WorldWideScience

Sample records for active rotor-blade vibration

  1. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    In rotor-blade systems basis as well as parametric vibration modes will appear due to the vibration coupling among flexible rotating blades and hub rigid body motion. Parametric vibration will typically occur when the hub operates at a constant angular velocity. Operating at constant velocity...

  2. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part I: Theory

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    This is the first paper in a two-part study on active rotor-blade vibration control. Blade faults are a major problem in bladed machines, such as turbines and compressors. Moreover, increasing demands for higher efficiency, lower weight and higher speed imply that blades become even more suscepti...

  3. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part II: Experiment

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    . The remaining two sets of actuators are applied to act directly onto the hub, working as an active radial bearing controlling the rotor lateral movement. The rig is equipped with sensors measuring blade and rotor vibrations. Actuators and sensors are connected to a digital signal processor running the control......This is the second paper in a two-part study on active rotor-blade vibration control. This part presents an experimental contribution into the work of active controller design for rotor-blade systems. The primary aim is to give an experimental validation and show the applicability...... shaft is mounted in a flexible hub, which can perform lateral movement. The blades are designed as simple Euler-Bernoulli beams with tip masses in order to increase the vibration coupling among the rigid rotors and the flexible blades motion. Different schemes of blade configurations, with and without...

  4. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  5. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    Science.gov (United States)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  6. Blade tip vortex measurements on actively twisted rotor blades

    Science.gov (United States)

    Bauknecht, André; Ewers, Benjamin; Schneider, Oliver; Raffel, Markus

    2017-05-01

    Active rotor control concepts, such as active twist actuation, have the potential to effectively reduce the noise and vibrations of helicopter rotors. The present study focuses on the experimental investigation of active twist for the reduction of blade-vortex interaction (BVI) effects on a model rotor. Results of a large-scale smart-twisting active rotor test under hover conditions are described. This test investigated the effects of individual blade twist control on the blade tip vortices. The rotor blades were actuated with peak torsion amplitudes of up to 2° and harmonic frequencies of 1-5/rev with different phase angles. Time-resolved stereoscopic particle image velocimetry was carried out to study the effects of active twist on the strength and trajectories of the tip vortices between ψ _ {v}= 3.6° and 45.7° of vortex age. The analysis of the vortex trajectories revealed that the 1/rev active twist actuation mainly caused a vertical deflection of the blade tip and the corresponding vortex trajectories of up to 1.3% of the rotor radius R above and -1%R below the unactuated condition. An actuation with frequencies of 2 and 3/rev significantly affected the shapes of the vortex trajectories and caused negative vertical displacements of the vortices relative to the unactuated case of up to 2%R within the first 35° of wake age. The 2 and 3/rev actuation also had the most significant effects on the vortex strength and altered the initial peak swirl velocity by up to -34 and +31% relative to the unactuated value. The present aerodynamic investigation reveals a high control authority of the active twist actuation on the strength and trajectories of the trailing blade tip vortices. The magnitude of the evoked changes indicates that the active twist actuation constitutes an effective measure for the mitigation of BVI-induced noise on helicopters.

  7. Control of Rotor-Blade Coupled Vibrations Using Shaft-Based Actuation

    DEFF Research Database (Denmark)

    Christensen, Rene H.; Santos, Ilmar

    2006-01-01

    When implementing active control into bladed rotating machines aiming at reducing blade vibrations, it can be shown that blade as well as rotor vibrations can in fact be controlled by the use of only shaft-based actuation. Thus the blades have to be deliberately mistuned. This paper investigates...... of modal controllability and observability converge toward steady levels as the degree of mistuning is increased. Finally, experimental control results are presented to prove the theoretical conclusions and to show the feasibility of controlling rotor and blade vibrations by means of shaft-based actuation...... the dynamical characteristics of a mistuned bladed rotor and shows how, why and when a bladed rotor becomes controllable and observable if properly mistuned. As part of such investigation modal controllability and observability of a tuned as well as a mistuned coupled rotor-blade system are analysed...

  8. Novel controller design demonstration for vibration alleviation of helicopter rotor blades

    Science.gov (United States)

    Ulker, Fatma Demet; Nitzsche, Fred

    2012-04-01

    This paper presents an advanced controller design methodology for vibration alleviation of helicopter rotor sys- tems. Particularly, vibration alleviation in a forward ight regime where the rotor blades experience periodically varying aerodynamic loading was investigated. Controller synthesis was carried out under the time-periodic H2 and H∞ framework and the synthesis problem was solved based on both periodic Riccati and Linear Matrix Inequality (LMI) formulations. The closed-loop stability was analyzed using Floquet-Lyapunov theory, and the controller's performance was validated by closed-loop high-delity aeroelastic simulations. To validate the con- troller's performance an actively controlled trailing edge ap strategy was implemented. Computational cost was compared for both formulations.

  9. An advanced stochastic model for threshold crossing studies of rotor blade vibrations.

    Science.gov (United States)

    Gaonkar, G. H.; Hohenemser, K. H.

    1972-01-01

    A stochastic model to analyze turbulence-excited rotor blade vibrations, previously described by Gaonkar et al. (1971), is generalized to include nonuniformity of the atmospheric turbulence velocity across the rotor disk in the longitudinal direction. The results of the presented analysis suggest that the nonuniformity of the vertical turbulence over the rotor disk is of little influence on the random blade flapping response, at least as far as longitudinal nonuniformity is concerned.

  10. Random gust response statistics for coupled torsion-flapping rotor blade vibrations.

    Science.gov (United States)

    Gaonkar, G. H.; Hohenemser, K. H.; Yin, S. K.

    1972-01-01

    An analysis of coupled torsion-flapping rotor blade vibrations in response to atmospheric turbulence revealed that at high rotor advance ratios anticipated for future high speed pure or convertible rotorcraft both flapping and torsional vibrations can be severe. While appropriate feedback systems can alleviate flapping, they have little effect on torsion. Dynamic stability margins have also no substantial influence on dynamic torsion loads. The only effective means found to alleviate turbulence caused torsional vibrations and loads at high advance ratio was a substantial torsional stiffness margin with respect to local static torsional divergence of the retreating blade.

  11. Vibrations of a Helicopter Rotor Blade Using Finite Element- Unconstrained Variational Formulations

    Science.gov (United States)

    1977-09-01

    agree well with the available data of Boyce , DiPrima and Handelman [11]. The torsional vibration frequency has only one eigen- value solution and, if CA...Equations of Motiqn for Combined Flapwise Bending, Chordwise Bending and Torsion of Twisted Rotor Blades,” NACA Report No. 1346, 1956. 11. W. E. Boyce ...R. C. DiPrima and G. H. - Handelman , “Vibrations of Rotating Beams of Constant Section,” Proceedings of the Second U.S. National Congress of Applied

  12. Optimal Design and Acoustic Assessment of Low-Vibration Rotor Blades

    Directory of Open Access Journals (Sweden)

    G. Bernardini

    2016-01-01

    Full Text Available An optimal procedure for the design of rotor blade that generates low vibratory hub loads in nonaxial flow conditions is presented and applied to a helicopter rotor in forward flight, a condition where vibrations and noise become severe. Blade shape and structural properties are the design parameters to be identified within a binary genetic optimization algorithm under aeroelastic stability constraint. The process exploits an aeroelastic solver that is based on a nonlinear, beam-like model, suited for the analysis of arbitrary curved-elastic-axis blades, with the introduction of a surrogate wake inflow model for the analysis of sectional aerodynamic loads. Numerical results are presented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades as well as to assess the robustness of solution at off-design operating conditions. Further, the aeroacoustic assessment of the rotor configurations determined is carried out in order to examine the impact of low-vibration blade design on the emitted noise field.

  13. Active damping of flexible rotor blade dynamics using electrorheological-fluid-based actuators

    Science.gov (United States)

    Wereley, Norman M.

    1994-05-01

    Advanced rotor systems including hingeless and bearingless rotors have air and ground resonance instabilities due to coalescence of low-frequency rotor modes with landing gear and fuselage modes, respectively. This coalescence is of difficulty due to the direct connection of the rotor blade in these advanced rotor systems to the rotor hub using a flexure or flexbeam. We are currently exploring the mitigation of this modal coalescence through the use of active damping techniques and electro-rheological fluid technology.

  14. Tower and rotor blade vibration test results for a 100-kilowatt wind turbine

    Science.gov (United States)

    Linscott, B. S.; Shapton, W. R.; Brown, D.

    1976-01-01

    The predominant natural frequencies and mode shapes for the tower and the rotor blades of the ERDA-NASA 100-kW wind turbine were determined. The tests on the tower and the blades were conducted both before and after the rotor blades and the rotating machinery were installed on top of the tower. The tower and each blade were instrumented with an accelerometer and impacted by an instrumented mass. The tower and blade structure was analyzed by means of NASTRAN, and computed values agree with the test data.

  15. Identification of Flap Motion Parameters for Vibration Reduction in Helicopter Rotors with Multiple Active Trailing Edge Flaps

    Directory of Open Access Journals (Sweden)

    Uğbreve;ur Dalli

    2011-01-01

    Full Text Available An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing conditions. Rotor blade system response is calculated using the proposed solution method and the developed program depending on any structural and aerodynamic properties of rotor blades, structural properties of trailing edge flaps and properties of trailing edge flap actuator inputs. Rotor blade loads are determined first on a nominal rotor blade without multiple active trailing edge flaps and then the effects of the active flap motions on the existing rotor blade loads are investigated. Multiple active trailing edge flaps are controlled by using open loop controllers to identify the effects of the actuator signal output properties such as frequency, amplitude and phase on the system response. Effects of using multiple trailing edge flaps on controlling rotor blade vibrations are investigated and some design criteria are determined for the design of trailing edge flap controller that will provide actuator signal outputs to minimize the rotor blade root loads. It is calculated that using the developed active trailing edge rotor blade model, helicopter rotor blade vibrations can be reduced up to 36% of the nominal rotor blade vibrations.

  16. Response studies of rotors and rotor blades with application to aeroelastic tailoring

    Science.gov (United States)

    Friedmann, P. P.

    1982-01-01

    Various tools for the aeroelastic stability and response analysis of rotor blades in hover and forward flight were developed and incorporated in a comprehensive package capable of performing aeroelastic tailoring of rotor blades in forward flight. The results indicate that substantial vibration reductions, of order 15-40%, in the vibratory hub shears can be achieved by relatively small modifications of the initial design. Furthermore the optimized blade can be up to 20% lighter than the original design. Accomplishments are reported for the following tasks: (1) finite element modeling of rotary-wing aeroelastic problems in hover and forward flight; (2) development of numerical methods for calculating the aeroelastic response and stability of rotor blades in forward fight; (3) formulation of the helicopter air resonance problem in hover with active controls; and (4) optimum design of rotor blades for vibration reduction in forward flight.

  17. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    The demands for high efficiency machines initiate a demand for monitoring and active control of vibrations to improve machinery performance and to prolong machinery lifetime. Applying active control to reduce vibrations in flexible bladed rotor-systems imply that several difficulties have...... of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... to be overcome. Among others it is necessary, that the control scheme is capable to cope with non-linear time-varying dynamical system behaviour. However, rotating at constant speed the mathematical model becomes periodic time-variant. In this framework the present paper gives a contribution to design procedures...

  18. Experimental investigation of helicopter vibration reduction using rotor blade aeroelastic tailoring

    Science.gov (United States)

    Wilbur, Matthew L.

    1991-01-01

    A wind tunnel investigation has been conducted to parametrically investigate the effect of blade nonstructural mass on helicopter fixed- and rotating-system vibratory loads. The data were obtained using Mach- and aeroelastically-scaled model rotor blades which allowed for the addition of concentrated nonstructural masses at multiple points along the blade radius. Testing was conducted for advance ratios ranging from 0.10 to 0.35 for ten blade mass configurations. Three thrust levels were obtained at representative full-scale shaft angles for each configuration. Results indicate that proper placement of blade nonstructural mass can provide reductions in fixed-system vibratory loads, but that correct mass placement and the loads reduction realized are dependent upon flight condition. The data base obtained with this investigation provides a comprehensive set of fixed-system shears and moments, blade moment, and blade flap and lag response. The data set is well suited for use in the correlation and development of advanced rotorcraft analyses.

  19. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    to be overcome. Among others it is necessary, that the control scheme is capable to cope with non-linear time-varying dynamical system behaviour. However, rotating at constant speed the mathematical model becomes periodic time-variant. In this framework the present paper gives a contribution to design procedures...... of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... is reformulated using complex mode theory. Next, a linear constant gain controller for the reformulated system is designed by linear control technique. Finally, this constant gain controller is transformed to a time-periodic form by applying reverse modal transformation. The non-measurable states are estimated...

  20. Wireless sensor network for helicopter rotor blade vibration monitoring: Requirements definition and technological aspects

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Das, Kallol; Loendersloot, Richard; Tinga, Tiedo; Havinga, Paul; Basu, Biswajit

    2013-01-01

    The main rotor accounts for the largest vibration source for a helicopter fuselage and its components. However, accurate blade monitoring has been limited due to the practical restrictions on instrumenting rotating blades. The use of Wireless Sensor Networks (WSNs) for real time vibration monitoring

  1. The Torsional Vibration of Turbo Axis Induced by Unsteady Aerodynamic Force on Rotor blade

    Institute of Scientific and Technical Information of China (English)

    ChenZuoyi; WuXiaofeng

    1998-01-01

    An algorithm for computing the 3-D oscillating flow field of the balde passage under the torsional vibration of the rotor is applied to analyze the stability in turbomachines.The induced flow field responding to blade vibration is computed by Oscillating Fluid Mechanics Method and parametric Polynomial Method.After getting the solution of the unsteady flow field,the work done by the unsteay aerodynamic force acting on the blade can be obtained.The negative or positive work is the criterion of the aeroelastic stability.Numerical results indicate that there are instabilities of the torsional vibration in some frequency bands.

  2. Contribution to Experimental Validation of Linear and Non-Linear Dynamic Models for Representing Rotor-Blade Parametric Coupled Vibrations

    DEFF Research Database (Denmark)

    Santos, Ilmar; Saracho, C.M.; Smith, J.T.

    2004-01-01

    This work gives a theoretical and experimental contribution to the problem of rotor-blades dynamic interaction. A validation procedure of mathematical models is carried out with help of a simple test rig, built by a mass-spring system attached to four flexible rotating blades. With this test rig,...

  3. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  4. Optimizing tuning masses for helicopter rotor blade vibration reduction including computed airloads and comparison with test data

    Science.gov (United States)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Walsh, Joanne L.; Wilbur, Matthew L.

    1992-01-01

    An optimization procedure is developed for locating tuning masses on a rotor blade so that vibratory loads are minimized and hub-shear harmonics are reduced without adding a large mass penalty. The airloads are computed by means of a helicopter analysis for the cases of three vs six tuning masses, with attention given to the prediction of changes in airloads. Frequencies, airloads, and hub loads are computed with the CAMRAD/JA helicopter analysis code and the Conmin general-purpose optimization program. The hub shear is found to be significantly reduced in both cases with the added mass, and the reduction of hub shear is demonstrated under three flight conditions. Comparisons with wind-tunnel data demonstrate that the correlation of mass location is good and the relationship between mass location and flight speed is predicted well by the model.

  5. Rotor blade assembly having internal loading features

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, Daniel David

    2017-05-16

    Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movement of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.

  6. Geometrical optimization of a hingeless deployment system for an active rotor blade

    NARCIS (Netherlands)

    Paternoster, Alexandre; Loendersloot, Richard; de Boer, Andries; Akkerman, Remko

    2013-01-01

    Deployment systems for the Gurney flap need to sustain large centrifugal loads and vibrations while maintaining precisely the displacement under aerodynamic loading. Designing such a mechanism relies on both the actuation technology and the link that transmits motion to the control surface. Flexible

  7. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for understandi

  8. An Overview of Rotor Blades Optimum Design for Helicopter Vibration Reduction%直升机减振的旋翼桨叶优化设计研究综述

    Institute of Scientific and Technical Information of China (English)

    向锦武; 郭俊贤; 张晓谷

    2001-01-01

    Helicopter vibration level has been a problem for many helicopter configurations. Due to the great practical importance of the problem a considerable amount of research has been aimed at various aspects of vibration reduction and control. This paper presents the results of a survey of rotor blades optimum design of reducing vibration by modifying blade properties so as to reduce vibratory hub shears and moments, and thereby reduce the vibration level experienced in the fuselage. Important categories relative to this optimum design problems are considered: the integration of various disciplines and the optimum design objectives; structural and aerodynamic analysis model of the rotor blades for optimum design; numerical optimization and sensitivity analysis technology; and the further development on this subject. This paper is intended to put this design method in a proper perspective from the viewpoint of high performance helicopter design.%围绕降低直升机振动水平的旋翼桨叶减振优化设计,对国内外这方面研究进展情况作了综述;着重讨论了降低旋翼激振力减振优化设计分析中的几个主要问题,包括桨叶减振优化设计途径与目标,桨叶优化设计中的分析模型,优化设计方法及灵敏度分析技术,以及桨叶优化减振设计研究的最新发展方向和需进一步研究的问题等.

  9. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  10. 14 CFR 27.661 - Rotor blade clearance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 27.661 Section 27.661 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  11. 14 CFR 29.661 - Rotor blade clearance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 29.661 Section 29.661 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  12. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...

  13. Composite rotor blades for large wind energy installations

    Science.gov (United States)

    Kussmann, A.; Molly, J.; Muser, D.

    1980-01-01

    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  14. Structural characterization of rotor blades through photogrammetry

    Science.gov (United States)

    Bernardini, Giovanni; Serafini, Jacopo; Enei, Claudio; Mattioni, Luca; Ficuciello, Corrado; Vezzari, Valerio

    2016-06-01

    This paper deals with the use of photogrammetry for the experimental identification of structural and inertial properties of helicopter rotor blades4. The identification procedure is based upon theoretical/numerical algorithms for the evaluation of mass and flexural stiffness distributions which are an extension of those proposed in the past by Larsen, whereas the torsional properties (stiffness and shear center position) are determined through the Euler-Bernoulli beam theory. The identification algorithms require the knowledge of the blade displacement field produced by known steady loads. These data are experimentally obtained through photogrammetric detection technique, which allows the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D digital photos. Indeed, the displacement field is simply evaluated by comparing the markers positions on the loaded configuration with those on the reference one. The proposed identification procedure, numerically and experimentally validated in the past by the authors, has been here applied to the structural characterization of two main rotor blades, designed for ultra-light helicopters. Strain gauges measurements have been used to assess the accuracy of the identified properties through natural frequencies comparison as well as to evaluate the blades damping characteristics.

  15. Tip cap for a turbine rotor blade

    Science.gov (United States)

    Kimmel, Keith D

    2014-03-25

    A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.

  16. Recycling of used rotor blades; Der Kreislauf schliesst sich

    Energy Technology Data Exchange (ETDEWEB)

    Schmidl, Erwin; Hinrichs, Stephan [Holcim Deutschlands AG, Hamburg (Germany)

    2010-06-15

    Until recently, used wind rotor blades were shreddered and combusted in waste incinerators. This is problematic because of high fine dust emissions and of sharp-edged fibre composite residues escaping into the environment. It was also a costly and time-consuming procedure. Recycling into other products is impracticable because there are more than enough low-grade recycled plastic materials available. The Holcim AG of the German state of Schleswig-Holstein filed a patent application for a new process in which the rotor blades will be used up completely, without residues, in a cement clinker plant. (orig.)

  17. Sound generation by non-synchronously oscillating rotor blades in turbomachinery

    Science.gov (United States)

    Zhou, Di; Wang, Xiaoyu; Chen, Jun; Jing, Xiaodong; Sun, Xiaofeng

    2015-10-01

    In this paper, the sound generation by non-synchronously oscillating rotor blades in axial compressor is investigated with emphasis on establishing an analytical model for the corresponding sound field inside an annular duct. In terms of the present model, it is found that the acoustic frequency and propagating modes generated by non-synchronously oscillating rotor blades are not only associated with the blade vibration frequency and rotational speed, but also depend on the cascade inter-blade phase angle (IBPA) and the interaction between blades, which is clearly distinguished from typical Doppler effect. Moreover, it is also shown that although the IBPA of cascade is non-constant practically, the characteristics of sound generation are only slightly affected. Besides, the present work has conducted experimental investigations in order to gain insight into the generation mechanism of such complex sound field. Excellent agreement between the model prediction and experimental measurement in the near and far fields is generally observed in the circumstances with different parameter settings. Since the present study links the sound generation with blade oscillation, it would be very helpful to the fault diagnosis of rotor non-synchronous oscillation to some extent.

  18. Lift capability prediction for helicopter rotor blade-numerical evaluation

    Science.gov (United States)

    Rotaru, Constantin; Cîrciu, Ionicǎ; Luculescu, Doru

    2016-06-01

    The main objective of this paper is to describe the key physical features for modelling the unsteady aerodynamic effects found on helicopter rotor blade operating under nominally attached flow conditions away from stall. The unsteady effects were considered as phase differences between the forcing function and the aerodynamic response, being functions of the reduced frequency, the Mach number and the mode forcing. For a helicopter rotor, the reduced frequency at any blade element can't be exactly calculated but a first order approximation for the reduced frequency gives useful information about the degree of unsteadiness. The sources of unsteady effects were decomposed into perturbations to the local angle of attack and velocity field. The numerical calculus and graphics were made in FLUENT and MAPLE soft environments. This mathematical model is applicable for aerodynamic design of wind turbine rotor blades, hybrid energy systems optimization and aeroelastic analysis.

  19. Preform spar cap for a wind turbine rotor blade

    Science.gov (United States)

    Livingston, Jamie T [Simpsonville, SC; Driver, Howard D [Greer, SC; van Breugel, Sjef [Enschede, NL; Jenkins, Thomas B [Cantonment, FL; Bakhuis, Jan Willem [Nijverdal, NL; Billen, Andrew J [Daarlerveen, NL; Riahi, Amir [Pensacola, FL

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  20. Extension-twist coupling optimization in composite rotor blades

    Science.gov (United States)

    Ozbay, Serkan

    2005-07-01

    For optimal rotor performance in a tiltrotor aircraft the difference in the inflow and the rotor speeds between the hover and cruise flight modes suggests different blade twist and chord distributions. The blade twist rates in current tiltrotor applications are defined based upon a compromise between the figure of merit in hover and propeller efficiency in airplane mode. However, when each operation mode is considered separately the optimum blade distributions are found to be considerably different. Passive blade twist control, which uses the inherent variation in centrifugal forces on a rotor blade to achieve optimum blade twist distributions in each flight mode through the use of extension-twist coupled composite rotor blades, has been considered for performance improvement of tiltrotor aircraft over the last two decades. The challenge for this concept is to achieve the desired twisting deformations in the rotor blade without altering the aeroelastic characteristics of the vehicle. A concept referred to as the sliding mass concept is proposed in this work in order to increase the twist change with rotor speed for a closed-cell composite rotor blade cross-section to practical levels for performance improvement in a tiltrotor aircraft. The concept is based on load path changes for the centrifugal forces by utilizing non-structural masses readily available on a conventional blade, such as the leading edge balancing mass. A multilevel optimization technique based on the simulated annealing method is applied to improve the performance of the XV15 tiltrotor aircraft. A cross-sectional analysis tool, VABS together with a multibody dynamics code, DYMORE are integrated into the optimization process. The optimization results revealed significant improvements in the power requirement in hover while preserving cruise efficiency. It is also shown that about 21% of the improvement is provided through the sliding mass concept pointing to the additional flexibility the concept

  1. Vibration Reduction Methods and Techniques for Rotorcraft Utilizing On-Blade Active Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotor blades adapted for vibration control have the added benefit of extended blade and rotor life, as well as improved passenger comfort. Approaches that have been...

  2. Thermographic inspection of a wind turbine rotor blade segment utilizing natural conditions as excitation source, Part I: Solar excitation for detecting deep structures in GFRP

    Science.gov (United States)

    Worzewski, Tamara; Krankenhagen, Rainer; Doroshtnasir, Manoucher; Röllig, Mathias; Maierhofer, Christiane; Steinfurth, Henrik

    2016-05-01

    This study evaluates whether subsurface features in rotor blades, mainly made of Glass Fibre Reinforced Plastics (GFRP), can generally be detected with "solar thermography". First, the suitability of the sun is tested for acting as a heat source for applying active thermography on a 30 mm thick GFRP test specimen. Second, a defective rotor blade segment is inspected outdoors under ideal natural conditions using the sun as excitation source. Additionally, numerical FEM-simulations are performed and the comparability between experiment and simulation is evaluated for outdoor measurements.

  3. Acoustic design of rotor blades using a genetic algorithm

    Science.gov (United States)

    Wells, V. L.; Han, A. Y.; Crossley, W. A.

    1995-01-01

    A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.

  4. Efficient Beam-Type Structural Modeling of Rotor Blades

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2015-01-01

    The present paper presents two recently developed numerical formulations which enable accurate representation of the static and dynamic behaviour of wind turbine rotor blades using little modeling and computational effort. The first development consists of an intuitive method to extract fully...... coupled six by six cross-section stiffness matrices with limited meshing effort. Secondly, an equilibrium based beam element accepting directly the stiffness matrices and accounting for large variations in geometry and material along the blade is presented. The novel design tools are illustrated...

  5. Photogrammetric detection technique for rotor blades structural characterization

    Science.gov (United States)

    Enei, C.; Bernardini, G.; Serafini, J.; Mattioni, L.; Ficuciello, C.; Vezzari, V.

    2015-11-01

    This paper describes an innovative use of photogrammetric detection techniques to experimentally estimate structural/inertial properties of helicopter rotor blades. The identification algorithms for the evaluation of mass and flexural stiffness distributions are an extension of the ones proposed by Larsen, whereas the procedure for torsional properties determination (stiffness and shear center position) is based on the Euler-Prandtl beam theory. These algorithms rely on measurements performed through photogrammetric detection, which requires the collection of digital photos allowing the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D pictures. The displacements are evaluated by comparing the positions of markers in loaded and reference configuration. Being the applied loads known, the structural characteristics can be directly obtained from the measured displacements. The accuracy of the proposed identification algorithms has been firstly verified by comparison with numerical and experimental data, and then applied to the structural characterization of two main rotor blades, designed for ultra-light helicopter applications.

  6. Design of automatic rotor blades folding system using NiTi shape memory alloy actuator

    Science.gov (United States)

    Ali, M. I. F.; Abdullah, E. J.

    2016-10-01

    This present paper will study the requirements for development of a new Automatic Rotor Blades Folding (ARBF) system that could possibly solve the availability, compatibility and complexity issue of upgrading a manual to a fully automatic rotor blades folding system of a helicopter. As a subject matter, the Royal Malaysian Navy Super Lynx Mk 100 was chosen as the baseline model. The aim of the study was to propose a design of SMART ARBF's Shape Memory Alloy (SMA) actuator and proof of operating concept using a developed scale down prototype model. The performance target for the full folding sequence is less than ten minutes. Further analysis on design requirements was carried out, which consisted of three main phases. Phase 1 was studying the SMA behavior on the Nickel Titanium (NiTi) SMA wire and spring (extension type). Technical values like activation requirement, contraction length, and stroke- power and stroke-temperature relationship were gathered. Phase 2 was the development of the prototype where the proposed design of stepped-retractable SMA actuator was introduced. A complete model of the SMART ARBF system that consisted of a base, a main rotor hub, four main rotor blades, four SMA actuators and also electrical wiring connections was fabricated and assembled. Phase 3 was test and analysis whereby a PINENG-PN968s-10000mAh Power Bank's 5 volts, which was reduced to 2.5 volts using LM2596 Step-Down Converter, powered and activated the NiTi spring inside each actuator. The bias spring (compression type), which functions to protract and push the blades to spread position, will compress together with the retraction of actuators and pull the blades to the folding position. Once the power was removed and SMA spring deactivated, the bias spring stiffness will extend the SMA spring and casing and push the blades back to spread position. The timing for the whole revolution was recorded. Based on the experimental analysis, the recorded timing for folding sequence is

  7. A new approach to helicopter rotor blade research instrumentation

    Science.gov (United States)

    Knight, V. H., Jr.

    1978-01-01

    A rotor-blade-mounted telemetry instrumentation system developed and used in flight tests by the NASA/Langley Research Center is described. The system uses high-speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested using an AH-1G helicopter. The system employs microelectronic PCM multiplexer-digitizer stations located remotely on the blade and in a hub-mounted metal canister. The electronics contained in the canister digitizes up to 16 sensors, formats this data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data is transmitted over an RF link to the ground for real-time monitoring and to the helicopter fuselage for tape recording.

  8. Design modification in rotor blade of turbo molecular pump

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Munawar, E-mail: muniqbal@yahoo.com [Centre for High Energy Physics, University of the Punjab, Quaid-e-Azam, Campus, Lahore 54590 (Pakistan); Wasy, Abdul [Department of Mechanical Engineering, University of Engineering and Technology, Taxila 47050 (Pakistan); Batani, Dimitri [Centre Lasers Intenses et Applications, Universite Bordeaux 1, Liberation, 33405 Talence cedex (France); Rashid, Haris [Centre for High Energy Physics, University of the Punjab, Quaid-e-Azam, Campus, Lahore 54590 (Pakistan); Lodhi, M.A.K. [Department of Physics, Texas Tech University, Lubbock Texas, 79409 (United States)

    2012-06-21

    Performance of a Turbo Molecular Pump (TMP) is strongly related to the frequency of the rotor. As rpm increases deflection in the rotor blades starts to occur. Therefore, quality of material and blade design has been modified in order to obtain stable performance at higher speed. To reduce the deformation, stiffer material and change in blade design have been calculated. Significant improvement has been achieved in modeling the blade design using CATIA software. The analysis has been performed by ANSYS workbench. It is shown that the modification in the blade design of TMP rotor has reduced the structural deformation up to 66 percent of the deformation produced in the original blade design under the same conditions. Modified design achieved additional 23 percent rpm which increased TMP's efficiency.

  9. Design modification in rotor blade of turbo molecular pump

    Science.gov (United States)

    Iqbal, Munawar; Wasy, Abdul; Batani, Dimitri; Rashid, Haris; Lodhi, M. A. K.

    2012-06-01

    Performance of a Turbo Molecular Pump (TMP) is strongly related to the frequency of the rotor. As rpm increases deflection in the rotor blades starts to occur. Therefore, quality of material and blade design has been modified in order to obtain stable performance at higher speed. To reduce the deformation, stiffer material and change in blade design have been calculated. Significant improvement has been achieved in modeling the blade design using CATIA software. The analysis has been performed by ANSYS workbench. It is shown that the modification in the blade design of TMP rotor has reduced the structural deformation up to 66 percent of the deformation produced in the original blade design under the same conditions. Modified design achieved additional 23 percent rpm which increased TMP's efficiency.

  10. Optimization model for rotor blades of horizontal axis wind turbines

    Institute of Scientific and Technical Information of China (English)

    LIU Xiong; CHEN Yan; YE Zhiquan

    2007-01-01

    This paper presents an optimization model for rotor blades of horizontal axis wind turbines. The model refers to the wind speed distribution function on the specific wind site, with an objective to satisfy the maximum annual energy output. To speed up the search process and guarantee a global optimal result, the extended compact genetic algorithm (ECGA) is used to carry out the search process.Compared with the simple genetic algorithm, ECGA runs much faster and can get more accurate results with a much smaller population size and fewer function evaluations. Using the developed optimization program, blades of a 1.3 MW stall-regulated wind turbine are designed. Compared with the existing blades, the designed blades have obviously better aerodynamic performance.

  11. Determination of the angle of attack on rotor blades

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær

    2009-01-01

    Two simple methods for determining the angle of attack (AOA) on a section of a rotor blade are proposed. Both techniques consist of employing the Biot-Savart integral to determine the influence of the bound vorticity on the velocity field. In the first technique, the force distribution along...... the blade and the velocity at a monitor point in the vicinity of the blade are assumed to be known from experiments or CFD computations. The AOA is determined by subtracting the velocity induced by the bound circulation, determined from the loading, from the velocity at the monitor point. In the second...... to be located closer to the blade, and thus to determine the AOA with higher accuracy. Data from CFD computations for flows past the Tellus 95 kW wind turbine at different wind speeds are used to test both techniques. Comparisons show that the proposed methods are in good agreement with existing techniques...

  12. Rotor blade monitoring of wind turbines; Ueberwachung von Rotorblaettern von Windkraftanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Frankenstein, Bernd; Schubert, Lars; Klesse, Thomas; Schulze, Eberhard [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren (IZFP), Dresden (Germany); Friedmann, Herbert; Ebert, Carsten [Woelfel Beratende Ingenieure GmbH und Co. KG, Hoechberg (Germany)

    2009-07-01

    This work describes the development of a structural health monitoring system (SHM) which monitors the condition of rotor blades of wind turbines, and detects and locates structural changes before final failure. It is based on a combination of measuring techniques with guided waves in the ultrasound range and low frequency modal analysis. The combination of both techniques has been applied promisingly in rotor blade investigations so far. Modal analysis allows for statements regarding the structural behaviour of the rotor blade structure. Areas of higher risk and stress are additionally monitored by guided waves in the ultrasound range. (orig.)

  13. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  14. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  15. Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography

    Science.gov (United States)

    Heineck, James T.; Schuelein, Erich; Raffel, Markus

    2014-01-01

    Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.

  16. An Experimental Analysis of the Effect of Icing on Wind Turbine Rotor Blades

    DEFF Research Database (Denmark)

    Raja, Muhammad Imran; Hussain, Dil muhammed Akbar; Soltani, Mohsen

    2016-01-01

    are printed with 3D printer and tested one by one in a Wind Tunnel. Lift, drag and moment coefficients are calculated from the measured experimental data and program WT-Perf based on blade-element momentum (BEM) theory is used to predict the performance of wind turbine. Cp curves generated from the test......Wind Turbine is highly nonlinear plant whose dynamics changes with change in aerodynamics of the rotor blade. Power extracted from the wind turbine is a function of coefficient of power (Cp). Wind turbine installed in the cold climate areas has an icing on its rotor blade which might change its...

  17. Foreign Object Damage to Fan Rotor Blades of Aeroengine Part Ⅰ: Experimental Study of Bird Impact

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blades impacted by bird and the change of blade profile before and after the impact, the anti-bird impact performance of blades in the first fan rotor is verified. The basis of anti-foreign object damage design for the fan rotor blades of an aeroengine is provided.

  18. Measurement and Modelling of Multicopter UAS Rotor Blades in Hover

    Science.gov (United States)

    Nowicki, Nathalie

    2016-01-01

    Multicopters are becoming one of the more common and popular type of unmanned aircraft systems (UAS) which have both civilian and military applications. One example being the concept of drone deliveries proposed by the distribution company Amazon [1]. The electrical propulsion is considered to have both faster and easier deliveries and also environmental benefits compared to other vehicles that still use fossil fuel. Other examples include surveillance and just simple entertainment. The reason behind their success is often said to be due to their small size, relatively low cost, simple structure and finally simple usage. With an increase in the UAS market comes challenges in terms of security, as both people and other aircrafts could be harmed if not used correctly. Therefore further studies and regulations are needed to ensure that future use of drones, especially in the civilian and public sectors, are safe and efficient. Thorough research has been done on full scale, man or cargo transporting, helicopters so that most parts of flight and performance are fairly well understood. Yet not much of it have been verified for small multicopters. Until today many studies and research projects have been done on the control systems, navigation and aerodynamics of multicopters. Many of the methods used today for building multicopters involve a process of trial an error of what will work well together, and once that is accomplished some structural analysis of the multicopter bodies might be done to verify that the product will be strong enough and have a decent aerodynamic performance. However, not much has been done on the research of the rotor blades, especially in terms of structural stress analyses and ways to ensure that the commonly used parts are indeed safe and follow safety measures. Some producers claim that their propellers indeed have been tested, but again that usually tends towards simple fluid dynamic analyses and even simpler stress analyses. There is no real

  19. Fatigue life prediction and strength degradation of wind turbine rotor blade composites

    NARCIS (Netherlands)

    Nijssen, R.P.L.

    2006-01-01

    Wind turbine rotor blades are subjected to a large number of highly variable loads, but life predictions are typically based on constant amplitude fatigue behaviour. Therefore, it is important to determine how service life under variable amplitude fatigue can be estimated from constant amplitude fat

  20. A multi-frequency fatigue testing method for wind turbine rotor blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Belloni, Federico; Tesauro, Angelo

    2017-01-01

    Rotor blades are among the most delicate components of modern wind turbines. Reliability is a crucial aspect, since blades shall ideally remain free of failure under ultra-high cycle loading conditions throughout their designated lifetime of 20–25 years. Full-scale blade tests are the most accura...

  1. Artificial Icing Test CH-47C Helicopter with Fiberglass Rotor Blades.

    Science.gov (United States)

    1979-07-01

    fiberglass rotor blades and the intake and exhaust ports for the prototype de-ice system generator . The following general aircraft information is...shut off valve was provided in the tubing run to the generator set fuel inlet. 22 0~0 zgI ogoo j 000 LiJ 2I Photo 3. De-ice System Generator Installation

  2. Assessment Report on Innovative Rotor Blades (MAREWINT WP1,D1.3)

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Leble, Vladimir; Pereira, Gilmar Ferreira

    the innovative concept development for wind turbine blades. This covers models and experiments with damage measurement systems embedded within the composite material/structure and numerical methods investigating the effects of leading and trailing edge flaps on modifying the aerodynamic loads on the operating......The offshore wind energy industry faces many challenges in the short to medium term if it is to meet the ambitions of the global community for sustainable energy supply in the future. Not least among these challenges is the issue of rotor blades. Innovative design for “smart” rotor blades...... with embedded sensors and actuation are being developed that will deliver an improved whole-life performance, and a structural health management based operational concept. In this report, the work of two early stage researchers within the Initial Training Network MAREWINT is presented that support...

  3. Flow Modification over Rotor Blade with Suction Boundary Layer Control Technique

    Directory of Open Access Journals (Sweden)

    Navneet Kumar

    2016-06-01

    Full Text Available The efficiency of transonic aircraft engines depend upon the performance of compressor rotor. To increase compressor rotors performance flow separation around rotor blades must be delayed and controlled. The aim was to control the flow separation of blades using suction boundary layer control method. Rotor blade has been modelled in designing software CATIA and then a suction surface has been created on blade and then import these geometries to ANSYS-CFX 14.5 for computational analysis of flow around blades. Suction slot has been applied at the trailing edge of suction surface and Shear stress transport model has been used for computational analysis. Two different suction mass flow rates 1 kg/s and 1.5 kg/s have been used here and boundary layer separation effects have been changed and this could be readily seen that the velocity vectors have reattached, preventing the boundary layer separation at the suction surface of the blade.

  4. Shape Optimization of Rotor Blade for Pulp Pressure Screen Based on FLUENT

    Directory of Open Access Journals (Sweden)

    Qu Qingwen

    2013-10-01

    Full Text Available The study got two modified blades by changing the structure and shape of the rotor blade of the pressure screen. Pulp flow field in the same condition is numerically simulated by the fluid dynamics software FLUENT. The pressure distribution is showed especially in the location of the sieve drum circle. The ideal blade structure is obtained by the pressure field compared with conventional blades. It has strong cleaning ability and not easy to blockage sieve drum. The shape of the rotor blade is optimized. The blade shape is analyzed to the influence law of energy consumption. It is proved that the new rotor has energy-saving advantages. It is significant to improve the performance of pulp screening equipment. The theoretical support for select of blade shape of bars is provided by analysis of flow field.

  5. A study of casing treatment stall margin improvement phenomena. [for axial compressor rotor blade tips

    Science.gov (United States)

    Prince, D. C., Jr.; Wisler, D. C.; Hilvers, D. E.

    1975-01-01

    The results of a program of experimental and analytical research in casing treatments over axial compressor rotor blade tips are presented. Circumferential groove, axial-skewed slot and blade angle slot treatments were tested at low speeds. With the circumferential groove treatment the stalling flow was reduced 5.8% at negligible efficiency sacrifice. The axial-skewed slot treatment improved the stalling flow by 15.3%; 1.8 points in peak efficiency were sacrificed. The blade angle slot treatment improved the stalling flow by 15.0%; 1.4 points in peak efficiency were sacrificed. The favorable stalling flow situations correlated well with observations of higher-than-normal surface pressures on the rotor blade pressure surfaces in the tip region, and with increased maximum diffusions on the suction surfaces. Annulus wall pressure gradients, especially in the 50 to 75% chord region, are also increased and blade surface pressure loadings are shifted toward the trailing edge for treated configurations.

  6. Performance of a Low Speed Axial Compressor Rotor Blade Row under Different Inlet Distortions

    Directory of Open Access Journals (Sweden)

    R. Taghavi Zenouz

    2017-05-01

    Full Text Available Responses of an axial compressor isolated rotor blade row to various inlet distortions have been investigated utilizing computational fluid dynamic technique. Distortions have been imposed by five screens of different geometries, but with the same blockage ratio. These screens were embedded upstream of the rotor blade row. Flow fields are simulated in detail for compressor design point and near stall conditions. Performance curves for distorted cases are extracted and compared to the undisturbed case. Flow simulations and consequent performance characteristics show that the worst cases belong to non-symmetric blockages, i.e., those of partial circumferential configurations. These cases produce the largest wakes which can disturb the flow, considerably. Superior performances correspond to the inner and outer continuous circumferential distortion screens. Since, they produce no significant disturbances to the main flow in comparison to the non-symmetric screens.

  7. MEASUREMENTS OF PRESSURE DISTRIBUTIONS ON A ROTOR BLADE USING PSP TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Kidong Kim

    2011-12-01

    Full Text Available Surface pressure distributions on a rotating blade were measured by using pressure sensitive paint (PSP to understand aerodynamic characteristics of a rotor blade. The present study was conducted to investigate the PSP techniques for measuring the pressure distributions on a rotor blade. In order to perform the experiment, the PSP was required to response very fast due to rapid pressure fluctuations on a rotor blade. High energy excitation light source was also needed to acquire proper intensity images in a short excitation time. The techniques were based on a lifetime method. Qualitative pressure distributions on an upper surface of small scale rotor in hovering condition were measured as a preliminary experiment prior to forward flight conditions in the KARI low speed wind tunnel laboratory. From measured pressure distributions, striking pressure gradient was observed on an upper surface of rotor blade and the resulting pressure showed expected gradient depending on different collective pitch angles. ABSTRAK : Pengagihan tekanan permukaan ke atas berbilah putar disukat menggunakan cat sensitive tekanan (pressure sensitive paint (PSP untuk memahami sifat-sifat aerodinamik suatu berbilah putar. Kajian telah dijalankan untuk menyelidik teknik-teknik PSP dengan mengukur agihan tekanan ke atas suatu berbilah putar. Agar eksperimen dapat dijalankan dengan baik, PSP harus bertindak cepat kerana tekanan naik turun dengan pantas ke atas berbilah putar. Sumber cahaya ujaan tenaga tinggi diperlukan untuk mendapatkan imej keamatan wajar dalam jangka masa ujaan yang pendek. Teknik-teknik tersebut terhasil daripada kajian semasa hayat. Agihan tekanan kualitatif ke permukaan atas berskala kecil pemutar dalam keadaan mengapung diukur sebagai permulaan eksperimen, sebelum penerbangan kehadapan dalam makmal terowong angin laju rendah KARI. Daripada agihan tekanan yang disukat, kecerunan tekanan yang ketara diperolehi daripada permerhatian terhadap permukaan

  8. Stress analysis of advanced attack helicopter composite main rotor blade root end lug

    Science.gov (United States)

    Baker, D. J.

    1982-01-01

    Stress analysis of the Advanced Attack Helicopter (AAH) composite main rotor blade root end lug is described. The stress concentration factor determined from a finite element analysis is compared to an empirical value used in the lug design. The analysis and test data indicate that the stress concentration is primarily a function of configuration and independent of the range of material properties typical of Kevlar-49/epoxy and glass epoxy.

  9. Study of the Effect of Centrifugal Force on Rotor Blade Icing Process

    Directory of Open Access Journals (Sweden)

    Zhengzhi Wang

    2017-01-01

    Full Text Available In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.

  10. DESIGN OF TWO-DIMENSIONAL SUPERSONIC TURBINE ROTOR BLADES WITH BOUNDARY-LAYER CORRECTION

    Science.gov (United States)

    Goldman, L. J.

    1994-01-01

    A computer program has been developed for the design of supersonic rotor blades where losses are accounted for by correcting the ideal blade geometry for boundary layer displacement thickness. The ideal blade passage is designed by the method of characteristics and is based on establishing vortex flow within the passage. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal passage, and the final blade geometry is obtained by adding the displacement thicknesses to the ideal nozzle coordinates. The boundary-layer parameters are also used to calculate the aftermixing conditions downstream of the rotor blades assuming the flow mixes to a uniform state. The computer program input consists essentially of the rotor inlet and outlet Mach numbers, upper- and lower-surface Mach numbers, inlet flow angle, specific heat ratio, and total flow conditions. The program gas properties are set up for air. Additional gases require changes to be made to the program. The computer output consists of the corrected rotor blade coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 7094. This program was developed in 1971.

  11. Foreign Object Damage to Fan Rotor Blades of Aeroengine Part Ⅱ: Numerical Simulation of Bird Impact

    Institute of Scientific and Technical Information of China (English)

    Guan Yupu; Zhao Zhenhua; Chen Wei; Gao Deping

    2008-01-01

    Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carried out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results.

  12. Study to Improve Airframe Turbine Engine Rotor Blade Containment

    Science.gov (United States)

    1977-07-01

    high turbine, and low turbine were determined.* It was assumed that multiple blade fragments behaved as a single mass equivalent to the mass sum of all...case in the low turbine area generally produces detectable noise, thrust losses and vibration and in all probability the engine would be shut down

  13. Fe Analysis of a Steam Turbine HP Rotor Blade Stage Concerning Material Effort, Dynamic Properties and Creep Damage Assessment

    Directory of Open Access Journals (Sweden)

    Borkowski Paweł

    2016-03-01

    Full Text Available This paper is concerned with the 1st stage of HP rotor blade assembly steam turbine TK 120. The methodology was focused on the selection of mechanical properties and the way of the rotor disc modeling and estimating the degree of damage caused by creep. Then the dynamic interference between the frequencies of excitation and the natural frequencies was assessed. Static calculations were performed for the cyclic sectors consisting of the disc, disc blades, spacers and shrouding, including loads as temperature, mass forces from the angular velocity and the pressure on the blades. Then, the creep analysis using a Norton’s model and the modal analysis were performed. Static analysis gave information concerning the distributions of displacements, stress and strain components. In the creep analysis, the creep displacements and stress relaxation versus time were determined and the estimated degree of damage caused by creep was evaluated at each part of the rotor disc. In the modal analysis, the natural frequencies and modes of vibrations corresponding to the nodal diameters were found. The results of modal analysis were shown in the SAFE graph. Numerical calculations have shown that the rotor disc was a well-designed structure and did not reveal any dynamic interference.

  14. Multidisciplinary Optimization of Tilt Rotor Blades Using Comprehensive Composite Modeling Technique

    Science.gov (United States)

    Chattopadhyay, Aditi; McCarthy, Thomas R.; Rajadas, John N.

    1997-01-01

    An optimization procedure is developed for addressing the design of composite tilt rotor blades. A comprehensive technique, based on a higher-order laminate theory, is developed for the analysis of the thick composite load-carrying sections, modeled as box beams, in the blade. The theory, which is based on a refined displacement field, is a three-dimensional model which approximates the elasticity solution so that the beam cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are included automatically in the formulation. The model can accurately capture the transverse shear stresses through the thickness of each wall while satisfying stress free boundary conditions on the inner and outer surfaces of the beam. The aerodynamic loads on the blade are calculated using the classical blade element momentum theory. Analytical expressions for the lift and drag are obtained based on the blade planform with corrections for the high lift capability of rotor blades. The aerodynamic analysis is coupled with the structural model to formulate the complete coupled equations of motion for aeroelastic analyses. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt rotor aircraft. The objective functions include the figure of merit in hover and the high speed cruise propulsive efficiency. Structural, aerodynamic and aeroelastic stability criteria are imposed as constraints on the problem. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem. The search direction is determined by the Broyden-Fletcher-Goldfarb-Shanno algorithm. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt rotor blade.

  15. Technology transfer between aircraft and rotor blade manufacturing; Technologietransfer zwischen Flugzeugbau und Rotorblattbau

    Energy Technology Data Exchange (ETDEWEB)

    Apmann, H. [Premium Aerotec GmbH (Germany)

    2011-02-15

    Aircraft construction and rotor blade production do have some basic things in common. Among these are the material to be processed, the dimensions, as well as the component requirements. Therefore, a possible technology exchange is obvious. Common points like the application of tools and handling units for fibre material, self-tempering systems, tolerance management, component and process development as well as transport assignments, demonstrate the common subjects, but also the differences of both areas. Therefore, both branches can learn from each other and profit from the respective experiences. An example of a successful cross-sectoral cooperation is shown. Curing tools made of steel for the production of rotor blade components have been generated on the basis of the experience and the existent know-how in the production systems area of Premium Aerotec GmbH (a worldwide leading supplier of aircraft structures). The essential advantages of such a steel-curing tool, like the faster heat transfer between heat- and cooling medium and component, higher stability time of the mould, more robust characteristics compared with loads etc. are shown in the production result. By the application of this tool, the production time of the components could be nearly halved. The given tolerances are kept and the process security is raised substantially. Due to the shorter production time the productivity is increased considerably and the growing requirements of the market can be met. Based on the example of this tool, which is used successfully in the serial production for rotor blade components, it's obvious how fast cross-sectoral experiences can lead to a common aim and success. On the basis of this experience further developments in the areas of tools, handling systems and process development are currently carried out. Among others, a new system for tempering of steel moulds, which at the same time will be equipped with a surface coating of the cover sheets, is being

  16. Measurement of unsteady surface pressure on rotor blades of fans by pressure-sensitive paint

    Science.gov (United States)

    Yokoyama, Hiroshi; Miura, Kouhei; Iida, Akiyoshi

    2017-01-01

    To clarify the unsteady pressure distributions on the rotor blades of an axial fan, a pressure-sensitive paint (PSP) technique was used. To capture the image of the rotating fan as a static image, an optical derotator method with a dove prism was adopted. It was confirmed by preliminary experiments with a resonator and a speaker that the pressure fluctuations with 347 Hz can be measured by the present PSP. The measured mean pressure distributions were compared with the predicted results based on large-eddy simulations. The measured instantaneous surface pressure is instrumental to identify acoustic source of fan noise in the design stage.

  17. Thermographic inspection of wind turbine rotor blade segment utilizing natural conditions as excitation source, Part II: The effect of climatic conditions on thermographic inspections - A long term outdoor experiment

    Science.gov (United States)

    Worzewski, Tamara; Krankenhagen, Rainer; Doroshtnasir, Manoucher

    2016-05-01

    The present study continues the work described in part I of this paper in evaluating a long-term-experiment, where a rotor blade segment of a wind turbine is exposed to the elements and thereby monitored with passive thermography. First, it is investigated whether subsurface features in rotor blades - mainly made of GFRP - can generally be detected with thermography from greater distances under favorable conditions. The suitability of the sun for acting as a heat source in applying active thermography has been tested in the previous study. In this study, the climatic influence on thermographic measurement is evaluated. It is demonstrated that there are favorable and unfavorable circumstances for imaging thermal contrasts which reflect inner structures and other subsurface features like potential defects. It turns out that solar radiation serves as a very effective heat source, but not at all times of day. Other environmental influences such as diurnal temperature variations also create temperature contrasts that permit conclusions on subsurface features. Particular scenarios are reconstructed with FEM-simulations in order to gain deeper insight into the driving mechanisms that produce the observed thermal contrasts. These investigations may help planning useful outdoor operations for inspecting rotor blades with thermography.

  18. Study of casing treatment stall margin improvement phenomena. [for compressor rotor blade tips compressor blades rotating stalls

    Science.gov (United States)

    Prince, D. C., Jr.; Wisler, D. C.; Hilvers, D. E.

    1974-01-01

    The results of a program of experimental and analytical research in casing treatments over axial compressor rotor blade tips are presented. Circumferential groove, axial-skewed slot, and blade angle slot treatments were tested. These yielded, for reduction in stalling flow and loss in peak efficiency, 5.8% and 0 points, 15.3% and 2.0 points, and 15.0% and 1.2 points, respectively. These values are consistent with other experience. The favorable stalling flow situations correlated well with observations of higher-then-normal surface pressures on the rotor blade pressure surfaces in the tip region, and with increased maximum diffusions on the suction surfaces. Annular wall pressure gradients, especially in the 50-75% chord region, are also increased and blade surface pressure loadings are shifted toward the trailing edge for treated configurations. Rotor blade wakes may be somewhat thinner in the presence of good treatments, particularly under operating conditions close to the baseline stall.

  19. Antifreeze coatings for rotor blades of wind turbines - Final report; Antifreeze Beschichtungen fuer Rotorblaetter von Windenergieanlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Siegmann, K.; Meola, G.; Hirayama, M.

    2009-08-15

    Iced rotor blades drastically reduce the energy production of wind turbines. In addition, ice throw from the iced blades can be dangerous. There are yet no convincing solutions for the icing problem. An interesting approach is the use of a rotor blade coating. We have developed a coating which influences the freezing behaviour of water. In this report, we describe tests on the antifreeze-coatings developed by us. It is shown that water droplets on the antifreeze coating freeze later than droplets on the untreated glass. This effect could lead to a non-icing of coated rotor blades, because the droplets could be blown of the blade before they can freeze. Additionally, the ice adhesion to the antifreeze coatings is measured. Ice adheres to the antifreeze coating about as good as to bare aluminium and better than to adhesion reducing coatings. (authors)

  20. Panel/full-span free-wake coupled method for unsteady aerodynamics of helicopter rotor blade

    Institute of Scientific and Technical Information of China (English)

    Tan Jianfeng; Wang Haowen

    2013-01-01

    A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight.The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors,and the full-span free-wake method is applied to simulating dynamics of rotor wake.These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments.A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades.Helicopter rotors including Caradonna-Tung,UH-60A,and AH-1G rotors,are simulated in hover and forward flight to validate the accuracy of this approach.The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results,and the unsteady dynamics of rotor wake is also well simulated.Compared to CFD,the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.

  1. Some issues on modeling atmospheric turbulence experienced by helicopter rotor blades

    Science.gov (United States)

    Costello, Mark; Gaonkar, G. H.; Prasad, J. V. R.; Schrage, D. P.

    1992-01-01

    The atmospheric turbulence velocities seen by nonrotating aircraft components and rotating blades can be substantially different. The differences are due to the spatial motion of the rotor blades, which move fore and aft through the gust waves. Body-fixed atmospheric turbulence refers to the actual atmospheric turbulence experienced by a point fixed on a nonrotating aircraft component such as the aircraft's center of gravity or the rotor hub, while blade-fixed atmospheric turbulence refers to the atmospheric turbulence experienced by an element of the rotating rotor blade. An example is presented, which, though overly simplified, shows important differences between blade- and body-fixed rotorcraft atmospheric turbulence models. All of the information necessary to develop the dynamic equations describing the atmospheric turbulence velocity field experienced by an aircraft is contained in the atmospheric turbulence velocity correlation matrix. It is for this reason that a generalized formulation of the correlation matrix describing atmospheric turbulence that a rotating blade encounters is developed. From this correlation matrix, earlier treated cases restricted to a rotor flying straight and level directly into the mean wind can be recovered as special cases.

  2. Aeroelastic response and stability of tiltrotors with elastically-coupled composite rotor blades. Ph.D. Thesis

    Science.gov (United States)

    Nixon, Mark W.

    1993-01-01

    There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via

  3. A multi-frequency fatigue testing method for wind turbine rotor blades

    Science.gov (United States)

    Eder, M. A.; Belloni, F.; Tesauro, A.; Hanis, T.

    2017-02-01

    Rotor blades are among the most delicate components of modern wind turbines. Reliability is a crucial aspect, since blades shall ideally remain free of failure under ultra-high cycle loading conditions throughout their designated lifetime of 20-25 years. Full-scale blade tests are the most accurate means to experimentally simulate damage evolution under operating conditions, and are therefore used to demonstrate that a blade type fulfils the reliability requirements to an acceptable degree of confidence. The state-of-the-art testing method for rotor blades in industry is based on resonance excitation where typically a rotating mass excites the blade close to its first natural frequency. During operation the blade response due to external forcing is governed by a weighted combination of its eigenmodes. Current test methodologies which only utilise the lowest eigenfrequency induce a fictitious damage where additional tuning masses are required to recover the desired damage distribution. Even with the commonly adopted amplitude upscaling technique fatigue tests remain a time-consuming and costly endeavour. The application of tuning masses increases the complexity of the problem by lowering the natural frequency of the blade and therefore increasing the testing time. The novel method presented in this paper aims at shortening the duration of the state-of-the-art fatigue testing method by simultaneously exciting the blade with a combination of two or more eigenfrequencies. Taking advantage of the different shapes of the excited eigenmodes, the actual spatial damage distribution can be more realistically simulated in the tests by tuning the excitation force amplitudes rather than adding tuning masses. This implies that in portions of the blade the lowest mode is governing the damage whereas in others higher modes contribute more significantly due to their higher cycle count. A numerical feasibility study based on a publicly available large utility rotor blade is used to

  4. On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades

    Science.gov (United States)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization

  5. Aerodynamic parametric studies and sensitivity analysis for rotor blades in axial flight

    Science.gov (United States)

    Chiu, Y. D.; Peters, David A.

    1991-01-01

    The analytical capability is offered for aerodynamic parametric studies and sensitivity analyses of rotary wings in axial flight by using a 3D undistorted wake model in curved lifting line theory. The governing equations are solved by both the Multhopp Interpolation technique and the Vortex Lattice method. The singularity from the bound vortices is eliminated through the Hadamard's finite part concept. Good numerical agreement between both analytical methods and finite differences methods are found. Parametric studies were made to assess the effects of several shape variables on aerodynamic loads. It is found, e.g., that a rotor blade with out-of-plane and inplane curvature can theoretically increase lift in the inboard and outboard regions respectively without introducing an additional induced drag.

  6. Aerodynamic parameter studies and sensitivity analysis for rotor blades in axial flight

    Science.gov (United States)

    Chiu, Y. Danny; Peters, David A.

    1991-01-01

    The analytical capability is offered for aerodynamic parametric studies and sensitivity analyses of rotary wings in axial flight by using a 3-D undistorted wake model in curved lifting line theory. The governing equations are solved by both the Multhopp Interpolation technique and the Vortex Lattice method. The singularity from the bound vortices is eliminated through the Hadamard's finite part concept. Good numerical agreement between both analytical methods and finite differences methods are found. Parametric studies were made to assess the effects of several shape variables on aerodynamic loads. It is found, e.g., that a rotor blade with out-of-plane and inplane curvature can theoretically increase lift in the inboard and outboard regions respectively without introducing an additional induced drag.

  7. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  8. Condition monitoring of rotor blades of wind power systems; Zustandsueberwachung von Rotorblaettern an Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Frankenstein, B.; Froehlich, K.J.; Lieske, U.; Schuber, L. [Fraunhofer Institut Zerstoerungsfreie Pruefverfahren (IZFP), Institutsteil Dresden (Germany)

    2007-07-01

    The Fraunhofer Institute of Non-Destructive Testing Dresden (IzfP-D) uses condition monitoring systems, which by permanent monitoring e.g. of wind rotors, aircraft components, or pipelines are to ensure high availability of the object. This way, damage (e.g. crack initiation and propagation, delamination) can be detected early, and early repair measures will lengthen the life of the components and reduce standstill times during repair. Guided elastic waves are used for wind rotor monitoring, which are induced by piezo fibre converters. The contribution describes the method and measuring instrumentation for generation and detection of acoustic waves in composite materials. The focus is on static load tests of rotor blades, of which the status and trends are presented. (orig.)

  9. Extracting radar micro-Doppler signatures of helicopter rotating rotor blades using K-band radars

    Science.gov (United States)

    Chen, Rachel; Liu, Baokun

    2014-06-01

    Helicopter identification has been an attractive topic. In this paper, we applied radar micro-Doppler signatures to identify helicopter. For identifying the type of a helicopter, besides its shape and size, the number of blades, the length of the blade, and the rotation rate of the rotor are important features, which can be estimated from radar micro-Doppler signatures of the helicopter's rotating rotor blades. In our study, K-band CW/FMCW radars are used for collecting returned signals from helicopters. By analyzing radar micro-Doppler signatures, we can estimate the number of blades, the length of the blade, the angular rotation rate of the rotating blade, and other necessary parameters for identifying the type of a helicopter.

  10. Design Of Rotor Blade For Vertical Axis Wind Turbine Using Double Aerofoil

    DEFF Research Database (Denmark)

    Chougule, Prasad; Ratkovich, Nicolas Rios; Kirkegaard, Poul Henning

    Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use because they generate less noise, have bird free turbines and lower cost. There is few vertical axis wind turbines design with good power curve....... However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design....... In this current work two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect...

  11. Design Of Rotor Blade For Vertical Axis Wind Turbine Using Double Aerofoil

    DEFF Research Database (Denmark)

    Chougule, Prasad; Ratkovich, Nicolas Rios; Kirkegaard, Poul Henning;

    Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use because they generate less noise, have bird free turbines and lower cost. There is few vertical axis wind turbines design with good power curve....... However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design....... In this current work two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect...

  12. Development of a model based Structural-Health-Monitoring-Systems for condition monitoring of rotor blades; Entwicklung eines modellgestuetzten Structural-Health-Monitoring-Systems zur Zustandsueberwachung von Rotorblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, C.; Friedmann, H.; Henkel, F.O. [Woelfel Beratende Ingenieure GmbH und Co.KG, Hoechberg (Germany); Frankenstein, B.; Schubert, L. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren, Dresden (Germany)

    2010-07-01

    The authors of the contribution under consideration report on a development of a Structural-Health-Monitoring-System which is to supervise the condition of the rotor blades of wind power plants and to detect in time structural changes before total failures. It is based on a combination of measuring techniques from the areas of the led rollers in the ultrasonic range and low-frequency modal analysis. The combination of both techniques was already promisingly used with past investigations of rotor blades. By means of modal analysis, statements to the total behaviour of the structure of rotor blades are possible. Endangered and strongly stressed areas additionally are supervised by led rollers within the ultrasonic range. The authors also report on the conception and execution of a fatigue test at a material rotor blade with a length by 39.1 m.

  13. Condition monitoring of rotor blades of modern wind power systems; Ueberwachung mit Hertz. Condition Monitoring von Rotorblaettern moderner Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, Nikolaus

    2010-06-15

    With seven wind turbines, the Austrian wind farm ''Sternwald'' is the biggest wind farm in Upper Austria. It is the only wind farm in a forest, and all turbines are therefore equipped with automatic fire fighting equipment. The mountain range on which the wind farm is located is about 1000 m high, with strong wind and much ice and snow in the winter season. For this reason, the owner decided to instal a condition monitoring system with ice detectors. The piezoelectric sensors are mounted directly on the rotor blades as measurements on the nacelle will always be incorrect. Installation on the rotor blades, on the other hand, makes high demands on the fastenings and sensors as the velocity of the blade tips may be up to 250 km per hour. (orig.)

  14. OPTIMIZING THE SHAPE OF ROTOR BLADES FOR MAXIMUM POWER EXTRACTION IN MARINE CURRENT TURBINES

    Directory of Open Access Journals (Sweden)

    J.A. Esfahani

    2012-12-01

    Full Text Available In this paper the shape of rotor blades in Marine Current Turbines (MCTs are investigated. The evaluation of hydrodynamic loads on blades is performed based on the Blade Element Momentum (BEM theory. The shape of blades is optimized according to the main parameters in the configuration and operation of these devices. The optimization is conducted based on the ability of the blades to harness the maximum energy during operating. The main parameters investigated are the tip speed ratio and angle of attack. Furthermore, the influence of these parameters on the maximum energy extraction from fluid flow over a hydrofoil is evaluated. It is shown that the effect of the angle of attack on power extraction is greater than that of the tip speed ratio, while both are found to be significant. Additionally, the proper angle of attack is the angle at which the lift to drag ratio is at its maximum value. However, if a proper angle of attack is chosen, the variations in power coefficient would not be effectively changed with small variations in the tip speed ratio.

  15. Numerical investigation on super-cooled large droplet icing of fan rotor blade in jet engine

    Science.gov (United States)

    Isobe, Keisuke; Suzuki, Masaya; Yamamoto, Makoto

    2014-10-01

    Icing (or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents. Although various anti-icing and deicing systems have been developed, such accidents still occur. Therefore, it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine. However, flight tests for ice accretion are very expensive, and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur. Therefore, it is expected that computational fluid dynamics (CFD), which can estimate ice accretion in various climate conditions, will be a useful way to predict and understand the ice accretion phenomenon. On the other hand, although the icing caused by super-cooled large droplets (SLD) is very dangerous, the numerical method has not been established yet. This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature. In the present study, we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing, and the code is applied to a fan rotor blade. The numerical results with and without the SLD icing model are compared. Through this study, the influence of the SLD icing model is numerically clarified.

  16. Control of LP Turbine Rotor Blade Underloading Using Stator Blade Compound Lean at Root

    Institute of Scientific and Technical Information of China (English)

    PiotrLampart

    2000-01-01

    Due to a large gradient of reaction,LP rotor blades remain underloaded at the root over some range of volumetric flow rates.An interesting design to control the flow through the root passage of the overloaded stator and underloaded moving blade row is compound lean at the root of stator blades.The paper describes results of numerical investigations from a 3D NS solver FlowER conducted for several configurations of stator blade compund lean.The computations are carried out for a wide range of volumetric flow rates.accounting for the nominal operating regime as well as low and high load.It is found that compund lean induces additional blade force.streamwise curature and redistribution of flow parameters in the stage,including pressure and mass flow rate spanwise that can improve the flow conditions in both the stator and the rotor.The obtained efficiency improvements depend greatly on the flow regime,with the highest gains in the region of low load.

  17. Integration of dynamic, aerodynamic and structural optimization of helicopter rotor blades

    Science.gov (United States)

    Peters, David A.

    1987-01-01

    The purpose of the research is to study the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for helicopter rotorblades. This is to be done in three phases. Task 1 is to bring on-line computer codes that could perform the finite-element frequency analyses of rotor blades. The major features of this program are summarized. The second task was to bring on-line an optimization code for the work. Several were tried and it was decided to use CONMIN. Explicit volume constraints on the thicknesses and lumped masses used in the optimization were added. The specific aeroelastic constraint that the center of mass must be forward of the quarter chord in order to prevent flutter was applied. The bending-torsion coupling due to cg-ea offset within the blade cross section was included. Also included were some very simple stress constraints. The first three constraints are completed, and the fourth constraint is being completed.

  18. Flow performance of highly loaded axial fan with bowed rotor blades

    Science.gov (United States)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  19. Trailing Vortex Measurements in the Wake of a Hovering Rotor Blade with Various Tip Shapes

    Science.gov (United States)

    Martin, Preston B.; Leishman, J. Gordon

    2003-01-01

    This work examined the wake aerodynamics of a single helicopter rotor blade with several tip shapes operating on a hover test stand. Velocity field measurements were conducted using three-component laser Doppler velocimetry (LDV). The objective of these measurements was to document the vortex velocity profiles and then extract the core properties, such as the core radius, peak swirl velocity, and axial velocity. The measured test cases covered a wide range of wake-ages and several tip shapes, including rectangular, tapered, swept, and a subwing tip. One of the primary differences shown by the change in tip shape was the wake geometry. The effect of blade taper reduced the initial peak swirl velocity by a significant fraction. It appears that this is accomplished by decreasing the vortex strength for a given blade loading. The subwing measurements showed that the interaction and merging of the subwing and primary vortices created a less coherent vortical structure. A source of vortex core instability is shown to be the ratio of the peak swirl velocity to the axial velocity deficit. The results show that if there is a turbulence producing region of the vortex structure, it will be outside of the core boundary. The LDV measurements were supported by laser light-sheet flow visualization. The results provide several benchmark test cases for future validation of theoretical vortex models, numerical free-wake models, and computational fluid dynamics results.

  20. Helicopter rotor blade frequency evolution with damage growth and signal processing

    Science.gov (United States)

    Roy, Niranjan; Ganguli, Ranjan

    2005-05-01

    Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used to analyze the effect of damage growth on the modal frequencies in a qualitative manner. Phenomenological models of material degradation for homogenous and composite materials are used. Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally, since operational data are noisy and also contaminated with outliers, denoising algorithms based on recursive median filters and radial basis function neural networks and wavelets are studied and compared with a moving average filter using simulated data for improved health-monitoring application. A novel recursive median filter is designed using integer programming through genetic algorithm and is found to have comparable performance to neural networks with much less complexity and is better than wavelet denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage indicators.

  1. Multiaxial fatigue of in-service aluminium longerons for helicopter rotor-blades

    Directory of Open Access Journals (Sweden)

    A. Shanyavskiy

    2016-10-01

    Full Text Available Fatigue cracking of longerons manufactured from Al-alloy AVT-1 for helicopter in-service rotor-blades was considered and crack growth period and equivalent of tensile stress for different blade sections were estimated. Complicated case of in-service blades multiaxial cyclically bending-rotating and tension can be considered based on introduced earlier master curve constructed for aluminum alloys in the simple case of uniaxial tension with stress R-ratio near to zero. Calculated equivalent tensile stress was compared for different blade sections and it was shown that in-service blades experienced not principle difference in this value in the crack growth direction by the investigated sections. It is not above the designed equivalent stress level. Crack growth period estimation in longerons based on fatigue striation spacing or meso-beach-marks measurements has shown that monitoring system introduced designer in longerons can be effectively used for in-time crack detecting independently on the failed section when can appeared because of various type of material faults or in-service damages

  2. Design Framework for Vibration Monitoring Systems for Helicopter Rotor Blade Monitoring Using Wireless Sensor Networks

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Jauregui Becker, Juan Manuel; Tinga, Tiedo; Chang, F.-K

    2013-01-01

    The pursue of methods for supporting Structural Health Monitoring (SHM) has been an important driver for the technological innovation in several engineering fields such as wireless communication, sensing and power harvesting. However, despite of the innovative and scientific value of these advances,

  3. Unified continuum damage model for matrix cracking in composite rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  4. Influence of time domain unsteady aerodynamics on coupled flap-lag-torsional aeroelastic stability and response of rotor blades

    Science.gov (United States)

    Friedmann, P. P.; Robinson, L. H.

    1988-01-01

    This paper describes the incorporation of finite-state, time-domain aerodynamics in a flag-lag-torsional aeroelastic stability and response analysis in forward flight. Improvements to a previous formulation are introduced which eliminate spurious singularities. The methodology for solving the aeroelastic stability and response problems with augmented states, in the time domain, is presented using an implicit formulation. Results describing the aeroelastic behavior of soft and stiff in-plane hingeless rotor blades, in forward flight, are presented to illustrate the sensitivity of both the stability and response problems to time domain unsteady aerodynamics.

  5. Influence of time domain unsteady aerodynamics on coupled flap-lag-torsional aeroelastic stability and response of rotor blades

    Science.gov (United States)

    Friedmann, P. P.; Robinson, L. H.

    1988-01-01

    This paper describes the incorporation of finite-state, time-domain aerodynamics in a flag-lag-torsional aeroelastic stability and response analysis in forward flight. Improvements to a previous formulation are introduced which eliminate spurious singularities. The methodology for solving the aeroelastic stability and response problems with augmented states, in the time domain, is presented using an implicit formulation. Results describing the aeroelastic behavior of soft and stiff in-plane hingeless rotor blades, in forward flight, are presented to illustrate the sensitivity of both the stability and response problems to time domain unsteady aerodynamics.

  6. Data Summary Report for the Open Rotor Propulsion Rig Equipped With F31/A31 Rotor Blades

    Science.gov (United States)

    Stephens, David

    2014-01-01

    An extensive wind tunnel test campaign was undertaken to quantify the performance and acoustics of a counter-rotating open rotor system. The present document summarizes the portion of this test performed with the so-called Historical Baseline rotor blades, designated F31A31. It includes performance and acoustic data acquired at Mach numbers from take-off to cruise. It also includes the effect of propulsor angle of attack as well as an upstream pylon. This report is accompanied by an electronic data set including relevant acoustic and performance measurements for all of the F31A31 data.

  7. Start-up circuit upgrading to reduce the erosion of the rotor blades of the last stages of steam turbines and prevent the mass strips of stellite plates

    Science.gov (United States)

    Bozhko, V. V.; Gorin, A. V.; Zaitsev, I. V.; Kovalev, I. A.; Nosovitskii, I. A.; Orlik, V. G.; Lomagin, S. N.; Chernov, V. P.

    2017-03-01

    At turbine starts with low steam flow rates in idle mode, the low-pressure rotor blades consume energy, causing the ventilation heating of the stages and creating higher depression in them than in the condenser. This leads to the return steam flows in the exhaust of the low-pressure cylinder (LPC), reducing the heat due to the moisture of starting steam damps and cooling injections. It is shown that, as a result of upgrading with the transition to fully milled shroud platforms of rotor blades, the depression in the stages decreases and their cooling efficiency is reduced due to the removal of an elastic turn of the rotor blades under the action of centrifugal forces and seal of them by periphery. Heating the rotor blades of the last stages exceeds the temperature threshold of soldering resistance of stellite plates (150°C), and their mass strips begin. The start-up circuit providing both the temperature retention of the last stages lower the soldering resistance threshold due to overwetting the steam damps up to saturation condition and the high degree of removal from the dump steam of excessive erosive-dangerous condensed moisture was proposed, applied, and tested at the operating power unit. The investment in the development and application of the new start-up circuit are compensated in the course of a year owing to guaranteed prevention of the strips of stellite plates that lengthens the service life of the rotor blades of the last stages as well as increase of the rotor blade efficiency due to the sharp decrease of erosive wear of the profiles and reduction of their surface roughness. This reduces the annual consumption of equivalent fuel by approximately 1000 t for every 100 MW of installed capacity.

  8. Optimizing parameters of GTU cycle and design values of air-gas channel in a gas turbine with cooled nozzle and rotor blades

    Science.gov (United States)

    Kler, A. M.; Zakharov, Yu. B.

    2012-09-01

    The authors have formulated the problem of joint optimization of pressure and temperature of combustion products before gas turbine, profiles of nozzle and rotor blades of gas turbine, and cooling air flow rates through nozzle and rotor blades. The article offers an original approach to optimization of profiles of gas turbine blades where the optimized profiles are presented as linear combinations of preliminarily formed basic profiles. The given examples relate to optimization of the gas turbine unit on the criterion of power efficiency at preliminary heat removal from air flows supplied for the air-gas channel cooling and without such removal.

  9. Effects of Mie tip-vane on pressure distribution of rotor blade and power augmentation of horizontal axis wind turbine; Yokutan shoyoku Mie ben ni yoru suiheijiku fusha yokumenjo no atsuryoku bunpu no kaizen to seino kojo tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Maeda, T.; Kamada, Y. [Mie Univ., Mie (Japan); Seto, H. [Mitsubishi Motors Corp., Tokyo (Japan)

    2000-04-01

    By recent developments of exclusive rotor blade, the efficiency of wind turbine is improved substantially. By measuring pressure on rotor blades of horizontal axis wind turbines rotating in wind tunnels, this report clarified relation between improvement of pressure distribution on main rotor blades by Mie vane and upgrade of wind turbine performance. The results under mentioned have been got by measuring pressure distribution on rotor blades, visualization by tuft, and measuring resistance of Mie vane. (1) The difference of pressure between suction surface and pressure surface on the end of rotor blade increase, and output power of wind turbine improves. (2) Vortex of blade end is inhibited by Mie vane. (3) The reason of reduction on wind turbine performance with Mie vane in aria of high rotating speed ratio is the increase of Mie vane flow resistance.(NEDO)

  10. Analysis of potential helicopter vibration reduction concepts

    Science.gov (United States)

    Landgrebe, A. J.; Davis, M. W.

    1984-01-01

    Several recent helicopter vibration reduction research programs are described. Results of studies of blade design parameters in rotor vibratory response and of an advanced blade design for reduced vibration are examined. An optimization approach to develop a general automated procedure for rotor blade design is described, and analytical results for an articulated rotor operating at a steady 160 kt flight condition are reported. The use of a self-adaptive controller to implement higher harmonic control in closed-loop fashion is addressed, and a computer simulation used to evaluate and compare the performance of alternative algorithms included in the generic active controller is discussed. Results are presented for steady level flight conditions, short-duration maneuvers, blade stresses and rotor performance, blade-appended aeroelastic devices, vibratory airloads, wake-induced blade airloads, and airloads from blade motions, the interaction of rotor and fuselage, and the interaction of rotor and empennage.

  11. The Seventh International Conference on Vibration Problems ICOVP 2005

    CERN Document Server

    İnan, Esin; ICOVP-2005

    2007-01-01

    This volume presents the Proceedings of the Seventh International Conference on Vibration Problems, held in Istanbul, Turkey, 05-09 September 2005. As with the earlier conferences in the ICOVP series, the purpose of ICOVP-2005 was to bring together scientists with different backgrounds, actively working on vibration-related problems of engineering both in theoretical and applied fields. The main objective did not lie, however, in reporting specific results as such, but rather in joining/exchanging different languages, questions and methods developed in the respective disciplines, and to thus stimulate a broad interdisciplinary research. The topics, indeed, vary from the effect of ground motion on the stochastic response of suspension bridges to coupling effects between different vibrations in rotor-blade systems. All lectures delivered at the Conference are recorded in their full text. Audience: Scientists, researchers and graduate students in physics and engineering

  12. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  13. Improved Active Vibration Isolation Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The control force, feedback gain, and actuator stroke of several active vibration isolation systems were analyzed based on a single-layer active vibration isolation system. The analysis shows that the feedback gain and actuator stroke cannot be selected independently and the active isolation system design must make a compromise between the feedback gain and actuator stroke. The performance of active isolation systems can be improved by the joint vibration reduction using an active vibration isolation system with an adaptive dynamic vibration absorber. The results show that the joint vibration reduction method can successfully avoid the compromise between the feedback gain and actuator stroke. The control force and the object vibration amplitude are also greatly reduced.

  14. Comparison of composite rotor blade models: A coupled-beam analysis and an MSC/NASTRAN finite-element model

    Science.gov (United States)

    Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.

    1987-01-01

    A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.

  15. Acoustic emission analysis in overall fatigue testing of a wind rotor blade; Schallemissionsanalyse beim Gesamtermuedungstest eines Windkraftrotorblattes

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Eberhard; Frankenstein, Bernd; Schubert, Lars [Fraunhofer-Instiut fuer Zerstoerungsfreie Pruefverfahren (IZFP), Dresden (Germany)

    2009-07-01

    The Fraunhofer Institut fuer zerstoerungsfreie Pruefverfahren Dresden (IZFP-D, Fraunhofer Institute of Nondestructive Testing) is developing condition monitoring systems (CMS) for safety-relevant components. By permanent monitoring, e.g. of wind rotors, aircraft components or pipelines, these systems will ensure high avalability during the whole component life. Crack initiation, crack propagation or delamination can be detected and repaired at an early stage. Early repair will prolong the component life, and outage periods can be reduced. Currently, full-scale fatigue tests are made on a 40 m wind rotor blade of CFRP and GFRP materials. After a static pre-load period, 2,000,000 fatigue cycles will be applied. The contribution describes the measuring technology and the evaluation methods, in particular event identification and parametrization. Finally, the current experimental status is outlined, fatigue test results so far are presented, and development trends are indicated. (orig.)

  16. Overall and blade element performance of a 1.20 pressure ratio fan stage with rotor blades reset -7 deg

    Science.gov (United States)

    Lewis, G. W., Jr.; Kovich, G.

    1976-01-01

    A 51-cm-diam model of a fan stage for short haul aircraft was tested in a single stage compressor research facility. The rotor blades were set 7 deg toward the axial direction (opened) from the design setting angle. Surveys of the air flow conditions ahead of the rotor, between the rotor and stator, and behind the stator were made over the stable operating range of the stage. At the design speed and a weight flow of 30.9 kg/sec, the stage pressure ratio and efficiency were 1.205 and 0.85, respectively. The design speed rotor peak efficiency of 0.90 occurred at a flow rate of 32.5 kg/sec.

  17. Anti-freeze coatings for the rotor blades of wind turbines; Anti-freeze Beschichtungen fuer Rotorblaetter von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Siegmann, K.; Kaufmann, A.; Hirayama, M.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at projects involving the development of suggestions for coatings for the rotor blades of wind turbines. The coatings are to reduce the formation of hoarfrost on the leading edges of the blades. Various coatings are described and the mechanisms involved in the formation of the frost and in keeping the blades as free as possible from frost are discussed. Global know-how on the subject is discussed, as is know-how available in Europe and Switzerland. Manufacturers, planning offices and installation operators are listed, as are research institutes who are dealing with this problem. In the summary, the authors stress the importance of choosing the coating most suitable for the actual climatic conditions at the wind turbine's location. A suggestion is made for further work in this area.

  18. Investigation of Blade-row Flow Distributions in Axial-flow-compressor Stage Consisting of Guide Vanes and Rotor-blade Row

    Science.gov (United States)

    Mahoney, John J; Dugan, Paul D; Budinger, Raymond E; Goelzer, H Fred

    1950-01-01

    A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred.

  19. Performance and Vibratory Loads Data From a Wind-Tunnel Test of a Model Helicopter Main-Rotor Blade With a Paddle-Type Tip

    Science.gov (United States)

    Yeager, William T., Jr.; Noonan, Kevin W.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.

    1997-01-01

    An investigation was conducted in the Langley Transonic Dynamics Tunnel to obtain data to permit evaluation of paddle-type tip technology for possible use in future U.S. advanced rotor designs. Data was obtained for both a baseline main-rotor blade and a main-rotor blade with a paddle-type tip. The baseline and paddle-type tip blades were compared with regard to rotor performance, oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Data was obtained in hover and forward flight over a nominal range of advance ratios from 0.15 to 0.425. Results indicate that the paddle-type tip offers no performance improvements in either hover or forward flight. Pitch-link oscillatory loads for the paddle-type tip are higher than for the baseline blade, whereas 4-per-rev vertical fixed-system loads are generally lower.

  20. Calibration of partial safety factors for wind turbine rotor blades against fatigue failure; Kalibrering af partielle sikkerhedsfaktorer for udmattelse af vindmoellerotorer

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, C.J.; Ronold, K.O.; Thoegersen, M.L.

    2000-08-01

    The report describes a calibration of partial safety factors for wind turbine rotor blades subjected to fatigue loading in flapwise and edgewise bending. While earlier models - developed by the authors - dealt with such calibrations for site-specific individual turbines only, the calibration model applied herein covers an integrated analysis with different turbines on different sites and with different blade materials. The result is an optimized set of partial safety factors, i.e. a set of safety factors that lead to minimum deviation from the target reliability of the achieved reliabilities over the selected scope of turbines, sites and materials. The turbines included in the study cover rated powers of 450-600 kW. The result from the calibration are discussed in relation to the partial safety factors that are given in the Danish codes for design of glass fibre reinforced rotor blades (DS472 and DS456). (au)

  1. Reliability analysis on resonance for low-pressure compressor rotor blade based on least squares support vector machine with leave-one-out cross-validation

    Directory of Open Access Journals (Sweden)

    Haifeng Gao

    2015-04-01

    Full Text Available This research article analyzes the resonant reliability at the rotating speed of 6150.0 r/min for low-pressure compressor rotor blade. The aim is to improve the computational efficiency of reliability analysis. This study applies least squares support vector machine to predict the natural frequencies of the low-pressure compressor rotor blade considered. To build a more stable and reliable least squares support vector machine model, leave-one-out cross-validation is introduced to search for the optimal parameters of least squares support vector machine. Least squares support vector machine with leave-one-out cross-validation is presented to analyze the resonant reliability. Additionally, the modal analysis at the rotating speed of 6150.0 r/min for the rotor blade is considered as a tandem system to simplify the analysis and design process, and the randomness of influence factors on frequencies, such as material properties, structural dimension, and operating condition, is taken into consideration. Back-propagation neural network is compared to verify the proposed approach based on the same training and testing sets as least squares support vector machine with leave-one-out cross-validation. Finally, the statistical results prove that the proposed approach is considered to be effective and feasible and can be applied to structural reliability analysis.

  2. Active control of gust- and interference-induced vibration of tilt-rotor aircraft

    Science.gov (United States)

    Ham, Norman D.; Wereley, Norman M.; Von Ellenrieder, Karl D.

    1989-01-01

    An active control system to suppress the response of the blade bending modes of a tilt-rotor aircraft to axial gusts and wing/rotor interference is described. The use of blade-mounted accelerometers as sensors is shown to permit the measurement and control of tilt-rotor blade modal responses and their associated vibratory loads directly. The feedback of modal acceleration, in addition to modal rate and displacement, is demonstrated to provide a control phase lead, in comparison with feedback of modal rate and displacement only, which makes higher system gains achievable.

  3. Methods for Expanding Rotary Wing Aircraft Health and Usage Monitoring Systems to the Rotating Frame through Real-time Rotor Blade Kinematics Estimation

    Science.gov (United States)

    Allred, Charles Jefferson

    Since the advent of Health and Usage Monitoring Systems (HUMS) in the early 1990's, there has been a steady decrease in the number of component failure related helicopter accidents. Additionally, measurable cost benefits due to improved maintenance practices based on HUMS data has led to a desire to expand HUMS from its traditional area of helicopter drive train monitoring. One of the areas of greatest interest for this expansion of HUMS is monitoring of the helicopter rotor head loads. Studies of rotor head load and blade motions have primarily focused on wind tunnel testing with technology which would not be applicable for production helicopter HUMS deployment, or measuring bending along the blade, rather than where it is attached to the rotor head and the location through which all the helicopter loads pass. This dissertation details research into finding methods for real time methods of estimating rotor blade motion which could be applied across helicopter fleets as an expansion of current HUMS technology. First, there is a brief exploration of supporting technologies which will be crucial in enabling the expansion of HUMS from the fuselage of helicopters to the rotor head: wireless data transmission and energy harvesting. A brief overview of the commercially available low power wireless technology selected for this research is presented. The development of a relatively high-powered energy harvester specific to the motion of helicopter rotor blades is presented and two different prototypes of the device are shown. Following the overview of supporting technologies, two novel methods of monitoring rotor blade motion in real time are developed. The first method employs linear displacement sensors embedded in the elastomer layers of a high-capacity laminate bearing of the type commonly used in fully articulated rotors throughout the helicopter industry. The configuration of these displacement sensors allows modeling of the sensing system as a robotic parallel

  4. Possibilities of contactless investigation of vibrations at wind power plants; Moeglichkeiten der beruehrungslosen Schwingungsmessung an Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, Reinhard [Polytec GmbH, Waldbronn/Berlin (Germany); Reimers, Ernst; Wiegers, Harald [Fachhochschule Flensburg (Germany)

    2010-07-01

    The laser-optical analysis of vibrations is an established procedure to the registration of oscillations of large structures such as buildings, bridges and power transmission lines over large distances of more than 100 m. The employment of this technology for the determination of the oscillation behaviour of rotor blades of the wind power plants particularly appears interesting. The employment of the laser measuring technique simplifies the sensory registration of rotor blade oscillations, since it comfortably can be carried out from the ground. Additionally, this laser measuring technology does not need pre-installed standard sensors in rotor blades. Test measurements at a 300 kW plant with a hub height of 50 m prove the suitability of the laser vibrometer for the registration of oscillations both with the standing rotor blade and in operation. For the evaluation of the deep natural frequencies an adjusting of the laser mark (tracking) on the rotating rotor blade is meaningful. The small frequency and the frequency dynamics of the wind power plants enable simple tracking systems. While with field surveys one-point-laser vibrometer are sufficient, scanning laser vibrometer are used for locally highly soluble 3D Scanning of the oscillation behaviour. Thus, for example structural defects or the position for contacting single sensors optimally can be determined by monitoring systems.

  5. A methodology for exploiting the tolerance for imprecision in genetic fuzzy systems and its application to characterization of rotor blade leading edge materials

    Science.gov (United States)

    Sánchez, Luciano; Couso, Inés; Palacios, Ana M.; Palacios, José L.

    2013-05-01

    A methodology for obtaining fuzzy rule-based models from uncertain data is proposed. The granularity of the linguistic discretization is decided with the help of a new estimation of the mutual information between ill-known random variables, and a combination of boosting and genetic algorithms is used for discovering new rules. This methodology has been applied to predict whether the coating of an helicopter rotor blade is adequate, considering the shear adhesion strength of ice to different materials. The discovered knowledge is intended to increase the level of post-processing interpretation accuracy of experimental data obtained during the evaluation of ice-phobic materials for rotorcraft applications.

  6. Software integration for automated stability analysis and design optimization of a bearingless rotor blade

    Science.gov (United States)

    Gunduz, Mustafa Emre

    Many government agencies and corporations around the world have found the unique capabilities of rotorcraft indispensable. Incorporating such capabilities into rotorcraft design poses extra challenges because it is a complicated multidisciplinary process. The concept of applying several disciplines to the design and optimization processes may not be new, but it does not currently seem to be widely accepted in industry. The reason for this might be the lack of well-known tools for realizing a complete multidisciplinary design and analysis of a product. This study aims to propose a method that enables engineers in some design disciplines to perform a fairly detailed analysis and optimization of a design using commercially available software as well as codes developed at Georgia Tech. The ultimate goal is when the system is set up properly, the CAD model of the design, including all subsystems, will be automatically updated as soon as a new part or assembly is added to the design; or it will be updated when an analysis and/or an optimization is performed and the geometry needs to be modified. Designers and engineers will be involved in only checking the latest design for errors or adding/removing features. Such a design process will take dramatically less time to complete; therefore, it should reduce development time and costs. The optimization method is demonstrated on an existing helicopter rotor originally designed in the 1960's. The rotor is already an effective design with novel features. However, application of the optimization principles together with high-speed computing resulted in an even better design. The objective function to be minimized is related to the vibrations of the rotor system under gusty wind conditions. The design parameters are all continuous variables. Optimization is performed in a number of steps. First, the most crucial design variables of the objective function are identified. With these variables, Latin Hypercube Sampling method is used

  7. Design and development of an active Gurney flap for rotorcraft

    Science.gov (United States)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2013-03-01

    The EU's Green Rotorcraft programme will develop an Active Gurney Flap (AGF) for a full-scale helicopter main rotor blade as part of its `smart adaptive rotor blade' technology demonstrators. AGFs can be utilized to provide a localized and variable lift enhancement on the rotor, enabling a redistribution of loading on the rotor blade around the rotor azimuth. Further advantages include the possibility of using AGFs to allow a rotor speed reduction, which subsequently provides acoustic benefits. Designed to be integrable into a commercial helicopter blade, and thereby capable of withstanding real in-flight centrifugal loading, blade vibrations and aerodynamic loads, the demonstrator is expected to achieve a high technology readiness level (TRL). The AGF will be validated initially by a constant blade section 2D wind tunnel test and latterly by full blade 3D whirl tower testing. This paper presents the methodology adopted for the AGF concept topology selection, based on a series of both qualitative and quantitative performance criteria. Two different AGF candidate mechanisms are compared, both powered by a small commercial electromagnetic actuator. In both topologies, the link between the actuator and the control surface consists of two rotating torque bars, pivoting on flexure bearings. This provides the required reliability and precision, while making the design virtually frictionless. The engineering analysis presented suggests that both candidates would perform satisfactorily in a 2D wind tunnel test, but that equally, both have design constraints which limit their potential to be further taken into a whirl tower test under full scale centrifugal and inertial loads.

  8. Active vibration control of structures undergoing bending vibrations

    Science.gov (United States)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  9. Off-axis Modal Active Vibration Control Of Rotational Vibrations

    NARCIS (Netherlands)

    Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.

    Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the

  10. Efficiency enhancement in transonic compressor rotor blades using synthetic jets: A numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Ernesto; Biollo, Roberto; Ponza, Rita [Department of Mechanical Engineering - University of Padova, Via Venezia, 1 - 35131 Padova (Italy)

    2011-03-15

    Several passive and active techniques were studied and developed by compressor designers with the aim of improving the aerodynamic behavior of compressor blades by reducing, or even eliminating, flow separation. Fluidic-based methods, in particular, have been investigated for a long time, including both steady and unsteady suction, blowing and oscillating jets. Recently, synthetic jets (zero mass flux) have been proposed as a promising solution to reduce low-momentum fluid regions inside turbomachines. Synthetic jets, with the characteristics of zero net mass flux and non-zero momentum flux, do not require a complex system of pumps and pipes. They could be very efficient because at the suction part of the cycle the low-momentum fluid is sucked into the device, whereas in the blowing part a high-momentum jet accelerates it. To the authors' knowledge, the use of synthetic jets has never been experimented in transonic compressor rotors, where this technique could be helpful (i) to reduce the thickness and instability of blade suction side boundary layer after the interaction with the shock, and (ii) to delay the arising of the low-momentum region which can take place from the shock-tip clearance vortex interaction at low flow operating conditions, a flow feature which is considered harmful to rotor stability. Therefore, synthetic jets could be helpful to improve both efficiency and stall margin in transonic compressor rotors. In this paper, an accurate and validated CFD model is used to simulate the aerodynamic behavior of a transonic compressor rotor with and without synthetic jets. Four technical solutions were evaluated, different for jet position and velocity, and one was investigated in detail. (author)

  11. Active Vibration Dampers For Rotating Machinery

    Science.gov (United States)

    Kascack, Albert F.; Ropchock, John J.; Lakatos, Tomas F.; Montague, Gerald T.; Palazzolo, Alan; Lin, Reng Rong

    1994-01-01

    Active dampers developed to suppress vibrations in rotating machinery. Essentially feedback control systems and reciprocating piezoelectric actuators. Similar active damper containing different actuators described in LEW-14488. Concept also applicable to suppression of vibrations in stationary structures subject to winds and earthquakes. Active damper offers adjustable suppression of vibrations. Small and lightweight and responds faster to transients.

  12. Experimental study of complex flow and turbulence structure around a turbomachine rotor blade operating behind a row of Inlet Guide Vanes (IGVS)

    Science.gov (United States)

    Soranna, Francesco

    The flow and turbulence around a rotor blade operating downstream of a row of Inlet Guide Vanes (IGV) are investigated experimentally in a refractive index matched turbomachinery facility that provides unobstructed view of the entire flow field. High resolution 2D and Stereoscopic PIV measurements are performed both at midspan and in the tip region of the rotor blade, focusing on effects of wake-blade, wake-boundary-layer and wake-wake interactions. We first examine the modification to the shape of an IGV-wake as well as to the spatial distribution of turbulence within it as the wake propagates along the rotor blade. Due to the spatially non-uniform velocity distribution, the IGV wake deforms through the rotor passage, expanding near the leading edge and shrinking near the trailing edge. The turbulence within this wake becomes spatially non-uniform and highly anisotropic as a result of interaction with the non-uniform strain rate field within the rotor passage. Several mechanisms, which are associated with rapid straining and highly non-uniform production rate (P), including negative production on the suction side of the blade, contribute to the observed trends. During IGV-wake impingement, the suction side boundary layer near the trailing edge becomes significantly thinner, with lower momentum thickness and more stable profile compared to other phases at the same location. Analysis of available terms in the integral momentum equation indicates that the phase-averaged unsteady term is the main contributor to the decrease in momentum thickness within the impinging wake. Thinning of the boundary/shear layer extends into the rotor near wake, making it narrower and increasing the phase averaged shear velocity gradients and associated production term just downstream of the trailing edge. Consequently, the turbulent kinetic energy (TKE) increases causing as much as 75% phase-dependent variations in peak TKE magnitude. Further away from the blade, the rotor wake is bent

  13. NASDA's activities on vibration isolation technology

    Science.gov (United States)

    1992-01-01

    The National Space Development Agency's (NASDA) activities in providing various vibration isolation technologies for the Space Station Mission are covered in viewgraph form. Technologies covered include an active vibration isolation system for extra sensitive missions in the low frequency range, a passive damping system consisting of a damping rack for the reduction of resonance amplification, and an isolator for vibration isolation from low frequencies. Information is given in viewgraph form on the active vibration isolation concept, voice coil type electromagnetic suspension, a profile of an active vibration isolation system, a three degree of freedom ground experiment, and acceleration feedback.

  14. Dynamic survey of wind turbine vibrations

    Science.gov (United States)

    Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi; Pan, Chieh-Chen; Huang, Chi-Luen; Cheng, Tao-Ming

    2016-04-01

    Six wind turbines were blown to the ground by the wind gust during the attack of Typhoon Soudelor in August 2015. Survey using unmanned aerial vehicle, UAV, found the collapsed wind turbines had been broken at the lower section of the supporting towers. The dynamic behavior of wind turbine systems is thus in need of attention. The vibration of rotor blades and supporting towers of two wind turbine systems have been measured remotely using IBIS, a microwave interferometer. However the frequency of the rotor blade can be analyzed only if the microwave measurements are taken as the wind turbine is parked and secured. Time-frequency analyses such as continuous wavelet transform and reassigned spectrograms are applied to the displacement signals obtained. A frequency of 0.44Hz exists in both turbines B and C at various operating conditions. Possible links between dynamic characteristics and structural integrity of wind turbine -tower systems is discussed.

  15. Aeroelastic analysis for helicopter rotor blades with time-variable, non-linear structural twist and multiple structural redundancy: Mathematical derivation and program user's manual

    Science.gov (United States)

    Bielawa, R. L.

    1976-01-01

    The differential equations of motion for the lateral and torsional deformations of a nonlinearly twisted rotor blade in steady flight conditions together with those additional aeroelastic features germane to composite bearingless rotors are derived. The differential equations are formulated in terms of uncoupled (zero pitch and twist) vibratory modes with exact coupling effects due to finite, time variable blade pitch and, to second order, twist. Also presented are derivations of the fully coupled inertia and aerodynamic load distributions, automatic pitch change coupling effects, structural redundancy characteristics of the composite bearingless rotor flexbeam - torque tube system in bending and torsion, and a description of the linearized equations appropriate for eigensolution analyses. Three appendixes are included presenting material appropriate to the digital computer program implementation of the analysis, program G400.

  16. Calibration of partial safety factors for wind turbine rotor blades against fatigue; Kalibrering af partielle sikkerhedsfaktorer for udmattelse af vindmoellerotorer. Bilagsrapport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, C.J.; Ronold, K.O.; Thoegersen, M.L.

    2000-08-01

    The report describes a calibration of partial safety factors for wind turbine rotor blades subjected to fatigue loading in flapwise and edgewise bending. While earlier models - developed by the authors - dealt with such calibrations for site-specific individual turbines only, the calibration model applied herein covers an integrated analysis with different turbines on different sites and with different blade materials. The result is an optimized set of partial safety factors, i.e. a set of safety factors that lead to minimum deviation from the target reliability of the achieved reliabilities over the selected scope of turbines, sites and materials. The turbines included in the study cover rated powers of 450-600 kW. (au)

  17. Overall and blade element performance of a 1.20-pressure-ratio fan stage with rotor blades reset -5 deg

    Science.gov (United States)

    Lewis, G. W., Jr.; Osborn, W. M.; Moore, R. D.

    1976-01-01

    A 51-cm-diam model of a fan stage for a short haul aircraft was tested in a single stage-compressor research facility. The rotor blades were set 5 deg toward the axial direction (opened) from design setting angle. Surveys of the air flow conditions ahead of the rotor, between the rotor and stator, and behind the stator were made over the stable operating range of the stage. At the design speed of 213.3 m/sec and a weight flow of 31.5 kg/sec, the stage pressure ratio and efficiency were 1.195 and 0.88, respectively. The design speed rotor peak efficiency of 0.91 occurred at the same flow rate.

  18. The impact of geometric non-linearities on the fatigue analysis of trailing edge bond lines in wind turbine rotor blades

    Science.gov (United States)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    The accurate prediction of stress histories for the fatigue analysis is of utmost importance for the design process of wind turbine rotor blades. As detailed, transient, and geometrically non-linear three-dimensional finite element analyses are computationally weigh too expensive, it is commonly regarded sufficient to calculate the stresses with a geometrically linear analysis and superimpose different stress states in order to obtain the complete stress histories. In order to quantify the error from geometrically linear simulations for the calculation of stress histories and to verify the practical applicability of the superposition principal in fatigue analyses, this paper studies the influence of geometric non-linearity in the example of a trailing edge bond line, as this subcomponent suffers from high strains in span-wise direction. The blade under consideration is that of the IWES IWT-7.5-164 reference wind turbine. From turbine simulations the highest edgewise loading scenario from the fatigue load cases is used as the reference. A 3D finite element model of the blade is created and the bond line fatigue assessment is performed according to the GL certification guidelines in its 2010 edition, and in comparison to the latest DNV GL standard from end of 2015. The results show a significant difference between the geometrically linear and non-linear stress analyses when the bending moments are approximated via a corresponding external loading, especially in case of the 2010 GL certification guidelines. This finding emphasizes the demand to reconsider the application of the superposition principal in fatigue analyses of modern flexible rotor blades, where geometrical nonlinearities become significant. In addition, a new load application methodology is introduced that reduces the geometrically non-linear behaviour of the blade in the finite element analysis.

  19. Rotor Vibration Reduction Using Multi-Element Multi-Path Design

    Science.gov (United States)

    Su, Keye

    Multi-Element Multi-Path (MEMP) structural design is a new concept for rotor vibration reduction. This thesis explores the possibility of applying MEMP design to helicopter rotor blades. A conceptual design is developed to investigate the MEMP blade's vibration reduction performance. In the design, the rotor blade is characterized by two centrifugally loaded beams which are connected to each other through linear and torsional springs. A computer program is built to simulate the behavior of such structures. Detailed parametric studies are conducted. The main challenges in this thesis involve the blade hub load vibration analysis, the blade thickness constraint and the blade parameter selection. The results show substantial vibration reduction for the MEMP design but the large relative deflection between the two beams, conceptualized as an internal spar and airfoil shell, remains a problem for further study.

  20. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  1. Rotor blades echo mo deling and mechanism analysis of flashes phenomena%旋翼叶片回波建模与闪烁现象机理分析

    Institute of Scientific and Technical Information of China (English)

    陈永彬; 李少东; 杨军; 曹芙蓉

    2016-01-01

    Since the rotorcraft can easily be recognized by using the micro-Doppler (m-D) signature of rotor blades, the m-D effect induced by micro-motion dynamics plays an important role in target recognition and classification. However, the existing researches on the rotor blades pay little attention to the mechanism of the time-domain and time-frequency-domain flash phenomena. To comprehensively explain the flash phenomena from physics, the modeling of the rotor blades and the mechanism of the flash phenomena are studied in this paper. Firstly, for the rotor blades, the target cannot be represented as a rigid, homogeneous line nor several points. Taking the scattering coefficients and the interval of adjacent scattering points (the scattering point distribution on the blade) into consideration, the scattering point model of the rotor blade echo is established, and the influence of the scattering point distribution on the radar echo is analyzed as well. The detailed mathematic analysis and comparison results show that the conventional integral model of the rotor blade is only a special case of the scattering point model. Furthermore, in the case where the scattering point model is approximately equivalent to the conventional integral model, the critical interval of adjacent scattering points is deduced by mathematic analysis. Secondly, on the basis of the proposed model above, the physical mechanism of the time-domain and time-frequency-domain flash phenomena is studied from the viewpoint of the electromagnetic (EM) scattering. On the one hand, considering the EM scattering and scattering point distribution, the mechanism of the time-domain flashes is analyzed. Ideally, when the rotor blade is at the vertical position relative to the radar line of sight, i.e., at the flash time, the blade has the strongest echo. At this moment, the radar echo consists of echoes of all scattering points, thus inducing the time-domain flashes. At the non-flash time, the scattering points at

  2. 开式转子叶片气动设计研究%Research on Aerodynamic Design of Open Rotor Blade

    Institute of Scientific and Technical Information of China (English)

    刘政良; 严明; 洪青松

    2013-01-01

    参考现代民航飞机设计方案要求,完成了开式转子发动机叶片的气动设计工作。在设计过程中引入可压缩流动叶片数据改进了螺旋桨片条理论,使之适用于高亚声速来流的叶片设计。采用后掠叶片,NACA16系列叶型,前缘积叠方式。数值模拟结果与设计结果相近,基本满足气动设计要求。%Aerodynamic design of open rotor blade which refers to performance of engines which used on modern civil airplane is completed. Compressible blade data is introduced to optimize strip theory in order to satisfy blade design under high subsonic free stream. Sept blade, NACA-16 series data and leading edge accumulation is used. Numerical simulation is similar to the design which basicaly satisifed the design requirements.

  3. A New Framework For Helicopter Vibration Suppression; Time-Periodic System Identification and Controller Design

    Science.gov (United States)

    Ulker, Fatma Demet

    In forward flight, helicopter rotor blades function within a highly complex aerodynamic environment that includes both near-blade and far-blade aerodynamic phenomena. These aerodynamic phenomena cause fluctuating aerodynamic loads on the rotor blades. These loads when coupled with the dynamic characteristics and elastic motion of the blade create excessive amount of vibration. These vibrations degrade helicopter performance, passenger comfort and contributes to high cost maintenance problems. In an effort to suppress helicopter vibration, recent studies have developed active control strategies using active pitch links, flaps, twist actuation and higher harmonic control of the swash plate. In active helicopter vibration control, designing a controller in a computationally efficient way requires accurate reduced-order models of complex helicopter aeroelasticity. In previous studies, controllers were designed using aeroelastic models that were obtained by coupling independently reduced aerodynamic and structural dynamic models. Unfortunately, these controllers could not satisfy stability and performance criteria when implemented in high-fidelity computer simulations or real-time experiments. In this thesis, we present a novel approach that provides accurate time-periodic reduced-order models and time-periodic H2 and H infinity controllers that satisfy the stability and performance criteria. Computational efficiency and the necessity of using the approach were validated by implementing an actively controlled flap strategy. In this proposed approach, the reduced-order models were directly identified from high-fidelity coupled aeroelastic analysis by using the time-periodic subspace identification method. Time-periodic H2 and Hinfinity controllers that update the control actuation at every time step were designed. The control synthesis problem was solved using Linear Matrix Inequality and periodic Riccati Equation based formulations, for which an in-house periodic

  4. Simulation studies for multichannel active vibration control

    Science.gov (United States)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.

    2003-10-01

    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  5. Active vibration isolation by adaptive proportional control

    Science.gov (United States)

    Liu, Yun-Hui; Wu, Wei-Hao; Chu, Chih-Liang

    2013-01-01

    An active vibration isolation system that applies proportional controller incorporated with an adaptive filter to reduce the transmission of base excitations to a precision instrument is proposed in this work. The absolute vibration velocity signal acquired from an accelerator and being processed through an integrator is input to the controller as a feedback signal, and the controller output signal drives the voice coil actuator to produce a sky-hook damper force. In practice, the phase response of integrator at low frequency such as 2~5 Hz deviate from the 90 degree which is the exact phase difference between the vibration velocity and acceleration. Therefore, an adaptive filter is used to compensate the phase error in this paper. An analysis of this active vibration isolation system is presented, and model predictions are compared to experimental results. The results show that the proposed method significantly reduces transmissibility at resonance without the penalty of increased transmissibility at higher frequencies.

  6. Active and passive vibration control of structures

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2014-01-01

    Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory.  Also links between the different applications in structural control are shown.

  7. Active structures to reduce torsional vibrations

    Science.gov (United States)

    Matthias, M.; Schlote, D.; Atzrodt, H.

    2013-03-01

    This paper describes the development of different active measures to reduce torsional vibrations in power trains. The measures are based on concepts developed for active mounts to reduce the transmission of structure-borne sound. To show the potential of these active measures and investigate their mode of operation to influence torsional vibrations, numerical simulations of powertrains with different active measures were done. First experimental results from tests on an experimental (reduced size) power train were used to align the numerical models. The work was done within the project 'LOEWE-Zentrum AdRIA: Adaptronik - Research, Innovation, Application' funded by the German federal state of Hessen, and the Project AKTos: 'Active control of torsional vibrations by coupling elements' placed in the research Framework program 'Navigation and Maritime Technology for the 21st Century' funded by the German Federal Ministry of Economics and Technology.

  8. Experimental Study of Endwall and Tip Clearance Flows in a Two—Dimensional Turbine Rotor Blade Cascade—Effect of Incidence Angle

    Institute of Scientific and Technical Information of China (English)

    M.Goardhan; B.H.L.Gowds; 等

    2000-01-01

    Experimental investigations were carried out on two-dimensional cascade fitted with a 120° deflecton rotor blades to study the effect of incidence angly on the endwall flow in the presence of tip clearance.A total of five incidence angles.namely:-10°,-5°,0°,5°,10°were chosen and for each incidence angle,the experiments were conducted for five tip clearance values at a constant space-chord ratio of 0.79,The experiments were conducted for five tip clearance values at a constant space-chord ratio of 0.79,The results are presented in the form of contours of static pressure coefficient on the endwall and the blade tip surface.In addition,the variation of static pressure coefficient ahead of the blade leading edge and from the pressure surface to the suction surface at various axial stations,and discharge coefficinet at different axial stations are presented.The results indicate that the adverse pressure gradient upstream of the leading edge is reduced as tip clearance is increased.The contours of static pressure coefficient on the endwall indicate a deep low-pressure trough near the suction surface in comparison to the normal trough for zero clearance,Loading also increases as incidence changes from the negative to positiv values,Due to area contraction caused by the tip separation vortex,the fluid moving towards the tip gap from the pressure side is accelerated.Downstream of the tip separation vortex,the endwall pressure increases due to flow mixing.The maximum value of discharge coefficient increases and the point at which maximum value occurs shifts towards leading edge when incidence is changed from-10°to 10°。

  9. Tip gap height effects on flow structure and heat/mass transfer over plane tip of a high-turning turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Woo [School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of)], E-mail: swlee@kumoh.ac.kr; Moon, Hyun Suk; Lee, Seong Eun [School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of)

    2009-04-15

    The effects of tip gap height-to-chord ratio, h/c, on the flow structure and heat/mass transfer over the plane tip surface of a large-scale high-turning turbine rotor blade have been investigated for h/c = 1.0%, 2.0%, 3.0% and 4.0%. For near-wall tip gap flow visualizations, a high-resolution oil film method is employed, and the naphthalene sublimation technique is used for local heat/mass transfer rate measurements. From the tip surface visualizations, a pair of vortices named 'tip gap vortices' is identified in the leading edge region within the tip gap. The overall tip gap flow is characterized not only by the tip gap vortices but also by the flow separation/re-attachment process along the pressure-side tip edge. Within the separation bubble, there exist complicated near-wall flows moving toward a mid-chord flow converging area. With increasing h/c, the tip gap vortices, the flow separation/re-attachment, and the converging flows within the separation bubble tend to be intensified. In general, higher thermal load is found along the loci of the tip gap vortices and along the re-attachment line, while lower thermal load is observed behind the tip gap vortex system and near the mid-chord flow converging area. Heat/mass transfer characteristics with the variation of h/c are discussed in detail in conjunction with the tip gap flow features. Based on the flow visualizations and heat/mass transfer data, new realistic tip gap flow models have been proposed for h/c = 1.0 and 4.0%.

  10. Active vibration control using DEAP actuators

    Science.gov (United States)

    Sarban, Rahimullah; Jones, Richard W.

    2010-04-01

    Dielectric electro-active polymer (DEAP) is a new type of smart material, which has the potential to be used to provide effective actuation for a wide range of applications. The properties of DEAP material place it somewhere between those of piezoceramics and shape memory alloys. Of the range of DEAP-based actuators that have been developed those having a cylindrical configuration are among the most promising. This contribution introduces the use of a tubular type DEAP actuator for active vibration control purposes. Initially the DEAP-based tubular actuator to be used in this study, produced by Danfoss PolyPower A/S, is introduced along with the static and dynamic characteristics. Secondly an electromechanical model of the tubular actuator is briefly reviewed and its ability to model the actuator's hysteresis characteristics for a range of periodic input signals at different frequencies demonstrated. The model will be used to provide hysteresis compensation in future vibration isolation studies. Experimental active vibration control using the actuator is then examined, specifically active vibration isolation of a 250 g mass subject to shaker generated 'ground vibration'. An adaptive feedforward control strategy is used to achieve this. The ability of the tubular actuator to reject both tonal and broadband random vibratory disturbances is then demonstrated.

  11. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  12. Optimal active vibration absorber - Design and experimental results

    Science.gov (United States)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1993-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  13. Optimal active vibration absorber: Design and experimental results

    Science.gov (United States)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  14. Vibration Maintenance of EC-225 Helicopter Main Rotor Blade%EC-225直升机主桨叶振动维护

    Institute of Scientific and Technical Information of China (English)

    钟恢芳

    2013-01-01

      长期过大的振动将加速直升机部件的疲劳损伤,振动维护的目标就是将振动控制在最小范围内,从而保证部件及机体结构的持续有效性。本文从桨叶锥体的角度出发,结合维护操作手册,研究了EC-225直升机主桨叶振动的维护方法。

  15. Active Vibration Control and Coupled Vibration Analysis of a Parallel Manipulator with Multiple Flexible Links

    OpenAIRE

    Quan Zhang; Chaodong Li; Jiantao Zhang; Jiamei Jin

    2016-01-01

    This paper addresses the active vibration control and coupled vibration analysis of a planar parallel manipulator (PPM) with three flexible links. Multiple piezoelectric ceramic transducers are integrated with the flexible links to constitute the smart beam structures, and hence the vibration of the flexible link can be self-sensed and self-controlled. To prevent the spillover phenomena and improve the vibration control efficiency, the independent modal space control combined with an input sh...

  16. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    are assumed to be proportional to the relative inflow angle, which also gives a linear form with equivalent stiffness and damping terms. Geometric stiffness effects including the important stiffening from tensile axial stresses in equilibrium with centrifugal forces are included via an initial stress......This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...

  17. Active vibration isolation of a rigidly mounted turbo pump

    NARCIS (Netherlands)

    Basten, T.G.H.; Doppenberg, E.J.J.

    2006-01-01

    Manufacturers of precision equipment are constantly aiming at increased accuracy. Elimination of disturbing vibrations is therefore getting more and more important. The technical limitations of passive isolation methods require alternative strategies for vibration reduction, such as active technique

  18. Active vibration isolation of a rigidly mounted turbo pump

    NARCIS (Netherlands)

    Basten, T.G.H.; Doppenberg, E.J.J.

    2006-01-01

    Manufacturers of precision equipment are constantly aiming at increased accuracy. Elimination of disturbing vibrations is therefore getting more and more important. The technical limitations of passive isolation methods require alternative strategies for vibration reduction, such as active

  19. Active Suppression Of Vibrations On Elastic Beams

    Science.gov (United States)

    Silcox, Richard J.; Fuller, Chris R.; Gibbs, Gary P.

    1993-01-01

    Pairs of colocated piezoelectric transducers, independently controlled by multichannel adaptive controller, employed as actuators and sensors to achieve simultaneous attenuation of both extensional and flexural motion. Single pair used to provide simultaneous control of flexural and extensional waves, or two pairs used to control torsional motion also. Capability due to nature of piezoelectric transducers, when bonded to surfaces of structures and activated by oscillating voltages, generate corresponding oscillating distributions of stresses in structures. Phases and amplitudes of actuator voltages adjusted by controller to impede flow of vibrational energy simultaneously, in waves of various forms, beyond locations of actuators. Concept applies equally to harmonic or random response of structure and to multiple responses of structure to transverse bending, torsion, and compression within structural element. System has potential for many situations in which predominant vibration transmission path through framelike structure.

  20. Smart actuators for active vibration control

    Science.gov (United States)

    Pourboghrat, Farzad; Daneshdoost, Morteza

    1998-07-01

    In this paper, the design and implementation of smart actuators for active vibration control of mechanical systems are considered. A smart actuator is composed of one or several layers of piezo-electric materials which work both as sensors and actuators. Such a system also includes micro- electronic or power electronic amplifiers, depending on the power requirements and applications, as well as digital signal processing systems for digital control implementation. In addition, PWM type micro/power amplifiers are used for control implementation. Such amplifiers utilize electronic switching components that allow for miniaturization, thermal efficiency, cost reduction, and precision controls that are robust to disturbances and modeling errors. An adaptive control strategy is then developed for vibration damping and motion control of cantilever beams using the proposed smart self-sensing actuators.

  1. Active vibration control of nonlinear benchmark buildings

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xing-de; CHEN Dao-zheng

    2007-01-01

    The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile,the controllers designed directly by the nonlinear control strategy have a high order, and they are difficult to be applied actually. Therefore, a new active vibration control way which fits the nonlinear buildings is proposed. The idea of the proposed way is based on the model identification and structural model linearization, and exerting the control force to the built model according to the force action principle. This proposed way has a better practicability as the built model can be reduced by the balance reduction method based on the empirical Grammian matrix. A three-story benchmark structure is presented and the simulation results illustrate that the proposed method is viable for the civil engineering structures.

  2. Experimental investigation of active machine tool vibration control

    Science.gov (United States)

    Rojas, J.; Liang, Chen; Geng, Zheng J.

    1996-05-01

    The successful vibration reduction of machine tools during machining process can improve productivity, increase quality, and reduce tool wear. This paper will present our initial investigation in the application of smart material technologies in machine tool vibration control using magnetostrictive actuators and electrorheological elastomer dampers on an industrial Sheldon horizontal lathe. The dynamics of the machining process are first studied, which reveals the complexity in the machine tool vibration response and the challenge to the active control techniques. The active control experiment shows encouraging results. The use of electrorheological elastomer damping device for active/passive vibration control provides significant vibration reduction in the high frequency range and great improvement in the workpiece surface finishing. The research presented in this paper demonstrates that the combination of active and active/passive vibration control techniques is very promising for successful machine tool vibration control.

  3. Multi-life-stage monitoring system based on fibre bragg grating sensors for more reliable wind turbine rotor blades: Experimental and numerical analysis of deformation and failure in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira

    and structural health monitoring of wind turbine blades. The work presented sets the required framework to develop a monitoring system based on fibre Bragg gratings (FBG), which can be applied to the different life stages of a wind turbine blade. In this concept, the different measured physical parameters...... turbine as long as it is monitored. Thus, a novel crack/damage detection method using FBG sensors is presented, and software/tools are developed for signal simulation and post-processing. The first part of the thesis is an introduction to the multi-life-stage monitoring system based on FBG sensors...... and the damage tolerant design of fibre reinforced materials, where the different theory and numerical models used are presented. The second part of the thesis is a compilation of scientific journal papers, in which the use of FBG sensors to monitor the different life-stages of the wind turbine rotor blade...

  4. Passive and Active Vibration Control of Renewable Energy Structures

    OpenAIRE

    Zhang, Zili

    2015-01-01

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade vibration and lateral tower vibration, with the main focus on structural control devices. Rigorous theoretical modeling of different dynamic system has been established, based on which detailed design a...

  5. Vibrational optical activity principles and applications

    CERN Document Server

    Nafie, Laurence A

    2011-01-01

    This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features:A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy.Serves as a guide on how to use it to carry out applications with relevant problem solving.Depth and breadth of the subject is presented in a logical, complete and progressive fashion. A

  6. 基于PCNN的桨叶图像提取及锥度测量%A New Method for Rotor Blade Image Extraction Based on PCNN and Pyramid Angle measurement

    Institute of Scientific and Technical Information of China (English)

    姜迈; 蔡成涛; 邓超; 栗蓬

    2011-01-01

    针对目前对直升机桨叶共锥度测量难度大、精度低、无法对桨叶逐点测量的缺点,提出了一种应用视觉系统测量旋翼共锥度的新方法,给出了系统的总体安装方案并对系统的成像误差精度进行了分析,由于旋翼桨叶处于高速旋转状态需要实时处理的特点,提出了一种基于脉冲藕合神经网络(PCNN)的分割方法,在设计好的旋翼桨叶模型上进行了相关实验,通过与其它分割算法的对比,验证了算法的具有很高的识别率;实验结果表明:基于PCNN的分割方法具有较高的精度,适用于实时的旋翼锥度测量系统.%According to the problems for helicopter blades pyramid angle measurement, such as great difficulty of the measuring, low accuracy and thoroughly examination hardly, this paper presents a new method applied to helicopter blade pyramid angle measurement by using vision system, the overall design scheme of the system is offered and the imaging error is analyzed.Because the rotor blades rotated at a high speed and need real-time processing, proposes a image segmentation method based on Pulse Couple Neural Network (PCNN), the related experiment to the rotor blades model validates the PCNN algorithm has the advantage in recognition rate compared with other segmentation algorithms.The experimental results show the method has higher accuracy and suitable for blades pyramid measurement system.

  7. 核电厂汽轮机转子叶片的荧光磁粉检测%Fluorescent Magnetic Particle Inspection for Nuclear Power Plant Turbine Rotor Blades

    Institute of Scientific and Technical Information of China (English)

    付千发; 李朋; 李邱达; 葛亮; 张明

    2015-01-01

    This paper introduces the steps and technical requirements for the fluorescent magnetic particle testing of steam turbine rotor blade by using the method of coil and magnetic yoke.Suitable technological parameters for the test were identified through experiment and the actual testing of steam turbine rotor blade was performed,and at the same time a contrast experiment was made with penetration detection.The test showed that the fluorescent magnetic particle detection method could effectively detect smaller defects in the blade end,root and surface of the leaf body with high sensitivity and high reliability for in-service inspection of blade and other irregular shape of products.%介绍了使用线圈法和磁轭法对汽轮机转子叶片进行荧光磁粉检测的步骤及技术要求。通过试验确定了合适的检测工艺,并对汽轮机转子叶片进行了实际检测,同时进行了与渗透检测的对比试验,试验表明:荧光磁粉检测法能有效检出叶片端部、齿根及叶身表面的较小缺陷,具有较高的检出灵敏度,可靠性较高,适用于叶片类不规则形状产品的在役检验。

  8. Active vibration isolation platform on base of magnetorheological elastomers

    Science.gov (United States)

    Mikhailov, Valery P.; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  9. Active vibration and noise control by hybrid active acoustic panels

    Energy Technology Data Exchange (ETDEWEB)

    Stoebener, U.; Gaul, L. [Stuttgart Univ. (Germany). Inst. A fuer Mechanik

    2001-07-01

    In the present paper a hybrid passive and active treatment for vibration and noise reduction of plate type structures is proposed. The treatment is manufactured as sandwich structure and is called hybrid active acoustic panel. The passive component is used to reduce the vibration and sound radiation for high frequencies whereas the active part of the system is designed for the low frequency range. By selecting the thickness of the passive damping layer a certain frequency limit is defined, which divides the high and low frequency range. The actuator and sensor layout of the active component is evaluated by using the mode shapes of the low frequency range. According to the evaluated layout a hybrid active acoustic panel is manufactured and experimentally tested. The experimental results validate the proposed concept. (orig.)

  10. EMBEDDED COMPUTER BASED ACTIVE VIBRATION CONTROL SYSTEM FOR VIBRATION REDUCTION OF FLEXIBLE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Venkata Ratnam Tatavolu

    2013-01-01

    Full Text Available Research on Active Vibration Control System (AVCS is being carried out to reduce structural vibrations caused by unwanted vibrations in many application areas such as in space, aircraft structures, satellites, automobiles and civil structures (bridges, particularly at low frequencies. The unwanted vibration may cause damage to the structure or degradation to the structure’s performance. The AVCS comprises physical plant, a sensor to detect the source vibration, a DSP based electronic controller using an actuator connected to the structure generates a counter force that is appropriately out of phase but equal in amplitude to the source vibration. As a result two equal and opposite forces cancel each other by the principle of super position and structure stops vibrating. The main objective of this research work is to develop an embedded computer based real time AVCS for reducing low frequency tonal vibration response of a vibrating flexible cantilever beam by automatic modification of the vibrating beam’s structural response and to verify the performance of the developed system experimentally. The developed AVCS is a generic design platform that can be applied for designing adaptive feed forward AVC and feedback AVC. This study presents the vibration control methodology adapted for reducing tonal vibration generated by a sine generator connected to the primary source actuator attached to one end of the cantilever beam. The secondary actuator is attached to the beam on the other end through the AVCS to reduce primary vibration by destructive interference with the original response of the system, caused by the primary source of vibration. Adaptive feed forward Active Vibration Control (AVC technique is used with Filtered-X Least Mean Square (FxLMS algorithm using FIR digital filter. A cantilever beam was considered as plant and embedded computer based AVCS was tested and evaluated using an experimental setup. The experimental results are

  11. Hybrid active vibration control of rotorbearing systems using piezoelectric actuators

    Science.gov (United States)

    Palazzolo, A. B.; Jagannathan, S.; Kascak, A. F.; Montague, G. T.; Kiraly, L. J.

    1993-01-01

    The vibrations of a flexible rotor are controlled using piezoelectric actuators. The controller includes active analog components and a hybrid interface with a digital computer. The computer utilizes a grid search algorithm to select feedback gains that minimize a vibration norm at a specific operating speed. These gains are then downloaded as active stillnesses and dampings with a linear fit throughout the operating speed range to obtain a very effective vibration control.

  12. Active Vibration Control of a Flexible Structure Using Piezoceramic Actuators

    Directory of Open Access Journals (Sweden)

    J. Fei

    2008-03-01

    Full Text Available Considerable attention has been devoted recently to active vibration control using intelligent materials as actuators. This paper presents results on active control schemes for vibration suppression of flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible steel cantilever beam is derived. Active vibration control methods, strain rate feedback control (SRF, positive position feedback control (PPF are investigated and implemented using xPC Target real-time system. Experimental results demonstrate that the SRF control and PPF control achieve effective vibration suppression results of steel cantilever beam.

  13. Piezoelectric Power Requirements for Active Vibration Control

    Science.gov (United States)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  14. Dual-Actuator Active Vibration-Control System

    Science.gov (United States)

    Kascak, Albert F.; Kiraly, Louis J.; Montague, Gerald T.; Palazzolo, Alan B.; Manchala, Daniel

    1994-01-01

    Dual-actuator active vibration-control (DAAVC) system is developmental system of type described in "Active Vibration Dampers for Rotating Machinery" (LEW-15427). System features sensors and actuators positioned and oriented at bearings to measure and counteract vibrations of shaft along either of two axes perpendicular to axis of rotation. Effective in damping vibrations of helicopter-engine test stand, making it safer to operate engine at speeds near and above first resonance of engine/test-stand system. Opens new opportunities for engine designers to draw more power from engine, and concept applicable to other rotating machines.

  15. Active Vibration Control of a Thin Steel Sheet

    OpenAIRE

    Yohji Okada; Ken-Ichi Matsuda; Junji Tani

    1995-01-01

    The commercial rolling process used in the steel industry to manufacture thin steel sheets tends to cause plate vibrations that lower the quality of the surface finish. This article introduces a noncontact method of active vibration control for reducing the flexural vibrations of a thin steel sheet. The proposed electromagnetic method of control has been implemented in a simple experimental setup where the signal from a motion sensor regulates the attractive force of the magnets that produce ...

  16. Design of Dynamic Strain Measurement System of Rotor Blades Impacted by Bird%旋转叶片鸟撞动态应变测量系统设计

    Institute of Scientific and Technical Information of China (English)

    马坚刚; 张天宏; 孙健国

    2013-01-01

    In order to solve the difficulties of dynamic strain measurement of rotor blades impacted by bird,a method based on on-line detection and high-speed temporary storage is put forward.Through the real-time online detection,the strain data of bird impact in the whole process is collected and stored in a non-volatile SRAM.A multi-channel dynamic strain measurement system is designed mainly,including the detection and storage unit and the ground auxiliary device,which can meet the requirements of accuracy and speed,and realize the functions of on-line detection,high-speed storage and wireless data transmission.The tests indicate that the system has high accuracy and can detect the bird impact in real-time,and the speed of collection and storage is 200 kHz with 6 channels,and the test is convenient by using radio communication,which satisfies the dynamic strain measurement of rotor blades impacted by bird.%为了解决旋转叶片鸟撞时动态应变测量困难的问题,提出一种基于在线检测和高速暂存的测量方法.通过实时在线检测,将鸟撞发生时全过程的应变量采集并高速存储在非易失性存储器中.重点设计多通道动态应变测量系统,包括检测存储单元和地面辅助装置,满足精度、速率要求,实现在线检测、高速存储和无线数据传输等功能.试验表明,系统具有较高的测量精度,能实时检测到鸟撞发生,最快以6通道200 kHz的速率采集和存储,并利用无线数据传输,满足旋转叶片鸟撞动态应变测量要求.

  17. Sensor fusion for active vibration isolation in precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.; Dijk, van J.; Soemers, H.M.J.R.

    2012-01-01

    Sensor fusion is a promising control strategy to improve the performance of active vibration isolation systems that are used in precision equipment. Normally, those vibration isolation systems are only capable of realizing a low transmissibility. Additional objectives are to increase the damping rat

  18. ACTIVE VIBRATION SUPPRESSION VIA LINEARIZING HYSTERESIS OF PIEZOCERAMIC ACTUATORS

    Institute of Scientific and Technical Information of China (English)

    HU Hong; SHI Hongyan; BEN MRAD Ridha

    2007-01-01

    A novel active Vibration control technique on the basis of linearized piezoelectric actuators is presented. An experimental apparatus consisting of a cantilever beam to which are attached strain patches and piezoceramic actuators to be used for active Vibration suppression is described. A dynamical model of the cantilever beam using Lagrange's equation and two coordinate Systems are presented. Based on the Lyapunov's direct method, an active Vibration Controller with hysteresis compensation is designed. The Controller is designed so that it guarantees the global stability of the overall System. The Controller developed is assessed experimentally.

  19. Development of active vibration isolation system for precision machines

    Science.gov (United States)

    Li, H. Z.; Lin, W. J.; Yang, G. L.

    2010-03-01

    It is a common understanding by manufacturers of precision machines that vibrations are a potentially disastrous threat to precision and throughput. To satisfy the quest for more stable processes and tighter critical dimension control in the microelectronics manufacturing industry, active vibration control becomes increasingly important for high-precision equipment developers. This paper introduced the development of an active vibration isolation system for precision machines. Innovative mechatronic approaches are investigated that can effectively suppress both environmental and payload-generated vibration. In this system, accelerometers are used as the feedback sensor, voice coil motors are used to generate the counter force, and a TI DSP controller is used to couple sensor measurements to actuator forces via specially designed control algorithms in real-time to counteract the vibration disturbances. Experimental results by using the developed AVI prototype showed promising performance on vibration attenuation. It demonstrated a reduction of the settling time from 2s to 0.1s under impulsive disturbances; and a vibration attenuation level of more than 20dB for harmonic disturbances. The technology can be used to suppress vibration for a wide range of precision machines to achieve fast settling time and higher accuracy.

  20. An active head-neck model in whole-body vibration: vibration magnitude and softening.

    Science.gov (United States)

    Rahmatalla, Salam; Liu, Ye

    2012-04-05

    An active head-neck model is introduced in this work to predict human-dynamic response to different vibration magnitudes during fore-aft whole-body vibration. The proposed model is a rigid-link dynamic system augmented with passive spring-damper tissue-like elements and additional active dampers that resemble the active part of the muscles. The additional active dampers are functions of the input displacement, velocity, and acceleration and are based on active control theories and a kd-tree data-searching scheme. Five human subjects exposed to random fore-aft vibration with frequency content of 0.5-10 Hz were tested under different vibration with magnitudes of 0.46 m/s(2), 1.32 m/s(2), and 1.66 m/s(2) rms. The results showed that the proposed model was able to reasonably capture the softening characteristics of the human head-neck response during fore-aft whole-body vibration of different magnitudes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. An active vibration control method of bridge structures by the ...

    African Journals Online (AJOL)

    An active vibration control method of bridge structures by the linearization of ... zones due to economic requirements, and with occurrence of seismic events in ... linearization proportionality coefficients are constantly modified to optimal values.

  2. Piezoelectric pushers for active vibration control of rotating machinery

    Science.gov (United States)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.

  3. Active Vibration Control of a Thin Steel Sheet

    Directory of Open Access Journals (Sweden)

    Yohji Okada

    1995-01-01

    Full Text Available The commercial rolling process used in the steel industry to manufacture thin steel sheets tends to cause plate vibrations that lower the quality of the surface finish. This article introduces a noncontact method of active vibration control for reducing the flexural vibrations of a thin steel sheet. The proposed electromagnetic method of control has been implemented in a simple experimental setup where the signal from a motion sensor regulates the attractive force of the magnets that produce a damping force on the steel sheet.

  4. Innovation in Active Vibration Control Strategy of Intelligent Structures

    Directory of Open Access Journals (Sweden)

    A. Moutsopoulou

    2014-01-01

    Full Text Available Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a recognizable advance in knowledge of active vibration control in intelligent structures.

  5. Active control of flexural vibrations in beams

    Science.gov (United States)

    Gerhold, Carl H.; Rocha, Rodney

    1989-01-01

    An analytical model of the feedback control system which estimates the voltage generated by the piezoelectric sensor as a function of the dynamic stress at the sensor location and the force exerted by the driver piezoelectric as a function of signal gain is developed. The analytical results are compared to measured results for a cantilever beam excited to vibrate in its first natural mode. The estimated increase in the first mode damping factor is in good agreement with the measured results.

  6. Elements of active vibration control for rotating machinery

    Science.gov (United States)

    Ulbrich, Heinz

    1990-01-01

    The success or failure of active vibration control is determined by the availability of suitable actuators, modeling of the entire system including all active elements, positioning of the actuators and sensors, and implementation of problem-adapted control concepts. All of these topics are outlined and their special problems are discussed in detail. Special attention is given to efficient modeling of systems, especially for considering the active elements. Finally, design methods for and the application of active vibration control on rotating machinery are demonstrated by several real applications.

  7. A new approach to active control of rotorcraft vibration

    Science.gov (United States)

    Gupta, N. K.; Du Val, R. W.; Fuller, J.

    1980-01-01

    A state-variable feedback approach is utilized for active control of rotorcraft vibration. Fuselage accelerations are passed through undamped second-order filters with resonant frequencies at N/rev. The resulting outputs contain predominantly the N/rev vibration components, phase shifted by 180 deg, and are used to drive the blade pitch to cancel this component of fuselage vibration. The linear-quadratic-gaussian (LQG) method is used to design a feedback control system utilizing these filtered accelerations. The design is based on a nine-degree-of-freedom linear model of the Rotor System Research Aircraft (RSRA) in hover and is evaluated on a nonlinear blade-element simulation of the RSRA for this flight condition. The system is shown to essentially eliminate vibrations at N/rev in all axes. The required blade-pitch amplitude is within the capability of conventional actuators at the N/rev frequency.

  8. Active vibration control based on piezoelectric smart composite

    Science.gov (United States)

    Gao, Le; Lu, Qingqing; Fei, Fan; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2013-12-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology.

  9. Passive and Active Vibration Control of Renewable Energy Structures

    DEFF Research Database (Denmark)

    Zhang, Zili

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade...... vibration and lateral tower vibration, with the main focus on structural control devices. Rigorous theoretical modeling of different dynamic system has been established, based on which detailed design and analysis of the proposed control devices can be carried out. This thesis also explores technical...... solutions for wave energy point absorbers, in order to maximize the mean absorbed power and to deliver more smooth power to the grid. A novel suboptimal causal control law has been established for controlling the motion of the point absorber, and a new type of point absorber has also been proposed...

  10. Active Blade Vibration Control Being Developed and Tested

    Science.gov (United States)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  11. 旋翼复合材料桨叶弹损穿孔的有限元建模方法%FINITE ELEMENT MODLEING METHOD OF COMPOSITE ROTOR BLADE WITH BALLISTIC PERFORATION

    Institute of Scientific and Technical Information of China (English)

    孙中涛; 王华明

    2013-01-01

    军用直升机旋翼桨叶具有抗弹击设计要求.根据复合材料桨叶的结构特点和工作特性,提出了建立复合材料桨叶弹击穿孔有限元模型的等截面节点移除法,该建模方法先采用等截面拉伸建立桨叶典型结构段的三维模型,然后将弹孔处的节点移除以模拟桨叶的弹损状况.所建立的桨叶弹损模型具有较高的置信度和可接受的解算规模,可作为进一步研究复合材料桨叶抗弹击性能的基础.%The military helicopter rotor blade has design requirement of sustaining some kind of ballistic damage. According to the structural properties and operating characteristics of composite blades, this article provides an even cross-section and node removed method to build finite elements model of composite blade with ballistic perforation. This modeling method builds three-dimensional model of blade typical section by even cross-section tension, then nodes around bullet holes are removed to simulate ballistic damage of the blade. The model of ballistic blade built in this article has a high degree of confidence and an acceptable solver scale, it can be used for further research of composite blades performance of resisting ballistic damage.

  12. Active vibration isolation with a dielectric elastomer stack actuator

    Science.gov (United States)

    Kaal, William; Bartel, Torsten; Herold, Sven

    2017-05-01

    This work presents the development, simulation and experimental investigation of a demonstrator for active vibration isolation with dielectric elastomers (DEs). The electromechanical behavior of the developed DE stack actuator is first characterized experimentally and a suitable simulation model is parametrized accordingly. The potential of the actuator for active vibration isolation is shown in a specially designed single axis test rig. The influence of different control strategies on the transmission behavior from the excited base to the mass is studied. A special aspect of the control strategy is the compensation of the specific nonlinearities. The analysis proves the potential of DE actuators for active vibration isolation purposes. The presented broadband active isolation could enable the use of DEs in various technical fields of application.

  13. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    The thesis is concerned with the active control of randomly vibrating structures by means of feedback control, with particular emphasis on reducing the sound radiation from such structures. A time domain model of the structural and radiation dynamics of an actively controlled plate has been...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...

  14. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    The thesis is concerned with the active control of randomly vibrating structures by means of feedback control, with particular emphasis on reducing the sound radiation from such structures. A time domain model of the structural and radiation dynamics of an actively controlled plate has been...... developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...

  15. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  16. Analysis of vibration reduction level in an 8/6 switched reluctance machine by active vibration cancellation

    Institute of Scientific and Technical Information of China (English)

    Xu LIU; Zai-ping PAN; Z.Q. ZHU

    2010-01-01

    This paper proposes an analytical model for predicting the maximum vibration reduction level in a four-phase 8/6switched reluctance machine(SRM)by employing active vibration cancellation(AVC),one of the most effective and convenient methods for reducing the vibration and acoustic noise produced by SRMs.Based on the proposed method,the factors that influence the vibration reduction level are analyzed in detail.The relationships between vibration and noise reduction levels at resonance frequency and rotor speed are presented.Moreover,it is shown that a large damping factor will lead to smaller vibration reduction level with AVC while,in contrast,a large resonance frequency will increase the vibration reduction level.Both finite element analyses and experiments were carried out on a prototype 8/6 SRM to validate the proposed method.

  17. Novel active noise-reducing headset using earshell vibration control.

    Science.gov (United States)

    Rafaely, Boaz; Carrilho, Joao; Gardonio, Paolo

    2002-10-01

    Active noise-reducing (ANR) headsets are available commercially in applications varying from aviation communication to consumer audio. Current ANR systems use passive attenuation at high frequencies and loudspeaker-based active noise control at low frequencies to achieve broadband noise reduction. This paper presents a novel ANR headset in which the external noise transmitted to the user's ear via earshell vibration is reduced by controlling the vibration of the earshell using force actuators acting against an inertial mass or the earshell headband. Model-based theoretical analysis using velocity feedback control showed that current piezoelectric actuators provide sufficient force but require lower stiffness for improved low-frequency performance. Control simulations based on experimental data from a laboratory headset showed that good performance can potentially be achieved in practice by a robust feedback controller, while a single-frequency real-time control experiment verified that noise reduction can be achieved using earshell vibration control.

  18. Grey forecasting model for active vibration control systems

    Science.gov (United States)

    Lihua, Zou; Suliang, Dai; Butterworth, John; Ma, Xing; Dong, Bo; Liu, Aiping

    2009-05-01

    Based on the grey theory, a GM(1,1) forecasting model and an optimal GM(1,1) forecasting model are developed and assessed for use in active vibration control systems for earthquake response mitigation. After deriving equations for forecasting the control state vector, design procedures for an optimal active control method are proposed. Features of the resulting vibration control and the influence on it of time-delay based on different sampling intervals of seismic ground motion are analysed. The numerical results show that the forecasting models based on the grey theory are reliable and practical in structural vibration control fields. Compared with the grey forecasting model, the optimal forecasting model is more efficient in reducing the influences of time-delay and disturbance errors.

  19. An active vibration isolation system using adaptive proportional control method

    Science.gov (United States)

    Liu, Yun-Hui; Hsieh, Hung-En; Wu, Wei-Hao

    2014-03-01

    This paper is concerned with a six-degree-of-freedom active vibration isolation system using voice coil actuators with absolute velocity feedback control for highly sensitive measurement equipment, e.g. atomic force microscopes, suffering from building vibration. The main differences between this type of system and traditional isolator, is that there are no isolator resonance. The absolute vibration velocity signal acquired from an accelerator and being processed through an integrator is input to the controller as a feedback signal, and the controller output signal drives the voice coil actuator to produce a sky-hook damper force. In practice, the phase response of integrator at low frequency such as 2~6 Hz deviate from the 90 degree which is the exact phase difference between the vibration velocity and acceleration. Therefore, an adaptive filter is used to compensate the phase error in this paper. An analysis of this active vibration isolation system is presented, and model predictions are compared to experimental results. The results show that the proposed method significantly reduces transmissibility at resonance without the penalty of increased transmissibility at higher frequencies.

  20. Integrated Passive and Active Vibration Control of Ultra-precision Lathe

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In ultra-precision cutting process, vibration is one of the key factors affecting the machining quality. In this paper, the damping methods of HCM-I Ultra-precision Lathe are discussed in both complete machine and slide. It is pointed out that integrated passive and active vibration control (IPAVC) by combining passive vibration control (PVC) and active vibration control (AVC) can not only eliminate high frequency vibration but also improve the damping effect to low frequency vibration. Experiment results show the effectiveness of the integrated passive and active vibration control.

  1. Vibrations of wind power plants; Schwingungen von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the meeting of the department vibration engineering of the Association of German Engineers (Duesseldorf, Federal Republic of Germany) between 3rd and 4th February, 2010 in Hanover (Federal Republic of Germany) the following lectures are presented: (1) Reduction of forced strengths generated by wagging and snaking of the rotor in the power strain of wind power plants (F. Mitsch); (2) Reduction of vibrations at wind power plants by means of active additional systems (S. Katz, S. Pankoke, N. Loix); (3) Reduction of vibrations by means of balancing and alignment (E. Becker, M. Kenzler); (4) Active absorber for reducing tonal emissions of vibration at wind power plants (R. Neugebauer, M. Linke, H. Kunze, M. Ulrich); (5) Control structures for damping torsion vibrations and peak loads in the power strain of wind power converters (C. Sourkounis); (6) Possibilities of a non-contact investigation of vibrations at wind power plants (R. Behrendt, E. Reimers, H. Wiegers); (7) Influences on the loadability of CMS statements (R. Wirth); (8) Recording modal structural properties with sensor grids and methods of operational modal analysis (A. Friedmann, D. Mayer, M. Koch, M. Kauba, T. Melz); (9) Early failure detection of damages of roller bearings in wind power gear units with variable speed (B. Hacke, G. Poll); (10) Condition monitoring in wind power plants - structure monitoring and life time monitoring of wind power plants (SCMS and LCMS) (H. Lange); (11) Development of a model-based structural health monitoring system for condition monitoring of rotor blades (C. Ebert, H. Friedmann, F.O. Henkel, B. Frankenstein, L. Schubert); (12) Efficient remote monitoring at wind power plants by means of an external diagnosis centre (G. Ceglarek); (13) Accurate turbine modelling at component and assembly level for durability and acoustic analysis (D. v. Werner, W. Hendricx); (14) Possibilities of the investigation of the dynamic behaviour of power strains in wind power plants by

  2. Active vibration isolation through a Stewart platform with piezoelectric actuators

    Science.gov (United States)

    Wang, Chaoxin; Xie, Xiling; Chen, Yanhao; Zhang, Zhiyi

    2016-09-01

    A Stewart platform with piezoelectric actuators is presented for micro-vibration isolation. The Jacobian matrix of the Stewart platform, which reveals the relationship between the position/pointing of the payload and the extensions of the struts, is derived by the kinematic analysis and modified according to measured FRFs(frequency response function). The dynamic model of the Stewart platform is established by the FRF synthesis method to accommodate flexible modes of the platform. In active isolation, the LMS-based adaptive method is adopted and combined with the Jacobian matrix to suppress pure vibrations of the payload. Numerical simulations and experiments were conducted to prove vibration isolation performance of the Stewart platform subjected to periodical disturbances, and the results have demonstrated that considerable attenuations can be achieved.

  3. Development and evaluation of a generic active helicopter vibration controller

    Science.gov (United States)

    Davis, M. W.

    1984-01-01

    A computerized generic active controller is developed, which alleviates helicopter vibration by closed-loop implementation of higher harmonic control (HHC). In the system, the higher harmonic blade pitch is input through a standard helicopter swashplate; for a four-blade helicopter rotor the 4/rev vibration in the rotorcraft is minimized by inducing cyclic pitch motions at 3, 4, and 5/rev in the rotating system. The controller employs the deterministic, cautious, and dual control approaches and two linear system models (local and global), as well as several methods of limiting control. Based on model testing, performed at moderate to high values of forward velocity and rotor thrust, reductions in the rotor test apparatus vibration from 75 to 95 percent are predicted, with HHC pitch amplitudes of less than one degree. Good performance is also noted for short-duration maneuvers.

  4. Application of tuned liquid damper in vibration suppression of wind towers

    Energy Technology Data Exchange (ETDEWEB)

    Poshnejad, A. [Ryerson Polytechnic Univ., Toronto, ON (Canada)

    2010-07-01

    The structural responses of a wind turbine were simulated with an attached damping tuned liquid damper (TLD) designed to control vibrations. The proposed TLD was an annular liquid container designed to be installed below the nacelle around the tower body. The TLD-structure system was formulated as a nonlinear coupled response between the TLD hydrodynamic force and the structure response. The effectiveness of the damper was compared with the dampers typically used in antenna designs. A circuit shallow TLD was used as a vibration damper. The sloshing behaviour of water was then modelled using a computational fluid dynamics (CFD) tool and an equivalent mechanical model. Vibration dynamics were considered for the rotor blades; the mechanical-electrical drive train; the yaw system; and the entire wind turbine. Results of the investigation demonstrated that the TLD effectively increased the damping of the wind tower. tabs., figs.

  5. Modeling and vibration control of an active membrane mirror

    Science.gov (United States)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  6. Vibration control of flexible beams using an active hinge

    Science.gov (United States)

    Cudney, H. H., Jr.; Inman, D. J.; Horner, G. C.

    1985-01-01

    The use of an active hinge to attenuate the transverse vibrations of a flexible beam is examined. A slender aluminum beam is suspended vertically, cantilevered at the top. An active hinge is placed at the node of the second vibration mode. The active hinge consists of a torque motor, strain gauge, and tachometer. A control law is implemented using both beam-bending strain and the relative angular velocity measured at this hinge, thereby configuring the hinge to act as an active damper. Results from implementing this control law show little improvement in the first mode damping ratio, 130 percent increase in the second mode damping ratio, and 180 percent increase in the third mode damping ratio. The merits of using a motor with a gearbox are discussed.

  7. Microgravity Active Vibration Isolation System on Parabolic Flights

    Science.gov (United States)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  8. Vibration control of active structures an introduction

    CERN Document Server

    Preumont, Andre

    2002-01-01

    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  9. Neuroreceptor Activation by Vibration-Assisted Tunneling

    CERN Document Server

    Hoehn, Ross D; Neven, Hartmut; Kais, Sabre

    2015-01-01

    G protein-coupled receptors (GPCRs) constitute a large family of receptor proteins that sense molecular signals on the exterior of a cell and activate signal transduction pathways within the cell. Modeling how an agonist activates such a receptor is fundamental for an understanding of a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as a model for the mechanism by which olfactory GPCRs are activated by a bound agonist. We apply this hypothesis to GPCRs within the mammalian nervous system using quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a particular IET spectral aspect both amongst each other and with the serotonin molecule: a peak whose intensity scales with the known agonist potencies. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its deuterated isotopo...

  10. Aeroelastic analysis for helicopter rotors with blade appended pendulum vibration absorbers. Mathematical derivations and program user's manual

    Science.gov (United States)

    Bielawa, R. L.

    1982-01-01

    Mathematical development is presented for the expanded capabilities of the United Technologies Research Center (UTRC) G400 Rotor Aeroelastic Analysis. This expanded analysis, G400PA, simulates the dynamics of teetered rotors, blade pendulum vibration absorbers and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. Formulations are also presented for calculating the rotor impedance matrix appropriate to these higher harmonic blade excitations. This impedance matrix and the associated vibratory hub loads are intended as the rotor blade characteristics elements for use in the Simplified Coupled Rotor/Fuselage Vibration Analysis (SIMVIB). Sections are included presenting updates to the development of the original G400 theory, and material appropriate to the user of the G400PA computer program. This material includes: (1) a general descriptionof the tructuring of the G400PA FORTRAN coding, (2) a detaild description of the required input data and other useful information for successfully running the program, and (3) a detailed description of the output results.

  11. Active Vibration Control of a Monopile Offshore Structure

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.

    1996-01-01

    , it can be necessary to use an active or a passive vibration control system. However, for a monopile with severe space problems it can be difficult to locate a passive control system such as e.g. a tuned mass damper. Therefore, in order to active control wave introduced vibrations of a monopile structure...... an active control technique has been proposed in corporation with the consulting company Rambøll, Esbjerg, Denmark. The proposed control technique is based on the relationship between the position of the separation points of the boundary layer flow and the drag term in the wave force on the cylinder......In the Danish part of the North Sea it has been found that marginal fields can be exploited using monopile offshore platforms which present significant advantages with respect to the costs involved in fabrication and installation and can therefore tip the economic balance favourably. Monopile...

  12. Online identification of active absorbers in automotive vibration control

    Energy Technology Data Exchange (ETDEWEB)

    Buttelmann, M.; Lohmann, B.; Vinogradski, M.; Nedeljkovic, N. [Bremen Univ. (Germany). Inst. fuer Automatisierungstechnik; Marienfeld, P. [ContiTech Vibration Control GmbH, Hannover (Germany); Svaricek, F. [Continental Gummi-Werke AG, Hannover (Germany)

    2001-07-01

    In the past, engine-related noise and vibration in the vehicle cabin was exclusively reduced by passive absorption. Today, modern actuators and control systems make an active noise reduction possible by introducing counteracting vibration at 180 degrees phase lag. Within a cooperation of the Institute of Automation Systems and Continental AG, an approach using active absorbers at the engine mounts is investigated. As the dynamic behaviour of the active absorbers and other elements in the secondary path are time-variant (depending on temperature, age and other factors), an online identification is carried out. By this, the implemented feedforward control strategy is supported on a precise and frequently updated model of the secondary path. The chosen approaches to online and offline identification are presented together with first results achieved in online identification and with the overall control system. (orig.)

  13. Wireless sensor networks for active vibration control in automobile structures

    Science.gov (United States)

    Mieyeville, Fabien; Ichchou, Mohamed; Scorletti, Gérard; Navarro, David; Du, Wan

    2012-07-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control.

  14. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  15. Two-sensor control in active vibration isolation using hard mounts

    NARCIS (Netherlands)

    Beijen, M.A.; Tjepkema, D.; van Dijk, Johannes

    2014-01-01

    To isolate precision machines from floor vibrations, active vibration isolators are often applied. In this paper, a two-sensor control strategy, based on acceleration feedback and force feedback, is proposed for an active vibration isolator using a single-axis active hard mount. The hard mount

  16. Two-sensor control in active vibration isolation using hard mounts

    NARCIS (Netherlands)

    Beijen, M.A.; Tjepkema, D.; Dijk, van J.

    2014-01-01

    To isolate precision machines from floor vibrations, active vibration isolators are often applied. In this paper, a two-sensor control strategy, based on acceleration feedback and force feedback, is proposed for an active vibration isolator using a single-axis active hard mount. The hard mount provi

  17. Active vibration isolation of high precision machines

    CERN Document Server

    Collette, C; Artoos, K; Hauviller, C

    2010-01-01

    This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

  18. Vibration control of cylindrical shells using active constrained layer damping

    Science.gov (United States)

    Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.

    1997-05-01

    The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  19. Longitudinal metastructure bar with an active vibration absorber (Conference Presentation)

    Science.gov (United States)

    Reichl, Katherine; Inman, Daniel J.

    2017-04-01

    This work addresses two issues in lightweight structural composites suitable for aerospace systems. The first is to add additional functionality to multifunctional composites and the second is to provide damping in structures that cover a wide range of frequencies and temperatures. Passive damping in all materials suffer from failing at certain temperature and in certain frequency ranges. The extreme environments often seen by aerospace structures provide high temperature, which is exactly where damping levels in structures reduce causing unacceptable vibrations. In addition, as loading frequencies decrease damping levels fall off, and many loads experienced by aerospace structures are low frequency. This work looks at the implementation of a control system to a longitudinal metastructure bar. A metastructure is a structure which has distributed vibration absorbers which provide passive damping to the system. The active control system will be implemented by adding piezoelectric materials to one of the absorbers to make the absorber active. The structure with the active vibration absorber will be compared to a structure of equal weight with no active components. Since the two comparison structures are of equal weight, the performance improvements are strictly due to the control system and not at the cost of additional weight.

  20. Aerodynamics of Rotor Blades for Quadrotors

    CERN Document Server

    Bangura, Moses; Naldi, Roberto; Mahony, Robert

    2016-01-01

    In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...

  1. Crack Propagation in Compressor Rotor Blade

    Science.gov (United States)

    2012-08-01

    by local Public Affairs Office) 13. SUPPLEMENTARY NOTES 14. ABSTRACT Turbomachine blading crack propagation and initiations are one of...the most important problems. Design, operation and modernization of the contemporary turbomachines are impossible without a detailed numerical and...Rao, J. S., Turbine Blade Life Estimation, Narosa Publishing House, (2000). Rao, J. S., Narayan, R. and Ranjith, M. C., Lifing of Turbomachine

  2. Flowfield Characteristics on a Retreating Rotor Blade

    Science.gov (United States)

    2015-12-03

    Kevin Goal, Vrishank Raghav, Narayanan Komerath. Quantitative Measurements on Wall Formation by Particles in an Acoustic Resonator , AIAA... RESONATOR , IMECE2013, ASME 2013 International Mechanical Engineering Congress & Exposition. 21-NOV-13, . : , Vrishank Raghav, Narayanan Komerath, Rafael...moving in a clockwise, conical rotation pattern when looking from upstream. These rotating tufts are indicative of a leading edge vortex beginning to

  3. Adaptive and robust active vibration control methodology and tests

    CERN Document Server

    Landau, Ioan Doré; Castellanos-Silva, Abraham; Constantinescu, Aurelian

    2017-01-01

    This book approaches the design of active vibration control systems from the perspective of today’s ideas of computer control. It formulates the various design problems encountered in the active management of vibration as control problems and searches for the most appropriate tools to solve them. The experimental validation of the solutions proposed on relevant tests benches is also addressed. To promote the widespread acceptance of these techniques, the presentation eliminates unnecessary theoretical developments (which can be found elsewhere) and focuses on algorithms and their use. The solutions proposed cannot be fully understood and creatively exploited without a clear understanding of the basic concepts and methods, so these are considered in depth. The focus is on enhancing motivations, algorithm presentation and experimental evaluation. MATLAB®routines, Simulink® diagrams and bench-test data are available for download and encourage easy assimilation of the experimental and exemplary material. Thre...

  4. Active Vibration Suppression R&D for the NLC

    OpenAIRE

    Frisch, Josef; Hendirckson, Linda; Himel, Thomas; Seryi, Andrei

    2001-01-01

    The nanometer scale beam sizes at the interaction point in linear colliders limit the allowable motion of the final focus magnets. We have constructed a prototype system to investigate the use of active vibration damping to control magnet motion. Inertial sensors are used to measure the position of a test mass, and a DSP based system provides feedback using electrostatic pushers. Simulation and experimental results for the control of a mechanically simple system are presented.

  5. Adaptive active vibration isolation – A control perspective

    Directory of Open Access Journals (Sweden)

    Landau Ioan Doré

    2015-01-01

    The paper will review a number of recent developments for adaptive feedback compensation of multiple unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Some experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented.

  6. Active vibration control techniques for flexible space structures

    Science.gov (United States)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  7. [Actuator placement for active sound and vibration control

    Science.gov (United States)

    1997-01-01

    Two refereed journal publications and ten talks given at conferences, seminars, and colloquia resulted from research supported by NASA. They are itemized in this report. The two publications were entitled "Reactive Tabu and Search Sensor Selection in Active Structural Acoustic Control Problems" and "Quelling Cabin Noise in Turboprop Aircraft via Active Control." The conference presentations covered various aspects of actuator placement, including location problems, for active sound and vibration control of cylinders, of commuter jets, of propeller driven or turboprop aircraft, and for quelling aircraft cabin or interior noise.

  8. Active Lubrication for Reducing Wear and Vibration: A combination of Fluid Power Control and Tribology

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  9. Active vibration isolation of a flexible structure mounted on a vibrating elastic base

    Science.gov (United States)

    El-Sinawi, A. H.

    2004-03-01

    The problem of isolating the vibration at any location on a flexible structure mounted on a vibrating flexible base is considered using a Kalman-based active feedforward-feedback controller (KAFB) with non-collocated sensors and actuators. The control strategy developed in this study focuses on lowering the force transmitted to the structure through its vibrating elastic foundation in the presence of process and measurements noise. A state-space model of the structure is constructed from the natural frequencies and mode shapes generated via finite element modal analysis of the structure. The important aspect of the proposed control strategy is that, while it's design is based on a full order model of the physical structure (plant), its implementation is reduced to the realization of a second order estimator regardless of the order of the plant model, and with negligible effect on its accuracy and performance. Therefore, the proposed control strategy requires low computational effort, which makes it well suited for real time control applications. Another unique aspect of this control strategy is its agility and speed in compensating for any phase or magnitude mismatch between transmitted force and control force. Moreover, the stability of the control system is implicitly attained by the controllability condition posed by the Kalman filter on the model. Thus, proper choice of Kalman gains will drive the states of the structure, at the sensor location, ideally to zero. In addition to that, digital implementation of the proposed controller can be easily done considering the fact that the discrete Kalman filter is exact. Numerical simulation of the controller performance is carried out and the results are presented.

  10. Experimental study on active vibration control of a gearbox system

    Science.gov (United States)

    Guan, Yuan H.; Lim, Teik C.; Steve Shepard, W.

    2005-04-01

    An active internal gearbox structure is developed and evaluated experimentally to suppress gear pair vibration due to transmission error excitation. The approach is based on an active shaft transverse vibration control concept that was theoretically analyzed in an earlier study and determined to be one of the most feasible methods. The system comprises of a piezoelectric stack actuator for applying control forces to the shaft via a rolling element-bearing, and a highly efficient, enhanced delayed-x LMS control algorithm to generate the appropriate control signals. To avoid the aliasing effects of higher frequency signals and reduce the phase delay of conventional filters, a multi-rate minimum-phase low-pass digital filter is also integrated into the controller. The experimental results yield 8-13 dB attenuation in the gearbox housing vibration levels and correspondingly 5-8 dB reduction in measured gear whine noise levels at the first and second operating gear mesh frequencies.

  11. Four experimental demonstrations of active vibration control for flexible structures

    Science.gov (United States)

    Phillips, Doug; Collins, Emmanuel G., Jr.

    1990-01-01

    Laboratory experiments designed to test prototype active-vibration-control systems under development for future flexible space structures are described, summarizing previously reported results. The control-synthesis technique employed for all four experiments was the maximum-entropy optimal-projection (MEOP) method (Bernstein and Hyland, 1988). Consideration is given to: (1) a pendulum experiment on large-amplitude LF dynamics; (2) a plate experiment on broadband vibration suppression in a two-dimensional structure; (3) a multiple-hexagon experiment combining the factors studied in (1) and (2) to simulate the complexity of a large space structure; and (4) the NASA Marshall ACES experiment on a lightweight deployable 45-foot beam. Extensive diagrams, drawings, graphs, and photographs are included. The results are shown to validate the MEOP design approach, demonstrating that good performance is achievable using relatively simple low-order decentralized controllers.

  12. Research of Air-Magnet Active Vibration Isolation System Based on H∞ Control

    Directory of Open Access Journals (Sweden)

    Wen Xianglong

    2015-01-01

    Full Text Available Considering the uncertainty of air-magnet active vibration isolation system (AMAVIS, passive vibration isolation was combined with active vibration isolation, which adopted H∞ control strategies. System identification method was used to get the channel model. By adopting mixed sensitivity design strategy, weighting functions were chosen and H∞ controller was designed. Both simulation results and experimental results show AMAVIS based on H∞ control had satisfying effect of vibration reduction in assigned frequency band.

  13. Piezo Ceramic Actuators versus High Magnetostrictive Actuators in the Active control of Tool Vibration

    OpenAIRE

    Andrén, Linus; Håkansson, Lars; Claesson, Ingvar; Lagö, Thomas L.

    1999-01-01

    In the turning operation chatter or vibration is a frequent problem, which affects the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced by active control of machine-tool vibration. In the active control system for the control of tool vibration a tool holder construct...

  14. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity

    OpenAIRE

    2014-01-01

    Background: Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neuro...

  15. Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles (Technologies des systemes a commandes actives pour l’amelioration des performances operationnelles des aeronefs militaires, des vehicules terrestres et des vehicules maritimes)

    Science.gov (United States)

    2001-06-01

    Morita, T., M. Kurosawa , and T. Higuchi. 1995. “An ultrasonic motor using bending cylindrical transducer based on PZT thin film ,” in Proc. of 1995 IEEE...SAS Studies , Analysis and Simulation Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These...Knauer Active Dynamic Flow Control Studies on Rotor Blades 17 by W. Geissler, M. Trenker and H. Sobieczky Session IV: Noise Control Active Control of the

  16. Vibration active control of smart structures incorporating ER actuators and fiber optic vibration sensors based on speckle detection

    Science.gov (United States)

    Leng, Jinsong; Asundi, Anand K.

    1999-06-01

    A smart structures system based on the fiber optic sensors and ER fluids actuators have been developed to used active vibration control in this paper. There are many advantages of this optical sensor such as high accurate, simple construction and low cost. A method of sensing vibration using the detection of changes in the spatial distribution of energy in the output of a multi-mode optic fiber has been demonstrated. A multi-mode optical fiber whose diameter is 200/230 micrometers is used in the present experiment. A multi- mode optical fiber vibration sensor based on the detection of the spatial speckle has been made. The experimental test have been finished. It has been found that this fiber optic sensor has higher sensitivity and better dynamic and static properties. At the meantime, the electrorheological (ER) fluids have been used as actuator to vibration control because of it's fast strong reversible change of the rheological properties under external electric field. A smart composite beam embedded ER fluids and fiber optic vibration sensor have been made in this paper. Finally, the experiment of structural vibration active control of smart structure incorporating the ER fluids and fiber optic vibration sensor have been finished.

  17. Active vibrations and noise control for turboprop application research program activities

    Science.gov (United States)

    Paonessa, A.; Concilio, A.; Lecce, Leonardo V.

    1992-01-01

    The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.

  18. Stall Inception Process and Prospects for Active Hub-Flap Control in Three-Stage Axial Flow Compressor

    Institute of Scientific and Technical Information of China (English)

    Tomoya OKADA; Atsushi KAWAJIRI; Yutaka OHTA; Eisuke OUTA

    2008-01-01

    The possibility to apply the active hub-flap control method, which is a proven rotating stall control method for a single-stage compressor, to a 3-stage axial compressor is experimentally discussed, where complex rotating stall inception processes ate observed. The research compressor is a 3-stage one and could change the stagger angle settings for rotor blades and stator vanes. Sixteen rotor blade/stator vane configuration patterns were tested by changing stagger angle for the stator vanes. By measurement of surface-pressure fluctuation, stall inception proc-esses are investigated and the measured pressure fluctuation data is used as a predictive signal for rotating stall. The experimental results show that the stall detection system applied to active hub-flap control in a single-stage compressor could be usefully applied to that in a 3-stage compressor with a more complex stall inception process.

  19. Application of Artificial Neural Network in Active Vibration Control of Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-shun; ZHANG Jian-wu

    2005-01-01

    Artificial Neural Network (ANN) is applied to diesel twostage vibration isolating system and an AVC (Active Vibration Control) system is developed. Both identifier and controller are constructed by three-layer BP neural network. Besides computer simulation, experiment research is carried out on both analog bench and diesel bench. The results of simulation and experiment show a diminished response of vibration.

  20. Active vibration isolation feedback control for Coriolis Mass-Flow Meters

    NARCIS (Netherlands)

    Ridder, van de L.; Beijen, M.A.; Hakvoort, W.B.J.; Dijk, van J.; Lötters, J.C.; Boer, de A.

    2014-01-01

    Active Vibration Isolation Control (AVIC) can be used to reduce the transmissibility of external vibrations to internal vibrations. In this paper a proposal is made for integrating AVIC in a Coriolis Mass-Flow Meter (CMFM). Acceleration feedback, virtual mass and virtual skyhook damping are added to

  1. Active vibration control for underwater signature reduction of a navy ship

    NARCIS (Netherlands)

    Basten, T.; Berkhoff, A.; Vermeulen, R.

    2010-01-01

    Dutch navy ships are designed and built to have a low underwater signature. For low frequencies however, tonal vibrations of a gearbox can occur, which might lead to increased acoustic signatures. These vibrations are hard to reduce by passive means. To investigate the possibilities of active vibrat

  2. Smart materials and active noise and vibration control in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, M. van [TNO Institute of Applied Physics, Delft (Netherlands)

    2001-07-01

    Results are presented for the reduction of sound radiated from a structure using different control methodologies. Two approaches for active structural acoustic control are mentioned to reduce sound radiated by the structure: the acoustic approach or the vibro-acoustic approach. In both cases integrated actuators in structure materials are necessary to realise feasible products. Furthermore the development of an efficient shaker for Active Isolation techniques is described. The prototype of TNO TPD can produce a force of 400 N up to 250 Hz at a good performance-volume ratio. To enhance the robustness of the active control applications, the use of the subspace identification based control methods are developed. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The performed simulations reveal excellent robustness performance under very general noise conditions or during operation of the control system. Furthermore the development of the techniques can be exploited to realise sound comfort requirements to enhance audible communications of vehicle related applications. To anticipate to these developments in the automotive industry, TNO has set up a Sound and Vibrations Research Centre with Twente University and a research program on Smart Panels with the Delft University. To investigate the potential markets and applications for sound comfort in the means of transportation, TNO-TPD and the Institute of Sound and Vibration Research in England (ISVR) have agreed on a cooperative venture to develop and realise 'active control of electroacoustics' (ACE). (orig.)

  3. Real Time Vibration Control of Active Suspension System with Active Force Control using Iterative Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Kalaivani

    2013-09-01

    Full Text Available This paper presents concurrent vibration control of a laboratory scaled vibration isolator platform with Active Force Control (AFC using Iterative Learning Algorithm (ILA. The work investigates the performance of the traditional Proportional Integral Derivative Controller (PIDC with and without AFC using ILA for vibration suppression. The physical single degree of freedom quarter car has been interfaced with a personal computer using a National Instruments data acquisition card NI USB 6008. The controllers are designed and simulated using LabVIEW simulation software. The results infer that the PIDC with AFC using ILA works superior than the PIDC.

  4. Active structural vibration control: Robust to temperature variations

    Science.gov (United States)

    Gupta, Vivek; Sharma, Manu; Thakur, Nagesh

    2012-11-01

    d-form augmented piezoelectric constitutive equations which take into account temperature dependence of piezoelectric strain coefficient (d31) and permittivity (∈33), are converted into e-form. Using e-form constitutive equations, a finite element model of a smart two dimensional plate instrumented with piezoelectric patches is derived. Equations of motion are derived using Hamilton's variational principle. Coupled equations of motion are uncoupled using modal analysis. Modal state vectors are estimated using the Kalman observer. The first mode of smart cantilevered plate is actively controlled using negative first modal velocity feedback at various temperatures. Total control effort required to do so is calculated using the electro-mechanical impedance method. The temperature dependence of sensor voltage, control voltage, control effort and Kalman observer equations is shown analytically. Simulation results are presented using MATLAB. Variations in (i) peak sensor voltage, (ii) actual and estimated first modal velocities, (iii) peak control voltage, (iv) total control effort and (v) settling time with respect to temperature are presented. Active vibration control performance is not maintained at temperature away from reference temperature when the temperature dependence of piezoelectric stress coefficient ‘e31' and permittivity ‘∈33' is not included in piezoelectric constitutive equations. Active control of vibrations becomes robust to temperature variations when the temperature dependence of ‘e31' and ‘∈33' is included in piezoelectric constitutive equations.

  5. Sensor fusion methods for high performance active vibration isolation systems

    Science.gov (United States)

    Collette, C.; Matichard, F.

    2015-04-01

    Sensor noise often limits the performance of active vibration isolation systems. Inertial sensors used in such systems can be selected through a wide variety of instrument noise and size characteristics. However, the most sensitive instruments are often the biggest and the heaviest. Consequently, high-performance active isolators sometimes embed many tens of kilograms in instrumentation. The weight and size of instrumentation can add unwanted constraint on the design. It tends to lower the structures natural frequencies and reduces the collocation between sensors and actuators. Both effects tend to reduce feedback control performance and stability. This paper discusses sensor fusion techniques that can be used in order to increase the control bandwidth (and/or the stability). For this, the low noise inertial instrument signal dominates the fusion at low frequency to provide vibration isolation. Other types of sensors (relative motion, smaller but noisier inertial, or force sensors) are used at higher frequencies to increase stability. Several sensor fusion configurations are studied. The paper shows the improvement that can be expected for several case studies including a rigid equipment, a flexible equipment, and a flexible equipment mounted on a flexible support structure.

  6. Active vibration control by means of concurrent implementation techniques

    OpenAIRE

    2015-01-01

    M.Ing. The central theme of this dissertation is vibration reduction. The aims of this dissertation are, firstly, to provide a practical, cost effective, experimental system on which a given vibration control algorithm can be tested and experimented on, since there is a need to further optimize the performance of the given vibration control algorithm. Secondly, a solution to the problem of excessive time consumption of the given vibration control algorithm on current generation computers i...

  7. Active vibration control of multibody system with quick startup and brake based on active damping

    Institute of Scientific and Technical Information of China (English)

    TANG Hua-ping; TANG Yun-jun; TAO Gong-an

    2006-01-01

    A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.

  8. Design of the Active Elevon Rotor for Low Vibration

    Science.gov (United States)

    Fulton, Mark V.; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    Helicopter fuselages vibrate more than desired, and traditional solutions have limited effectiveness and can impose an appreciable weight penalty. Alternative methods of combating high vibration, including Higher Harmonic Control (HHC) via harmonic swashplate motion and Individual Blade Control (IBC) via active pitch links, have been studied for several decades. HHC via an on-blade control surface was tested in 1977 on a full scale rotor using a secondary active swashplate and a mechanical control system. Recent smart material advances have prompted new research into the use of on-blade control concepts. Recent analytical studies have indicated that the use of on-blade control surfaces produces vibration reduction comparable to swashplate-based HHC but for less power. Furthermore, smart materials (such as piezoceramics) have been shown to provide sufficient control authority for preliminary rotor experiments. These experiments were initially performed at small scale for reduced tip speeds. More recent experiments have been conducted at or near full tip speeds, and a full-scale active rotor is under development by Boeing with Eurocopter et al. pursuing a similarly advanced full-scale implementation. The US Army Aeroflightdynamics Directorate has undertaken a new research program called the Active Elevon Rotor (AER) Focus Demo. This program includes the design, fabrication, and wind. tunnel testing of a four-bladed, 12.96 ft diameter rotor with one or two on-blade elevons per blade. The rotor, which will be Mach scaled, will use 2-5/rev elevon motion for closed-loop control and :will be tested in late 2001. The primary goal of the AER Focus Demo is the reduction of vibratory hub loads by 80% and the reduction of vibratory blade structural loads. A secondary goal is the reduction of rotor power. The third priority is the measurement and possible reduction of Blade Vortex Interaction (BVI) noise. The present study is focused on elevon effectiveness, that is, the elevon

  9. Active Vibration Isolation System for Sub-microultra-precision Turning Machine

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Now vibration isolation of ultra-precision machine tool is usually achieved through air-springs systems. As far as HCM-I sub-micro turning machine developed by HIT, an active vibration isolation system that consists of air-springs and electro-magnetic actuators was presented. The primary function of air-springs is to support the turning machine and to isolate the high-frequency vibration. The electro-magnetic actuators controlled by fuzzy-neural networks isolate the low-frequency vibration. The experiment indicates that active vibration isolation system isolates base-vibration effectively in all the frequency range. So the vibration of the machine bed is controlled under 10-6g and the surface roughness is improved.

  10. Actuator placement for active sound and vibration control of cylinders

    Science.gov (United States)

    Kincaid, Rex K.

    1995-01-01

    Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The cylinder is excited by an exterior noise source -- an acoustic monopole -- located near the outside of the cylinder wall. The goal is to determine the force inputs and sites for the piezoelectric actuators so that (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. We studied external monopole excitations at two frequencies. A cylinder resonance of 100 Hz, where the interior acoustic field is driven in multiple, off-resonance cylinder cavity modes, and a cylinder resonance of 200 Hz are characterized by both near and off-resonance cylinder vibration modes which couple effectively with a single, dominant, low-order acoustic cavity mode at resonance. Previous work has focused almost exclusively on meeting objective (1) and solving a complex least-squares problem to arrive at an optimal force vector for a given set of actuator sites. In addition, it has been noted that when the cavity mode couples with cylinder vibration modes (our 200 Hz case) control spillover may occur in higher order cylinder shell vibrational modes. How to determine the best set of actuator sites to meet objectives (1)-(3) is the main contribution of our research effort. The selection of the best set of actuator sites from a set of potential sites is done via two metaheuristics -- simulated annealing and tabu search. Each of these metaheuristics partitions the set of potential actuator sites into two disjoint sets: those that are selected to control the noise (on) and those that are not (off). Next, each metaheuristic attempts to

  11. A Self-Organizing Fuzzy Controller for an Active Vibration Suppression

    Science.gov (United States)

    Huang, Shiuh-Jer; Huang, Kuo-See

    A spring-lumped mass dynamic absorber system with internal vibration disturbance sources is constructed for active vibration control. The self-organizing fuzzy controller is employed to control the vibration amplitude of the main mass. This approach has learning ability for responding to the time-varying characteristic of the disturbance inducing vibration. Its control rule bank can be established and modified continuously by on-line learning. The experimental results show that this intelligent controller effectively suppresses the vibration amplitude of the body with respect to the external disturbance.

  12. Passive and active launch vibration studies in the LVIS program

    Science.gov (United States)

    Edberg, Donald L.; Bartos, Bruce; Goodding, James C.; Wilke, Paul S.; Davis, Torey

    1998-06-01

    A U.S. Air Force-sponsored team consisting of Boeing (formerly McDonnell Douglas), Honeywell Satellite Systems, and CSA Engineering has developed technology to reduce the vibration felt by an isolated payload during launch. Spacecraft designers indicate that a launch vibration isolation system (LVIS) could provide significant cost benefits in payload design, testing, launch, and lifetime. This paper contains developments occurring since those reported previously. Simulations, which included models of a 6,500 pound spacecraft, an isolating payload attach fitting (PAF) to replace an existing PAF, and the Boeing Delta II launch vehicle, were used to generate PAF performance requirements for the desired levels of attenuation. Hardware was designed to meet the requirements. The isolating PAF concept replaces portions of a conventional metallic fitting with hydraulic- pneumatic struts featuring a unique hydraulic cross-link feature that stiffens under rotation to meet rocking restrictions. The pneumatics provide low-stiffness longitudinal support. Two demonstration isolating PAF struts were designed, fabricated and tested to determine their stiffness and damping characteristics and to verify the performance of the hydraulic crosslink concept. Measurements matched analytical predictions closely. An active closed-loop control system was simulated to assess its potential isolation performance. A factor of 100 performance increase over the passive case was achieved with minor weight addition and minimal power consumption.

  13. Active vibration control of spatial flexible multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  14. Active Flap Control of the SMART Rotor for Vibration Reduction

    Science.gov (United States)

    Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.

    2009-01-01

    Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.

  15. Active low-frequency vertical vibration isolation system for precision measurements

    Science.gov (United States)

    Wu, Kang; Li, Gang; Hu, Hua; Wang, Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling.

  16. Demonstration of active vibration control on a stirling-cycle cryocooler testbed

    Science.gov (United States)

    Johnson, Bruce G.; Flynn, Frederick J.; Gaffney, Monique S.; Johnson, Dean L.; Ross, Ronald G., Jr.

    1992-01-01

    SatCon Technology Corporation has demonstrated excellent vibration reduction performance using active control on the JPL Stirling-cycle cryocooler testbed. The authors address the use of classical narrowband feedback control to meet the cryocooler vibration specifications using one cryocooler in a self-cancellation configuration. Similar vibration reduction performance was obtained using a cryocooler back-to-back configuration by actively controlling a reaction mass actuator that was used to mimic the second cooler.

  17. The Effect of Whole-body Vibration on Muscle Activity in Active and Inactive Subjects.

    Science.gov (United States)

    Lienhard, K; Vienneau, J; Friesenbichler, B; Nigg, S; Meste, O; Nigg, B M; Colson, S S

    2015-06-01

    The purpose of this study was to compare lower limb muscle activity between physically active and inactive individuals during whole-body vibration exercises. Additionally, transmissibility of the vertical acceleration to the head was quantified. 30 active and 28 inactive participants volunteered to stand in a relaxed (20°) and a squat (60°) position on a side-alternating WBV platform that induced vibrations at 16 Hz and 4 mm amplitude. Surface electromyography (sEMG) was measured in selected lower limb muscles and was normalized to the corresponding sEMG recorded during a maximal voluntary contraction. The vertical acceleration on the head was evaluated and divided by the vertical platform acceleration to obtain transmissibility values. Control trials without vibration were also assessed. The outcomes of this study showed that (1) WBV significantly increased muscle activity in the active (absolute increase: +7%, P 0.05). However, (3), transmissibility to the head was greater in the active (0.080) than the inactive participants (0.065, P active counterparts, but are at lower risk for potential side-effects of vibration exposure. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  19. Experimental demonstration of active vibration control for flexible structures

    Science.gov (United States)

    Phillips, Douglas J.; Hyland, David C.; Collins, Emmanuel G., Jr.

    1990-01-01

    Active vibration control of flexible structures for future space missions is addressed. Three experiments that successfully demonstrate control of flexible structures are described. The first is the pendulum experiment. The structure is a 5-m compound pendulum and was designed as an end-to-end test bed for a linear proof mass actuator and its supporting electronics. Experimental results are shown for a maximum-entropy/optimal-projection controller designed to achieve 5 percent damping in the first two pendulum modes. The second experiment was based upon the Harris Multi-Hex prototype experiment (MHPE) apparatus. This is a large optical reflector structure comprising a seven-panel array and supporting truss which typifies a number of generic characteristics of large space systems. The third experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center. The authors conclude with some remarks on the lessons learned from conducting these experiments.

  20. Dynamic Discontinuous Control for Active Control of Mechanical Vibrations

    Directory of Open Access Journals (Sweden)

    Orestes Llanes Santiago

    2010-02-01

    Full Text Available This article shows the use of the discontinuous control using dynamic sliding modes for the active isolation of vibrations in mechanical systems. This type of control law constitutes a robust feedback control policy due to its insensitivity to external disturbance inputs, certain immunity to model parameter variations, within known bounds, and to the ever present modelling errors.  The whole theoretical analysis is applied to a lineal model of two degrees of freedom of the vehicle's suspension where the irregularities of the land represent of direct  way the external interferences to the system . To carry out the isolation an electro-hydraulic operator it is used. Simulations are performed which validate the proposed approach.

  1. Voice Coil Actuator for Active Vibration Isolation in Microgravity

    Science.gov (United States)

    Brusa, E.; Carabelli, S.; Genta, G.; Maddaleno, F.; Silvagni, M.; Tonoli, A.

    2002-01-01

    Many microgravity experiments require very low levels of acceleration which cannot be achieved on the International Space Station due to the residual vibration. A vibration isolation system is then usually devised between the experiment and the space station to obtain the desired accelerations at the experiment level. The very low frequency threshold required by the isolation specifications makes passive solutions for the isolation difficult to implement. This is mainly due to the practical impossibility of achieving high values of compliance of the elastic suspension. Furthermore, the unavoidable connections of uncertain characteristics between the experiment and the space station makes the problem even more difficult to be addressed. Disturbance reduction can be performed by means of active vibration isolation, based on magnetic suspension technology acting both at rack and at scientific experiment levels. The stiffness and damping of the active suspension can be tuned by the control loop to minimise the acceleration of the payload. The mechatronic design of an active magnetic suspension for vibration isolation in microgravity has been performed by resorting to the so-called voice-coil configuration, after a preliminary trade-off analysis of the available magnetic actuators and materials. The optimisation of the actuator layout was developed with respect to the design airgap and force density (N/kg of actuator) and force resolution requirements, by demonstrating that the configuration based on Lorentz magnetic force is more suitable for the above application in terms of stability, bi- directionality of the actuation, cross coupling effects and linearity of the force. The aim of the design was the maximisation of the actuation force/mass ratio. The FEM analysis of the voice coil allowed to investigate the flux leakage and the cross coupling effects between the actuation forces along the three principal directions of the active device. A procedure for the numerical

  2. Compact Active Vibration Control System for a Flexible Panel

    Science.gov (United States)

    Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor); Perey, Daniel F. (Inventor)

    2014-01-01

    A diamond-shaped actuator for a flexible panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are diamond-shaped. Point sensors are positioned with respect to the actuator and measure vibration. The actuator generates and transmits a cancelling force to the panel in response to an output signal from a controller, which is calculated using a signal describing the vibration. A method for controlling vibration in a flexible panel includes connecting a diamond-shaped actuator to the flexible panel, and then connecting a point sensor to each actuator. Vibration is measured via the point sensor. The controller calculates a proportional output voltage signal from the measured vibration, and transmits the output signal to the actuator to substantially cancel the vibration in proximity to each actuator.

  3. Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer

    Science.gov (United States)

    Liu, Gaoyu; Lu, Kun; Zou, Donglin; Xie, Zhongliang; Rao, Zhushi; Ta, Na

    2017-07-01

    The control of the longitudinal pulsating force and the vibration generated is very important to improve the stealth performance of a submarine. Magnetorheological elastomer (MRE) is a kind of intelligent composite material, whose mechanical properties can be continuously, rapidly and reversibly controlled by an external magnetic field. It can be used as variable-stiffness components in the design of a semi-active dynamic vibration absorber (SDVA), which is one of the effective means of longitudinal vibration control. In this paper, an SDVA is designed based on the MRE’s magnetic-induced variable stiffness characteristic. Firstly, a mechanical model of the propulsion shaft system with the SDVA is proposed, theoretically discussed and numerically validated. Then, the mechanical performance of the MRE under different magnetic fields is tested. In addition, the magnetic circuit and the overall structure of the SDVA are designed. Furthermore, electromagnetic and thermodynamic simulations are carried out to guarantee the structural design. The frequency shift property of the SDVA is found through dynamic simulations and validated by a frequency shift experiment. Lastly, the vibration absorption capacity of the SDVA is investigated. The results show that the magnetorheological effect of the MRE and the frequency shift of the SDVA are obvious; the SDVA has relatively acceptable vibration absorption capacity.

  4. Active structural elements within a general vibration control framework

    OpenAIRE

    Holterman, J.; de Vries, Theodorus J.A.; Isermann, R.

    2000-01-01

    High-precision machines typically suffer from small but annoying vibrations. As the most appropriate solution to a particular vibration problem is not always obvious, it may be convenient to cast the problem in a more general framework. This framework may then be used for frequency response analysis, which, together with close examination of the disturbance sources, leads to a solution in general structural terms, like ‘vibration isolation’, ‘stiffness enhancement’ or ‘damping augmentation’. ...

  5. Vibration analysis of three guyed tower designs for intermediate size wind turbines

    Science.gov (United States)

    Christie, R. J.

    1982-01-01

    Three guyed tower designs were analyzed for intermediate size wind turbines. The four lowest natural frequencies of vibration of the three towers concepts were estimated. A parametric study was performed on each tower to determine the effect of varying such tower properties as the inertia and stiffness of the tower and guys, the inertia values of the nacelle and rotor, and the rotational speed of the rotor. Only the two lowest frequencies were in a range where they could be excited by the rotor blade passing frequencies. There two frequencies could be tuned by varying the guy stiffness, the guy attachment point on the tower, the tower and mass stiffness, and the nacelle/rotor/power train masses.

  6. Low-cost optical data acquisition system for blade vibration measurement

    Science.gov (United States)

    Posta, Stephen J.

    1988-01-01

    A low cost optical data acquisition system was designed to measure deflection of vibrating rotor blade tips. The basic principle of the new design is to record raw data, which is a set of blade arrival times, in memory and to perform all processing by software following a run. This approach yields a simple and inexpensive system with the least possible hardware. Functional elements of the system were breadboarded and operated satisfactorily during rotor simulations on the bench, and during a data collection run with a two-bladed rotor in the Lewis Research Center Spin Rig. Software was written to demonstrate the sorting and processing of data stored in the system control computer, after retrieval from the data acquisition system. The demonstration produced an accurate graphical display of deflection versus time.

  7. A low-cost optical data acquisition system for vibration measurement

    Science.gov (United States)

    Posta, S. J.; Brown, G. V.

    1986-01-01

    A low cost optical data acquisition system was designed to measure deflection of vibrating rotor blade tips. The basic principle of the new design is to record raw data, which is a set of blade arrival times, in memory and to perform all processing by software following a run. This approach yields a simple and inexpensive system with the least possible hardware. Functional elements of the system were breadboarded and operated satisfactorily during rotor simulations on the bench, and during a data collection run with a two-bladed rotor in the Lewis Research Center Spin Rig. Software was written to demonstrate the sorting and processing of data stored in the system control computer, after retrieval from the data acquisition system. The demonstration produced an accurate graphical display of deflection versus time.

  8. Active-passive integrated vibration control for control moment gyros and its application to satellites

    Science.gov (United States)

    Zhang, Yao; Zang, Yue; Li, Mou; Wang, Youyi; Li, Wenbo

    2017-04-01

    The strategy of active-passive integrated vibration control on the truss enveloping control moment gyroscopes (CMGs) is presented and its characteristics of time domain and frequency domain are analyzed. Truss enveloping CMGs contains pyramid-type CMGs, which are enveloped by multiple struts. These struts can be employed to realize the active-passive integrated vibration control. In addition, the struts of the trusses can maintain the working space of CMGs. Firstly, the disturbance characteristics of CMGs are analyzed considering static and dynamic imbalances of the CMG's rotor; then, an active-passive integrated vibration isolation truss structure is developed based on its characteristics. This structure can restrain the CMG vibration as much as possible and reduce its influence on the photographic quality of optical payloads. Next, the dynamic model of the active-passive vibration isolation truss structure is established. The frequency domain analysis of this model shows that the active-passive integrated vibration control method can restrain the high-frequency vibration and also improve the characteristics of low-frequency vibration. Finally, the dynamic model for the whole satellite is built with this type of CMGs. The time domain simulations of satellite attitude control verify the attitude control improvements resulting from the CMGs vibration control strategy.

  9. Coriolis mass-flow meter with integrated multi-DOF active vibration isolation

    NARCIS (Netherlands)

    Ridder, A.; Hakvoort, W.B.J.; Brouwer, D.M.; Dijk, van J.; Lotters, J.C.; Boer, de A.

    2016-01-01

    Vibration isolation of more than 40 dB is achieved for a Coriolis Mass-Flow Meter (CMFM) with integrated Active Vibration Isolation. A CMFM is an active device based on the Coriolis force principle for direct mass-flow measurements independent of fluid properties. The mass-flow measurement is derive

  10. Coriolis mass-flow meter with integrated multi-DOF active vibration isolation

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; Brouwer, Dannis Michel; van Dijk, Johannes; Lötters, Joost Conrad; Lotters, Joost Conrad; de Boer, Andries

    2016-01-01

    Vibration isolation of more than 40 dB is achieved for a Coriolis Mass-Flow Meter (CMFM) with integrated Active Vibration Isolation. A CMFM is an active device based on the Coriolis force principle for direct mass-flow measurements independent of fluid properties. The mass-flow measurement is

  11. Contribution à la compensation active des vibrations des machines électriques

    OpenAIRE

    Granjon, Pierre

    2000-01-01

    This work is devoted to elaborate an active control system of rotating machine vibrations. It is based on additional currents supplying the stator coils of the machine. They generate radial forces on the stator frame,and finally create additional vibrations which interact with the machine ones. Therefore, the aim of this system is to process the optimal value of the input currents, in order to minimize the vibration signals power measured on the stator frame by several accelerometers.First, t...

  12. Active Vibration Isolation Using a Voice Coil Actuator with Absolute Velocity Feedback Control

    OpenAIRE

    Yun-Hui Liu; Wei-Hao Wu

    2013-01-01

    This paper describes the active vibration isolation using a voice coil actuator with absolute velocity feedback control for highly sensitive instruments (e.g., atomic force microscopes) which suffer from building vibration. Compared with traditional isolators, the main advantage of the proposed isolation system is that it produces no isolator resonance. The absolute vibration velocity signal is acquired from an accelerator and processed through an integrator, and is then input to the controll...

  13. Active hard mount vibration isolation for precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.

    2012-01-01

    Floor vibrations and acoustic excitation may limit the performance of precision equipment, that is used for example to produce computer chips or to make images of very tiny structures. Therefore, it is common to mount a vibration isolator in the suspension of such equipment to isolate it from these

  14. Control concepts for an active vibration isolation system

    NARCIS (Netherlands)

    Kerber, F.; Hurlebaus, S.; Beadle, B. M.; Stobener, U.

    2007-01-01

    In the fields of high-resolution metrology and manufacturing, effective anti-vibration measures are required to obtain precise and repeatable results. This is particularly true when the amplitudes of ambient vibration and the dimensions of the investigated or manufactured structure are comparable,

  15. Active structural elements within a general vibration control framework

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Isermann, R.

    2000-01-01

    High-precision machines typically suffer from small but annoying vibrations. As the most appropriate solution to a particular vibration problem is not always obvious, it may be convenient to cast the problem in a more general framework. This framework may then be used for frequency response

  16. Performance of active vibration control technology: the ACTEX flight experiments

    Science.gov (United States)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  17. Active Vibration Control of Laminated Composite Plates by using External Patches

    Directory of Open Access Journals (Sweden)

    N. S. Sunil Varma

    2017-05-01

    Full Text Available The concept of suppressing vibrations caused by external or internal stimulus has been evolving from a long time and there have been several techniques to suppress these vibrations involving spring mass dampeners and inertial mass actuators but the technique of active vibration control is more efficient in its ability to reduce vibrations to great extent. The field applications that active vibration control can be employed in, are vast ranging from structures like automobile engines, vehicle chassis, to airplane wings. The key significant improvement in using this technique is that the actuatosr placed reduces the vibrations of all modal frequencies more efficiently compared to other techniques that are efficient only in suppressing high-frequency modes. The main points to be considered in this technique are the positioning, number and the size of actuator/patch. In this study we used ANSYS 15.0 to analyse the impact of patch position, size and number on the natural frequency and displacement of the actual host structure (in our case laminated composite plate by observing the strain values and root occurrence in case of the host structure. We used Piezo ceramic as an actuator/patch to suppress vibrations. The positional influence is shown to have a profound impact on reducing host structure deformation to a significant extent. The Analysis we have done paves a way for using active vibration control technique efficiently; since it involves the study of all the key parameters that helps in attenuating the vibrations.

  18. Active control of structural vibration with on-line secondary path modeling

    Institute of Scientific and Technical Information of China (English)

    YANG Tiejun; GU Zhongquan

    2004-01-01

    An active control strategy with on-line secondary path modeling is proposed and applied in active control of helicopter structural vibration. Computer simulations of the secondary path modeling performance demonstrate the superiorities of the active control strategy. A 2-input 4-output active control simulation for a helicopter model is performed and great reduction of structural vibration is achieved. 2-input 2-output and 2-input 4-output experimental studies of structural vibration control for a free-free beam are also carried out in laboratory to simulate a flying helicopter. The experimental results also show better reduction of the structural vibration, which verifies that the proposed method is effective and practical in structural vibration reduction.

  19. The effects of sling exercise using vibration on trunk muscle activities of healthy adults.

    Science.gov (United States)

    Choi, Youngin; Kang, Hyungkyu

    2013-10-01

    [Purpose] This study compared the effects of sling exercises with and without vibration on the muscular activity of the internal oblique (IO), rectus abdominis (RA), multifidus (MF), and erector spinae (ES) muscles of healthy adults. [Methods] Eleven healthy university students (11 men) with a mean age of 22.8 years were enrolled in this study. Subjects performed supine and prone bridge exercises with the knees flexed using a sling suspension system with and without vibration. The amplitudes of the EMG activities of selected trunk muscles (internal oblique, rectus abdominis, erector spinae, multifidus) were recorded. Two types of exercise conditions were executed in a random sequence for 5 seconds each. The signals detected from the middle 3 seconds (after discarding the signals of the first and the last one seconds) were used in the analysis. A 3-minute break was given after each exercise to minimize muscle fatigue. [Results] During the supine bridge exercise with vibration, the activities of the IO, RA, MF, and ES muscles were significantly higher than those of the supine bridge exercise without vibration. Additionally, during the prone bridge exercise with vibration, the activities of the IO, RA, MF, and ES were significantly higher than those of the prone bridge exercise without vibration. [Conclusion] Sling exercises with vibration improved the trunk muscle activities of healthy adults compared to the sling exercises without vibration. The information presented here is important for clinicians who use lumbar stabilization exercises as an evaluation tool or a rehabilitation exercise.

  20. A novel technique for active vibration control, based on optimal tracking control

    Indian Academy of Sciences (India)

    BEHROUZ KHEIRI SARABI; MANU SHARMA; DAMANJEET KAUR

    2017-08-01

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously tracking zero references for modes of vibration. To illustrate the technique, a two-degrees of freedom spring-mass-dampersystem is considered as a test system. The mathematical model of the system is derived and then converted into a state-space model. A linear quadratic tracking control law is then used to make the disturbed system track zero references.

  1. A novel technique for active vibration control, based on optimal tracking control

    Science.gov (United States)

    Kheiri Sarabi, Behrouz; Sharma, Manu; Kaur, Damanjeet

    2017-08-01

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously tracking zero references for modes of vibration. To illustrate the technique, a two-degrees of freedom spring-mass-damper system is considered as a test system. The mathematical model of the system is derived and then converted into a state-space model. A linear quadratic tracking control law is then used to make the disturbed system track zero references.

  2. Active control of structural vibration by piezoelectric stack actuators

    Institute of Scientific and Technical Information of China (English)

    NIU Jun-chuan; ZHAO Guo-qun; HU Xia-xia

    2005-01-01

    This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the model to achieve vibration control of flexible structures, and dynamic characteristics are also investigated. Mobility technique is used to derive the governing equations of the system. The power flow transmitted into the foundation is solved and considered as a cost function to achieve optimal control of vibration isolation. Some numerical simulations revealed that the analytical model is effective as piezoelectric stack actuators can achieve substantial vibration attenuation by selecting proper value of the input voltage.

  3. Active Lubrication for Reducing Wear and Vibration: A combination of Fluid Power Control and Tribology

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through ori...

  4. Observation of SERS effect in Raman optical activity, a new tool for chiral vibrational spectroscopy

    DEFF Research Database (Denmark)

    Abdali, Salim

    2006-01-01

    A new tool for chiral vibrational spectroscopy is here reported. A Surface Enhanced effect was observed using Raman Optical Activity (ROA). This observation opens new possibilities for ROA as a tool for vibrational spectroscopy. The combination of surface enhanced effect SE and ROA into SEROA...

  5. Active vibration control for underwater signature reduction of a navy ship

    NARCIS (Netherlands)

    Basten, T.G.H.; Berkhoff, Arthur P.; Vermeulen, Ruud

    2010-01-01

    Dutch navy ships are designed and built to have a low underwater signature. For low frequencies however, tonal vibrations of a gearbox can occur, which might lead to increased acoustic signatures. These vibrations are hard to reduce by passive means. To investigate the possibilities of active

  6. Active control of transient rotordynamic vibration by optimal control methods

    Science.gov (United States)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.

    1988-01-01

    Although considerable effort has been put into the study of steady state vibration control, there are few methods applicable to transient vibration control of rotorbearing systems. In this paper optimal control theory has been adopted to minimize rotor vibration due to sudden imbalance, e.g., blade loss. The system gain matrix is obtained by choosing the weighting matrices and solving the Riccati equation. Control forces are applied to the system via a feedback loop. A seven mass rotor system is simulated for illustration. A relationship between the number of sensors and the number of modes used in the optimal control model is investigated. Comparisons of responses are made for various configurations of modes, sensors, and actuators. Furthermore, spillover effect is examined by comparing results from collocated and noncollocated sensor configurations. Results show that shaft vibration is significantly attenuated in the closed loop system.

  7. Calculation of Raman optical activity spectra for vibrational analysis.

    Science.gov (United States)

    Mutter, Shaun T; Zielinski, François; Popelier, Paul L A; Blanch, Ewan W

    2015-05-01

    By looking back on the history of Raman Optical Activity (ROA), the present article shows that the success of this analytical technique was for a long time hindered, paradoxically, by the deep level of detail and wealth of structural information it can provide. Basic principles of the underlying theory are discussed, to illustrate the technique's sensitivity due to its physical origins in the delicate response of molecular vibrations to electromagnetic properties. Following a short review of significant advances in the application of ROA by UK researchers, we dedicate two extensive sections to the technical and theoretical difficulties that were overcome to eventually provide predictive power to computational simulations in terms of ROA spectral calculation. In the last sections, we focus on a new modelling strategy that has been successful in coping with the dramatic impact of solvent effects on ROA analyses. This work emphasises the role of complementarity between experiment and theory for analysing the conformations and dynamics of biomolecules, so providing new perspectives for methodological improvements and molecular modelling development. For the latter, an example of a next-generation force-field for more accurate simulations and analysis of molecular behaviour is presented. By improving the accuracy of computational modelling, the analytical capabilities of ROA spectroscopy will be further developed so generating new insights into the complex behaviour of molecules.

  8. Development of a Practical Broadband Active Vibration Control System

    Science.gov (United States)

    Schiller, Noah H.; Perey, Daniel F.; Cabell, Randolph H.

    2011-01-01

    The goal of this work is to develop robust, lightweight, and low-power control units that can be used to suppress structural vibration in flexible aerospace structures. In particular, this paper focuses on active damping, which is implemented using compact decentralized control units distributed over the structure. Each control unit consists of a diamond-shaped piezoelectric patch actuator, three miniature accelerometers, and analog electronics. The responses from the accelerometers are added together and then integrated to give a signal proportional to velocity. The signal is then inverted, amplified, and applied to the actuator, which generates a control force that is out of phase with the measured velocity. This paper describes the development of the control system, including a detailed description of the control and power electronics. The paper also presents experimental results acquired on a Plexiglas window blank. Five identical control units installed around the perimeter of the window achieved 10 dB peak reductions and a 2.4 dB integrated reduction of the spatially averaged velocity of the window between 500 and 3000 Hz.

  9. Active Control of Machine-Tool Vibration in a Lathe

    OpenAIRE

    Claesson, Ingvar; Håkansson, Lars

    1997-01-01

    In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration is a frequent problem, which affects the result of the machining, in particular the surface finish. The tool life is also influenced by the vibrations. When the working environment is considered, noise is frequently introduced by dynamic motion between the cutting tool and the workpiece. By proper machine design, e.g. improved stiffness of the machine structure, the problem of relative dynami...

  10. Active Control of Panel Vibrations Induced by a Boundary Layer Flow

    Science.gov (United States)

    Chow, Pao-Liu

    1998-01-01

    In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal

  11. Detection of Rotor Forced Response Vibrations Using Stationary Pressure Transducers in a Multistage Axial Compressor

    Directory of Open Access Journals (Sweden)

    William L. Murray

    2015-01-01

    Full Text Available Blade row interactions in turbomachinery can lead to blade vibrations and even high cycle fatigue. Forced response conditions occur when a forcing function (such as impingement of stator wakes occurs at a frequency that matches the natural frequency of a blade. The objective of this research is to develop the data processing techniques needed to detect rotor blade vibration in a forced response condition from stationary fast-response pressure transducers to allow for detection of rotor vibration from transient data and lead to techniques for vibration monitoring in gas turbines. This paper marks the first time in the open literature that engine-order resonant response of an embedded bladed disk in a 3-stage intermediate-speed axial compressor was detected using stationary pressure transducers. Experiments were performed in a stage axial research compressor focusing on the embedded rotor of blisk construction. Fourier waterfall graphs from a laser tip timing system were used to detect the vibrations after applying signal processing methods to uncover these pressure waves associated with blade vibration. Individual blade response was investigated using cross covariance to compare blade passage pressure signatures through resonance. Both methods agree with NSMS data that provide a measure of the exact compressor speeds at which individual blades enter resonance.

  12. Vibration criteria for transit systems in close proximity to university research activities

    Science.gov (United States)

    Wolf, Steven

    2001-05-01

    As some of the newer LRT projects get closer to research facilities the question arisesi ``how do you assess the potential impact of train operations on the activities within these types of facilities?'' There are several new LRT projects that have proposed alignments near or under university research facilities. The traditional ground vibration analysis at these locations is no longer valid but requires a more sophisticated approach to identifying both criteria and impact. APTA, ISO, IES, and FTA vibration criteria may not be adequate for the most sensitive activities involving single cell and nano technology research. The use of existing ambient vibration levels is evaluated as a potential criteria. A statistical approach is used to better understand how the train vibration would affect the ambient vibration levels.

  13. Piezoelectric actuators in the active vibration control system of journal bearings

    Science.gov (United States)

    Tůma, J.; Šimek, J.; Mahdal, M.; Pawlenka, M.; Wagnerova, R.

    2017-07-01

    The advantage of journal hydrodynamic bearings is high radial load capacity and operation at high speeds. The disadvantage is the excitation of vibrations, called an oil whirl, after crossing a certain threshold of the rotational speed. The mentioned vibrations can be suppressed using the system of the active vibration control with piezoactuators which move the bearing bushing. The motion of the bearing bushing is controlled by a feedback controller, which responds to the change in position of the bearing journal which is sensed by a pair of capacitive sensors. Two stacked linear piezoactuators are used to actuate the position of the bearing journal. This new bearing enables not only to damp vibrations but also serves to maintain the desired bearing journal position with an accuracy of micrometers. The paper will focus on the effect of active vibration control on the performance characteristics of the journal bearing.

  14. Active vibration control system of smart structures based on FOS and ER actuator

    Science.gov (United States)

    Leng, Jinsong; Asundi, A.

    1999-04-01

    An active vibration control system based on fiber optic sensor (FOS) and electrorheological (ER) actuator is established in this paper. A new intensity modulated fiber optic vibration sensor is developed following the face coupling theory. The experimental results show that this new type of intensity modulated fiber optic vibration sensor has higher sensitivity in measuring the vibration frequency. At the same time, experimental investigations are focused on evaluating the dynamic response characteristics of a beam fabricated with ER fluid. It is noted that the most significant change in the material properties of ER fluid is the change of material stiffness and damping which varies with the electric field intensity imposed upon the ER fluid. Finally, the structural vibration of the smart composite beam based on ER fluid, fiber optic sensor and piezoelectric transducer has been monitored and controlled actively utilizing a fuzzy-logic algorithm.

  15. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.

    2003-01-01

    In a recent work (Knapp-Mohammady, M.; Jalkanen, K. J.; Nardi, F.; Wade, R. C.; Suhai, S. Chem Phys 1999, 240, 63-77) the structures of the zwitterionic species Of L-alanyI-L-alanine (LALA) in aqueous solution using a combination of molecular mechanics (MM) and density functional theory (DFT) have...... been reported. Subsequently, the vibrational absorption (VA) and vibrational circular dichroism (VCD) and the Raman and Raman Optical Activity (ROA) spectra have been reported. In this work an analysis of the aqueous solution VA, VCD, Raman, and ROA spectra for various isotopomers of LALA are reported...... pattern could be reproduced with the DIFT atomic axial tensors calculated for the LALA plus explicit water molecules. The continuum treatment of the solvent for the calculation of these tensors appeirs to be a secondary effect. The ROA spectra are not well reproduced due to the failure to take...

  16. DESIGN AND ANALYSIS OF NOVEL ACTIVE ACTUATOR TO CONTROL LOW FREQUENCY VIBRATIONS OF SHAFT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.

  17. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    Science.gov (United States)

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  18. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Seung-Bok Choi

    2013-02-01

    Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  19. Active Vibration Control in a Rotor System by an Active Suspension with Linear Actuators

    Directory of Open Access Journals (Sweden)

    M. Arias-Montiel

    2014-10-01

    Full Text Available In this paper the problem of modeling, analysis and unbalance response control of a rotor system with two disks in an asymmetrical configuration is treated. The Finite Element Method (FEM is used to get the system model including the gyroscopic effects and then, the obtained model is experimentally validated. Rotordynamic analysis is carried out using the finite element model obtaining the Campbell diagram, the natural frequencies and the critical speeds of the rotor system. An asymptotic observer is designed to estimate the full state vector which is used to synthesize a Linear Quadratic Regulator (LQR to reduce the vibration amplitudes when the system passes through the first critical speed. Some numerical simulations are carried out to verify the closed-loop system behavior. The active vibration control scheme is experimentally validated using an active suspension with electromechanical linear actuators, obtaining significant reductions in the resonant peak.

  20. Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control

    Directory of Open Access Journals (Sweden)

    Quan Zhang

    2014-01-01

    Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.

  1. Active tuning of stroke-induced vibrations by tennis players.

    Science.gov (United States)

    Chadefaux, Delphine; Rao, Guillaume; Androuet, Philippe; Berton, Eric; Vigouroux, Laurent

    2017-08-01

    This paper investigates how tennis players control stroke-induced vibration. Its aim is to characterise how a tennis player deals with entering vibration waves or how he/she has the ability to finely adjust them. A specific experimental procedure was designed, based on simultaneously collecting sets of kinematic, vibration and electromyographic data during forehand strokes using various commercial rackets and stroke intensities. Using 14 expert players, a wide range of excitations at spectral and temporal levels were investigated. Energetic and spectral descriptors of stroke-induced vibration occurring at the racket handle and at the player's wrist and elbow were computed. Results indicated that vibrational characteristics are strongly governed by grip force and to a lower extent by the racket properties. Grip force management drives the amount of energy, as well as its distribution, into the forearm. Furthermore, hand-grip can be assimilated to an adaptive filter which can significantly modify the spectral parameters propagating into the player's upper limb. A significant outcome is that these spectral characteristics are as much dependent on the player as on the racket. This contribution opens up new perspectives in equipment manufacture by underlining the need to account for player/racket interaction in the design process.

  2. Vibration Control in Turbomachinery Using Active Magnetic Journal Bearings

    Science.gov (United States)

    Knight, Josiah D.

    1996-01-01

    The effective use of active magnetic bearings for vibration control in turbomachinery depends on an understanding of the forces available from a magnetic bearing actuator. The purpose of this project was to characterize the forces as functions shaft position. Both numerical and experimental studies were done to determine the characteristics of the forces exerted on a stationary shaft by a magnetic bearing actuator. The numerical studies were based on finite element computations and included both linear and nonlinear magnetization functions. Measurements of the force versus position of a nonrotating shaft were made using two separate measurement rigs, one based on strain gage measurement of forces, the other based on deflections of a calibrated beam. The general trends of the measured principal forces agree with the predictions of the theory while the magnitudes of forces are somewhat smaller than those predicted. Other aspects of theory are not confirmed by the measurements. The measured forces in the normal direction are larger than those predicted by theory when the rotor has a normal eccentricity. Over the ranges of position examined, the data indicate an approximately linear relationship between the normal eccentricity of the shaft and the ratio of normal to principal force. The constant of proportionality seems to be larger at lower currents, but for all cases examined its value is between 0.14 and 0.17. The nonlinear theory predicts the existence of normal forces, but has not predicted such a large constant of proportionality for the ratio. The type of coupling illustrated by these measurements would not tend to cause whirl, because the coupling coefficients have the same sign, unlike the case of a fluid film bearing, where the normal stiffness coefficients often have opposite signs. They might, however, tend to cause other self-excited behavior. This possibility must be considered when designing magnetic bearings for flexible rotor applications, such as gas

  3. Electromechanical simulation and test of rotating systems with magnetic bearing or piezoelectric actuator active vibration control

    Science.gov (United States)

    Palazzolo, Alan B.; Tang, Punan; Kim, Chaesil; Manchala, Daniel; Barrett, Tim; Kascak, Albert F.; Brown, Gerald; Montague, Gerald; Dirusso, Eliseo; Klusman, Steve

    1994-01-01

    This paper contains a summary of the experience of the authors in the field of electromechanical modeling for rotating machinery - active vibration control. Piezoelectric and magnetic bearing actuator based control are discussed.

  4. Active Damping of Vibrations in High-Precision Motion Systems

    OpenAIRE

    Babakhani, B.

    2012-01-01

    Technology advancements feed the need for ever faster and more accurate industrial machines. Vibration is a significant source of inaccuracy of such machines. A light-weight design in favor of the speed, and avoiding the use of energy-dissipating materials from the structure to omit any source of inaccuracy, contribute to a low structural damping. The goal of this research is to investigate the addition of damping to the rotational vibration mode of a linearly actuated motion system to •achie...

  5. Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements

    Science.gov (United States)

    Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr

    2017-07-01

    In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.

  6. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    OpenAIRE

    Seung-Bok Choi; Juncheol Jeon; Jung Woo Sohn; Heung Soo Kim

    2013-01-01

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an excite...

  7. INVESTIGATION OF SIMULATION EXPERIMENT ON ACTIVE CONTROL OF TORSIONAL VIBRATION IN A TURBOGENERATOR SHAFT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Hao Zhiyong; Gao Wenzhi

    2004-01-01

    According to the theoretical analysis and calculation on the base of continuous mass system, the simulation experimental investigation on active control of torsional vibration in a turbogenerator shaft system is conducted.A test installation with the excitation of generator motor and multi-stepped shaft system is established to simulate the torsional vibration of a turbogenerator rotor shaft system, and to examine the active control strategy presented.Some useful results are reached in the experimental study.

  8. A programmable broadband low frequency active vibration isolation system for atom interferometry

    Science.gov (United States)

    Tang, Biao; Zhou, Lin; Xiong, Zongyuan; Wang, Jin; Zhan, Mingsheng

    2014-09-01

    Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01-10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment.

  9. A programmable broadband low frequency active vibration isolation system for atom interferometry.

    Science.gov (United States)

    Tang, Biao; Zhou, Lin; Xiong, Zongyuan; Wang, Jin; Zhan, Mingsheng

    2014-09-01

    Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01-10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment.

  10. A periodic piezoelectric smart structure with the integrated passive/active vibration-reduction performances

    Science.gov (United States)

    Wang, Yuxi; Niu, Shengkai; Hu, Yuantai

    2017-06-01

    The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.

  11. Active Vibration Reduction of the Advanced Stirling Convertor

    Science.gov (United States)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC

  12. Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper

    Science.gov (United States)

    Weber, F.

    2014-09-01

    The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.

  13. Active Damping of Vibrations in High-Precision Motion Systems

    NARCIS (Netherlands)

    Babakhani, B.

    2012-01-01

    Technology advancements feed the need for ever faster and more accurate industrial machines. Vibration is a significant source of inaccuracy of such machines. A light-weight design in favor of the speed, and avoiding the use of energy-dissipating materials from the structure to omit any source of

  14. Active vibration control of thin-plate structures with partial SCLD treatment

    Science.gov (United States)

    Lu, Jun; Wang, Pan; Zhan, Zhenfei

    2017-02-01

    To effectively suppress the low-frequency vibration of a thin-plate, the strategy adopted is to develop a model-based approach to the investigation on the active vibration control of a clamped-clamped plate with partial SCLD treatment. Firstly, a finite element model is developed based on the constitutive equations of elastic, piezoelectric and viscoelastic materials. The characteristics of viscoelastic materials varying with temperature and frequency are described by GHM damping model. A low-dimensional real modal control model which can be used as the basis for active vibration control is then obtained from the combined reduction. The emphasis is placed on the feedback control system to attenuate the vibration of plates with SCLD treatments. A modal controller in conjunction with modal state estimator is designed to solve the problem of full state feedback, making it much more feasible to real-time control. Finally, the theoretical model is verified by modal test, and an active vibration control is validated by hardware-in-the-loop experiment under different external excitations. The numerical and experimental study demonstrate how the piezoelectric actuators actively control the lower modes (first bending and torsional modes) using modal controller, while the higher frequency vibration attenuated by viscoelastic passive damping layer.

  15. Active and passive vibration isolation in piezoelectric phononic rods with external voltage excitation

    Science.gov (United States)

    Zhang, Qicheng; Lan, Yu; Lu, Wei; Wang, Shuai

    2017-05-01

    Active piezoelectric materials are applied to one-dimensional phononic crystals, for the control of longitudinal vibration propagation both in active and passive modes. Based on the electromechanical coupling between the acoustical vibration and electric field, the electromechanical equivalent method is taken to theoretically predict the transmission spectrum of the longitudinal vibration. It is shown that the phononic rod can suppress the vibration efficiently at the frequencies of interest, by actively optimizing the motions of piezoelectric elements. In an illustrated phononic rod of 11.2cm long, active tunable isolations of more than 20dB at low frequencies (500Hz-14kHz) are generated by controlling the excitation voltages of piezoelectric elements. Meanwhile, passive fixed isolation at high frequencies (14k-63kHz) are presented by its periodicity characteristics. Finite element simulations and vibration experiments on the rod demonstrate the effectiveness of the approach in terms of its vibration isolation capabilities and tunable characteristics. This phononic rod can be manufactured easily and provides numerous potential applications in designing isolation mounts and platforms.

  16. Active and passive vibration isolation in piezoelectric phononic rods with external voltage excitation

    Directory of Open Access Journals (Sweden)

    Qicheng Zhang

    2017-05-01

    Full Text Available Active piezoelectric materials are applied to one-dimensional phononic crystals, for the control of longitudinal vibration propagation both in active and passive modes. Based on the electromechanical coupling between the acoustical vibration and electric field, the electromechanical equivalent method is taken to theoretically predict the transmission spectrum of the longitudinal vibration. It is shown that the phononic rod can suppress the vibration efficiently at the frequencies of interest, by actively optimizing the motions of piezoelectric elements. In an illustrated phononic rod of 11.2cm long, active tunable isolations of more than 20dB at low frequencies (500Hz-14kHz are generated by controlling the excitation voltages of piezoelectric elements. Meanwhile, passive fixed isolation at high frequencies (14k-63kHz are presented by its periodicity characteristics. Finite element simulations and vibration experiments on the rod demonstrate the effectiveness of the approach in terms of its vibration isolation capabilities and tunable characteristics. This phononic rod can be manufactured easily and provides numerous potential applications in designing isolation mounts and platforms.

  17. Active Control for Multinode Unbalanced Vibration of Flexible Spindle Rotor System with Active Magnetic Bearing

    OpenAIRE

    Xiaoli Qiao; Guojun Hu

    2017-01-01

    The unbalanced vibration of the spindle rotor system in high-speed cutting processes not only seriously affects the surface quality of the machined products, but also greatly reduces the service life of the electric spindle. However, since the unbalanced vibration is often distributed on different node positions, the multinode unbalanced vibration greatly exacerbates the difficulty of vibration control. Based on the traditional influence coefficient method for controlling the vibration of a f...

  18. Active vibration attenuating seat suspension for an armored helicopter crew seat

    Science.gov (United States)

    Sztein, Pablo Javier

    An Active Vibration Attenuating Seat Suspension (AVASS) for an MH-60S helicopter crew seat is designed to protect the occupants from harmful whole-body vibration (WBV). Magnetorheological (MR) suspension units are designed, fabricated and installed in a helicopter crew seat. These MR isolators are built to work in series with existing Variable Load Energy Absorbers (VLEAs), have minimal increase in weight, and maintain crashworthiness for the seat system. Refinements are discussed, based on testing, to minimize friction observed in the system. These refinements include the addition of roller bearings to replace friction bearings in the existing seat. Additionally, semi-active control of the MR dampers is achieved using special purpose built custom electronics integrated into the seat system. Experimental testing shows that an MH-60S retrofitted with AVASS provides up to 70.65% more vibration attenuation than the existing seat configuration as well as up to 81.1% reduction in vibration from the floor.

  19. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra

    CERN Document Server

    Ganesan, Aravindhan; Wang, Feng

    2013-01-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations domina...

  20. Active Vibration Isolation Control: Comparison of Feedback and Feedforward Control Strategies Applied to Coriolis Mass-Flow Meters

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes

    2015-01-01

    In this paper we describe the design, implementation and results of multi degree of freedom (DOF) active vibration control for a Coriolis mass-flow meter (CMFM). Without vibration control, environmental vibrational disturbances results in nanometre movement of the fluid-conveying tube which causes

  1. Adaptive Control of Machine-Tool Vibration Based on an Active Tool Holder Shank with an Embedded Piezo Ceramic Actuator

    OpenAIRE

    Pettersson, Linus; Håkansson, Lars; Claesson, Ingvar; Olsson, Sven

    2001-01-01

    In the turning operation chatter or vibration is a common problem affecting the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced by active control of machine-tool vibration. However, machine-tool vibration control systems are usually not applicable to a general lathe...

  2. Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control

    OpenAIRE

    Quan Zhang; Jiamei Jin; Jianhui Zhang; Chunsheng Zhao

    2014-01-01

    This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM) with three flexible linkages actuated by linear ultrasonic motors (LUSM). To achieve active vibration control, multiple lead zirconate titanate (PZT) transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode me...

  3. Active Vibration Control of a Smart Cantilever Beam on General Purpose Operating System

    Directory of Open Access Journals (Sweden)

    A. P. Parameswaran

    2013-07-01

    Full Text Available All mechanical systems suffer from undesirable vibrations during their operations. Their occurrence is uncontrollable as it depends on various factors. However, for efficient operation of the system, these vibrations have to be controlled within the specified limits. Light weight, rapid and multi-mode control of the vibrating structure is possible by the use of piezoelectric sensors and actuators and feedback control algorithms. In this paper, direct output feedback based active vibration control has been implemented on a cantilever beam using Lead Zirconate-Titanate (PZT sensors and actuators. Three PZT patches were used, one as the sensor, one as the exciter providing the forced vibrations and the third acting as the actuator that provides an equal but opposite phase vibration/force signal to that of sensed so as to damp out the vibrations. The designed algorithm is implemented on Lab VIEW 2010 on Windows 7 Platform.Defence Science Journal, 2013, 63(4, pp.413-417, DOI:http://dx.doi.org/10.14429/dsj.63.4865

  4. Active vibration control activities at the LaRC - Present and future

    Science.gov (United States)

    Newsom, J. R.

    1990-01-01

    The NASA Controls-Structures-Interaction (CSI) program is presented with a description of the ground testing element objectives and approach. The goal of the CSI program is to develop and validate the technology required to design, verify and operate space systems in which the structure and the controls interact beneficially to meet the needs of future NASA missions. The operational Mini-Mast ground testbed and some sample active vibration control experimental results are discussed along with a description of the CSI Evolutionary Model testbed presently under development. Initial results indicate that embedded sensors and actuators are effective in controlling a large truss/reflector structure.

  5. A concept for semi-active vibration control with a serial-stiffness-switch system

    Science.gov (United States)

    Min, Chaoqing; Dahlmann, Martin; Sattel, Thomas

    2017-09-01

    This work deals with a new semi-active vibration control concept with a serial-stiffness-switch system (SSSS), which can be seen as one and a half degree-of-freedom system. The proposed switched system is mainly composed of two serial elements, each of which consists of one spring and one switch in parallel with each other. This mechanical structure benefits from a specified switching law based on the zero crossing of velocity in order to realize vibration reduction. In contrast with conventional ways, the new system is capable of harvesting vibration energy as potential energy stored in springs, and then applies it to vibration reduction. In this paper, the concept is characterized, simulated, evaluated, and proven to be able to improve the system response. The equivalent stiffness and natural frequency of the switched system are mathematically formulated and verified.

  6. Identification for Active Vibration Control of Flexible Structure Based on Prony Algorithm

    Directory of Open Access Journals (Sweden)

    Xianjun Sheng

    2016-01-01

    Full Text Available Flexible structures have been widely used in many fields due to the advantages of light quality, small damping, and strong flexibility. However, flexible structures exhibit the vibration in the process of manipulation, which reduces the pointing precision of the system and causes fatigue of the machine. So, this paper focuses on the identification method for active vibration control of flexible structure. The modal parameters and transfer function of the system are identified from the step response signal based on Prony algorithm, while the vibration is attenuated by using the input shaping technique designed according to the parameters identified from the Prony algorithm. Eventually, the proposed approach is applied to the most common flexible structure, a piezoelectric cantilever beam actuated by Macro Fiber Composite (MFC. The experimental results demonstrate that the Prony algorithm is very effective and accurate on the dynamic modeling of flexible structure and input shaper could significantly reduce the vibration and improve the response speed of system.

  7. Design and control of six degree-of-freedom active vibration isolation table.

    Science.gov (United States)

    Hong, Jinpyo; Park, Kyihwan

    2010-03-01

    A six-axis active vibration isolation system (AVIS) is designed by using the direct driven guide and ball contact mechanisms in order to have no cross-coupling between actuators. The point contact configuration gives an advantage of having an easy assembly of eight voice coil actuators to an upper and a base plate. A voice coil actuator is used since it can provide a large displacement and sufficient bandwidth required for vibration control. The AVIS is controlled considering the effect of flexible vibration mode in the upper plate and velocity sensor dynamics. A loop shaping technique and phase margin condition are applied to design a vibration controller. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system. The scanning profiles of the specimen are compared together by using the atomic force microscope. The robustness of the AVIS is verified by showing the impulse response.

  8. RESEARCH ON ACTIVE VIBRATION CONTROL BASED ON COMBINED MODEL FOR COUPLED SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Niu Junchuan; Zhao Guoqun; Song Kongjie

    2004-01-01

    A novel combined model of the vibration control for the coupled flexible system and its general mathematic description are developed. In presented model, active and passive controls as well as force and moment controls are combined into a single unit to achieve the efficient vibration control of the flexible structures by multi-approaches. Considering the complexity of the energy transmission in the vibrating system, the transmission channels of the power flow transmitted into the foundation are discussed, and the general forces and the corresponding velocities are combined into a single function, respectively. Under the control strategy of the minimum power flow, the transmission characteristics of the power flow are investigated. From the presented numerical examples, it is obvious that the analytical model is effective, and both force and moment controls are able to depress vibration energy substantially.

  9. Design of a stand-alone active damper for distributed control of vibration

    Science.gov (United States)

    Cinquemani, S.; Cazzulani, G.; Costa, A.; Resta, F.

    2016-04-01

    The aim of active vibration control is to enhance the performance of a system (eg. comfort, fatigue life, etc.) by limiting vibrations. One of the most effective technique to reach this goal is to increase the equivalent damping of the system and then the dissipation of the kinetic energy (the so called skyhook damping technique). Application of active vibration control often require a complex setup. When large structures are considered, it is often necessary to have a high number of sensors and actuators, suitably cabled, in addition to all the devices necessary to condition and amplify the signals of measurement and control and to execute in real time the control algorithms synthesized. This work arises from the need to simplify this situation, developing a standalone device that is able of carrying out operations of vibration control in an autonomous way, thus containing in itself an actuator, the sensors needed to evaluate the vibratory state of the structure, and a micro-controller embedding different control algorithm. The design of the smart damper covers many aspects and requires a strong integration of different disciplines. A prototype has been realized and tested on a vibrating structure. The experimental results show good performance in suppress vibration.

  10. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method

    Science.gov (United States)

    Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di

    2017-04-01

    This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.

  11. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    Science.gov (United States)

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  12. Selection of active elements in system reduction of vibration

    Science.gov (United States)

    Bialas, K.

    2016-11-01

    This work presents non-classical method of design of mechatronic systems. The purpose of this paper is also introduces synthesis of mechatronic system understand as design of mechatronic systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. The system was consisted from mechanical and electrical elements. Electrical elements were used as subsystem reducing unwanted vibration of mechanical system. Electrical elements can be realized in the form of coils with movable core. The system was modelled in Matlab Simulink.

  13. Selected topics on the active control of helicopter aeromechanical and vibration problems

    Science.gov (United States)

    Friedmann, Peretz P.

    1994-01-01

    This paper describes in a concise manner three selected topics on the active control of helicopter aeromechanical and vibration problems. The three topics are as follows: (1) the active control of helicopter air-resonance using an LQG/LTR approach; (2) simulation of higher harmonic control (HHC) applied to a four bladed hingeless helicopter rotor in forward flight; and (3) vibration suppression in forward flight on a hingeless helicopter rotor using an actively controlled, partial span, trailing edge flap, which is mounted on the blade. Only a few selected illustrative results are presented. The results obtained clearly indicate that the partial span, actively controlled flap has considerable potential for vibration reduction in helicopter rotors.

  14. Initial Aerodynamic and Acoustic Study of an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method

    Science.gov (United States)

    Boyd, David D. Jr.

    2009-01-01

    Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.

  15. Semimanufacture intended to be mounted on a vibrating wall or a vibrating panel for actively damping vibrations of the wall, wall or panel provided with such semimanufacture, system provided with a semimanufacture and a control unit, wall or panel provided with a control unit and method for damping audible vibrations of a wall or panel

    NARCIS (Netherlands)

    Goeje, de Marius; Overbeek, van Michiel Wilbert R.M.; Waal, van der Adri; Berkhoff, Arthur P.; Nederveen, Peter J.

    2006-01-01

    A semimanufacture intended to be mounted on a vibrating wall or a vibrating panel for actively damping the vibrations in the wall or the panel with frequencies which are at least partly audible, wherein the semimanufacture is provided with a plate wherein the plate is integrated with: at least one v

  16. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  17. Experimental Comparison of two Active Vibration Control Approaches: Velocity Feedback and Negative Capacitance Shunt Damping

    Science.gov (United States)

    Beck, Benjamin; Schiller, Noah

    2013-01-01

    This paper outlines a direct, experimental comparison between two established active vibration control techniques. Active vibration control methods, many of which rely upon piezoelectric patches as actuators and/or sensors, have been widely studied, showing many advantages over passive techniques. However, few direct comparisons between different active vibration control methods have been made to determine the performance benefit of one method over another. For the comparison here, the first control method, velocity feedback, is implemented using four accelerometers that act as sensors along with an analog control circuit which drives a piezoelectric actuator. The second method, negative capacitance shunt damping, consists of a basic analog circuit which utilizes a single piezoelectric patch as both a sensor and actuator. Both of these control methods are implemented individually using the same piezoelectric actuator attached to a clamped Plexiglas window. To assess the performance of each control method, the spatially averaged velocity of the window is compared to an uncontrolled response.

  18. Control of an extending nonlinear elastic cable with an active vibration control strategy

    Science.gov (United States)

    Dai, L.; Sun, L.; Chen, C.

    2014-10-01

    An active control strategy based on the fuzzy sliding mode control (FSMC) is developed in this research for controlling the large-amplitude vibrations of an extending nonlinear elastic cable. The geometric nonlinearity of the cable and the fixed-fixed boundary of the cable are considered. For effectively and accurately control the motion of the cable with the active control strategy developed, the governing equation of the elastic cable is established and transformed into a multi-dimensional dynamic system with the 3rd order Galerkin method. The active control strategy is developed on the basis of the dynamic system, and the control strategy is applicable to multi-dimensional dynamic systems. In the numerical simulation, large-amplitude vibrations of the cable are effectively controlled with the control strategy. The results of the research demonstrate significances for controlling the cable vibrations of an elevator in practice.

  19. Evaluation of passive and active vibration control mechanisms in a microgravity environment

    Science.gov (United States)

    Ellison, J.; Ahmadi, G.; Grodsinsky, C.

    1993-01-01

    The behavior of equipment and their light secondary attachments in large space structures under orbital excitation is studied. The equipment is modeled as a shear beam and its secondary attachment is treated as a single-degree-of-freedom lumped mass system. Peak responses of the equipment and its secondary system for a variety of vibration control mechanisms are evaluated. A novel active friction control mechanism, by varying the normal force, is suggested. The device uses a magnetic field control to minimize the stick condition, thereby reducing the overall structural response. The results show that the use of the passive vibration control devices could reduce the peak equipment responses to a certain extent. However, major reduction of vibration levels could be achieved only by the use of active devices. Using active control of the interface normal force, the peak responses of the equipment and its attachment are reduced by a factor of 10 over the fixed-base equipment response.

  20. Robust and fast schemes in broadband active noise and vibration control

    NARCIS (Netherlands)

    Fraanje, Petrus Rufus

    2004-01-01

    This thesis presents robust and fast active control algorithms for the suppression of broadband noise and vibration disturbances. Noise disturbances, e.g., generated by engines in airplanes and cars or by air ow, can be reduced by means of passive or active methods.

  1. Robust and fast schemes in broadband active noise and vibration control

    NARCIS (Netherlands)

    Fraanje, P.R.

    2004-01-01

    This thesis presents robust and fast active control algorithms for the suppression of broadband noise and vibration disturbances. Noise disturbances, e.g., generated by engines in airplanes and cars or by air ow, can be reduced by means of passive or active methods.

  2. Application of a load-bearing passive and active vibration isolation system in hydraulic drives

    Science.gov (United States)

    Unruh, Oliver; Haase, Thomas; Pohl, Martin

    2016-09-01

    Hydraulic drives are widely used in many engineering applications due to their high power to weight ratio. The high power output of the hydraulic drives produces high static and dynamic reaction forces and moments which must be carried by the mounts and the surrounding structure. A drawback of hydraulic drives based on rotating pistons consists in multi-tonal disturbances which propagate through the mounts and the load bearing structure and produce structure borne sound at the surrounding structures and cavities. One possible approach to overcome this drawback is to use an optimised mounting, which combines vibration isolation in the main disturbance direction with the capability to carry the reaction forces and moments. This paper presents an experimental study, which addresses the vibration isolation performance of an optimised mounting. A dummy hydraulic drive is attached to a generic surrounding structure with optimised mounting and excited by multiple shakers. In order to improve the performance of the passive vibration isolation system, piezoelectric transducers are applied on the mounting and integrated into a feed-forward control loop. It is shown that the optimised mounting of the hydraulic drive decreases the vibration transmission to the surrounding structure by 8 dB. The presented study also reveals that the use of the active control system leads to a further decrease of vibration transmission of up to 14 dB and also allows an improvement of the vibration isolation in an additional degree of freedom and higher harmonic frequencies.

  3. Moving toward low frequencies active vibration control with inertial actuators

    Science.gov (United States)

    Cinquemani, S.; Costa, A.; Resta, F.

    2017-04-01

    In applications of vibration suppression, control forces ideally act on the structure increasing its damping. While the frequency response of the structure is guaranteed to have a positive real part under ideal conditions, in practice a stability limit exists when inertial actuators are used. In this case the system response is no longer guaranteed to be positive real and so the control system may become unstable at high gains. Moreover, traditional approaches suggest the use of inertial actuators only if its natural frequency is well below the natural frequency of the structure, thus preventing their use at low frequencies. This paper proposes an interesting technique to enlarge the operational range to lower frequencies and to allow the use of inertial actuators. The approach is numerically tested and experimentally validated on a test rig.

  4. Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xian-Xu, E-mail: bai@hfut.edu.cn [Department of Vehicle Engineering, Hefei University of Technology, Hefei 230009 (China); Wereley, Norman M.; Hu, Wei [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-05-07

    A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, the mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.

  5. ACTIVE CONTROL OF THE PIEZOELASTIC LAMINATED CYLINDRICAL SHELL'S VIBRATION UNDER HYDROSTATIC PRESSURE

    Institute of Scientific and Technical Information of China (English)

    李红云; 林启荣; 刘正兴; 王超

    2003-01-01

    The control of the piezoelastic laminated cylindrical shell's vibration under hydrostatic pressure was discussed. From Hamilton's principle nonlinear dynamic equations of the piezoelastic laminated cylindrical shell were derived. Based on which, the dynamic equations of a closed piezoelastic cylindrical shell under hydrostatic pressure are obtained. An analytical solution was presented for the case of vibration of a simply supported piezoelastic laminated cylindrical shell under hydrostatic pressure. Using veloctity feedback control, a model for active vibration control of the laminated cylindrical shell with piezoelastic sensor/ actuator is established. Numerical results show that, the static deflection of the cylindrical shell can be changed when voltages with suitable value and direction are applied on the piezoelectric layers. For the dynamic response problem of the system, the larger the gain is, the more the vibration of the system is suppressed in the vicinity of the resonant zone. This presents a potential way to actively reduce the harmful effect of the resonance on the system and verify the feasibility of the active vibration control model.

  6. Active Control of Machine-Tool Vibration in a CNC Lathe Based on an Active Tool Holder Shank with Embedded Piezo Ceramic Actuators

    OpenAIRE

    Pettersson, Linus; Håkansson, Lars; Claesson, Ingvar; Olsson, Sven

    2001-01-01

    In the turning operation chatter or vibration is a frequent problem affecting the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced by active control of machine-tool vibration. However, machine-tool vibration control systems are usually not applicable to a general lat...

  7. Active control of sound radiated by a submarine in bending vibration

    Science.gov (United States)

    Caresta, Mauro

    2011-02-01

    This paper theoretically investigates the use of inertial actuators to reduce the sound radiated by a submarine hull in bending vibration under harmonic excitation from the propeller. The radial forces from the propeller are tonal at the blade passing frequency and are transmitted to the hull through the stern end cone. The hull is modelled as a fluid loaded cylindrical shell with ring stiffeners and two equally spaced bulkheads. The cylinder is closed by end-plates and conical end caps. The actuators are arranged in circumferential arrays and attached to the prow end cone. Both Active Vibration Control and Active Structural Acoustic Control are analysed. The inertial actuators can provide control forces with a magnitude large enough to reduce the sound radiated by the vibrations of the hull in some frequency ranges.

  8. Rectification of SEMG as a tool to demonstrate synchronous motor unit activity during vibration.

    Science.gov (United States)

    Sebik, Oguz; Karacan, Ilhan; Cidem, Muharrem; Türker, Kemal S

    2013-04-01

    The use of surface electromyography (SEMG) in vibration studies is problematic since motion artifacts occupy the same frequency band with the SEMG signal containing information on synchronous motor unit activity. We hypothesize that using a harsher, 80-500 Hz band-pass filter and using rectification can help eliminate motion artifacts and provide a way to observe synchronous motor unit activity that is phase locked to vibration using SEMG recordings only. Multi Motor Unit (MMU) action potentials using intramuscular electrodes along with SEMG were recorded from the gastrocnemius medialis (GM) of six healthy male volunteers. Data were collected during whole body vibration, using vibration frequencies of 30 Hz, 35 Hz, 40 Hz or 50 Hz. A computer simulation was used to investigate the efficacy of filtering under different scenarios: with or without artifacts and/or motor unit synchronization. Our findings indicate that motor unit synchronization took place during WBV as verified by MMU recordings. A harsh filtering regimen along with rectification proved successful in demonstrating motor unit synchronization in SEMG recordings. Our findings were further supported by the results from the computer simulation, which indicated that filtering and rectification was efficient in discriminating motion artifacts from motor unit synchronization. We suggest that the proposed signal processing technique may provide a new methodology to evaluate the effects of vibration treatments using only SEMG. This is a major advantage, as this non-intrusive method is able to overcome movement artifacts and also indicate the synchronization of underlying motor units.

  9. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    Science.gov (United States)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  10. Lumbar back muscle activity of helicopter pilots and whole-body vibration.

    Science.gov (United States)

    de Oliveira, C G; Simpson, D M; Nadal, J

    2001-10-01

    Several studies have attributed the prevalence of low back pain (LBP) in helicopter pilots mainly to poor posture in-flight and whole-body vibration, with the latter hypothesis particularly related to a cyclic response of the erector spine (ES) muscle to vibration. This work aims to determine if helicopter vibration and the pilot's normal posture during flight have significant effects on the electromyogram (EMG) of the ES muscle. The bilateral surface EMG of the ES muscle at the L3 level was collected in 10 young pilots before and during a short flight in UH-50 helicopters. The vibration was monitored by a triaxial accelerometer fixed to the pilots' seat. Prior to the flight, the EMG was recorded for relaxed seated and standing postures with 0 degrees (P0) and 35 degrees (P35) of trunk flexion. The effect of the posture during the flight was tested by comparing left and right EMG (normalized with respect to P35). The in-flight muscle stress was evaluated by histograms of EMG activity, and compared to P0 values. Only one pilot in ten showed significant (pvibration and the EMG over cycles of vibration, and no consistent causal effect was found. The pilots' posture did not show significant asymmetric muscular activity, and low EMG levels were observed during most of the duration of the flight. The results do not provide evidence that LBP in helicopter pilots is caused by ES muscle stress in the conditions studied.

  11. Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations.

    Science.gov (United States)

    Fattorini, L; Tirabasso, A; Lunghi, A; Di Giovanni, R; Sacco, F; Marchetti, E

    2016-02-01

    The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33Hz is a resonance frequency for the hand-arm system.

  12. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators

    Science.gov (United States)

    Wang, Chaoxin; Xie, Xiling; Chen, Yanhao; Zhang, Zhiyi

    2016-11-01

    A Stewart platform with piezoelectric actuators is presented for micro-vibration isolation. The Jacobi matrix of the Stewart platform, which reveals the relationship between the position/pointing of the payload and the extensions of the six struts, is derived by kinematic analysis. The dynamic model of the Stewart platform is established by the FRF (frequency response function) synthesis method. In the active control loop, the direct feedback of integrated forces is combined with the FxLMS based adaptive feedback to dampen vibration of inherent modes and suppress transmission of periodic vibrations. Numerical simulations were conducted to prove vibration isolation performance of the Stewart platform under random and periodical disturbances, respectively. In the experiment, the output consistencies of the six piezoelectric actuators were measured at first and the theoretical Jacobi matrix as well as the feedback gain of each piezoelectric actuator was subsequently modified according to the measured consistencies. The direct feedback loop was adjusted to achieve sufficient active damping and the FxLMS based adaptive feedback control was adopted to suppress vibration transmission in the six struts. Experimental results have demonstrated that the Stewart platform can achieve 30 dB attenuation of periodical disturbances and 10-20 dB attenuation of random disturbances in the frequency range of 5-200 Hz.

  13. Regular physical activity reduces the effects of Achilles tendon vibration on postural control for older women.

    Science.gov (United States)

    Maitre, J; Serres, I; Lhuisset, L; Bois, J; Gasnier, Y; Paillard, T

    2015-02-01

    The aim was to determine in what extent physical activity influences postural control when visual, vestibular, and/or proprioceptive systems are disrupted. Two groups of healthy older women: an active group (74.0 ± 3.8 years) who practiced physical activities and a sedentary group (74.7 ± 6.3 years) who did not, underwent 12 postural conditions consisted in altering information emanating from sensory systems by means of sensory manipulations (i.e., eyes closed, cervical collar, tendon vibration, electromyostimulation, galvanic vestibular stimulation, foam surface). The center of foot pressure velocity was recorded on a force platform. Results indicate that the sensory manipulations altered postural control. The sedentary group was more disturbed than the active group by the use of tendon vibration. There was no clear difference between the two groups in the other conditions. This study suggests that the practice of physical activities is beneficial as a means of limiting the effects of tendon vibration on postural control through a better use of the not manipulated sensory systems and/or a more efficient reweighting to proprioceptive information from regions unaffected by the tendon vibration.

  14. Active vibration control of a single-stage spur gearbox

    Science.gov (United States)

    Dogruer, C. U.; Pirsoltan, Abbas K.

    2017-02-01

    The dynamic transmission error between driving and driven gears of a gear mechanism with torsional mode is induced by periodic time-varying mesh stiffness. In this study, to minimize the adverse effect of this time-varying mesh stiffness, a nonlinear controller which adjusts the torque acting on the driving gear is proposed. The basic approach is to modulate the input torque such that it compensates the periodic change in mesh stiffness. It is assumed that gears are assembled with high precision and gearbox is analyzed by a finite element software to calculate the mesh stiffness curve. Thus, change in the mesh stiffness, which is inherently nonlinear, can be predicted and canceled by a feed-forward loop. Then, remaining linear dynamics is controlled by pole placement techniques. Under these premises, it is claimed that any acceleration and velocity profile of the input shaft can be tracked accurately. Thereby, dynamic transmission error is kept to a minimum possible value and a spur gearbox, which does not emit much noise and vibration, is designed.

  15. Active control of vibration using a neural network.

    Science.gov (United States)

    Snyder, S D; Tanaka, N

    1995-01-01

    Feedforward control of sound and vibration using a neural network-based control system is considered, with the aim being to derive an architecture/algorithm combination which is capable of supplanting the commonly used finite impulse response filter/filtered-x least mean square (LMS) linear arrangement for certain nonlinear problems. An adaptive algorithm is derived which enables stable adaptation of the neural controller for this purpose, while providing the capacity to maintain causality within the control scheme. The algorithm is shown to be simply a generalization of the linear filtered-x LMS algorithm. Experiments are undertaken which demonstrate the utility of the proposed arrangement, showing that it performs as well as a linear control system for a linear control problem and better for a nonlinear control problem. The experiments also lead to the conclusion that more work is required to improve the predictability and consistency of the performance before the neural network controller becomes a practical alternative to the current linear feedforward systems.

  16. Active member vibration control for a 4 meter primary reflector support structure

    Science.gov (United States)

    Umland, J. W.; Chen, G.-S.

    1992-01-01

    The design and testing of a new low voltage piezoelectric active member with integrated load cell and displacement sensor is described. This active member is intended for micron level vibration and structural shape control of the Precision Segmented Reflector test-bed. The test-bed is an erectable 4 meter diameter backup support truss for a 2.4 meter focal length parabolic reflector. Active damping of the test-bed is then demonstrated using the newly developed active members. The control technique used is referred to as bridge feedback. With this technique the internal sensors are used in a local feedback loop to match the active member's input impedance to the structure's load impedance, which then maximizes vibrational energy dissipation. The active damping effectiveness is then evaluated from closed loop frequency responses.

  17. Vibration Analysis of Large Composite Blade Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yuqiao Zheng

    2013-09-01

    Full Text Available This paper presents a recently developed the finite model method for analysis of horizontal axis wind turbine blades.Free vibration equation is proposed based on theory of  the classical lamination and  Lagrange method.. A 40 m rotor blade was chosen as a example study to validate the static and dynamic behaviour predicted by shell model built in ANSYS,Given uncertainty of material properties involved,An accurate agreement was found for static deformation curves, as well as a good prediction of the lowest frequency modes in terms of resonance frequencies, the highest (eighth frequency modes show only a fair agreement as expected for an FE model,Flap-wise, edge-wise and  torsional  natural  frequencies of  a  variable  length  blade  have been investigated,The results show that the approach used in this study is very efficient and produces improved designs as compared with a reference or baseline design.

  18. The Influence of Whole-Body Vibration on Creatine Kinase Activity and Jumping Performance in Young Basketball Players

    Science.gov (United States)

    Fachina, Rafael; da Silva, Antônio; Falcão, William; Montagner, Paulo; Borin, João; Minozzo, Fábio; Falcão, Diego; Vancini, Rodrigo; Poston, Brach; de Lira, Claudio

    2013-01-01

    Purpose: To quantify creatine kinase (CK) activity changes across time following an acute bout of whole-body vibration (WBV) and determine the association between changes in CK activity and jumping performance. Method: Twenty-six elite young basketball players were assigned to 3 groups: 36-Hz and 46-Hz vibration groups (G36 and G46, respectively)…

  19. Near-Source Error Sensor Strategies for Active Vibration Isolation of Machines

    NARCIS (Netherlands)

    Beijers, C.A.J.; Basten, T.G.H.; de Boer, Andries; van den Brink, D.R.; Verheij, J.W.; Sas, P; de Munck, M.

    2004-01-01

    Due to lightweight construction of vehicles and ships, the reduction of structure borne interior noise problems with passive isolation of engine vibrations might be not sufficient. To improve the isolation, a combination of passive and active isolation techniques can be used (so-called hybrid isolat

  20. A unified control strategy for the active reduction of sound and vibration

    NARCIS (Netherlands)

    Doelman, N.J.

    1991-01-01

    The generalized minimum variance (GMV) control strategy is proposed as an effective strategy for active sound and vibration control systems. The GMV strategy is shown to unify well-known adaptive filtering approaches based on LMS-type algorithms and purely feedback strategies as used in other types

  1. Adaptive active control of structural vibration by minimisation of total supplied power

    DEFF Research Database (Denmark)

    Henriksen, Eigil

    1996-01-01

    Active control of vibration by minimisation of total supplied power is an attractive approach from a theoretical point of view. In this practical study of the method two secondary sources were applied to control the sinusoidal excitation of an aluminium beam from a single primary source...

  2. A rapid prototyping system for broadband multichannel active noise and vibration control

    NARCIS (Netherlands)

    Wesselink, Johan Marius

    2009-01-01

    The development system presented in this thesis consists of a highly integrated controller which can be used for different active noise and vibration control (ANVC) applications. The system consists of an embedded PC and an interfacing card that can offer up to 16 analog input and output channels. T

  3. Bias Errors in Measurement of Vibratory Power and Implication for Active Control of Structural Vibration

    DEFF Research Database (Denmark)

    Ohlrich, Mogens; Henriksen, Eigil; Laugesen, Søren

    1997-01-01

    control of vibratory power transmission into structures. This is demonstrated by computer simulations using a theoretical model of a beam structure which is driven by one primary source and two control sources. These simulations reveal the influence of residual errors on power measurements......, and the limitations imposed in active control of structural vibration based upon a strategy of power minimisation....

  4. Near-source error sensor strategies for active vibration isolation of machines

    NARCIS (Netherlands)

    Beijers, C.A.J.; Basten, T.G.H.; Brink, van den D.R.; Verheij, J.W.; Boer, de A.

    2004-01-01

    Due to lightweight construction of vehicles and ships, the reduction of structure borne interior noise problems with passive isolation of engine vibrations might be not sufficient. To improve the isolation, a combination of passive and active isolation techniques can be used (so-called hybrid isolat

  5. A new robust adaptive controller for vibration control of active engine mount subjected to large uncertainties

    Science.gov (United States)

    Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun

    2015-04-01

    This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation.

  6. Finite element based design of software for integrated passive and active vibration control

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the design scheme developed for design of software forIntegrated Passive and Active Vibration Control(IPAVC) and the coding of a prototyne system, and the selection of the famous finite element program MSC/NASTRAN as an important module of software to deal with large and complicated structures and systems with an example to demonstrate the prototype system.

  7. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    In the present work, experimental results show the feasibility of reducing the amplitude of resonance peaks in rotor-bearing test rig, in the frequency domain, by using active lubricated bearings. The most important consequence of this vibration reduction in rotating machines is the feasibility o...

  8. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    In the present work, experimental results show the feasibility of reducing the amplitude of resonance peaks in rotor-bearing test rig, in the frequency domain, by using active lubricated bearings. The most important consequence of this vibration reduction in rotating machines is the feasibility o...

  9. Experiments on reduction of propeller induced interior noise by active control of cylinder vibration

    Science.gov (United States)

    Fuller, C. R.; Jones, J. D.

    1987-01-01

    The feasibility of reducing interior noise caused by advanced turbo propellers by controlling the vibration of aircraft fuselages was investigated by performing experiments in an anechoic chamber with an aircraft model test rig and apparatus. It was found that active vibration control provides reasonable global attenuation of interior noise levels for the cases of resonant (at 576 Hz) and forced (at 708 Hz) system response. The controlling mechanism behind the effect is structural-acoustic coupling between the shell and the contained field, termed interface modal filtering.

  10. An active optimal control strategy of rotor vibrations using external forces

    Science.gov (United States)

    Zhu, W.; Castelazo, I.; Nelson, H. D.

    1989-01-01

    An active control strategy for lateral rotor vibrations using external forces is proposed. An extended state observer is used to reconstruct the full states and the unbalance distribution. An optimal controller which accommodates persistent unbalance excitation is derived with feedback of estimated states and unbalances. Numerical simulations were conducted for two separate four degree of freedom rotor systems. These simulations indicated that the proposed strategy can achieve almost complete vibration cancellation. This was shown to be true even when the number of external control forces was less than the system order so long as coordinate coupling was present. Both steady state and transient response at a constant speed are presented.

  11. Inverse eigenvalue problems in vibration absorption: Passive modification and active control

    Science.gov (United States)

    Mottershead, John E.; Ram, Yitshak M.

    2006-01-01

    The abiding problem of vibration absorption has occupied engineering scientists for over a century and there remain abundant examples of the need for vibration suppression in many industries. For example, in the automotive industry the resolution of noise, vibration and harshness (NVH) problems is of extreme importance to customer satisfaction. In rotorcraft it is vital to avoid resonance close to the blade passing speed and its harmonics. An objective of the greatest importance, and extremely difficult to achieve, is the isolation of the pilot's seat in a helicopter. It is presently impossible to achieve the objectives of vibration absorption in these industries at the design stage because of limitations inherent in finite element models. Therefore, it is necessary to develop techniques whereby the dynamic of the system (possibly a car or a helicopter) can be adjusted after it has been built. There are two main approaches: structural modification by passive elements and active control. The state of art of the mathematical theory of vibration absorption is presented and illustrated for the benefit of the reader with numerous simple examples.

  12. Experimental Study of Active Vibration Control of Planar 3-RRR Flexible Parallel Robots Mechanism

    Directory of Open Access Journals (Sweden)

    Qinghua Zhang

    2016-01-01

    Full Text Available An active vibration control experiment of planar 3-RRR flexible parallel robots is implemented in this paper. Considering the direct and inverse piezoelectric effect of PZT material, a general motion equation is established. A strain rate feedback controller is designed based on the established general motion equation. Four control schemes are designed in this experiment: three passive flexible links are controlled at the same time, only passive flexible link 1 is controlled, only passive flexible link 2 is controlled, and only passive flexible link 3 is controlled. The experimental results show that only one flexible link controlled scheme  suppresses elastic vibration and cannot suppress the elastic vibration of the other flexible links, whereas when three passive flexible links are controlled at the same time, they are able to effectively suppress the elastic vibration of all of the flexible links. In general, the experiment verifies that a strain rate feedback controller is able to effectively suppress the elastic vibration of the flexible links of plane 3-RRR flexible parallel robots.

  13. Novel vibration-exercise instrument with dedicated adaptive filtering for electromyographic investigation of neuromuscular activation.

    Science.gov (United States)

    Xu, Lin; Rabotti, Chiara; Mischi, Massimo

    2013-03-01

    Vibration exercise (VE) has been suggested as an effective methodology to improve muscle strength and power performance. Several studies link the effects of vibration training to enhanced neuromuscular demand, typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms are still unclear, limiting the identification of the most appropriate vibration training protocols. This study concerns the realization of a new vibration exercise system for the upper limbs. Amplitude, frequency, and baseline of the vibrating force, which is generated by an electromechanical actuator, can be adjusted independently. A second order model is employed to identify the relation between the generated force and the input voltage driving the actuator. Our results show a high correlation (0.99) between the second order model fit and the measured data, ensuring accurate control on the supplied force. The level of neuromuscular demand imposed by the system on the targeted muscles can be estimated by electromyography (EMG). However, EMG measurements during VE can be severely affected by motion artifacts. An adaptive least mean square algorithm is proposed to remove motion artifacts from the measured EMG data. Preliminary validation with seven volunteers showed excellent motion artifact removal, enabling reliable evaluation of the neuromuscular activation.

  14. Reducing friction-induced vibration using intelligent active force control (AFC) with piezoelectric actuators

    Indian Academy of Sciences (India)

    S M Hashemi-Dehkordi; A R Abu-Bakar; M Mailah

    2012-12-01

    In this paper, a novel approach to reduce the effect of mode coupling that causes friction induced vibration (FIV) is proposed by applying an intelligent active force control (AFC)-based strategy employing piezoelectric actuators with hysteresis effect to a simplified two degree-of-freedom mathematical model of a friction-induced vibration system. At first, the model is simulated and analysed using a closed loop pure Proportional-Integral-Derivative (PID) controller. Later, it is integrated with the intelligent AFC with fuzzy logic (FL) estimator and simulated under similar operating condition. After running several tests with different sets of operating and loading conditions, the results both in time and frequency domains show that the PID controller with the intelligent AFC is much more effective in reducing the vibration, compared to the pure PID controller alone.

  15. Semi-active vibration absorber based on real-time controlled MR damper

    Science.gov (United States)

    Weber, F.

    2014-06-01

    A semi-active vibration absorber with real-time controlled magnetorheological damper (MR-SVA) for the mitigation of harmonic structural vibrations is presented. The MR damper force targets to realize the frequency and damping adaptations to the actual structural frequency according to the principle of the undamped vibration absorber. The relative motion constraint of the MR-SVA is taken into account by an adaptive nonlinear control of the internal damping of the MR-SVA. The MR-SVA is numerically and experimentally validated for harmonic excitation of the primary structure when the natural frequency of the passive mass spring system of the MR-SVA is correctly tuned to the targeted structural resonance frequency and when de-tuning is present. The results demonstrate that the MR-SVA outperforms the passive TMD at structural resonance frequency by at least 12.4% and up to 60.0%.

  16. Application of an active controller for reducing small-amplitude vertical vibration in a vehicle seat

    Science.gov (United States)

    Wu, Jian-Da; Chen, Rong-Jun

    2004-07-01

    This report describes the principle and application of active vibration control (AVC) for reducing undesired small-amplitude vertical vibration in the driver's seat of a vehicle. Three different control algorithms are implemented and compared in the experimental investigation. Apart from adaptive control and robust control, a hybrid control algorithm consisting of a combination of an adaptive controller with a filtered-x least mean squares (FXLMS) algorithm and a feedback structure with a robust synthesis theory for obtaining fast convergence and robust performance are proposed. A frequency domain technique is used for achieving the control plant identification and controller design. All of the proposed AVC controllers are implemented in a digital signal processor (DSP) platform, using a finite impulse response (FIR) filter for real-time control. A characteristic analysis and experimental comparison of three control algorithms for reducing the small amplitude vertical vibration in a vehicle seat are also presented in this paper.

  17. Active Tuned Mass Dampers for Control of In-Plane Vibrations of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fitzgerald, B.; Basu, Biswajit; Nielsen, Søren R.K.

    2013-01-01

    This paper investigates the use of active tuned mass dampers (ATMDs) for the mitigation of in-plane vibrations in rotating wind turbine blades. The rotating wind turbine blades with tower interaction represent time-varying dynamical systems with periodically varying mass, stiffness, and damping......, centrifugal, and turbulent aerodynamic loadings. Investigations show promising results for the use of ATMDs in the vibration control of wind turbine blades....... matrices. The aim of this paper is to determine whether ATMDs could be used to reduce in-plane blade vibrations in wind turbines with better performance than compared with their passive counterparts. A Euler–Lagrangian wind turbine mathematical model based on energy formulation was developed...

  18. COMPENSATED INVERSE PID CONTROLLER FOR ACTIVE VIBRATION CONTROL WITH PIEZOELECTRIC PATCHES: MODELING, SIMULATION AND IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Asan Gani

    2010-09-01

    Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB

  19. Semi-active vibration control using piezoelectric actuators in smart structures

    Institute of Scientific and Technical Information of China (English)

    Jinhao QIU; Hongli JI; Kongjun ZHU

    2009-01-01

    The piezoelectric materials, as the most widely used functional materials in smart structures, have many outstanding advantages for sensors and actuators, espe-cially in vibration control, because of their excellent mechanical-electrical coupling characteristics and fre-quency response characteristics. Semi-active vibration control based on state switching and pulse switching has been receiving much attention over the past decade because of several advantages. Compared with standard passive piezoelectric damping, these new semi-passive techniques offer higher robustness. Compared with active damping systems, their implementation does not require any sophisticated signal processing systems or any bulky power amplifier. In this review article, the principles of the semi-active control methods based on switched shunt circuit, including state-switched method, synchronized switch damping techniques, and active control theory-based switching techniques, and their recent developments are introduced. Moreover, the future directions of research in semi-active control are also summarized.

  20. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Weiqing; Jing, Qingshen; Bai, Peng; Yang, Ya; Hou, Te-Chien; Wang, Zhong Lin

    2013-11-13

    A harmonic-resonator-based triboelectric nanogenerator (TENG) is presented as a sustainable power source and an active vibration sensor. It can effectively respond to vibration frequencies ranging from 2 to 200 Hz with a considerably wide working bandwidth of 13.4 Hz. This work not only presents a new principle in the field of vibration energy harvesting but also greatly expands the applicability of TENGs.

  1. ACTIVE VIBRATION CONTROL OF FINITE L-SHAPED BEAM WITH TRAVELLING WAVE APPROACH

    Institute of Scientific and Technical Information of China (English)

    Chunchuan Liu; Fengming Li; Wenhu Huang

    2010-01-01

    In this paper,the disturbance propagation and active vibration control of a finite L-shaped beam are studied.The dynamic response of the structure is obtained by the travelling wave approach.The active vibration suppression of the finite L-shaped beam is performed based on the structural vibration power flow.In the numerical calculation,the influences of the near field effect of the error sensor and the small error of the control forces on the control results are all considered.The simulation results indicate that the structural vibration response in the medium and high frequency regions can be effectively computed by the travelling wave method.The effect of the active control by controlling the power flow is much better than that by controlling the acceleration in some cases.And the control results by the power flow method are slightly affected by the locations of the error sensor and the small error of the control forces.

  2. Active vibration control for flexible rotor by optimal direct-output feedback control

    Science.gov (United States)

    Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  3. Selective vibration sensing: a new concept for activity-sensing rate-responsive pacing.

    Science.gov (United States)

    Lau, C P; Stott, J R; Toff, W D; Zetlein, M B; Ward, D E; Camm, A J

    1988-09-01

    A clinically available model of an activity-sensing, rate-responsive pacemaker (Activitrax, Medtronic) utilizes body vibration during exercise as an indicator of the need for a rate increase. Although having the advantage of rapid onset of rate response, this system lacks specificity and the rate response does not closely correlate with the level of exertion. In addition, this pacemaker is susceptible to the effects of extraneous vibration. In this study involving 20 normal subjects fitted with an external Activitrax pacemaker, the rate responses to a variety of exercises were studied and were compared with the corresponding sinus rates. The vibration generated at the level of the pacemaker was also measured by accelerometers in three axes. Only a fair correlation (r = 0.51) was achieved between the pacemaker rate and the sinus rate. The total root mean square value of acceleration in either the anteroposterior or the vertical axes was found to have a better correlation (r = 0.8). As the main accelerations during physical activities were in the lower frequency range (0.1-4 Hz), a low-pass filter was used to reduce the influence of extraneous vibration. Selective sensing of the acceleration level may be usefully implemented in an algorithm for activity pacing.

  4. An analytical study of a six degree-of-freedom active truss for use in vibration control

    Science.gov (United States)

    Wynn, Robert H., Jr.; Robertshaw, Harry H.; Horner, C. Garnett

    1990-01-01

    An analytical study of the vibration control capabilities of three configurations of an active truss is presented. The truss studied is composed of two bays of an octahedral-octahedral configuration. The three configurations of the active truss studies are: all six battens activated (6 DOF), the top three battens activated (3 DOF), and the bottom three battens activated (3 DOF). The closed-loop vibration control response of these three configurations are studied with respect to: vibration attenuation, energy utilized, and the effects of motor drive amplifier saturation non-linearities.

  5. Minimization of the mean square velocity response of dynamic structures using an active-passive dynamic vibration absorber.

    Science.gov (United States)

    Cheung, Y L; Wong, W O; Cheng, L

    2012-07-01

    An optimal design of a hybrid vibration absorber (HVA) with a displacement and a velocity feedback for minimizing the velocity response of the structure based on the H(2) optimization criterion is proposed. The objective of the optimal design is to reduce the total vibration energy of the vibrating structure under wideband excitation, i.e., the total area under the velocity response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure, and it can provide very good vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square velocity of the primary system as well as the active force required in the HVA. The proposed HVA was tested on single degree-of-freedom (SDOF) and continuous vibrating structures and compared to the traditional passive vibration absorber.

  6. Wind-Tunnel Tests of a Bridge Model with Active Vibration Control

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle; Mendes, P. A.

    The application of active control systems to reduce wind vibrations in bridges is a new area of research. This paper presents the results that were obtained on a set of wind tunnel tests of a bridge model equipped with active movable flaps. Based on the monitored position and motion of the deck......, the flaps are regulated by a control algorithm so that the wind forces exerted on them counteract the deck oscillations....

  7. Active/passive distributed absorber for vibration and sound radiation control

    OpenAIRE

    2005-01-01

    The active/passive absorber for extended vibration and sound radiation control includes principally two layers. The first layer has a low stiffness per unit area which allows motion in the direction perpendicular to its main plane. The second layer is principally a mass layer. These two combined layers have a frequency of resonance close to one of the main structure. The dynamic behavior of the coupled system makes the active/passive absorber a passive absorber; however, the first layer can b...

  8. Mechanisms of active control for noise inside a vibrating cylinder

    Science.gov (United States)

    Lester, Harold C.; Fuller, Chris R.

    1987-01-01

    The active control of propeller-induced noise fields inside a flexible cylinder is studied with attention given to the noise reduction mechanisms inherent in the present coupled acoustic shell model. The active noise control model consists of an infinitely long aluminum cylinder with a radius of 0.4 m and a thickness of 0.001 m. Pressure maps are shown when the two external sources are driven in-phase at a frequency corresponding to Omega = 0.22.

  9. Parametric Design and Multiobjective Optimization of Maglev Actuators for Active Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2014-05-01

    Full Text Available The microvibration has a serious impact on science experiments on the space station and on image quality of high resolution satellites. As an important component of the active vibration isolation platform, the maglev actuator has a large stroke and exhibits excellent isolating performance benefiting from its noncontact characteristic. A maglev actuator with good linearity was designed in this paper. Fundamental features of the maglev actuator were obtained by finite element simulation. In order to minimize the coil weight and the heat dissipation of the maglev actuator, parametric design was carried out and multiobjective optimization based on the genetic algorithm was adopted. The optimized actuator has better mechanical properties than the initial one. Active vibration isolation platforms for different-scale payload were designed by changing the arrangement of the maglev actuators. The prototype to isolate vibration for small-scale payload was manufactured and the experiments for verifying the characteristics of the actuators were set up. The linearity of the actuator and the mechanical dynamic response of the vibration isolation platform were obtained. The experimental results highlight the effectiveness of the proposed design.

  10. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    Science.gov (United States)

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  11. Muscle activity and acceleration during whole body vibration: effect of frequency and amplitude.

    Science.gov (United States)

    Pollock, Ross D; Woledge, Roger C; Mills, Kerry R; Martin, Finbarr C; Newham, Di J

    2010-10-01

    Whole body vibration may improve muscle and bone strength, power and balance although contradictory findings have been reported. Prolonged exposure may result in adverse effects. We investigated the effects of high (5.5 mm) and low (2.5mm) amplitude whole body vibration at various frequencies (5-30 Hz) on muscle activity and acceleration throughout the body. Surface electromyographic activity was recorded from 6 leg muscles in 12 healthy adults (aged 31.3 (SD 12.4) years). The average rectified acceleration of the toe, ankle, knee, hip and head was recorded from 15 healthy adults (36 (SD 12.1) years) using 3D motion analysis. Whole body vibration increased muscle activity 5-50% of maximal voluntary contraction with the greatest increase in the lower leg. Activity was greater with high amplitude at all frequencies, however this was not always significant (P 15 Hz acceleration decreased with distance from the platform. This was associated with increased muscle activity, presumably due to postural control and muscle tuning mechanisms. The minimal acceleration at the head reduces the likelihood of adverse reactions. The levels of activation are unlikely to cause hypertrophy in young healthy individuals but may be sufficient in weak and frail people. 2010 Elsevier Ltd. All rights reserved.

  12. Active control of sound radiation from a vibrating rectangular panel by sound sources and vibration inputs - An experimental comparison

    Science.gov (United States)

    Fuller, C. R.; Hansen, C. H.; Snyder, S. D.

    1991-01-01

    Active control of sound radiation from a rectangular panel by two different methods has been experimentally studied and compared. In the first method a single control force applied directly to the structure is used with a single error microphone located in the radiated acoustic field. Global attenuation of radiated sound was observed to occur by two main mechanisms. For 'on-resonance' excitation, the control force had the effect of increasing the total panel input impedance presented to the nosie source, thus reducing all radiated sound. For 'off-resonance' excitation, the control force tends not significantly to modify the panel total response amplitude but rather to restructure the relative phases of the modes leading to a more complex vibration pattern and a decrease in radiation efficiency. For acoustic control, the second method, the number of acoustic sources required for global reduction was seen to increase with panel modal order. The mechanism in this case was that the acoustic sources tended to create an inverse pressure distribution at the panel surface and thus 'unload' the panel by reducing the panel radiation impedance. In general, control by structural inputs appears more effective than control by acoustic sources for structurally radiated noise.

  13. THE EFFECT OF WHOLE-BODY VIBRATION FREQUENCY AND AMPLITUDE ON THE MYOELECTRIC ACTIVITY OF VASTUS MEDIALIS AND VASTUS LATERALIS

    Directory of Open Access Journals (Sweden)

    Piotr Krol

    2011-03-01

    Full Text Available The aim of this study was to evaluate the efficiency of training protocols for whole body vibration (WBV training through the modulation of the frequency and amplitude of vibration. Despite the large number of studies regarding effects of such training, there is still lack of knowledge regarding optimum training protocols. The study analyzed the influence of whole-body vibration parameters (i.e., the frequency and amplitude on the myoelectric activity of vastus lateralis and vastus medialis in 29 females with the use of electromyography (EMG. The first and second of the eight consecutive trials were performed without vibrations; the remaining six trials were performed in a randomized order on a platform vibrating at different amplitude (2mm and 4mm and frequency (20 Hz, 40 Hz and 60 Hz combinations. The results revealed significantly higher EMG amplitude of both muscles during the vibration as compared with the non- vibrated trials (trial 1 and 2. Furthermore, the EMG activity significantly increased both with the amplitude and frequency, being the highest when the frequency and amplitude of reached 60 Hz and 4 mm, respectively. The study aims to determine the optimal vibration parameters in the aspect of purposeful stimulation of chosen leg muscles. Based on the results of the presented investigation, sports trainers and physiotherapists may be able to optimize training programs involving vibration platforms.

  14. VIBRATION CONTROL OF FLUID- FILLED PRISMATIC SHELL WITH ACTIVE CONSTRAINED LAYER DAMPING TREATMENTS

    Institute of Scientific and Technical Information of China (English)

    LIU Lijun; ZHANG Zhiyi; HUA Hongxing; ZHANG Yi

    2008-01-01

    Active constrained layer damping (ACLD) combines the simplicity and reliability of passive damping with the light weight and high efficiency of active actuators to obtain high damping over a wide frequency band. A fluid-filled prismatic shell is set up to investigate the validity and efficiency of ACLD treatments in the case of fluid-structure interaction. By using state subspace identification method, modal parameters of the ACLD system are identified and a state space model is established subsequently for the design of active control laws. Experiments are conducted to the fluid-filled prismatic shell subjected to random and impulse excitation, respectively. For comparison, the shell model without fluid interaction is experimented as well. Experimental results have shown that the ACLD treatments can suppress vibration of the fluid-free and fluid-filled prismatic shell effectively. Under the same control gain, vibration attenuation is almost the same in both cases.

  15. Lateral vibration control of a flexible overcritical rotor via an active gas bearing – Theoretical and experimental comparisons

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2016-01-01

    The lack of damping of radial gas bearings leads to high vibration levels of a rotor supported by this type of bearing when crossing resonant areas. This is even more relevant for flexible rotors, as studied in this work. In order to reduce these high vibration levels, an active gas bearing is pr...

  16. Underwater sound and vibrations due to oil & gas activities

    NARCIS (Netherlands)

    Beek, P.J.G. van; Binnerts, B.; Nennie, E.D.; Benda-Beckmann, S. von

    2014-01-01

    In the oil & gas industry there is a trend towards more subsea activities. To improve gas recovery from existing and new fields at greater depths, the produced gas will be compressed, processed and transported via subsea templates and underwater networks (pipelines, flexible risers, etc.). Besides t

  17. Smart Materials and Active Noise and Vibration Control in Vehicles

    NARCIS (Netherlands)

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, van M.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are necessa

  18. Smart Materials and Active Noise and Vibration Control in Vehicles

    NARCIS (Netherlands)

    Doppenberg, E.J.J.; Berkhoff, Arthur P.; van Overbeek, M.; Gissinger, G.L.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are

  19. Active noise and vibration control for vehicular applications

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P.S.; Ellis, S.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project investigated semi-active suspension systems based on real time nonlinear control of magneto-rheological (MR) shock absorbers. This effort was motivated by Laboratory interactions with the automobile industry and with the Defense Department. Background research and a literature search on semi-active suspensions was carried out. Numerical simulations of alternative nonlinear control algorithms were developed and adapted for use with an MR shock absorber. A benchtop demonstration system was designed, including control electronics and a mechanical demonstration fixture to hold the damper/spring assembly. A custom-made MR shock was specified and procured. Measurements were carried out at Los Alamos to characterize the performance of the device.

  20. A review of development and implementation of an active nonlinear vibration absorber

    Energy Technology Data Exchange (ETDEWEB)

    Oueini, S.S.; Nayfeh, A.H. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics; Pratt, J.R. [Manufacturing Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-001 (United States)

    1999-10-01

    We present an account of an implementation of an active nonlinear vibration absorber that we have developed. The control technique exploits the saturation phenomenon that is known to occur in quadratically-coupled multi-degree-of-freedom systems subjected to primary excitation and possessing a two-to-one internal resonance. The technique is based on introducing an absorber and coupling it with the structure through a sensor and an actuator, where the feedback and control signals are quadratic. First, we consider the case of controlling the vibrations of a single-degree-of-freedom system. We develop the equations governing the response of the closed-loop system and use the method of multiple scales to obtain an approximate solution. We investigate the performance of the control strategy by studying its steady-state and transient characteristics. Additionally, we compare the performance of the quadratic absorber with that of a linear absorber. Then, we present theoretical and experimental results that demonstrate the versatility of the technique. We design an electronic circuit to emulate the absorber and use a variety of sensors and actuators to implement the active control strategy. First, we use a motor and a potentiometer to control the vibration of a rigid beam. We develop a plant model that includes Coulomb friction and demonstrate that the closed-loop system exhibits the saturation phenomenon. Second, we extend the strategy to multi-degree-of-freedom systems. We use PZT ceramics and strain gages to suppress vibrations of flexible steel beams when subjected to single- and simultaneous two-mode excitations. Third, we employ Terfenol-D, a nonlinear actuator, and accelerometers to control the vibrations of flexible beams. In all instances, the technique is successful in reducing the response amplitude of the structures. (orig.)

  1. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    Science.gov (United States)

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  2. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    Science.gov (United States)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  3. Study on Component Synthesis Active Vibration Suppression Method Using Zero-placement Technique

    Institute of Scientific and Technical Information of China (English)

    Zhang Jianying; Liu Tun; Zhao Zhiping

    2008-01-01

    The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems.By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain.The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control stategy. Simulations have verified the validity and superiority of the proposed approach.

  4. Active control of panel vibrations induced by boundary-layer flow

    Science.gov (United States)

    Chow, Pao-Liu

    1991-01-01

    Some problems in active control of panel vibration excited by a boundary layer flow over a flat plate are studied. In the first phase of the study, the optimal control problem of vibrating elastic panel induced by a fluid dynamical loading was studied. For a simply supported rectangular plate, the vibration control problem can be analyzed by a modal analysis. The control objective is to minimize the total cost functional, which is the sum of a vibrational energy and the control cost. By means of the modal expansion, the dynamical equation for the plate and the cost functional are reduced to a system of ordinary differential equations and the cost functions for the modes. For the linear elastic plate, the modes become uncoupled. The control of each modal amplitude reduces to the so-called linear regulator problem in control theory. Such problems can then be solved by the method of adjoint state. The optimality system of equations was solved numerically by a shooting method. The results are summarized.

  5. Vibration and damping characteristics of cylindrical shells with active constrained layer damping treatments

    Science.gov (United States)

    Zheng, Ling; Zhang, Dongdong; Wang, Yi

    2011-02-01

    In this paper, the application of active constrained layer damping (ACLD) treatments is extended to the vibration control of cylindrical shells. The governing equation of motion of cylindrical shells partially treated with ACLD treatments is derived on the basis of the constitutive equations of elastic, piezoelectric and visco-elastic materials and an energy approach. The damping of a visco-elastic layer is modeled by the complex modulus formula. A finite element model is developed to describe and predict the vibration characteristics of cylindrical shells partially treated with ACLD treatments. A closed-loop control system based on proportional and derivative feedback of the sensor voltage generated by the piezo-sensor of the ACLD patches is established. The dynamic behaviors of cylindrical shells with ACLD treatments such as natural frequencies, loss factors and responses in the frequency domain are further investigated. The effects of several key parameters such as control gains, location and coverage of ACLD treatments on vibration suppression of cylindrical shells are also discussed. The numerical results indicate the validity of the finite element model and the control strategy approach. The potential of ACLD treatments in controlling vibration and sound radiation of cylindrical shells used as major critical structures such as cabins of aircraft, hulls of submarines and bodies of rockets and missiles is thus demonstrated.

  6. Modeling and experimental vibration analysis of nanomechanical cantilever active probes

    Science.gov (United States)

    Salehi-Khojin, Amin; Bashash, Saeid; Jalili, Nader

    2008-08-01

    Nanomechanical cantilever (NMC) active probes have recently received increased attention in a variety of nanoscale sensing and measurement applications. Current modeling practices call for a uniform cantilever beam without considering the intentional jump discontinuities associated with the piezoelectric layer attachment and the NMC cross-sectional step. This paper presents a comprehensive modeling framework for modal characterization and dynamic response analysis of NMC active probes with geometrical discontinuities. The entire length of the NMC is divided into three segments of uniform beams followed by applying appropriate continuity conditions. The characteristics matrix equation is then used to solve for system natural frequencies and mode shapes. Using an equivalent electromechanical moment of a piezoelectric layer, forced motion analysis of the system is carried out. An experimental setup consisting of a commercial NMC active probe from Veeco and a state-of-the-art microsystem analyzer, the MSA-400 from Polytec, is developed to verify the theoretical developments proposed here. Using a parameter estimation technique based on minimizing the modeling error, optimal values of system parameters are identified. Mode shapes and the modal frequency response of the system for the first three modes determined from the proposed model are compared with those obtained from the experiment and commonly used theory for uniform beams. Results indicate that the uniform beam model fails to accurately predict the actual system response, especially in multiple-mode operation, while the proposed discontinuous beam model demonstrates good agreement with the experimental data. Such detailed and accurate modeling framework can lead to significant enhancement in the sensitivity of piezoelectric-based NMC sensors for use in variety of sensing and imaging applications.

  7. Reverse task of passive and active mechanical system in torsional vibrations

    Directory of Open Access Journals (Sweden)

    K. Białas

    2009-08-01

    Full Text Available Purpose: The main aim of this paper is to develop a method for finding structure and parameters, i.e. a structural and parameter synthesis, of an active model of a viscous damper mechanical system in vibrations. The aim is to perfect the synthesis seen as modification at the sub-assembly design level in relation to the required spectrum of vibration frequency of the system.Design/methodology/approach: With complex systems classic design is very time consuming and it does not always produce satisfactory results. Therefore, it is necessary to use other design methods, such as the inverse task, which is called synthesis. It is searching for a system structure, together with elements value, which realizes the required frequency characteristics.Findings: Using the active elements allows complete elimination of the oscillations. The conducted analysis show that it is not necessary to use both the active and passive elements, as using only active elements produces the same results.Research limitations/implications: The scope of discussion is reverse task of mechanical system in torsional vibrations including passive and active elements, but for this type of systems, such approach is sufficient.Practical implications: The methods of reverse task and analysis can be base of design and construct for this type of mechanic systems.Originality/value: Thank to the approach, introduced in this paper, can be conducted as early as during the designing of future functions of the system as well as during the construction of the system. Using method and obtained results can be value for designers of mechanical systems with elements reducing vibrations.

  8. Design and optimization of voice coil actuator for six degree of freedom active vibration isolation system using Halbach magnet array.

    Science.gov (United States)

    Kim, MyeongHyeon; Kim, Hyunchang; Gweon, Dae-Gab

    2012-10-01

    This paper describes the design, modeling, optimization, and validation of an active vibration isolation system using a voice coil motor. The active vibration isolating method was constructed with a passive isolator and an active isolator. A spring was used for passive isolating; an actuator was used for active isolating. The proposed active vibration isolation system (AVIS) can isolate disturbances for many kinds of instruments. Until now, developed AVIS were able to isolate a six degree-of-freedom disturbance effectively. This paper proposes the realization of such a six degree-of-freedom active vibration isolation system that can work as a bench top device for precision measuring machines such as atomic force microscope, scanning probe microscope, etc.

  9. Active-passive vibration absorber of beam-cart-seesaw system with piezoelectric transducers

    Science.gov (United States)

    Lin, J.; Huang, C. J.; Chang, Julian; Wang, S.-W.

    2010-09-01

    In contrast with fully controllable systems, a super articulated mechanical system (SAMS) is a controlled underactuated mechanical system in which the dimensions of the configuration space exceed the dimensions of the control input space. The objectives of the research are to develop a novel SAMS model which is called beam-cart-seesaw system, and renovate a novel approach for achieving a high performance active-passive piezoelectric vibration absorber for such system. The system consists of two mobile carts, which are coupled via rack and pinion mechanics to two parallel tracks mounted on pneumatic rodless cylinders. One cart carries an elastic beam, and the other cart acts as a counterbalance. One adjustable counterweight mass is also installed underneath the seesaw to serve as a passive damping mechanism to absorb impact and shock energy. The motion and control of a Bernoulli-Euler beam subjected to the modified cart/seesaw system are analyzed first. Moreover, gray relational grade is utilized to investigate the sensitivity of tuning the active proportional-integral-derivative (PID) controller to achieve desired vibration suppression performance. Consequently, it is shown that the active-passive vibration absorber can not only provide passive damping, but can also enhance the active action authority. The proposed software/hardware platform can also be profitable for the standardization of laboratory equipment, as well as for the development of entertainment tools.

  10. Changes in succinate dehydrogenase activity in various parts of the brain during combined exposure to vibration and licorice root.

    Science.gov (United States)

    Oganisyan, A O; Oganesyan, K R; Minasyan, S M

    2005-06-01

    Data obtained in the studies reported here provide evidence that during exposure to vibration for 30 days, feeding with licorice root significantly increases the activity of the anaerobic respiration enzyme succinate dehydrogenase (SDH) in the cerebral cortex, while activity in the subcortex, conversely, decreases. Combined treatment for 30 days with licorice root and vibration after a preliminary 30-day period of feeding with licorice root resulted in high SDH activity in all the structures studied, improving brain energy supply and metabolism and ameliorating the effect of vibration.

  11. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  12. A tubular dielectric elastomer actuator: Fabrication, characterization and active vibration isolation

    DEFF Research Database (Denmark)

    Sarban, R.; Jones, R. W.; Mace, B. R.;

    2011-01-01

    This contribution reviews the fabrication, characterization and active vibration isolation performance of a core-free rolled tubular dielectric elastomer (DE) actuator, which has been designed and developed by Danfoss PolyPower A/S. PolyPower DE material, PolyPower (TM), is produced in thin sheets...... of 80 mu m thickness with corrugated metallic electrodes on both sides. Tubular actuators are manufactured by rolling the DE sheets in a cylindrical shape. The electromechanical characteristics of such actuators are modeled based on equilibrium pressure equation. The model is validated with experimental...... the dominant dynamic characteristics of the core-free tubular actuator. It has been observed that all actuators have similar dynamic characteristics in a frequency range up to 1 kHz. A tubular actuator is then used to provide active vibration isolation (AVI) of a 250 g mass subject to shaker generated 'ground...

  13. Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, S.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India); Jawahar, A. [Department of Chemistry, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2015-06-24

    The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.

  14. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator

    Science.gov (United States)

    Du, Haiping; Li, Weihua; Zhang, Nong

    2011-10-01

    This paper presents a study on continuously variable stiffness control of vehicle seat suspension using a magnetorheological elastomer (MRE) isolator. A concept design for an MRE isolator is proposed in the paper and its behavior is experimentally evaluated. An integrated seat suspension model, which includes a quarter-car suspension and a seat suspension with a driver body model, is used to design a sub-optimal H_{\\infty } controller for an active isolator. The desired control force generated by this active isolator is then emulated by the MRE isolator through its continuously variable stiffness property when the actuating condition is met. The vibration control effect of the MRE isolator is evaluated in terms of driver body acceleration responses under both bump and random road conditions. The results show that the proposed control strategy achieves better vibration reduction performance than conventional on-off control.

  15. Active Vibration Control of the Smart Plate Using Artificial Neural Network Controller

    Directory of Open Access Journals (Sweden)

    Mohit

    2015-01-01

    Full Text Available The active vibration control (AVC of a rectangular plate with single input and single output approach is investigated using artificial neural network. The cantilever plate of finite length, breadth, and thickness having piezoelectric patches as sensors/actuators fixed at the upper and lower surface of the metal plate is considered for examination. The finite element model of the cantilever plate is utilized to formulate the whole strategy. The compact RIO and MATLAB simulation software are exercised to get the appropriate results. The cantilever plate is subjected to impulse input and uniform white noise disturbance. The neural network is trained offline and tuned with LQR controller. The various training algorithms to tune the neural network are exercised. The best efficient algorithm is finally considered to tune the neural network controller designed for active vibration control of the smart plate.

  16. ANALYSIS OF AN ELECTROSTRICTIVE STACK ACTUATORFOR ACTIVE TRAILING EDGE FLAPS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Helicopter is a complex dynamic system with many rotating components. The rotor blades operate in a highly complex aerodynamic environment. The vibratory hub load, which is caused by cyclic variation of centrifugal and aerodynamic load of the rotating blades in flight, is transmitted to the fuselage, resulting in serious vibration and noise of the structure. It is one of the most important exciting sources in helicopters.  There has long been a desire to reduce helicopter vibration and to improve its performance. Control schemes adopted so far can be classified as either passive or active control technologies. The passive technologies include optimization of rotor hub, blade and the fuselage, hub or blade mounted passive vibration absorbers and anti-resonant vibration isolators. One of the major disadvantages with passive technologies is that they are designed to provide maximum vibration reduction at a specific frequency; therefore, their performance is degraded significantly with changes in the operating conditions of the rotor system.  With the development of computer science and active control technology, increasing efforts have been devoted to active control technologies to benefit helicopter vibration suppression in recent years. Earlier studies include Higher Harmonic Control (HHC)[1] and Individual Blade Control (IBC)[2], which is aimed to reduce the vibratory blade load by oscillating the blade in pitch motion using hydraulic actuators. It is successful in suppressing the vibration of the fuselage; however, its application is limited by serious energy consumption.  To overcome these difficulties, a new concept in helicopter vibration control is the smart rotor system. In this scheme, actuators are embedded in composite blades. They are used to activate the trailing edge flaps in higher harmonic pitch motion to adjust the lift force actively. Under the regulation of a control system, the vibratory hub load can be counteracted actively at

  17. Power harvesting using piezomaterial in a helicopter rotor blade

    NARCIS (Netherlands)

    Jong, de P.H.; Boer, de A.; Loendersloot, R.; Hoogt, van der P.J.M.

    2010-01-01

    Current power harvesting research has focused on bending beams and determining power output under a given excitation. For the European CleanSky – Green Rotor Craft project a tool is being developed which optimizes the piezoelectric material and placement thereof for power harvesting. It focuses on b

  18. Metal Rubber Sensor Appliquis for Rotor Blade Air Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thin film Metal RubberTM sensor appliqus have the potential to reduce the time, complexity and cost of measuring air flow-induced skin friction during the...

  19. Study to Improve Turbine Engine Rotor Blade Containment

    Science.gov (United States)

    1977-08-01

    compressor stages, two low turbine stages, two high turbine stages, and two intershaft locations. The clearance at each possible ub location was aet to...for a fan rotor failure which were: engine mounts, low rotor bearings and bearing supports, fan coupling nut, low shaft, low turbine tierods, and all

  20. Radial Flow Effects On A Retreating Rotor Blade

    Science.gov (United States)

    2014-05-01

    estimate of the structural loading on horizontal axis wind turbines [52]. Studies have showed that such data consistently under predict actual loading...Oscillating Airfoil Experiments,” 1977. [18] Carta , F., “Dynamic Stall of Swept and Unswept Oscillating Wings,” tech. rep., DTIC Document, 1985. [19... Carta , F. O., A comparison of the pitching and plunging response of an oscillating airfoil, vol. 3172. National Aeronautics and Space Administration

  1. Methods for testing of geometrical down-scaled rotor blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter

    as requirements for experimental facilities are very demanding and furthermore the time for performing the experimental test campaign and the cost are not well suitable for most research projects. This report deals with the advantages, disadvantages and open questions of using down-scaled testing on wind turbine...

  2. Sweep-twist adaptive rotor blade : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  3. Highly Loaded Fan by Using Tandem Cascade Rotor Blade

    Science.gov (United States)

    Hasegawa, Hiroaki; Suga, Shinya; Matsuoka, Akinori

    For axial flow compressors and fans in the aircraft engines higher pressure ratio is required in order to attain the high thrust engines. In this study, the fan with the tandem cascades was introduced to increase the fan pressure ratio. The use of tandem cascades in the fan allows savings in length and weight and therefore a compact fan could be built. The design of fan with tandem cascades and the fan testing were carried out to develop the high pressure ratio fan for the Air Turbo Ramjet (ATR) propulsion system. The ATR is a combined cycle engine which performs like a turbojet engine at subsonic speeds and a ramjet at supersonic speeds. In particular, high fan pressure ratio contributes to increase the engine thrust during subsonic flight at which the engine does not make use of ram effect. The results of the fan testing indicate that the pressure ratio of 2.2 is achieved in single stage fan.

  4. Rotor blade full-scale fatigue testing technology and research

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Berring, Peter; Pavese, Christian

    Full scale fatigue test is an important part of the development and design of wind turbine blades. Testing is also needed for the approval of the blades in order for them to be used on large wind turbines. However, usually only one prototype blade is tested. Fatigue test of wind turbine blades...... was started in the beginning of the 1980´s and has been further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. These methods...... will be presented in this report giving the blade test facility operator a guide to choose the method that best fit the needs and economic constraints. The state of the art method is currently dual axis mass resonance, where the purpose of the test is to emulate the loads the blades encounter in operation....

  5. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.

    1998-01-01

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  6. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.

    1998-01-01

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  7. An experimental investigation of composite floor vibration due to human activities. A case study

    Directory of Open Access Journals (Sweden)

    Yasser G. Mohamed Fahmy

    2012-12-01

    Full Text Available Composite steel floor decks are used in a large variety of constructions with long spans, such as administration and commercial buildings, hotels and bridges. Due to decreased floor mass and longer span lengths, floor vibrations have become an area of concern. Floor decks with low frequencies may be in resonance with the vibrations due to human activities and the resulting acceleration may exceed human comfort levels. The design of slender floor structures, with steel or composite cross sections, is often limited by the serviceability criteria such as deflection limits and vibration behavior, rather than the strength criteria. Control of deflections under AISC specifications requirement is not enough to satisfy the serviceability requirements of the floor systems for vibration. In addition, vibration analysis procedures introduced by AISC design Guide No. 11 are based on regularly-shaped structures and simple boundary conditions. In this paper, a case study for full scale testing of a composite floor system proposed for a tower at Kuwait state that was tested prior to construction. The heel-drop and walking tests are performed on floor systems with and without raised floor respectively. Since heel-drop and walking test results would vary in light of person performance, both tests are carried out three or four times to reduce uncertainty. The fundamental frequencies and damping ratio of the floor system are measured. Comparison of the experimental results with results based on the AISC hand calculations shows that there is no significant difference; therefore the results based on AISC are generally acceptable.

  8. Origin invariance in vibrational resonance Raman optical activity

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Luciano N., E-mail: lnvidal@utfpr.edu.br; Cappelli, Chiara, E-mail: chiara.cappelli@unipi.it [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 3, 56124 Pisa (Italy); Egidi, Franco [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Barone, Vincenzo [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2015-05-07

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  9. Vibration reduction in helicopter rotors using an active control surface located on the blade

    Science.gov (United States)

    Millott, T. A.; Friedmann, P. P.

    1992-01-01

    A feasibility study of vibration reduction in a four-bladed helicopter rotor using individual blade control (IBC), which is implemented by an individually controlled aerodynamic surface located on each blade, is presented. For this exploratory study, a simple offset-hinged spring restrained model of the blade is used with fully coupled flap-lag-torsional dynamics for each blade. Deterministic controllers based on local and global system models are implemented to reduce 4/rev hub loads using both an actively controlled aerodynamic surface on each blade as well as conventional IBC, where the complete blade undergoes cyclic pitch change. The effectiveness of the two approaches for simultaneous reduction of the 4/rev hub shears and hub moments is compared. Conventional IBC requires considerably more power to achieve approximately the same level of vibration reduction as that obtained by implementing IBC using an active control surface located on the outboard segment of the blade. The effect of blade torsional flexibility on the vibration reduction effectiveness of the actively controlled surface was also considered and it was found that this parameter has a very substantial influence.

  10. Active vibration control on a quarter-car for cancellation of road noise disturbance

    Science.gov (United States)

    Belgacem, Walid; Berry, Alain; Masson, Patrice

    2012-07-01

    In this paper, a methodology is presented for the cancellation of road noise, from the analysis of vibration transmission paths for an automotive suspension to the design of an active control system using inertial actuators on a suspension to reduce the vibrations transmitted to the chassis. First, experiments were conducted on a Chevrolet Epica LS automobile on a concrete test track to measure accelerations induced on the suspension by the road. These measurements were combined with experimental Frequency Response Functions (FRFs) measured on a quarter-car test bench to reconstruct an equivalent three dimensional force applied on the wheel hub. Second, FRFs measured on the test bench between the three-dimensional driving force and forces at each suspension/chassis linkage were used to characterize the different transmission paths of vibration energy to the chassis. Third, an experimental model of the suspension was constructed to simulate the configuration of the active control system, using the primary (disturbance) FRFs and secondary (control) FRFs also measured on the test bench. This model was used to optimize the configuration of the control actuators and to evaluate the required forces. Finally, a prototype of an active suspension was implemented and measurements were performed in order to assess the performance of the control approach. A 4.6 dB attenuation on transmitted forces was obtained in the 50-250 Hz range.

  11. Vibration reduction in helicopter rotors using an active control surface located on the blade

    Science.gov (United States)

    Millott, T. A.; Friedmann, P. P.

    1992-01-01

    A feasibility study of vibration reduction in a four-bladed helicopter rotor using individual blade control (IBC), which is implemented by an individually controlled aerodynamic surface located on each blade, is presented. For this exploratory study, a simple offset-hinged spring restrained model of the blade is used with fully coupled flap-lag-torsional dynamics for each blade. Deterministic controllers based on local and global system models are implemented to reduce 4/rev hub loads using both an actively controlled aerodynamic surface on each blade as well as conventional IBC, where the complete blade undergoes cyclic pitch change. The effectiveness of the two approaches for simultaneous reduction of the 4/rev hub shears and hub moments is compared. Conventional IBC requires considerably more power to achieve approximately the same level of vibration reduction as that obtained by implementing IBC using an active control surface located on the outboard segment of the blade. The effect of blade torsional flexibility on the vibration reduction effectiveness of the actively controlled surface was also considered and it was found that this parameter has a very substantial influence.

  12. Active Vibration Suppression of a Motor-Driven Piezoelectric Smart Structure Using Adaptive Fuzzy Sliding Mode Control and Repetitive Control

    Directory of Open Access Journals (Sweden)

    Chi-Ying Lin

    2017-03-01

    Full Text Available In this paper, we report on the use of piezoelectric sensors and actuators for the active suppression of vibrations associated with the motor-driven rotation of thin flexible plate held vertically. Motor-driven flexible structures are multi-input multi-output systems. The design of active vibration-suppression controllers for these systems is far more challenging than for flexible structures with a fixed end, due to the effects of coupling and nonlinear vibration behavior generated in structures with poor damping. To simplify the design of the controller and achieve satisfactory vibration suppression, we treated the coupling of vibrations caused by the rotary motion of the thin flexible plate as external disturbances and system uncertainties. We employed an adaptive fuzzy sliding mode control algorithm in the design of a single-input–single-output controller for the suppression of vibrations using piezoelectric sensors and actuators. We also used a repetitive control system to reduce periodic vibrations associated with the repetitive motions induced by the motor. Experimental results demonstrate that the hybrid intelligent control approach proposed in this study can suppress complex vibrations caused by modal excitation, coupling effects, and periodic external disturbances.

  13. Li2MoO4 crystal growth from solution activated by low-frequency vibrations

    Science.gov (United States)

    Barinova, Olga; Sadovskiy, Andrey; Ermochenkov, Ivan; Kirsanova, Svetlana; Sukhanova, Ekaterina; Kostikov, Vladimir; Belov, Stanislav; Mozhevitina, Elena; Khomyakov, Andrew; Kuchuk, Zhanna; Zharikov, Eugeny; Avetissov, Igor

    2017-01-01

    The possibility of Li2MoO4 crystal growth from aqueous solutions activated by axial vibrational control (AVC) technique was investigated. It was found out that a low-frequency mechanical activation of the solution led to an increase of Li2MoO4 equilibrium solubility in aqueous solution for 11 rel% in the 25-29 °C temperature range. The changes in solution structure were analyzed in situ by Raman study of the solution. The AVC activation of solution resulted in a re-faceting of growing crystals, a smoothing of a face surface morphology and reduction of water content in the crystal.

  14. Quadratic partial eigenvalue assignment problem with time delay for active vibration control

    Science.gov (United States)

    Pratt, J. M.; Singh, K. V.; Datta, B. N.

    2009-08-01

    Partial pole assignment in active vibration control refers to reassigning a small set of unwanted eigenvalues of the quadratic eigenvalue problem (QEP) associated with the second order system of a vibrating structure, by using feedback control force, to suitably chosen location without altering the remaining large number of eigenvalues and eigenvectors. There are several challenges of solving this quadratic partial eigenvalue assignment problem (QPEVAP) in a computational setting which the traditional pole-placement problems for first-order control systems do not have to deal with. In order to these challenges, there has been some work in recent years to solve QPEVAP in a computationally viable way. However, these works do not take into account of the practical phenomenon of the time-delay effect in the system. In this paper, a new "direct and partial modal" approach of the quadratic partial eigenvalue assignment problem with time-delay is proposed. The approach works directly in the quadratic system without requiring transformation to a standard state-space system and requires the knowledge of only a small number of eigenvalues and eigenvectors that can be computed or measured in practice. Two illustrative examples are presented in the context of active vibration control with constant time-delay to illustrate the success of our proposed approach. Future work includes generalization of this approach to a more practical complex time-delay system and extension of this work to the multi-input problem.

  15. Experimental Active Vibration Control in Truss Structures Considering Uncertainties in System Parameters

    Directory of Open Access Journals (Sweden)

    Douglas Domingues Bueno

    2008-01-01

    Full Text Available This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.

  16. Active vibration control of hybrid smart structures featuring piezoelectric films and electrorheological fluids

    Science.gov (United States)

    Choi, Seung-Bok; Park, Yong-Kun; Cheong, ChaeCheon

    1996-05-01

    This paper presents a proof-of-concept investigation on an active vibration control of a hybrid smart structure (HSS) consisting of a piezoelectric film actuator (PFA) and an electro- rheological fluid actuator (ERFA). Firstly, an HSS beam is constructed by inserting a starch- based electro-rheological fluid into a hollow composite beam and perfectly bonding two piezoelectric films on the upper and lower surfaces of the structure as an actuator and as a sensor, respectively. As for the PFA, a neuro-sliding mode controller (NSC) incorporating neural networks with the concept of sliding mode control is formulated. On the other hand, the control scheme for the ERFA is developed as a function of excitation frequencies on the basis of field-dependent frequency responses. An experimental implementation for the PFA and ERFA is then established to perform an active vibration control of the HSS in the transient and forced vibrations. Both the increment of damping ratios and the suppression of tip deflections are evaluated in order to demonstrate control effectiveness of the PFA, the ERFA, and the hybrid actuation. The experimental results exhibit a superior ability of the hybrid actuation system to tailor elastodynamic responses of the HSS rather than a single class of actuation system alone.

  17. Decentralized harmonic active vibration control of a flexible plate using piezoelectric actuator-sensor pairs.

    Science.gov (United States)

    Baudry, Matthieu; Micheau, Philippe; Berry, Alain

    2006-01-01

    We have investigated decentralized active control of periodic panel vibration using multiple pairs combining PZT actuators and PVDF sensors distributed on the panel. By contrast with centralized MIMO controllers used to actively control the vibrations or the sound radiation of extended structures, decentralized control using independent local control loops only requires identification of the diagonal terms in the plant matrix. However, it is difficult to a priori predict the global stability of such decentralized control. In this study, the general situation of noncollocated actuator-sensor pairs was considered. Frequency domain gradient and Newton-Raphson adaptation of decentralized control were analyzed, both in terms of performance and stability conditions. The stability conditions are especially derived in terms of the adaptation coefficient and a control effort weighting coefficient. Simulations and experimental results are presented in the case of a simply supported panel with four PZT-PVDF pairs distributed on it. Decentralized vibration control is shown to be highly dependent on the frequency, but can be as effective as a fully centralized control even when the plant matrix is not diagonal-dominant or is not strictly positive real (not dissipative).

  18. Independent modal variable structure fuzzy active vibration control of thin plates laminated with photostrictive actuators

    Institute of Scientific and Technical Information of China (English)

    He Rongbo; Zheng Shijie

    2013-01-01

    Photostrictive actuators can produce photodeformation strains under illumination of ultraviolet lights.They can realize non-contact micro-actuation and vibration control for elastic plate structures.Considering the switching actuation and nonlinear dynamic characteristics of photostrictive actuators,a variable structure fuzzy active control scheme is presented to control the light intensity applied to the actuators.Firstly,independent modal vibration control equations of photoelectric laminated plates are established based on modal analysis techniques.Then,the optimal light switching function is derived to increase the range of sliding modal area,and the light intensity self-adjusting fuzzy active controller is designed.Meanwhile,a continuous function is applied to replace a sign function to reduce the variable structure control (VSC) chattering.Finally,numerical simulation is carried out,and simulation results indicate that the proposed control strategy provides better performance and control effect to plate actuation and control than velocity feedback control,and suppresses vibration effectively.

  19. Use of piezoelectric actuators in active vibration control of rotating machinery

    Science.gov (United States)

    Lin, Reng Rong; Palazzolo, Alan B.; Kascak, Albert F.; Montague, Gerald

    1990-01-01

    Theoretical and test results for the development of piezoelectric-actuator-based active vibration control (AVC) are presented. The evolution of this technology starts with an ideal model of the actuator and progresses to a more sophisticated model where the pushers force the squirrel cage ball bearing supports of a rotating shaft. The piezoelectric pushers consist of a stack of piezoelectric ceramic disks that are arranged on top of one another and connected in parallel electrically. This model consists of a prescribed displacement that is proportional to the input voltage and a spring that represents the stiffness of the stack of piezoelectric disks. System tests were carried out to stabilize the AVC system, verify its effectiveness in controlling vibration, and confirm the theory presented.

  20. Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-02-01

    The study presented in this paper introduces a new intelligent methodology to mitigate the vibration response of flexible cantilever plates. The use of the piezoelectric sensor/actuator pairs for active control of plates is discussed. An intelligent neural network based controller is designed to control the optimal voltage applied on the piezoelectric patches. The control technique utilizes a neurocontroller along with a Kalman Filter to compute the appropriate actuator command. The neurocontroller is trained based on an algorithm that incorporates a set of emulator neural networks which are also trained to predict the future response of the cantilever plate. Then, the neurocontroller is evaluated by comparing the uncontrolled and controlled responses under several types of dynamic excitations. It is observed that the neurocontroller reduced the vibration response of the flexible cantilever plate significantly; the results demonstrated the success and robustness of the neurocontroller independent of the type and distribution of the excitation force.

  1. Multi-objective optimal design of active vibration absorber with delayed feedback

    Science.gov (United States)

    Huan, Rong-Hua; Chen, Long-Xiang; Sun, Jian-Qiao

    2015-03-01

    In this paper, a multi-objective optimal design of delayed feedback control of an actively tuned vibration absorber for a stochastically excited linear structure is investigated. The simple cell mapping (SCM) method is used to obtain solutions of the multi-objective optimization problem (MOP). The continuous time approximation (CTA) method is applied to analyze the delayed system. Stability is imposed as a constraint for MOP. Three conflicting objective functions including the peak frequency response, vibration energy of primary structure and control effort are considered. The Pareto set and Pareto front for the optimal feedback control design are presented for two examples. Numerical results have found that the Pareto optimal solutions provide effective delayed feedback control design.

  2. Optimization of Passive and Active Non-Linear Vibration Mounting Systems Based on Vibratory Power Transmission

    Science.gov (United States)

    Royston, T. J.; Singh, R.

    1996-07-01

    While significant non-linear behavior has been observed in many vibration mounting applications, most design studies are typically based on the concept of linear system theory in terms of force or motion transmissibility. In this paper, an improved analytical strategy is presented for the design optimization of complex, active of passive, non-linear mounting systems. This strategy is built upon the computational Galerkin method of weighted residuals, and incorporates order reduction and numerical continuation in an iterative optimization scheme. The overall dynamic characteristics of the mounting system are considered and vibratory power transmission is minimized via adjustment of mount parameters by using both passive and active means. The method is first applied through a computational example case to the optimization of basic passive and active, non-linear isolation configurations. It is found that either active control or intentionally introduced non-linearity can improve the mount's performance; but a combination of both produces the greatest benefit. Next, a novel experimental, active, non-linear isolation system is studied. The effect of non-linearity on vibratory power transmission and active control are assessed via experimental measurements and the enhanced Galerkin method. Results show how harmonic excitation can result in multiharmonic vibratory power transmission. The proposed optimization strategy offers designers some flexibility in utilizing both passive and active means in combination with linear and non-linear components for improved vibration mounts.

  3. Dynamics of installation way for the actuator of a two-stage active vibration-isolator

    Institute of Scientific and Technical Information of China (English)

    HU Li; HUANG Qi-bai; HE Xue-song; YUAN Ji-xuan

    2008-01-01

    We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed the relationships between the active control force of the actuator and the parameters of the passive isolators by studying the dynamics of two-stage active vibration isolation for the actuator at the foregoing two positions in turn. With the actuator installed beside the upper mount, a small active force can achieve a very good isolating effect when the frequency of the stimulating force is much larger than the natural frequency of the upper mount; a larger active force is required in the low-frequency domain; and the active force equals the stimulating force when the upper mount works within the resonance region, suggesting an approach to reducing wobble and ensuring desirable installation accuracy by increasing the upper-mount stiffness. In either the low or the high frequency region far away from the resonance region, the active force is smaller when the actuator is beside the lower mount than beside the upper mount.

  4. Private farmers’ annual exposure to whole body vibration from the aspect of the type of agricultural and transport activities performed

    OpenAIRE

    Leszek Solecki

    2012-01-01

    The objective of the study was hygienic evaluation of farmers’ exposure to whole body vibration from the aspect of the type of agricultural and transport activities performed during the whole year. Twenty farms were selected for the study using arable land of over 10 ha, engaged in mixed production (plant-animal). The scope of the study covered measurements of mechanical vibration (acceleration) on seats of agricultural vehicles while performing various field and transport activities, t...

  5. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    Science.gov (United States)

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  6. Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades

    Science.gov (United States)

    Fitzgerald, B.; Basu, B.

    2014-11-01

    In-plane vibrations of wind turbine blades are of concern in modern multi-megawatt wind turbines. Today's turbines with capacities of up to 7.5 MW have very large, flexible blades. As blades have grown longer the increasing flexibility has led to vibration problems. Vibration of blades can reduce the power produced by the turbine and decrease the fatigue life of the turbine. In this paper a new active control strategy is designed and implemented to control the in-plane vibration of large wind turbine blades which in general is not aerodynamically damped. A cable connected active tuned mass damper (CCATMD) system is proposed for the mitigation of in-plane blade vibration. An Euler-Lagrangian wind turbine model based on energy formulation has been developed for this purpose which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane vibrations and also the interaction between the blades and the tower including the CCATMDs. The CCATMDs are located inside the blades and are controlled by an LQR controller. The turbine is subject to turbulent aerodynamic loading simulated using a modification to the classic Blade Element Momentum (BEM) theory with turbulence generated from rotationally sampled spectra. The turbine is also subject to gravity loading. The effect of centrifugal stiffening of the rotating blades has also been considered. Results show that the use of the proposed new active control scheme significantly reduces the in-plane vibration of large, flexible wind turbine blades.

  7. Semi-active vibration control in cable-stayed bridges under the condition of random wind load

    Science.gov (United States)

    Heo, G.; Joonryong, Jeon

    2014-07-01

    This paper aims at an experimental study on the real-time vibration control of bridge structures using a semi-active vibration control method that has been in the spotlight recently. As structures are becoming larger and larger, structural harmful vibration caused by unspecified external forces such as earthquakes, gusts of wind, and collisions has been brought to attention as an important issue. These harmful vibrations can cause not only user anxiety but also severe structural damage or even complete failure of structures. Therefore, in view of structural safety and economical long-term maintenance, real-time control technology of the harmful structural vibration is urgently required. In this paper, a laboratory-scale model of a cable-stayed bridge was built, and a shear-type MR damper and a semi-active vibration control algorithm (Lyapunov and clipped optimal) were applied for the control of harmful vibration of the model bridge, in real time. On the basis of the test results, each semi-active control algorithm was verified quantitatively.

  8. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity

    Directory of Open Access Journals (Sweden)

    Karin Lienhard

    2015-01-01

    Full Text Available The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG spectrum recorded during whole-body vibration (WBV exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05, and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05. This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity.

  9. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors

    Science.gov (United States)

    Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-11-01

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals.

  10. Resonant passive–active vibration absorber with integrated force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Brodersen, Mark Laier; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the d......A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control...... with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia...... realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction....

  11. Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion

    Science.gov (United States)

    Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo

    2007-04-01

    In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.

  12. Changes in EMG activity in the upper trapezius muscle due to local vibration exposure

    NARCIS (Netherlands)

    Astrom, Charlotte; Lindkvist, Markus; Burstrom, Lage; Sundelin, Gunnevi; Karlsson, J. Stefan

    2009-01-01

    Exposure to vibration is suggested as a risk factor for developing neck and shoulder disorders in working life. Mechanical vibration applied to a muscle belly or a tendon can elicit a reflex muscle contraction, also called tonic vibration reflex, but the mechanisms behind how vibration could cause m

  13. Active Vibration Control of an S809 Wind Turbine Blade Using Synthetic Jet Actuators

    Science.gov (United States)

    Maldonado, Victor; Boucher, Matthew; Ostman, Rebecca; Amitay, Michael

    2009-11-01

    Active flow control via synthetic jet actuators was implemented to improve the aeroelastic performance of a small scale S809 airfoil wind turbine blade model in a wind tunnel. Blade vibration performance was explored for a range of steady post-stall angles of attack, as well as various unsteady pitching motions for a chord based Reynolds number range of 1.29x10^5 to 3.69x10^5. Blade tip deflection was measured using a pair of calibrated strain gauges mounted at the root of the model. Using flow control, significant vibration reduction was observed for some steady post-stall angles of attack, while for dynamic pitching motions, vibration reduction was more pronounced (for a given angle of attack) on the pitch up motion compared to the pitch down motion of the blade cycle. This effect was attributed to the phenomenon known as dynamic stall, where the shedding of a leading edge vortex during the pitch up motion contributes to elevated values of lift (compared to static angles of attack) and lower values of lift when the blade is pitched down. This effect was also quantified through the use of Particle Image Velocimetry.

  14. Active Vibration Control of a Nonlinear Beam with Self- and External Excitations

    Directory of Open Access Journals (Sweden)

    J. Warminski

    2013-01-01

    Full Text Available An application of the nonlinear saturation control (NSC algorithm for a self-excited strongly nonlinear beam structure driven by an external force is presented in the paper. The mathematical model accounts for an Euler-Bernoulli beam with nonlinear curvature, reduced to first mode oscillations. It is assumed that the beam vibrates in the presence of a harmonic excitation close to the first natural frequency of the beam, and additionally the beam is self-excited by fluid flow, which is modelled by a nonlinear Rayleigh term for self-excitation. The self- and externally excited vibrations have been reduced by the application of an active, saturation-based controller. The approximate analytical solutions for a full structure have been found by the multiple time scales method, up to the first-order approximation. The analytical solutions have been compared with numerical results obtained from direct integration of the ordinary differential equations of motion. Finally, the influence of a negative damping term and the controller's parameters for effective vibrations suppression are presented.

  15. High-damping-performance magnetorheological material for passive or active vibration control

    Science.gov (United States)

    Liu, Taixiang; Yang, Ke; Yan, Hongwei; Yuan, Xiaodong; Xu, Yangguang

    2016-10-01

    Optical assembly and alignment system plays a crucial role for the construction of high-power or high-energy laser facility, which attempts to ignite fusion reaction and go further to make fusion energy usable. In the optical assembly and alignment system, the vibration control is a key problem needs to be well handled and a material with higher damping performance is much desirable. Recently, a new kind of smart magneto-sensitive polymeric composite material, named magnetorheological plastomer (MRP), was synthesized and reported as a high-performance magnetorheological material and this material has a magneto-enhanced high-damping performance. The MRP behaves usually in an intermediate state between fluid-like magnetorheological fluid and solid-like magnetorheological elastomer. The state of MRP, as well as the damping performance of MRP, can be tuned by adjusting the ratio of hard segments and soft segments, which are ingredients to synthesize the polymeric matrix. In this work, a series of MRP are prepared by dispersing micron-sized, magneto-sensitive carbonyl iron powders with related additives into polyurethane-based, magnetically insensitive matrix. It is found that the damping performance of MRP depends much on magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. Especially, the damping capacity of MRP can be tuned in a large range by adjusting external magnetic field. It is promising that the MRP will have much application in passive and active vibration control, such as vibration reduction in optical assembly and alignment system, vibration isolation or absorption in vehicle suspension system, etc.

  16. Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor.

    Science.gov (United States)

    Kim, Yongdae; Kim, Sangyoo; Park, Kyihwan

    2009-04-01

    A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.

  17. On the placement of active members in adaptive truss structures for vibration control

    Science.gov (United States)

    Lu, L.-Y.; Utku, S.; Wada, B. K.

    1992-01-01

    The problem of optimal placement of active members which are used for vibration control in adaptive truss structures is investigated. The control scheme is based on the method of eigenvalue assignment as a means of shaping the transient response of the controlled adaptive structures, and the minimization of required control action is considered as the optimization criterion. To this end, a performance index which measures the control strokes of active members is formulated in an efficient way. In order to reduce the computation burden, particularly for the case where the locations of active members have to be selected from a large set of available sites, several heuristic searching schemes are proposed for obtaining the near-optimal locations. The proposed schemes significantly reduce the computational complexity of placing multiple active members to the order of that when a single active member is placed.

  18. Study on active vibration control for high order mode of flexible beam using smart material piezoelectric ceramic

    Science.gov (United States)

    Wu, Da-fang; Huang, Liang; Mu, Meng; Wang, Yue-wu; Wu, Shuang

    2012-04-01

    In order to reduce effective load and lower the launch cost, many light-weight flexible structures are employed in spacecraft. The research of active control on flexible structural vibration is very important in spacecraft design. Active vibration control on a flexible beam with smart material piezoelectric pieces bonded in surface is investigated experimentally using independent modal space control method, which is able to control the first three modes independently. A comparison between the systems responses before and after control indicates that the modal damping of flexible structure is greatly improved after active control is performed, indicating remarkable vibration suppression effect. Dynamic equation of the flexible beam is deducted by Hamilton principle, and numerical simulation of active vibration control on the first three order vibration modes is also conducted in this paper. The simulation result matches experimental result very well. Both experimental and numerical results indicate that the independent modal control method using piezoelectric patch as driving element is a very effective approach to realize vibration suppression, which has promising applications in aerospace field.

  19. Theoretical and Numerical Experiences on a Test Rig for Active Vibration Control of Mechanical Systems with Moving Constraints

    Directory of Open Access Journals (Sweden)

    M. Rinchi

    2004-01-01

    Full Text Available Active control of vibrations in mechanical systems has recently benefited of the remarkable development of robust control techniques. These control techniques are able to guarantee performances in spite of unavoidable modeling errors. They have been successfully codified and implemented for vibrating structures whose uncertain parameters could be assumed to be time-invariant. Unfortunately a wide class of mechanical systems, such as machine tools with carriage motion realized by a ball-screw, are characterized by time varying modal parameters. The focus of this paper is on modeling and controlling the vibrations of such systems. A test rig for active vibration control is presented. An analytical model of the test rig is synthesized starting by design data. Through experimental modal analysis, parametric identification and updating procedures, the model has been refined and a control system has been synthesized.

  20. Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator.

    Science.gov (United States)

    Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan

    2014-09-01

    This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Vibration control of a cylindrical shell with concurrent active piezoelectric patches and passive cardboard liner

    Science.gov (United States)

    Plattenburg, Joseph; Dreyer, Jason T.; Singh, Rajendra

    2017-07-01

    This article extends a recent publication [MSSP (2016), 176-196] by developing a Rayleigh-Ritz model of a thin cylindrical shell to predict its response subject to concurrent active and passive damping treatments. These take the form of piezoelectric patches and a distributed cardboard liner, since the effects of such combined treatments are yet to be investigated. Furthermore, prior literature typically considers only the ;bimorph; active patch configuration (with patches on the inner and outer shell surfaces), which is not feasible with an interior passive liner treatment. Therefore, a novel configuration-termed as ;unimorph;-is proposed and included in the model. Experiments are performed on a shell with active patches (under harmonic excitation from 200 to 2000 Hz) in both the bimorph and unimorph configurations to provide evidence for the analytical model predictions. The proposed model is then employed to assess competing control system designs by examining local vs. global control schemes as well as considering several alternate active patch locations, both with and without the passive damping. Non-dimensional performance metrics are devised to facilitate comparisons of vibration attenuation among different designs. Finally, insertion loss values are measured under single-frequency excitation to evaluate several vibration control designs, and to compare the effects of alternate damping treatments.

  2. Non-probabilistic stability reliability measure for active vibration control system with interval parameters

    Science.gov (United States)

    Li, Yunlong; Wang, Xiaojun; Wang, Lei; Fan, Weichao; Qiu, Zhiping

    2017-01-01

    A systematic non-probabilistic reliability analysis procedure for structural vibration active control system with unknown-but-bounded parameters is proposed. The state-space representation of active vibration control system with uncertain parameters is presented. Compared with the robust control theory, which is always over-conservative, the reliability-based analysis method is more suitable to deal with uncertain problem. Stability is the core of the closed-loop feedback control system design, so stability criterion is adopted to act as the limited state function for reliability analysis. The uncertain parameters without enough samples are modeled as interval variables. Interval perturbation method is employed to estimate the interval bounds of eigenvalues, which can be used to characterize the stability of the closed-loop active control system. Formulation of defining the reliability of active control system based on stability is discussed. A novel non-probabilistic reliability measurement index is discussed and used to determine the probability of the stability based on the area ratio. The feasibility and efficiency of the proposed method are demonstrated by two numerical examples.

  3. Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity

    DEFF Research Database (Denmark)

    Barron, L.D.; Blanch, E.W.; McColl, I.H.

    2003-01-01

    On account of its sensitivity to chirality Raman optical activity (ROA), which may be measured as a small difference in vibrational Raman scattering from chiral molecules in right- and left-circularly polarized incident light, is a powerful probe of structure and behaviour of biomolecules...... is especially favourable for fold determination using pattern recognition techniques. This article gives a brief account of the ROA technique and presents the ROA spectra of a selection of proteins, nucleic acids and viruses that illustrate the applications of ROA spectroscopy in biomolecular research....

  4. Test and theory for piezoelectric actuator-active vibration control of rotating machinery

    Science.gov (United States)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The application of piezoelectric actuators for active vibration control (AVC) of rotating machinery is examined. Theory is derived and the resulting predictions are shown to agree closely with results of tests performed on an air turbine driven-overhung rotor. The test results show significant reduction in unbalance, transient and sub-synchronous responses. Results from a 30-hour endurance test support the AVD system reliability. Various aspects of the electro-mechanical stability of the control system are also discussed and illustrated. Finally, application of the AVC system to an actual jet engine is discussed.

  5. Test and theory for piezoelectric actuator-active vibration control of rotating machinery

    Science.gov (United States)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The application of piezoelectric actuators for active vibration control (AVC) of rotating machinery is examined. Theory is derived and the resulting predictions are shown to agree closely with results of tests performed on an air turbine driven-overhung rotor. The test results show significant reduction in unbalance, transient and sub-synchronous responses. Results from a 30-hour endurance test support the AVD system reliability. Various aspects of the electro-mechanical stability of the control system are also discussed and illustrated. Finally, application of the AVC system to an actual jet engine is discussed.

  6. Active vibration absorber for the CSI evolutionary model - Design and experimental results. [Controls Structures Interaction

    Science.gov (United States)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstrations to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility has been developed to study practical implementation of new control technologies under realistic conditions. The paper discusses the design of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. Experimental results in the presence of these factors are presented and discussed. The robustness of this design under model uncertainty is demonstrated.

  7. Active tuned mass damper for damping of offshore wind turbine vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Bjørke, Ann-Sofie; Høgsberg, Jan Becker

    2017-01-01

    An active tuned mass damper (ATMD) is employed for damping of tower vibrations of fixed offshore wind turbines, where the additional actuator force is controlled using feedback from the tower displacement and the relative velocity of the damper mass. An optimum tuning procedure equivalent...... to the tuning procedure of the passive tuned mass damper combined with a simple procedure for minimizing the control force is employed for determination of optimum damper parameters and feedback gain values. By time domain simulations conducted in an aeroelastic code, it is demonstrated that the ATMD can...

  8. Resonant passive–active vibration absorber with integrated force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Brodersen, Mark Laier; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control...... with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia...... realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction....

  9. Active vibration control of a composite wing model using PZT sensors/actuators and virtex: 4 FPGAs

    Science.gov (United States)

    Prakash, Shashikala; Venkatasubramanyam, D. V.; Krishnan, Bharath; Pavate, Aravind; Kabra, Hemant

    2009-07-01

    The reduction of vibration in Aircraft/Aerospace structures as well as helicopter fuselage is becoming increasingly important. A traditional approach to vibration control uses passive techniques which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC), apart from having benefits in size, weight, volume and cost, efficiently attenuates low frequency vibration. Hitherto this was being achieved using high speed Digital Signal Processors (DSPs). But the throughput requirements of general purpose DSPs have increased very much and the Field Programmable Gate Arrays (FPGAs) have emerged as an alternative. The silicon resources of an FPGA lead to staggering performance gains i.e. they are 100 times faster than DSPs. In the present paper Active Vibration Control of a Composite Research Wing Model is investigated using Piezo electric patches as sensors and PZT bimorph actuators collocated on the bottom surface as secondary actuators. Attempt has been made to realize the State - of - the - Art Active Vibration Controller using the Xilinx System Generator on VIRTEX - 4 FPGA. The control has been achieved by implementing the Filtered-X Least Mean Square (FXLMS) based adaptive filter on the FPGA. Single channel real time control has been successfully implemented & tested on the composite research wing model.

  10. Active Vibration Isolation Using an Induced Strain Actuator with Application to Automotive Seat Suspensions

    Directory of Open Access Journals (Sweden)

    Mark Malowicki

    2001-01-01

    Full Text Available Active vibration isolation of automotive seats requires actuators that achieve millimeter-range displacements and forces on the order of 300 N. Recent developments in piezoceramic actuator technology provide a means for achieving these force and displacement levels in a compact device. This work demonstrates that prestressed, curved piezoceramic actuators achieve the force and displacement levels required for active isolation of automotive seats. An estimate of the force and displacement requirements are obtained from numerical simulations on a four-degree-of-freedom car and seat model that utilize representive road accelerations as inputs. An actuator that meets these specifications is designed using piezoceramic materials. Free displacement of 4.4 mm and blocked force greater than 300 N are measured. The actuator is integrated within a dead mass setup that simulates the isolation characteristics of an automotive seat. Control experiments demonstrate that active vibration is achievable with realistic road disturbances. Feedback control is able to eliminate any amplification due to mechanical resonance and reduce the isolation frequency from 9.5 Hz to 2 Hz.

  11. Design and analysis of supporting structure with smart struts for active vibration isolation

    Science.gov (United States)

    Kim, Byeongil; Washington, Gregory N.; Singh, Rajendra

    2010-04-01

    This research investigates a supporting structure with smart struts under a vibratory load. In the case of most rotorcraft, structure-borne noise and vibration transmitted from the gearbox contains multiple spectral elements and higher frequencies, which include gear mesh frequencies and their side bands. In order to manage this issue, significant research have been devoted to active smart struts which have tunable stiffness such that a higher level of attenuation is possible. However, present techniques on active control are restricted mostly to the control of single or multiple sinusoids and thus these are not applicable to manage modulated and multi-spectral signals. Therefore, enhanced control algorithms are required in order to achieve simultaneous attenuation of gear mesh frequencies and their side bands. Proposed algorithms employing two nonlinear methods and one model-based technique are examined in this study. Their performance is verified by comparing with conventional algorithms. Moreover, these algorithms are implemented to exhibit whether they are feasible to narrowband or broadband control through experiments with a single smart strut. Novel methodologies are expected to be applied to several active vibration and noise control practices such as vehicles and other engineering structures.

  12. Natural vibration of pre-twisted shear deformable beam systems subject to multiple kinds of initial stresses

    Science.gov (United States)

    Leung, A. Y. T.; Fan, J.

    2010-05-01

    Free vibration and buckling of pre-twisted beams exhibit interesting coupling phenomena between compression, moments and torque and have been the subject of extensive research due to their importance as models of wind turbines and helicopter rotor blades. The paper investigates the influence of multiple kinds of initial stresses due to compression, shears, moments and torque on the natural vibration of pre-twisted straight beam based on the Timoshenko theory. The derivation begins with the three-dimensional Green strain tensor. The nonlinear part of the strain tensor is expressed as a product of displacement gradient to derive the strain energy due to initial stresses. The Frenet formulae in differential geometry are employed to treat the pre-twist. The strain energy due to elasticity and the linear kinetic energy are obtained in classical sense. From the variational principle, the governing equations and the associated natural boundary conditions are derived. It is noted that the first mode increases together with the pre-twisted angle but the second decreases seeming to close the first two modes together for natural frequencies and compressions. The gaps close monotonically as the angle of twist increases for natural frequencies and buckling compressions. However, unlike natural frequencies and compressions, the closeness is not monotonic for buckling shears, moments and torques.

  13. Determination of absolute configuration of chiral molecules using vibrational optical activity: a review.

    Science.gov (United States)

    He, Yanan; Wang, Bo; Dukor, Rina K; Nafie, Laurence A

    2011-07-01

    Determination of the absolute handedness, known as absolute configuration (AC), of chiral molecules is an important step in any field related to chirality, especially in the pharmaceutical industry. Vibrational optical activity (VOA) has become a powerful tool for the determination of the AC of chiral molecules in the solution state after nearly forty years of evolution. VOA offers a novel alternative, or supplement, to X-ray crystallography, permitting AC determinations on neat liquid, oil, and solution samples without the need to grow single crystals of the pure chiral sample molecules as required for X-ray analysis. By comparing the sign and intensity of the measured VOA spectrum with the corresponding ab initio density functional theory (DFT) calculated VOA spectrum of a chosen configuration, one can unambiguously assign the AC of a chiral molecule. Comparing measured VOA spectra with calculated VOA spectra of all the conformers can also provide solution-state conformational populations. VOA consists of infrared vibrational circular dichroism (VCD) and vibrational Raman optical activity (ROA). Currently, VCD is used routinely by researchers in a variety of backgrounds, including molecular chirality, asymmetric synthesis, chiral catalysis, drug screening, pharmacology, and natural products. Although the application of ROA in AC determination lags behind that of VCD, with the recent implementation of ROA subroutines in commercial quantum chemistry software, ROA will in the future complement VCD for AC determination. In this review, the basic principles of the application of VCD to the determination of absolute configuration in chiral molecules are described. The steps required for VCD spectral measurement and calculation are outlined, followed by brief descriptions of recently published papers reporting the determination of AC in small organic, pharmaceutical, and natural product molecules.

  14. The Influence of Semi-active Dampers on the Vibration Behaviour of Passenger Cars

    Science.gov (United States)

    Schneider, Sebastian; Brechter, Daniel; Janßen, Andreas; Mauch, Heiko

    The number of mechatronic components in modern car suspensions is increasing continuously to solve conflicts concerning design goals. Thus, changes in the vibration behaviour of the vehicle are caused. It needs to be ascertained whether this influence has to be taken into account when determining the fatigue life of a car and its components. Therefore, changes of the loads are studied in measurements and multi-body simulations of a passenger car with semi-active dampers. The evaluation of the forces at the wheel centre and at the shock absorber tower shows that different settings of semi-active dampers have an influence on fatigue life of the chassis and the car body. It is concluded that these effects need to be taken into account when determining fatigue life. Furthermore, multi-body simulations have been successfully applied to study the influence of semi-active dampers on the loads.

  15. Active vibration suppression in a suspended Fabry-Pérot cavity.

    Science.gov (United States)

    Canuto, Enrico

    2006-07-01

    This paper is concerned with active vibration suppression in a suspended Fabry-Pérot cavity, employed as the sensor in an innovative thrust-stand, called Nanobalance. The Nanobalance aims to exploit the sensitivity of in-vacuum Fabry-Pérot interferometers to sub-nanometric displacements in order to measure thrust (active and the passive) suspended to an athermic spacer. The thruster under test is mounted on the active pendulum and an equal dummy thruster is mounted on the passive one for balancing. The objective of the paper is to suppress the beat motion centered on the mean pendulum natural frequency (10-14 Hz depending on the thruster under test) without affecting the measurement bandwidth (2 Hz) where thrust has to be measured. Beat motion arises because of small pendulum imbalances excited by ground noise. Relevant digital control strategies and experimental results will be presented and discussed.

  16. Vibration control of a nonlinear quarter-car active suspension system by reinforcement learning

    Science.gov (United States)

    Bucak, İ. Ö.; Öz, H. R.

    2012-06-01

    This article presents the investigation of performance of a nonlinear quarter-car active suspension system with a stochastic real-valued reinforcement learning control strategy. As an example, a model of a quarter car with a nonlinear suspension spring subjected to excitation from a road profile is considered. The excitation is realised by the roughness of the road. The quarter-car model to be considered here can be approximately described as a nonlinear two degrees of freedom system. The experimental results indicate that the proposed active suspension system suppresses the vibrations greatly. A simulation of a nonlinear quarter-car active suspension system is presented to demonstrate the effectiveness and examine the performance of the learning control algorithm.

  17. Active member vibration control experiment in a KC-135 reduced gravity environment

    Science.gov (United States)

    Lawrence, C. R.; Lurie, B. J.; Chen, G.-S.; Swanson, A. D.

    1991-01-01

    An active member vibration control experiment in a KC-135 reduced gravity environment was carried out by the Air Force Flight Dynamics Laboratory and the Jet Propulsion Laboratory. Two active members, consisting of piezoelectric actuators, displacement sensors, and load cells, were incorporated into a 12-meter, 104 kg box-type test structure. The active member control design involved the use of bridge (compound) feedback concept, in which the collocated force and velocity signals are feedback locally. An impact-type test was designed to accommodate the extremely short duration of the reduced gravity testing window in each parabolic flight. The moving block analysis technique was used to estimate the modal frequencies and dampings from the free-decay responses. A broadband damping performance was demonstrated up to the ninth mode of 40 Hz. The best damping performance achieved in the flight test was about 5 percent in the fourth mode of the test structure.

  18. Vibration sensors

    Science.gov (United States)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  19. Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque

    Directory of Open Access Journals (Sweden)

    Zili Zhang

    2014-11-01

    Full Text Available Lateral tower vibrations of offshore wind turbines are normally lightly damped, and large amplitude vibrations induced by wind and wave loads in this direction may significantly shorten the fatigue life of the tower. This paper proposes the modeling and control of lateral tower vibrations in offshore wind turbines using active generator torque. To implement the active control algorithm, both the mechanical and power electronic aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind turbine model with generator and pitch controllers is derived using the Euler–Lagrangian approach. The model displays important features of wind turbines, such as mixed moving frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain vibrations, as well as aerodynamic damping present in different modes of motions. The load transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the interaction between the generator torque and the lateral tower vibration are presented in a generalized manner. A three-dimensional rotational sampled turbulence field is generated and applied to the rotor, and the tower is excited by a first order wave load in the lateral direction. Next, a simple active control algorithm is proposed based on active generator torques with feedback from the measured lateral tower vibrations. A full-scale power converter configuration with a cascaded loop control structure is also introduced to produce the feedback control torque in real time. Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator are considered using the same time series for the wave and turbulence loadings. Results show that by using active generator torque control, lateral tower vibrations can be significantly mitigated for

  20. Development of a Semi-Active Electromagnetic Vibration Absorber and Its Experimental Study.

    Science.gov (United States)

    Liu, Xueguang; Feng, Xiaoxiao; Shi, Ye; Wang, Ye; Shuai, Zhijun

    2013-10-01

    In this work, a semiactive electromagnetic vibration absorber has been developed based on a proposed electromagnetic stiffness adjustable spring model, which presents a new solution for adjusting stiffness in the field of vibration absorber devices. Simulation study on the electromagnetic spring has been performed to determine the structural parameter of the semiactive vibration absorber. An experimental rig is also built up to investigate its practical vibration control effectiveness. Firstly, the finite element model of the test bench is used to analyze its vibration characteristics. Then, the vibration reduction effect is predicted through the simulation analysis, from which the optimal control positions are found. Finally, the experimental studies are also conducted, and the results show that this semiactive electromagnetic vibration absorber has a frequency adjustment range from 21 Hz to 25 Hz, in which considerable vibration reduction from 5 dB to 10 dB can be achieved.

  1. Study on the application of active balancing device to solve the vibration problem for the rotor with bending fault

    Institute of Scientific and Technical Information of China (English)

    He Lidong; Shen Wei; Gao Jinji; Zhou Weihua

    2006-01-01

    The rotor with bending faults that occurrs on the rotating machinery usually vibrates seriously. This paper investigates to apply the active balancing device on a flexible rotor with bending faults to solve the vibration problem. Two problems are studied by finite element method firstly: Where the balance actuator is fixed on the shaft and how much the balancing capacity of the active balancing device is needed. The experiment is then carried out on the test rig, which consists of a flexible rotor with bending faults. The test results indicate that the bending rotor peak vibration response can be decreased from 550μm to 40μm below by using the active balancing device. The peak vibration response decreases approximately by 93%. The synchronous vibration due to the rotor bending faults can be controlled effectively by using active balancing device. The active balancing device is especially adapted to solve the problem caused by thermal distortion with time-variation and randomness, which is varied with working conditions, thus it has good practical value in practice.

  2. Optimal placement of piezoelectric active bars in vibration control by topological optimization

    Institute of Scientific and Technical Information of China (English)

    Guozhong Zhao; Jian Wang; Yuanxian Gu

    2008-01-01

    A continuous variable optimization method and a topological optimization method are proposed for the vibra-tion control of piezoelectric truss structures by means of the optimal placements of active bars. In this optimization model, a zero-one discrete variable is defined in order to solve the optimal placement of piezoelectric active bars. At the same time, the feedback gains are also optimized as conti-nuous design variables. A two-phase procedure is proposed to solve the optimization problem. The sequential linear pro-gramming algorithm is used to solve optimization problem and the sensitivity analysis is carried out for objective and constraint functions to make linear approximations. On the basis of the Newmark time integration of structural tran-sient dynamic responses, a new sensitivity analysis method is developed in this paper for the vibration control problem of piezoelectric truss structures with respect to various kinds of design variables. Numerical examples are given in the paper to demonstrate the effectiveness of the methods.

  3. Importance of backbone angles versus amino acid configurations in peptide vibrational Raman optical activity spectra

    Science.gov (United States)

    Herrmann, Carmen; Ruud, Kenneth; Reiher, Markus

    2008-01-01

    In this work, we investigate whether the differential scattering of right- and left-circularly polarized light in peptide Raman optical activity spectra are uniquely dominated by the backbone conformation, or whether the configurations of the individual amino acid also play a significant role. This is achieved by calculating Raman optical activity spectra using density functional theory for four structurally related peptides with a common backbone conformation, but with different sequences of amino acid configurations. Furthermore, the ROA signals of the amide normal modes are decomposed into contributions from groups of individual atoms. It is found that the amino acid configuration has a considerable influence on the ROA peaks in the amide I, II, and III regions, although the local decomposition reveals that the side-chain atoms only contribute to those peaks directly in the case of the amide II vibrations. Furthermore, small changes in the amide normal modes may lead to large and irregular modifications in the ROA intensity differences, making it difficult to establish transferable ROA intensity differences even for structurally similar vibrations.

  4. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    Science.gov (United States)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  5. Structural, topological and vibrational properties of an isothiazole derivatives series with antiviral activities

    Science.gov (United States)

    Romani, Davide; Márquez, María J.; Márquez, María B.; Brandán, Silvia A.

    2015-11-01

    In this work, the structural, topological and vibrational properties of an isothiazole derivatives series with antiviral activities in gas and aqueous solution phases were studied by using DFT calculations. The self consistent reaction field (SCRF) method was combined with the polarized continuum (PCM) model in order to study the solvent effects and to predict their reactivities and behaviours in both media. Thus, the 3-mercapto-5-phenyl-4-isothiazolecarbonitrile (I), 3-methylthio-5-phenyl-4-isothiazolecarbonitrile (II), 3-Ethylthio-5-phenyl-4-isothiazolecarbonitrile (III), S-[3-(4-cyano-5-phenyl)isothiazolyl] ethyl thiocarbonate (IV), 5-Phenyl-3-(4-cyano-5-phenylisothiazol-3-yl) disulphanyl-4-isothiazolecarbonitrile (V) and 1,2-Bis(4-cyano-5-phenylisothiazol-3-yl) sulphanyl Ethane (VI) derivatives were studied by using the hybrid B3LYP/6-31G* method. All the properties were compared and analyzed in function of the different R groups linked to the thiazole ring. This study clearly shows that the high polarity of (I) probably explains its elevated antiviral activity due to their facility to traverse biological membranes more rapidly than the other ones while in the (IV) and (V) derivatives the previous hydrolysis of both bonds increasing their antiviral properties inside the cell probably are related to their low S-R bond order values. In addition, the complete vibrational assignments and force constants are presented.

  6. Lead-Lag Control for Helicopter Vibration and Noise Reduction

    Science.gov (United States)

    Gandhi, Farhan

    1995-01-01

    As a helicopter transitions from hover to forward flight, the main rotor blades experience an asymmetry in flow field around the azimuth, with the blade section tangential velocities increasing on the advancing side and decreasing on the retreating side. To compensate for the reduced dynamic pressure on the retreating side, the blade pitch angles over this part of the rotor disk are increased. Eventually, a high enough forward speed is attained to produce compressibility effects on the advancing side of the rotor disk and stall on the retreating side. The onset of these two phenomena drastically increases the rotor vibratory loads and power requirements, thereby effectively establishing a limit on the maximum achievable forward speed. The alleviation of compressibility and stall (and the associated decrease in vibratory loads and power) would potentially result in an increased maximum forward speed. In the past, several methods have been examined and implemented to reduce the vibratory hub loads. Some of these methods are aimed specifically at alleviating vibration at very high flight speeds and increasing the maximum flight speed, while others focus on vibration reduction within the conventional flight envelope. Among the later are several types passive as well as active schemes. Passive schemes include a variety of vibration absorbers such as mechanical springs, pendulums, and bifilar absorbers. These mechanism are easy to design and maintain, but incur significant weight and drag penalties. Among the popular active control schemes in consideration are Higher Harmonic Control (HHC) and Individual Blade Control (IBC). HHC uses a conventional swash plate to generate a multi-cyclic pitch input to the blade. This requires actuators capable of sufficiently high power and bandwidth, increasing the cost and weight of the aircraft. IBC places actuators in the rotating reference frame, requiring the use of slip rings capable of transferring enough power to the actuators

  7. An optimal approach to active damping of nonlinear vibrations in composite plates using piezoelectric patches

    Science.gov (United States)

    Saviz, M. R.

    2015-11-01

    In this paper a nonlinear approach to studying the vibration characteristic of laminated composite plate with surface-bonded piezoelectric layer/patch is formulated, based on the Green Lagrange type of strain-displacements relations, by incorporating higher-order terms arising from nonlinear relations of kinematics into mathematical formulations. The equations of motion are obtained through the energy method, based on Lagrange equations and by using higher-order shear deformation theories with von Karman-type nonlinearities, so that transverse shear strains vanish at the top and bottom surfaces of the plate. An isoparametric finite element model is provided to model the nonlinear dynamics of the smart plate with piezoelectric layer/ patch. Different boundary conditions are investigated. Optimal locations of piezoelectric patches are found using a genetic algorithm to maximize spatial controllability/observability and considering the effect of residual modes to reduce spillover effect. Active attenuation of vibration of laminated composite plate is achieved through an optimal control law with inequality constraint, which is related to the maximum and minimum values of allowable voltage in the piezoelectric elements. To keep the voltages of actuator pairs in an allowable limit, the Pontryagin’s minimum principle is implemented in a system with multi-inequality constraint of control inputs. The results are compared with similar ones, proving the accuracy of the model especially for the structures undergoing large deformations. The convergence is studied and nonlinear frequencies are obtained for different thickness ratios. The structural coupling between plate and piezoelectric actuators is analyzed. Some examples with new features are presented, indicating that the piezo-patches significantly improve the damping characteristics of the plate for suppressing the geometrically nonlinear transient vibrations.

  8. Design of active noise and vibration control for car oil pans using numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ringwelski, S; Luft, T.; Gabbert, U. [Otto-von-Guericke Univ. of Magdeburg (Germany). Dept. of Mechanical Engineering

    2009-07-01

    Increasing attention has been paid to vibration and noise control in automotive engineering because it contributes to comfort, efficiency and safety. Since the oil pan is a major contributor to power train noise, a study was conducted to design a smart car oil pan with surface-attached piezoelectric actuators for active vibration and noise reduction. Efficient and reliable simulation tools were used along with a virtual model that predicted the performance of the smart oil pan and enabled engineers to compare different sensor-actuator configurations and control algorithms. The model included the passive oil pan, exterior sound field, sensors, actuators and a control algorithm. Due to the interactions between these subsystems the simulation was a coupled multi-field problem involving the fields of structural dynamics, electromechanics, acoustics and control theory. Numerical methods such as the finite element method (FEM) and the boundary element method (BEM) were used to accurately model the structural and acoustic response when actuator forces were applied to the structure. MATLAB software was used to model the oil pan and the piezoelectric actuators. Uncoupled structural FE simulations of the oil pan were first presented to identify the most dominant mode shapes within a frequency range of 0-1200 Hz. The definition of the actuator positions was then performed. A velocity feedback control algorithm was implemented into the electromechanical FE analysis to provide a closed loop model. With velocity feedback control, attenuations of about 24 dB in vibration level and 16 dB in sound pressure level at the resonance frequencies of the most dominant modes of the smart oil pan were achieved. Experimental results were found to be in good agreement with numerical results. 7 refs., 6 figs.

  9. Active vibration control of a sandwich plate by non-collocated positive position feedback

    Science.gov (United States)

    Ferrari, Giovanni; Amabili, Marco

    2015-04-01

    The active vibration control of a free rectangular sandwich plate by using the Positive Position Feedback (PPF) algorithm was experimentally investigated in a previous study. Four normal modes were controlled by four nearly collocated couples of piezoelectric sensors and actuators. The experimental results of the control showed some limitation, especially in the Multi-Input Multi-Output (MIMO) configuration. This was attributed to the specific type of sensors and their conditioning, as well as to the phase shifts present in the vibration at different points of the structure. An alternative approach is here undertaken by abandoning the configuration of quasi-perfect collocation between sensor and actuator. The positioning of the piezoelectric patches is still led by the strain energy value distribution on the plate; each couple of sensor and actuator is now placed on the same face of the plate but in two distinct positions, opposed and symmetrical with respect to the geometric center of the plate. Single-Input Single-Output (SISO) PPF is tested and the transfer function parameters of the controller are tuned according to the measured values of modal damping. Then the participation matrices necessary for the MIMO control algorithm are determined by means of a completely experimental procedure. PPF is able to mitigate the vibration of the first four natural modes, in spite of the rigid body motions due to the free boundary conditions. The amplitude reduction achieved with the non-collocated configuration is much larger than the one obtained with the nearby collocated one. The phase lags were addressed in the MIMO algorithm by correction phase delays, further increasing the performance of the controller.

  10. Bias Errors in Measurement of Vibratory Power and Implication for Active Control of Structural Vibration

    DEFF Research Database (Denmark)

    Ohlrich, Mogens; Henriksen, Eigil; Laugesen, Søren

    1997-01-01

    of a degree for the phase. This implies that input power at a single point can be measured to within one dB in practical structures which possesses some damping. The uncertainty is increased, however, when sums of measured power contributions from more sources are to be minimised, as is the case in active...... control of vibratory power transmission into structures. This is demonstrated by computer simulations using a theoretical model of a beam structure which is driven by one primary source and two control sources. These simulations reveal the influence of residual errors on power measurements......, and the limitations imposed in active control of structural vibration based upon a strategy of power minimisation....

  11. Nonlinear Dynamical Analysis on Four Semi-Active Dynamic Vibration Absorbers with Time Delay

    Directory of Open Access Journals (Sweden)

    Yongjun Shen

    2013-01-01

    Full Text Available In this paper four semi-active dynamic vibration absorbers (DVAs are analytically studied, where the time delay induced by measurement and execution in control procedure is included in the system. The first-order approximate analytical solutions of the four semi-active DVAs are established by the averaging method, based on the illustrated phase difference of the motion parameters. The comparisons between the analytical and the numerical solutions are carried out, which verify the correctness and satisfactory precision of the approximate analytical solutions. Then the effects of the time delay on the dynamical responses are analyzed, and it is found that the stability conditions for the steady-state responses of the primary systems are all periodic functions of time delay, with the same period as the excitation one. At last the effects of time delay on control performance are discussed.

  12. Active vibration control of piezoelectric bonded smart structures using PID algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhang Shunqi; Ru¨diger Schmidt; Qin Xiansheng

    2015-01-01

    Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled finite element (FE) model of smart structures is developed based on first-order shear deformation (FOSD) hypothesis. Considering the vibrations generated by various disturbances, which include free and forced vibrations, a PID control is implemented to damp both the free and forced vibrations. Additionally, an LQR optimal control is applied for comparison. The implemented control strategies are validated by a piezoelectric layered smart plate under var-ious excitations.

  13. Control of seismic and operational vibrations of rotating machines using semi-active mounts

    Institute of Scientific and Technical Information of China (English)

    R.Rana; T.T.Soong

    2004-01-01

    A dual isolation problem for rotating machines consists of isolation of housing structures from the machine vibrations and protection of machines during an earthquake to maintain their functionality. Desirable characteristics of machine mounts for the above two purposes can differ significantly due to difference in nature of the excitation and performance criteria in the two situations. In this paper, relevant response quantities are identified that may be used to quantify performancc and simplified models of rotating machines are presented using which these relevant response quantities may be calculated. Using random vibration approach with a stationary excitation, it is shown that significant improvement in seismic performance is achievable by proper mount design. Results of shaking table experiments performed with a realistic setup using a centrifugal pump are presented. It is concluded that a solution to this dual isolation problem lies in a semi-active.mount capable of switching its properties from‘operation-optimum'to‘seismic-optimum'at the omset of a seismic event.

  14. Active vibration control by piezoceramic actuators on a jet aircraft partial frame structure

    Science.gov (United States)

    Lecce, Leonardo; Viscardi, Massimo; Cantoni, Stefania

    1996-04-01

    During the last five years, the Dept. of Aeronautical Engineering of the University of Naples, has carried out a lot of work, especially on the experimental side, focused on assessing the feasibility of an active vibration and noise control approach, based on the use of piezoceramic actuators and sensors bonded to different structural elements. This paper concerns an application of this technique relative to a partially curved stiff frame of a medium civil transport jet aircraft. The general procedure, as previously assessed on different test articles, requires as first step, the dynamic characterization of the test article, to best point out the target of control procedure in terms of deformed shapes relative to the frequency of most interest. The use of PZT piezoactuators to be bonded on the structure guarantee at the same time high actuators forces in front of a low weight increment. The hearth of the MIMO (Multi Input Multi Output) feedforward control algorithm that is usually applied, is then represented by an ANN (Artificial Neural Network) control algorithm that use the evaluation of experimental FRF as measured by reference accelerometer, to calculate the optimum control forces to be applied to the actuators to minimize a target cost function. Experimental results provided over 32 dB of overall vibration level reduction in a single controlled mode shape, without any spillover effect.

  15. A wavelet approach for active-passive vibration control of laminated plates

    Institute of Scientific and Technical Information of China (English)

    Ji-Zeng Wang; Xiao-Min Wang; You-He Zhou

    2012-01-01

    As an extension of the wavelet approach to vibration control of piezoelectric beam-type plates developed earlier by the authors,this paper proposes a hybrid activepassive control strategy for suppressing vibrations of laminated rectangular plates bonded with distributed piezoelectric sensors and actuators via thin viscoelastic bonding layers.Owing to the low-pass filtering property of scaling function transform in orthogonal wavelet theory,this waveletbased control method has the ability to automatically filter out noise-like signal in the feedback control loop,hence reducing the risk of residual coupling effects which are usually the source of spillover instability.Moreover,the existence of thin viscoelastic bonding layers can further improve robustness and reliability of the system through dissipating the energy of any other possible noise induced partially by numerical errors during the control process.A simulation procedure based on an advanced wavelet-Galerkin technique is suggested to realize the hybrid active-passive control process.Numerical results demonstrate the efficiency of the proposed approach.

  16. Shape and vibration control of active laminated plates for RF and optical applications

    Science.gov (United States)

    Punhani, Amitesh; Washington, Gregory N.

    2006-03-01

    Active shape and vibration control of large structures have long been desired for many practical applications. PVDF being one of the most suitable materials for these applications due to its strong piezoelectric properties and availability in thin sheets has been the focal point of most researchers in this area. Most of the research has been done to find an open loop solution, which would be able to shape the structure as per the desired requirements in an ideal atmosphere. Unmodeled dynamics and external disturbances prevent the open loop (no feedback) solution from achieving the desired shape. This research develops a dynamic model of a laminated plate consisting of two layers of PVDF film joined with a layer of epoxy. The orthotropic properties of PVDF have been modeled and the epoxy layer is considered to be isotropic. A general control model is developed, which would work for most boundary conditions and developed for a simply supported beam with patch actuators. The methodology is then extended for a simply supported laminated plate. This model could be used for real time dynamic disturbance rejection and shape and vibration control of the structure.

  17. Active vibration control for a smart panel with enhanced acoustic performances

    Science.gov (United States)

    Ripamonti, Francesco; Baro, Simone; Molgora, Manuel

    2017-04-01

    The spread of smart structures has recorded a significant increase during the last decades. Nowadays these solutions are applied in various fields such as aerospace, automotive and civil constructions. This kind of structures was born in the past in order to cope with the high vibrations that every lightweight structure has to face. In order to reduce weight designers usually decide to use very thin and lightweight structures. In the automotive field, for example, a reduced fuel consumption is obtained employing lightweight materials. However, in general a worsening of the vibroacoustic comfort is obtained with undesired vibrations that can be really annoying for passengers and dangerous for the structure itself. This work presents an innovative smart plate that is able to actively vary its dynamic properties, by means of an IMSC control logic, in order to improve the acoustic performances. An investigation about the system response in the high frequency range allowed to assess the behavior in terms of absorption, reflection coefficient and transmission loss.

  18. Active vibration control testing of the SPICES program: final demonstration article

    Science.gov (United States)

    Dunne, James P.; Jacobs, Jack H.

    1996-05-01

    The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) Program is a partnership program sponsored by the Advanced Research Projects Agency. The mission of the program is to develop cost effective material processing and synthesis technologies to enable new products employing active vibration suppression and control devices to be brought to market. The two year program came to fruition in 1995 through the fabrication of the final smart components and testing of an active plate combined with two trapezoidal rails, forming an active mount. Testing of the SPICES combined active mount took place at McDonnell Douglas facilities in St. Louis, MO, in October-December 1995. Approximately 15 dB reduction in overall response of a motor mounted on the active structure was achieved. Further details and results of the SPICES combined active mount demonstration testing are outlined. Results of numerous damping and control strategies that were developed and employed in the testing are presented, as well as aspects of the design and fabrication of the SPICES active mount components.

  19. Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm

    Science.gov (United States)

    Yang, Don-Ho; Shin, Ji-Hwan; Lee, HyunWook; Kim, Seoug-Ki; Kwak, Moon K.

    2017-03-01

    In this study, an Active Mass Damper (AMD) consisting of an AC servo motor, a movable mass connected to the AC servo motor by a ball-screw mechanism, and an accelerometer as a sensor for vibration measurement were considered. Considering the capability of the AC servo motor which can follow the desired displacement accurately, the Negative Acceleration Feedback (NAF) control algorithm which uses the acceleration signal directly and produces the desired displacement for the active mass was proposed. The effectiveness of the NAF control was proved theoretically using a single-degree-of-freedom (SDOF) system. It was found that the stability condition for the NAF control is static and it can effectively increase the damping of the target natural mode without causing instability in the low frequency region. Based on the theoretical results of the SDOF system, the Multi-Modal NAF (MMNAF) control is proposed to suppress the many natural modes of multi-degree-of-freedom (MDOF) systems using a single AMD. It was proved both theoretically and experimentally that the MMNAF control can suppress vibrations of the MDOF system.

  20. Active linear mass absorber technology for the reduction of noise and vibration at a cylinder deactivation vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Rottner, T.; Eckel, H.G. [Vibracoustic GmbH und Co. KG (Germany); Kim, J.H. [Hyundai Motor Company (Korea); Klatt, C. [Freudenberg New Technologies, Weinheim (Germany)

    2007-07-01

    Cylinder deactivation is a suitable strategy for reducing the fuel consumption of a vehicle. In this particular case, a V6 engine runs under partial load conditions in a restricted engine speed range as an inline three cylinder engine by deactivating an entire bank. As a side effect, noise and vibrations in the deactivated condition deteriorate significantly. For comfort reasons, however, a similar noise and vibration level for both - full and deactivated engine running condition - is desired. To achieve this, active technology is used. In the cylinder deactivation mode, two active linear mass aborbers installed at the engine mounts cancel out the main disturbing engine excitation orders of the engine mount forces. As a result, the noise and vibration in the passenger compartment is significantly reduced. (orig.)