding educational training, two disaster handling training based on the safety regulation and one nuclear emergency drill based on the emergency drill plan for licensee of nuclear energy activity based on the Act of Special Measures Concerning Nuclear Emergency Preparedness every year. Regarding human resource development, development training was given to 358 people including students. This year, training that does not require NCA operation was conducted including gamma-ray spectrum measurement of NCA fuel rod and neutron deceleration property measurement using 252Cf neutron source. (S.K.)

  11. SAFETY

    CERN Multimedia

    M. Plagge, C. Schaefer and N. Dupont

    2013-01-01

    Fire Safety – Essential for a particle detector The CMS detector is a marvel of high technology, one of the most precise particle measurement devices we have built until now. Of course it has to be protected from external and internal incidents like the ones that can occur from fires. Due to the fire load, the permanent availability of oxygen and the presence of various ignition sources mostly based on electricity this has to be addressed. Starting from the beam pipe towards the magnet coil, the detector is protected by flooding it with pure gaseous nitrogen during operation. The outer shell of CMS, namely the yoke and the muon chambers are then covered by an emergency inertion system also based on nitrogen. To ensure maximum fire safety, all materials used comply with the CERN regulations IS 23 and IS 41 with only a few exceptions. Every piece of the 30-tonne polyethylene shielding is high-density material, borated, boxed within steel and coated with intumescent (a paint that creates a thick co...

  12. Model Transformation for a System of Systems Dependability Safety Case

    Science.gov (United States)

    Murphy, Judy; Driskell, Steve

    2011-01-01

    The presentation reviews the dependability and safety effort of NASA's Independent Verification and Validation Facility. Topics include: safety engineering process, applications to non-space environment, Phase I overview, process creation, sample SRM artifact, Phase I end result, Phase II model transformation, fault management, and applying Phase II to individual projects.

  13. Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Kim, Sang Ho, E-mail: proton@kaist.ac.kr; Choi, Jae Young

    2013-07-15

    Highlights: • We newly propose the design concept of integrated passive safety system (IPSS). • It has five safety functions for decay heat removal and severe accident mitigation. • Simulations for IPSS show that core melt does not occur in accidents with SBO. • IPSS can achieve the passive in-vessel retention and ex-vessel cooling strategy. • The applicability of IPSS is high due to the installation outside the containment. -- Abstract: The design concept of integrated passive safety system (IPSS) which can perform various passive safety functions is proposed in this paper. It has the various functions of passive decay heat removal system, passive safety injection system, passive containment cooling system, passive in-vessel retention and cavity flooding system, and filtered venting system with containment pressure control. The objectives of this paper are to propose the conceptual design of an IPSS and to estimate the design characters of the IPSS with accident simulations using MARS code. Some functions of the IPSS are newly proposed and the other functions are reviewed with the integration of the functions. Consequently, all of the functions are modified and integrated for simplicity of the design in preparation for beyond design based accidents (BDBAs) focused on a station black out (SBO). The simulation results with the IPSS show that the decay heat can be sufficiently removed in accidents that occur with a SBO. Also, the molten core can be retained in a vessel via the passive in-vessel retention strategy of the IPSS. The actual application potential of the IPSS is high, as numerous strong design characters are evaluated. The installation of the IPSS into the original design of a nuclear power plant requires minimal design change using the current penetrations of the containment. The functions are integrated in one or two large tanks outside the containment. Furthermore, the operation time of the IPSS can be increased by refilling coolant from the

  14. Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants

    International Nuclear Information System (INIS)

    Highlights: • We newly propose the design concept of integrated passive safety system (IPSS). • It has five safety functions for decay heat removal and severe accident mitigation. • Simulations for IPSS show that core melt does not occur in accidents with SBO. • IPSS can achieve the passive in-vessel retention and ex-vessel cooling strategy. • The applicability of IPSS is high due to the installation outside the containment. -- Abstract: The design concept of integrated passive safety system (IPSS) which can perform various passive safety functions is proposed in this paper. It has the various functions of passive decay heat removal system, passive safety injection system, passive containment cooling system, passive in-vessel retention and cavity flooding system, and filtered venting system with containment pressure control. The objectives of this paper are to propose the conceptual design of an IPSS and to estimate the design characters of the IPSS with accident simulations using MARS code. Some functions of the IPSS are newly proposed and the other functions are reviewed with the integration of the functions. Consequently, all of the functions are modified and integrated for simplicity of the design in preparation for beyond design based accidents (BDBAs) focused on a station black out (SBO). The simulation results with the IPSS show that the decay heat can be sufficiently removed in accidents that occur with a SBO. Also, the molten core can be retained in a vessel via the passive in-vessel retention strategy of the IPSS. The actual application potential of the IPSS is high, as numerous strong design characters are evaluated. The installation of the IPSS into the original design of a nuclear power plant requires minimal design change using the current penetrations of the containment. The functions are integrated in one or two large tanks outside the containment. Furthermore, the operation time of the IPSS can be increased by refilling coolant from the

  15. Predictable Safety in the Control of High Consequence Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.A.; Covan, J.M.

    1998-10-14

    Many industries transmit large amounts of energy under the control of safety critical systems, inadvertent release of energy by such systems can result in negative high consequences. Thirpaper describes aprincipie-ba.re dstrategyfor preventing inadvertent release due [O normai operational stresses or abnormal (e.g., accident) stresses. The sajetyprin- ciples, deveioped by Sandia )?a~ional Laboratories for im- bedding detonation safety in nuclear weapons, include iso- [atio~ inoperabilip and incompatibility. There principles will be defined in the paper. They are illustrated and con- trasted to conventionalpractice via the application to a gas jiunace control system.

  16. A fundamental study for safety in advanced PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Kang, C. S.; Lee, E. C.; Kim, S. N.; Lee, J. S.; Kim, M. H.; Chae, W. S.; Kim, M. H.; Lee, D. H.; No, S. T.; Jeon, G. D.; Lee, T. H.; Kim, B. S.; Park, H. J.; Yoon, J. I.; Kim, J. H.; Jeon, J. H.; Jang, W. H.; Sa, Y. C.; Lee, H. W.; Kim, S. J.; Kim, J. W.; Kim, Y. H.; Lee, S. W.; Yang, C. G.; Kim, Y. S.; Ha, J. B.; Son, M. S.; An, Y. C.; Bae, S. W. [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    For the development of integral type small and medium reactor which is remarkably safer than existing plants, the operability of passive safety systems should be studied and its applicability to the integral type reactor should be evaluated. The purposes of this study are to evaluate the characteristics of various passive safety systems and provide the proper data for the future design with performing experiments and developing analytical methodology. Thus in this study, the following techniques for small reactors and passive safety systems subject to this study are evaluated and a part of basic experiments and numerical works necessary to the experiments were performed, First, heat pipes used in containment vessel which removes hear by passive mechanism during accidents, second, natural circulation characteristics for the passive safety analysis of integrated reactor, third, heat evaluation of the effective function of hydraulic valve in passive decay heat removal systems, fifth, the determination of the improved source term for the integral reactor, and the last, passive containment cooling system, which is the first step in the analysis of the integrated safety and the environmental impacts of nuclear power plant. 184 refs., 49 tabs., 188 figs. (author)

  17. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for.

  18. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    International Nuclear Information System (INIS)

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for

  19. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  20. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems. PMID:18049233

  1. Food Safety Monitoring System Design Based on WIA-PA

    Directory of Open Access Journals (Sweden)

    Lin Tang

    2015-05-01

    Full Text Available The study designed a food safety monitoring network system which is composed of the wireless sensor network and MCU based on the emerging wireless communication technology. Tests indicate that the system runs well with small consumption and good mobility and the data can be uploaded to host computer for real-time display and record.

  2. Risk and safety analysis of nuclear systems

    CERN Document Server

    Lee, John C

    2011-01-01

    The book has been developed in conjunction with NERS 462, a course offered every year to seniors and graduate students in the University of Michigan NERS program. The first half of the book covers the principles of risk analysis, the techniques used to develop and update a reliability data base, the reliability of multi-component systems, Markov methods used to analyze the unavailability of systems with repairs, fault trees and event trees used in probabilistic risk assessments (PRAs), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear a

  3. [New international initiatives to create systems of effective risk prediction and food safety].

    Science.gov (United States)

    Efimochkinal, N R; Bagryantseva, E C; Dupouy, E C; Khotimchenko, S A; Permyakov, E V; Sheveleva, S A; Arnautov, O V

    2016-01-01

    Ensuring food safety is one of the most important problems that is directly related to health protection of the population. The problem is particularly relevant on aglobalscale because ofincreasingnumberoffood-borne diseases andimportance of the health consequence early detection. In accordance with the position of the Codex Alimentarius Commission, food safety concept also includes quality. In this case, creation of the national, supranational and international early warning systems related to the food safety, designed with the purpose to prevent or minimize risks on different stages of the food value chain in various countries, regions and climate zones specific to national nutrition and lifestyle in different groups of population, gains particular importance. The article describes the principles and working examples of international, supranational and national food safety early warning systems. Great importance is given to the hazards of microbial origin - emergent pathogens. Example of the rapid reaction to the appearance of cases, related to the melanin presence in infant formula, are presented. Analysis of the current food safety and quality control system in Russian Federation shows that main improvements are mostly related to the development of the efficient monitoring, diagnostics and rapid alert procedures forfood safety on interregional and international levels that will allow to estimate real contamination of food with the most dangerous pathogens, chemical and biological contaminants, and the development of the electronic database and scientifically proved algorithms for food safety and quality management for targeted prevention activities against existing and emerging microbiological and other etiology risks, and public health protection. PMID:27455605

  4. [New international initiatives to create systems of effective risk prediction and food safety].

    Science.gov (United States)

    Efimochkinal, N R; Bagryantseva, E C; Dupouy, E C; Khotimchenko, S A; Permyakov, E V; Sheveleva, S A; Arnautov, O V

    2016-01-01

    Ensuring food safety is one of the most important problems that is directly related to health protection of the population. The problem is particularly relevant on aglobalscale because ofincreasingnumberoffood-borne diseases andimportance of the health consequence early detection. In accordance with the position of the Codex Alimentarius Commission, food safety concept also includes quality. In this case, creation of the national, supranational and international early warning systems related to the food safety, designed with the purpose to prevent or minimize risks on different stages of the food value chain in various countries, regions and climate zones specific to national nutrition and lifestyle in different groups of population, gains particular importance. The article describes the principles and working examples of international, supranational and national food safety early warning systems. Great importance is given to the hazards of microbial origin - emergent pathogens. Example of the rapid reaction to the appearance of cases, related to the melanin presence in infant formula, are presented. Analysis of the current food safety and quality control system in Russian Federation shows that main improvements are mostly related to the development of the efficient monitoring, diagnostics and rapid alert procedures forfood safety on interregional and international levels that will allow to estimate real contamination of food with the most dangerous pathogens, chemical and biological contaminants, and the development of the electronic database and scientifically proved algorithms for food safety and quality management for targeted prevention activities against existing and emerging microbiological and other etiology risks, and public health protection.

  5. A Nuclear Safety System based on Industrial Computer

    International Nuclear Information System (INIS)

    The Plant Protection System(PPS), a nuclear safety Instrumentation and Control (I and C) system for Nuclear Power Plants(NPPs), generates reactor trip on abnormal reactor condition. The Core Protection Calculator System (CPCS) is a safety system that generates and transmits the channel trip signal to the PPS on an abnormal condition. Currently, these systems are designed on the Programmable Logic Controller(PLC) based system and it is necessary to consider a new system platform to adapt simpler system configuration and improved software development process. The CPCS was the first implementation using a micro computer in a nuclear power plant safety protection system in 1980 which have been deployed in Ulchin units 3,4,5,6 and Younggwang units 3,4,5,6. The CPCS software was developed in the Concurrent Micro5 minicomputer using assembly language and embedded into the Concurrent 3205 computer. Following the micro computer based CPCS, PLC based Common-Q platform has been used for the ShinKori/ShinWolsong units 1,2 PPS and CPCS, and the POSAFE-Q PLC platform is used for the ShinUlchin units 1,2 PPS and CPCS. In developing the next generation safety system platform, several factors (e.g., hardware/software reliability, flexibility, licensibility and industrial support) can be considered. This paper suggests an Industrial Computer(IC) based protection system that can be developed with improved flexibility without losing system reliability. The IC based system has the advantage of a simple system configuration with optimized processor boards because of improved processor performance and unlimited interoperability between the target system and development system that use commercial CASE tools. This paper presents the background to selecting the IC based system with a case study design of the CPCS. Eventually, this kind of platform can be used for nuclear power plant safety systems like the PPS, CPCS, Qualified Indication and Alarm . Pami(QIAS-P), and Engineering Safety

  6. Software Safety Analysis of a Flight Guidance System

    Science.gov (United States)

    Butler, Ricky W. (Technical Monitor); Tribble, Alan C.; Miller, Steven P.; Lempia, David L.

    2004-01-01

    This document summarizes the safety analysis performed on a Flight Guidance System (FGS) requirements model. In particular, the safety properties desired of the FGS model are identified and the presence of the safety properties in the model is formally verified. Chapter 1 provides an introduction to the entire project, while Chapter 2 gives a brief overview of the problem domain, the nature of accidents, model based development, and the four-variable model. Chapter 3 outlines the approach. Chapter 4 presents the results of the traditional safety analysis techniques and illustrates how the hazardous conditions associated with the system trace into specific safety properties. Chapter 5 presents the results of the formal methods analysis technique model checking that was used to verify the presence of the safety properties in the requirements model. Finally, Chapter 6 summarizes the main conclusions of the study, first and foremost that model checking is a very effective verification technique to use on discrete models with reasonable state spaces. Additional supporting details are provided in the appendices.

  7. Safety assessment of emergency power systems for nuclear power plants

    International Nuclear Information System (INIS)

    This publication is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing the safety of a given design of the emergency power systems (EPS) for a nuclear power plant. The present publication refers closely to the NUSS Safety Guide 50-SG-D7 (Rev. 1), Emergency Power Systems at Nuclear Power Plants. It covers therefore exactly the same technical subject as that Safety Guide. In view of its objective, however, it attempts to help in the evaluation of possible technical solutions which are intended to fulfill the safety requirements. Section 2 clarifies the scope further by giving an outline of the assessment steps in the licensing process. After a general outline of the assessment process in relation to the licensing of a nuclear power plant, the publication is divided into two parts. First, all safety issues are presented in the form of questions that have to be answered in order for the assessor to be confident of a safe design. The second part presents the same topics in tabulated form, listing the required documentation which the assessor has to consult and those international and national technical standards pertinent to the topics. An extensive reference list provides information on standards. 1 tab

  8. Use of expert systems in nuclear safety

    International Nuclear Information System (INIS)

    One dominant aspect of improvement in safe nuclear power plant operation is the very high speed in the development and introduction of computer technologies. This development commenced recently when advanced control technology was incorporated into the nuclear industry. This led to an increasing implementation of information displays, annunciator windows and other devices inside the control room, eventually overburdening the control room operator with detailed information. Expert systems are a further step in this direction being designed to apply large knowledge bases to solve practical problems. These ''intelligent'' systems have to incorporate enough knowledge to reach expert levels of importance and represent a very advanced man-machine interface. The aims of the Technical Committee were addressed by the three Working Groups and summarized in Sections 2, 3 and 4 of this report. Section 2 summarizes the results and discussions on the current capabilities of expert systems and identifies features for the future development and use of Expert Systems in Nuclear Power Plants. Section 3 provides an overview of the discussions and investigations into the current status of Expert Systems in NPPs. This section develops a method for assessing the overall benefit of different applications and recommends a broad strategy for priority developments of Expert Systems in NPPs. Section 4 assesses the overall use of PSA type studies in Expert Systems in NPPs and identifies specific features to be adopted in the design of these systems in future applications. The conclusions of the three Working Groups are presented in Section 5. The 15 papers presented at the meeting formed the Annex of this document. A separate abstract was prepared for each of these papers. Refs, figs, tabs and pictures

  9. Safety design integrated in the building delivery system

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2013-01-01

    and how to fully integrate safety in each part of the process. The result is a concept and guideline including control forms for how to integrate safety design in the Building Delivery System plus what to do and when. The concept has been tested in an educational context. The practical value...... of the concept depends, nevertheless, on how you manage and organise the detailed design process. In the end, prioritization, motivation and leadership are of vital importance to the construction process and to how good the safety at the site will be for the craftsmen. The developed concept has to be seen......In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...

  10. Safety of Hydrogen Systems Installed in Outdoor Enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Barilo, Nick F.

    2013-11-06

    The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards. The Panel’s initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment. The Panel’s recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refueling, material handling equipment, backup power for warehouses and telecommunication sites, and portable power devices. This paper resulted from observations and considerations stemming from the Panel’s work on early market applications. This paper focuses on hydrogen system components that are installed in outdoor enclosures. These enclosures might alternatively be called “cabinets,” but for simplicity, they are all referred to as “enclosures” in this paper. These enclosures can provide a space where a flammable mixture of hydrogen and air might accumulate, creating the potential for a fire or explosion should an ignition occur. If the enclosure is large enough for a person to enter, and ventilation is inadequate, the hydrogen concentration could be high enough to asphyxiate a person who entered the space. Manufacturers, users, and government authorities rely on requirements described in codes to guide safe design and installation of such systems. Except for small enclosures used for hydrogen gas cylinders (gas cabinets), fuel cell power systems, and the enclosures that most people would describe as buildings, there are no hydrogen safety requirements for these enclosures, leaving gaps that must be addressed. This paper proposes that

  11. A software cost model with maintenance and risk costs for safety-critical systems

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-wei; YANG Xiao-zong; QU Feng; DONG Jian

    2006-01-01

    According to the consequences of software failures, software faults remaining in safety-critical systems can be classified into two sets: common faults and fatal faults. Common faults cause slight loss when they are activated. A fatal fault can lead to significant loss, and even damage the safety-critical system entirely when it is activated. A software reliability growth model for safety-critical systems is developed based on G-O model. And a software cost model is proposed too. The cost model considers maintenance and risk costs due to software failures. The optimal release policies are discussed to minimize the total software cost. A numerical example is provided to illustrate how to use the results we obtained.

  12. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    the same system model and that this model is formalized in a real-time, interval logic, based on a conventional dynamic systems model with a state over time. The three safety analysis techniques are interpreted in this model and it is shown how to derive safety requirements for components of a system.......Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  13. Application of probabilistic safety analysis (PSA) approach to structuring accident mitigation systems of a PWR

    International Nuclear Information System (INIS)

    The safety evaluation technology of PWRs has already been improved substantially because of large-scale safety verification tests and improvement of accuracy in analyses. However, for structuring accident mitigation systems (AMS), the selection of appropriate systems from various AMS candidates mainly depends on engineering judgements by design engineers. So systematic designing process should be established. Reliability of each AMS forms the basis for reliability of safety plant design as a whole. Therefore, explicitly understanding characteristics of each AMS's reliability is very important for safety design. Based on these facts as a background, the limitation of improving reliability by strengthening redundancy of AMS mainly consisting of active components was clarified by applying PSA. At the same time, reliability and other characteristics of AMS mainly consisting of passive components were also clarified with PSA. Through these studies, it is proved that the application of PSA for structuring AMS is effective. (author)

  14. A concurrent diagnosis of microbiological food safety output and food safety management system performance: Cases from meat processing industries

    NARCIS (Netherlands)

    Luning, P.A.; Jacxsens, L.; Rovira, J.; Oses Gomez, S.; Uyttendaele, M.; Marcelis, W.J.

    2011-01-01

    Stakeholder requirements force companies to analyse their food safety management system (FSMS) performance to improve food safety. Performance is commonly analysed by checking compliance against preset requirements via audits/inspections, or actual food safety (FS) output is analysed by microbiologi

  15. CONACS: the DOE safety analysis system

    International Nuclear Information System (INIS)

    The CONtainment Analysis Code System (CONACS) is a large, comprehensive scientific simulation system for predicting conditions in an LMR facility following the occurrence of a postulated accident. It has now been developed to a stage of completion that can be referred to as a limited operational version. This version forms a permanent portion of the ultimate system. Because CONACS was developed with change in mind, it is now possible to draw on this strength to respond to changing requirements arising from advanced design concepts. The generalized design applications in the nuclear and non-nuclear fields and the quality assurance applied to the project make those adaptations reliable. In this paper the results of prototype tests and the implications of limited version tests are presented along with a brief description of CONACS and its relationship to LMR design optimization and cost reduction

  16. CONACS: the DOE safety analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.J.; Armstrong, G.R.; Niccoli, L.G.

    1985-03-01

    The CONtainment Analysis Code System (CONACS) is a large, comprehensive scientific simulation system for predicting conditions in an LMR facility following the occurrence of a postulated accident. It has now been developed to a stage of completion that can be referred to as a limited operational version. This version forms a permanent portion of the ultimate system. Because CONACS was developed with change in mind, it is now possible to draw on this strength to respond to changing requirements arising from advanced design concepts. The generalized design applications in the nuclear and non-nuclear fields and the quality assurance applied to the project make those adaptations reliable. In this paper the results of prototype tests and the implications of limited version tests are presented along with a brief description of CONACS and its relationship to LMR design optimization and cost reduction.

  17. Current Activities on Nuclear Safety Culture in Korea. How to meet the challenges for Safety and Safety Culture?

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chaewoon [International Policy Department Policy and Standard Division, Korea Institute of Nuclear Safety, 19 Gusung-Dong Yuseong-Ku, 305-338 DAEJEON (Korea, Republic of)

    2008-07-01

    'Statement of Nuclear Safety Policy' declared by the Korean Government elucidates adherence to the principle of 'priority to safety'. The 3. Comprehensive Nuclear Energy Promotion Plan (2007-2011) more specifically addressed the necessity to develop and apply 'safety culture evaluation criteria' and to strengthen safety management of concerned organizations in an autonomous way. Putting these policies as a backdrop, Korean Government has taken diverse safety culture initiatives and has encouraged the relevant organizations to develop safety culture practices of their own accord. Accordingly, KHNP, the operating organization in Korea, developed a 'safety culture performance indicator', which has been used to evaluate safety mind of employees and the evaluation results have been continuously reflected in operational management and training programs. Furthermore, KHNP inserted 'nuclear safety culture subject' into every course of more than two week length, and provided employees with special lectures on safety culture. KINS, the regulatory organization, developed indicators for the safety culture evaluation based on the IAEA Guidelines. Also, KINS has hosted an annual Nuclear Safety Technology Information Meeting to share information between regulatory organizations and industries. Furthermore, KINS provided a nuclear safety culture class to the new employees and they are given a chance to participate in performance of a role-reversal socio-drama. Additionally, KINS developed a safety culture training program, published training materials and conducted a 'Nuclear Safety Culture Basic Course' in October 2007, 4 times of which are planed this year. In conclusion, from Government to relevant organizations, 'nuclear safety culture' concept is embraced as important and has been put into practice on a variety of forms. Specifically, 'education and training' is a starting line and sharing

  18. Integration of safety considerations into the design of GCFR safety systems

    International Nuclear Information System (INIS)

    Under DOE sponsorship, the GCFR Program is preparing a program to integrate reliability into the engineering and design of safety related systems, subsystems and components. This program is considered consistent with the NRC licensing position for CRBR which established a formal reliability objective for the prevention of core damage. The objective of the program is to provide assurance that reliability goals established for systems and subsystems are met consistent with the overall plant goals. Special consideration is given to components for which only a generic data base exists. Based on evaluations of past reliability test programs, it is concluded that full scale reliability test programs are not cost effective but that extended DV and S testing may be warranted in special circumstances. The major elements of the program, their relationship and benefits to the design of safety systems are discussed

  19. Automatic speed management systems : great safety potential ?

    NARCIS (Netherlands)

    Oei, H.-l.

    1992-01-01

    An account is given of speed management experiments carried out in The Netherlands on four 2-lane rural roads with a speed limit of 80 km/h. The experiment involved an information campaign, warning signs and a radar camera system. Fixed signs advised a speed of between 60 and 80 km/h and an automati

  20. The Waste Isolation Pilot Plant transportation system - dedicated to safety

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe the development by the U.S. Department of Energy (DOE) of a first-of-a-kind transportation system. The total transport package includes a specially designed trailer, lightweight tractor, and type B container. In the development effort, the DOE has been exceptionally sensitive to public concerns and the need for safety in the transport of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) site. Measures taken in the development of the transport system exceed all existing requirements and, in the interest of public safety, incorporate all precautionary measures possible

  1. Annual report on the activities in safety administration department. Report of the fiscal year 2008

    International Nuclear Information System (INIS)

    The activities of Safety Administration Department covers many fields in Nuclear Fuel Cycle Engineering Laboratories such as the management of the occupational safety and health, the crisis management, the security, and the management of a quality assurance. This report is the summary of the activities of Safety Administration Department since April, 2008 until March, 2009. (author)

  2. Annual report on the activities in Safety Administration Department. Report of the fiscal year 2011

    International Nuclear Information System (INIS)

    The activities of Safety Administration Department cover many fields in Nuclear Fuel Cycle Engineering Laboratories such as the management of the occupational safety and health, the crisis management, the security, and the management of a quality assurance. This report is the summary of the activities of Safety Administration Department from April, 2011 to March, 2012. (author)

  3. IT solutions of EgerFood food safety tracking system

    Directory of Open Access Journals (Sweden)

    Gábor Kusper

    2012-06-01

    Full Text Available In this article we introduce the EgerFood food-safety tracing system, which has been developed in the Regional Knowledge Center at the Eszterházy Károly College. We have already reported on the applied methodologies on some conferences. This article gives a complete overview on the informatics system, on its features, and on our results. Our aim is that similar tracing system should be able to use this article as an example. The goal of the EgerFood system is to create a customer centric system, which deliver food-safety information in a cost effective and safe way to the customers, the food-producers, and the authorities. The developed information system uses at least a 2-tier architecture already at the site of the food-producers, which is connected to the main data warehouse server using VPN connection. We show how moves the data from its source to the buffer-servers, from that to the communication server and finally to the database server, and how it is encrypted on this way. We also approve the safety of data search, not only the safety of the data upload.

  4. C-Band Airport Surface Communications System Engineering-Initial High-Level Safety Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.

  5. Summary of safety relief valve position indication systems

    Energy Technology Data Exchange (ETDEWEB)

    Cybulski, D.S.; Walter, J.F.

    1986-01-01

    Mainly as a result of the Three Mile Island-2 (TMI-2) incident, the US Nuclear Regulatory Commission's Regulatory Guide 1.97 instituted criteria recommendations for monitoring variables to: 1. provide information required to permit the operator to take preplanned manual actions to accomplish safe plant shutdown; 2. determine whether...systems important to safety are performing their functions...; and 3. provide information to the operators that will enable them to determine the potential for causing a gross breach of the barriers to radioactivity release.... This report surveys the methodologies employed in nuclear plants to monitor Type D variables as referred to in Regulatory Guide 1.97. Type D are those variables that provide information to indicate the operation of individual safety systems and other systems important to safety. The specific Type D variable addressed is safety relief valve (i.e., spring style safety relief valve) position indication. The application criteria for each of the methodologies surveyed is as described in Regulatory Guide 1.97. That is, minimally to provide light indications of closed/not closed positions.

  6. Survey of systems safety analysis methods and their application to nuclear waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study.

  7. Survey of systems safety analysis methods and their application to nuclear waste management systems

    International Nuclear Information System (INIS)

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study

  8. Health and Safety Management Plan for the Plutonium Stabilization and Packaging System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-04

    This Health and Safety Management Plan (HSMP) presents safety and health policies and a project health and safety organizational structure designed to minimize potential risks of harm to personnel performing activities associated with Plutonium Stabilization and Packaging System (Pu SPS). The objectives of the Pu SPS are to design, fabricate, install, and startup of a glovebox system for the safe repackaging of plutonium oxides and metals, with a requirement of a 50-year storage period. This HSMP is intended as an initial project health and safety submittal as part of a three phase effort to address health and safety issues related to personnel working the Pu SPS project. Phase 1 includes this HSMP and sets up the basic approach to health and safety on the project and addresses health and safety issues related to the engineering and design effort. Phase 2 will include the Site Specific Construction health and Safety Plan (SSCHSP). Phase 3 will include an additional addendum to this HSMP and address health and safety issues associated with the start up and on-site test phase of the project. This initial submittal of the HSMP is intended to address those activities anticipated to be performed during phase 1 of the project. This HSMP is intended to be a living document which shall be modified as information regarding the individual tasks associated with the project becomes available. These modifications will be in the form of addenda to be submitted prior to the initiation of each phase of the project. For additional work authorized under this project this HSMP will be modified as described in section 1.4.

  9. Health and Safety Management Plan for the Plutonium Stabilization and Packaging System

    International Nuclear Information System (INIS)

    This Health and Safety Management Plan (HSMP) presents safety and health policies and a project health and safety organizational structure designed to minimize potential risks of harm to personnel performing activities associated with Plutonium Stabilization and Packaging System (Pu SPS). The objectives of the Pu SPS are to design, fabricate, install, and startup of a glovebox system for the safe repackaging of plutonium oxides and metals, with a requirement of a 50-year storage period. This HSMP is intended as an initial project health and safety submittal as part of a three phase effort to address health and safety issues related to personnel working the Pu SPS project. Phase 1 includes this HSMP and sets up the basic approach to health and safety on the project and addresses health and safety issues related to the engineering and design effort. Phase 2 will include the Site Specific Construction health and Safety Plan (SSCHSP). Phase 3 will include an additional addendum to this HSMP and address health and safety issues associated with the start up and on-site test phase of the project. This initial submittal of the HSMP is intended to address those activities anticipated to be performed during phase 1 of the project. This HSMP is intended to be a living document which shall be modified as information regarding the individual tasks associated with the project becomes available. These modifications will be in the form of addenda to be submitted prior to the initiation of each phase of the project. For additional work authorized under this project this HSMP will be modified as described in section 1.4

  10. Safety

    CERN Multimedia

    2003-01-01

    Please note that the safety codes A9, A10 AND A11 (ex annexes of SAPOCO/42) entitled respectively "Safety responsibilities in the divisions" "The safety policy committee (SAPOCO) and safety officers' committees" and "Administrative procedure following a serious accident or incident" are available on the web at the following URLs: Code A9: http://edms.cern.ch/document/337016/LAST_RELEASED Code A10: http://edms.cern.ch/document/337019/LAST_RELEASED Code A11: http://edms.cern.ch/document/337026/LAST_RELEASED Paper copies can also be obtained from the TIS divisional secretariat, e-mail: tis.secretariat@cern.ch. TIS Secretariat

  11. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  12. Development of safety related instruments for sodium systems

    International Nuclear Information System (INIS)

    Liquid sodium is used as a coolant in the Prototype Fast Breeder Reactor (PFBR). Because of the highly reactive nature of sodium with air and water, special instruments are required for early detection of breach of integrity of the system and safety action. Early detection of sodium-water reaction is essential for the safety of the plant. Over the years, instruments such as wire type leak detectors, spark plug type leak detectors, mutual-inductance type detectors, sodium ionization type leak detector etc were developed and used in different sodium systems. To detect the sodium-water reaction at the earliest, In-Sodium and Cover Gas Hydrogen Meters are used in reactor systems and in engineering systems. In-Sodium Hydrogen Meter tested earlier in one of the loops performed satisfactorily in Fast Breeder Test Reactor. Similar systems will be used in PFBR. However, improvement in the system, cost reduction and miniaturization are planned on these instruments. (author)

  13. Evaluation of food safety management systems in Serbian dairy industry

    Directory of Open Access Journals (Sweden)

    Igor Tomašević

    2016-01-01

    Full Text Available This paper reports incentives, costs, difficulties and benefits of food safety management systems implementation in the Serbian dairy industry. The survey involved 27 food business operators with the national milk and dairy market share of 65 %. Almost two thirds of the assessed dairy producers (70.4 % claimed that they had a fully operational and certified HACCP system in place, while 29.6 % implemented HACCP, but had no third party certification. ISO 22000 was implemented and certified in 29.6 % of the companies, while only 11.1 % had implemented and certified IFS standard. The most important incentive for implementing food safety management systems for Serbian dairy producers was to increase and improve safety and quality of dairy products. The cost of product investigation/analysis and hiring external consultants were related to the initial set-up of food safety management system with the greatest importance. Serbian dairy industry was not greatly concerned by the financial side of implementing food safety management systems due to the fact that majority of prerequisite programmes were in place and regularly used by almost 100 % of the producers surveyed. The presence of competency gap between the generic knowledge for manufacturing food products and the knowledge necessary to develop and implement food safety management systems was confirmed, despite the fact that 58.8 % of Serbian dairy managers had university level of education. Our study brings about the innovation emphasizing the attitudes and the motivation of the food production staff as the most important barrier for the development and implementation of HACCP. The most important identified benefit was increased safety of dairy products with the mean rank scores of 6.85. The increased customer confidence and working discipline of staff employed in food processing were also found as important benefits of implementing/operating HACCP. The study shows that the level of HACCP

  14. Voluntary Safety Management System in the Manufacturing Industry – To What Extent does OHSAS 18001 Certification Help?

    Directory of Open Access Journals (Sweden)

    Paas Õnnela

    2015-11-01

    Full Text Available Occupational risk prevention can be managed in several ways. Voluntary safety management standard OHSAS 18001 is a tool, which is considered to give contribution in effective risk management in the manufacturing industry. The current paper examines the benefits of OHSAS 18001 based on the statistical analysis. MISHA method is used for safety audit in 16 Estonian enterprises. The results demonstrate the objectives why companies implement or are willing to implement OHSAS 18001, bring out differences in safety activities for 3 types of companies and determine correlations among different safety activity areas. The information is valuable for enterprises that are willing to improve their safety activities via a voluntary safety management system.

  15. Safety Injection System Filling Using Dynamic Venting

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Je; Kim, Wong Bae; Huh, Jin; Lee, Joo Hee; Im, In Young; Kim, Eun kee [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2015-05-15

    In the APR+, the water-level elevation of the in-containment refueling water storage tank (IRWST) is lower than the highest piping of the SIS. Since the gravity filling of water from IRWST cannot fill all SIS piping, an SIP or an SCP test line is newly provided in order to allow the dynamic venting of the SIS. NEI 09-10 Revision 1a-A has concluded that use of dynamic venting is an effective means to remove gas from local high points and traps in piping when correctly based on the dynamic flow rate, void volume, Floude number, and the system water volume. In this study, feasibility of the dynamic vent is investigated. The work presented in this study evaluates the SIS and the SCS filling using the dynamic venting which is supposed to be applied to the APR+. The main ideas are as follows; 1. Dynamic venting using SIPs for the APR+ is not appropriate on the basis of 12 inches in diameter and with the flow rate, 1,460 gpm. 2. Because the high point of the SIS and the SCS is located at the piping that the two systems are sharing, the accumulated gas at the highest point can be removed by using the SCPs, and the dimension of the new piping will be determined by its length of them and the number of elbows. The calculated results are shown in Table 2. 3. The applicability of the dynamic venting methods using the SCPs that are mentioned above should be evaluated in the aspect of the system operation after the piping arrangements are settled in the APR+. The assessments to determine the pump operation time are also required.

  16. Towards a new tool for measuring Safety Management Systems performance

    OpenAIRE

    Cambon, Julien; Guarnieri, Franck; Groeneweg, Jop

    2006-01-01

    Available on: http://www.resilience-engineering.org/REPapers/Cambon_Guarnieri_Groeneweg_P.pdf International audience This paper deals with the assessment of Safety Management Systems performance and presents a new tool developed for that purpose. It recognizes two dimensions in a SMS: a structural facet corresponding to the formal description of the system and an operational one focused on the system's influence on the working environment and practices of people. Building up the operati...

  17. A visual-analytics system for railway safety management.

    Science.gov (United States)

    Lira, Wallace P; Alves, Ronnie; Costa, Jean M R; Pessin, Gustavo; Galvao, Lilyan; Cardoso, Ana C; de Souza, Cleidson R B

    2014-01-01

    The working environment of railways is challenging and complex and often involves high-risk operations. These operations affect both the company staff and inhabitants of the towns and cities alongside the railway lines. To reduce the employees' and public's exposure to risk, railway companies adopt strategies involving trained safety personnel, advanced forms of technology, and special work processes. Nevertheless, unfortunate incidents still occur. To assist railway safety management, researchers developed a visual-analytics system. Using a data analytics workflow, it compiles an incident risk index that processes information about railway incidents. It displays the index on a geographical map, together with socioeconomic information about the associated towns and cities. Feedback on this system suggests that safety engineers and experts can use it to make and communicate decisions.

  18. A visual-analytics system for railway safety management.

    Science.gov (United States)

    Lira, Wallace P; Alves, Ronnie; Costa, Jean M R; Pessin, Gustavo; Galvao, Lilyan; Cardoso, Ana C; de Souza, Cleidson R B

    2014-01-01

    The working environment of railways is challenging and complex and often involves high-risk operations. These operations affect both the company staff and inhabitants of the towns and cities alongside the railway lines. To reduce the employees' and public's exposure to risk, railway companies adopt strategies involving trained safety personnel, advanced forms of technology, and special work processes. Nevertheless, unfortunate incidents still occur. To assist railway safety management, researchers developed a visual-analytics system. Using a data analytics workflow, it compiles an incident risk index that processes information about railway incidents. It displays the index on a geographical map, together with socioeconomic information about the associated towns and cities. Feedback on this system suggests that safety engineers and experts can use it to make and communicate decisions. PMID:25073166

  19. Upgraded reactor systems for enhanced safety at TRIGA-INR

    International Nuclear Information System (INIS)

    After almost three decades of operation of stationary TRIGA 14MW with systems provided and installed at reactor first start-up, it appeared obvious that an extended modernization program is required, both for enhancing the nuclear safety and to expand the facility lifetime. A first step has been achieved through complete HEU to LEU core conversion, meaning also core refuelling possibility for the future. Systems that have been subjected to the upgrading program are: control rods, radiation monitoring, data acquisition and processing, ventilation, irradiation devices, and above all, the outstanding modernization of the I and C system, including a brand new reactor control desk. Taking into account own and research reactors community operation experience, IAEA guides and recommendations, the basic requirement for the Instrumentation and Control System is the separation between safety and operation components, in order to decrease human error consequences and avoid common cause failures. Modernization did not cover any sensor replacement, but preserve the present scram logic and conditions (as given and approved in the Safety Report and Licensed Limits and Conditions) The entire modernization program is performed according to QA system. Out of intrinsic nuclear safety enhancement, enhanced population and environment protection is a concern and an expected result of the program. Upgrading the overall performances of the reactor and extending its operational lifetime, the Reactor Department of Institute will be able to perform competitive irradiation tests for nuclear fuel and materials, and to continue to develop nuclear investigation techniques or isotope production. (author)

  20. The achievement and assessment of safety in systems containing software

    International Nuclear Information System (INIS)

    In order to establish confidence in the safe operation of a reactor protection system, there is a need to establish, as far as it is possible, that: (i) the algorithms used are correct; (ii) the system is a correct implementation of the algorithms; and (iii) the hardware is sufficiently reliable. This paper concentrates principally on the second of these, as it applies to the software aspect of the more accurate and complex trip functions to be performed by modern reactor protection systems. In order to engineer safety into software, there is a need to use a development strategy which will stand a high chance of achieving a correct implementation of the trip algorithms. This paper describes three broad methodologies by which it is possible to enhance the integrity of software: fault avoidance, fault tolerance and fault removal. Fault avoidance is concerned with making the software as fault free as possible by appropriate choice of specification, design and implementation methods. A fault tolerant strategy may be advisable in many safety critical applications, in order to guard against residual faults present in the software of the installed system. Fault detection and removal techniques are used to remove as many faults as possible of those introduced during software development. The paper also discusses safety and reliability assessment as it applies to software, outlining the various approaches available. Finally, there is an outline of a research project underway in the UKAEA which is intended to assess methods for developing and testing safety and protection systems involving software. (author)

  1. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  2. National Food Safety Systems in the European Union: A Comparative Survey

    Directory of Open Access Journals (Sweden)

    Andreas Hadjigeorgiou

    2013-04-01

    Full Text Available This paper is a comparative survey of the National Food Safety Systems (NFSS of the European Union (EU Member-States (MS and the Central EU level. The main organizational structures of the NFSS, their legal frameworks, their responsibilities, their experiences, and challenges relating to food safety are discussed. Growing concerns about food safety have led the EU itself, its MS and non-EU countries, which are EU trade-partners, to review and modify their food safety systems. Our study suggests that the EU and 22 out of 27 Member States (MS have reorganized their NFSS by establishing a single food safety authority or a similar organization on the national or central level. In addition, the study analyzes different approaches towards the establishment of such agencies. Areas where marked differences in approaches were seen included the division of responsibilities for risk assessment (RA, risk management (RM, and risk communication (RC. We found that in 12 Member States, all three areas of activity (RA, RM, and RC are kept together, whereas in 10 Member States, risk management is functionally or institutionally separate from risk assessment and risk communication. No single ideal model for others to follow for the organization of a food safety authority was observed; however, revised NFSS, either in EU member states or at the EU central level, may be more effective from the previous arrangements, because they provide central supervision, give priority to food control programs, and maintain comprehensive risk analysis as part of their activities.

  3. Medication Safety Systems and the Important Role of Pharmacists.

    Science.gov (United States)

    Mansur, Jeannell M

    2016-03-01

    Preventable medication-related adverse events continue to occur in the healthcare setting. While the Institute of Medicine's To Err is Human, published in 2000, highlighted the prevalence of medical and medication-related errors in patient morbidity and mortality, there has not been significant documented progress in addressing system contributors to medication errors. The lack of progress may be related to the myriad of pharmaceutical options now available and the nuances of optimizing drug therapy to achieve desired outcomes and prevent undesirable outcomes. However, on a broader scale, there may be opportunities to focus on the design and performance of the many processes that are part of the medication system. Errors may occur in the storage, prescribing, transcription, preparation and dispensing, or administration and monitoring of medications. Each of these nodes of the medication system, with its many components, is prone to failure, resulting in harm to patients. The pharmacist is uniquely trained to be able to impact medication safety at the individual patient level through medication management skills that are part of the clinical pharmacist's role, but also to analyze the performance of medication processes and to lead redesign efforts to mitigate drug-related outcomes that may cause harm. One population that can benefit from a focus on medication safety through clinical pharmacy services and medication safety programs is the elderly, who are at risk for adverse drug events due to their many co-morbidities and the number of medications often used. This article describes the medication safety systems and provides a blueprint for creating a foundation for medication safety programs within healthcare organizations. The specific role of pharmacists and clinical pharmacy services in medication safety is also discussed here and in other articles in this Theme Issue. PMID:26932714

  4. Status of Nuclear Safety Culture Through Lessons Learnt from Licensing, Periodic Safety Review and Relicensing of Activities at Nuclear Research Installations in Russian Federation

    International Nuclear Information System (INIS)

    Russian Federation (Russia) has a lot of Nuclear Research Installations (NRIs) of various types and powers for the fundamental and applied sciences in the field of physics, power engineering, material study, biology and medicine. The work is been carried out to optimize the Russian fleet of NRIs, depending on the science and atomic energy needs. Due to the reduction of NRIs in operation in the world the experimental abilities of Russian NRIs as well as their safety conditions, to be in compliance with up-to-date safety requirements, represent the certain interest both to European region and international collaboration as a whole. The effective system for safety regulation in the field of atomic energy use has been established at present in Russia and is being improved. The legal basis and principles of regulation of relations arising in atomic energy use have been put in force at the state level taking into consideration fundamental principles of nuclear law adopted in practice worldwide. The report outlines the results and lessons learnt from licensing of NRIs in Russia as a continuous process having a few stages during the lifetime of a NRI. Enhancement of nuclear and radiation safety and security of NRIs in operation is pointed out at the initial licensing stage in the past, when no sound technical requirements and reference licensing basis were available, and then as a result of further safety evaluations and re-licensing. Through lessons learnt from licensing of NRIs the principal findings are summarized on the safety status of NRIs in Russia and further evaluation of their safety. A sound legal framework, well arranged licensing process and supervision, also scientific and technical support and other advisory organizations can help enhance nuclear safety culture because the activities at NRIs include various aspects related to safety: legal, administrative, technical, economical, ecological, informational, social and even psychological. There exist a few

  5. Exploiting digital systems technology to improve nuclear safety

    International Nuclear Information System (INIS)

    Nuclear plant designers in the 1990's have exceptional opportunities to exploit rapidly evolving computer and information system technology to make significant improvements in public safety. CANDU reactors have utilized extensive computer automation for reactor control for 20 years. A direct consequence is that the frequencies for forced outages and spurious protection system trips have been among the lowest for all reactor types. Historically, CANDU was among the first commercial power reactor to utilize computers to implement protection system. System functions with the PDC's (Programmable Digital Comparators) used in the CANDU 600 reactors. PDC's were used to implement the trip decision logic for the process trip parameters. The paper provides detail on safety benefits that have been realized from the use of digital automation for control and protection. The paper describes how accident risk reduction can be achieved in other ways with digital systems

  6. B190 computer controlled radiation monitoring and safety interlock system

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, D L; Fields, W F; Gittins, D E; Roberts, M L

    1998-08-01

    The Center for Accelerator Mass Spectrometry (CAMS) in the Earth and Environmental Sciences Directorate at Lawrence Livermore National Laboratory (LLNL) operates two accelerators and is in the process of installing two new additional accelerators in support of a variety of basic and applied measurement programs. To monitor the radiation environment in the facility in which these accelerators are located and to terminate accelerator operations if predetermined radiation levels are exceeded, an updated computer controlled radiation monitoring system has been installed. This new system also monitors various machine safety interlocks and again terminates accelerator operations if machine interlocks are broken. This new system replaces an older system that was originally installed in 1988. This paper describes the updated B190 computer controlled radiation monitoring and safety interlock system.

  7. Licensed Shared Access System Possibilities for Public Safety

    Directory of Open Access Journals (Sweden)

    Kalle Lähetkangas

    2016-01-01

    Full Text Available We investigate the licensed shared access (LSA concept based spectrum sharing ideas between public safety (PS and commercial radio systems. While the concept of LSA has been well developed, it has not been thoroughly investigated from the public safety (PS users’ point of view, who have special requirements and also should benefit from the concept. Herein, we discuss the alternatives for spectrum sharing between PS and commercial systems. In particular, we proceed to develop robust solutions for LSA use cases where connections to the LSA system may fail. We simulate the proposed system with different failure models. The results show that the method offers reliable LSA spectrum sharing in various conditions assuming that the system parameters are set properly. The paper gives guidelines to set these parameters.

  8. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis.

    NARCIS (Netherlands)

    Vojinovic, J.; Damjanov, N.; D'Urzo, C.; Furlan, A.; Susic, G.; Pasic, S.; Iagaru, N.; Stefan, M.; Dinarello, C.A.

    2011-01-01

    OBJECTIVE: The current treatment options for systemic-onset juvenile idiopathic arthritis (JIA) are methotrexate, steroids, and biologic agents. This study was undertaken to evaluate the safety of the orally active histone deacetylase inhibitor givinostat (ITF2357) and its ability to affect the dise

  9. PreScan, madymo and vehil design and evaluation tools for integrated safety systems

    NARCIS (Netherlands)

    Lupker, H.; Lemmen, P.; Ploeg, J.

    2006-01-01

    Pre-Crash Systems (PCS) use environment sensors and electronic control functions to improve the effectiveness of passive safety devices by activating them before a collision occurs. In view of the autonomous character and high demands on reliability, dedicated design tools and methodologies are requ

  10. Refurbishment of the safety system at the CROCUS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Girardin, Gaetan; Frajtag, Pavel; Braun, Laurent; Pautz, Andreas [Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2013-07-01

    This report discusses the partial refurbishment of the first channel (VS-I) of the Reactor Protection System (RPS) at the teaching reactor CROCUS operated at the Swiss Federal Institute of Technology (EPFL) in Lausanne. The CROCUS facility is a zero-power reactor and it is mainly used for educational purposes for undergraduate and master students. The RPS uses two fully redundant and independent channels: VS-I and VS-II. These contain both the nuclear instrumentation and control units that were developed in-house during the reactor commissioning in the 80's. The nuclear instrumentation and control used was provided by Merlin-Gerin for flux measurements and the reactor SCRAM function. The neutron flux is measured by means of fission chambers connected to IS-I and IS-II. The reactor can be in different states, in particular the startup phases, for example the progressive auxiliary and reactor tanks water filling phase, the safety rods pull-up phase, etc. The logic functions corresponding to these states are designed and implemented in SS-I and SS-II. The refurbishment of the reactor SS-I and SS-II was necessary due to the lack of spare parts for some circuits and the difficulty of finding simple logic circuits in the market. The replacement of both safety channels SS-I and SS-II was performed with the resources available in-house at the reactor service laboratory at EPFL. The nuclear instrumentation is not directly impacted by the reported refurbishment activity. The first phase of the refurbishment project consists of the replacement of the first channel (VS-I) keeping the reactor available for operation services at EPFL. The paper focusses on the description of this technical project and the review and approval process conducted by the Swiss Federal Nuclear Inspectorate (ENSI). Details are provided concerning each regulatory phase of the project and also the technological choices (CPLD over TTL) for the newly developed system. The latter were specifically made

  11. Idaho National Laboratory Integrated Safety Management System 2011 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Farren Hunt

    2011-12-01

    Idaho National Laboratory (INL) performed an annual Integrated Safety Management System (ISMS) effectiveness review per 48 Code of Federal Regulations (CFR) 970.5223-1, 'Integration of Environment, Safety and Health into Work Planning and Execution.' The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and helped identify target areas for focused improvements and assessments for fiscal year (FY) 2012. The information presented in this review of FY 2011 shows that the INL has performed many corrective actions and improvement activities, which are starting to show some of the desired results. These corrective actions and improvement activities will continue to help change culture that will lead to better implementation of defined programs, resulting in moving the Laboratory's performance from the categorization of 'Needs Improvement' to the desired results of 'Effective Performance.'

  12. Safety assessment for the passive system of the nuclear power plants (NPPs) using safety margin estimation

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae-Ho; Lee, Un-Chul [Department of Nuclear Engineering, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea)

    2010-04-15

    The probabilistic safety assessment (PSA) for gas-cooled nuclear power plants has been investigated where the operational data are deficient, because there is not any commercial gas-cooled nuclear power plant. Therefore, it is necessary to use the statistical data for the basic event constructions. Several estimations for the safety margin are introduced for the quantification of the failure frequency in the basic event, which is made by the concept of the impact and affordability. Trend of probability of failure (TPF) and fuzzy converter (FC) are introduced using the safety margin, which shows the simplified and easy configurations for the event characteristics. The mass flow rate in the natural circulation is studied for the modeling. The potential energy in the gravity, the temperature and pressure in the heat conduction, and the heat transfer rate in the internal stored energy are also investigated. The values in the probability set are compared with those of the fuzzy set modeling. Non-linearity of the safety margin is expressed by the fuzziness of the membership function. This artificial intelligence analysis of the fuzzy set could enhance the reliability of the system comparing to the probabilistic analysis. (author)

  13. Report of safety of the characterizing system of radioactive waste; Informe de seguridad del sistema caracterizador de desechos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Angeles C, A.; Jimenez D, J.; Reyes L, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-09-15

    Report of safety of the system of radioactive waste of the ININ: Installation, participant personnel, selection of the place, description of the installation, equipment. Proposed activities: operations with radioactive material, calibration in energy, calibration in efficiency, types of waste. Maintenance: handling of radioactive waste, physical safety. Organization: radiological protection, armor-plating, personal dosemeter, risks and emergency plan, environmental impact, medical exams. (Author)

  14. ADASY (Active Daylighting System)

    Science.gov (United States)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  15. Knowledge-based expert systems for traffic safety.

    NARCIS (Netherlands)

    Janssen, S.T.M.C.

    1990-01-01

    An expert system for traffic safety uses a "knowledge-base" for the interpretation of the "databases" in which accident data and the characteristics of roads and traffic are stored. Computerized procedures are developed for detection, diagnosis, and remedy. The procedures will be based on what is kn

  16. Driving Simulator study for intelligent cooperative intersection safety system (IRIS)

    NARCIS (Netherlands)

    Vreeswijk, J.; Schendzielorz, T.; Mathias, P.; Feenstra, P.

    2008-01-01

    About forty percent of all accidents occur at intersections. The Intelligent Cooperative Intersection Safety system (IRIS), as part of the European research project SAFESPOT, is a roadside application and aims at minimizing the number of accidents at controlled and uncontrolled intersections. IRIS u

  17. Food safety management systems performance in the lamb production chain

    NARCIS (Netherlands)

    Oses, S.M.; Luning, P.A.; Jacxsens, L.; Jaime, I.; Rovira, J.

    2012-01-01

    This study describes a performance measurement of implemented food safety management system (FSMS) along the lamb chain using an FSMS-diagnostic instrument (FSMS-DI) and a Microbiological Assessment Scheme (MAS). Three slaughterhouses, 1 processing plant and 5 butcher shops were evaluated. All the a

  18. Safety of systems for the retention of wastes containing radionuclides

    International Nuclear Information System (INIS)

    Information and minimal requirements demanded by CNEN for the emission of the Approval Certificate of the Safety Analysis Report related to system for the retention of wastes containing radionuclide, are established, aiming to assure low radioactivity levels to the environment. (E.G.)

  19. Diversity: safety system design against common mode failure

    International Nuclear Information System (INIS)

    Safety systems for Nuclear Power Stations are composed of redundant sets of equipment. Common mode effects mean that increasing redundancy may not obtain more reliability and hence diversity is introduced. Diversity is the provision of dissimilar means of achieving the same objective. This paper overviews the diversity strategy utilised in the design of Sizewell B. (author)

  20. Cooperatively active sensing system

    International Nuclear Information System (INIS)

    Aiming at development of a strong and flexible sensing system, a study on a sensing technology prepared with cooperativity, activity, and real time workability has been promoted. In the former period, together with preparation of plural moving robot group with real time processing capacity of a lot of sensor informations composing of platform, a parallel object direction language Eus Lisp effectively capable of describing and executing cooperative processing and action therewith was developed. And, it was also shown that capacity to adaptively act even at dynamic environment could be learnt experientially. And, on processing of individual sensor information, application of a photographing system with multiple resolution property similar to human visual sense property was attempted. In the latter period, together with intending of upgrading on adaptability of sensing function, by using moving robot group in center of a moving robot loaded with active visual sense, a cooperative active sensing prototype system was constructed to show effectiveness of this study through evaluation experiment of patrolling inspection at plant simulating environment. (G.K.)

  1. Safety Management Characteristics Reflected in Interviews at Swedish Nuclear Power Plants: A System Perspective Approach

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Ilkka (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2005-12-15

    The present study investigated safety management characteristics reflected in interviews with participants from two Swedish nuclear power plants. A document analysis regarding the plants' organization, safety policies, and safety culture work was carried out as well. The participants (n=9) were all nuclear power professionals, and the majority managers at different levels with at least 10 years of nuclear power experience. The interview comprised themes relevant for organizational safety and safety management, such as: organizational structures and organizational change, threats to safety, information feedback and knowledge transfer, safety analysis, safety policy, and accident and incident analysis and reporting. The results were in part modeled to important themes derived from a general system theoretical framework suggested by Svenson and developed by Svenson and Salo in relation to studies of 'non-nuclear' safety organizations. A primer to important features of the system theoretical framework is presented in the introductory chapter. The results from the interviews generated interesting descriptions about nuclear safety management in relation to the above themes. Regarding organizational restructuring, mainly centralizations of resources, several examples of reasons for the restructuring and related benefits for this centralization of resources were identified. A number of important reminders that ought to be considered in relation to reorganization were also identified. Regarding threats to the own organization a number of such was interpreted from the interviews. Among them are risks related to generation and competence change-over and risks related to outsourcing of activities. A thorough picture of information management and practical implications related to this was revealed in the interviews. Related to information feedback is the issue of organizational safety indicators and safety indicators in general. The interview answers indicated

  2. Safety Assessment of Primary System Components at the USNRC

    International Nuclear Information System (INIS)

    The principal mission of the USNRC is simple and straightforward; to assure that non-military uses of nuclear materials are carried out with proper regard and provision for the protection of the public health and safety, and of the environment. When this mission is focused on the primary system components of nuclear power plants, there results a requirement to assure that unexpected catastrophic failures will not occur, and that smaller scale leaks, cracks or breaks can be accommodated and mitigated through a 'defense in depth' approach that includes make up capabilities, redundancy and engineered safety systems. As one steps farther back from the overall mission statement, there appears a vast matrix of codified rules, data banks of information on material properties, and procedures for design, stress and failure analyses all of which are applied using the best engineering judgement to assure that materials and components will function safely and effectively according to the designer's intent. The safety evaluation of components at the USNRC is accomplished using pertinent regulations and referenced codes which govern the basic approach. This is followed by the use of a series of guides and standards which describe how the actions should be implemented. Actual application to specific operating reactor situations is dependent upon the quality and quantity of data and analyses available to support the application or question. Safety evaluations with material integrity implications typical for primary system components are dependent on inputs in material properties, applied stresses and the size and location of a flaw. If these data are missing, or exhibit large uncertainties, then no application of precise rules or analyses will yield an answer without large uncertainty. Fracture Analysis and NOE are uniquely tied together for the safety evaluation of components. Elegant precision in one aspect cannot overcome the absence of data in the other. Both procedures are

  3. Overview of Threats and Failure Models for Safety-Relevant Computer-Based Systems

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2015-01-01

    This document presents a high-level overview of the threats to safety-relevant computer-based systems, including (1) a description of the introduction and activation of physical and logical faults; (2) the propagation of their effects; and (3) function-level and component-level error and failure mode models. These models can be used in the definition of fault hypotheses (i.e., assumptions) for threat-risk mitigation strategies. This document is a contribution to a guide currently under development that is intended to provide a general technical foundation for designers and evaluators of safety-relevant systems.

  4. Role of human factors in system safety

    International Nuclear Information System (INIS)

    What happens when technology goes wrong? Three Mile Island, Chernobyl, space shuttles Challenger and Columbia, numerous airplane crashes, and other notable and newsworthy as well as many more incidents that are not reported on the news, have all been attributed to human error. Millions of dollars in fines are levied against industry under the General Duty clause for ergonomic violations, all avoidable. These incidents and situations indicate a lack of consideration for the humans in the system during the design phase. As a consequence, all of these organizations had to retrofit, had to redesign and had to pay countless dollars for medical costs, Worker's Compensation, OSHA fines and in some instances had irrecoverable damage to their public image. Human Factors, otherwise known as Engineering Psychology or Ergonomics, found its origins in loss, loss of life, loss of confidence, loss of technology, loss of property. Without loss, there would be no need for human factors. No one really 'attends' to discomfort...nor are errors attended to that have little consequence. Often it is ultimately the compilation and cumulative effects of these smaller and often ignored occurrences that lead to the bigger and more tragic incidents that make the evening news. When an incident or accident occurs, they are frequently attributed to accomplished, credible, experienced people. In reality however, the crisis was inevitable when a series of events happen such that a human is caught in the whirlwind of accident sequence. The world as known is becoming smaller and more complex. Highly technical societies have been hard at work for several centuries rebuilding the world out of cold steel that is very far removed from ancient instincts and traditions and is becoming more remote to human users. The growth of technology is more than exponential, and is virtually beyond comprehension for many people. Humans, feeling comfortable with the familiar, fulfill their propensity to implement new

  5. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 6, March 2008

    International Nuclear Information System (INIS)

    The current issue presents information about the following activities: 1) International Conference on Illicit Nuclear Trafficking which took place in November 2007 in Edinburgh. The principal aim of the conference was to examine the threat and context of illicit nuclear trafficking of radioactive material, specifically, what is being done to combat such trafficking and where more needs to be done. The conference was also to consider how the obligations and commitments of the legally binding and non-binding international instruments could be and are being implemented by various States. 2) INSAG Message on Nuclear Safety Infrastructure in which the INSAG Chairman Richard Meserve addressed nuclear safety in the current context and various issues that warrant special attention. 3) approved for publication the Safety Requirements publication on Safety of Nuclear Fuel Cycle Facilities. 4) The Asian Nuclear Safety Network (ANSN)

  6. Rapidly design safety relief valve inlet piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Westman, M.A.

    1997-03-01

    Safety relief valves (SRVs) used to protect against overpressure require well-designed inlet piping for proper operation. The engineer`s job is to produce these designs from a thorough understanding of the inlet piping as a key component in the safety relief system and the correct application of the governing fluid dynamics principles. This article will present a technique for analysis and design using classical ideal-gas adiabatic fluid flow principles. Also, it will discuss the advantages of using the personal computer (PC) to quickly arrive at accurate designs. This work applies to SRVs in which relief flows are limited by sonic conditions at their nozzles.

  7. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  8. Passive Decay Heat Removal Strategy of Integrated Passive Safety System (IPSS) for SBO-combined Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The weak points of nuclear safety would be in outmoded nuclear power plants like the Fukushima reactors. One of the systems for the safety enhancement is integrated passive safety system (IPSS) proposed after the Fukushima accidents. It has the five functions for the prevention and mitigation of a severe accident. Passive decay heat removal (PDHR) strategy using IPSS is proposed for coping with SBO-combined accidents in this paper. The two systems for removing decay heat before core-melt were applied in the strategy. The accidents were simulated by MARS code. The reference reactor was OPR1000, specifically Ulchin-3 and 4. The accidents included loss-of-coolant accidents (LOCA) because the coolant losses could be occurred in the SBO condition. The examples were the stuck open of PSV, the abnormal open of SDV and the leakage of RCP seal water. Also, as LOCAs with the failure of active safety injection systems were considered, various LOCAs were simulated in SBO. Based on the thermal hydraulic analysis, the probabilistic safety analysis was carried out for the PDHR strategy to estimate the safety enhancement in terms of the variation of core damage frequency. AIMS-PSA developed by KAERI was used for calculating CDF of the plant. The IPSS was applied in the PDHR strategy which was developed in order to cope with the SBO-combined accidents. The estimation for initiating SGGI or PSIS was based on the pressure in RCS. The simulations for accidents showed that the decay heat could be removed for the safety duration time in SBO. The increase of safety duration time from the strategy provides the increase of time for the restoration of AC power.

  9. Prospective Safety Analysis and the Complex Aviation System

    Science.gov (United States)

    Smith, Brian E.

    2013-01-01

    Fatal accident rates in commercial passenger aviation are at historic lows yet have plateaued and are not showing evidence of further safety advances. Modern aircraft accidents reflect both historic causal factors and new unexpected "Black Swan" events. The ever-increasing complexity of the aviation system, along with its associated technology and organizational relationships, provides fertile ground for fresh problems. It is important to take a proactive approach to aviation safety by working to identify novel causation mechanisms for future aviation accidents before they happen. Progress has been made in using of historic data to identify the telltale signals preceding aviation accidents and incidents, using the large repositories of discrete and continuous data on aircraft and air traffic control performance and information reported by front-line personnel. Nevertheless, the aviation community is increasingly embracing predictive approaches to aviation safety. The "prospective workshop" early assessment tool described in this paper represents an approach toward this prospective mindset-one that attempts to identify the future vectors of aviation and asks the question: "What haven't we considered in our current safety assessments?" New causation mechanisms threatening aviation safety will arise in the future because new (or revised) systems and procedures will have to be used under future contextual conditions that have not been properly anticipated. Many simulation models exist for demonstrating the safety cases of new operational concepts and technologies. However the results from such models can only be as valid as the accuracy and completeness of assumptions made about the future context in which the new operational concepts and/or technologies will be immersed. Of course that future has not happened yet. What is needed is a reasonably high-confidence description of the future operational context, capturing critical contextual characteristics that modulate

  10. The DYLAM approach to systems safety and reliability assessment

    International Nuclear Information System (INIS)

    A survey of the principal features and applications of DYLAM (Dynamic Logical Analytical Methodology) is presented, whose basic principles can be summarized as follows: after a particular modelling of the component states, computerized heuristical procedures generate stochastic configurations of the system, whereas the resulting physical processes are simultaneously simulated to give account of the possible interactions between physics and states and, on the other hand, to search for system dangerous configurations and related probabilities. The association of probabilistic techniques for describing the states with physical equations for describing the process results in a very powerful tool for safety and reliability assessment of systems potentially subjected to dangerous incidental transients. A comprehensive picture of DYLAM capability for manifold applications can be obtained by the review of the study cases analyzed (LMFBR core accident, systems reliability assessment, accident simulation, man-machine interaction analysis, chemical reactors safety, etc.)

  11. Issues regarding Risk Effect Analysis of Digitalized Safety Systems and Main Risk Contributors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Gook; Jang, Seung-Cheol [Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Daejeon, 305-600 (Korea, Republic of)

    2008-07-01

    Risk factors of safety-critical digital systems affect overall plant risk. In order to assess this risk effect, a risk model of a digitalized safety system is required. This article aims to provide an overview of the issues when developing a risk model and demonstrate their effect on plant risk quantitatively. Research activities in Korea for addressing these various issues, such as the software failure probability and the fault coverage of self monitoring mechanism are also described. The main risk contributors related to the digitalized safety system were determined in a quantitative manner. Reactor protection system and engineered safety feature component control system designed as part of the Korean Nuclear I and C System project are used as example systems. Fault-tree models were developed to assess the failure probability of a system function which is designed to generate an automated signal for actuating both of the reactor trip and the complicated accident-mitigation actions. The developed fault trees were combined with a plant risk model to evaluate the effect of a digitalized system's failure on the plant risk. (authors)

  12. Application of life-cycle information for advancement in safety of nuclear fuel cycle facilities. Application of safety information to advanced safety management support system

    International Nuclear Information System (INIS)

    Risk management is major concern to nuclear energy reprocessing plants to improve plant and process reliability and ensure their safety. This is because we are required to predict potential risks before any accident or disaster occurs. The advancement of safety design and safety systems technologies showed large amount of useful safety-related knowledge that can be of great importance to plant operation to reduce operation risks and ensure safety. This research proposes safety knowledge modeling framework on the basis of ontology technologies to systematically construct plant knowledge model, which includes plant structure, operation, and the associated behaviors. In such plant knowledge model safety related information is defined and linked to the different elements of plant knowledge model. Ontology editor is employed to define the basic concepts and their inter-relations, which are used to capture and construct plant safety knowledge. In order to provide detailed safety knowledgebase, HAZOP results are analyzed and structured so that safety-related knowledge are identified and structured within the plant knowledgebase. The target safety knowledgebase includes: failures, deviations, causes, consequences, and fault propagation as mapped to plant knowledge. The proposed ontology-based safety framework is applied on case study nuclear plant to structure failures, causes, consequences, and fault propagation, which are used to support plant operation. (author)

  13. Reliability and safety analysis of redundant vehicle management computer system

    Institute of Scientific and Technical Information of China (English)

    Shi Jian; Meng Yixuan; Wang Shaoping; Bian Mengmeng; Yan Dungong

    2013-01-01

    Redundant techniques are widely adopted in vehicle management computer (VMC) to ensure that VMC has high reliability and safety. At the same time, it makes VMC have special char-acteristics, e.g., failure correlation, event simultaneity, and failure self-recovery. Accordingly, the reliability and safety analysis to redundant VMC system (RVMCS) becomes more difficult. Aimed at the difficulties in RVMCS reliability modeling, this paper adopts generalized stochastic Petri nets to establish the reliability and safety models of RVMCS. Then this paper analyzes RVMCS oper-ating states and potential threats to flight control system. It is verified by simulation that the reli-ability of VMC is not the product of hardware reliability and software reliability, and the interactions between hardware and software faults can reduce the real reliability of VMC obviously. Furthermore, the failure undetected states and false alarming states inevitably exist in RVMCS due to the influences of limited fault monitoring coverage and false alarming probability of fault mon-itoring devices (FMD). RVMCS operating in some failure undetected states will produce fatal threats to the safety of flight control system. RVMCS operating in some false alarming states will reduce utility of RVMCS obviously. The results abstracted in this paper can guide reliable VMC and efficient FMD designs. The methods adopted in this paper can also be used to analyze other intelligent systems’ reliability.

  14. Evaluation of food safety management systems in Serbian dairy industry

    OpenAIRE

    Igor Tomašević; Nada Šmigić; Ilija Đekić; Vlade Zarić; Nikola Tomić; Jelena Miocinovic; Andreja Rajković

    2016-01-01

    This paper reports incentives, costs, difficulties and benefits of food safety management systems implementation in the Serbian dairy industry. The survey involved 27 food business operators with the national milk and dairy market share of 65 %. Almost two thirds of the assessed dairy producers (70.4 %) claimed that they had a fully operational and certified HACCP system in place, while 29.6 % implemented HACCP, but had no third party certification. ISO 22000 was implemented and certified in ...

  15. Using fuzzy self-organising maps for safety critical systems

    International Nuclear Information System (INIS)

    This paper defines a type of constrained artificial neural network (ANN) that enables analytical certification arguments whilst retaining valuable performance characteristics. Previous work has defined a safety lifecycle for ANNs without detailing a specific neural model. Building on this previous work, the underpinning of the devised model is based upon an existing neuro-fuzzy system called the fuzzy self-organising map (FSOM). The FSOM is type of 'hybrid' ANN which allows behaviour to be described qualitatively and quantitatively using meaningful expressions. Safety of the FSOM is argued through adherence to safety requirements-derived from hazard analysis and expressed using safety constraints. The approach enables the construction of compelling (product-based) arguments for mitigation of potential failure modes associated with the FSOM. The constrained FSOM has been termed a 'safety critical artificial neural network' (SCANN). The SCANN can be used for non-linear function approximation and allows certified learning and generalisation for high criticality roles. A discussion of benefits for real-world applications is also presented

  16. The Danish patient safety experience: the Act on Patient Safety in the Danish health care system

    OpenAIRE

    Mette Lundgaard; Louise Raboel; Elisabeth Broegger Jensen; Jacob Anhoej; Beth Lilja Pedersen; Danish Society for Patient Safety

    2005-01-01

    This paper describes the process that lead to the passing of the Act for Patient Safety in the Danish health care system, the contents of the act and how the act is used in the Danish health care system.

    The act obligates frontline health care personnel to report adverse events, hospital owners to act on the reports and the National Board of Health to communicate the learning nationally.

    The act protects health care providers from sanctions as a re...

  17. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    . In this respect there is a European and International mechanism of handling safety- and risk-related matters. So, the Organisation for Economic Co-operation and Development's (OECD) core objective on risk management is to support Member countries' efforts to develop national policies and actions, and, where appropriate, to develop and implement international risk management measures. In support of this objective, the OECD Risk Management Programme focuses on two areas: (1) developing methods and technical tools that can be used by OECD and Member countries to enhance their current risk management programmes; and (2) identifying specific chemical exposures of concern in Member countries and evaluating possible risk management opportunities. The current paper highlights the EU legislation on major accident hazards related to the chemical industry, differences in the national approaches to risk analyses in the process industry and European-scale activity in improving the understanding of the sources of uncertainty in risk assessments.

  18. Toward the modelling of safety violations in healthcare systems.

    Science.gov (United States)

    Catchpole, Ken

    2013-09-01

    When frontline staff do not adhere to policies, protocols, or checklists, managers often regard these violations as indicating poor practice or even negligence. More often than not, however, these policy and protocol violations reflect the efforts of well intentioned professionals to carry out their work efficiently in the face of systems poorly designed to meet the diverse demands of patient care. Thus, non-compliance with institutional policies and protocols often signals a systems problem, rather than a people problem, and can be influenced among other things by training, competing goals, context, process, location, case complexity, individual beliefs, the direct or indirect influence of others, job pressure, flexibility, rule definition, and clinician-centred design. Three candidates are considered for developing a model of safety behaviour and decision making. The dynamic safety model helps to understand the relationship between systems designs and human performance. The theory of planned behaviour suggests that intention is a function of attitudes, social norms and perceived behavioural control. The naturalistic decision making paradigm posits that decisions are based on a wider view of multiple patients, expertise, systems complexity, behavioural intention, individual beliefs and current understanding of the system. Understanding and predicting behavioural safety decisions could help us to encourage compliance to current processes and to design better interventions. PMID:23580631

  19. Toward the modelling of safety violations in healthcare systems.

    Science.gov (United States)

    Catchpole, Ken

    2013-09-01

    When frontline staff do not adhere to policies, protocols, or checklists, managers often regard these violations as indicating poor practice or even negligence. More often than not, however, these policy and protocol violations reflect the efforts of well intentioned professionals to carry out their work efficiently in the face of systems poorly designed to meet the diverse demands of patient care. Thus, non-compliance with institutional policies and protocols often signals a systems problem, rather than a people problem, and can be influenced among other things by training, competing goals, context, process, location, case complexity, individual beliefs, the direct or indirect influence of others, job pressure, flexibility, rule definition, and clinician-centred design. Three candidates are considered for developing a model of safety behaviour and decision making. The dynamic safety model helps to understand the relationship between systems designs and human performance. The theory of planned behaviour suggests that intention is a function of attitudes, social norms and perceived behavioural control. The naturalistic decision making paradigm posits that decisions are based on a wider view of multiple patients, expertise, systems complexity, behavioural intention, individual beliefs and current understanding of the system. Understanding and predicting behavioural safety decisions could help us to encourage compliance to current processes and to design better interventions.

  20. Analysis of developed transition road safety barrier systems.

    Science.gov (United States)

    Soltani, Mehrtash; Moghaddam, Taher Baghaee; Karim, Mohamed Rehan; Sulong, N H Ramli

    2013-10-01

    Road safety barriers protect vehicles from roadside hazards by redirecting errant vehicles in a safe manner as well as providing high levels of safety during and after impact. This paper focused on transition safety barrier systems which were located at the point of attachment between a bridge and roadside barriers. The aim of this study was to provide an overview of the behavior of transition systems located at upstream bridge rail with different designs and performance levels. Design factors such as occupant risk and vehicle trajectory for different systems were collected and compared. To achieve this aim a comprehensive database was developed using previous studies. The comparison showed that Test 3-21, which is conducted by impacting a pickup truck with speed of 100 km/h and angle of 25° to transition system, was the most severe test. Occupant impact velocity and ridedown acceleration for heavy vehicles were lower than the amounts for passenger cars and pickup trucks, and in most cases higher occupant lateral impact ridedown acceleration was observed on vehicles subjected to higher levels of damage. The best transition system was selected to give optimum performance which reduced occupant risk factors using the similar crashes in accordance with Test 3-21. PMID:23820073

  1. Safety systems and access control in the National Ignition Facility.

    Science.gov (United States)

    Reed, Robert K; Bell, Jayce C

    2013-06-01

    The National Ignition Facility (NIF) is the world's largest and most energetic laser system. The facility has the potential to generate ionizing radiation due to the interaction between the laser beams and target material, with neutrons and gamma rays being produced during deuterium-tritium fusion reactions. To perform these experiments, several types of hazards must be mitigated and controlled to ensure personnel safety. NIF uses a real-time safety system to monitor and mitigate the hazards presented by the facility. The NIF facility Safety Interlock System (SIS) monitors for oxygen deficiency and controls access to the facility preventing exposure to laser light and radiation from the Radiation Generating Devices. It also interfaces to radiation monitoring and other radiological monitoring and alarm systems. The SIS controls permissives to the hazard-generating equipment and annunciates hazard levels in the facility. To do this reliably and safely, the SIS has been designed as a fail-safe system with a proven performance record now spanning over 10 y. This paper discusses the SIS, its design, implementation, operator interfaces, validation/verification, and the hazard mitigation approaches employed in the NIF. A brief discussion of the Failure Modes and Effect Analysis supporting the SIS will also be presented. The paper ends with a general discussion of SIS do's and don'ts and common design flaws that should be avoided in SIS design. PMID:23629061

  2. Activities of the US-Japan Safety Monitor Joint Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Richard L. Savercool; Lee C. Cadwallader

    2004-09-01

    This paper documents the activities of the US-Japan exchange in the area of personnel safety at magnetic and laser fusion experiments. A near-miss event with a visiting scientist to the US in 1992 was the impetus for forming the Joint Working Group on Fusion Safety. This exchnge has been under way for over ten years and has provided many safety insights for both US and Japanese facility personnel at national institutes and at universities. The background and activities of the Joint Working Group are described, including the facilities that have been visited for safety walkthroughs, the participants from both countries, and the main safety issues examined during visits. Based on these visits, some operational safety ideas to enhance experiment safety are given. The near-term future plans of the Safety Monitor Joint Working group are also discussed.

  3. Safety-related instrumentation and control systems for nuclear power plants

    International Nuclear Information System (INIS)

    This Safety Guide deals mainly with design requirements for those I and C systems that are important to safety but are not safety systems. The Guide is intended to expand paragraphs 3.1, 3.2 and 3.3 of the Code of Practice on Design for Safety of Nuclear Power Plants (IAEA Safety Series No.50-C-D) in the area of I and C systems important to safety and refers to them as safety-related I and C systems. It also gives guidance and enumerates requirements for multiplexing and the use of the digital computers employed in this area

  4. On the safety of aircraft systems: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

    1997-05-14

    An airplane is a highly engineered system incorporating control- and feedback-loops which often, and realistically, are non-linear because the equations describing such feedback contain products of state variables, trigonometric or square-root functions, or other types of non-linear terms. The feedback provided by the pilot (crew) of the airplane also is typically non-linear because it has the same mathematical characteristics. An airplane is designed with systems to prevent and mitigate undesired events. If an undesired triggering event occurs, an accident may process in different ways depending on the effectiveness of such systems. In addition, the progression of some accidents requires that the operating crew take corrective action(s), which may modify the configuration of some systems. The safety assessment of an aircraft system typically is carried out using ARP (Aerospace Recommended Practice) 4761 (SAE, 1995) methods, such as Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA). Such methods may be called static because they model an aircraft system on its nominal configuration during a mission time, but they do not incorporate the action(s) taken by the operating crew, nor the dynamic behavior (non-linearities) of the system (airplane) as a function of time. Probabilistic Safety Assessment (PSA), also known as Probabilistic Risk Assessment (PRA), has been applied to highly engineered systems, such as aircraft and nuclear power plants. PSA encompasses a wide variety of methods, including event tree analysis (ETA), FTA, and common-cause analysis, among others. PSA should not be confused with ARP 4761`s proposed PSSA (Preliminary System Safety Assessment); as its name implies, PSSA is a preliminary assessment at the system level consisting of FTA and FMEA.

  5. Innovation of Supervision System for Quality and Safety of Edible Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    Xingxing; MEI; Zhongchao; FENG

    2014-01-01

    This paper elaborated multidimensional characteristics of quality and safety of agricultural products,introduced current situation of quality and safety supervision of edible agricultural products in China,analyzed existing problems of quality and safety supervision system and corresponding reasons,and finally came up with recommendations for innovation of supervision system for quality and safety of agricultural products.

  6. 77 FR 69899 - Public Conference on Geographic Information Systems (GIS) in Transportation Safety

    Science.gov (United States)

    2012-11-21

    ... SAFETY BOARD Public Conference on Geographic Information Systems (GIS) in Transportation Safety The... Systems (GIS) in transportation safety on December 4-5, 2012. GIS is a rapidly expanding group of... meeting will bring researchers and practitioners in transportation safety and GIS together to discuss...

  7. European Workshop Industrical Computer Science Systems approach to design for safety

    Science.gov (United States)

    Zalewski, Janusz

    1992-01-01

    This paper presents guidelines on designing systems for safety, developed by the Technical Committee 7 on Reliability and Safety of the European Workshop on Industrial Computer Systems. The focus is on complementing the traditional development process by adding the following four steps: (1) overall safety analysis; (2) analysis of the functional specifications; (3) designing for safety; (4) validation of design. Quantitative assessment of safety is possible by means of a modular questionnaire covering various aspects of the major stages of system development.

  8. ADVANCED DRIVER SAFETY SUPPORT SYSTEMS FOR THE URBAN TYPE VEHICLE

    Directory of Open Access Journals (Sweden)

    Katarzyna JEZIERSKA-KRUPA

    2015-12-01

    Full Text Available Smart Power Team is currently working on the design of an urban electric vehicle designed to compete in the Shell Eco-marathon. One important aspect of this type of vehicle characteristics is it safety. The project of advanced driver assistance systems has included some proposals of such systems and the concept of their execution. The first concept, BLIS (Blind Spot Information System, is to build a system of informing a driver about vehicles appearing in the blind spot. The system constitutes a second concept, CDIS (Collision Detection and Information System, and it is designed to detect a vehicle collision and inform the team. Further systems are: DPMS (Dew Point Measurement System - a system which does not allow a situation, where the windows are fogged, OHRS (Overtaking Horn Reminder System - a system which checks overtaking and MSS (main supervision system - a supervisory system. These concepts are based on the assumption of the use of laser sensors, photoelectric, humidity and temperature, and other commercially available systems. The article presents a detailed description of driver assistance systems and virtual prototyping methodology for these systems, as well as the numerical results of the verification of one of the systems.

  9. Safety analyses of the electrical systems on VVER NPP

    International Nuclear Information System (INIS)

    Energoprojekt Praha has been the main entity responsible for the section on 'Electrical Systems' in the safety reports of the Temelin, Dukovany and Mochovce nuclear power plants. The section comprises 2 main chapters, viz. Offsite Power System (issues of electrical energy production in main generators and the link to the offsite transmission grid) and Onsite Power Systems (AC and DC auxiliary system, both normal and safety related). In the chapter on the off-site system, attention is paid to the analysis of transmission capacity of the 400 kV lines, analysis of transient stability, multiple fault analyses, and probabilistic analyses of the grid and NPP power system reliability. In the chapter on the on-site system, attention is paid to the power balances of the electrical sources and switchboards set for various operational and accident modes, checks of loading and function of service and backup sources, short circuit current calculations, analyses of electrical protections, and analyses of the function and sizing of emergency sources (DG sets and UPS systems). (P.A.)

  10. Reliability and safety analysis for systems of fusion device

    Energy Technology Data Exchange (ETDEWEB)

    Alzbutas, Robertas, E-mail: robertas.alzbutas@lei.lt; Voronov, Roman

    2015-05-15

    Highlights: • Reliability is very important from fusion devices efficiency perspective. • Rich experience of probabilistic safety analysis exists in nuclear industry. • Reliability and safety analysis was applied for systems of fusion device. • This enables to identify and prioritize availability improvement measures. • Recommendations are based on cost effectiveness for risk decrease options. - Abstract: Fusion energy or thermonuclear power is a promising, literally endless source of energy. Development of fusion power is still under investigation and experimental phase, and a number of fusion devices are under construction in Europe. Since fusion energy is innovative and fusion devices contain unique and expensive equipment, an issue of their reliability is very important from their efficiency perspective. A Reliability, Availability, Maintainability, Inspectability (RAMI) analysis is being performed or is going to be performed in the nearest future for such fusion devices as ITER and DEMO in order to ensure reliable and efficient operation for experiments (e.g., in ITER) or for energy production purposes (e.g., in DEMO). On the other hand, rich experience of the reliability and Probabilistic Safety Analysis (PSA) exists in nuclear industry for fission power plants and other nuclear installations. In this paper, the Wendelstein 7-X (W7-X) device is mainly considered. This stellarator device is in commissioning stage in the Max-Planck-Institut für Plasmaphysik, Greifswald, Germany (IPP). In the frame of cooperation between the IPP and the Lithuanian Energy Institute (LEI) under the European Fusion Development Agreement a pilot project of a reliability analysis of the W7-X systems was performed with a purpose to adopt Nuclear Power Plant (NPP) PSA experience for fusion device systems. During the project reliability and safety (risk) analysis of a Divertor Target Cooling Circuit, which is an important system for permanent and reliable operation of in

  11. Application of causality diagram in system safety analysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Causality Diagram (CD) is a new graphical knowledge representation based on probability theory. The application of this methodology in the safety analysis of the gas explosion in collieries was discussed in this paper, and the Minimal Cut Set, the Minimal Path Set and the Importance were introduced to develop the methodology. These concepts are employed to analyze the influence each event has on the top event ( the gas explosion, so as to find out about the defects of the system and accordingly help to work out the emphasis of the precautionary work and some preventive measures as well. The results of the safety analysis are in accordance with the practical requirements; therefore the preventive measures are certain to work effectively. In brief, according to the research CD is so effective in the safety analysis and the safety assessment that it can be a qualitative and quantitative method to predict the accident as well as offer some effective measures for the investigation, the prevention and the control of the accident.

  12. Editorial: emerging issues in sociotechnical systems thinking and workplace safety

    OpenAIRE

    Noy, Y. Ian; Hettinger, Lawrence J.; Dainoff, Marvin J.; Carayon, Pascale; Leveson, Nancy G.; Robertson, Michelle M.; Courtney, Theodore K.

    2015-01-01

    The burden of on-the-job accidents and fatalities and the harm of associated human suffering continue to present an important challenge for safety researchers and practitioners. While significant improvements have been achieved in recent decades, the workplace accident rate remains unacceptably high. This has spurred interest in the development of novel research approaches, with particular interest in the systemic influences of social/organisational and technological factors. In response, the...

  13. Online Food Safety Information System for Nuclear or Radiological Emergencies

    International Nuclear Information System (INIS)

    Over the last year, the protocol with regards to data management and visualization requirements for food safety decision-making, developed under CRP D1.50.15 on Response to Nuclear Emergency Affecting Food and Agriculture, was further implemented. The development team moved away from early series of disconnected prototypes to a more advanced Information System integrating both data management and visualization components outlined in the agreed protocol

  14. Automotive Security and Safety System Using ARM Microcontroller

    OpenAIRE

    Suhas S.Kibile*1; Wasim Ustad2; B.T.Salokhe3

    2014-01-01

    In this paper we proposed a system which can improve the safety and security in vehicle. Automobile industry and automobile market is in a high speed development state for several years. Automobile's appearance impact and changes people's life, it's becoming the progressive symbol of modern society. However, as the sharp rise of the automobile quantity, vehicle thief case is increasing. Car theft has been a persisting problem around the world. Due to the insecure environment t...

  15. Safety analysis report for packaging (onsite) sample pig transport system

    International Nuclear Information System (INIS)

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document

  16. Safety analysis report for packaging (onsite) sample pig transport system

    Energy Technology Data Exchange (ETDEWEB)

    MCCOY, J.C.

    1999-03-16

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  17. 75 FR 13807 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-03-23

    ... Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477) or visit http... published in the Federal Register on July 2, 2009 (74 FR 31675) and comments were submitted to Docket No... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection...

  18. 77 FR 46155 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-08-02

    ... information collection was published in the Federal Register on May 9, 2012, (77 FR 27279) under Docket No... April 11, 2000, (65 FR 19477) or visit http://www.regulations.gov before submitting any such comments... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection...

  19. 76 FR 70217 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2011-11-10

    ... ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements.'' That final rule... 72878), titled ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements... the Federal Register of its intent to create a national registry of pipeline and liquefied natural...

  20. Application of REPAS Methodology to Assess the Reliability of Passive Safety Systems

    Directory of Open Access Journals (Sweden)

    Franco Pierro

    2009-01-01

    Full Text Available The paper deals with the presentation of the Reliability Evaluation of Passive Safety System (REPAS methodology developed by University of Pisa. The general objective of the REPAS is to characterize in an analytical way the performance of a passive system in order to increase the confidence toward its operation and to compare the performances of active and passive systems and the performances of different passive systems. The REPAS can be used in the design of the passive safety systems to assess their goodness and to optimize their costs. It may also provide numerical values that can be used in more complex safety assessment studies and it can be seen as a support to Probabilistic Safety Analysis studies. With regard to this, some examples in the application of the methodology are reported in the paper. A best-estimate thermal-hydraulic code, RELAP5, has been used to support the analyses and to model the selected systems. Probability distributions have been assigned to the uncertain input parameters through engineering judgment. Monte Carlo method has been used to propagate uncertainties and Wilks' formula has been taken into account to select sample size. Failure criterions are defined in terms of nonfulfillment of the defined design targets.

  1. Idaho National Laboratory Integrated Safety Management System FY 2012 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Farren Hunt

    2012-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for fiscal year (FY) 2013. Results of the FY 2012 annual effectiveness review demonstrated that the INL’s ISMS program was significantly strengthened. Actions implemented by the INL demonstrate that the overall Integrated Safety Management System is sound and ensures safe and successful performance of work while protecting workers, the public, and environment. This report also provides several opportunities for improvement that will help further strengthen the ISM Program and the pursuit of safety excellence. Demonstrated leadership and commitment, continued surveillance, and dedicated resources have been instrumental in maturing a sound ISMS program. Based upon interviews with personnel, reviews of assurance activities, and analysis of ISMS process implementation, this effectiveness review concludes that ISM is institutionalized and is “Effective”.

  2. Virtual moire interference approach for an industrial safety monitoring system

    Science.gov (United States)

    Hamza, Rida; Cofer, Darren

    2001-10-01

    The objective of this work was to determine the feasibility and reliability of using the moire interference phenomenon as a means to detect human intrusion within a monitored zone. We applied moire interference principle for use in low-cost, safety-critical industrial monitoring applications. Moire interference is usually applied in the context of industrial applications for shape measurements. In this framework, we show how we can apply this concept to build a new safety product that detects human intrusion into dangerous areas on the factory floor. We demonstrate that a solution based on moire interference offers the potential for detection true 3D objects while preventing false alarms due to lighting variations or shadows and simplifying the image processing software. In addition, our prosed approach is advantageous in the product certification process because it is an active detection method.

  3. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1 of 2: Technical standard

    International Nuclear Information System (INIS)

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities

  4. Safety critical systems handbook a straightforward guide to functional safety : IEC 61508 (2010 edition) and related standards

    CERN Document Server

    Smith, David J

    2010-01-01

    Electrical, electronic and programmable electronic systems increasingly carry out safety functions to guard workers and the public against injury or death and the environment against pollution. The international functional safety standard IEC 61508 was revised in 2010, and this is the first comprehensive guide available to the revised standard. As functional safety is applicable to many industries, this book will have a wide readership beyond the chemical and process sector, including oil and gas, power generation, nuclear, aircraft, and automotive industries, plus project, instrumentation, design, and control engineers. * The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards* Helps readers understand the process required to apply safety critical systems standards* Real-world approach helps users to interpret the standard, with case studies and best practice design examples...

  5. Safety system designs and characteristics of the 4S

    International Nuclear Information System (INIS)

    The 4S (Super-Safe, Small and Simple) is a small-sized, sodium-cooled fast reactor with a reflector-controlled core. The 4S design includes features such as 'No on-site refueling', 'Passive safety' and 'Low maintenance requirement'. In this paper the safety design and safety features are described. The 4S has two redundant and diverse shutdown systems. One is an annular reflector and the other is a central shutdown rod. The Residual Heat Removal System (RHRS) consists of IRACS (Intermediate Reactor Auxiliary Cooling System) and RVACS (Reactor Vessel Auxiliary Cooling System). The IRACS removes decay heat by using an air-cooler in the intermediate heat transport system, and the RVACS also removes decay heat using natural circulation of air around the reactor guard vessel. The IRACS and the RVACS are diverse systems and either can remove 100% of the core decay heat. The reactor protection system parameters monitored include neutron flux, liquid sodium level in the reactor vessel, primary outlet temperature of the intermediate heat exchanger, and the supply voltage/current of the primary EM pumps. When one or more abnormal signals are detected by the sensors for the above parameters, the scram systems are initiated. The containment system consists of a guard vessel and a top dome that surround the reactor vessel, shielding plug, and above plug equipments. Measures to exclude the previously identified accident initiators have been applied to the 4S design. The reflector drive mechanism used has mechanical stops to restrict the potential reactivity insertion during startup. Also, the reflector drive mechanism to compensate burnup reactivity swing during steady state moves at very low speed for the same reason. The electromagnetic pump has a flow coast down power supply system to mitigate transients when the main power supply is lost. The double wall steam generator includes leak detection systems for both inner and outer tube failures to prevent a sodium-water reaction

  6. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    International Nuclear Information System (INIS)

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear and Industrial Safety Agency (NISA: which prepares necessary regulations for Spent Fuel Interim Storage Facilities). In 2010 fiscal year, JNES completed technical evaluation of the standard (prepared by Atomic Energy Society of Japan) used for the storage facility (dual purpose cask system) being constructed in Mutsu-City and R and D for UT test of welded canister lids which is required for concrete cask storage facilities. And also, JNES is preparing dynamic test of spent fuel to examine the integrity of spent fuel at cask drop accidents and PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. The results of these tests will be reported in 2011 and 2012 fiscal year. (author)

  7. Activities on safety culture study. Study status in public and private sectors

    International Nuclear Information System (INIS)

    Around after entering in the 21st century, organizational accidents had occurred in Japan at various industries including nuclear industry, which were caused directly by unsafe action, human error and illegal conduct of personnel but there were problems in safety culture of organization such as slow retreat of safety system stimulated by management, schedule control and procedure management becoming a dead letter, lack of safety education, and workplace climate of schedule priority. This article referred to organizational factors common to many severe accidents and introduced safety culture study in public and private sectors to overcome those factors. Safety Culture Evaluation Support Tool (SCEST) was developed for self-evaluation of safety culture of organization as well as Organizational Reliability model (OR model) for analysis of initiation and propagation process of risk event. Safety diagnosis system and feedback type risk assessment system for promoting safe organizational climate and culture were also developed. (T. Tanaka)

  8. Safety Confirmation System for Elderly Single-person Household with Sensor Systems

    Science.gov (United States)

    Kondo, Shuhei

    In Japan, as the number of elderly persons increases, the demand for confirming the safety of these persons is also increasing. In order to confirm the safety of these elderly persons, various safety confirmation systems have been developed. One such example is a safety confirmation system which was developed to monitor the usage of an electric pot. In light of this, we developed a service system to confirm the safety of elderly persons by monitoring electric power consumption. This system cancels out the differences in electricity usage of each household from the differences in consumed power, making it unnecessary to conduct individual tuning. However, even this system cannot detect abnormalities in all cases. For example, our system could not detect abnormal states of elderly persons during times such as when they are bathing and sleeping. To overcome this we developed a new sensor system which is capable of monitoring situations, including when bathing, that until now have not been able to be successfully monitored. In this new system, we have also included a method to reduce quantity of detection data transmission by sorting information, depending on the degree of the emergency. The use of this new sensor system enabled us to pick up any blind spots that had not been monitored in safety confirmation during the monitoring of electric power consumption, and reduce the quantity of detection data transmission.

  9. Requirements for a safety parameter display system in shutdown conditions

    International Nuclear Information System (INIS)

    This working report describes user requirements related to the monitoring of safety-related functions and process parameters during shutdown states of NPPs. These low power operating modes include, for example, warm and cold shutdowns, refuelling and maintenance, as well as related state transitions such as starting-up and shutting-down. The discussion is limited to PWR and BWR designs. The focus is on end users' needs, i.e. the information and functions needed for monitoring and management of plant systems during shutdown conditions. The functions of an integrated plant information and control system have been outlined. Implementation issues have been discussed on a very general level only (author) (ml)

  10. Open Issues Associated with Passive Safety Systems Reliability Assessment

    International Nuclear Information System (INIS)

    The efforts conducted so far to deal with and evaluate the reliability of passive safety systems (as the thermal-hydraulic passive systems), being implemented in advanced water cooled reactor designs, has aroused an amount of open issues. They should be addressed and conveniently worked out, since it is the major goal of the international community (e.g IAEA) to strive to harmonize the different approaches and to reach a common consensus, in order to add credit to the underlying models and the eventual outcoming reliability figures. The main open points are presented and discussed and a viable path towards the implementation of the research efforts is delineated as well. (author)

  11. Reliability prediction for the vehicles equipped with advanced driver assistance systems (ADAS and passive safety systems (PSS

    Directory of Open Access Journals (Sweden)

    Balbir S. Dhillon

    2012-10-01

    Full Text Available The human error has been reported as a major root cause in road accidents in today’s world. The human as a driver in road vehicles composed of human, mechanical and electrical components is constantly exposed to changing surroundings (e.g., road conditions, environmentwhich deteriorate the driver’s capacities leading to a potential accident. The auto industries and transportation authorities have realized that similar to other complex and safety sensitive transportation systems, the road vehicles need to rely on both advanced technologies (i.e., Advanced Driver Assistance Systems (ADAS and Passive Safety Systems (PSS (e.g.,, seatbelts, airbags in order to mitigate the risk of accidents and casualties. In this study, the advantages and disadvantages of ADAS as active safety systems as well as passive safety systems in road vehicles have been discussed. Also, this study proposes models that analyze the interactions between human as a driver and ADAS Warning and Crash Avoidance Systems and PSS in the design of vehicles. Thereafter, the mathematical models have been developed to make reliability prediction at any given time on the road transportation for vehicles equipped with ADAS and PSS. Finally, the implications of this study in the improvement of vehicle designs and prevention of casualties are discussed.

  12. Safety evaluation studies: Sissiboo River Hydro System, Nova Scotia

    International Nuclear Information System (INIS)

    Safety evaluation studies of hydraulic structures are becoming an integral part of the operation and maintenance programs for dam owners in Canada. The Nova Scotia Power Corporation has commenced a program to conduct dam safety evaluations of all their dams of significant size. The study includes the evaluation of the probable maximum flood (PMF) and its basinwide effects. A description is presented of the Sissiboo River hydroelectric system, evaluation of PMF and basinwide flood studies including probable maximum precipitation and a basin simulation model, selection of the inflow design flood, and site-specific evaluations including site inspection, geotechnical investigation, and stability analysis. Recommended remedial works for Sissiboo developments are presented. 14 refs., 2 figs., 4 tabs

  13. Safety inspections in construction sites: A systems thinking perspective.

    Science.gov (United States)

    Saurin, Tarcisio Abreu

    2016-08-01

    Although safety inspections carried out by government officers are important for the prevention of accidents, there is little in-depth knowledge on their outcomes and processes leading to these. This research deals with this gap by using systems thinking (ST) as a lens for obtaining insights into safety inspections in construction sites. Thirteen case studies of sites with prohibited works were carried out, discussing how four attributes of ST were used in the inspections. The studies were undertaken over 6 years, and sources of evidence involved participant observation, direct observations, analysis of documents and interviews. Two complementary ways for obtaining insights into inspections, based on ST, were identified: (i) the design of the study itself needs to be in line with ST; and (ii) data collection and analysis should focus on the agents involved in the inspections, the interactions between agents, the constraints and opportunities faced by agents, the outcomes of interactions, and the recommendations for influencing interactions. PMID:26554499

  14. The EH safety representative information system on the safety performance measurement system is where you will find... Word processing and helps with a V-PLUS

    Science.gov (United States)

    Loo, P. I.

    What are some of the current environmental, safety, and health problems being found at different DOE facilities? What are some of latest software products available for HP-3000 on-line application? How can I meet my customer's ever-changing requirements? These and many other questions will be focused on within this review of the Environment, Safety, and Health (EH) Safety Representative Information System (SRIS) located on the Safety Performance Measurement System (SPMS). SPMS is a collection of automated environmental, safety, and health information modules for references by DOE and DOE contractors. SPMS is operated by the Management Information Systems (MIS) Unit of the System Safety Development Center at EG&G Idaho, Inc. In the following sections an overview of SRIS, an on-line system designed for the HP-3000, will be presented along with an analysis of design methods and software packages used to develop the system.

  15. Biologic Therapy in Inflammatory Immunomediated Systemic Diseases: Safety Profile.

    Science.gov (United States)

    Moroncini, Gianluca; Albani, Lisa; Nobili, Lorenzo; Gabrielli, Armando

    2016-01-01

    The discovery of some key molecular mechanisms underlying the dysregulation of the immune system responsible for inflammatory systemic diseases as severe as Systemic Lupus Erythematosus (SLE), Systemic Sclerosis (SSc), and Systemic Vasculitides, led to the development and subsequent introduction into clinical practice of biological drugs which are significantly improving the management of such complex disorders. This novel molecular targeted therapeutics represents in fact a valid alternative or complementary treatment to conventional immunosuppressive strategies, characterized by broad, unspecific actions and severe adverse effects. Main advantages of the use of biologic drugs reside in their steroid-sparing effect and in the ability of inducing remission of refractory disease states or curing specific organ involvements. Aim of this article is to review and briefly discuss the scientific evidence supporting the use of biologics in these diseases, with a particular emphasis on their efficacy and safety profile compared to the canonical drugs.

  16. Optimization of a solar hydrogen storage system: safety considerations

    International Nuclear Information System (INIS)

    Hydrogen has been extensively used in many industrial applications for more than 100 years, including production, storage, transport, delivery and final use. Nevertheless, the goal of the hydrogen energy system implies the use of hydrogen as an energy carrier in a more wide scale and for a public not familiarized with hydrogen technologies and properties. The road to the hydrogen economy pass by the development of safe practices in the production, storage, distribution, and use of hydrogen. These issues are essential for hydrogen insurability. We have to bear in mind that a catastrophic failure in any hydrogen project could damage the insurance public perception of hydrogen technologies at this early step of development of hydrogen infrastructures. Safety is a key issue for the development of hydrogen economy, and a great international effort is being done by different stakeholders for the development of suitable codes and standards concerning safety for hydrogen technologies. Additionally to codes and standards, different studies have been done regarding safety aspects of particular hydrogen energy projects during the last years. Most of them have been focused on hydrogen production and storage in large facilities, transport, delivery in hydrogen refuelling stations, and utilization, mainly on fuel cells for mobile and stationary applications. In comparison, safety considerations for hydrogen storage in small or medium scale facilities, as usual in hydrogen production plants from renewable energies, have received relatively less attention. After a brief introduction to risk assessment for hydrogen facilities, this paper reports an example of risk assessment of a small solar hydrogen storage system, applied to the INTA Solar Hydrogen Production and Storage facility as particular case, and considers a top level Preliminary Failure Modes and Effects Analysis (FMEA) for the identification of hazard associated to the specific characteristics of the facility. (authors)

  17. Rosatom's Crisis Response Centre within the national nuclear safety system

    International Nuclear Information System (INIS)

    The Rosatom Corporation includes a number of subsidiaries associated with nuclear energy use as well as with the military, scientific, technological, nuclear and radiation safety management aspects. The Rosatom Corporation has a well-established and efficient industry-wide system of emergency prevention and response, whose purpose is to ensure safe functioning of the nuclear industry, protection of personnel, the public and nature from potential dangers; it is also a functional subsystem of the unified national system of emergency prevention and response. Overall management of the system is performed by Director General of the Rosatom Corporation, overall methodological management - by the Department of Licensing, Nuclear and Radiation Safety; everyday management of the emergency prevention and response system, round-the-clock monitoring and informational support - by the Rosatom Crisis and Response Centre (CRC). CRC acts as the national focal point for warning and communication in Russia, which provides continuous round-the-clock preparedness to cooperate with the IAEA's Incident and Emergency Centre using the formats of the ENATOM international emergency response system, similar national crisis response centres abroad

  18. Research on coal mine safety production management decision system based on VB

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhong-ling; FENG Xi-wen; FANG Heng-fu; YUAN Qing-he

    2007-01-01

    Based on safety management appraisal theory, the decision system was divided into 5 function menu module, including system control module, mining coal and the tunneling working surface security evaluation module, the entire ore safety production condition appraisal module, the safety management level appraisal module of main production work area, the withdrawal system module and so on. The system operates through the constitutive procedure, outputs the main operation results by graph and form,and realizes the main function of safety evaluation.

  19. Contractor’s Awareness on Occupational Safety and Health (OSH Management Systems in Construction Industry

    Directory of Open Access Journals (Sweden)

    Mohd Kamar I.F.

    2014-01-01

    Full Text Available Occupational Health and Safety Management Systems is part of the overall management system that facilitates the management of the OS&H risks associated with the business of the organization. This includes the organizational structure, planning activities, responsibilities, practices, procedures, processes and resources for developing, implementing, achieving, reviewing and maintaining the organization’s OS&H policy. The purpose of this research is to determine the level of awareness of contractors on OSH management systems. A total of 34 numbers of class A contractors in Kelantan registered with Pusat Khidmat Kontraktor (PKK were randomly selected. Data was collected using self-administered questionnaire. The findings indicate that most of the Class A Contractor in Kelantan aware that the occupational safety and health management system are important and should be practiced to achieve zero accident and death on site

  20. International cooperation on technical support for regulation of safety-related activities on the transformation of the destroyed Chernobyl Nuclear Power Plant Power Unit into an ecologically safe system

    International Nuclear Information System (INIS)

    The world's most severe nuclear accident destroyed the fourth unit at the Chernobyl nuclear power plant in 1986. In the six months following the accident, a localizing building was erected over the unit to contain the nuclear materials and provide support services for managing the destroyed reactor. Since 1997, an international project which includes both urgent measures for stabilization and safety upgrading as well as long-term measures for transforming the facility into an ecologically safe system has been under way. This paper discusses an important aspect of this project which has been the cooperation amongst the technical support organizations of the Ukrainian regulatory authorities and the technical support from international organizations. (author)

  1. International Nuclear Safety Experts Conclude IAEA Peer Review of Korea's Regulatory System

    International Nuclear Information System (INIS)

    , including: The Korean government, through the activities of MEST and KINS, has implemented a technically capable and effective nuclear safety regulatory program. KINS is an entrusted governmental corporation that functions as a nuclear safety regulation body. The team's findings note of the fact that the current Korean nuclear regulator is a combination of MEST and KINS; Transition to a new regulatory framework has the potential to enhance regulatory independence, expertise and transparency; however implementation details have yet to be finalized. Therefore, the team could not make a conclusion regarding the planned framework's effectiveness; and Korea's response to the accident at Fukushima has been prompt and effective. Communications with the public, development of actions for improvement and coordination with international stakeholders were of high quality. Among the good practices identified by the IRRS Review Team are the following: The regulatory body of Korea has a clear and structured national approach for nuclear safety; Korea strongly supports the global nuclear safety regime and provides training at national and international levels; KINS has a high level of technical competence and has implemented an effective human capital program; KINS performs detailed and comprehensive safety assessment using a broad range of deterministic and probabilistic codes and methods; and KINS has a comprehensive integrated computerized information and data management system. The IRRS Review Team identified certain issues warranting attention or in need of improvement and believes that consideration of these would enhance the overall performance of the future regulatory system. Transition to the new regulatory framework will require development of key implementation details that will impact the effectiveness of the new regulatory framework for safety; Enhancements to the management system in the areas of resource management, description of the internal safety culture, and

  2. Protecting worker health and safety using remote handling systems

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) is currently developing and installing two large-scale, remotely controlled systems for use in improving worker health and safety by minimizing exposure to hazardous and radioactive materials. The first system is a full-scale liquid feed system for use in delivering chemical reagents to LLNL's existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). The Tank Farm facility is used to remove radioactive and toxic materials in aqueous wastes prior to discharge to the City of Livermore Water Reclamation Plant (LWRP), in accordance with established discharge limits. Installation of this new reagent feed system improves operational safety and process efficiency by eliminating the need to manually handle reagents used in the treatment processes. This was done by installing a system that can inject precisely metered amounts of various reagents into the treatment tanks and can be controlled either remotely or locally via a programmable logic controller (PLC). The second system uses a robotic manipulator to remotely handle, characterize, process, sort, and repackage hazardous wastes containing tritium. This system uses an IBM-developed gantry robot mounted within a special glove box enclosure designed to isolate tritiated wastes from system operators and minimize the potential for release of tritium to the atmosphere. Tritiated waste handling is performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. The system is compatible with an existing portable gas cleanup unit designed to capture any gas-phase tritium inadvertently released into the glove box during waste handling

  3. A general approach to computerized inspection of engineered safety systems

    International Nuclear Information System (INIS)

    Engineered safety systems are in a standby state during the normal plant operation. Therefore their ability to fulfil their safeguarding functions must be proven by periodic test-start-ups. This paper describes work done on the development of computerized inspection techniques. Generally, engineered safety systems consist of a number of mechanical components and the instrumentation equipment, which is required for supervision. It is assumed that all disturbances are caused by a finite number of component and/or instrumentation faults which are stochastic in nature. To inspect a system, two steps must be carried out. First, an overall performance check, based on the verification of fixed normal operating points is made. If deviations are indicated, disturbance analysis is the next step. Assuming that a system might contain a number of n possible basic faults, theoretically 2sup(n) different disturbance patterns could occur. However, the analysis of large systems can be made easier by decomposition into sub-systems, each of which contains fewer basic faults than the original system. When the failed sub-systems are detected through the process of verification, using the normal operating characteristics for all sub-systems, the prime cause analysis can be restricted to them. The prime cause analysis is based on the substitution of the predefined basic faults. Disturbance patterns of higher complexity can be ignored, since their probability of occurrence has been considerably reduced by the decomposition. Using this concept, simulation experiments are being carried out. An idea of the achievable reliability of computerized inspection techniques can be obtained from the results discussed in this paper. (author)

  4. 33 CFR 96.230 - What objectives must a safety management system meet?

    Science.gov (United States)

    2010-07-01

    ... MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.230 What objectives must a safety... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false What objectives must a safety management system meet? 96.230 Section 96.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...

  5. 78 FR 47015 - Software Requirement Specifications for Digital Computer Software Used in Safety Systems of...

    Science.gov (United States)

    2013-08-02

    ... COMMISSION Software Requirement Specifications for Digital Computer Software Used in Safety Systems of..., ``Verification, Validation, Reviews, and Audits for Digital Computer Software used in Safety Systems of Nuclear... Documentation for Digital Computer Software used in Safety Systems of Nuclear Power Plants,'' issued for...

  6. 77 FR 50727 - Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear...

    Science.gov (United States)

    2012-08-22

    ... COMMISSION Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear... Digital Computer Software Used in Safety Systems of Nuclear Power Plants'' is temporarily identified by... Plans for Digital Computer Software Used in Safety Systems of Nuclear Power Plants'' dated...

  7. 78 FR 47014 - Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear...

    Science.gov (United States)

    2013-08-02

    ... COMMISSION Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear... 1 of RG 1.169, ``Configuration Management Plans for Digital Computer Software Used in Safety Systems..., ``Verification, Validation, Reviews, and Audits for Digital Computer Software used in Safety Systems of...

  8. Integrated Safety Management System Phase I Verification for the Plutonium Finishing Plant (PFP) [VOL 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    SETH, S.S.

    2000-01-10

    U.S. Department of Energy (DOE) Policy 450.4, Safety Management System Policy commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex as a means of accomplishing its missions safely. DOE Acquisition Regulation 970.5204-2 requires that contractors manage and perform work in accordance with a documented safety management system.

  9. 33 CFR 96.240 - What functional requirements must a safety management system meet?

    Science.gov (United States)

    2010-07-01

    ... requirements must a safety management system meet? The functional requirements of a safety management system... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false What functional requirements must a safety management system meet? 96.240 Section 96.240 Navigation and Navigable Waters COAST...

  10. 14 CFR 415.127 - Flight safety system design and operation data.

    Science.gov (United States)

    2010-01-01

    ... system and subsystems design and operational requirements. (c) Flight safety system diagram. An applicant's safety review document must contain a block diagram that identifies all flight safety system... applies to each subsystem identified in the block diagram required by paragraph (c) of this section:...

  11. Safety awareness educational topics for the construction of power transmission systems with smart grid technologies

    Directory of Open Access Journals (Sweden)

    Bryan Hubbard

    2013-09-01

    Full Text Available Power transmission facilities in the U.S. are undergoing a transformation due to the increased use of distributed generation sources such as wind and solar power.  The current power grid system is also antiquated and in need of substantial retrofits to make it more efficient and reliable.  The new energy transmission system being designed and built to optimize power delivery is known as “Smart Grid”.  The increased activity in the construction of power transmission facilities and installation of new technologies into the current power system raises potential safety concerns.  Existing construction management curriculum may include general information about safety training, but does not typically include information about this specialized sector.  The objective of this study was to work with industry to identify key safety topics appropriate for inclusion in an introductory industrial construction course.  Results of interviews with industry identified numerous hazards that are not typically covered in typical construction curricula.  A joint undergraduate and graduate course in industrial construction was created to address these and additional concepts. A survey of the students was performed to determine the effectiveness of the course and also to determine their thoughts about the smart grid technologies and safety training. Information on electrical system hazards is presented along with results of the student surveys.

  12. Improved methods for reliability assessments of safety-critical systems: An application example for BOP systems

    OpenAIRE

    Pinker, Remi

    2012-01-01

    The failure of the Deepwater Horizon drilling rig's blowout preventer has been pointed to as one of the main causes of the Macondo accident on April 10th 2010. The blowout preventer system is one the most important safety barriers in a hydrocarbon well. The accident has created a demand for improved methods of assessing the reliability of blowout preventer systems. The objective of this master thesis is to propose improvements to current reliability assessment methods for complex safety criti...

  13. Improvement of driving safety in road traffic system

    Institute of Scientific and Technical Information of China (English)

    Li Ke-Ping; Gao Zi-You

    2005-01-01

    A road traffic system is a complex system in which humans participate directly. In this system, human factors play a very important role. In this paper, a kind of control signal is designated at a given site (i.e., signal point) of the road. Under the effect of the control signal, the drivers will decrease their velocities when their vehicles pass the signal point. Our aim is to transit the traffic flow states from disorder to order, and then improve the traffic safety.We have tested this technique for the two-lane traffic model that is based on the deterministic Nagel-Schreckenberg (NaSch) traffic model. The simulation results indicate that the traffic flow states can be transited from disorder to order. Different order states can be observed in the system, and these states are safer.

  14. Safety analysis report for packaging (onsite) doorstop samplecarrier system

    Energy Technology Data Exchange (ETDEWEB)

    Obrien, J.H.

    1997-02-24

    The Doorstop Sample Carrier System consists of a Type B certified N-55 overpack, U.S. Department of Transportation (DOT) specification or performance-oriented 208-L (55-gal) drum (DOT 208-L drum), and Doorstop containers. The purpose of the Doorstop Sample Carrier System is to transport samples onsite for characterization. This safety analysis report for packaging (SARP) provides the analyses and evaluation necessary to demonstrate that the Doorstop Sample Carrier System meets the requirements and acceptance criteria for both Hanford Site normal transport conditions and accident condition events for a Type B package. This SARP also establishes operational, acceptance, maintenance, and quality assurance (QA) guidelines to ensure that the method of transport for the Doorstop Sample Carrier System is performed safely in accordance with WHC-CM-2-14, Hazardous Material Packaging and Shipping.

  15. The human component in the safety of complex systems

    International Nuclear Information System (INIS)

    The safety of nuclear power and other complex processes requires that human actions are carried though on time and without error. Investigations indicate that human errors are the main or an important contributing cause in more than half of the incidents which occur. This makes it important to try understand the mechanisms behind the human errors and to investigate possibilities for decreasing their likelihood. The present report presents an overview of the Nordic cooperation in the field of human factors in nuclear safety, under the LIT-programme carried out 1981-1985. The work was divided into six different projects in the following fields: human reliability in test and maintenance work; safety oriented organizations and company structures; design of information and control systems; new approaches for information presentation; experimental validation of man-machine interfaces; planning and evaluation of operator training. The research topics were selected from the findings of an earlier phase of the Nordic cooperation. The results are described in more detail in separate reports

  16. METAHEURISTICS FOR OPTIMIZING SAFETY STOCK IN MULTI STAGE INVENTORY SYSTEM

    Directory of Open Access Journals (Sweden)

    Gordan Badurina

    2013-02-01

    Full Text Available Managing the right level of inventory is critical in order to achieve the targeted level of customer service, but it also carries significant cost in supply chain. In majority of cases companies define safety stock on the most downstream level, i.e. the finished product level, using different analytical methods. Safety stock on upstream level, however, usually covers only those problems which companies face on that particular level (uncertainty of delivery, issues in production, etc.. This paper looks into optimizing safety stock in a pharmaceutical supply considering the three stages inventory system. The problem is defined as a single criterion mixed integer programming problem. The objective is to minimize the inventory cost while the service level is predetermined. In order to coordinate inventories at all echelons, the variable representing the so-called service time is introduced. Because of the problem dimensions, metaheuristics based on genetic algorithm and simulated annealing are constructed and compared, using real data from a Croatian pharmaceutical company. The computational results are presented evidencing improvements in minimizing inventory costs.

  17. Supplementary safety system 1/4 scale testing

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, R.L.; Paik, I.K.

    1993-09-01

    During the course of updating the K-Reactor Safety Analysis Report Chapter 15 in 1990, it was identified that the current Supplementary Safety System (SSS) may not be adequate in protecting the reactor during the process water pump coastdown initiated by a loss of AC power when the safety rods are assumed to fail. A SSS modification project was initiated to add an additional ink injection pathway near the pump suction. In addition, the Department of Energy raised a question on the thermal buoyancy effects on moderator flow pattern and ink dispersion in the moderator space. The development and documentation of a two-dimensional code called MODFLOW was undertaken to describe the problem. This report discusses the results of the moderator flow and ink (Gadolinium Poison Solution - GPS) dispersion tests designed to provide qualified data for validation and benchmarking of the MODFLOW computer code with the secondary objectives being the development of concentration profiles and video footage of simulated GPS dispersion under steady-state and transient flow conditions.

  18. Safety from Crime and Physical Activity among Older Adults: A Population-Based Study in Brazil

    International Nuclear Information System (INIS)

    Objective. To evaluate the association between safety from crime and physical activity among older adults. Methods. A population-based survey including 1,656 older adults (60+ years) took place in Florianopolis, Brazil, in 2009-2010. Commuting and leisure time physical activity were assessed through the long version of the International Physical Activity Questionnaire. Perception of safety from crime was assessed using the Neighbourhood Environment Walk ability Scale. Results. Perceiving the neighbourhood as safe during the day was related to a 25% increased likelihood of being active in leisure time (95% CI 1.02-1.53); general perception of safety was also associated with a 25% increase in the likelihood of being active in leisure time (95% CI 1.01-1.54). Street lighting was related to higher levels of commuting physical activity (prevalence ratio: 1.89; 95% CI 1.28-2.80). Conclusions. Safety investments are essential for promoting physical activity among older adults in Brazil

  19. System approach in the investigation of coolant parametrical oscillations in passive safety injection systems (PSIS)

    International Nuclear Information System (INIS)

    The use of thermal-hydraulic computer codes is an important part of the work programme for activities in the field of nuclear power plants (NPP) Safety Research as it will enable to define better the test configuration and parameter range extensions and to extrapolate the results of the small scale experiments towards full scale reactor applications. The CATHARE2, RELAP5, the WCOBRA/TRAC, and APROS codes are the estimate thermal hydraulic codes for the evaluation of large and small break loss of coolant accidents (LOCA). The relatively good agreement experimental data with the calculations have been presented. There was shown also some big mistakes in predicting distribution of flow when two phase are present. Model of parametrical oscillation (P.O.) worked out gives explanation for flow oscillations and indicates that the phenomenon of P.O. appears under certain combination of thermal-hydraulic parameters and structure of heat-removal system. (orig.)

  20. Sustainability of Capacity Building Activities to Improve Food Safety and Quality through Nuclear Technology and Networking

    International Nuclear Information System (INIS)

    Access to food control laboratories and related services represents a minimum requirement to generate monitoring data for food risk management activities within a nation. Along with its analytical work and component services, each laboratory has the opportunity to undertake a more active role in promoting and facilitating food safety and food quality at many points along the production and supply chain. Provided that their internal mandate allows it, laboratories can address issues such as risk assessment, design of risk-based monitoring programmes, sampling, interpretation of analytical results in the wider context of the food chain, outreach to decision makers, and also research and development activities. Implementing such a broad and multidisciplinary approach requires a step by step process with the involvement of stakeholders and a commitment to continuously build capacity through networking and learning. Currently, outsourcing analytical services and the use of private analytical laboratories through temporary contractual agreements are the only practical options available to some developing countries, and at times these arrangements prove to be unsustainable or impractical. A more sustainable and recommended approach is to establish national accredited laboratories and invest in their long term activities both as a focal point for analytical expertize and as part of a system for the control of food nationally and as traded through imports and exports. The Food and Environmental Protection Laboratory (FEPL) was successful in a competitive bidding process for funding from the USA under the Peaceful Uses Initiative (PUI). The PUI objective is to support the IAEA in facilitating greater access for Member States to peaceful applications of nuclear technology. In this context a three-year project on 'Sustainability of capacity building activities to improve food safety and quality through nuclear technology and networking' started in March 2012. The objective of

  1. An Approach to Maintaining Safety Case Evidence After A System Change

    OpenAIRE

    Jaradat, Omar; Graydon, Patrick; Bate, Iain

    2014-01-01

    Developers of some safety critical systems construct a safety case. Developers changing a system during development or after release must analyse the change's impact on the safety case. Evidence might be invalidated by changes to the system design, operation, or environmental context. Assumptions valid in one context might be invalid elsewhere. The impact of change might not be obvious. This paper proposes a method to facilitate safety case maintenance by highlighting the impact of changes.

  2. Reliability assessment for safety critical systems by statistical random testing

    International Nuclear Information System (INIS)

    In this report we present an overview of reliability assessment for software and focus on some basic aspects of assessing reliability for safety critical systems by statistical random testing. We also discuss possible deviations from some essential assumptions on which the general methodology is based. These deviations appear quite likely in practical applications. We present and discuss possible remedies and adjustments and then undertake applying this methodology to a portion of the SDS1 software. We also indicate shortcomings of the methodology and possible avenues to address to follow to address these problems. (author). 128 refs., 11 tabs., 31 figs

  3. Safety-Enclosure System For MOCVD Process Chamber

    Science.gov (United States)

    Singletery, James, Jr.; Velasquez, Hugo; Warner, Joseph

    1995-01-01

    Safety-enclosure system filled with nitrogen surrounds reaction chamber in which metallo-organic chemical vapor deposition (MOCVD) performed. Designed to protect against explosions and/or escaping toxic gases and particulates. Gas-purification subsystem ensures during loading and unloading of process materials, interior of MOCVD chamber exposed to less than 1 ppm of oxygen and less than 5 ppm of water in nitrogen atmosphere. Toxic byproducts of MOCVD process collected within inert atmosphere. Enclosure strong enough to contain any fragments in unlikely event of explosion.

  4. SAFETY

    CERN Multimedia

    C. Schaefer and N. Dupont

    2013-01-01

      “Safety is the highest priority”: this statement from CERN is endorsed by the CMS management. An interpretation of this statement may bring you to the conclusion that you should stop working in order to avoid risks. If the safety is the priority, work is not! This would be a misunderstanding and misinterpretation. One should understand that “working safely” or “operating safely” is the priority at CERN. CERN personnel are exposed to different hazards on many levels on a daily basis. However, risk analyses and assessments are done in order to limit the number and the gravity of accidents. For example, this process takes place each time you cross the road. The hazard is the moving vehicle, the stake is you and the risk might be the risk of collision between both. The same principle has to be applied during our daily work. In particular, keeping in mind the general principles of prevention defined in the late 1980s. These principles wer...

  5. Reviewing real-time performance of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Preckshot, G.G. [Lawrence Livermore National Lab., CA (United States)

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  6. Reviewing real-time performance of nuclear reactor safety systems

    International Nuclear Information System (INIS)

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems

  7. Maritime Transportation System Safety – Modeling and Identification

    Directory of Open Access Journals (Sweden)

    Przemyslaw Dziula

    2013-06-01

    Full Text Available The article is showing a concept of critical infrastructure systems’ safety states model. Model construction is basing on: popular technical systems’ safety states models, and notions specified in acts of law and other studies concerning crisis management. Paper is including some concept of proposed model usage possibilities - methods and procedures for estimating unknown basic parameters of safety states transitions process: identifying the distributions of its conditional lifetime at safety states, estimating probabilities of its staying at safety states at the initial moment, probabilities of its transitions between safety states and parameters of the distribution for the description of its conditional lifetimes at safety states.

  8. European standardization activities on safety of liquid helium cryostats

    CERN Document Server

    CERN. Geneva

    2016-01-01

    This talk gives a general overview on the challenges of designing safety units for liquid helium cryostats with regard to existing industry standards. It reviews the work of a national working group that published the technical guideline DIN SPEC 4683 in April 2015, which is dedicated to the particular conditions in liquid helium cryostats. Based on both this guideline and equivalent documents from e.g. CEA, CERN, a working group is being formed at the European Committee for Standardization, associated to CEN/TC 268, which will work on a European standard on safety of liquid helium cryostats. The actual status and the schedule of this project are presented.

  9. Cascade Distillation System Design for Safety and Mission Assurance

    Science.gov (United States)

    Sarguisingh, Miriam; Callahan, Michael R.; Okon, Shira

    2015-01-01

    Per the NASA Human Health, Life Support and Habitation System Technology Area 06 report "crewed missions venturing beyond Low-Earth Orbit (LEO) will require technologies with improved reliability, reduced mass, self-sufficiency, and minimal logistical needs as an emergency or quick-return option will not be feasible".1 To meet this need, the development team of the second generation Cascade Distillation System (CDS 2.0) chose a development approach that explicitly incorporate consideration of safety, mission assurance, and autonomy. The CDS 2.0 preliminary design focused on establishing a functional baseline that meets the CDS core capabilities and performance. The critical design phase is now focused on incorporating features through a deliberative process of establishing the systems failure modes and effects, identifying mitigation strategies, and evaluating the merit of the proposed actions through analysis and test. This paper details results of this effort on the CDS 2.0 design.

  10. DOE-RL Integrated Safety Management System Description

    International Nuclear Information System (INIS)

    The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions

  11. DOE-RL Integrated Safety Management System Description

    CERN Document Server

    Shoop, D S

    2000-01-01

    The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions.

  12. 'Fail-to-safety' methane drainage system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    Queensland-based Capricorn Coal Management and SMC Pneumatics (Australia) have developed a new methane drainage system incorporating a pneumatically controlled 'automatic shut down system' (ASDS) that, in an emergency situation, automatically terminates the flow of gas at the source with automatic shut-off valves. The air supply unit incorporates two air compressors operating in a rotating cycle to ensure continuous supply with pressure and flow measurement sensors and solenoid valves configured to 'fail-to-safety' in the event of power failure. The SMC-Capcoal system has been operating successfully for two years at Capcoal's Central colliery, Queensland's first longwall mine. It can shut off methane flows within 90 seconds. 3 photos.

  13. Study on Analysis and Countermeasure of China's Legal System of Food Safety and Hygiene

    Directory of Open Access Journals (Sweden)

    Yongyong Zhu

    2013-12-01

    Full Text Available The aim of study is to solve the food safety problems existing in the real life, ensuring the food health safety, based on the “ Food Hygiene Law of the People's Republic of China” promulgated in 1995 by China, starting from the aspects such as production, marketing, regulatory to the integrate the standards of edible farm product quality safety standards, food hygiene standards, food quality standards and relevant food industry mandatory standards, establishing scientific and standardized food safety supervision system, food safety risk assessment system, food safety monitoring system and food safety standards, regulating the food inspection and food production and management responsibility to strengthen safeguard measures of citizens’ rights and interests to develop "The Food Safety Law of the People's Republic of China", to look forward to benefit the theoretical research and legislation improvement of the control law of China's food safety.

  14. YKAe - Research programme on nuclear power plant systems behaviour and operational aspects of safety

    International Nuclear Information System (INIS)

    The major part of nuclear energy research in Finland has been organised as five-year nationally coordinated research programs. The research programme on Systems Behaviour and Operational Aspects of Safety is under way during 1990-1994. Its annual volume has been about 35 person-years and its annual expenditure about FIM 18 million. Studies in the field on safe operational margins of nuclear fuel and reactor core concentrate on fuel high burn-up behaviour, VVER fuel experiments, and reactor core behaviour in complex reactivity transients such as 3-D phenomena and ATWS events. The PACTEL facility is used for the thermal hydraulic studies of the Loviisa type reactors (scaled 1:305). Validation of accident analysis codes is carried out by participation in international standard problems. Advanced foreign computer codes for severe reactor accidents are implemented, modified as needed and applied to level-2 PSAs and the improvement of accident management procedures. Fire simulation methods are tested using data from experiments in the German HDR facility. A nuclear plant analyzer for efficient safety analyses is being developed using the APROS process simulation environment. Computerized operator support systems are being studied in cooperation with the OECD Halden Project. The basic factors affecting plant operator activities and the development of their competence are being investigated. A comprehensive system for the control of plant operational safety is being developed by combining living PSA and safety indicators

  15. Review on the Evaluation System of Public Safety Carrying Capacity about Small Town Community

    Institute of Scientific and Technical Information of China (English)

    Ming; SUN; Tianyu; ZHU

    2014-01-01

    Recently,small town community public safety problem has been increasingly highlighted,but its research is short on public safety carrying capacity. Through the investigation and study of community public safety carrying capacity,this paper analyzes the problem of community public safety in our country,to construct index evaluation system of public safety carrying capacity in small town community. DEA method is used to evaluate public safety carrying capacity in small town community,to provide scientific basis for the design of support and standardization theory about small town community in public safety planning.

  16. Safety evaluation report related to the preliminary design of the Standard Reference System, RESAR-414

    International Nuclear Information System (INIS)

    The safety evaluation for the Westinghouse Standard Reactor includes information on general reactor characteristics; design criteria for systems and components; reactor coolant system; engineered safety systems; instrumentation and controls; electric power systems; auxiliary systems; steam and power conversion system; radioactive waste management; radiation protection; conduct of operations; accident analyses; and quality assurance

  17. Management by process based systems and safety focus

    International Nuclear Information System (INIS)

    An initiative from The Swedish Nuclear Power Inspectorate led to this study carried out in the late autumn of 2005. The objective was to understand in more detail how an increasing use of process management affects organisations, on the one hand regarding risks and security, on the other hand regarding management by objectives and other management and operative effects. The main method was interviewing representatives of companies and independent experts. More than 20 interviews were carried out. In addition a literature study was made. All participating companies are using Management Systems based on processes. However, the methods chosen, and the results achieved, vary extensively. Thus, there are surprisingly few examples of complete and effective management by processes. Yet there is no doubt that management by processes is effective and efficient. Overall goals are reached, business results are achieved in more reliable ways and customers are more satisfied. The weaknesses found can be translated into a few comprehensive recommendations. A clear, structured and acknowledged model should be used and the processes should be described unambiguously. The changed management roles should be described and obeyed extremely legibly. New types of process objectives need to be formulated. In addition one fact needs to be observed and effectively fended off. Changes are often met by mental opposition on management level, as well as among co-workers. This fact needs attention and leadership. Safety development is closely related to the design and operation of a business management system and its continual improvement. A deep understanding of what constitutes an efficient and effective management system affects the understanding of safety. safety culture and abilities to achieve safety goals. Concerning risk, the opinions were unambiguous. Management by processes as such does not result in any further risks. On the contrary. Processes give a clear view of production and

  18. Safety against flooding : Activity Report 2008-2009

    NARCIS (Netherlands)

    Mosselman, E.; Luxemburg, W.; Solomatine, D.; Zwanenburg, C.; Vrouwenvelder, T.

    2009-01-01

    This document reports the progress of Delft Cluster project CT04.30 "Safety against flooding" till June 2009. Fundamental knowledge from the project has resulted in a large number of scientific publications, PhD theses and MSc theses. Work package A 1 in particular has resulted in high-profile scien

  19. 75 FR 76077 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-12-07

    ..., titled ``Pipeline Safety: Periodic Underwater Inspection.'' PHMSA is preparing to request approval from.... DOT, 1200 New Jersey Avenue, SE., West Building, Room W12-140, Washington, DC 20590-0001. Hand Delivery: Room W12-140 on the ground level of the West Building, 1200 New Jersey Avenue, SE.,...

  20. Integrated Design and Analysis Environment for Safety Critical Human-Automation Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight deck systems, like many safety critical systems, often involve complex interactions between multiple human operators, automated subsystems, and physical...